WO2021248946A1 - 一种直流耦合制氢系统及其控制方法 - Google Patents

一种直流耦合制氢系统及其控制方法 Download PDF

Info

Publication number
WO2021248946A1
WO2021248946A1 PCT/CN2021/079471 CN2021079471W WO2021248946A1 WO 2021248946 A1 WO2021248946 A1 WO 2021248946A1 CN 2021079471 W CN2021079471 W CN 2021079471W WO 2021248946 A1 WO2021248946 A1 WO 2021248946A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
switching unit
systems
power
hydrogen
Prior art date
Application number
PCT/CN2021/079471
Other languages
English (en)
French (fr)
Inventor
谷雨
李江松
郭健
徐君
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to US17/792,693 priority Critical patent/US20230041986A1/en
Priority to EP21821984.8A priority patent/EP4167421A1/en
Publication of WO2021248946A1 publication Critical patent/WO2021248946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the technical field of hydrogen production, and more specifically, relates to a direct current coupling hydrogen production system and a control method thereof.
  • the purpose of the present invention is to provide a DC-coupled hydrogen production system and a control method thereof, which are used to avoid the problem of low purity of gas produced by the lye electrolyzer due to the fact that the actual current of the lye electrolyzer is too small , Thereby improving the energy utilization and safety of the DC-coupled hydrogen production system.
  • the first aspect of the present invention discloses a DC-coupled hydrogen production system, including: at least one power generation system and multiple hydrogen production tank systems; the power generation system includes: a controller, N renewable energy systems, and multiple conversion systems And power switching unit; N is an integer greater than 1, where:
  • the conversion system and the power switching unit are both arranged on the power transmission path between N corresponding renewable energy systems and M corresponding hydrogen production tank systems; M is an integer greater than 1;
  • the power switching unit includes N input ports and M output ports;
  • the controller is used to control the power switching unit to directly or after collecting the electric energy received by its own corresponding input port to supply power to the corresponding hydrogen production tank system through its own corresponding output port, so that the hydrogen production tank receiving power
  • the system satisfies the hydrogen production power demand and each of the hydrogen production tank systems that receive power supply operates independently of each other.
  • the number of said transformation systems is N;
  • the output terminals of the N renewable energy systems are connected to the input terminals of the N conversion systems in a one-to-one correspondence;
  • the output ends of the N conversion systems are respectively connected to the N input ports of the power switching unit in a one-to-one correspondence;
  • the M output ports of the power switching unit are respectively connected to the M input ports corresponding to the hydrogen production tank system in a one-to-one correspondence.
  • the number of said transformation systems is M;
  • the output ends of the N renewable energy systems are respectively connected to the N input ports of the power switching unit in a one-to-one correspondence;
  • the M output ports of the power switching unit are respectively connected to the M input terminals of the conversion system in a one-to-one correspondence;
  • the output ends of the M conversion systems are respectively connected to the input ends of the M hydrogen production tank systems in a one-to-one correspondence.
  • it further includes: at least one hydrogen storage tank;
  • the hydrogen storage tank is used to store the hydrogen produced by the corresponding hydrogen production tank system.
  • the hydrogen production tank system vents gas through its own negative electrode or intermediate electrode;
  • the gas transmission pipeline between the hydrogen storage tank and the hydrogen production tank system is a metal pipeline or a non-metallic pipeline.
  • the number of the hydrogen storage tank is one, and each hydrogen production tank system shares the hydrogen storage tank for centralized hydrogen storage; or,
  • the number of the hydrogen storage tanks is M, and each hydrogen production tank system adopts its own corresponding hydrogen storage tank for dispersed hydrogen storage; or,
  • the number of the hydrogen storage tanks is greater than 1 and less than M, and the corresponding number of hydrogen production tank systems share a corresponding hydrogen storage tank for centralized hydrogen storage, and the hydrogen production tank systems connected to different hydrogen storage tanks are connected Disperse hydrogen storage.
  • the power switching unit includes: at least N-1 busbar switch modules and at least M-1 electrolytic cell input switch modules;
  • each electrolytic cell input switch module is connected to the corresponding output port of the power switching unit; the other end of each electrolytic cell input switch module is connected to the corresponding input port of the power switching unit;
  • Each bus switch module is respectively arranged between any two input ports in the power switching unit.
  • the gas outlet mode is negative gas outlet
  • the gas transmission pipeline is a metal pipe
  • the hydrogen storage mode is centralized hydrogen storage
  • the corresponding electrolyzer input switch module and the corresponding bus switch module include: The controllable switch on the corresponding positive branch circuit;
  • the corresponding electrolyzer input switch module and the corresponding bus switch module include: The controllable switch on the positive branch and the controllable switch arranged on the corresponding negative branch.
  • controllable switch is: a controllable mechanical switch or a semiconductor switch.
  • the renewable energy system includes: a wind power generation system and/or a photovoltaic power generation system;
  • the conversion system includes an AC/DC converter connected to the wind power generation system;
  • the conversion system includes a DC/DC converter connected to the photovoltaic power generation system.
  • the photovoltaic power generation system includes: a photovoltaic power generation module and a DC combiner box; one end of the DC combiner box is connected to the output end of the photovoltaic power generation module, and the other end of the DC combiner box serves as the photovoltaic power generation The output terminal of the system;
  • the wind power generation system includes a blade, and a permanent magnet synchronous generator or a doubly-fed induction generator; the output end of the blade and one end of the permanent magnet synchronous generator or the doubly-fed induction generator One end is connected; the other end of the permanent magnet synchronous generator or the other end of the doubly-fed induction generator is used as the output end of the wind power generation system.
  • the controller is a communication host in each of the conversion systems; or, a system controller independently provided in the DC-coupled hydrogen production system.
  • the second aspect of the present invention discloses a control method of a DC-coupled hydrogen production system, which is applied to the controller of the DC-coupled hydrogen production system disclosed in the first aspect of the present invention, and includes:
  • controlling the power switching unit in the DC-coupled hydrogen production system is
  • the hydrogen production tank system to be operated provides hydrogen production electric energy, so that the electric energy received by each hydrogen production tank system to be operated meets its own hydrogen production power demand, and each of the hydrogen production tank systems to be operated interacts with each other.
  • Independent operation including:
  • each The hydrogen production tank systems to be operated operate independently of each other, including:
  • control each busbar switch module and the electrolytic cell input switch module connected with the hydrogen production cell system to be operated to be turned on, and control other electrolytic cells
  • the input switch modules are all turned off, so that the connection between each input port and the corresponding output port in the power switching unit is opened, and the hydrogen production tank system to be operated runs independently;
  • the busbar switch modules and the electrolyzer input switch modules in the corresponding path combinations for supplying power to the hydrogen production tank systems to be operated are controlled to be turned on, and The bus switch modules between the different path combinations are controlled to be turned off, so that the connection between the corresponding input port and the corresponding output port in the power switching unit is opened, and each of the hydrogen production tank systems that need to be operated operate independently of each other.
  • a DC-coupled hydrogen production system includes: at least one power generation system and a plurality of hydrogen production tank systems; On the power transmission path between N corresponding renewable energy systems and M corresponding hydrogen production tank systems; the power switching unit includes N input ports and M output ports; its controller is used to control its power switching unit to correspond to itself The electrical energy received at the input port is directly or collected, and the corresponding output port is used to supply power to the corresponding hydrogen production tank system, so that the hydrogen production tank system that receives the power can meet the hydrogen production power demand, and the hydrogen production tank systems that receive the power supply each other Independent operation; so that when the electric energy of a single renewable energy system cannot meet the hydrogen production power demand of a single hydrogen production tank system, the power switching unit can collect the electric energy of multiple renewable energy systems before outputting to the corresponding hydrogen production In the tank system, supply power to the corresponding number of hydrogen production tank systems to ensure that the hydrogen production tank systems that receive power can meet their true hydrogen production power requirements, and the hydrogen production tank systems
  • Fig. 1 is a schematic diagram of a DC-coupled hydrogen production system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another DC coupling hydrogen production system provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a power switching unit in a DC-coupled hydrogen production system provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another DC coupling hydrogen production system provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of another DC-coupled hydrogen production system provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of another DC-coupled hydrogen production system provided by an embodiment of the present invention.
  • Fig. 7 is a flowchart of another method for controlling a DC-coupled hydrogen production system according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of another DC-coupled hydrogen production system provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the embodiment of the present invention provides a DC coupling hydrogen production system, which is used to solve the problem of low gas purity of the hydrogen production tank system caused by the fact that the actual current of the hydrogen production tank system in the prior art is too small, thereby improving the DC coupling Energy utilization and safety of the hydrogen production system.
