WO2021249202A1 - 光源结构及投影设备 - Google Patents

光源结构及投影设备 Download PDF

Info

Publication number
WO2021249202A1
WO2021249202A1 PCT/CN2021/096448 CN2021096448W WO2021249202A1 WO 2021249202 A1 WO2021249202 A1 WO 2021249202A1 CN 2021096448 W CN2021096448 W CN 2021096448W WO 2021249202 A1 WO2021249202 A1 WO 2021249202A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflection
light source
incident surface
wavelength conversion
Prior art date
Application number
PCT/CN2021/096448
Other languages
English (en)
French (fr)
Inventor
张贤鹏
姜茹
陈彬
陈兴加
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021249202A1 publication Critical patent/WO2021249202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the present invention relates to the field of optical technology, in particular to a light source structure and projection equipment.
  • the light source structure is directly related to the overall effect, so it has attracted much attention.
  • the laser light source is widely used due to its high brightness,aki design and long service life.
  • the phosphor in the light source structure is irradiated by the excitation light, a large amount of heat will be generated due to the jumping surface of its molecular energy level, and with the increase of the excitation light power and the continuous working time, its thermal power consumption will continue The rise.
  • the efficiency of phosphors to generate excitation light will continue to decline, and if a certain critical value is exceeded, the efficiency will decline faster.
  • the rise in temperature will also reduce the service life of the light source structure.
  • the purpose of the present invention is to provide a light source structure and projection equipment to solve the above-mentioned problems.
  • the embodiments of the present invention achieve the foregoing objectives through the following technical solutions.
  • the present invention provides a light source structure including a light source module, a light combining element, a first wavelength conversion element, a first heat dissipation element, and a tunable reflection element, and the light source module is used for emitting excitation light.
  • the light combining element includes a first light incident surface and a second light incident surface.
  • the first wavelength conversion element is opposite to the second light incident surface.
  • the first heat dissipating element is used for dissipating heat of the first wavelength conversion element.
  • the tunable reflection element includes adjacent first and second reflection sections. The first reflection section is used to direct the excitation light emitted by the light source module to the first light-incident surface of the light combining element along the first light path.
  • the reflection section is used for guiding the excitation light emitted by the light source module to the first wavelength conversion element along the second light path.
  • the first wavelength conversion element is used to convert the excitation light directed by the second reflection section into first fluorescence
  • the first fluorescence is incident on the second light incident surface
  • the light combining element is used to combine the excitation light incident from the first light incident surface with The first fluorescent light incident from the second light incident surface is combined.
  • the present invention also provides a projection device, which includes any of the above-mentioned light source structures.
  • the light source structure and projection equipment provided by the present invention separate the tunable reflection element and the first wavelength conversion element, and the first heat dissipation element and the first wavelength conversion element are fixedly connected to pass the first heat dissipation.
  • the element dissipates the heat of the first wavelength conversion element, which improves the heat dissipation performance of the first wavelength conversion element, thereby increasing the service life of the light source structure.
  • Fig. 1 is a schematic structural diagram of a light source structure provided by a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a tunable reflective element provided by the first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light source structure provided by an implementation of the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light source structure provided by a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a light source structure provided by an implementation of the second embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a light source structure provided by a third embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a tunable reflective element provided by a third embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a light source structure provided by a fourth embodiment of the present invention.
  • FIG. 9 is a light path diagram of the blue light mode of the light source structure provided by the fourth embodiment of the present invention.
  • FIG. 10 is a light path diagram of the first fluorescence mode of the light source structure provided by the fourth embodiment of the present invention.
  • FIG. 11 is a light path diagram of the second fluorescence mode of the light source structure provided by the fourth embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a light source structure provided by a fifth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a projection device provided by a sixth embodiment of the present invention.
  • the present invention provides a light source structure 10, which includes a light source module 11, a light combining element 12, a first wavelength conversion element 13, a first heat dissipation element 14 and a tunable reflection element 15.
  • the reflection angle of the tunable reflective element 15 can be adjusted, so that the excitation light emitted by the light source module 11 is guided to different wavelength conversion devices through different optical paths. Under excitation, fluorescence of a color corresponding to the color of the wavelength conversion device is emitted, and different fluorescences are combined by the light combining element 12 and then emitted from the exit light path.
  • the first heat dissipation element 14 is provided corresponding to the first wavelength conversion element 13 to dissipate heat of the first wavelength conversion device 13.
  • the light source module 11 is used to emit excitation light.
  • the light source module 11 may be a light-emitting element array, specifically a one-dimensional light-emitting element array, and the plane where the one-dimensional light-emitting element array is located and the light path where the excitation light is reflected by the tunable reflective element 15 are located.
  • the plane is vertical.
  • the light source module 11 may be a blue light source, and the excitation light may be a blue laser. Since the cost of the blue light source is lower, the use of the blue light source can reduce the cost.
  • the blue laser is used as the primary light and as the excitation light to excite the other two primary colors of red light and green light. It can also excite yellow light, and the yellow light is combined with the blue laser light.
  • the adjustable reflection element 15 is roughly shaped like a truncated cone, which can be driven by a motor to rotate around the central axis of the adjustable reflection element 15.
  • the tunable reflective element 15 rotates, the light emitted by the light source can be guided to different wavelength conversion devices along different optical paths in different time periods. Among them, each light path is in a plane.
  • the adjustable reflector 15 includes a reflector and a reflector adjustment structure.
  • the reflector adjustment mechanism can adjust the reflection angle of the reflector relative to the light source module 11 in different time periods based on lighting requirements, and then emit the light source in different time periods. The light is guided to different wavelength conversion devices.
  • the adjustable reflective element 15 includes adjacent first reflective segments 152 and second reflective segments 154, and the first reflective segment 152 is used to direct the excitation light emitted by the light source module 11 to the light combining element 12 along the first light path.
  • the first light incident surface 121 and the first reflection section 152 have an adjustable first reflection angle A1 for the excitation light emitted by the light source module 11, where the first reflection angle A1 may be 45°.
  • the second reflection section 154 is used for guiding the excitation light emitted by the light source module 11 to the first wavelength conversion element 13 along the second light path.
  • the second reflection section 154 has an adjustable second reflection angle A2 for the excitation light emitted by the light source module 11, and the second reflection angle A2 may be smaller than the first reflection angle A1.
  • the first reflection section 152 and the second reflection section 154 may be distributed on the tunable reflection element 15 in an arc surface or a fan-shaped surface.
  • the lengths of the first reflection section 152 and the second reflection section 154 may be equal. Without considering the conversion efficiency, the light source structure 10 may emit equal amounts of light of two colors. In other embodiments, the lengths of the first reflection section 152 and the second reflection section 154 may also be set according to actual requirements.
  • the adjustable reflection element 15 may also include a transition section.
