WO2021248944A1 - 一种船用液位测量与船舶平衡控制实验装置及其方法 - Google Patents

一种船用液位测量与船舶平衡控制实验装置及其方法 Download PDF

Info

Publication number
WO2021248944A1
WO2021248944A1 PCT/CN2021/079203 CN2021079203W WO2021248944A1 WO 2021248944 A1 WO2021248944 A1 WO 2021248944A1 CN 2021079203 W CN2021079203 W CN 2021079203W WO 2021248944 A1 WO2021248944 A1 WO 2021248944A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
level sensor
ballast
tank
tanks
Prior art date
Application number
PCT/CN2021/079203
Other languages
English (en)
French (fr)
Inventor
张磊
姚兴田
宫尚军
刘江莉
戴丽娟
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Priority to GB2213142.9A priority Critical patent/GB2610936B/en
Publication of WO2021248944A1 publication Critical patent/WO2021248944A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/06Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of ships, boats, or other waterborne vehicles
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/08Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics

Definitions

  • the invention relates to the technical field of ship ballast tank systems, in particular to an experimental device and method for ship liquid level measurement and ship balance control.
  • Liquid level telemetry and valve remote control systems are an important part of ship automation control. They are mainly used for the detection of ship liquid level and the adjustment of ballast water in ballast tanks to keep the ship in a stable state of operation.
  • my country's research on liquid level remote measurement and valve remote control systems started late, and there is a problem of immature technology.
  • ballast tank experimental device designed as a carrier for ballast water control.
  • the domestic ballast water control devices as shown in Figure 1 (a) and Figure 1 (b), there are two types of liquid level remote sensing devices.
  • a one-way water pump and a set of valves are used to adjust the ballast water.
  • Figure 1(b) uses a bidirectional axial flow pump to adjust the water volume of the balance tank. This system has a simple structure and occupies a small space. However, the disadvantage is that the performance requirements of the axial flow pump are high, and the system only involves internal pressure. The water-carrying capacity is adjusted to each other, the compensation rate of the heel is low, and the adjustment and balance time is long.
  • valve control because traditional large-scale civil ships generally use hydraulic drive, this kind of use of hydraulic oil to control the valve requires the establishment of an independent hydraulic pump station to provide power, which not only increases the complexity of the system but also increases the production cost. ; And the control signal is transmitted to the valve of each oil circuit through the hydraulic oil, in the long-distance control, the problem of slow signal transmission and lagging response of the valve will occur.
  • the purpose of the present invention is to provide a marine liquid level measurement and marine balance control experimental device and method thereof, so as to solve the problems raised in the background art.
  • an experimental device for marine liquid level remote measurement and valve remote control system includes a water inlet pump, a liquid level sensor, a left side tank, a water pipe, a solenoid valve, a ballast tank, On the right side transverse tank, outlet pump, simulated pool, ballast tanks, of which 12 ballast tanks are set up, divided into No. 1-12 ballast tanks.
  • the ballast tanks are generally distributed symmetrically on both sides, No. 1 and No. 2 ballast tank is the main tank for device tilt adjustment, with a length of 600mm and a width of 450mm.
  • ballast tanks are the main tank for device trim adjustment, with a length of 600mm and a width of 300mm, with the remaining 8
  • the ballast tanks are fine-tuning tanks with equal area design.
  • the area of the main tank is larger than that of the fine-tuning tanks; the left and right transverse tanks are installed symmetrically on both sides of the ballast tank; the left and right transverse tanks
  • the height of the transverse tank is 900mm, and the ballast tank body adopts a double-layer symmetrical design.