  • the DC-coupled hydrogen production system includes: at least one power generation system 10 (only one power generation system 10 is shown as an example in Fig. 1), a plurality of hydrogen production tank systems 20 and at least one hydrogen storage tank 30;
  • the system 10 includes: a controller 101, N renewable energy systems 103, multiple conversion systems 102, and power switching units 104; N is an integer greater than 1, where:
  • the hydrogen storage tank 30 is connected to the hydrogen outlet of the corresponding hydrogen production tank system 20 through a gas transmission pipeline; each hydrogen production tank system 20 outputs the generated hydrogen to the corresponding hydrogen storage tank 30 through the corresponding gas transmission pipeline.
  • the hydrogen storage tank 30 stores the hydrogen produced by the corresponding hydrogen production tank system 20.
  • the hydrogen production tank system 20 is a lye hydrogen production tank system 20.
  • the hydrogen production tank system 20 can also be other systems, such as a PEM (Proton Exchange Membrane) hydrogen production tank system or solid oxide hydrogen production.
  • the trough system is not specifically limited here, as it depends on the actual situation, and is within the protection scope of this application.
  • each hydrogen production tank system 20 shares a hydrogen storage tank 30 for centralized hydrogen storage, that is, the hydrogen outlet of each hydrogen production tank system 20 passes through the gas transmission pipeline Both are connected to the air inlet of a hydrogen storage tank 30.
  • each hydrogen production tank system 20 adopts its own corresponding hydrogen storage tank 30 to realize dispersed hydrogen storage, that is, the hydrogen outlet of each hydrogen production tank system 20 is connected to each hydrogen production tank system through a gas transmission pipeline. The air inlet of the corresponding hydrogen storage tank 30 is connected.
  • the corresponding number of hydrogen production tank systems 20 share a corresponding hydrogen storage tank 30 for centralized hydrogen storage, and the hydrogen production tanks connected to different hydrogen storage tanks 30
  • M the number of is 2
  • two hydrogen production tank systems 20 share one hydrogen storage tank 30, and the other three hydrogen production tank systems 20 share another hydrogen storage tank, which will not be repeated here; hydrogen storage tank 30
  • the specific connection situation where the number of is greater than 1 and less than M depends on the actual situation, and they are all within the protection scope of this application.
  • the conversion system 102 and the power switching unit 104 are both arranged on the power transmission path between N corresponding renewable energy systems 103 and M corresponding hydrogen production tank systems 20; M is greater than 1. M can be equal to N. It should be noted that if there is only one power generation system 10 in the DC-coupled hydrogen production system, the number of hydrogen production tank systems 20 is only M; if there are multiple power generation systems 10 in the DC-coupled hydrogen production system, each The power generation system 10 is respectively connected to M hydrogen production tank systems 20, and the value of M corresponding to each power generation system 10 does not need to be all the same, depending on its specific application environment.
  • the power switching unit 104 includes N input ports and M output ports. specific:
  • the power switching unit 104 can collect the electric energy of each input port through the renewable energy system 103 connected to each conversion system 102, and then output the collected electric energy to the corresponding hydrogen production tank system 20 through the corresponding output port. or,
  • the N renewable energy systems 103 first pass through the power switching unit 104, and then output to the M corresponding hydrogen production tank systems 20 through the M conversion systems 102 in a one-to-one correspondence. That is, the conversion system 102 is located at the rear stage of the corresponding power switching unit 104. At this time, the power switching unit 104 can collect the electric energy of the renewable energy system 103 connected to each input port, and then output the collected electric energy to the corresponding hydrogen production tank system through the corresponding output port and the corresponding conversion system 102 20.
  • the controller 101 is used to control the power switching unit 104 to directly use the electric energy received by its own corresponding input port through its own corresponding output port.
  • the hydrogen production tank system 20 supplies power, or, after collecting the electric energy received by its own corresponding input port, power is supplied to the corresponding hydrogen production tank system 20 through its own corresponding output port, so that the hydrogen production tank system 20 that receives the power supply satisfies the system Hydrogen power is required, and each hydrogen production tank system 20 that receives power is operated independently of each other.
  • the controller 101 can be the communication host in each conversion system 102, or it can be a system controller independently installed in the DC-coupled hydrogen production system; there is no specific limitation here, and it can communicate with each conversion system 102. Communication, information exchange, determination of the power supply quantity of the hydrogen production tank system 20 according to the corresponding power detection, and control of the switching state of the internal switching device of the power switching unit 104 are all within the protection scope of the present application.
  • the DC-coupled hydrogen production system can be applied to distributed, centralized and other hydrogen production systems, and can also be applied to various household roofs, industrial and commercial roofs, hills, deserts, and complementary fishing and light;
  • the direct current coupling hydrogen production system has a simple structure and strong versatility.
  • the conversion system 102 may be located at the front stage of the corresponding power switching unit 104, or may be located at the rear stage of the corresponding power switching unit 104.
  • the specific structures in the two cases are respectively described:
  • the number of conversion systems 102 is N; the output ends of N renewable energy systems 103 and N conversions
  • the input ends of the system 102 are connected in one-to-one correspondence; the output ends of the N conversion systems 102 are respectively connected to the N input ports of the power switching unit 104 in a one-to-one correspondence; the M output ports of the power switching unit 104 are respectively connected to M corresponding hydrogen production
  • the input ends of the tank system 20 are connected in a one-to-one correspondence.
  • the renewable energy system 103 includes: a wind power generation system and/or a photovoltaic power generation system;
  • Figure 1 shows the renewable energy system 103 including both at the same time as an example.
  • the renewable energy system 103 includes a wind power generation system.
  • the conversion system 102 includes an AC/DC converter 201 connected to the wind power generation system;
  • the conversion system 102 includes a DC/DC converter 202 connected to the photovoltaic power generation system.
  • the photovoltaic power generation system includes: a photovoltaic power generation module 206 and a DC combiner box 204; one end of the DC combiner box 204 is connected to the output terminal of the photovoltaic power generation module 206, and the other end of the DC combiner box 204 serves as the output terminal of the photovoltaic power generation system , Is connected to one end of the DC/DC converter 202, and the other end of the DC/DC converter 202 is connected to the corresponding input end of the power switching unit 104.
  • the wind power generation system includes: a blade 205 and a generator 203; the output end of the blade 205 is connected to one end of the generator 203; the other end of the generator 203 is used as the output end of the wind power generation system and is connected to the AC/DC converter 201 The AC side is connected; the DC side of the AC/DC converter 201 is connected to the corresponding input terminal of the power switching unit 104.
  • the generator 203 is a permanent magnet synchronous generator or a double-fed induction generator.
  • the above-mentioned DC/DC converter 202 and AC/DC converter 201 can be an isolated topology or a non-isolated topology; it can be a boost topology, a buck topology, or a boost/buck topology; it can be a resonant topology , It can also be a non-resonant topology; it can be a full-bridge structure or a half-bridge structure; it can be a two-level topology or a three-level topology.
  • the specific structure is not specifically limited here, as it depends on the actual situation, and all are within the protection scope of this application.
  • the renewable energy input is not limited to photovoltaic power generation systems and/or wind power generation systems, and other possible energy generation systems are also within the protection scope of this application.
  • the power switching unit 104 includes: at least N-1 busbar switch modules 33 and at least M-1 electrolytic cell input switch modules 32.
  • each electrolytic cell input switch module 32 is respectively connected to the corresponding output port Uout of the power switching unit 104; the other end of each electrolytic cell input switch module 32 is respectively connected to the corresponding input port Uin of the power switching unit 104; each bus switch module 33 They are respectively set between any two input ports Uin.
  • the busbar switch module 33 may be arranged between two adjacent input ports Uin; of course, the busbar switch module 33 may also be arranged between two non-adjacent input ports Uin.
  • the power switching unit 104 has 3 input ports Uin, which are respectively Uin1, Uin2, and Uin3 in order; the busbar switch module 33 can be set between Uin1 and Uin2, and between Uin2 and Uin3, so that the power switching unit 104 can dispatch the electric energy of the renewable energy system 103 directly connected to Uin1 and Uin2 or through the corresponding conversion system 102, and the electric energy of the renewable energy system 103 directly connected to Uin2 and Uin3 or through the corresponding conversion system 102, respectively.
  • the busbar switch module 33 can also be set across the input port Uin, that is, the busbar switch module 33 is set between Uin1 and Uin3, so that the power switching unit 104 can schedule the renewables that are directly connected to Uin1 and Uin3 or connected through the corresponding conversion system 102.
  • the electrical energy of the energy system 103 The connection relationship of each busbar switch module 33 will not be repeated here one by one, and it depends on the actual situation, and they are all within the protection scope of the present application.
  • the power switching unit 104 realizes the output of electric energy to the corresponding hydrogen production tank system 20 by turning on the electrolytic cell input switch module 32, and realizes the output of electric energy to the corresponding hydrogen production tank system 20 by turning off the electrolytic cell input switch module 32.
  • one output port Uout of the power switching unit 104 can be directly connected to an input port Uin, and then Only M-1 electrolytic cell input switch modules 32 are required.
  • M output ports Uout can be connected to corresponding input ports Uin respectively.