  • the excitation light emitted by the light source module 11 enters the transition section, the excitation light is reflected in other directions without being incident on the light combining element 12, that is, The light source structure 10 does not emit light.
  • the time for the light source structure 10 to emit no light is also different.
  • the transition section of the adjustable reflective element 15 realizes the switching function of the light source structure 10.
  • the light combining element 12 is an X-type color combining filter device, such as a light combining prism or a dichroic film.
  • the light combining element 12 is approximately a cube structure, and the light combining element for combining light in the light combining element 12 is approximately X-shaped.
  • the light combining element 12 includes a first light incident surface 121 and a second light incident surface 123. The light combining element 12 is used for combining the excitation light incident from the first light incident surface 121 and the first fluorescence incident from the second light incident surface 123.
  • the light combining element 12 further includes a third light-incident surface 125 and a light-emitting surface 127.
  • the first light-incident surface 121 is vertically connected to the second light-incident surface 123 and the third light-incident surface 125.
  • the surface 125 is vertically connected to the first light-incident surface 121 and the light-emitting surface 127, and the third light-incident surface 125 is used for the incidence of the second fluorescent light.
  • the light-emitting surface 127 is opposite to the first light-incident surface 121 and is used for emitting mixed light.
  • the light combining element 12 combines the second fluorescence incident from the third light incident surface 125, the excitation light incident from the first light incident surface 121, and the first fluorescence incident from the second light incident surface 123 to combine the light from the light exit surface 127. Shoot out.
  • the light combining element 12 also includes a first selective reflection surface 128 and a second selective reflection surface 129.
  • the first selective reflection surface 128 and the second selective reflection surface 129 intersect perpendicularly, and the first selective reflection surface 128 is used for transmission.
  • the excitation light incident from the first light incident surface 121 reflects the first fluorescence incident from the second light incident surface 123, and the second selective reflection surface 129 is used to transmit the excitation light incident from the first light incident surface 121 and reflect it from The second fluorescent light incident on the third light incident surface 125.
  • the first wavelength conversion element 13 is disposed on the side of the first heat dissipation element 14 close to the second light incident surface 123, and the first wavelength conversion element 13 is used to convert the excitation light directed by the second reflection section 154 into The first fluorescent light is incident on the second light incident surface 123.
  • the first wavelength conversion element 13 may be a fluorescent sheet fixedly connected to the first heat dissipation element 14.
  • the first wavelength conversion element 13 does not need to be integrally provided with the tunable reflection element 15 and connected to the motor drive, the first wavelength conversion and the second A heat dissipation element 14 is fixedly connected, so that the heat generated when the excitation light is incident on the first wavelength conversion element 13 can be directly conducted and dissipated, so as to avoid the continuous decrease in the efficiency of generating excitation light due to the excessively high temperature of the fluorescent sheet.
  • the first wavelength conversion element 13 is provided with a yellow fluorescent material.
  • the excitation light reflected by the first reflection section 152 is excited after passing through the first wavelength conversion element 13 and generates yellow fluorescence.
  • the yellow fluorescence and the excitation light reflected by the second reflection section 154 are combined by the light combining element 12 to form white illumination light, which can be used in an illumination system.
  • the first wavelength conversion element 13 may be a color wheel.
  • the first wavelength conversion element 13 may also be embedded on the side of the first heat dissipation element 14 close to the second light incident surface 123 and exposed on the surface of the first heat dissipation element 14. With this arrangement, the first fluorescence generated by the first wavelength conversion element 13 can be incident on the light combining element 12 as much as possible, and the first fluorescence can be prevented from being emitted to the surroundings, and the light utilization efficiency of the light source structure 10 can be improved.
  • the first wavelength conversion element 13 is embedded on the side of the first heat dissipation element 14 close to the second light incident surface 123, and is exposed on the surface of the first heat dissipation element 14. At least one of the three contact surfaces of the heat dissipation element 14 and the first wavelength conversion element 13 is coated with a reflective layer.
  • the reflective layer may be a high-reflection film, which can improve the light utilization efficiency of the light source structure 10.
  • the first heat dissipation element 14 is disposed on the side of the first wavelength conversion element 13 away from the second light incident surface 123, and is used to dissipate the first wavelength conversion element 13.
  • the first heat dissipation element 14 is fixedly connected to the first wavelength conversion element 13 to more conveniently dissipate the heat generated by the first wavelength conversion element 13 through heat transfer.
  • the first heat dissipation element 14 may be a heat dissipation fan or a heat dissipation fin.
  • the first heat dissipation element 14 may also be a color wheel motor, and the color wheel motor drives the color wheel to rotate for heat dissipation.
  • the light source structure 10 further includes a first plastic lens 18 and a second plastic lens 19, the first plastic lens 18 is located between the adjustable reflection element 15 and the first wavelength conversion element 13, and is used to reflect the excitation light reflected by the first reflection section 152 Converging to the first wavelength conversion element 13, the number of the first shaping lens 18 can be one or more, and the first shaping lens 18 can be a convex lens or other lens with a converging function to stimulate the reflection of the first reflection section 152 The light is converged and shaped.
  • the second shaping lens 19 is located between the adjustable reflection element 15 and the light combining element 12, and is used for condensing the excitation light reflected by the second reflection section 154 to the second light incident surface 123.
  • the light source structure 10 further includes a first collecting lens 102.
  • the first collecting lens 102 is located between the first wavelength conversion element 13 and the light combining element 12, and is used to excite the first fluorescence emitted by the first wavelength conversion element 13 Converge to the light combining element 12.
  • the light source structure 10 further includes a diffuser 105 and a second collection lens 106.
  • the excitation light reflected by the second reflection section 154 is scattered by the diffuser 105 and concentrated by the second collection lens 106 and then enters the combined light.
  • the diffusion sheet 105 is used to reduce the speckle of the excitation light.
  • the second collecting lens 106 is used for condensing the excitation light emitted by the diffusion sheet 105 to the light combining element 12.
  • the light source structure 10 further includes an imaging lens 109, which is opposite to the light exit surface 127 of the light combining element 12, and is used for imaging the mixed light formed by the first fluorescent light and the excitation light through the light combining element 12.
  • the light source structure 10 further includes a condensing lens 117.
  • the condensing lens 117 is located between the light source module 11 and the adjustable reflection element 15.
  • the condensing lens 117 can be used to converge the excitation light emitted by the light source module 11 to a ⁇ reflective element 15.
  • the number of condensing lenses 117 may be the same as the number of lasers.
  • the tunable reflection element 15 and the first wavelength conversion element 13 are separately arranged, and the first heat dissipation element 14 is fixedly connected to the first wavelength conversion element 13 so that the first heat dissipation element 14 is connected to each other.
  • the first wavelength conversion element 13 performs heat dissipation, which improves the heat dissipation performance of the first wavelength conversion element 13 and increases the service life of the light source structure 10.
  • the difference from the first embodiment is that the light source structure 20 provided in this embodiment further includes a first spatial light modulator 204 and a second spatial light modulator 207.
  • the first spatial light modulator 204 is located between the first collection lens 202 and the light combining element 22, and is used to modulate the first fluorescent light and emit it to the light combining element 22.
  • the first spatial light modulator 204 is used to The light beam on the surface is modulated to output the image light beam, which is finally imaged to the screen through the lens, and the restored image and video are received by the human eye.
