WO2021249293A1 - 一种姿态调整机构、主操作手装置及手术机器人 - Google Patents

一种姿态调整机构、主操作手装置及手术机器人 Download PDF

Info

Publication number
WO2021249293A1
WO2021249293A1 PCT/CN2021/098282 CN2021098282W WO2021249293A1 WO 2021249293 A1 WO2021249293 A1 WO 2021249293A1 CN 2021098282 W CN2021098282 W CN 2021098282W WO 2021249293 A1 WO2021249293 A1 WO 2021249293A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
axis
motor
rotating shaft
axial direction
Prior art date
Application number
PCT/CN2021/098282
Other languages
English (en)
French (fr)
Inventor
王建国
张家兴
Original Assignee
苏州康多机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州康多机器人有限公司 filed Critical 苏州康多机器人有限公司
Priority to EP21821057.3A priority Critical patent/EP4162894A1/en
Publication of WO2021249293A1 publication Critical patent/WO2021249293A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities

Definitions

  • the present invention relates to the technical field of medical equipment, in particular to a posture adjustment mechanism, a main operating hand device and a surgical robot.
  • the delicate operation objects are small, complicated in shape, and often take a long time.
  • the doctor is easily tired.
  • the tremor and fatigue of the hands can easily lead to inaccurate surgical actions, and the master-slave controlled manipulator can make Doctors perform surgical operations in a relatively comfortable posture, so the master-slave controlled surgical system has attracted much attention in the industry.
  • the structure design of the manipulator of the existing surgical robot is unreasonable, especially the structure design of the posture part of the main manipulator is unreasonable, which leads to inconvenience during the operation, especially unable to meet the needs of complex surgery.
  • the present invention aims to solve the problem to a certain extent, but the structural design of the manipulator of the existing surgical robot is unreasonable, especially the structural design of the posture part of the main manipulator is unreasonable, resulting in inconvenient use during the operation, especially unable to meet the requirements of complicated surgery. Use the required question.
  • the present invention provides a posture adjustment mechanism, including:
  • a second connecting rod one end of the second connecting rod is hinged with one end of the first connecting rod, so that the first connecting rod rotates around a second axial direction;
  • the other end of the second connecting rod is rotatably connected with the third flange, so that the second connecting rod is suitable for rotating around the third axis;
  • the main hand clamp is hinged to the other end of the first connecting rod, so that the main hand clamp rotates around the first axis;
  • the second axis is perpendicular to the third axis
  • the third axis is perpendicular to the first axis
  • the second axis is perpendicular to the first axis.
  • the other end of the first connecting rod is provided with a groove body, and the groove body penetrates the first connecting rod along the thickness direction of the first connecting rod, wherein the main hand clip is hinged through the first connecting shaft At the groove body, the axis of the first connecting shaft is the first axial direction.
  • a counterweight is provided at a position of the first connecting shaft away from the main hand clamp.
  • first connecting shaft is rotatably connected to the groove body through a first rotating shaft and a bearing
  • second connecting rod is rotatably connected to the first connecting rod through a second rotating shaft and a bearing
  • the other end of the second connecting rod is rotatably connected to the third flange through a third rotating shaft and a bearing.
  • a second detecting mechanism is provided at the hinge joint of the first connecting rod and the second connecting rod, and is used to detect the angle of the first connecting rod rotating around the second axial direction;
  • a third detection mechanism is provided at the connection between the second connecting rod and the third flange, for detecting the angle of rotation of the second connecting rod around the third axis;
  • a first detection mechanism is provided at the hinge joint of the main hand clamp and the first connecting rod for detecting the angle of rotation of the main hand clamp around the first axial direction.
  • the first detection mechanism is a first motor
  • the first motor is used to control the main hand clamp to rotate around a first axial direction
  • the second detection mechanism is a second motor
  • the second motor Is used to control the first connecting rod to rotate around the second axis
  • the third detection mechanism has a third motor
  • the third motor is used to control the first connecting rod to rotate around the second axis
  • the first The first motor, the second motor and the third motor are respectively integrated with encoders;
  • the other end of the first connecting rod is provided with a groove body that penetrates the first connecting rod along the thickness direction of the first connecting rod, wherein the main hand clip is hinged on the first connecting rod
  • the axis of the first connecting shaft is the first axial direction
  • the first connecting shaft is rotatably connected to the groove body through a first rotating shaft and a bearing
  • the second connecting rod One end of the second connecting rod is rotatably connected to one end of the first connecting rod through a second rotating shaft and a bearing
  • the other end of the second connecting rod is rotatably connected to the third flange through a third rotating shaft and a bearing, wherein
  • An encoder is respectively connected to one end of the first rotating shaft, the second rotating shaft and the third rotating shaft.
  • the present invention also provides a main operating hand device, including the aforementioned posture adjustment mechanism;
  • the position adjustment mechanism includes:
  • a linear motion mechanism wherein a sliding block is arranged at the linear motion mechanism, the sliding block is adapted to move along the length direction of the linear motion mechanism, and a connecting seat is arranged at the sliding block;
  • a connecting rod one end of the connecting rod is connected with the third flange, the other end of the connecting rod is connected with the connecting seat, and the sliding block is adapted to move along a fourth axial direction;
  • a sliding support, one end of the linear motion mechanism is hinged to the sliding support, so that the linear motion mechanism is suitable for rotating around the fifth axis;
  • a base the sliding support is hinged to the base, so that the sliding support is suitable for rotating around the sixth axis;
  • the fourth axis is perpendicular to and does not intersect with the fifth axis
  • the fifth axis is perpendicular to the sixth axis
  • the fourth axis is perpendicular to the sixth axis.
  • a fifth motor is provided at the sliding support, and the fifth motor is adapted to control the linear motion mechanism to rotate around a fifth axial direction
  • a sixth motor is provided at the base. The sixth motor is adapted to control the sliding support to rotate around the sixth axis.
  • the present invention also provides a surgical robot, which includes the main manipulator device.
  • the surgical robot is an orthopedic surgical robot, a dental surgical robot, or a laparoscopic surgical robot.
  • the posture adjustment mechanism provided by the present invention has but not limited to the following technical effects:
  • the rotation of the main hand clamp around the first axis is called pitch motion
  • the rotation of the main hand clamp around the third axis is called yaw motion
  • the rotation of the main hand clip around the second axis is called Rotary motion
  • the main hand clamp realizes the three-degree-of-freedom surgical operation, which can complete more complicated Surgical operations, such as laparoscopic surgery; it solves the unreasonable structural design of the manipulator of the existing surgical robot, especially the unreasonable structural design of the posture part of the main manipulator, which leads to inconvenient use during the operation, especially unable to meet the complexity
  • the use of surgery requires problems.
  • Fig. 1 is a schematic structural diagram of a main operating hand device according to a specific embodiment of the present invention