  • one input port Uin can be connected to multiple electrolytic cell input switch modules 32.
  • the various electrolyzer input switch modules 32 sharing the input port Uin.
  • the input port Uin has electric energy, two or more electrolyzer input switch modules 32 cannot be turned on at the same time, so as to avoid Each hydrogen production tank system 20 is directly connected in parallel to generate a circulating current.
  • the power switching unit 104 can gather all the electrical energy to provide electrical energy for only one electrolytic cell hydrogen production system 20; or it can enable one or more of the renewable energy systems 103 to provide electrical energy for a corresponding hydrogen production cell system 20.
  • the conversion system 102 when the conversion system 102 is located at the rear stage of the corresponding power switching unit 104, that is, the structure shown in FIG. 2: if the power switching unit 104 only includes a collection bus formed by at least N-1 bus switch modules 31, the renewable energy system 103 also only includes any one of the wind power generation system and the photovoltaic power generation system; correspondingly, the conversion system 102 also only includes the corresponding ones of the DC/DC converter 202 and the AC/DC converter 201 One; that is, when the renewable energy system 103 is a wind power generation system, the conversion system 102 is an AC/DC converter 201; when the renewable energy system 103 is a photovoltaic power generation system, the conversion system 102 is a DC/DC converter 202.
  • the renewable energy system 103 may include a wind power generation system and a photovoltaic power generation system at the same time. 31 collect their electric energy separately.
  • each small Capacity lye electrolyzer connects multiple small-capacity lye electrolyzers in parallel through switches, and then controls whether each small-capacity lye electrolyzer is working according to the principle of power distribution, but in this case, each small Capacity lye electrolyzers are equivalent to directly connected in parallel.
  • each small Capacity lye electrolyzer When the temperature of each small-capacity lye electrolyzer is inconsistent, it may cause voltage/current mismatch between the small-capacity lye electrolyzers, and produce between each small-capacity lye electrolyzer Circulation reduces the reliability of the system and may even cause safety accidents.
  • each bus switch module 33 in the power switching unit 104 is respectively arranged between the corresponding two input ports Uin and the connection point of the collection bus 31, so that the electric energy of the N renewable energy systems 103 can be adjusted to the corresponding Convergence of the output direction; and the power supply received by the hydrogen production tank systems 20 on both sides can be mutually affected by turning off the corresponding bus switch module 33; that is, the selectivity of each hydrogen production tank system 20 through the power switching unit 104 Convergence realizes controllable parallel connection instead of direct parallel connection; furthermore, the voltage/current mismatch between each hydrogen production tank system 20 will not affect the operation of the DC-coupled hydrogen production system, which further improves the reliability and safety of the DC-coupled hydrogen production system sex.
  • each hydrogen production tank system 20 vents gas through its own negative electrode or intermediate electrode; the specific gas venting method is not specifically limited here, and it depends on the actual situation, and all are within the protection scope of the present application.
  • the gas transmission pipeline between the hydrogen storage tank 30 and the hydrogen production tank system 20 is a metal pipeline or a non-metallic pipeline.
  • the specific selection of the gas transmission pipeline is not specifically limited here, and it depends on the actual situation.
  • the hydrogen storage method can be centralized hydrogen storage or dispersed hydrogen storage, which is not specifically limited here, and it depends on the actual situation, and both are within the protection scope of the present application.
  • each electrolyzer input switch module 32 includes: a controllable switch arranged on the corresponding positive branch circuit (as shown in Figure 4) S2), each bus switch module 33 includes: a controllable switch (S1 as shown in Figure 4) arranged on the corresponding positive branch; at this time, the negative electrodes of the input ends of all the hydrogen production tank systems 20 are equipotential.
  • Switch S2 and a controllable switch S1 is arranged on the positive electrode of the collection bus and between the positive output terminals of the two DC/DC converters 202, between the negative electrode of the input terminal of the hydrogen production tank system 20 and the negative electrode of the collection bus, and, There is no need to configure a controllable switch for the negative pole of the collection bus. It should be noted that a controllable switch can also be arranged between the positive electrode of the input end of the other hydrogen production tank system 20 and the positive electrode of the collection bus.
  • the DC-coupled hydrogen production system adopts the mixed structure of the gas outlet method, the hydrogen storage method and the gas transmission pipeline, that is, not only the structure shown in (1) or (2), but also includes In the case of the structure shown in (1) or (2), correspondingly, the structure of each electrolytic cell input switch module 32 and each bus switch module 33 in the DC-coupled hydrogen production system is also a corresponding structure, which will not be the same here. A repetition is all within the protection scope of this application.
  • controllable switches can be controllable mechanical switches such as circuit breakers, contactors, relays, etc., or IGCT (Intergrated Gate Commutated Thyristors), IGBT (Insulated Gate Bipolar Transistor), and insulated gate bipolar transistor. ) And other semiconductor switches; there is no specific limitation here, it depends on the actual situation, and they are all within the protection scope of this application.
  • IGCT Intergrated Gate Commutated Thyristors
  • IGBT Insulated Gate Bipolar Transistor
  • insulated gate bipolar transistor insulated gate bipolar transistor
  • the power switching unit 104 can be configured with corresponding controllable switches to provide appropriate electrical energy for the corresponding hydrogen production tank system 20 and improve DC coupling. Energy utilization and safety of the hydrogen production system.
  • the embodiment of the present invention provides a control method of a DC-coupled hydrogen production system, which is applied to the controller of the DC-coupled hydrogen production system provided in any of the above-mentioned embodiments.
  • the controller of the DC-coupled hydrogen production system provided in any of the above-mentioned embodiments.
  • the specific structure of the DC-coupled hydrogen production system refer to any of the above-mentioned embodiments. , I will not repeat them here.
  • the control method of the DC-coupled hydrogen production system includes:
  • S102 Determine the hydrogen production tank system to be operated according to each MPPT value and the minimum starting electrical parameter of the hydrogen production tank system.
  • the minimum starting electrical parameter is the minimum starting current or minimum starting power, that is, when the actual electrical parameter of the hydrogen production tank system is greater than or equal to the minimum starting electrical parameter, the hydrogen production concentration of the hydrogen production tank system is relatively high and meets normal requirements. The concentration requirements of the operation will not cause the shutdown of the operation due to the low concentration of hydrogen production.
  • the specific process of this step S102 can be: find the sum of each MPPT value; compare the sum with the minimum start-up electrical parameter; obtain the number of hydrogen production tank systems that need to be run, and then use random or preset order The method to determine the hydrogen production tank system to be operated, or directly determine the hydrogen production tank system to be operated.
  • the specific process of this step S102 is not specifically limited here, and all are within the protection scope of the present application.
  • S103 Control the power switching unit to provide hydrogen production electric energy for the hydrogen production tank system to be operated, so that the electric energy received by each hydrogen production tank system to be operated meets its own hydrogen production power demand, and each hydrogen production tank system to be operated Operate independently of each other.
  • the hydrogen production electric energy received by the hydrogen production tank system can make the hydrogen production tank system operate normally, that is, the hydrogen production concentration of the hydrogen production tank system meets the concentration for normal operation.
  • the power switch The unit continues to provide hydrogen production electricity to the hydrogen production tank system that needs to be operated, and the hydrogen production tank system will continue to operate, and there is no case that the operation is stopped due to the low hydrogen production concentration.
  • step S103 may be: controlling the corresponding bus switch modules in the power switching unit and The input switch modules of the corresponding electrolyzers are all turned on, so that the connection between the corresponding input port and the corresponding output port in the power switching unit is opened, and each hydrogen production tank system that needs to operate runs independently of each other.
  • the controllable switch S2 corresponding to the input side of the hydrogen tank system 20 is turned off, and the controllable switch S1 on the control collection bus is turned on, so that the photovoltaic energy of the two photovoltaic systems is jointly supplied to one hydrogen generation tank system 20 for hydrogen production.
  • the busbar switch modules and electrolyzer input switch modules in the corresponding path combinations that control the power supply to the hydrogen production tank systems to be operated are all turned on, and different stations are controlled.
  • the bus switch module between the path combinations is turned off, so that the connection between the corresponding input port and the corresponding output port in the power switching unit is opened, and each hydrogen production tank system that needs to be operated operates independently of each other.
  • the number of hydrogen production tank systems to be operated is greater than 1.
  • the bus switch module K1 is controlled to be turned on and K3 is turned off, so that the hydrogen production tank The system 201 can operate, but the hydrogen production tank system 202 has no power supply and cannot operate; and the control bus switch module K4 is turned on to enable the hydrogen production tank system 201 to operate; at the same time, the control bus switch module K2 is turned off to ensure the hydrogen production tank system 201 and 203 operate independently to prevent circulation between the two.
  • the above method since the hydrogen production tank system to be operated also changes when the MPPT value changes, the above method can make the hydrogen production concentration of the hydrogen production tank system in operation meet the concentration requirements of normal operation.