  • the water pipe and the cylindrical support frame adopt an interference fit and are connected to them by hot melting.
  • the cylindrical support frame and the steel plate at the bottom of the ballast tank are fixed by welding, and the gap in the lower half of the cylindrical support frame
  • a solenoid valve is installed on the water pipe, and the water pipe is connected with the solenoid valve in a hot-melt manner; one end of the water pipe is connected with a water inlet pump, and the other end is connected with a water outlet pump.
  • the liquid level sensor is divided into a first liquid level sensor, a second liquid level sensor, a third liquid level sensor, a fourth liquid level sensor, a fifth liquid level sensor, a sixth liquid level sensor, and a seventh liquid level.
  • the liquid level sensor passes through the cylindrical hole of the Z-shaped steel sheet to vertically contact the steel plate at the bottom of the ballast tank, and the Z-shaped steel sheet and the steel plate at the bottom of the ballast tank are welded to fix each liquid level sensor.
  • control method includes the following steps:
  • the eighth liquid level sensor, the ninth liquid level sensor, the tenth liquid level sensor, the eleventh liquid level sensor, and the twelfth liquid level sensor collect the liquid level signal in each ballast tank;
  • PLC directly controls the switch of the solenoid valve and the inlet pump and outlet pump according to the transmitted signal to slowly restore the balance of the ballast tank, and then transmits the real-time dynamic information of the simulation device to the host computer configuration software through Ethernet communication for display , The operator monitors it according to the scene screen;
  • the system is directly connected to the database to realize the storage of collected calculation data and operating data. At the same time, it also saves historical measurement data and control data, which is convenient for the crew to query and count historical data.
  • the present invention has the beneficial effects that: the present invention provides an experimental device and valve control method that can simulate actual ship ballast tanks, realizes the external adjustment of ballast water, and reduces the balance adjustment time.
  • the main features of the device are: simple structure, high reliability, good adjustment efficiency, high degree of automation, can realize the monitoring of the system and emergency alarms, and has good maintainability.
  • Figure 1 is a schematic diagram of the prior art structure
  • Figure 2 is an axonometric side view of the experimental device of the ballast tank of the present invention.
  • FIG. 3 is a top view of the experimental device of the ballast tank of the present invention.
  • Figure 4 is a cross-sectional view of the experimental device of the ballast tank of the present invention.
  • Figure 5 is a schematic diagram of the installation and fixing of the liquid level sensor of the present invention.
  • Fig. 6 is a schematic diagram of the installation and fixing of the water pipe of the present invention.
  • the present invention provides a technical solution: an experimental device for marine liquid level remote measurement and valve remote control system.
  • the experimental device includes an inlet pump 1, a liquid level sensor 2, a left side cabin 3, a water pipe 4, and an electromagnetic Valve 5, ballast tank 6, right transverse tank 7, discharge pump 8, simulated pool 9, ballast tank 10.
  • ballast tanks 10 which are divided into ballast tanks No. 1-12. Twelve symmetrically distributed ballast tanks are used to simulate the balance tanks of real ships. When performing ballast water adjustment, it must be ensured that the liquid level of the 4 main tanks is higher than the other fine-tuning tanks without exceeding the limit.
  • the ballast tanks are generally distributed symmetrically on both sides. No. 1 and No.
  • ballast tanks are the main tanks for device heel adjustment.
  • the length is designed to be 600mm and the width is 450mm.
  • Ballast tanks No. 3 and 4 are device trim. Adjust the main cabin with a length of 600mm and a width of 300mm.