  • the second spatial light modulator 207 is located between the second collecting lens 206 and the light combining element 22, and the second spatial light modulator 207 can be used to modulate the excitation light emitted by the second collecting lens 206 and be incident on the first light incident surface 221.
  • the light source structure 20 further includes a first color correction film 203 and a second color correction film 208.
  • the first color correction film 203 is located between the first collection lens 202 and the first spatial light modulator 204 for The first fluorescent light emitted by the first collecting lens 202 is corrected.
  • the second color correction sheet 208 is located between the second collection lens 206 and the second spatial light modulator 207, and is used for color correction of the excitation light.
  • the light source structure 20 of this embodiment modulates the light beam incident on its surface through the first spatial light modulator 204 and the second spatial light modulator 207, respectively, and outputs the image light beam, which is finally imaged onto the screen through the lens.
  • Video and image restoration
  • the optical structure 30 provided in this embodiment includes a second wavelength conversion element 36
  • the tunable reflection element 35 also includes a third reflection section 356, and a second wavelength conversion
  • the element 36 is used for converting the excitation light directed by the third reflection section 356 into second fluorescence, and the second fluorescence is incident on the third light incident surface 325.
  • both the first wavelength conversion element 33 and the second wavelength conversion element 36 are color wheels.
  • the color wheel can be driven by a motor to rotate around the center axis of the color wheel. Through the continuous rotation of the color wheel, the working position of the fluorescent material on the color wheel can be continuously changed.
  • the first reflection section 352, the second reflection section 354, and the third reflection section 356 are connected end to end.
  • the third reflection section 356 has an adjustable third reflection angle A3 for the excitation light emitted by the light source module 31, and the third reflection angle A3 may be greater than the first reflection angle A1.
  • the three reflection angles may also have other relationships, as long as they are not equal to each other.
  • the first reflection section 352, the second reflection section 354, and the third reflection section 356 may be distributed in an arc surface or a fan-shaped surface on the adjustable reflection element 35.
  • the lengths of the first reflection section 352, the second reflection section 354 and the third reflection section 356 may be equal. Without considering the conversion efficiency, the light source structure 30 may emit the same amount of light of three colors. In other embodiments, the lengths of the first reflection section 352, the second reflection section 354, and the third reflection section 356 can also be set according to actual requirements.
  • the optical structure 30 provided in this embodiment can dissipate heat through a rotating color wheel, which can also increase the service life of the light source structure 30.
  • the difference from the first embodiment is that the light source structure 40 provided in this embodiment further includes a second wavelength conversion element 46 and a second heat dissipation element 47.
  • the second wavelength conversion element 46 is located between the third light incident surface 425 and the second heat dissipation element 47.
  • the second wavelength conversion element 46 is used for converting the excitation light directed by the tunable reflection element 45 into second fluorescence, and the second fluorescence is incident on the third light incident surface 425.
  • the second wavelength conversion element 46 is provided with a red fluorescent material.
  • the second heat dissipation element 47 is disposed on a side of the second wavelength conversion element 46 away from the third light incident surface 425 and is used for dissipating heat of the second wavelength conversion element 46.
  • the structure of the second heat dissipation element 47 may be the same as the structure of the first heat dissipation element 44, or may be a heat dissipation fan or a heat sink.
  • the first wavelength conversion element 43 is provided with a green fluorescent material.
  • the first wavelength conversion element 43 may also be provided with fluorescent materials of other colors, such as red, green or other colors, which can be adjusted according to actual requirements.
  • the light source structure 40 further includes a third collecting lens 410, a third reshaping lens 401, a third color correction film 414, and a third spatial light modulator 416.
  • the adjustable reflection element 45 reflects The blue laser light passes through the second wavelength conversion element 46 and excites the second fluorescence, the convergence of the third collection lens 410, the correction of the third color correction film 414, and the modulation of the third spatial light modulator 416, and then enters the light combining device. 42.
  • the third shaping lens 401 is located between the tunable reflection element 45 and the second wavelength conversion element 46, and is used for condensing the blue laser light reflected by the tunable reflection element 45 to the second wavelength conversion element 46.
  • the third collecting lens 410 is located between the second wavelength conversion element 46 and the third color correction plate 414, and is used for converging the second fluorescence emitted from the second wavelength conversion element 46 to the third color correction plate 414.
  • the third color correction sheet 414 is located between the third collection lens 410 and the third spatial light modulator 416, and is used for color correction of the second fluorescent light emitted by the third collection lens 410.
  • the third spatial light modulator 416 can be used to modulate the second fluorescent light emitted by the third color correction film 414 and enter the third light-incident surface 425.
  • the light path diagram shown in FIG. 9 corresponds to the blue light working mode of the light source structure 40.
  • the excitation light emitted by the light source module 41 is reflected by the second reflection section 454 After that, it is incident on the first wavelength conversion element 43 and converted into first fluorescence.
  • the first fluorescence is condensed by the first collection lens 402 and then incident on the second light incident surface 423, and finally incident on the imaging lens 409, as shown in FIG.
  • the light path diagram of corresponds to the first fluorescent working mode of the light source structure 40.
  • the tunable reflection element 45 has an adjustable third reflection angle A3 for the excitation light emitted by the light source module 41
  • the excitation light emitted by the light source module 41 is reflected by the third reflection section 456. Then, it is incident on the second wavelength conversion element 46 and converted into second fluorescence.
  • the second fluorescence is condensed by the third collection lens 410 and then incident on the third light-incident surface 425, and finally incident on the imaging lens 409, as shown in FIG. 11
  • the light path diagram of corresponds to the second fluorescent working mode of the light source structure 40.
  • the difference from the first embodiment is that the light combining element 52 of the light source structure 50 provided in this embodiment is different.
  • the light combining element 52 includes a first dichroic plate 521 and a second dichroic plate 523 arranged perpendicularly to the first dichroic plate 521, and the first light-incident surface 524 and the second light-incident surface 525 are respectively located at On opposite sides of the first dichroic film 521, the first dichroic film 521 is located between the adjustable reflection element 55 and the second dichroic film 523, and is used to transmit the excitation light and reflect the first fluorescence.
  • the first dichroic film 521 may be a translucent blue and green dichroic film.
  • the third light-incident surface 526 is located on the side of the second dichroic film 523 away from the first dichroic film 521, and the second dichroic film 523 is located between the first dichroic film 521 and the imaging lens 509 for The first fluorescent light reflected by the first dichroic film 521 and the excitation light transmitted by the first dichroic film 521 are transmitted, and are also used to reflect the second fluorescent light to the imaging lens 509.
  • the second dichroic film 523 may be a transparent cyan and red dichroic film.
  • the present invention also provides a projection device 1, including a light source structure 10 and a housing 80, wherein the light source structure 10 is installed in the housing 80, and the housing 80 can protect the light source structure 10.
  • the projection device 1 may also include elements such as a lens, and the elements such as the lens may refer to the prior art, which will not be described here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源结构(10),包括光源模组(11)、合光元件(12)、第一波长转换元件(13)、第一散热元件(14)和可调反射元件(15),光源模组(11)用于发射激发光。合光元件(12)包括第一入光面(121)和第二入光面(123)。第一波长转换元件(13)与第二入光面(123)相对。第一散热元件(14)用于对第一波长转换元件(13)进行散热。可调反射元件(15)包括相邻的第一反射段(152)和第二反射段(154),第一反射段(152)用于将光源模组(11)发射的激发光沿第一光路指引至合光元件(12)的第一入光面(121),第二反射段(154)用于将光源模组(11)发射的激发光沿第二光路指引至第一波长转换元件(13)。光源结构(10)将可调反射元件(15)和第一波长转换元件(13)分开设置,提升了第一波长转换元件(13)的散热性能。还提供一种投影设备。

