WO2021249186A1 - 一种三涵道大推重比高效动力推进器 - Google Patents

一种三涵道大推重比高效动力推进器 Download PDF

Info

Publication number
WO2021249186A1
WO2021249186A1 PCT/CN2021/095920 CN2021095920W WO2021249186A1 WO 2021249186 A1 WO2021249186 A1 WO 2021249186A1 CN 2021095920 W CN2021095920 W CN 2021095920W WO 2021249186 A1 WO2021249186 A1 WO 2021249186A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
turbine
weight ratio
main shaft
shell
Prior art date
Application number
PCT/CN2021/095920
Other languages
English (en)
French (fr)
Inventor
赵景山
张家悦
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021249186A1 publication Critical patent/WO2021249186A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants

Definitions

  • the invention relates to the technical field of power propellers, in particular to a three-ducted high-efficiency power propeller with a large thrust-to-weight ratio.
  • turbojet engines In the late 1940s, Western countries began to use turbojet engines. Because turbojet engines can directly use the high-speed exhaust gas ejected from the tail nozzle to generate power, get rid of the previous piston engine’s dependence on the propeller, and improve the efficiency and power of aircraft flight. Therefore, at that time, turbojet engines were relatively advanced. level. But with the increasing demand for aviation aircraft, turbojet engines have exposed the fatal shortcomings of poor economic performance. In the 1960s, turbofan engines with dual ducts came out. Compared with turbojet engines, turbofan engines have the advantages of compact structure, high propulsion efficiency, and low noise. However, whether it is a turbine engine or a turbofan engine, the temperature in the combustion chamber can reach thousands of degrees Celsius when it is working.
  • the purpose of the present invention is to provide a three-channel high-efficiency power propeller with a large thrust-to-weight ratio to solve the above-mentioned problems in the prior art, reduce exhaust gas temperature, increase the service life of key components such as bearings, reduce the cost of the propeller, and extend the propulsion The life of the propeller is improved, and the performance of the propeller is improved.
  • the present invention provides the following solutions:
  • the present invention provides a three-ducted large thrust-to-weight ratio high-efficiency power propeller, comprising a duct and an air intake mechanism arranged at the intake end of the duct.
  • the duct includes an inner duct, a middle duct and an outer duct, The inner duct is located in the middle duct, and the middle duct is located in the outer duct.
  • the inner tube includes a main shaft, an inner tube shell, a compressor rotor and a turbine, the compressor rotor and the turbine are respectively fixedly connected to the main shaft, and the inner tube shell is connected to the main shaft through a plurality of supporting spokes.
  • the main shaft is fixedly connected, the inner duct housing is located between the compressor rotor and the turbine, the compressor rotor is close to the inlet end of the inner duct, and the turbine is close to the outlet air of the inner duct
  • the end of the main shaft close to the air outlet end of the endoscopy is also fixedly provided with a tail deflector cone.
  • the middle duct includes a middle duct shell rotatably connected with the main shaft, an end of the middle duct shell close to the outlet end is provided with a tail nozzle, and the middle duct shell is also provided with In the combustion chamber between the turbine and the compressor rotor, the other end of the middle duct shell is provided with a compressor turbine stator, and the compressor turbine stator and the compressor turbine rotor are combined to form a compressor turbine.
  • the outer duct includes an outer duct housing fixedly connected to the middle duct housing, the diameter of the outer duct housing gradually decreases from the inlet end to the outlet end, and the tail The diameter of the nozzle gradually increases from the inlet end to the outlet end.
  • the air intake mechanism includes an air inlet, a flow guide cone, a fan, and a flow guide ring
  • the fan is fixedly connected to one end of the main shaft
  • the flow guide cone is located at a distance from the fan to the duct.
  • One end, and the guide cone is fixedly connected to the center of the fan, and the guide ring is located between the fan and the inner duct.
  • the three-ducted high-efficiency power propeller with large thrust-to-weight ratio provided by the present invention improves the utilization rate of heat energy in high-temperature gas, effectively reduces the exhaust gas temperature, and improves the service life of key components such as bearings.
  • the air is divided into three parts after passing through the air intake mechanism, and enters the inner duct, middle duct, and outer duct of the propeller respectively; and enters the inner duct The air reacts to the fan and produces a part of the thrust. At the same time, it cools key components such as the main shaft and bearings to reduce their working temperature and increase their service life.
  • the air entering the middle duct passes through the compressor turbine, combustion chamber, and turbine.
  • the tail nozzle is discharged at a high speed to generate a part of the thrust; the air passing through the outer duct gives the fan a reaction force, and also generates a part of the thrust.
  • the final exhaust temperature of the three-ducted high thrust-to-weight ratio high-efficiency power propeller provided by the present invention can be controlled at 300°C to 400°C, which is in the working temperature range that ordinary bearings can withstand.
  • the three-ducted pusher solution provided by the present invention adds the innermost layer of ducts on the basis of the ducted structure, and effectively utilizes low-temperature airflow to cool the working areas of key components such as main shafts and bearings, and effectively shield key components such as main shafts and bearings.
  • key components such as main shafts and bearings