  • the remaining 8 ballast tanks are fine-tuning cabins with equal area design.
  • the area of the main cabin is larger than that of the fine-tuning cabins; the left-side horizontal cabin 3 and the right-side horizontal cabin 7 are installed symmetrically On both sides of the ballast tank 6; the height of the left transverse tank 3 and the right transverse tank 7 is 900mm; the left transverse tank 3 and the right transverse tank 7 are used to simulate the heeling moment generated by the cargo on and off the ship , Adding ballast water is equivalent to ship loading, otherwise it is unloading.
  • the ballast tank body 6 adopts a double-layer symmetrical design. This design structure increases its buoyancy while ensuring that the experimental device has a better balance, so that the ballast tank body 6 composed of 2mm thick steel plates can float easily. On the water.
  • the water pipe 4 and the cylindrical support frame 14 adopt an interference fit and are connected to them by hot melting.
  • the cylindrical support frame 14 and the steel plate 13 at the bottom of the ballast tank are fixed by welding, and the cylindrical support frame 14 is under The half of the gap is used for the circulation of ballast water.
  • the water pipe 4 is equipped with a solenoid valve 5, and the water pipe 4 and the solenoid valve 5 are connected by hot melt.
  • ballast water is in There will be no leakage at the connection part to avoid unnecessary trouble; one end of the water pipe 4 is connected to the inlet pump 1 and the other end is connected to the outlet pump 8; the liquid level sensor 2 passes through the cylindrical hole of the Z-shaped steel sheet 12 and the ballast tank The bottom steel plate 13 is in vertical contact, and the Z-shaped steel sheet 12 and the ballast tank bottom steel plate 13 are welded to fix each liquid level sensor.
  • the liquid level sensor 2 is divided into a first liquid level sensor 2-1, a second liquid level sensor 2-2, a third liquid level sensor 2-3, a fourth liquid level sensor 2-4, and a fifth liquid level Sensor 2-5, sixth liquid level sensor 2-6, seventh liquid level sensor 2-7, eighth liquid level sensor 2-8, ninth liquid level sensor 2-9) tenth liquid level sensor 2-10,
  • control method of the present invention includes the following steps:
  • the eleventh liquid level sensor 2-11 and the twelfth liquid level sensor 2-12 collect liquid level signals in each ballast tank 10;
  • the seventeenth liquid level sensor 2-17 and the eighteenth liquid level sensor 2-18 measure the four-corner draft
  • the PLC directly controls the switch of the solenoid valve 5 and the inlet pump 1 and outlet pump 8 according to the transmitted signal to slowly restore the balance of the ballast tank 6, and then transmits the real-time dynamic information of the simulation device to the upper unit through Ethernet communication It is displayed in the state software, and the operator monitors it according to the on-site picture;
  • the system is directly connected to the database to realize the storage of collected calculation data and operating data. At the same time, it also saves historical measurement data and control data, which is convenient for the crew to query and count historical data.
  • the innovative point of the experimental device designed in the present invention is that it adopts a double casing circuit design, which not only enables independent water injection and drainage of each ballast tank 10, but also allows the ballast water in each ballast tank 10 to be adjusted to each other, which greatly improves the heel compensation The efficiency also increases the stability of the experimental device.
  • the present invention provides an experimental device and valve control method that can simulate the actual ship's ballast tank, realizes the external adjustment of ballast water, and reduces the balance adjustment time.
  • the main features of the device are: simple structure, high reliability, good adjustment efficiency, high degree of automation, can realize the monitoring of the system and emergency alarms, and has good maintainability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