Description

光源结构及投影设备 技术领域
本发明涉及光学技术领域,具体而言,涉及一种光源结构及投影设备。
背景技术
光源结构作为照明和投影机的最重要组成部分之一,直接关系到整体的效果,所以备受关注。激光光源作为光源结构的重要组成部分,由于其亮度高、设计精巧、使用寿命长而被广泛使用。光源结构内的荧光粉在受激励光照射工作的过程中,由于其分子能级的跳跃表面会产生大量热量,并且随着激励光功率的提高和连续工作时间的加长,其热功耗会不断的上升。而随着温度的上升,荧光粉产生激发光的效率会不断的下降,且超过一定的临界值,其效率下降的速度会更快。温度的上升还会减少光源结构的使用寿命。
发明内容
本发明的目的在于提供一种光源结构及投影设备,以解决上述问题。本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种光源结构,包括光源模组、合光元件、第一波长转换元件、第一散热元件和可调反射元件,光源模组用于发射激发光。合光元件包括第一入光面和第二入光面。第一波长转换元件与第二入光面相对。第一散热元件用于对第一波长转换元件进行散热。可调反射元件包括相邻的第一反射段和第二反射段,第一反射段用于将光源模组发射的激发光沿第一光路指引至合光元件的第一入光面,第二反射段用于将光源模组发射的激发光沿第二光路指引至第一波长转换元件。第一波长转换元件用于将第二反射段指引的激发光转换成第一 荧光,第一荧光入射至第二入光面,合光元件用于将自第一入光面入射的激发光和自第二入光面入射的第一荧光进行合光。
第二方面,本发明还提供一种投影设备,包括上述任一光源结构。
相较于现有技术,本发明提供的光源结构及投影设备,将可调反射元件和第一波长转换元件分开设置,将第一散热元件与第一波长转换元件固定连接,以通过第一散热元件对第一波长转换元件进行散热,提升了第一波长转换元件的散热性能,从而提升了光源结构的使用寿命。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的光源结构的结构示意图;
图2是本发明第一实施例提供的可调反射元件的结构示意图;
图3是本发明第一实施例一种实施方式提供的光源结构的结构示意图;
图4是本发明第二实施例提供的光源结构的结构示意图;
图5是本发明第二实施例一种实施方式提供的光源结构的结构示意图;
图6是本发明第三实施例提供的光源结构的结构示意图;
图7是本发明第三实施例提供的可调反射元件的结构示意图;
图8是本发明第四实施例提供的光源结构的结构示意图;
图9是本发明第四实施例提供的光源结构的蓝光模式的光路图;
图10是本发明第四实施例提供的光源结构的第一荧光模式的光路图;
图11是本发明第四实施例提供的光源结构的第二荧光模式的光路图;
图12是本发明第五实施例提供的光源结构的结构示意图;
图13是本发明第六实施例提供的投影设备的结构示意图。
具体实施方式
为了便于理解本实施例,下面将参照相关附图对本实施例进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
第一实施例
请参阅图1、图2和图3,本发明提供一种光源结构10,包括光源模组11、合光元件12、第一波长转换元件13、第一散热元件14和可调反射元件15。其中,可调反射元件15的反射角可调节,进而将光源模组11出射的激发光以不同的光路引导至不同的波长转换装置,不同的波长转换装置在光源模组11出射的激发光的激发下出射与波长转换装置的颜色相应颜色的荧光,不同的荧光经过合 光元件12的合光后从出射光路中出射。第一散热元件14对应于第一波长转换元件13设置,以对第一波长转换装置13进行散热。
光源模组11用于发射激发光。在本实施例中,光源模组11可以为发光元件阵列,具体可以为一维发光元件阵列,且一维发光元件阵列所在的平面与激发光经过可调反射元件15反射后的各个光路所在的平面垂直。光源模组11可以为蓝光光源,激发光可以为蓝激光,由于蓝光光源的成本较低,因此使用蓝光光源可以降低成本。蓝激光作为基色光,又作为激发光,激发出红光和绿光其它两种基色光,也可以激发出黄光,黄光再与蓝激光合光。
可调反射元件15大致为导致的圆台形,可以由马达带动绕可调反射元件15的中轴线转动。可调反射元件15旋转时,可以在不同时间段内将光源出射的光沿不同光路引导至不同的波长转换装置。其中,各个光路均在一个平面内。可调反射元件15包括反射镜和反射镜调节结构,反射镜调节机构可以基于照明需求调节反射镜在不同时间段内相对于光源模组11的反射角,进而在不同时间段内将光源出射的光引导至不同的波长转换装置。
具体地,可调反射元件15包括相邻的第一反射段152和第二反射段154,第一反射段152用于将光源模组11发射的激发光沿第一光路指引至合光元件12的第一入光面121,第一反射段152对于光源模组11发射的激发光具有可调的第一反射角A1,其中,第一反射角A1可以为45°。第二反射段154用于将光源模组11发射的激发光沿第二光路指引至第一波长转换元件13。第二反射段154对于光源模组11发射的激发光具有可调的第二反射角A2,第二反射角A2可以小于第一反射角A1。
第一反射段152和第二反射段154在可调反射元件15上可以呈弧面或扇形 面分布。第一反射段152和第二反射段154的长度可以相等,在不考虑转换效率的情况下,可以使光源结构10出射等量的两种颜色的光。在其他实施方式中,还可以根据实际需求,设置第一反射段152和第二反射段154的长度。