  • the high temperature environment is reduced, its working temperature is reduced, its working life is increased, and the performance of the propeller is improved.
  • Aerodynamic propulsion is the core component of aviation aircraft. Improving its working performance is conducive to improving the flight performance of aviation aircraft, which has important economic and environmental protection significance.
  • Figure 1 is a schematic diagram 1 of the structure of the three-ducted high-power-to-weight ratio high-efficiency power propeller of the present invention
  • Figure 2 is the second structural schematic diagram of the three-ducted high-power-to-weight ratio high-efficiency power propeller of the present invention
  • Figure 3 is a schematic diagram of the structure of the air intake mechanism in the three-ducted large thrust-to-weight ratio high-efficiency power propeller of the present invention
  • Figure 4 is a schematic diagram of the structure of the inner channel in the three-channel large thrust-to-weight ratio high-efficiency power propeller of the present invention
  • Figure 5 is a schematic diagram of the structure of the middle duct in the three-ducted high thrust-to-weight ratio high-efficiency power propeller of the present invention
  • FIG. 6 is a schematic diagram of the structure of the outer duct shell of the three ducted high thrust-to-weight ratio high-efficiency power propeller of the present invention
  • 1-inlet mechanism 2-inner duct; 3-middle duct; 4-outer duct; 5-inlet duct; 6-diversion cone; 7-fan; 8-diversion ring; 9-main shaft 10-support spokes; 11-tail guide cone; 12-turbine; 13-compressor rotor; 14-tail nozzle; 15-combustion chamber; 16-compressor stator; 17-outer duct shell.
  • the purpose of the present invention is to provide a three-channel high-efficiency power propeller with a large thrust-to-weight ratio, which can reduce exhaust gas temperature, increase the service life of key components such as bearings, reduce the cost of the propeller, extend the life of the propeller, improve the performance of the propeller, and solve the problem There is a problem in the technology that the working environment temperature of key rotating parts such as bearings is too high, which improves the utilization rate of gas heat energy.
  • the three-ducted high-power-to-weight ratio high-efficiency power propeller of this embodiment includes a duct and an air intake mechanism 1 arranged at the intake end of the duct.
  • the duct includes an inner duct 2 and a middle duct 3 And the outer duct 4, the inner duct 2 is located in the middle duct 3, and the middle duct 3 is located in the outer duct 4.
  • the air intake mechanism 1 includes an air inlet 5, a guide cone 6, a fan 7 and a guide ring 8.
  • the fan 7 is fixedly connected to one end of the main shaft 9, and the guide cone 6 is located at the end of the fan 7 away from the duct, and the guide ring
  • the flow cone 6 is fixedly connected to the center of the fan 7, and the flow guide ring 8 is located between the fan 7 and the inner duct 2; the air intake mechanism 1 is used to rectify the airflow direction and provide compressed air for the propeller.
  • the inner tube 2 includes a main shaft 9, an inner tube shell, a compressor rotor 13 and a turbine 12.
  • the compressor rotor 13 and the turbine 12 are respectively fixedly connected to the main shaft 9, and the inner tube shell is fixedly connected to the main shaft 9 through a number of supporting spokes 10,
  • the inner duct shell is located between the compressor rotor 13 and the turbine 12.
  • the compressor rotor 13 is close to the inlet end of the inner duct 2
  • the turbine 12 is close to the outlet end of the inner duct 2
  • the end of the main shaft 9 close to the outlet end of the inner duct 2 is still solid.
  • the air flow in the inner duct 2 can cool the working area of key components such as the main shaft 9 and the bearing, effectively shielding the high-temperature environment for the key components such as the main shaft 9 and the bearing, reducing its working temperature and increasing Its working life, in turn, improves the performance of the propeller.
  • the middle duct 3 includes a middle duct housing that is rotatably connected to the main shaft 9, and an end of the middle duct housing close to the outlet end is provided with a tail nozzle 14, and the middle duct housing is also provided between the turbine 12 and the compressor rotor 13 In the combustion chamber 15, the other end of the middle duct shell is provided with a compressor turbine stator 16.
  • the compressor turbine stator 16 and the compressor rotor 13 are combined to form a compressor turbine.
  • the diameter of the tail nozzle 14 is gradually along the direction from the inlet end to the outlet end. Increased, the flow channel formed by the tail nozzle 14 and the tail guide cone 11 on the inner duct 2 has good aerodynamic performance.
  • the outer duct 4 includes an outer duct shell 17 fixedly connected to the middle duct shell.
  • the diameter of the outer duct shell 17 gradually decreases from the inlet end to the outlet end, and has good aerodynamic characteristics.
  • the air passes through the air intake mechanism 1 and is divided into three parts, which respectively enter the inner duct 2, the middle duct 3, and the outer duct 4 of the propeller; the air entering the inner duct 2 reacts to the fan 7 and generates a part of the thrust, and at the same time
  • the main shaft 9, bearings and other key components are cooled to reduce their working temperature and increase their service life;
  • the air entering the middle duct 3 passes through the compressor turbine, combustion chamber 15, and turbine 12, and is discharged at high speed by the tail nozzle 14 to produce Part of the thrust;
  • the air passing through the outer duct 4 reacts to the fan 7 and also generates a part of the thrust.
  • the temperature of the tail gas finally discharged by the power propeller provided in this embodiment can be controlled at 300°C to 400°C, which is in the working temperature range that can be tolerated by ordinary bearings.