  • Fig. 2 is a partial schematic structural diagram of a main operating hand device according to a specific embodiment of the present invention.
  • Fig. 3 is a schematic top view of the linear motion mechanism of the main operating hand device according to the specific embodiment of the present invention.
  • 2-position adjustment mechanism 21-linear motion mechanism, 211-long board, 212-rail groove, 213-fourth motor, 214-screw, 22-slider, 23-connecting seat, 24-connecting rod, 25- Sliding support, 251-U-shaped groove, 26-base, 27-fifth motor, 28-sixth motor.
  • the Z-axis in the figure indicates the vertical direction, that is, the up and down position, and the positive direction of the Z-axis (that is, the arrow pointing to the Z-axis) indicates up, and the negative direction of the Z-axis (that is, the opposite of the positive direction of the Z-axis) Direction) means down;
  • the X axis represents the longitudinal direction of the horizontal plane, which is perpendicular to the Z axis, and the positive direction of the X axis (that is, the arrow pointing to the X axis) represents the front side, and the negative direction of the X axis (that is, the X axis
  • the direction opposite to the positive direction) indicates the back side;
  • Y indicates the horizontal direction of the horizontal plane, which is perpendicular to the Z axis and the X axis, and the positive direction of the Y axis (that is, the arrow of the Y axis points) indicates the left side, Y
  • the main operating hand device includes an attitude adjustment mechanism 1 and a position adjustment mechanism 2, and the position adjustment mechanism 2 is connected to the attitude adjustment mechanism 1.
  • the attitude adjustment mechanism 1 includes: a first connecting rod 11, a third flange 14 and a main hand clamp 13; one end of the second connecting rod 15 is hinged with one end of the first connecting rod 11, so that the first connecting rod 11 surrounds the second Axial rotation; the other end of the second connecting rod 15 is rotatably connected with the third flange 14 so that the second connecting rod 15 is suitable for rotating around the third axis; the other end of the main hand clamp 13 and the first connecting rod 11 It is hinged to make the main hand clip 13 rotate around the first axis.
  • first connecting rod 11 and the second connecting rod 15 may be straight rod-shaped structures, the second axis is perpendicular to the third axis, the third axis is perpendicular to the first axis, and the second axis is perpendicular to the first axis.
  • the first axis and the second axis are perpendicular and do not intersect, the second axis and the third axis are perpendicular and intersect, and the first axis and the third axis are perpendicular and intersect.
  • the posture adjustment mechanism 1 in this embodiment may also be referred to as a posture part
  • the position adjustment mechanism 2 may also be referred to as a position part.
  • the rotation of the main hand clamp 13 around the first axis is called pitch motion
  • the rotation of the main hand clamp 13 around the third axis is called yaw motion
  • the main hand clip 13 is around the second axis.
  • the rotation is called rotation movement;
  • the pitching, yaw, and rotation provided by the main hand clamp 13 through the posture part correspond to the pitch, yaw, and rotation of the thumb and index finger in the manual operation.
  • Pitching movement, yaw movement and rotation movement realize three-degree-of-freedom surgical operation, which can complete more complex surgical operations, such as laparoscopic surgery.
  • the two clips 131 of the main hand clip 13 are suitable for folding or opening movement, which is called the opening and closing movement of the main hand clip 13 itself, which corresponds to the opening and closing of the thumb and index finger in manual operation, which is more flexible and more flexible. Change.
  • one end of the first connecting rod 11 may be a disc-shaped structure, which is marked as the second cylinder 111, and the other end of the first connecting rod 11 is provided with a groove 112;
  • the thickness direction of a connecting rod 11 penetrates the first connecting rod 11, wherein the main hand clamp 13 is hinged to the groove 112 through the first connecting shaft 12, and the axis R1 of the first connecting shaft 12 is the first axial direction;
  • the axis R3 of the flange 14 is the third axis, one end of the second connecting rod 15 is rotatably connected to the second cylinder 111, and the axis R2 of the second cylinder 111 is the second axis.
  • the first connecting shaft 12 is provided with a counterweight 121 at a position away from the main hand clamp 13, and the counterweight 121 is adapted to adjust the main hand clamp 13 around the axis R1 of the first connecting shaft 12 Gravity balance when rotating.
  • the material of the counterweight 121 is preferably selected from a denser material to ensure the quality of the smaller-volume counterweight 121
  • the mass of the main hand clamp 13 can be similar to that of the main hand clamp 13 in order to achieve the gravity balance of the main hand clamp 13 during the pitching motion. It will take up too much space.
  • the first connecting shaft 12 is rotatably connected to the tank 112 through a first rotating shaft and a bearing, wherein the axis of the first rotating shaft is coaxial with the axis R1 of the first connecting shaft 12, and one end of the second connecting rod 15 passes
  • the second rotating shaft and the bearing are rotatably connected to the second cylinder 111, where the axis of the second rotating shaft is coaxial with the axis R2 of the second cylinder 111, and the other end of the second connecting rod 15 is rotatably connected with the third rotating shaft and the bearing
  • the axis of the third rotating shaft is coaxial with the axis R3 of the third flange 14.
  • the axis of the first rotating shaft is the axis R1 of the first connecting shaft 12
  • the axis of the second rotating shaft is the axis R2 of the second cylinder 111
  • the axis of the third rotating shaft is the third flange. 14 ⁇ Axis R3.
  • a second detection mechanism is provided at the hinge joint of the first connecting rod 11 and the second connecting rod 15, for detecting the angle of the first connecting rod 11 rotating around the second axis;
  • second The connecting rod 15 and the third flange 14 are provided with a third detecting mechanism for detecting the angle of the second connecting rod 15 rotating around the third axis; the hinged joint of the main hand clamp 13 and the first connecting rod 11
  • a first detection mechanism is provided for detecting the angle of rotation of the main hand clip 13 around the first axis.
  • the detection mechanism can be an encoder
  • the second detection mechanism provided at the hinged joint of the first connecting rod 11 and the second connecting rod 15 is marked as the second encoder
  • the second connecting rod 15 and the third flange 14 are provided at the joint
  • the third detection mechanism is the third encoder
  • the first detection mechanism provided at the hinge joint between the main hand clip 13 and the first link 11 is denoted as the first encoder.
  • a first encoder is provided at one end of the first connecting shaft 12, and the rotor of the first encoder is fixed to the first rotating shaft.
  • the stator of the first encoder is fixed to the first connecting rod 11
  • the end of the second connecting rod 15 connected with the second cylinder 111 is provided with a second encoder
  • the rotor of the second encoder is fixed to the second rotating shaft
  • the second The stator of the encoder is fixed to the second connecting rod 15.
  • a third encoder is provided at the end of the second connecting rod 15 connected with the third flange 14.
  • the rotor of the third encoder is fixed to the third rotating shaft, and the third encoder
  • the stator is fixed with the third flange 14.
  • the second encoder and the third encoder respectively collect the rotation motion parameters of the main hand clamp 13 when making a pitching motion, the rotation motion parameters of the main hand clamp 13 doing a yaw motion, and the main hand clamp 13 making a rotation. Rotational motion parameters during movement, so as to facilitate precise control of the rotational motion of each degree of freedom of the posture part.
  • the first motor 16, the second motor 17, and the third motor 18 can also be used instead of the above-mentioned first encoder,