一种船用液位测量与船舶平衡控制实验装置及方法,实验装置包括进水泵(1)、液位传感器(2)、左侧横舱(3)、水管(4)、电磁阀(5)、压载舱体(6)、右侧横舱(7)、出水泵(8)、模拟水池(9)、压载舱(10),压载舱(10)设置12个,分为1号-12号压载舱(10),压载舱(10)总体呈两侧对称分布,1号和2号压载舱(10)为装置横倾调节主舱,长度设计为600mm,宽度为450mm,3号和4号压载舱(10)为装置纵倾调节主舱,长度为600mm,宽度为300mm,其余8个压载舱(10)为微调舱,采用等面积设计,主舱面积大于各微调舱。可以模拟实际船舶压载舱的实验装置和阀门控制方法,实现了压载水外部调拨,减少平衡调节时间。

Description

一种船用液位测量与船舶平衡控制实验装置及其方法 技术领域
本发明涉及船舶压载舱系统技术领域,具体为一种船用液位测量与船舶平衡控制实验装置及其方法。
背景技术
液位遥测和阀门遥控系统是船舶自动化控制重要组成部分,主要用于船舶液位的检测和对压载舱中压载水的调节使船舶保持平衡达到稳定运行的状态。我国对于液位遥测和阀门遥控系统的研究起步较晚,存在技术不成熟的的问题,目前并没有设计出有效的压载舱实验装置作为压载水调控的载体。就目前来看国内对于压载水调控的装置存在很多问题,如图1(a)和图1(b)所示为两种液位遥测装置。图1(a)中主要通过一台单向水泵和一组阀门来调节压载水,在工作时由于经常切换阀门和水泵的状态,因此阀门受到冲击而故障率偏高。系统只使用一个水泵,若其失效则整个系统就失效了。图1(b)采用了一个双向运转的轴流水泵来调节平衡水舱的水量,这种系统结构简单、所占空间较小,但是缺点是对轴流水泵性能要求高,系统只涉及内部压载水相互调拨,横倾补偿率低,调节平衡时间长。
在阀门控制方面,由于传统的大型民用船舶普遍采用液压驱动的方式,但这种采用液压油来控制阀门需要设立独立的液压泵站提供动力,这不仅增加了系统的复杂性也增加了生产成本;而控制信号通过液压油传递给各个油路的阀门,在长距离控制中会产生信号传递慢、阀门反应滞后的问题。
发明内容
本发明的目的在于提供一种船用液位测量与船舶平衡控制实验装置及其方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种船用液位遥测和阀门遥控系统实验装置,实验装置包括进水泵、液位传感器、左侧横舱、水管、 电磁阀、压载舱体、右侧横舱、出水泵、模拟水池、压载舱,其中,压载舱设置12个,分为1号-12号压载舱,其中,压载舱总体呈两侧对称分布,1号和2号压载舱为装置横倾调节主舱,其长度设计为600mm,宽度为450mm,3号和4号压载舱为装置纵倾调节主舱,长度为600mm,宽度为300mm,其余8个压载舱为微调舱,采用等面积设计,主舱面积大于各微调舱;所述左侧横舱和右侧横舱对称安装在压载舱体两侧;所述左侧横舱和右侧横舱的高度为900mm所述压载舱体采取了双层对称式设计。
优选的,所述水管与圆柱支撑架采用过盈配合,通过热熔的方式与其连接在一起,所述圆柱支撑架与压载舱底部钢板通过焊接固定,所述圆柱支撑架下半部分的缺口用来进行压载水的流通,所述水管上安装有电磁阀,所述水管与电磁阀以热熔的方式连接;所述水管一端与进水泵连接,另一端与出水泵连接。