Abstract

一种三涵道大推重比高效动力推进器,包括涵道和设置在涵道的进气端的进气机构(1),涵道包括内涵道(2)、中涵道(3)和外涵道(4),内涵道位于中涵道内,中涵道位于外涵道内。该推进器提高了燃气热能的利用率、降低了轴承等关键零部件的工作温度。

Description

一种三涵道大推重比高效动力推进器 技术领域
本发明涉及动力推进器技术领域,特别是涉及一种三涵道大推重比高效动力推进器。
背景技术
自二战以来,世界各国纷纷投入大量科研力量研制军用、民用航空飞机。航空飞机的动力推进器是其“心脏”,航空飞机的每一次重大革命性进展都与动力推进器技术的创新和突破密切相关。
20世纪40年代末期,西方国家开始使用涡轮喷气式发动机。由于涡轮喷气式发动机可以直接利用尾喷管喷出的高速尾气产生动力,摆脱了之前活塞发动机对于螺旋桨的依赖,提高了飞机飞行的效率和功率,因此,在当时,涡喷发动机处于较为先进的水平。但随着人们对航空飞机需求的增加,涡喷发动机暴露出了经济性能差的致命缺点。20世纪60年代,具有双涵道的涡轮风扇发动机问世。相较于涡轮喷气式发动机,涡扇发动机具有结构紧凑、推进效率高、噪声小等优点。然而,无论是涡轮发动机还是涡扇发动机,其工作时,燃烧室内温度都可达到上千摄氏度,如此高的温度对发动机内需要转动的零部件是极大的考验。一方面,现有的润滑剂难以在如此高的温度下有效润滑,另一方面,转动部件在高温下工作寿命极短。近年来,科学家和工程师们为研发能够在高温下有效工作的轴承投入了大量的时间、精力和资金。如果能够将轴承工作区域的温度降至合理范围内,将大大降低推进器成本,延长推进器寿命,提高推进器性能。
因此,提供一种能够降低尾气温度的大推重比高效推进器,以降低推进器成本、延长推进器寿命、提高推进器性能是本领域亟待解决的技术问题。
发明内容
本发明的目的是提供一种三涵道大推重比高效动力推进器,以解决上述现有技术存在的问题,降低尾气温度,提高轴承等关键零部件的服役寿命,降低推进器成本,延长推进器寿命,提高推进器性能。
为实现上述目的,本发明提供了如下方案:
本发明提供了一种三涵道大推重比高效动力推进器,包括涵道和设置在所述涵道进气端的进气机构,所述涵道包括内涵道、中涵道和外涵道,所述内涵道位于所述中涵道内,所述中涵道位于所述外涵道内。
优选的,所述内涵道包括主轴、内涵道壳体、压气轮机转子和涡轮,所述压气轮机转子和所述涡轮分别与所述主轴固连,所述内涵道壳体通过若干个支撑辐条与所述主轴固连,所述内涵道壳体位于所述压气轮机转子和所述涡轮之间,所述压气轮机转子靠近所述内涵道的进气端,所述涡轮靠近所述内涵道的出气端,所述主轴靠近所述内涵道的出气端的一端还固设有尾部导流锥。
优选的,所述中涵道包括与所述主轴转动连接的中涵道壳体,所述中涵道壳体靠近出气端的一端设置有尾喷管,所述中涵道壳体内还设置有位于所述涡轮和所述压气轮机转子之间的燃烧室,所述中涵道壳体的另一端设置有压气轮机静子,所述压气轮机静子与所述压气轮机转子组合成压气轮机。
优选的,所述外涵道包括与所述中涵道壳体固连的外涵道壳体,所述外涵道壳体的直径沿进气端至出气端的方向逐渐减小,所述尾喷管的直径沿进气端至出气端的方向逐渐增大。
优选的,所述进气机构包括进气道、导流锥、风扇和导流环,所述风扇与所述主轴的一端固连,所述导流锥位于所述风扇远离所述涵道的一端,且所述导流锥固连在所述风扇的中心,所述导流环位于所述风扇与所述内涵道之间。
本发明相对于现有技术取得了以下技术效果:
本发明提供的三涵道大推重比高效动力推进器提高了高温燃气中热能的利用率、有效降低了尾气温度,提高轴承等关键零部件的服役寿命。本发明提供的三涵道大推重比高效动力推进器在工作过程中,空气通过进气机构后被分为三部分,分别进入推进器的内涵道、中涵道、外涵道;进入内涵道的空气给风扇反作用力,产生一部分推力,同时对主轴、轴承等关键零部件进行冷却,降低其工作温度、提升其服役寿命;进入中涵道的空气经压气轮机、燃烧室、涡轮机后,由尾喷管高速排出,产生一部分推 力;通过外涵道的空气给风扇反作用力,也产生一部分推力。在三部分推力的共同作用下,实现大推重比、高效推进的技术效果。本发明提供的三涵道大推重比高效动力推进器最终排出的尾气温度可控制在300℃~400℃,处于普通轴承可耐受的工作温度区间。本发明提供的三涵道推动器方案在涵道结构基础上增加最内层涵道,有效利用低温气流对主轴、轴承等关键零部件工作区域进行冷却,为主轴和轴承等关键零部件有效屏蔽了高温环境,降低其工作温度、提高其工作寿命,进而提高了推进器性能。航空动力推进器是航空飞机的核心部件,提升其工作性能有利于提升航空飞机的飞行性能,具有重要的经济和环保意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明三涵道大推重比高效动力推进器的结构示意图一;