  • the second encoder and the third encoder, and the first motor 16, the second motor 17, and the third motor 18 are all motors with an internal encoder integrated, that is, through the first motor 16, the second motor 17 and the third motor 18 Realize active movement with three degrees of freedom in the posture part.
  • the axis R1 of the first connecting shaft 12 and the axis R2 of the second cylinder 111 are perpendicular and do not intersect, and the axis R2 of the second cylinder 111 and the axis R3 of the third flange 14 are perpendicular and intersect.
  • the axis R1 of the first connecting shaft 12 and the axis R3 of the third flange 14 are perpendicular and intersecting.
  • the axis R1 of the first connecting shaft 12 is perpendicular to and not intersecting with the axis R2 of the second cylinder 111, and the axis R2 of the second cylinder 111 is perpendicular and intersecting with the axis R3 of the third flange 14, the axis of the first connecting shaft 12 R1 and the axis R3 of the third flange 14 are perpendicular and intersecting.”
  • This spatial arrangement allows the posture part to be assembled in a small space.
  • the distribution of the freedom of the posture part makes the operation space of this structure not interfere with the movement of its own structure.
  • the space utilization rate is high, and the arrangement of the degree of freedom of the posture part completely matches the arrangement of the degree of freedom of the end instruments of the laparoscopic surgical robot.
  • the position adjustment mechanism 2 includes: a linear motion mechanism 21, a connecting rod 24, a sliding support 25 and a base 26.
  • the linear motion mechanism 21 is provided with a slider 22, which is adapted to move along the length direction of the linear motion mechanism 21, and a connecting seat 23 is provided at the slider 22; one end of the connecting rod 24 is connected to the third flange 14, The other end of the connecting rod 24 is connected with the connecting seat 23, and the sliding block 22 is adapted to move along the fourth axis; Axial rotation; the sliding support 25 is hinged with the base 26 so that the sliding support 25 is suitable for rotation around the sixth axis.
  • the fourth axis is perpendicular to and does not intersect with the fifth axis
  • the fifth axis is perpendicular to the sixth axis
  • the fourth axis is perpendicular to the sixth axis.
  • the fifth axis is perpendicular to and intersects with the sixth axis
  • the fourth axis is perpendicular to and intersects with the sixth axis.
  • the sliding support 25 is U-shaped, one end of the linear motion mechanism 21 is connected to the U-shaped groove 251 of the sliding support 25 through the fifth rotating shaft and the bearing, and the linear motion mechanism 21 is suitable for surrounding the fifth
  • the axis R5 of the rotating shaft rotates; the space occupied by the main operator device can be further reduced.
  • the base 26, the sliding support 25 is connected to the base 26 through a sixth rotating shaft and a bearing, and the sliding support 25 is adapted to rotate around the axis R6 of the sixth rotating shaft.
  • the axis R4 of the connecting rod 24 is the fourth axis
  • the axis R5 of the fifth rotation axis is the fifth axis
  • the axis R6 of the sixth rotation axis is the sixth axis.
  • the position part is connected to the third flange 14 through one end of the connecting rod 24, and the other end of the connecting rod 24 is connected to the connecting seat 23, so as to realize the connection between the position part and the posture part.
  • the moving direction of the slider 22 is located on the connecting rod. 24 on the axis R4", "The linear motion mechanism 21 is connected to the U-shaped groove 251 of the sliding support 25 through the fifth rotating shaft and the bearing, and the linear motion mechanism 21 is adapted to rotate around the axis R5 of the fifth rotating shaft” and "
  • the sliding support 25 is connected to the base 26 through a sixth rotating shaft and a bearing, and the sliding support 25 is adapted to rotate around the axis R6 of the sixth rotating shaft, which provides the main hand clamp 13 with three additional degrees of freedom of movement.
  • the inside of the connecting rod 24 is a hollow structure, and the third encoder or the third motor 18 at the third flange 14 is located inside the connecting rod 24.
  • a fifth motor 27 is provided at an outer position of the sliding support 25, and the motor shaft of the fifth motor 27 is fixedly connected to the fifth rotating shaft.
  • the fifth motor 27 drives the linear motion mechanism 21 to rotate on the axis R5 of the fifth rotating shaft, and then drives the main hand clamp 13 to rotate on the axis R5 of the fifth rotating shaft to realize the active movement in this degree of freedom.
  • the fifth The motor 27 is a motor with an encoder integrated therein, which is convenient for collecting the rotation motion parameters of this degree of freedom.
  • a sixth motor 28 is provided at the bottom of the base 26, and the motor shaft of the sixth motor 28 is fixedly connected to the sixth rotating shaft.
  • the sixth motor 28 drives the sliding support 25 to rotate on the axis R6 of the sixth rotating shaft, and then drives the main hand clamp 13 to rotate on the axis R6 of the sixth rotating shaft, so as to realize the active movement in this degree of freedom.
  • the sixth The motor 28 is a motor with an encoder integrated therein, so that it is convenient to collect the rotation motion parameters of this degree of freedom.
  • the linear motion mechanism 21 includes a long plate 211, the long plate 211 is provided with a rail groove 212 along its length, one end of the rail groove 212 is provided with a fourth motor 213, and the motor shaft of the fourth motor 213 is provided with a screw 214 ,
  • the screw 214 is rotatably connected in the rail groove 212, wherein a threaded hole is provided in the slider 22, the slider 22 is threadedly connected to the surface of the screw 214 through the threaded hole, the slider 22 is slidably connected in the rail groove 212, and the connecting seat 23 is located outside the rail groove 212.
  • the fourth motor 213 is a motor with an encoder integrated therein, so as to precisely control the rotation of the motor shaft of the fourth motor 213.
  • the fourth motor 213 drives the screw 214 to rotate, and the slider 22 is under the limit of the rail groove 212. It does not rotate, but only moves along the axial direction of the connecting rod 24, thereby driving the main hand clamp 13 to move on the axis R4 of the connecting rod 24.
  • This embodiment also provides a surgical robot, which is a laparoscopic surgical robot.
  • a surgical robot which is a laparoscopic surgical robot.
  • laparoscopic surgical robots may also be orthopedic surgical robots or dental surgical robots.
  • the axis R4 of the connecting rod 24 By setting the axis R4 of the connecting rod 24 and the axis R5 of the fifth rotating shaft perpendicular and not intersecting, the axis R5 of the fifth rotating shaft and the axis R6 of the sixth rotating shaft are perpendicular and intersecting, the axis R4 of the connecting rod 24 is perpendicular to and intersects with the sixth axis.
  • the spatial arrangement of the axis R6 of the rotating shaft is vertical and intersecting, so that the position part can be assembled in a small space.
  • the distribution of the degree of freedom of the position part makes the operation space of this structure not restricted by the interference of its own structure, and the space utilization rate is At the same time, the distribution of the various degrees of freedom in the position part and the arrangement of the various degrees of freedom in the posture part completely match the arrangement of the degrees of freedom of the end instruments of the laparoscopic surgical robot, so that the master-slave operation robot provided by the present invention can be used as a master operator In the laparoscopic surgery robot system, the active and driven correspondence is more accurate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种姿态调整机构(1)、主操作手装置及手术机器人,涉及医疗器械技术领域。姿态调整机构(1)包括:第一连杆(11)、第三法兰(14)、第二连杆(15)和主手夹(13),第二连杆(15)的一端与第一连杆(11)的一端铰接,以使第一连杆(11)围绕第二轴向转动;第二连杆(15)的另一端与第三法兰(14)转动连接,以使第二连杆(15)适于绕着第三轴向转动,主手夹(13)与第一连杆(11)另一端铰接,以使主手夹(13)围绕第一轴向转动;其中,第二轴向与第三轴向垂直,第三轴向与第一轴向垂直,第二轴向与第一轴向垂直。