优选的,所述液位传感器分为第一液位传感器、第二液位传感器、第三液位传感器、第四液位传感器、第五液位传感器、第六液位传感器、第七液位传感器、第八液位传感器、第九液位传感器、第十液位传感器、第十一液位传感器、第十二液位传感器、第十三液位传感器、第十四液位传感器、第十五液位传感器、第十六液位传感器、第十七液位传感器、第十八液位传感器;所述第一液位传感器、第二液位传感器、第三液位传感器、第四液位传感器、第五液位传感器、第六液位传感器、第七液位传感器、第八液位传感器、第九液位传感器、第十液位传感器、第十一液位传感器、第十二液位传感器分布在12个压载舱中用于采集各个压载舱中的液位信号;所述第十三液位传感器、第十四液位传感器、第十五液位传感器、第十六液位传感器、第十七液位传感器、第十八液位传感器安装在压载舱体边缘用于测量四角吃水深度。
优选的,所述液位传感器穿过Z型钢片的圆柱孔与压载舱底部钢板垂直 接触,所述Z型钢片与压载舱底部钢板通过焊接来固定各个液位传感器。
优选的,其控制方法包括以下步骤:
A、12个压载舱中的第一液位传感器、第二液位传感器、第三液位传感器、第四液位传感器、第五液位传感器、第六液位传感器、第七液位传感器、第八液位传感器、第九液位传感器、第十液位传感器、第十一液位传感器、第十二液位传感器采集各个压载舱中的液位信号;
B、压载舱体边缘的第十三液位传感器、第十四液位传感器、第十五液位传感器、第十六液位传感器、第十七液位传感器、第十八液位传感器测量四角吃水深度;
C、将采集的液位信号和深度信号传递给控制柜中的PLC处理;
D、PLC根据传输来的信号直接控制电磁阀的开关和进水泵、出水泵使压载舱体慢慢恢复平衡,再将模拟装置实时动态信息通过以太网通讯传递到上位机组态软件中显示,操作人员根据现场画面对其进行监控;
E、最后系统直接和数据库相连,实现了对采集计算数据和操作数据的存储,同时也保存了历史测量数据和控制数据,方便船员对历史数据进行查询、统计。
与现有技术相比,本发明的有益效果是:本发明提供了一个可以模拟实际船舶压载舱的实验装置和阀门控制方法,实现了压载水外部调拨,减少平衡调节时间。该装置主要的特点为:结构简单可靠性高、调节效率好、自动化程度高、可以实现对系统的监控和紧急状态的报警具有良好的可维护性。
附图说明
图1为现有技术结构示意图;
图2为本发明压载舱实验装置轴侧视图;
图3为本发明压载舱实验装置俯视图;
图4为本发明压载舱实验装置剖视图;
图5为本发明液位传感器的安装固定示意图;
图6为本发明水管的安装固定示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参阅图2-6,本发明提供一种技术方案:一种船用液位遥测和阀门遥控系统实验装置,实验装置包括进水泵1、液位传感器2、左侧横舱3、水管4、电磁阀5、压载舱体6、右侧横舱7、出水泵8、模拟水池9、压载舱10,其中,压载舱10设置12个,分为1号-12号压载舱,这12个对称分布的压载舱用来模拟真实船舶的平衡水舱,在进行压载水调节时必须保证4个主舱液位在不超限的情况下高于其余微调舱液位值。其中,压载舱总体呈两侧对称 分布,1号和2号压载舱为装置横倾调节主舱,其长度设计为600mm,宽度为450mm,3号和4号压载舱为装置纵倾调节主舱,长度为600mm,宽度为300mm,其余8个压载舱为微调舱,采用等面积设计,主舱面积大于各微调舱;所述左侧横舱3和右侧横舱7对称安装在压载舱体6两侧;所述左侧横舱3和右侧横舱7的高度为900mm;左侧横舱3和右侧横舱7用来模拟船舶上下货物产生的横倾力矩,在其中加入压载水相当于船舶装货,反之为卸货。压载舱体6采取了双层对称式设计,这种设计结构在保证该实验装置有较好平衡性的同时增大了其浮力,使得由2mm厚钢板构成的压载舱体6能够轻松浮在水面上。