图2为本发明三涵道大推重比高效动力推进器的结构示意图二;
图3为本发明三涵道大推重比高效动力推进器中进气机构的结构示意图;
图4为本发明三涵道大推重比高效动力推进器中内涵道的结构示意图;
图5为本发明三涵道大推重比高效动力推进器中中涵道的结构示意图;
图6为本发明三涵道大推重比高效动力推进器中外涵道壳体的结构示意图;
其中:1-进气机构;2-内涵道;3-中涵道;4-外涵道;5-进气道;6-导流锥;7-风扇;8-导流环;9-主轴;10-支撑辐条;11-尾部导流锥;12-涡轮;13-压气轮机转子;14-尾喷管;15-燃烧室;16-压气轮机静子;17-外涵道壳体。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种三涵道大推重比高效动力推进器,降低尾气温度,提高轴承等关键零部件的服役寿命,降低推进器成本,延长推进器寿命,提高推进器性能,解决现有技术中存在的轴承等关键转动部件工作环境温度过高的问题,提高燃气热能的利用率。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1至图6所示:本实施例三涵道大推重比高效动力推进器包括涵道和设置在涵道的进气端的进气机构1,涵道包括内涵道2、中涵道3和外涵道4,内涵道2位于中涵道3内,中涵道3位于外涵道4内。
其中,进气机构1包括进气道5、导流锥6、风扇7和导流环8,风扇7与主轴9的一端固连,导流锥6位于风扇7远离涵道的一端,且导流锥6固连在风扇7的中心,导流环8位于风扇7与内涵道2之间;进气机构1用于整流气流方向、为推进器提供压缩空气。
内涵道2包括主轴9、内涵道壳体、压气轮机转子13和涡轮12,压气轮机转子13和涡轮12分别与主轴9固连,内涵道壳体通过若干个支撑辐条10与主轴9固连,内涵道壳体位于压气轮机转子13和涡轮12之间,压气轮机转子13靠近内涵道2的进气端,涡轮12靠近内涵道2的出气端,主轴9靠近内涵道2的出气端的一端还固连有尾部导流锥11;内涵道2中的气流能够对主轴9、轴承等关键零部件工作区域进行冷却,为主轴9和轴承等关键零部件有效屏蔽了高温环境,降低其工作温度、提高其工作寿命,进而提高了推进器性能。
中涵道3包括与主轴9转动连接的中涵道壳体,中涵道壳体靠近出气端的一端设置有尾喷管14,中涵道壳体内还设置有位于涡轮12和压气轮机转子13之间的燃烧室15,中涵道壳体的另一端设置有压气轮机静子16,压气轮机静子16与压气轮机转子13组合成压气轮机,尾喷管14的直径沿进气端至出气端的方向逐渐增大,尾喷管14与内涵道2上的尾部导流 锥11形成的流道具有良好的空气动力学性能。
外涵道4包括与中涵道壳体固连的外涵道壳体17,外涵道壳体17的直径沿进气端至出气端的方向逐渐减小,具有良好的空气动力学特性。
本实施例三涵道大推重比高效动力推进器的工作过程如下:
空气通过进气机构1后被分为三部分,分别进入推进器的内涵道2、中涵道3、外涵道4;进入内涵道2的空气给风扇7反作用力,产生一部分推力,同时对主轴9、轴承等关键零部件进行冷却,降低其工作温度、提升其服役寿命;进入中涵道3的空气经压气轮机、燃烧室15、涡轮12机后,由尾喷管14高速排出,产生一部分推力;通过外涵道4的空气给风扇7反作用力,也产生一部分推力。在三部分推力的共同作用下,实现大推重比、高效推进的技术效果。本实施例提供的动力推进器最终排出的尾气温度可控制在300℃~400℃,处于普通轴承可耐受的工作温度区间。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