Description

一种姿态调整机构、主操作手装置及手术机器人 技术领域
本发明涉及医疗器械技术领域,具体而言,涉及一种姿态调整机构、主操作手装置及手术机器人。
背景技术
医疗手术,例如外科手术中精细操作对象小,形状复杂,往往耗时很长,医生很容易疲惫,由此,人手的颤抖和疲劳容易导致手术动作的不准确,而主从控制的机械手能够使得医生在相对舒适的姿态下进行手术操作,因此主从控制的手术系统倍受业内的关注。但是现有的手术机器人的操作手的结构设计不合理,尤其主操作手的姿态部分的结构设计不合理,导致手术过程中使用不方便,尤其不能满足复杂手术的使用需要。
发明内容
本发明旨在一定程度上解决但是现有的手术机器人的操作手的结构设计不合理,尤其主操作手的姿态部分的结构设计不合理,导致手术过程中使用不方便,尤其不能满足复杂手术的使用需要的问题。
为解决上述问题,本发明提供了一种姿态调整机构,包括:
第一连杆;
第三法兰;
第二连杆,所述第二连杆的一端与所述第一连杆的一端铰接,以使所述第一连杆围绕第二轴向转动;
所述第二连杆的另一端与所述第三法兰转动连接,以使所述第二连杆适于绕着第三轴向转动;
主手夹,与所述第一连杆另一端铰接,以使所述主手夹围绕第一轴向转动;
其中,所述第二轴向与所述第三轴向垂直,所述第三轴向与所述第一轴向垂直,所述第二轴向与所述第一轴向垂直。
进一步地,所述第一连杆的另一端开设有槽体,所述槽体沿着第一连杆 的厚度方向将第一连杆贯穿,其中,所述主手夹通过第一连接轴铰接在所述槽体处,所述第一连接轴的轴线为所述第一轴向。
进一步地,所述第一连接轴远离所述主手夹的位置设置有配重块。
进一步地,所述第一连接轴通过第一旋转轴和轴承转动连接于所述槽体处,所述第二连杆的一端通过第二旋转轴和轴承转动连接于所述第一连杆的一端处,所述第二连杆的另一端通过第三旋转轴和轴承转动连接于所述第三法兰处。
进一步地,所述第一连杆与所述第二连杆的铰接处设置有第二检测机构,用于检测所述第一连杆围绕第二轴向转动的角度;
所述第二连杆与所述第三法兰的连接处设置有第三检测机构,用于检测所述第二连杆绕着第三轴向转动的角度;
所述主手夹与所述第一连杆的铰接处设置有第一检测机构,用于检测所述主手夹围绕第一轴向转动的角度。
进一步地,所述第一检测机构为第一电机,所述第一电机用于控制所述主手夹围绕第一轴向转动,所述第二检测机构为第二电机,所述第二电机用于控制所述第一连杆围绕第二轴向转动,所述第三检测机构第三电机,所述第三电机用于控制所述第一连杆围绕第二轴向转动,所述第一电机、第二电机和第三电机的内部分别集成有编码器;
或者,所述第一连杆的另一端开设有槽体,所述槽体沿着第一连杆的厚度方向将第一连杆贯穿,其中,所述主手夹通过第一连接轴铰接在所述槽体处,所述第一连接轴的轴线为所述第一轴向;所述第一连接轴通过第一旋转轴和轴承转动连接于所述槽体处,所述第二连杆的一端通过第二旋转轴和轴承转动连接于所述第一连杆的一端处,所述第二连杆的另一端通过第三旋转轴和轴承转动连接于所述第三法兰处,其中,所述第一旋转轴、第二旋转轴和第三旋转轴的一端分别连接有一个编码器。
另外,本发明还提供一种主操作手装置,包括所述的姿态调整机构;
以及位置调整机构,所述位置调整机构包括:
直线运动机构,所述直线运动机构处设置有滑块,所述滑块适于沿着所述直线运动机构的长度方向运动,所述滑块处设置有连接座;
连接杆,所述连接杆的一端与所述第三法兰连接,所述连接杆的另一端与所述连接座连接,所述滑块适于沿着第四轴向移动;
滑动支座,所述直线运动机构的一端与所述滑动支座铰接,以使所述直线运动机构适于绕着第五轴向转动;
基座,所述滑动支座与所述基座铰接,以使所述滑动支座适于绕着第六轴向转动;
其中,所述第四轴向与所述第五轴向垂直且不相交,所述第五轴向与所述第六轴向垂直,所述第四轴向与所述第六轴向垂直。
进一步地,所述滑动支座处设置有第五电机,所述第五电机适于控制所述直线运动机构绕着第五轴向转动,所述基座的处设置有第六电机,所述第六电机适于控制所述滑动支座绕着第六轴向转动。
另外,本发明还提供一种手术机器人,所述手术机器人包括所述主操作手装置。
由于所述手术机器人的技术改进以及取得的技术效果与所述的主操作手装置相同,因此不对所述手术机器人的技术效果进行详细说明。
进一步地,所述手术机器人为骨科手术机器人或牙科手术机器人或腹腔镜手术机器人。
与现有技术相比,本发明提供的一种姿态调整机构,具有但不局限于以下技术效果:
通过将主手夹绕着第一轴向的转动称为俯仰运动,将主手夹绕着第三轴向的转动称为偏摆运动,将主手夹绕着第二轴向的转动称为回转运动;通过俯仰运动、偏摆运动和回转运动分别依次对应人手操作中的拇指与食指的俯仰、偏摆和回转的运动,为主手夹实现了三自由度的手术操作,能够完成更复杂的手术操作,例如腹腔镜手术;解决了现有的手术机器人的操作手的结构设计不合理,尤其主操作手的姿态部分的结构设计不合理,导致手术过程中使用不方便,尤其不能满足复杂手术的使用需要的问题。
附图说明
图1为本发明的具体实施方式的主操作手装置的示意性结构图;
图2为本发明的具体实施方式的主操作手装置的局部示意性结构图;
图3为本发明的具体实施方式的主操作手装置的直线运动机构的示意性俯视图。
附图标记说明:
1-姿态调整机构,11-第一连杆,111-第二圆柱,112-槽体,12-第一连接轴,121-配重块,13-主手夹,131-夹件,14-第三法兰,15-第二连杆,16-第一电机,17-第二电机,18-第三电机;
2-位置调整机构,21-直线运动机构,211-长板,212-轨槽,213-第四电机,214-丝杠,22-滑块,23-连接座,24-连接杆,25-滑动支座,251-U形槽,26-基座,27-第五电机,28-第六电机。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