  • the control method of the DC-coupled hydrogen production system is simple to control, and the solution is easy to implement, which is beneficial to popularization and use.

Abstract

本发明提供一种直流耦合制氢系统及其控制方法,该系统包括:至少一个发电系统和多个制氢槽系统;该发电系统中,其控制器用于控制其功率切换单元以自身相应输入端口接收到的电能直接或汇集后,通过自身相应输出端口为相应制氢槽系统供电,以使接收到供电的制氢槽系统满足制氢功率需求且各个接收到供电的制氢槽系统相互独立运行;从而在单个可再生能源系统的电能不能够满足单个制氢槽系统的制氢功率需求时,该功率切换单元能够将多个可再生能源系统的电能输出至相应制氢槽系统中,且各个接收到供电的制氢槽系统相互独立运行,从而提高直流耦合制氢系统的能量利用率和安全性。

Description

一种直流耦合制氢系统及其控制方法
本申请要求于2020年06月12日提交中国专利局、申请号为202010533744.5、发明名称为“一种直流耦合制氢系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于制氢技术领域,更具体的说,尤其涉及一种直流耦合制氢系统及其控制方法。
背景技术
随着环境问题的不断突出,新能源步入人们的视野,太阳能发电与风力发电技术不断发展。由于太阳能发电与风力发电存在不稳定性、能量密度低的缺点,导致其产生的电能与电网需求的电能不匹配;以及,传统的化学储能技术具有容量小、寿命短等缺点,很多地区不得不弃光、弃风、限电,造成了严重的资源浪费。氢气作为一种从制取到终端使用完全无污染的储能介质,可以和光伏发电与风力发电配合,弥补太阳能发电与风力发电的缺点。
在实际新能源电站系统中,虽然,PEM(Proton Exchange Membrane,质子交换膜片)电解槽的功率波动可以从0%-100%产氢,但目前技术还不成熟,其寿命较短;因此,碱液电解槽系统仍是新能源电站级大规模制氢的必然选择,但碱液电解槽有最小电流/电压限制要求,一般需要其实际电流大于其额定电流的30%左右,否则,碱液电解槽产气纯度较低,碱液电解槽会主动停机、甚至会带来安全危险。
发明内容
有鉴于此,本发明的目的在于提供一种直流耦合制氢系统及其控制方法,用于避免由于碱液电解槽的实际电流过小,而导致的碱液电解槽产气纯度较低的问题,从而提高直流耦合制氢系统的能量利用率和安全性。
本发明第一方面公开了一种直流耦合制氢系统,包括:至少一个发电系统和多个制氢槽系统;所述发电系统包括:一个控制器、N个可再生能源系统、多个变换系统和功率切换单元;N为大于1的整数,其中:
所述变换系统和所述功率切换单元,均设置于N个对应可再生能源系统到M个对应制氢槽系统之间的电能传输路径上;M为大于1的整数;
所述功率切换单元包括N个输入端口和M个输出端口;
所述控制器用于控制所述功率切换单元以自身相应输入端口接收到的电能直接或汇集后,通过自身相应数输出端口为相应制氢槽系统供电,以使接收到供电的所述制氢槽系统满足制氢功率需求且各个所述接收到供电的制氢槽系统相互独立运行。
可选的,所述发电系统中,所述变换系统位于相应所述功率切换单元前级时:
所述变换系统的个数为N;
N个所述可再生能源系统的输出端与N个所述变换系统的输入端一一对应相连;
N个所述变换系统的输出端分别与所述功率切换单元的N个输入端口一一对应相连;
所述功率切换单元的M个输出端口分别与M个对应所述制氢槽系统的输入端一一对应相连。
可选的,所述发电系统中,所述变换系统位于相应所述功率切换单元后级时:
所述变换系统的个数为M;
N个所述可再生能源系统的输出端分别与所述功率切换单元的N个输入端口一一对应相连;
所述功率切换单元的M个输出端口分别与所述M个所述变换系统的输入端一一对应相连;
M个所述变换系统的输出端分别与M个所述制氢槽系统的输入端一一对应相连。
可选的,还包括:至少一个储氢罐;
所述储氢罐,用于将相应制氢槽系统产生的氢气进行存储。
可选的,所述制氢槽系统通过自身的负极或中间极出气;
所述储氢罐与所述制氢槽系统之间的气体传输管道为:金属管道或非金属管道。
可选的,所述储氢罐的个数为1个,各个制氢槽系统共用所述储氢罐进行 集中储氢;或者,
所述储氢罐的个数为M个,各个制氢槽系统采用自身对应的储氢罐进行分散储氢;或者,
所述储氢罐的个数为大于1且小于M个,相应个数的制氢槽系统共用一个对应的储氢罐进行集中储氢,不同储氢罐所连接的制氢槽系统之间进行分散储氢。
可选的,所述功率切换单元包括:至少N-1个母线开关模块和至少M-1个电解槽输入开关模块;
各个所述电解槽输入开关模块的一端分别与所述功率切换单元的相应输出端口相连;各个所述电解槽输入开关模块的另一端分别与所述功率切换单元的相应输入端口相连;
各个母线开关模块分别设置于所述功率切换单元中的任意两个输入端口之间。
可选的,当出气方式为负极出气、气体传输管道为金属管道且储氢方式为集中储氢时,相应的所述电解槽输入开关模块以及相应的所述母线开关模块,均包括:设置于相应正极支路上的可控开关;
当出气方式为负极出气且气体传输管道为非金属管道时,或者,出气方式为中间极出气时,相应的所述电解槽输入开关模块以及相应的所述母线开关模块,均包括:设置于相应正极支路上的可控开关和设置于相应负极支路上的可控开关。
可选的,所述可控开关为:可控机械开关或半导体开关。
可选的,所述可再生能源系统包括:风力发电系统和/或光伏发电系统;
在所述可再生能源系统包括所述风力发电系统时,所述变换系统包括与所述风力发电系统连接的AC/DC变换器;
在所述可再生能源系统包括所述光伏发电系统时,所述变换系统包括与所述光伏发电系统连接的DC/DC变换器。
可选的,所述光伏发电系统包括:光伏发电模块和直流汇流箱;所述直流汇流箱的一端与所述光伏发电模块的输出端相连,所述直流汇流箱的另一端作为所述光伏发电系统的输出端;
所述风力发电系统包括:桨叶,以及,永磁同步发电机或双馈感应发电机;所述桨叶的输出端与所述永磁同步发电机的一端或所述双馈感应发电机的一端相连;所述永磁同步发电机的另一端或所述双馈感应发电机的另一端作为所述风力发电系统的输出端。
可选的,所述控制器为各个所述变换系统中的通信主机;或者,独立设置于所述直流耦合制氢系统中的系统控制器。
本发明第二方面公开了一种直流耦合制氢系统的控制方法,应用于本发明第一方面公开的直流耦合制氢系统的控制器,包括:
获取所述直流耦合制氢系统中各个变换系统的MPPT(Maximum Power Point Tracking,最大功率点跟踪)值;
依据各个所述MPPT值以及所述直流耦合制氢系统中制氢槽系统的最小启动电参数,确定需运行的制氢槽系统;
控制所述直流耦合制氢系统中功率切换单元为所述需运行的制氢槽系统提供制氢电能,以使各个所述需运行的制氢槽系统接收到的电能均满足自身制氢功率需求,且各个所述需运行的制氢槽系统相互独立运行。
可选的,所述功率切换单元包括至少M-1个电解槽输入开关模块以及至少N-1个母线开关模块时,所述控制方法中,控制所述直流耦合制氢系统中功率切换单元为所述需运行的制氢槽系统提供制氢电能,以使各个所述需运行的制氢槽系统接收到的电能均满足自身制氢功率需求,且各个所述需运行的制氢槽系统相互独立运行,包括:
控制所述功率切换单元中的相应母线开关模块以及相应电解槽输入开关模块均开通,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,并且,各个所述需运行的制氢槽系统相互独立运行。
可选的,控制所述功率切换单元中相应母线开关模块以及相应电解槽输入开关模块均开通,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,并且,各个所述需运行的制氢槽系统相互独立运行,包括:
在所述需运行的制氢槽系统的个数为1时,控制各个母线开关模块以及与所述需运行的制氢槽系统有连接关系的电解槽输入开关模块均开通,并控制其他电解槽输入开关模块均关断,以使所述功率切换单元中各个输入端口与相应 输出端口之间的连接开通,所述需运行的制氢槽系统独立运行;
在所述需运行的制氢槽系统的个数大于1时,控制向各个所述需运行的制氢槽系统供电的各对应路径组合中各母线开关模块及电解槽输入开关模块均开通,并控制不同所述路径组合之间的母线开关模块关断,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,各个所述需运行的制氢槽系统相互独立运行。
从上述技术方案可知,本发明提供的一种直流耦合制氢系统,包括:至少一个发电系统和多个制氢槽系统;该发电系统中,其变换系统和其功率切换单元,均设置于其N个对应可再生能源系统到M个对应制氢槽系统之间的电能传输路径上;该功率切换单元包括N个输入端口和M个输出端口;其控制器用于控制其功率切换单元以自身相应输入端口接收到的电能直接或汇集后,通过自身相应输出端口为相应制氢槽系统供电,以使接收到供电的制氢槽系统满足制氢功率需求且各个接收到供电的制氢槽系统相互独立运行;从而在单个可再生能源系统的电能不能够满足单个制氢槽系统的制氢功率需求时,该功率切换单元能够将多个可再生能源系统的电能进行汇集后再输出至相应制氢槽系统中、为相应数量的制氢槽系统供电,确保接收到供电的制氢槽系统均能够满足其真制氢功率需求,以及各个接收到供电的制氢槽系统相互独立运行,避免了由于制氢槽系统的实际电流过小而导致的制氢槽系统产气纯度较低,以及,接收到供电的制氢槽系统不相互独立而造成环流的问题,从而提高直流耦合制氢系统的能量利用率和安全性。