本发明中,水管4与圆柱支撑架14采用过盈配合,通过热熔的方式与其连接在一起,所述圆柱支撑架14与压载舱底部钢板13通过焊接固定,所述圆柱支撑架14下半部分的缺口用来进行压载水的流通,所述水管4上安装有电磁阀5,所述水管4与电磁阀5以热熔的方式连接,这种连接方式的好处是压载水在连接部位不会出现渗漏,避免不必要的麻烦;所述水管4一端与进水泵1连接,另一端与出水泵8连接;液位传感器2穿过Z型钢片12的圆柱孔与压载舱底部钢板13垂直接触,所述Z型钢片12与压载舱底部钢板13通过焊接来固定各个液位传感器。
本发明中,液位传感器2分为第一液位传感器2-1、第二液位传感器2-2、第三液位传感器2-3、第四液位传感器2-4、第五液位传感器2-5、第六液位传感器2-6、第七液位传感器2-7、第八液位传感器2-8、第九液位传感器2-9)第十液位传感器2-10、第十一液位传感器2-11、第十二液位传感器2-12、第十三液位传感器2-13、第十四液位传感器2-14、第十五液位传感器2-15、第十六液位传感器2-16、第十七液位传感器2-17、第十八液位传感器2-18;所述第一液位传感器2-1、第二液位传感器2-2、第三液位传感器2-3、第四液位传感器2-4、第五液位传感器2-5、第六液位传感器2-6、第七液位传感器2-7、第八液位传感器2-8、第九液位传感器2-9、第十液位传感器2-10、第 十一液位传感器2-11、第十二液位传感器2-12分布在12个压载舱10中用于采集各个压载舱10中的液位信号;所述第十三液位传感器2-13、第十四液位传感器2-14、第十五液位传感器2-15、第十六液位传感器2-16、第十七液位传感器2-17、第十八液位传感器2-18)安装在压载舱体6边缘用于测量四角吃水深度;该款传感器的特点为可以直接投入水中使用,根据不同水位的压力信号测量出水的深度,简单方便。各液位传感器安装在各个压载舱的中心位置,
工作原理:本发明的控制方法包括以下步骤:
A、12个压载舱10中的第一液位传感器2-1、第二液位传感器2-2、第三液位传感器2-3、第四液位传感器2-4、第五液位传感器2-5、第六液位传感器2-6、第七液位传感器2-7、第八液位传感器2-8、第九液位传感器2-9、第十液位传感器2-10、第十一液位传感器2-11、第十二液位传感器2-12采集各个压载舱10中的液位信号;
B、压载舱体6边缘的第十三液位传感器2-13、第十四液位传感器2-14、第十五液位传感器2-15、第十六液位传感器2-16、第十七液位传感器2-17、第十八液位传感器2-18测量四角吃水深度;
C、将采集的液位信号和深度信号传递给控制柜中的PLC处理;
D、PLC根据传输来的信号直接控制电磁阀5的开关和进水泵1、出水泵8使压载舱体6慢慢恢复平衡,再将模拟装置实时动态信息通过以太网通讯传递到上位机组态软件中显示,操作人员根据现场画面对其进行监控;
E、最后系统直接和数据库相连,实现了对采集计算数据和操作数据的存储,同时也保存了历史测量数据和控制数据,方便船员对历史数据进行查询、统计。
本发明设计的实验装置创新点在于采取了双套管路设计,不仅使得各个压载舱10能够独立注排水,也可让各压载舱10中压载水互相调拨,大大提 高了横倾补偿效率的同时也增加了实验装置的稳定性。
综上所述,本发明提供了一个可以模拟实际船舶压载舱的实验装置和阀门控制方法,实现了压载水外部调拨,减少平衡调节时间。该装置主要的特点为:结构简单可靠性高、调节效率好、自动化程度高、可以实现对系统的监控和紧急状态的报警具有良好的可维护性。
本发明未详述之处,均为本领域技术人员的公知技术。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (5)