而且,附图中Z轴表示竖向,也就是上下位置,并且Z轴的正向(也就是Z轴的箭头指向)表示上,Z轴的负向(也就是与Z轴的正向相反的方向)表示下;附图中X轴表示水平面的纵向,与Z轴垂直,并且X轴的正向(也就是X轴的箭头指向)表示前侧,X轴的负向(也就是与X轴的正向相反的方向)表示后侧;附图中Y中表示水平面的横向,同时与Z轴和X轴垂直,并且Y轴的正向(也就是Y轴的箭头指向)表示左侧,Y轴的负向(也就是与Y轴的正向相反的方向)表示右侧;X轴和Z轴形成的平面为竖直平面。
同时需要说明的是,前述Z轴、Y轴及X轴的表示含义仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如出现术语“第一”、“第二”……“第六”仅用于描述目的,而不能 理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”……“第六”的特征可以明示或者隐含地包括至少一个该特征。
参见图1至图3,本实施方式提供了一种主操作手装置,该主操作手装置包括姿态调整机构1和位置调整机构2,位置调整机构2与姿态调整机构1连接。姿态调整机构1包括:第一连杆11、第三法兰14和主手夹13;第二连杆15的一端与第一连杆11的一端铰接,以使第一连杆11围绕第二轴向转动;第二连杆15的另一端与第三法兰14转动连接,以使第二连杆15适于绕着第三轴向转动;主手夹13与第一连杆11另一端铰接,以使主手夹13围绕第一轴向转动。
其中,第一连杆11与第二连杆15可以是直杆状结构,第二轴向与第三轴向垂直,第三轴向与第一轴向垂直,第二轴向与第一轴向垂直。比如,可以是第一轴向与第二轴向垂直且不相交,第二轴向与第三轴向垂直且相交,第一轴向与第三轴向垂直且相交。
需要说明的是,本实施方式中的姿态调整机构1也可以称作姿态部分,而位置调整机构2也可以称作位置部分。
这里,将主手夹13绕着第一轴向的转动称为俯仰运动,将主手夹13绕着第三轴向的转动称为偏摆运动,将主手夹13绕着第二轴向的转动称为回转运动;通过姿态部分为主手夹13提供的俯仰运动、偏摆运动和回转运动分别依次对应人手操作中的拇指与食指的俯仰、偏摆和回转的运动,该姿态部分的俯仰运动、偏摆运动和回转运动实现了三自由度的手术操作,能够完成更复杂的手术操作,例如腹腔镜手术。
另外,该主手夹13本身的两个夹件131适于做收拢或张开运动,称为主手夹13自身的开合运动,对应人手操作中的拇指与食指的开合,更加灵活多变。
参见图2,优选地,第一连杆11的一端可以是一圆盘状结构,并记为第二圆柱111,第一连杆11的另一端开设有槽体112;槽体112沿着第一连杆11的厚度方向将第一连杆11贯穿,其中,主手夹13通过第一连接轴12铰接在槽体112处,第一连接轴12的轴线R1为第一轴向;第三法兰14的 轴线R3为第三轴向,第二连杆15的一端与第二圆柱111转动连接,第二圆柱111的轴线R2为第二轴向。
通过在第一连杆11的另一端开设有槽体112,并将主手夹13铰接在槽体112中,可以缩小整个姿态部分的占用空间,结构紧凑。
参见图1至图3,优选地,第一连接轴12远离主手夹13的位置设置有配重块121,配重块121适于调节主手夹13绕着第一连接轴12的轴线R1转动时的重力平衡。
这里,通过在第一连接轴12与主手夹13相背的一侧设置配重块121,配重块121的材料最好选取密度大的材料,保证较小体积的配重块121的质量就能与主手夹13的质量相近,以此实现主手夹13在做俯仰运动时的重力平衡,同时较小体积的配重块121又不会占据太多的空间,使得整个姿态部分不会占用太多的空间。
参见图1至图3,这里对第一连接轴12如何与槽体112转动连接的、第一连杆11如何与第二连杆15转动连接的、第二连杆15如何与第三法兰14转动连接的进行具体的描述。优选地,第一连接轴12通过第一旋转轴和轴承转动连接于槽体112处,其中第一旋转轴的轴线与第一连接轴12的轴线R1同轴,第二连杆15的一端通过第二旋转轴和轴承转动连接于第二圆柱111处,其中第二旋转轴的轴线与第二圆柱111的轴线R2同轴,第二连杆15的另一端通过第三旋转轴和轴承转动连接于第三法兰14处,其中第三旋转轴的轴线与第三法兰14的轴线R3同轴。
易于理解的是,第一旋转轴的轴线即为第一连接轴12的轴线R1,第二旋转轴的轴线即为第二圆柱111的轴线R2,第三旋转轴的轴线即为第三法兰14的轴线R3。
参见图1至图3,优选地,第一连杆11与第二连杆15的铰接处设置有第二检测机构,用于检测第一连杆11围绕第二轴向转动的角度;第二连杆15与第三法兰14的连接处设置有第三检测机构,用于检测第二连杆15绕着第三轴向转动的角度;主手夹13与第一连杆11的铰接处设置有第一检测机构,用于检测主手夹13围绕第一轴向转动的角度。
通过设置多个检测机构,进而便于精准的控制姿态部分的俯仰运动、偏 摆运动和回转运动。
比如检测机构可以是编码器,第一连杆11与第二连杆15的铰接处设置的第二检测机构记为第二编码器,第二连杆15与第三法兰14的连接处设置的第三检测机构即为第三编码器,主手夹13与第一连杆11的铰接处设置的第一检测机构记为第一编码器。
参见图1至图3,这里对各个编码器的连接关系做出具体的描述,优选地,第一连接轴12的一端设置有第一编码器,第一编码器的转子与第一旋转轴固定,第一编码器的定子与第一连杆11固定,第二连杆15与第二圆柱111连接的一端设置有第二编码器,第二编码器的转子与第二旋转轴固定,第二编码器的定子与第二连杆15固定,第二连杆15与第三法兰14连接的一端设置有第三编码器,第三编码器的转子与第三旋转轴固定,第三编码器的定子与第三法兰14固定。