在其他实施方式中,可调反射元件15还可以包括过渡段,当光源模组11出射的激发光入射至过渡段,激发光沿其他方向反射,而不会入射至合光元件12,也就是光源结构10不会出射光线。根据过渡段的长度不同,光源结构10无光线出射的时间也不同,通过控制过渡段的长度,可以控制光源结构10的发光效果。也就是说,可调反射元件15的过渡段实现了光源结构10的开关功能。
在本实施例中,合光元件12为X型合色滤光装置,例如合光棱镜或二向色片等。合光元件12大致呈正方体结构,其中合光元件12中用于合光的合光元件大致为X形。合光元件12包括第一入光面121和第二入光面123。合光元件12用于将自第一入光面121入射的激发光和自第二入光面123入射的第一荧光进行合光。
在一种实施方式中,合光元件12还包括第三入光面125和出光面127,第一入光面121垂直连接第二入光面123和第三入光面125,第三入光面125垂直连接于第一入光面121和出光面127,第三入光面125用于第二荧光的入射。出光面127与第一入光面121相对并用于出射混合光。合光元件12将自第三入光面125入射的第二荧光、自第一入光面121入射的激发光以及自第二入光面123入射的第一荧光进行合光并从出光面127出射。
合光元件12还包括第一选择性反射面128和第二选择性反射面129,第一选择性反射面128和第二选择性反射面129垂直相交,第一选择性反射面128用于透射自第一入光面121入射的激发光并反射自第二入光面123入射的第一荧 光,第二选择性反射面129用于透射自第一入光面121入射的激发光并反射自第三入光面125入射的第二荧光。
在本实施例中,第一波长转换元件13设置于第一散热元件14靠近第二入光面123的一侧,第一波长转换元件13用于将第二反射段154指引的激发光转换成第一荧光,第一荧光入射至第二入光面123。第一波长转换元件13可以是与第一散热元件14固定连接的荧光片,由于第一波长转换元件13不需要与可调反射元件15一体设置并与马达传动连接,并且第一波长转换与第一散热元件14固定连接,因此可以直接将激发光入射至第一波长转换元件13时产生的热量进行传导并散热,避免因为荧光片由于温度过高导致的产生激发光的效率不断的下降。在本实施例中,第一波长转换元件13设置有黄色荧光材料。第一反射段152反射的激发光经过第一波长转换元件13后受激发并产生黄色荧光。黄色荧光和第二反射段154反射的激发光经合光元件12的合光形成白色的照明光,照明光可以用于照明系统中。第一波长转换元件13可以为色轮。
如图3所示,在一些实施方式中,第一波长转换元件13还可以埋置于第一散热元件14靠近第二入光面123的一侧,并且暴露于第一散热元件14的表面,这样设置,可以使第一波长转换元件13产生的第一荧光尽可能地入射至合光元件12,避免第一荧光向四周发射,提高光源结构10的光利用率。在另一些实施方式中,第一波长转换元件13埋置于第一散热元件14靠近第二入光面123的一侧,并且暴露于第一散热元件14的表面,更进一步,还可以在第一散热元件14与第一波长转换元件13接触的三个接触面中的至少一个接触面上镀反射层,反射层可以是高反膜,可以提高光源结构10的光利用率。
在本实施例中,第一散热元件14设置于第一波长转换元件13远离第二入光 面123的一侧,用于对第一波长转换元件13进行散热。在本实施例中,第一散热元件14与第一波长转换元件13固定连接,以更方便地将第一波长转换元件13的产生的热量通过热传递的方式散热。具体地,第一散热元件14可以是散热风扇或者散热片。在其他实施方式中,第一散热元件14还可以是色轮马达,色轮马达通过驱动色轮转动进行散热。
光源结构10还包括第一整形透镜18和第二整形透镜19,第一整形透镜18位于可调反射元件15和第一波长转换元件13之间,用于将第一反射段152反射的激发光会聚至第一波长转换元件13,第一整形透镜18的数量可以是一个也可以是多个,第一整形透镜18可以是凸透镜等具有会聚功能的透镜,以对第一反射段152反射的激发光进行会聚和整形。第二整形透镜19位于可调反射元件15和合光元件12之间,用于将第二反射段154反射的激发光会聚至第二入光面123。
在本实施例中,光源结构10还包括第一收集透镜102,第一收集透镜102位于第一波长转换元件13和合光元件12之间,用于将第一波长转换元件13激发的第一荧光会聚至合光元件12。
在本实施例中,光源结构10还包括散射片105和第二收集透镜106,第二反射段154反射的激发光依次经散射片105的散射和第二收集透镜106的会聚后入射至合光元件12。散射片105用于减少激发光的散斑。第二收集透镜106用于将散射片105出射的激发光会聚至合光元件12。
光源结构10还包括成像镜头109,成像镜头109与合光元件12的出光面127相对,并用于对第一荧光和激发光经合光元件12形成的混合光进行成像。
在本实施例中,光源结构10还包括会聚透镜117,会聚透镜117位于光源模组11和可调反射元件15之间,会聚透镜117可以用于将光源模组11出射的激 发光会聚至可调反射元件15。会聚透镜117的数量可以和激光器的数量相同。
综上,本发明提供的光源结构10将可调反射元件15和第一波长转换元件13分开设置,将第一散热元件14于第一波长转换元件13固定连接,以通过第一散热元件14对第一波长转换元件13进行散热,提升了第一波长转换元件13的散热性能,提升了光源结构10的使用寿命。
第二实施例
请参阅图4和图5,与第一实施例不同的是,本实施例提供的光源结构20还包括第一空间光调制器204和第二空间光调制器207。第一空间光调制器204位于第一收集透镜202和合光元件22之间,用于对第一荧光进行调制并出射至合光元件22,具体地,第一空间光调制器204用于对入射其表面的光束进行调制,输出图像光束,最终经过镜头成像至屏幕,还原图像和视频被人眼所接收。第二空间光调制器207位于第二收集透镜206和合光元件22之间,第二空间光调制器207可以用于对第二收集透镜206出射的激发光进行调制并入射至第一入光面221。