  1. 一种三涵道大推重比高效动力推进器,其特征在于:包括涵道和设置在所述涵道进气端的进气机构,所述涵道包括内涵道、中涵道和外涵道,所述内涵道位于所述中涵道内,所述中涵道位于所述外涵道内。
  2. 根据权利要求1所述的三涵道大推重比高效动力推进器,其特征在于:所述内涵道包括主轴、内涵道壳体、压气轮机转子和涡轮,所述压气轮机转子和所述涡轮分别与所述主轴固连,所述内涵道壳体通过若干个支撑辐条与所述主轴固连,所述内涵道壳体位于所述压气轮机转子和所述涡轮之间,所述压气轮机转子靠近所述内涵道的进气端,所述涡轮靠近所述内涵道的出气端,所述主轴靠近所述内涵道的出气端的一端还固设有尾部导流锥。
  3. 根据权利要求2所述的三涵道大推重比高效动力推进器,其特征在于:所述中涵道包括与所述主轴转动连接的中涵道壳体,所述中涵道壳体靠近出气端的一端设置有尾喷管,所述中涵道壳体内还设置有位于所述涡轮和所述压气轮机转子之间的燃烧室,所述中涵道壳体的另一端设置有压气轮机静子,所述压气轮机静子与所述压气轮机转子组合成压气轮机。
  4. 根据权利要求3所述的三涵道大推重比高效动力推进器,其特征在于:所述外涵道包括与所述中涵道壳体固连的外涵道壳体,所述外涵道壳体的直径沿进气端至出气端的方向逐渐减小,所述尾喷管的直径沿进气端至出气端的方向逐渐增大。
  5. 根据权利要求2所述的三涵道大推重比高效动力推进器,其特征在于:所述进气机构包括进气道、导流锥、风扇和导流环,所述风扇与所述主轴的一端固连,所述导流锥位于所述风扇远离所述涵道的一端,且所述导流锥固连在所述风扇的中心,所述导流环位于所述风扇与所述内涵道之间。
PCT/CN2021/095920 2020-06-08 2021-05-26 一种三涵道大推重比高效动力推进器 WO2021249186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010511452.1 2020-06-08
CN202010511452.1A CN111636976B (zh) 2020-06-08 2020-06-08 一种三涵道大推重比高效动力推进器