通过第一编码器、第二编码器和第三编码器分别采集主手夹13做俯仰运动时的旋转运动参数、主手夹13做偏摆运动时的旋转运动参数和主手夹13做回转运动时的旋转运动参数,以此便于精准的控制姿态部分各个自由度上的旋转运动。
需要说明的是,除了以上设置的第一编码器、第二编码器和第三编码器,也可以用第一电机16、第二电机17和第三电机18分别代替上述的第一编码器、第二编码器和第三编码器,并且第一电机16、第二电机17和第三电机18均为内部集成有编码器的电机,即通过第一电机16、第二电机17和第三电机18实现姿态部分三个自由度的主动运动。
参见图1至图3,优选地,第一连接轴12的轴线R1与第二圆柱111的轴线R2垂直且不相交,第二圆柱111的轴线R2与第三法兰14的轴线R3垂直且相交,第一连接轴12的轴线R1与第三法兰14的轴线R3垂直且相交。
通过“第一连接轴12的轴线R1与第二圆柱111的轴线R2垂直且不相交,第二圆柱111的轴线R2与第三法兰14的轴线R3垂直且相交,第一连接轴12的轴线R1与第三法兰14的轴线R3垂直且相交”此种空间布置方式,使得姿态部分能够在很小的空间中完成装配,姿态部分自由度的分布使得本结构操作空间不受自身结构运动干涉的限制,空间利用率高,同时姿态部分 这种自由度的布置方式完全吻合了腹腔镜手术机器人的末端器械的自由度的布置。
参见图1,位置调整机构2包括:直线运动机构21、连接杆24、滑动支座25和基座26。
直线运动机构21处设置有滑块22,滑块22适于沿着直线运动机构21的长度方向运动,滑块22处设置有连接座23;连接杆24的一端与第三法兰14连接,连接杆24的另一端与连接座23连接,滑块22适于沿着第四轴向移动;直线运动机构21的一端与滑动支座25铰接,以使直线运动机构21适于绕着第五轴向转动;滑动支座25与基座26铰接,以使滑动支座25适于绕着第六轴向转动。
其中,第四轴向与第五轴向垂直且不相交,第五轴向与第六轴向垂直,第四轴向与第六轴向垂直。比如可以是,第五轴向与第六轴向垂直且相交,第四轴向与第六轴向垂直且相交。
参见图1,优选地,滑动支座25呈U形,直线运动机构21的一端通过第五旋转轴和轴承与滑动支座25的U形槽251连接,直线运动机构21适于绕着第五旋转轴的轴线R5转动;可以进一步缩小主操作手装置的占用空间。
基座26,滑动支座25通过第六旋转轴和轴承与基座26连接,滑动支座25适于绕着第六旋转轴的轴线R6转动。
可以理解的是连接杆24的轴线R4为第四轴向,第五旋转轴的轴线R5为第五轴向,第六旋转轴的轴线R6为第六轴向。
这里,位置部分通过“连接杆24的一端与第三法兰14连接,连接杆24的另一端与连接座23连接,进而实现位置部分与姿态部分的连接,滑块22的运动方向位于连接杆24的轴线R4上”、“直线运动机构21通过第五旋转轴和轴承与滑动支座25的U形槽251连接,直线运动机构21适于绕着第五旋转轴的轴线R5转动”和“滑动支座25通过第六旋转轴和轴承与基座26连接,滑动支座25适于绕着第六旋转轴的轴线R6转动”为主手夹13提供了另外三个自由度的运动。
需要说明的是,连接杆24内部为中空结构,第三法兰14处的第三编码器或者第三电机18位于连接杆24内部。
参见图1,优选地,滑动支座25的外部位置设置有第五电机27,第五电机27的电机轴与第五旋转轴固定连接。
通过第五电机27带动直线运动机构21以第五旋转轴的轴线R5转动,进而带动主手夹13以第五旋转轴的轴线R5转动,实现这个自由度上的主动运动,优选地,第五电机27为内部集成有编码器的电机,便于采集此自由度旋转运动参数。
参见图1,优选地,基座26的底部设置有第六电机28,第六电机28的电机轴与第六旋转轴固定连接。
通过第六电机28带动滑动支座25以第六旋转轴的轴线R6转动,进而带动主手夹13以第六旋转轴的轴线R6转动,实现这个自由度上的主动运动,优选地,第六电机28为内部集成有编码器的电机,便于采集此自由度旋转运动参数。
参见图3,这里对直线运动机构21的具体结构做出描述。优选地,直线运动机构21包括长板211,长板211处沿其长度方向设置有轨槽212,轨槽212的一端设置有第四电机213,第四电机213的电机轴设置有丝杠214,丝杠214转动连接在轨槽212中,其中滑块22中设置有螺纹孔,滑块22通过螺纹孔螺纹连接在丝杠214表面,滑块22滑动连接在轨槽212中,其中连接座23位于轨槽212的外部。
优选地,第四电机213为内部集成有编码器的电机,进而精确控制第四电机213的电机轴的旋转,第四电机213带动丝杠214转动,滑块22在轨槽212的限位下不会转动,只会沿着连接杆24的轴向移动,进而带动主手夹13在连接杆24的轴线R4上运动。
本实施方式还提供一种手术机器人,该手术机器人为腹腔镜手术机器人。当然不局限于腹腔镜手术机器人,还可以为骨科手术机器人或牙科手术机器人等。
通过将“连接杆24的轴线R4与第五旋转轴的轴线R5垂直且不相交,第五旋转轴的轴线R5与第六旋转轴的轴线R6垂直且相交,连接杆24的轴线R4与第六旋转轴的轴线R6垂直且相交”的空间布置方式,使得位置部分能够在很小的空间中完成装配,位置部分自由度的分布使得本结构操作空间 不受自身结构运动干涉的限制,空间利用率高,同时位置部分中各个自由度的分布结合姿态部分各个自由度的布置方式完全吻合了腹腔镜手术机器人的末端器械的自由度的布置,使本发明提供的主从操作机器人的主操作手应用在腹腔镜手术机器人系统时,主动和从动对应更加的准确。
需要说明的是,本文所述出现的“设置于”、“设置在”可以是固定连接、可拆卸连接等多种连接方式。
虽然本发明公开披露如上,但本发明公开的保护范围并非仅限于此。本领域技术人员在不脱离本发明公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种姿态调整机构,其中,包括:
    第一连杆(11);
    第三法兰(14);
    第二连杆(15),所述第二连杆(15)的一端与所述第一连杆(14)的一端铰接,以使所述第一连杆(11)围绕第二轴向转动;
    所述第二连杆(15)的另一端与所述第三法兰(14)转动连接,以使所述第二连杆(15)适于绕着第三轴向转动;
    主手夹(13),与所述第一连杆(11)另一端铰接,以使所述主手夹(13)围绕第一轴向转动;
    其中,所述第二轴向与所述第三轴向垂直,所述第三轴向与所述第一轴向垂直,所述第二轴向与所述第一轴向垂直。
  2. 根据权利要求1所述的姿态调整机构,其中,所述第一连杆(11)的另一端开设有槽体(112),所述槽体(112)沿着第一连杆(11)的厚度方向将第一连杆(11)贯穿,其中,所述主手夹通过第一连接轴(12)铰接在所述槽体(112)处,所述第一连接轴(112)的轴线为所述第一轴向。
  3. 根据权利要求2所述的姿态调整机构,其中,所述第一连接轴(12)远离所述主手夹(13)的位置设置有配重块(121)。
  4. 根据权利要求2所述的姿态调整机构,其中,所述第一连接轴(12)通过第一旋转轴和轴承转动连接于所述槽体(112)处,所述第二连杆(15)的一端通过第二旋转轴和轴承转动连接于所述第一连杆(11)的一端处,所述第二连杆(15)的另一端通过第三旋转轴和轴承转动连接于所述第三法兰(14)处。
  5. 根据权利要求1至4中任一项所述的姿态调整机构,其中,
    所述第一连杆(11)与所述第二连杆(15)的铰接处设置有第二检测机构,用于检测所述第一连杆(11)围绕所述第二轴向转动的角度;
    所述第二连杆(15)与所述第三法兰(14)的连接处设置有第三检测机构,用于检测所述第二连杆(15)绕着所述第三轴向转动的角度;
    所述主手夹(13)与所述第一连杆(11)的铰接处设置有第一检测机构, 用于检测所述主手夹(13)围绕所述第一轴向转动的角度。
  6. 根据权利要求5所述的姿态调整机构,其中,所述第一检测机构为第一电机(16),所述第一电机(16)用于控制所述主手夹(13)围绕第一轴向转动,所述第二检测机构为第二电机(17),所述第二电机(17)用于控制所述第一连杆(11)围绕第二轴向转动,所述第三检测机构为第三电机(18),所述第三电机(18)用于控制所述第一连杆(11)围绕第二轴向转动,所述第一电机(16)、所述第二电机(17)和所述第三电机(18)的内部分别集成有编码器;
    或者,所述第一连杆(11)的另一端开设有槽体(112),所述槽体(112)沿着所述第一连杆(11)的厚度方向将所述第一连杆(11)贯穿,其中,所述主手夹(13)通过第一连接轴(12)铰接在所述槽体(112)处,所述第一连接轴(112)的轴线为所述第一轴向;所述第一连接轴(12)通过第一旋转轴和轴承转动连接于所述槽体(112)处,所述第二连杆(15)的一端通过第二旋转轴和轴承转动连接于所述第一连杆(11)的一端处,所述第二连杆(15)的另一端通过第三旋转轴和轴承转动连接于所述第三法兰(14)处,其中,所述第一旋转轴、所述第二旋转轴和所述第三旋转轴的一端分别连接有一个编码器。
  7. 一种主操作手装置,其中,包括权利要求1至6中任一项所述的姿态调整机构(1);
    以及位置调整机构(2),所述位置调整机构(2)包括:
    直线运动机构(21),所述直线运动机构(21)处设置有滑块(22),所述滑块(22)适于沿着所述直线运动机构(21)的长度方向运动,所述滑块(22)处设置有连接座(23);
    连接杆(24),所述连接杆(24)的一端与所述第三法兰(14)连接,所述连接杆(24)的另一端与所述连接座(23)连接,所述滑块(22)适于沿着第四轴向移动;
    滑动支座(25),所述直线运动机构(21)的一端与所述滑动支座(25)铰接,以使所述直线运动机构(21)适于绕着第五轴向转动;
    基座(26),所述滑动支座(25)与所述基座(26)铰接,以使所述滑 动支座(25)适于绕着第六轴向转动;
    其中,所述第四轴向与所述第五轴向垂直且不相交,所述第五轴向与所述第六轴向垂直,所述第四轴向与所述第六轴向垂直。
  8. 根据权利要求7所述的主操作手装置,其中,所述滑动支座(25)处设置有第五电机(27),所述第五电机(27)适于控制所述直线运动机构(21)绕着第五轴向转动,所述基座(26)处设置有第六电机(28),所述第六电机(28)适于控制所述滑动支座(25)绕着第六轴向转动。
  9. 一种手术机器人,其中,所述手术机器人包括如权利要求7或8所述的主操作手装置。
  10. 根据权利要求9所述的手术机器人,其中,所述手术机器人为骨科手术机器人或牙科手术机器人或腹腔镜手术机器人。
PCT/CN2021/098282 2020-06-08 2021-06-04 一种姿态调整机构、主操作手装置及手术机器人 WO2021249293A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21821057.3A EP4162894A1 (en) 2020-06-08 2021-06-04 Attitude adjusting mechanism, main manipulator device and surgical robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010512332.3 2020-06-08
CN202010512332.3A CN111529069A (zh) 2020-06-08 2020-06-08 一种姿态调整机构、主操作手装置及手术机器人