附图说明
图1是本发明实施例提供的一种直流耦合制氢系统的示意图;
图2是本发明实施例提供的另一种直流耦合制氢系统的示意图;
图3是本发明实施例提供的直流耦合制氢系统中的功率切换单元的示意图;
图4是本发明实施例提供的另一种直流耦合制氢系统的示意图;
图5是本发明实施例提供的另一种直流耦合制氢系统的示意图;
图6是本发明实施例提供的另一种直流耦合制氢系统的示意图;
图7是本发明实施例提供的另一种直流耦合制氢系统的控制方法的流程 图;
图8是本发明实施例提供的另一种直流耦合制氢系统的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供一种直流耦合制氢系统,用于解决现有技术中由于制氢槽系统的实际电流过小,而导致的制氢槽系统产气纯度较低的问题,从而提高直流耦合制氢系统的能量利用率和安全性。
该直流耦合制氢系统,参见图1,包括:至少一个发电系统10(图1仅以1个发电系统10为例进行展示)、多个制氢槽系统20和至少一个储氢罐30;发电系统10包括:一个控制器101、N个可再生能源系统103、多个变换系统102和功率切换单元104;N为大于1的整数,其中:
该储氢罐30通过气体传输管道与相应制氢槽系统20的氢气出口相连;各个制氢槽系统20通过相应气体传输管道将产生的氢气输出至相应储氢罐30。该储氢罐30将相应制氢槽系统20产生的氢气进行存储。该制氢槽系统20为碱液制氢槽系统20,当然该制氢槽系统20也可以为其他系统,比如PEM(Proton Exchange Membrane,质子交换膜片)制氢槽系统或固体氧化物制氢槽系统,在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
在实际应用中,当该储氢罐30的个数为1个时,各个制氢槽系统20共用 一个储氢罐30进行集中储氢,即各个制氢槽系统20的氢气出口通过气体传输管道均与一个储氢罐30的进气口相连。当该储氢罐30的个数为M个时,各个制氢槽系统20采用自身对应的储氢罐30实现分散储氢,即各个制氢槽系统20的氢气出口通过气体传输管道分别与各自对应的储氢罐30的进气口相连。当储氢罐30的个数为大于1且小于M个时,相应个数的制氢槽系统20共用一个对应的储氢罐30进行集中储氢,不同储氢罐30所连接的制氢槽系统20之间进行分散储氢,即相应个数的制氢槽系统20的氢气出口通过气体传输管道分别与一个对应的储氢罐30的进气口相连;如M=5,储氢罐30的个数为2时,2个制氢槽系统20共用1个储氢罐30,另外3个制氢槽系统20共用另外1个储氢罐,在此不再一一赘述;储氢罐30的个数为大于1且小于M个的具体连接情况,视实际情况而定即可,均在本申请的保护范围内。
如图1和图2所示,变换系统102和功率切换单元104,均设置于N个对应可再生能源系统103到M个对应制氢槽系统20之间的电能传输路径上;M为大于1的整数,M可以等于N。需要说明的是,如果该直流耦合制氢系统中只有一个发电系统10,则制氢槽系统20的个数就只有M个;如果该直流耦合制氢系统中有多个发电系统10,则各个发电系统10分别连接M个制氢槽系统20,而且每个发电系统10所对应的M取值可以不必均相同,视其具体应用环境而定即可。每个发电系统10中,其功率切换单元104包括N个输入端口和M个输出端口。具体的:
如图1所示,发电系统10中共N个变换系统102,N个可再生能源系统103的电能先通过各自对应的变换系统102,再通过功率切换单元104输出到M个对应制氢槽系统20中,也即变换系统102位于相应功率切换单元104前级。此时,该功率切换单元104能够将各个输入端口通过各个变换系统102所连接的可再生能源系统103的电能进行汇集,再将汇集后的电能通过相应输出端口输出至相应制氢槽系统20。或者,
如图2所示,发电系统10中共M个变换系统102,N个可再生能源系统103先通过功率切换单元104,再通过M个变换系统102一一对应输出到M个对应制氢槽系统20中,也即变换系统102位于相应功率切换单元104后级。此时,该功率切换单元104能够将各个输入端口所连接的可再生能源系统103 的电能进行汇集,再将汇集后的电能通过相应输出口及其对应的变换系统102输出至相应制氢槽系统20。
不论发电系统10中变换系统102和功率切换单元104采用上述何种位置设置,其控制器101均用于控制功率切换单元104以自身相应输入端口接收到的电能直接通过自身相应的输出端口为相应制氢槽系统20供电,或者,以自身相应输入端口接收到的电能进行汇集后再通过自身相应的输出端口为相应制氢槽系统20供电,以使接收到供电的制氢槽系统20满足制氢功率需求,且各个接收到供电的制氢槽系统20相互独立运行。
在实际应用中,该控制器101可以是各个变换系统102中的通信主机,也可以是独立设置于直流耦合制氢系统中的系统控制器;此处不做具体限定,能够与各变换系统102通信、进行信息交互,并根据相应功率检测来确定制氢槽系统20的供电数量、进行功率切换单元104内部开关装置的开关状态控制即可,均在本申请的保护范围内。
本实施例提供的该直流耦合制氢系统,在单个可再生能源系统103的电能不能够满足单个制氢槽系统20的制氢功率需求时,由其功率切换单元104将多个可再生能源系统103的电能进行汇集后再输出至相应制氢槽系统20中、为相应制氢槽系统20供电,确保接收到供电的制氢槽系统20均能够满足其制氢功率需求,以及各个接收到供电的制氢槽系统相互独立运行,避免了由于制氢槽系统20的实际电流过小而导致的制氢槽系统20产气纯度较低,以及,接收到供电的制氢槽系统不相互独立而造成环流的问题,从而提高直流耦合制氢系统的能量利用率和安全性。另外,该直流耦合制氢系统可以应用于分布式、集中式等制氢系统中,也可以应用于各种户用屋顶、工商业屋顶、山丘、荒漠、渔光互补等各种场合中;该直流耦合制氢系统的结构简单、通用性强。
由上述说明可知,发电系统10中,变换系统102可以位于相应功率切换单元104前级,也可以位于相应功率切换单元104后级,在此分别对两种情况下的具体结构进行说明:
(1)如图1所示,发电系统10中,变换系统102位于相应功率切换单元104前级时:变换系统102的个数为N;N个可再生能源系统103的输出端与 N个变换系统102的输入端一一对应相连;N个变换系统102的输出端分别与功率切换单元104的N个输入端口一一对应相连;功率切换单元104的M个输出端口分别与M个对应制氢槽系统20的输入端一一对应相连。
(2)如图2所示,发电系统10中,变换系统102位于相应功率切换单元104后级时:变换系统102的个数为M;N个可再生能源系统103的输出端分别与功率切换单元104的N个输入端口一一对应相连;功率切换单元104的M个输出端口分别与M个变换系统102的输入端一一对应相连;M个变换系统102的输出端分别与M个制氢槽系统20的输入端一一对应相连。
在实际应用中,该可再生能源系统103包括:风力发电系统和/或光伏发电系统;图1以可再生能源系统103同时包括两者为例进行展示,在可再生能源系统103包括风力发电系统时,变换系统102包括与风力发电系统连接的AC/DC变换器201;在可再生能源系统103包括光伏发电系统时,变换系统102包括与光伏发电系统连接的DC/DC变换器202。
参见图1,该光伏发电系统包括:光伏发电模块206和直流汇流箱204;直流汇流箱204的一端与光伏发电模块206的输出端相连,直流汇流箱204的另一端作为光伏发电系统的输出端、与DC/DC变换器202的一端相连,DC/DC变换器202的另一端与功率切换单元104的相应输入端相连。该风力发电系统包括:桨叶205和发电机203;桨叶205的输出端与发电机203的一端相连;发电机203的另一端作为风力发电系统的输出端、与AC/DC变换器201的交流侧相连;AC/DC变换器201的直流侧与功率切换单元104的相应输入端相连。该发电机203为永磁同步发电机或双馈感应发电机。
上述DC/DC变换器202和AC/DC变换器201可以是隔离拓扑,也可以是非隔离拓扑;可以是升压拓扑,可以是降压拓扑,也可以是升/降压拓扑;可以是谐振拓扑,也可以是非谐振拓扑;可以是全桥结构,也可以半桥结构;可以是两电平拓扑,也可以是三电平拓扑。其具体的结构在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。该可再生能源输入不限于光伏发电系统和/或风力发电系统,其他可能生能源系统也均在本申请的保护范围内。
可选的,在上述任一实施例中,参见图3,功率切换单元104,包括:至少N-1个母线开关模块33和至少M-1个电解槽输入开关模块32。
各个电解槽输入开关模块32的一端分别与功率切换单元104的相应输出端口Uout相连;各个电解槽输入开关模块32的另一端分别与功率切换单元104的相应输入端口Uin相连;各个母线开关模块33分别设置于任意两个输入端口Uin之间。
该母线开关模块33可以设置于相邻两个输入端口Uin之间;当然,该母线开关模块33也可以设置于不相邻两个输入端口Uin之间。例如,功率切换单元104有3个输入端口Uin,按顺序分别为Uin1、Uin2、和Uin3;母线开关模块33可以设置在Uin1和Uin2之间,以及,Uin2和Uin3之间,以使功率切换单元104能够调度分别与Uin1和Uin2直接相连或通过相应变换系统102相连的可再生能源系统103的电能,以及,与Uin2和Uin3直接相连或通过相应变换系统102相连的可再生能源系统103的电能。该母线开关模块33还可以跨输入端口Uin设置,即母线开关模块33设置在Uin1和Uin3之间,以使功率切换单元104能够调度与Uin1和Uin3直接相连或通过相应变换系统102相连的可再生能源系统103的电能。各个母线开关模块33的连接关系,在此不再一一赘述,视实际情况而定即可,均在本申请的保护范围内。