Publications (1)

Publication Number Publication Date
WO2021249186A1 true WO2021249186A1 (zh) 2021-12-16

Family

ID=72330387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095920 WO2021249186A1 (zh) 2020-06-08 2021-05-26 一种三涵道大推重比高效动力推进器

Country Status (2)

Country Link
CN (1) CN111636976B (zh)
WO (1) WO2021249186A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542518A (zh) * 2022-02-23 2022-05-27 中国航发沈阳发动机研究所 一种双涵道压气机
CN115614176A (zh) * 2022-08-29 2023-01-17 中国航发四川燃气涡轮研究院 基于内外涵结构一体化的红外与雷达综合隐身装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636976B (zh) * 2020-06-08 2021-10-19 清华大学 一种三涵道大推重比高效动力推进器
CN114439644B (zh) * 2022-01-28 2023-03-03 清华大学 一种具有热量和动量回收功能的增流航空发动机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104522A1 (en) * 2011-11-01 2013-05-02 Daniel B. Kupratis Gas turbine engine with variable pitch first stage fan section
CN107315875A (zh) * 2017-06-26 2017-11-03 南京航空航天大学 分开排气三涵道涡扇发动机仿真模型
CN109668739A (zh) * 2019-01-14 2019-04-23 南京航空航天大学 一种用于多涵道涡轮喷管一体化研究的试验平台
CN111636976A (zh) * 2020-06-08 2020-09-08 清华大学 一种三涵道大推重比高效动力推进器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3418808A (en) * 1966-07-05 1968-12-31 Rich David Gas turbine engines
FR2076450A5 (zh) * 1970-01-15 1971-10-15 Snecma
GB1479599A (en) * 1973-11-09 1977-07-13 Secr Defence Aircraft gas turbine engine turbine blade cooling
US5070690A (en) * 1989-04-26 1991-12-10 General Electric Company Means and method for reducing differential pressure loading in an augmented gas turbine engine
US5271711A (en) * 1992-05-11 1993-12-21 General Electric Company Compressor bore cooling manifold
US7730714B2 (en) * 2005-11-29 2010-06-08 General Electric Company Turbofan gas turbine engine with variable fan outlet guide vanes
CN101598036B (zh) * 2009-07-10 2011-05-18 北京航空航天大学 一种大扩张角通道内的流动控制方法
CN101975121A (zh) * 2010-10-19 2011-02-16 靳北彪 涵道套装涡轮喷气发动机
US10001084B2 (en) * 2011-06-14 2018-06-19 Rolls-Royce North American Technologies Inc. Aircraft powerplant with moveable nozzle member
CN103343985B (zh) * 2013-06-21 2015-07-08 北京航空航天大学 一种双预膜气动雾化低污染燃烧室头部结构
CN104712457A (zh) * 2013-12-11 2015-06-17 黄乐歌 低油耗高超音速航空发动机
US9964037B2 (en) * 2014-02-26 2018-05-08 United Technologies Corporation Staged heat exchangers for multi-bypass stream gas turbine engines
FR3018094B1 (fr) * 2014-02-28 2021-12-03 Snecma Rotor de soufflante pour une turbomachine telle qu'un turboreacteur multiflux entraine par reducteur
US10066550B2 (en) * 2014-05-15 2018-09-04 Rolls-Royce North American Technologies, Inc. Fan by-pass duct for intercooled turbo fan engines
CN104110325B (zh) * 2014-07-30 2016-01-13 清华大学 组合循环发动机
JP6554282B2 (ja) * 2014-12-24 2019-07-31 川崎重工業株式会社 航空機用エンジン装置
CN104675556B (zh) * 2014-12-26 2016-02-10 南京航空航天大学 叶尖喷气驱动风扇的大涵道比涡扇发动机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104522A1 (en) * 2011-11-01 2013-05-02 Daniel B. Kupratis Gas turbine engine with variable pitch first stage fan section
CN107315875A (zh) * 2017-06-26 2017-11-03 南京航空航天大学 分开排气三涵道涡扇发动机仿真模型
CN109668739A (zh) * 2019-01-14 2019-04-23 南京航空航天大学 一种用于多涵道涡轮喷管一体化研究的试验平台
CN111636976A (zh) * 2020-06-08 2020-09-08 清华大学 一种三涵道大推重比高效动力推进器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542518A (zh) * 2022-02-23 2022-05-27 中国航发沈阳发动机研究所 一种双涵道压气机
CN115614176A (zh) * 2022-08-29 2023-01-17 中国航发四川燃气涡轮研究院 基于内外涵结构一体化的红外与雷达综合隐身装置
CN115614176B (zh) * 2022-08-29 2024-04-19 中国航发四川燃气涡轮研究院 基于内外涵结构一体化的红外与雷达综合隐身装置