Publications (1)

Publication Number Publication Date
WO2021249293A1 true WO2021249293A1 (zh) 2021-12-16

Family

ID=71969736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098282 WO2021249293A1 (zh) 2020-06-08 2021-06-04 一种姿态调整机构、主操作手装置及手术机器人

Country Status (3)

Country Link
EP (1) EP4162894A1 (zh)
CN (1) CN111529069A (zh)
WO (1) WO2021249293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407000A (zh) * 2022-01-21 2022-04-29 安徽智玛利机器人有限公司 一种可多向夹持的单截双臂机械手

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111529069A (zh) * 2020-06-08 2020-08-14 哈尔滨思哲睿智能医疗设备有限公司 一种姿态调整机构、主操作手装置及手术机器人
CN113081475B (zh) * 2021-04-22 2022-03-29 北京航空航天大学 主从式眼内手术机器人主操作器
CN115444585B (zh) * 2022-11-14 2023-03-14 上海汇禾医疗器械有限公司 多自由度连接杆式支撑锁紧装置及使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623864A (zh) * 2009-08-13 2010-01-13 天津大学 一种具有自重平衡特性的力反馈型主操作手
CN106667583A (zh) * 2017-02-17 2017-05-17 吉林大学 一种微创手术机器人七自由度操作主手
WO2019026654A1 (ja) * 2017-07-31 2019-02-07 株式会社メディカロイド マスタ操作入力装置およびマスタスレーブマニピュレータ
CN109394344A (zh) * 2018-12-29 2019-03-01 苏州康多机器人有限公司 一种数据自校准主操作手
CN208598524U (zh) * 2017-12-15 2019-03-15 中国人民解放军第二军医大学 一种仿生手术器械
US20190201147A1 (en) * 2015-01-09 2019-07-04 Titan Medical Inc. Alignment difference safety in a master-slave robotic system
CN111529069A (zh) * 2020-06-08 2020-08-14 哈尔滨思哲睿智能医疗设备有限公司 一种姿态调整机构、主操作手装置及手术机器人
CN212913373U (zh) * 2020-06-08 2021-04-09 苏州康多机器人有限公司 一种姿态调整机构、主操作手装置及手术机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623864A (zh) * 2009-08-13 2010-01-13 天津大学 一种具有自重平衡特性的力反馈型主操作手
US20190201147A1 (en) * 2015-01-09 2019-07-04 Titan Medical Inc. Alignment difference safety in a master-slave robotic system
CN106667583A (zh) * 2017-02-17 2017-05-17 吉林大学 一种微创手术机器人七自由度操作主手
WO2019026654A1 (ja) * 2017-07-31 2019-02-07 株式会社メディカロイド マスタ操作入力装置およびマスタスレーブマニピュレータ
CN208598524U (zh) * 2017-12-15 2019-03-15 中国人民解放军第二军医大学 一种仿生手术器械
CN109394344A (zh) * 2018-12-29 2019-03-01 苏州康多机器人有限公司 一种数据自校准主操作手
CN111529069A (zh) * 2020-06-08 2020-08-14 哈尔滨思哲睿智能医疗设备有限公司 一种姿态调整机构、主操作手装置及手术机器人
CN212913373U (zh) * 2020-06-08 2021-04-09 苏州康多机器人有限公司 一种姿态调整机构、主操作手装置及手术机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407000A (zh) * 2022-01-21 2022-04-29 安徽智玛利机器人有限公司 一种可多向夹持的单截双臂机械手
CN114407000B (zh) * 2022-01-21 2023-08-22 安徽智玛利机器人有限公司 一种可多向夹持的单截双臂机械手

Also Published As

Publication number Publication date
CN111529069A (zh) 2020-08-14
EP4162894A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2021249293A1 (zh) 一种姿态调整机构、主操作手装置及手术机器人
CN106344160B (zh) 一种含有弧形移动副的外科手术机器人
WO2018000871A1 (zh) 机械臂及骨科机器人
CN106667583B (zh) 一种微创手术机器人七自由度操作主手
WO2013187469A1 (ja) 自重補償付き直動機構、操作入力装置、及び手術支援システム
CN107157581B (zh) 一种用于体外微创手术的解耦四自由度远心机构
CN107280768A (zh) 一种手术辅助设备
JP3096474B2 (ja) 顕微鏡の支持及び位置決め装置
JPWO2017077755A1 (ja) 支持アーム装置
CN109394344B (zh) 一种数据自校准主操作手
WO2020090233A1 (ja) パラレルリンク装置、マスタ-スレーブシステム、並びに医療用マスタ-スレーブシステム
KR102284387B1 (ko) 수술 시스템
RU2718595C1 (ru) Контроллер оператора для управления роботохирургическим комплексом
CN114176902A (zh) 一种机器人自动补偿运动控制方法
KR20200145395A (ko) 안구 수술 장치 및 이를 제어하는 방법
KR20200145377A (ko) 슬레이브 장치 및 이를 제어하는 방법
CN212913373U (zh) 一种姿态调整机构、主操作手装置及手术机器人
US20220401168A1 (en) Slave Device and Control Method Therefor, and Eye Surgery Device and Control Method Therefor
KR102283670B1 (ko) 슬레이브 장치를 제어하기 위한 수술용 마스터 장치
CN110234472A (zh) 用于产生以语音控制手术辅助系统的电机控制方式移动的机器人运动学的控制信号的手术辅助系统和方法
JPS6130386A (ja) ロボツトリスト集合体
WO2023077605A1 (zh) 一种主操作手及手术机器人操控设备
Chen et al. A design of surgical robotic system based on 6-DOF parallel mechanism
CN113081475B (zh) 主从式眼内手术机器人主操作器
RU2716353C1 (ru) Контроллер кисти для использования в контроллере оператора роботохирургического комплекса

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821057

Country of ref document: EP

Effective date: 20230109