具体的,功率切换单元104通过电解槽输入开关模块32的开通实现向相应制氢槽系统20电能输出,以及,通过电解槽输入开关模块32的关断停止实现向相应制氢槽系统20电能输出。实际应用中,因N个可再生能源系统103的电能一般可以满足单个制氢槽系统20的制氢功率需求,所以可以设置功率切换单元104的一个输出端口Uout直接与一个输入端口Uin相连,进而仅需M-1个电解槽输入开关模块32即可,当然也可以设置M个输出端口Uout分别与相应的输入端口Uin相连,此处不做具体限定,均在本申请的保护范围内。需要说明的是,在功率切换单元104的输出端口的个数大于输入端口的个数时,即M>N时,一个输入端口Uin可以与多个电解槽输入开关模块32相连,但是,为了避免各个电解槽制氢系统之间产生环流,共用该输入端口Uin的各个电解槽输入开关模块32,在该输入端口Uin有电能时不能有两个及以上电解槽输入开关模块32同时开通,以避免各个制氢槽系统20直接并联产生环流。
也即,功率切换单元104可以汇集所有电能仅为一个电解槽制氢系统20提供电能;也可以使各个可再生能源系统103中的一个或多个,为一个对应的制氢槽系统20提供电能,而各个制氢槽系统20接收供电的路径组合之间的母线开关模块33是关断的,进而确保各个制氢槽系统20能够独立运行、避免各个接收供电的电解槽制氢系统20之间产生环流。实际应用中,若M=N,则可以实现各个可再生能源系统103与各个制氢槽系统20之间一对一的独立供电。
需要说明的是,当变换系统102位于相应功率切换单元104后级,即如图2所示的结构时:若功率切换单元104仅包括一种由至少N-1个母线开关模块形成的汇集母线31,则该可再生能源系统103也仅包括风力发电系统和光伏发电系统中的任意一种;相应的,变换系统102也仅包括DC/DC变换器202和AC/DC变换器201中对应的一种;即当可再生能源系统103为风力发电系统时,变换系统102为AC/DC变换器201;当可再生能源系统103为光伏发电系统时,变换系统102为DC/DC变换器202。当然,若功率切换单元104中包括两种分别由至少N-1个母线开关模块形成的汇集母线31,则该可再生能源系统103可以同时包括风力发电系统和光伏发电系统,由两种汇集母线31分别对其电能进行汇集。
值得说明的是,现有技术将多个小容量碱液电解槽通过开关并联在一起,再根据功率分配的原则来控制各个小容量碱液电解槽是否工作,但在这种情况下,各个小容量碱液电解槽相当于是直接并联,在各个小容量碱液电解槽的槽温不一致时,可能会引起各个小容量碱液电解槽间电压/电流不匹配,各个小容量碱液电解槽间产生环流,降低了系统可靠性,甚至会引发安全事故。
而本实施例中,功率切换单元104中各个母线开关模块33分别设置于相应两个输入端口Uin与汇集母线31的连接点之间,能够使N个可再生能源系统103的电能分别实现对于相应输出方向的汇集;并且,能够通过关断相应母线开关模块33来使其两侧制氢槽系统20接收的供电不相互影响;也即,各个制氢槽系统20通过功率切换单元104的选择性汇集实现可控并联,而非直接并联;进而,各个制氢槽系统20间电压/电流不匹配并不会影响直流耦合制氢系统的运行,进一步提高了直流耦合制氢系统的可靠性和安全性。当然,实际应用中,也并不排除多个电解槽制氢系统20直接并联于汇集母线31、接收同 一供电的应用方式,只是这时接收供电的各个电解槽制氢系统20之间有可能会存在环流。
在实际应用中,各个制氢槽系统20通过自身的负极或中间极出气;具体出气方式在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。该储氢罐30与该制氢槽系统20之间的气体传输管道为:金属管道或非金属管道,气体传输管道的具体选材在此不作具体限定,视实际情况而定即可,均在本申请的保护范围内。储氢方式可以为集中储氢,也可以为分散储氢,在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
直流耦合制氢系统不同的出气方式、气体传输管道和储氢方式,图3所示功率切换单元104中的电解槽输入开关模块32以及各个母线开关模块33的结构不同,下面分别对不同情况进行说明:
(1)当出气方式为负极出气、气体传输管道为金属管道且储氢方式为集中储氢时,如图4所示(图4以可再生能源系统103仅包括光伏发电系统、可再生能源系统103的个数为2个、变换系统102位于功率切换单元104前级为例进行展示),各个电解槽输入开关模块32包括:设置于相应正极支路上的可控开关(如图所4所示的S2),各个母线开关模块33包括:设置于相应正极支路上的可控开关(如图所4所示的S1);此时所有制氢槽系统20的输入端负极等电位。
如图4所示,当制氢槽系统20个数为两个时,只需要在一个制氢槽系统20输入端正极与汇集母线(图3中所示的31)的正极之间配置可控开关S2,以及,在汇集母线正极上、与两个DC/DC变换器202的输出端正极之间配置可控开关S1,制氢槽系统20输入端负极与汇集母线的负极之间,以及,汇集母线负极均不需要配置可控开关。需要说明的是,另一个制氢槽系统20输入端正极与汇集母线的正极之间也可以配置可控开关。
(2)当出气方式为负极出气且气体传输管道为非金属管,以及,储氢方式为集中储氢或分散储氢时,或者,出气方式为中间极出气、气体传输关断为金属管道或非金属管道以及储氢方式为集中储氢或分散储氢时,如图5(图5所示的储氢方式为集中储氢)和图6(图6所示的储氢方式为分散储氢)所示, 图3所示功率切换单元104中各个电解槽输入开关模块32以及各个母线开关模块33,均包括:设置于相应正极支路上的可控开关和设置于相应负极支路上的可控开关;此时,所有制氢槽系统20的输入端负极非等电位。需要说明的是,图5和图6均以可再生能源系统103仅包括光伏发电系统、可再生能源系统103的个数为2个、变换系统102位于功率切换单元104前级为例进行展示。
需要说明的是,当直流耦合制氢系统中采用出气方式、储氢方式和气体传输管道采用的混合结构,也即不单单为(1)或(2)中所示的结构,而是同时包括(1)或(2)中所示的结构时,相应的,直流耦合制氢系统中各个电解槽输入开关模块32以及各个母线开关模块33的结构为也各自对应的结构,在此不再一一赘述,均在本申请的保护范围内。
上述可控开关可以是断路器、接触器、继电器等可控机械开关,也可以是IGCT(Intergrated Gate Commutated Thyristors,集成栅极换流晶闸管)、IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)等半导体开关;在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
在本实施例中,对于不同的出气方式、气体传输管道和储氢方式,功率切换单元104通过配置相应的可控开关,均能实现为相应制氢槽系统20提供适当的电能,提高直流耦合制氢系统的能量利用率和安全性。
本发明实施例提供了一种直流耦合制氢系统的控制方法,应用于上述任一实施例提供的直流耦合制氢系统的控制器,该直流耦合制氢系统的具体结构参见上述任一实施例,在此不再一一赘述。
该直流耦合制氢系统的控制方法,参见图7,包括:
S101、获取各个变换系统的MPPT值。
S102、依据各个MPPT值以及制氢槽系统的最小启动电参数,确定需运行的制氢槽系统。
具体的,该最小启动电参数为最小启动电流或最小启动功率,也即当制氢槽系统的实际电参数大于等于该最小启动电参数时,制氢槽系统的制氢浓度较高、满足正常运行的浓度要求,不会出现由于制氢浓度较低而导致的致停止运 行的情况。
本步骤S102的具体过程可以为:求各个MPPT值的和值;再将该和值与最小启动电参数进行比较;得到需运行的制氢槽系统的个数,接着采用随机或按预设顺序的方式确定需运行的制氢槽系统,或者,直接确定需运行的制氢槽系统。本步骤S102的具体过程在此不做具体限定,均在本申请的保护范围内。
S103、控制功率切换单元为需运行的制氢槽系统提供制氢电能,以使各个需运行的制氢槽系统接收到的电能均满足自身制氢功率需求,且各个需运行的制氢槽系统相互独立运行。
需要说明的是,通过上述步骤之后,制氢槽系统接收到的制氢电能能够使制氢槽系统正常运行,也即制氢槽系统的制氢浓度满足正常运行的浓度,此时,功率切换单元持续为需运行的制氢槽系统提供制氢电能,制氢槽系统就会持续运行,不存在由于制氢浓度较低而导致停止运行的情况。
在实际应用中,当功率切换单元包括至少M-1个电解槽输入开关模块以及至少N-1个母线开关模块时,步骤S103的具体过程可以为:控制功率切换单元中的相应母线开关模块以及相应电解槽输入开关模块均开通,以使功率切换单元中相应输入端口与相应输出端口之间的连接开通,并且,各个需运行的制氢槽系统之间相互独立运行。
在实际应用中,在需运行的制氢槽系统的个数为1时,控制各个母线开关模块以及与需运行的制氢槽系统有连接关系的电解槽输入开关模块均开通,并控制其他电解槽输入开关模块均关断,以使功率切换单元中各个输入端口与相应输出端口之间的连接开通,并且,需运行的制氢槽系统独立运行。具体的,如图4所示,当发电系统10中的光伏能量不能满足两个制氢槽系统20的运行要求时,确定需运行制氢槽系统20的个数为1,此时控制一个制氢槽系统20的输入侧对应的可控开关S2关断,以及,控制汇集母线上的可控开关S1开通,使得两个光伏系统的光伏能量共同供给一个制氢槽系统20进行制氢。