在一种实施方式中,光源结构20还包括第一修色片203和第二修色片208第一修色片203位于第一收集透镜202和第一空间光调制器204之间,用于对第一收集透镜202出射的第一荧光进行修正。第二修色片208位于第二收集透镜206和第二空间光调制器207之间,用于对激发光进行修色。
综上,本实施例的光源结构20通过第一空间光调制器204和第二空间光调制器207分别对入射其表面的光束进行调制,并输出图像光束,最终经过镜头成像至屏幕,实现了视频和图像的还原。
第三实施例
请参阅图6和图7,与第一实施例不同的是,本实施例提供的光学结构30包括第二波长转换元件36,可调反射元件35还包括第三反射段356,第二波长转换元件36用于将第三反射段356指引的激发光转换成第二荧光,第二荧光入射至第三入光面325。在本实施例中,第一波长转换元件33和第二波长转换元件36均为色轮。色轮可以由马达带动绕色轮的中轴线转动。通过色轮的持续转动,可以不断改变色轮上的荧光材料工作位置。
在本实施例中,第一反射段352、第二反射段354和第三反射段356首尾连接。第三反射段356对于光源模组31发射的激发光具有可调的第三反射角A3,第三反射角A3可以大于第一反射角A1。在其他实施方式中,三个反射角还可以是其他关系,满足互不相等即可。
第一反射段352、第二反射段354和第三反射段356在可调反射元件35上可以呈弧面或扇形面分布。第一反射段352、第二反射段354和第三反射段356的长度可以相等,在不考虑转换效率的情况下,可以使光源结构30出射等量的三种颜色的光。在其他实施方式中,还可以根据实际需求,设置第一反射段352、第二反射段354和第三反射段356的长度。
本实施例提供的光学结构30可以通过转动的色轮进行散热,同样可以提升光源结构30的使用寿命。
第四实施例
请参阅图8,与第一实施例不同的是,本实施例提供的光源结构40还包括第二波长转换元件46和第二散热元件47。第二波长转换元件46位于第三入光面425和第二散热元件47之间。第二波长转换元件46用于将可调反射元件45指引的激发光转换成第二荧光,第二荧光入射至第三入光面425。在本实施例中, 第二波长转换元件46设置有红色荧光材料。第二散热元件47设置于第二波长转换元件46远离第三入光面425的一侧,用于对第二波长转换元件46进行散热。第二散热元件47的结构可以和第一散热元件44的结构可以相同,也可以是散热风扇或者散热片。通过对每个波长转换装置设置对应的散热元件,提高了每个波长转换装置的散热效率,因此提高整体光源结构40的散热效率。
第一波长转换元件43设置有绿色荧光材料。在其他实施方式中,第一波长转换元件43还可以设有其他颜色的荧光材料,例如红色、绿色或者其他颜色,可以根据实际需求进行调整。
在本实施例中,在本实施例中,光源结构40还包括第三收集透镜410、第三整形透镜401、第三修色片414和第三空间光调制器416,可调反射元件45反射的蓝激光依次经第二波长转换元件46并激发出第二荧光、第三收集透镜410的会聚、第三修色片414的修正以及第三空间光调制器416的调制后入射至合光装置42。第三整形透镜401位于可调反射元件45和第二波长转换元件46之间,用于将可调反射元件45反射的蓝激光会聚至第二波长转换元件46。第三收集透镜410位于第二波长转换元件46和第三修色片414之间,用于对第二波长转换元件46出射的第二荧光会聚至第三修色片414。第三修色片414位于第三收集透镜410和第三空间光调制器416之间,用于将第三收集透镜410出射的第二荧光进行修色。第三空间光调制器416可以用于对第三修色片414出射的第二荧光进行调制并入射至第三入光面425。
如图9所示,在可调反射元件45对于光源模组41发射的激发光具有可调的第一反射角A1时的光路,光源模组41发射的激发光经过第一反射段452的反射后,依次经过散射片405的散射以及第二收集透镜406的会聚后入射至第一入光 面421,最后入射至成像镜头409,图9所示的光路图对应光源结构40的蓝光工作模式。
如图10所示,在可调反射元件45对于光源模组41发射的激发光具有可调的第二反射角A2时的光路,光源模组41发射的激发光经过第二反射段454的反射后,入射至第一波长转换元件43并被转换成第一荧光,第一荧光经第一收集透镜402的会聚后入射至第二入光面423,最后入射至成像镜头409,图10所示的光路图对应光源结构40的第一荧光工作模式。
如图11所示,在可调反射元件45对于光源模组41发射的激发光具有可调的第三反射角A3时的光路,光源模组41发射的激发光经过第三反射段456的反射后,入射至第二波长转换元件46并被转换成第二荧光,第二荧光经第三收集透镜410的会聚后入射至第三入光面425,最后入射至成像镜头409,图11所示的光路图对应光源结构40的第二荧光工作模式。
第五实施例
请参阅图12,与第一实施例不同的是,本实施例提供的光源结构50的合光元件52不同。合光元件52包括相对设置的第一二向色片521和与第一二向色片521垂直设置的第二二向色片523,第一入光面524和第二入光面525分别位于第一二向色片521的相对两侧,第一二向色片521位于可调反射元件55和第二二向色片523之间,用于透射激发光并反射第一荧光。在本实施例中,第一二向色片521可以为透蓝反绿二向色片。第三入光面526位于第二二向色片523远离第一二向色片521的一侧,第二二向色片523位于第一二向色片521和成像镜头509之间,用于透射第一二向色片521反射的第一荧光和第一二向色片521透射的激发光,还用于反射第二荧光至成像镜头509。在本实施例中,第二二向色片 523可以为透青反红二向色片。
第六实施例
请参阅图13,本发明还提供一种投影设备1,包括光源结构10和壳体80,其中光源结构10安装于壳体80内,壳体80可以对光源结构10进行保护。投影设备1还可以包括镜头等元件,其中镜头等元件可以参照现有技术,此处不再叙述。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种光源结构,其特征在于,包括:
    光源模组,用于发射激发光;
    合光元件,包括第一入光面和第二入光面;
    第一波长转换元件,与所述第二入光面相对;
    第一散热元件,用于对所述第一波长转换元件进行散热;以及
    可调反射元件,包括相邻的第一反射段和第二反射段,所述第一反射段用于将所述光源模组发射的激发光沿第一光路指引至所述合光元件的第一入光面,所述第二反射段用于将所述光源模组发射的激发光沿第二光路指引至所述第一波长转换元件,所述第一波长转换元件用于将所述第二反射段指引的激发光转换成第一荧光,所述第一荧光入射至所述第二入光面,所述合光元件用于将自所述第一入光面入射的激发光和自所述第二入光面入射的第一荧光进行合光。
  2. 根据权利要求1所述的光源结构,其特征在于,所述光源结构还包括第二波长转换元件和第二散热元件,所述合光元件还包括第三入光面,所述第二波长转换元件位于所述第三入光面和所述第二散热元件之间,所述可调反射元件还包括第三反射段,所述第一反射段、所述第二反射段和所述第三反射段首尾连接,所述第二波长转换元件用于将所述第三反射段指引的激发光转换成第二荧光,所述第二荧光入射至所述第三入光面,所述合光元件将自所述第三入光面入射的第二荧光、自所述第一入光面入射的激发光以及自所述第二入光面入射的第一荧光进行合光,所述第二散热元件设置于所述第二波长转换元件远离所述第三入光面的一侧,用于对所述第二波长转换元件进行散热。
  3. 根据权利要求2所述的光源结构,其特征在于,所述第一反射段对于所述光源模组发射的激发光具有第一反射角,所述第二反射段对于所述光源模组发射的激发光具有第二反射角,所述第三反射段对于所述光源模组发射的激发光具有第三反射角,所述第一反射角大于所述第二反射角,且小于所述第三反射角。
  4. 根据权利要求1所述的光源结构,其特征在于,所述第一波长转换元件设置于所述第一散热元件靠近所述第二入光面的一侧。
  5. 根据权利要求1所述的光源结构,其特征在于,所述合光元件还包括第三入光面,所述合光元件还包括第一选择性反射面、第二选择性反射面和出光面,所述第一选择性反射面和所述第二选择性反射面垂直相交,所述出光面与所述第一入光面相对,所述第一入光面垂直连接所述第二入光面和所述第三入光面,所述第一选择性反射面用于透射自所述第一入光面入射的激发光并反射自所述第二入光面入射的第一荧光,所述第二选择性反射面用于透射自所述第一入光面入射的激发光并反射自所述第三入光面入射的第二荧光。
  6. 根据权利要求1所述的光源结构,其特征在于,所述合光元件包括第一二向色片和与所述第一二向色片垂直设置的第二二向色片,所述第一入光面和所述第二入光面分别位于所述第一二向色片的相对两侧,所述第一二向色片位于所述可调反射元件和所述第二二向色片之间,用于透射所述激发光并反射所述第一荧光,所述合光元件还包括第三入光面,所述第三入光面位于所述第二二向色片远离所述第一二向色片的一侧,所述第二二向色片用于透射所述第一二向色片反射的第一荧光和所述第一二向色片透射的激发光。
  7. 根据权利要求1所述的光源结构,其特征在于,所述光源结构还包括第一整形透镜和第二整形透镜,所述第一整形透镜位于所述可调反射元件和所述第一波长转换元件之间,用于将所述第一反射段反射的激发光会聚至所述第一波长转换元件,所述第二整形透镜位于所述可调反射元件和所述合光元件之间,用于将所述第二反射段反射的激发光会聚至所述第二入光面。
  8. 根据权利要求1所述的光源结构,其特征在于,所述光源结构还包括第一收集透镜和第一空间光调制器,所述第一收集透镜位于所述第一波长转换元件和所述第一空间光调制器之间,用于将所述第一波长转换元件激发的第一荧光会聚至所述第一空间光调制器,所述第一空间光调制器位于所述第一收集透镜和所述合光元件之间,用于对所述第一荧光进行调制并出射至所述合光元件。
  9. 根据权利要求8所述的光源结构,其特征在于,所述光源结构还包括第一修色片,所述第一修色片位于所述第一收集透镜和所述第一空间光调制器之间,用于对所述第一收集透镜出射的第一荧光进行修正。
  10. 根据权利要求9所述的光源结构,其特征在于,所述光源结构还包括散射片、第二收集透镜、第二空间光调制器和第二修色片,所述第二反射段反射的激发光依次经所述散射片的散射、所述第二收集透镜的会聚、所述第二修色片的修正以及所述第二空间光调制器的调制后入射至所述合光元件。
  11. 根据权利要求1所述的光源结构,其特征在于,所述第一波长转换元件为色 轮,所述第一散热元件为色轮马达,所述色轮马达通过驱动所述色轮转动进行散热。
  12. 一种投影设备,其特征在于,包括如权利要求1-11任一项所述的光源结构。
PCT/CN2021/096448 2020-06-08 2021-05-27 光源结构及投影设备 WO2021249202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010515068.9 2020-06-08
CN202010515068.9A CN113835285A (zh) 2020-06-08 2020-06-08 光源结构及投影设备