Also Published As

Publication number Publication date
CN111636976A (zh) 2020-09-08
CN111636976B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2021249186A1 (zh) 一种三涵道大推重比高效动力推进器
US6339927B1 (en) Integrated fan-core twin spool counter-rotating turbofan gas turbine engine
CN104110326B (zh) 一种新概念高速飞行器推进系统布局方法
US20170211474A1 (en) Hybrid Propulsion System
WO2021164549A1 (zh) 电能驱动喷气式航空发动机及航空器
US20090211222A1 (en) Rear propulsor for a variable cycle gas turbine engine
CN106742075B (zh) 一种分布式推进系统
US20200003115A1 (en) Turbocharged gas turbine engine with electric power generation for small aircraft electric propulsion
CN109779783B (zh) 一种具有涵道比自主调节能力的涡扇发动机
JPH0142879B2 (zh)
US20200070988A1 (en) Aircraft propulsion system
WO2021249184A1 (zh) 一种具有轴承降温功能的两涵道涡轮喷气式发动机
CN108506111B (zh) 一种微小型涡扇发动机
WO2021249185A1 (zh) 一种具有二次膨胀做功能力的大推重比高效推进器
CN112377267A (zh) 一种自冷却高速冲压空气涡轮发电机
CN114934857A (zh) 一种变循环涡轮发动机
CN109236496A (zh) 亚燃与超燃通道可切换的三动力组合发动机设计方法
US6397577B1 (en) Shaftless gas turbine engine spool
Mirhashemi et al. Tail-mounted engine Architecture and Design for the Subsonic Single Aft Engine Electrofan Aircraft
CN108626026A (zh) 一种新型微小型风扇后置涡扇发动机
CN103726952B (zh) 分流式燃气涡轮发动机
JP2009057955A (ja) 超音速機用インタータービン・バイパス可変サイクルエンジン
CN113864082B (zh) 一种航空喷气式发动机
CN215057794U (zh) 一种可实现高超声速飞行的预冷涡轮发动机
CN214464417U (zh) 一种自冷却高速冲压空气涡轮发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820888

Country of ref document: EP

Kind code of ref document: A1