而在需运行的制氢槽系统的个数大于1时,控制向各个需运行的制氢槽系统供电的各对应路径组合中各母线开关模块及电解槽输入开关模块均开通,并控制不同所述路径组合之间的母线开关模块关断,以使功率切换单元中相应输 入端口与相应输出端口之间的连接开通,各个需运行的制氢槽系统相互独立运行。具体的,如图8所示,需运行的制氢槽系统的个数大于1,如为制氢槽系统201和203时,则控制母线开关模块K1开通、K3关断,进而使制氢槽系统201能够运行,而制氢槽系统202无供电、不能运行;并且,控制母线开关模块K4开通、使制氢槽系统201能够运行;同时,控制母线开关模块K2关断,保证制氢槽系统201和203是分别独立运行的,防止两者之间产生环流。
上述方法中,由于MPPT值变化时,需运行的制氢槽系统也是变化的,所以通过上述方法能够使运行中制氢槽系统的制氢浓度均满足正常运行的浓度要求。并且,本实施中,该直流耦合制氢系统的控制方法的控制简单、方案容易实现,有利于推广使用。
本说明书中的各个实施例中记载的特征可以相互替换或者组合,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种直流耦合制氢系统,其特征在于,包括:至少一个发电系统和多个制氢槽系统;所述发电系统包括:一个控制器、N个可再生能源系统、多个变换系统和功率切换单元;N为大于1的整数,其中:
    所述变换系统和所述功率切换单元,均设置于N个对应可再生能源系统到M个对应制氢槽系统之间的电能传输路径上;M为大于1的整数;
    所述功率切换单元包括N个输入端口和M个输出端口;
    所述控制器用于控制所述功率切换单元以自身相应输入端口接收到的电能直接或汇集后,通过自身相应输出端口为相应制氢槽系统供电,以使接收到供电的所述制氢槽系统满足制氢功率需求且各个所述接收到供电的制氢槽系统相互独立运行。
  2. 根据权利要求1所述的直流耦合制氢系统,其特征在于,所述发电系统中,所述变换系统位于相应所述功率切换单元前级时:
    所述变换系统的个数为N;
    N个所述可再生能源系统的输出端与N个所述变换系统的输入端一一对应相连;
    N个所述变换系统的输出端分别与所述功率切换单元的N个输入端口一一对应相连;
    所述功率切换单元的M个输出端口分别与M个对应所述制氢槽系统的输入端一一对应相连。
  3. 根据权利要求1所述的直流耦合制氢系统,其特征在于,所述发电系统中,所述变换系统位于相应所述功率切换单元后级时:
    所述变换系统的个数为M;
    N个所述可再生能源系统的输出端分别与所述功率切换单元的N个输入端口一一对应相连;
    所述功率切换单元的M个输出端口分别与所述M个所述变换系统的输入端一一对应相连;
    M个所述变换系统的输出端分别与M个所述制氢槽系统的输入端一一对 应相连。
  4. 根据权利要求1所述的直流耦合制氢系统,其特征在于,还包括:至少一个储氢罐;
    所述储氢罐,用于将相应制氢槽系统产生的氢气进行存储。
  5. 根据权利要求4所述的直流耦合制氢系统,其特征在于,所述制氢槽系统通过自身的负极或中间极出气;
    所述储氢罐与所述制氢槽系统之间的气体传输管道为:金属管道或非金属管道。
  6. 根据权利要求4所述的直流耦合制氢系统,其特征在于,所述储氢罐的个数为1个,各个制氢槽系统共用所述储氢罐进行集中储氢;或者,
    所述储氢罐的个数为M个,各个制氢槽系统采用自身对应的储氢罐进行分散储氢;或者,
    所述储氢罐的个数为大于1且小于M个,相应个数的制氢槽系统共用一个对应的储氢罐进行集中储氢,不同储氢罐所连接的制氢槽系统之间进行分散储氢。
  7. 根据权利要求1-5任一所述的直流耦合制氢系统,其特征在于,所述功率切换单元包括:至少N-1个母线开关模块和至少M-1个电解槽输入开关模块;
    各个所述电解槽输入开关模块的一端分别与所述功率切换单元的相应输出端口相连;各个所述电解槽输入开关模块的另一端分别与所述功率切换单元的相应输入端口相连;
    各个母线开关模块分别设置于所述功率切换单元中的任意两个输入端口之间。
  8. 根据权利要求7所述的直流耦合制氢系统,其特征在于,当出气方式为负极出气、气体传输管道为金属管道且储氢方式为集中储氢时,相应的所述电解槽输入开关模块以及相应的所述母线开关模块,均包括:设置于相应正极支路上的可控开关;
    当出气方式为负极出气且气体传输管道为非金属管道时,或者,出气方式为中间极出气时,相应的所述电解槽输入开关模块以及相应的所述母线开关模 块,均包括:设置于相应正极支路上的可控开关和设置于相应负极支路上的可控开关。
  9. 根据权利要求8所述的直流耦合制氢系统,其特征在于,所述可控开关为:可控机械开关或半导体开关。
  10. 根据权利要求1-5任一所述的直流耦合制氢系统,其特征在于,所述可再生能源系统包括:风力发电系统和/或光伏发电系统;
    在所述可再生能源系统包括所述风力发电系统时,所述变换系统包括与所述风力发电系统连接的AC/DC变换器;
    在所述可再生能源系统包括所述光伏发电系统时,所述变换系统包括与所述光伏发电系统连接的DC/DC变换器。
  11. 根据权利要求10所述的直流耦合制氢系统,其特征在于,所述光伏发电系统包括:光伏发电模块和直流汇流箱;所述直流汇流箱的一端与所述光伏发电模块的输出端相连,所述直流汇流箱的另一端作为所述光伏发电系统的输出端;
    所述风力发电系统包括:桨叶,以及,永磁同步发电机或双馈感应发电机;所述桨叶的输出端与所述永磁同步发电机的一端或所述双馈感应发电机的一端相连;所述永磁同步发电机的另一端或所述双馈感应发电机的另一端作为所述风力发电系统的输出端。
  12. 根据权利要求1-5任一所述的直流耦合制氢系统,其特征在于,所述控制器为各个所述变换系统中的通信主机;或者,独立设置于所述的直流耦合制氢系统中的系统控制器。
  13. 一种直流耦合制氢系统的控制方法,其特征在于,应用于如权利要求1-12任一所述直流耦合制氢系统的控制器,包括:
    获取所述直流耦合制氢系统中各个变换系统的最大功率点跟踪MPPT值;
    依据各个所述MPPT值以及所述直流耦合制氢系统中制氢槽系统的最小启动电参数,确定需运行的制氢槽系统;
    控制所述直流耦合制氢系统中功率切换单元为所述需运行的制氢槽系统提供制氢电能,以使各个所述需运行的制氢槽系统接收到的电能均满足自身制氢功率需求,且各个所述需运行的制氢槽系统相互独立运行。
  14. 根据权利要求13所述的直流耦合制氢系统的控制方法,其特征在于,所述功率切换单元包括至少M-1个电解槽输入开关模块以及至少N-1个母线开关模块时,所述控制方法中,控制所述直流耦合制氢系统中功率切换单元为所述需运行的制氢槽系统提供制氢电能,以使各个所述需运行的制氢槽系统接收到的电能均满足自身制氢功率需求,且各个所述需运行的制氢槽系统相互独立运行,包括:
    控制所述功率切换单元中相应母线开关模块以及相应电解槽输入开关模块均开通,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,并且,各个所述需运行的制氢槽系统相互独立运行。
  15. 根据权利要求14所述的直流耦合制氢系统的控制方法,其特征在于,控制所述功率切换单元中相应母线开关模块以及相应电解槽输入开关模块均开通,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,并且,各个所述需运行的制氢槽系统相互独立运行,包括:
    在所述需运行的制氢槽系统的个数为1时,控制各个母线开关模块以及与所述需运行的制氢槽系统有连接关系的电解槽输入开关模块均开通,并控制其他电解槽输入开关模块均关断,以使所述功率切换单元中各个输入端口与相应输出端口之间的连接开通,所述需运行的制氢槽系统独立运行;
    在所述需运行的制氢槽系统的个数大于1时,控制向各个所述需运行的制氢槽系统供电的各对应路径组合中各母线开关模块及电解槽输入开关模块均开通,并控制不同所述路径组合之间的母线开关模块关断,以使所述功率切换单元中相应输入端口与相应输出端口之间的连接开通,各个所述需运行的制氢槽系统相互独立运行。
PCT/CN2021/079471 2020-06-12 2021-03-08 一种直流耦合制氢系统及其控制方法 WO2021248946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/792,693 US20230041986A1 (en) 2020-06-12 2021-03-08 Direct-current coupling hydrogen production system and control method therefor
EP21821984.8A EP4167421A1 (en) 2020-06-12 2021-03-08 Direct-current coupling hydrogen production system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010533744.5 2020-06-12
CN202010533744.5A CN111585297A (zh) 2020-06-12 2020-06-12 一种直流耦合制氢系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2021248946A1 true WO2021248946A1 (zh) 2021-12-16

Family

ID=72118294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079471 WO2021248946A1 (zh) 2020-06-12 2021-03-08 一种直流耦合制氢系统及其控制方法