Publications (1)

Publication Number Publication Date
WO2021249202A1 true WO2021249202A1 (zh) 2021-12-16

Family

ID=78845212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096448 WO2021249202A1 (zh) 2020-06-08 2021-05-27 光源结构及投影设备

Country Status (2)

Country Link
CN (1) CN113835285A (zh)
WO (1) WO2021249202A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090320A (zh) * 2013-01-23 2013-05-08 海信集团有限公司 波长转换器、光源装置及投影机
CN107272312A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
US10101647B2 (en) * 2017-02-24 2018-10-16 Seiko Epson Corporation Illuminator and projector
CN109491187A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影设备
CN109884847A (zh) * 2017-12-06 2019-06-14 深圳光峰科技股份有限公司 光源系统及投影系统
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090320A (zh) * 2013-01-23 2013-05-08 海信集团有限公司 波长转换器、光源装置及投影机
CN107272312A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
US10101647B2 (en) * 2017-02-24 2018-10-16 Seiko Epson Corporation Illuminator and projector
CN109491187A (zh) * 2017-09-13 2019-03-19 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影设备
CN109884847A (zh) * 2017-12-06 2019-06-14 深圳光峰科技股份有限公司 光源系统及投影系统
CN110347009A (zh) * 2019-06-13 2019-10-18 广州光联电子科技有限公司 一种激光光源的光学系统

Also Published As

Publication number Publication date
CN113835285A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US9249949B2 (en) Lighting device and projection-type display device using the same including a color-combining prism
US9039215B2 (en) Light source device and projection type display device
US9904152B2 (en) Solid-state light source device
JP6215989B2 (ja) 照明システム及び投影装置
US11829058B2 (en) Light source device and image projection apparatus including a rod integrator and light guide
US9816683B2 (en) Light sources system and projection device using the same
JP5491888B2 (ja) 投写型表示装置
US8740406B2 (en) Method and apparatus for solid state illumination
US8622551B2 (en) High intensity image projector using sectional mirror
JP6777075B2 (ja) 光変換装置および光源装置ならびに投影型表示装置
EP2889685B1 (en) Wavelength converter, optical system and light source unit incorporating wavelength converter, and projection device incorporating light source unit
KR20110044295A (ko) 하나 이상의 광원을 구비한 광파이프를 사용하여 휘도를 증가시키기 위한 리사이클링 시스템 및 방법, 및 이를 포함하는 프로젝터
WO2016167110A1 (ja) 照明装置および投影型表示装置
JP2011248327A (ja) 照明装置及びそれを備えた投写型表示装置
WO2021259276A1 (zh) 光源组件和投影设备
CN113900332B (zh) 光源组件和投影设备
US11402738B2 (en) Illumination system and projection apparatus
JP2018147703A (ja) 光源装置
WO2021249202A1 (zh) 光源结构及投影设备
US20230110183A1 (en) Light-source device, image projection apparatus, and display device
WO2021259274A1 (zh) 光源组件和投影设备
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
WO2021259268A1 (zh) 光源组件和投影设备
WO2013118272A1 (ja) 照明光学系および投写型表示装置
US20220342291A1 (en) Light-source device, image projection apparatus, and light-source optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822849

Country of ref document: EP

Kind code of ref document: A1