  1. 一种船用液位遥测和阀门遥控系统实验装置,其特征在于:实验装置包括进水泵(1)、液位传感器(2)、左侧横舱(3)、水管(4)、电磁阀(5)、压载舱体(6)、右侧横舱(7)、出水泵(8)、模拟水池(9)、压载舱(10),其中,压载舱(10)设置12个,分为1号-12号压载舱,其中,压载舱总体呈两侧对称分布,1号和2号压载舱为装置横倾调节主舱,其长度设计为600mm,宽度为450mm,3号和4号压载舱为装置纵倾调节主舱,长度为600mm,宽度为300mm,其余8个压载舱为微调舱,采用等面积设计,主舱面积大于各微调舱;所述左侧横舱(3)和右侧横舱(7)对称安装在压载舱体(6)两侧;所述左侧横舱(3)和右侧横舱(7)的高度为900mm所述压载舱体(6)采取了双层对称式设计。
  2. 根据权利要求1所述的一种船用液位遥测和阀门遥控系统实验装置,其特征在于:所述水管(4)与圆柱支撑架(14)采用过盈配合,通过热熔的方式与其连接在一起,所述圆柱支撑架(14)与压载舱底部钢板(13)通过焊接固定,所述圆柱支撑架(14)下半部分的缺口用来进行压载水的流通,所述水管(4)上安装有电磁阀(5),所述水管(4)与电磁阀(5)以热熔的方式连接;所述水管(4)一端与进水泵(1)连接,另一端与出水泵(8)连接。
  3. 根据权利要求1所述的一种船用液位遥测和阀门遥控系统实验装置,其特征在于:所述液位传感器(2)分为第一液位传感器(2-1)、第二液位传感器(2-2)、第三液位传感器(2-3)、第四液位传感器(2-4)、第五液位传感器(2-5)、第六液位传感器(2-6)、第七液位传感器(2-7)、第八液位传感器(2-8)、第九液位传感器(2-9)、第十液位传感器(2-10)、第十一液位传感器(2-11)、第十二液位传感器(2-12)、第十三液位传感器(2-13)、第十四液位传感器(2-14)、第十五液位传感器(2-15)、第十六液位传感器(2-16)、第十七液位传感器(2-17)、第十八液位传感器(2-18);所述第一液位传感器(2-1)、第二液位传感器(2-2)、第三液位传感器(2-3)、第四液位传感器(2-4)、第五液位传感器(2-5)、第六液位传感器(2-6)、第七液位传感器(2-7)、第八液位传感 器(2-8)、第九液位传感器(2-9)、第十液位传感器(2-10)、第十一液位传感器(2-11)、第十二液位传感器(2-12)分布在12个压载舱(10)中用于采集各个压载舱(10)中的液位信号;所述第十三液位传感器(2-13)、第十四液位传感器(2-14)、第十五液位传感器(2-15)、第十六液位传感器(2-16)、第十七液位传感器(2-17)、第十八液位传感器(2-18)安装在压载舱体(6)边缘用于测量四角吃水深度。
  4. 根据权利要求1所述的一种船用液位遥测和阀门遥控系统实验装置,其特征在于:所述液位传感器(2)穿过Z型钢片(12)的圆柱孔与压载舱底部钢板(13)垂直接触,所述Z型钢片(12)与压载舱底部钢板(13)通过焊接来固定各个液位传感器。
  5. 实现权利要求1所述的一种船用液位遥测和阀门遥控系统实验装置的控制方法,其特征在于:其控制方法包括以下步骤:
    A、12个压载舱(10)中的第一液位传感器(2-1)、第二液位传感器(2-2)、第三液位传感器(2-3)、第四液位传感器(2-4)、第五液位传感器(2-5)、第六液位传感器(2-6)、第七液位传感器(2-7)、第八液位传感器(2-8)、第九液位传感器(2-9)、第十液位传感器(2-10)、第十一液位传感器(2-11)、第十二液位传感器(2-12)采集各个压载舱(10)中的液位信号;
    B、压载舱体(6)边缘的第十三液位传感器(2-13)、第十四液位传感器(2-14)、第十五液位传感器(2-15)、第十六液位传感器(2-16)、第十七液位传感器(2-17)、第十八液位传感器(2-18)测量四角吃水深度;
    C、将采集的液位信号和深度信号传递给控制柜中的PLC处理;
    D、PLC根据传输来的信号直接控制电磁阀(5)的开关和进水泵(1)、出水泵(8)使压载舱体(6)慢慢恢复平衡,再将模拟装置实时动态信息通过以太网通讯传递到上位机组态软件中显示,操作人员根据现场画面对其进行监控;
    E、最后系统直接和数据库相连,实现了对采集计算数据和操作数据的存 储,同时也保存了历史测量数据和控制数据,方便船员对历史数据进行查询、统计。
PCT/CN2021/079203 2020-06-13 2021-03-05 一种船用液位测量与船舶平衡控制实验装置及其方法 WO2021248944A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2213142.9A GB2610936B (en) 2020-06-13 2021-03-05 Experimental device and method for marine liquid level measurement and ship balance control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540154.5 2020-06-13
CN202010540154.5A CN111627288A (zh) 2020-06-13 2020-06-13 一种船用液位遥测和阀门遥控系统实验装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2021248944A1 true WO2021248944A1 (zh) 2021-12-16

Family

ID=72272719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079203 WO2021248944A1 (zh) 2020-06-13 2021-03-05 一种船用液位测量与船舶平衡控制实验装置及其方法

Country Status (3)

Country Link
CN (1) CN111627288A (zh)
GB (1) GB2610936B (zh)
WO (1) WO2021248944A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627288A (zh) * 2020-06-13 2020-09-04 南通大学 一种船用液位遥测和阀门遥控系统实验装置及其控制方法
CN113433992A (zh) * 2021-06-07 2021-09-24 中山中舟海洋科技有限公司 阀门遥控和液位遥测系统
CZ202295A3 (cs) * 2022-03-02 2023-09-20 Lodě Helios s.r.o. Balastní systém pro řízení ponoru a náklonu plovoucího tělesa nebo sestavy plovoucích těles a sestava plovoucích těles opatřená tímto balastním systémem

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203706485U (zh) * 2014-01-08 2014-07-09 青岛远洋船员职业学院 船舶压载水系统操作与故障排除模拟器
CN104238584A (zh) * 2014-09-04 2014-12-24 华中科技大学 一种水下作业平台压载水舱进排水控制系统及控制方法
CN105480393A (zh) * 2015-11-24 2016-04-13 广州文冲船厂有限责任公司 一种船舶压载系统
KR101632292B1 (ko) * 2014-08-22 2016-06-21 대우조선해양 주식회사 자동 평형수 시스템 및 조절방법
CN107150766A (zh) * 2017-06-28 2017-09-12 中交上海航道局有限公司 一种深层搅拌船自主平衡系统及方法
CN109229275A (zh) * 2018-09-28 2019-01-18 中船黄埔文冲船舶有限公司 一种坐底式风电安装船倾斜试验装置及试验方法
CN110053755A (zh) * 2019-03-18 2019-07-26 上海海事大学 一种免处理船舶压载水系统的试验装置
CN111627288A (zh) * 2020-06-13 2020-09-04 南通大学 一种船用液位遥测和阀门遥控系统实验装置及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130039398A (ko) * 2011-10-12 2013-04-22 현대중공업 주식회사 선박의 밸러스트 시스템
KR20160101346A (ko) * 2015-02-17 2016-08-25 미쯔이 죠센 가부시키가이샤 밸러스트 수의 수질 감시장치 및 그 장치를 구비한 선박
CN207747989U (zh) * 2017-11-02 2018-08-21 中国人民解放军陆军军事交通学院镇江校区 一种船舶浮态辅助控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203706485U (zh) * 2014-01-08 2014-07-09 青岛远洋船员职业学院 船舶压载水系统操作与故障排除模拟器
KR101632292B1 (ko) * 2014-08-22 2016-06-21 대우조선해양 주식회사 자동 평형수 시스템 및 조절방법
CN104238584A (zh) * 2014-09-04 2014-12-24 华中科技大学 一种水下作业平台压载水舱进排水控制系统及控制方法
CN105480393A (zh) * 2015-11-24 2016-04-13 广州文冲船厂有限责任公司 一种船舶压载系统
CN107150766A (zh) * 2017-06-28 2017-09-12 中交上海航道局有限公司 一种深层搅拌船自主平衡系统及方法
CN109229275A (zh) * 2018-09-28 2019-01-18 中船黄埔文冲船舶有限公司 一种坐底式风电安装船倾斜试验装置及试验方法
CN110053755A (zh) * 2019-03-18 2019-07-26 上海海事大学 一种免处理船舶压载水系统的试验装置
CN111627288A (zh) * 2020-06-13 2020-09-04 南通大学 一种船用液位遥测和阀门遥控系统实验装置及其控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHI HAITAO: "Design and Realization of Marine Level Remote Gauging and Valve Remote Control System", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 15 November 2016 (2016-11-15), pages 1 - 88, XP055879277 *
ZHANG LEI , MAO WEIHUA , LIU JIANGLI , GONG SHANGJUN ,ZHU ZHISONG ,YAO XINGTIAN ,KANG TAO: "Design of Marine Liquid Level Measurement and Valve Control Experiment System", TECHNOLOGY WIND, 25 March 2020 (2020-03-25), pages 12 - 13, XP055879275, ISSN: 1671-7341, DOI: 10.19392/j.cnki.1671-7341.202009011 *

Also Published As

Publication number Publication date
GB202213142D0 (en) 2022-10-26
GB2610936A (en) 2023-03-22
CN111627288A (zh) 2020-09-04
GB2610936B (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2021248944A1 (zh) 一种船用液位测量与船舶平衡控制实验装置及其方法
CN114967885B (zh) 一种服务器液冷系统冷量分配系统
CN112261837A (zh) 一种海水数据舱水冷系统
CN220153679U (zh) 一种地埋式积水监测站
CN220381112U (zh) 一种模块化水质在线监测设备
CN210219999U (zh) 一种换热机组用远程监控装置
CN210895094U (zh) 一种远程智能水平衡监控系统
CN102616347A (zh) 一种用压载泵的自动防横倾系统
CN211262368U (zh) 一种基于nb通讯技术的超声波水表
CN208280219U (zh) 一种智慧供水泵房
CN112235995B (zh) 一种用于数据中心制冷的冷水系统
WO2020186859A1 (zh) 抽屉式cdu
CN220667532U (zh) 一种抽油量自动化监控控制系统
CN221350405U (zh) 直流输电换流阀阀塔漏水监视装置
CN210005420U (zh) 一种便携式水质监测装置
CN218443988U (zh) 一种用于流量计具有警示提醒的流量管理器
CN221811620U (zh) 一种河流流量监测的智能水位计
CN218456099U (zh) 一种电池管理系统
CN211624365U (zh) 一种双隔膜式控制浮球阀
CN212083403U (zh) 一种具有水质实时检测功能的触屏控制装置
CN212931507U (zh) 一种家庭自来水管防漏水监控系统
CN214819503U (zh) 一种可周转养护集装箱
CN208682957U (zh) 一种泵车车箱结构
CN202770505U (zh) 多浮子磁感应液位检测报警仪
CN217898332U (zh) 一种具有警报功能的液压阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202213142

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210305

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821178

Country of ref document: EP

Kind code of ref document: A1