Country Status (4)

Country Link
US (1) US20230041986A1 (zh)
EP (1) EP4167421A1 (zh)
CN (1) CN111585297A (zh)
WO (1) WO2021248946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115693972A (zh) * 2022-12-30 2023-02-03 长春吉电氢能有限公司 一种新能源发电与pem制氢耦合装置和控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585297A (zh) * 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112522727B (zh) * 2020-12-02 2021-11-12 上海毅镤新能源科技有限公司 制氢装置
CN113215593B (zh) * 2021-03-16 2022-09-23 宝武清洁能源有限公司 一种混合式电解水的绿氢制备系统
CN113235121B (zh) * 2021-05-07 2022-08-23 宝武清洁能源有限公司 一种混合式多槽制氢系统及其控制方法
CN113388856B (zh) * 2021-06-21 2022-09-02 宝武清洁能源有限公司 基于ael和pem水电解的制氢系统及态势控制方法
CN113445062A (zh) * 2021-06-22 2021-09-28 新天绿色能源股份有限公司 电解水制氢装置、电解水制氢装置的控制方法、电子设备
CN114990600A (zh) * 2022-04-29 2022-09-02 阳光氢能科技有限公司 一种新能源制氢系统及其控制方法
CN115125556A (zh) * 2022-06-15 2022-09-30 水发兴业能源(珠海)有限公司 直流制氢控制装置及其方法、直流制氢系统
CN116111733B (zh) * 2023-04-13 2023-06-23 华北电力大学 基于电解槽和高压储氢罐的港口氢-电综合能源系统
CN116288452B (zh) * 2023-05-11 2023-08-01 浙江大学 一种多模态自寻优电解制氢电路及控制方法
CN117117975B (zh) * 2023-10-25 2024-01-16 北京永氢储能科技有限责任公司 一种基于低温余热利用的氢水电联产系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097494A1 (de) * 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zur zwischenspeicherung von aus windkraft erzeugter elektrischer windenergie
CN106119883A (zh) * 2016-06-22 2016-11-16 同济大学 一种耦合制氢系统及其控制方法
CN109004665A (zh) * 2018-08-31 2018-12-14 河北科技大学 风电、光电离/并网制氢方法及系统
CN111224426A (zh) * 2020-02-20 2020-06-02 阳光电源股份有限公司 一种光伏离网制氢站及其供电控制方法
CN111585297A (zh) * 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918837B2 (ja) * 2004-08-06 2007-05-23 株式会社日立製作所 風力発電装置
US20080127646A1 (en) * 2005-10-11 2008-06-05 Doland George J System and Method for Energy and Hydrogen Production
CA2797893C (en) * 2010-04-28 2017-01-10 Ingeteam Power Technology, S.A. Hydrogen production system for controlling the power output of power stations based on renewable energy sources and control process
EP3811484A4 (en) * 2018-06-20 2022-03-02 Aquahydrex, Inc. MULTI-STAGE DIRECT CURRENT DISTRIBUTION SYSTEM
TW202132624A (zh) * 2019-11-21 2021-09-01 美商歐米恩國際公司 產氫之模組系統及其操作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097494A1 (de) * 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zur zwischenspeicherung von aus windkraft erzeugter elektrischer windenergie
CN106119883A (zh) * 2016-06-22 2016-11-16 同济大学 一种耦合制氢系统及其控制方法
CN109004665A (zh) * 2018-08-31 2018-12-14 河北科技大学 风电、光电离/并网制氢方法及系统
CN111224426A (zh) * 2020-02-20 2020-06-02 阳光电源股份有限公司 一种光伏离网制氢站及其供电控制方法
CN111585297A (zh) * 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115693972A (zh) * 2022-12-30 2023-02-03 长春吉电氢能有限公司 一种新能源发电与pem制氢耦合装置和控制方法

Also Published As

Publication number Publication date
EP4167421A1 (en) 2023-04-19
CN111585297A (zh) 2020-08-25
US20230041986A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021248946A1 (zh) 一种直流耦合制氢系统及其控制方法
AU2020377230B2 (en) Direct-current coupling hydrogen production system and control method therefor
CN110042413B (zh) 非并网风电电解水制氢系统和方法
CN111463807B (zh) 一种分布式直流耦合制氢系统及其控制方法
WO2021098172A1 (zh) 新能源复合制氢系统及其控制方法
CN107612019B (zh) 一种组串式光伏逆变器有功功率控制方法及系统
CN101577509B (zh) 一种光伏变换系统
CN110970922A (zh) 一种交直流混合分布式可再生能源系统
CN112725832A (zh) 一种水电解制氢控制方法、系统及控制器
CN110106512A (zh) 电解水制氢装置
CN112491032A (zh) 一种直流耦合离网制氢系统及其控制方法
CN112217193B (zh) 光伏制氢电站和直流耦合光伏离网制氢系统及其控制方法
CN212392674U (zh) 风力发电机组直流输电系统
CN206619907U (zh) 风光风水互补直流稳压供电系统
US20230212760A1 (en) Hydrogen production power supply system
CN207442523U (zh) 一种太阳能发电系统
CN216192753U (zh) 一种混合制氢系统
CN115637447A (zh) 一种可再生能源耦合梯级制氢系统及制氢方法
CN108695842A (zh) 一种适用于直流配网的光伏系统柔性汇集拓扑及其控制方法
CN205407283U (zh) 一种功率模块加权组合电路拓扑结构
CN114032559B (zh) 一种新能源离网制氢的系统及方法
Mitra et al. Modelling proton exchange membrane fuel cell for power generation using multi-stage power conversion system
CN116667444A (zh) 一种多功能光伏电站配电并网系统
CN115864355B (zh) 一种分布式光伏直流接入铝电解槽直流母线的供电装置
Deng et al. Efficient Integration and Comprehensive Utilization of Renewable Energy/Hydrogen Energy Based on DC Energy Routing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021821984

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE