WO2021248753A1 - 一种高温热管的封装方法 - Google Patents

一种高温热管的封装方法 Download PDF

Info

Publication number
WO2021248753A1
WO2021248753A1 PCT/CN2020/119392 CN2020119392W WO2021248753A1 WO 2021248753 A1 WO2021248753 A1 WO 2021248753A1 CN 2020119392 W CN2020119392 W CN 2020119392W WO 2021248753 A1 WO2021248753 A1 WO 2021248753A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
temperature heat
packaging
die
tube
Prior art date
Application number
PCT/CN2020/119392
Other languages
English (en)
French (fr)
Inventor
万珍平
何子聪
邹金虎
陆龙生
汤勇
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021248753A1 publication Critical patent/WO2021248753A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/09Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the invention belongs to the technical field of high-temperature thermal structures, and in particular relates to a method for packaging high-temperature heat pipes.
  • Heat pipes can be divided into low temperature heat pipes (-270 ⁇ 0°C), normal temperature heat pipes (200 ⁇ 600°C) and high temperature heat pipes (above 600°C) according to their use temperature.
  • High-temperature heat pipes have high operating temperatures, and passive thermal energy transmission methods have broad application prospects in aerospace, nuclear power generation and military industries.
  • the high-temperature heat pipe uses liquid metal or molten salt as the working medium, and has good thermal stability and low saturated vapor pressure at high temperatures; stainless steel, high-temperature alloys, and refractory metals are used as heat pipe materials.
  • High-temperature heat pipe packaging based on refractory alloys is mostly a combination of a tube body and an end cover, and the manufacturing process is complicated, and it is necessary to add a valve at the end cover for subsequent infusion and vacuum degassing.
  • Some refractory metals have high hardness and brittleness and are difficult to process materials. Manufacturing a valve with an end cap is difficult and costly, which limits the manufacturing efficiency of high-temperature heat pipes.
  • the technical problem to be solved by the present invention is to overcome the complicated manufacturing process of the high-temperature heat pipe in the prior art, and proposes a high-temperature heat pipe packaging method.
  • the high-temperature heat pipe packaging method can reduce the cost and improve the manufacturing efficiency.
  • a high-temperature heat pipe packaging method which is characterized in that it includes the following steps:
  • step (1) the diameter reduction treatment of the heat pipe includes the following steps:
  • the spinning compression die includes a cage and a plurality of steel balls, and the plurality of steel balls are fixed in the cage to form a reduced diameter hole.
  • step (1) the necking treatment of the heat pipe includes the following steps:
  • the spin-compression die described in step (1) includes an upper die and a lower die.
  • One side of the upper die is provided with a first groove
  • one side of the lower die is provided with a first groove.
  • step (4) after vacuuming, the pressure of the inner cavity of the heat pipe is lower than 1 ⁇ 10-3Pa.
  • the outer diameter of the reduced heat pipe in step (1) is 6-8 mm.
  • step (1) and step (2) includes the following steps: cleaning and removing the surface oxide scale and lubricating oil of the heat pipe after the necking and diameter reduction.
  • step (3) the water content and oxygen content of the inert gas protective glove box are both lower than 0.5 ppm.
  • step (5) there are the following steps: place the high-temperature heat pipe in a pressure holding vessel with high-pressure helium for a time greater than or equal to 2 hours, and then vacuumize the pressure holding vessel, and then Check the residual amount of helium in the pressure holding vessel; when the partial pressure of helium in the pressure holding vessel is lower than 1 ⁇ 10 -3 Pa, the high-temperature heat pipe is qualified.
  • the two ends of the heat pipe tube are respectively necked and reduced in diameter, and the necked end of the heat pipe tube is sealed by laser or electron beam spot welding to simplify the high-temperature heat pipe manufacturing process and reduce the cost;
  • FIG. 1 is a schematic diagram of the heat pipe of the present invention
  • Figure 2 is a schematic diagram of the spinning compression die of the present invention.
  • Figure 3 is a schematic diagram of the spin-compression diameter operation of the present invention.
  • the arrow in the figure is the feed direction;
  • Figure 4 is a schematic diagram of the spinning compression port mold of the present invention.
  • Figure 5 is a schematic diagram of the rotation compression port operation of Faming; the arrow in the figure is the feed direction;
  • Figure 6 is a schematic diagram of the process of filling and sealing the working fluid of the heat pipe in the present invention.
  • Fig. 7 is a schematic diagram of the electron beam welding/laser welding sealing of the heat pipe in the present invention.
  • the packaging method of a high-temperature heat pipe proposed by the present invention includes the following steps:
  • the shrinking end and the reducing diameter end are obtained, which is convenient for the subsequent flattening and sealing and welding and sealing operations; cleaning and removing the shrinking and reducing heat pipe pipe 1
  • the surface oxide scale and lubricating oil can effectively reduce the non-condensable gas of the high-temperature heat pipe, and the surface oxide scale and lubricating oil affect the strength of subsequent flattening and welding.
  • the tubular heating furnace 5 uses the tubular heating furnace 5 to heat the heat pipe pipe 1 and connect the reduced diameter end to a vacuum pump.
  • the vacuum pump extracts the heat pipe pipe 1 for vacuum treatment, so that the inner cavity of the heat pipe pipe 1 is less than 1 ⁇ 10 -3 Pa, and then use the electro-hydraulic clamp 3 to flatten the reduced diameter end.
  • the electro-hydraulic clamp 3 has a tonnage greater than 12T, and the flattening tool has a cutting edge radius less than 10mm; the heating temperature needs to be higher than the melting point of the working fluid 4, high temperature melting Quickly exhaust the miscellaneous air inside;
  • the high-pressure nitrogen in this embodiment refers to nitrogen with a pressure in the range of 0.3-0.4MPa, and the holding time is greater than or equal to 2 hours.
  • the pressure holding vessel is evacuated, and then the residual amount of helium in the pressure holding vessel is inspected; when the partial pressure of helium in the pressure holding vessel is lower than 1 ⁇ 10 -3 Pa, the high-temperature heat pipe is a qualified product.
  • the outer diameter of the reduced heat pipe tube 1 in step (1) is 6 mm.
  • step (3) the inert gas used in the inert gas glove box is argon.
  • step (4) the heating temperature is 250° C., and the length of the heating section of the heat pipe 1 is 100 mm.
  • the material of the heat pipe tube 1 is a nickel-based high-temperature alloy, and the encapsulating working fluid 4 in the tube is an alkali metal.
  • the inner wall of the heat pipe material 1 is designed with a grooved capillary structure.
  • the capillary structure has the functions of reducing the reflux resistance of the liquid metal working fluid 4 and increasing the anti-gravity performance when the high-temperature heat pipe is working.
  • the grooved capillary structure is manufactured by a spinning method with high processing efficiency and can effectively reduce the reflux resistance of the liquid metal working fluid 4.
  • step (1) the diameter reduction treatment of the heat pipe 1 includes the following steps:
  • the spin-compression die 7 described in the spin-compression die includes a cage 7-1 and a plurality of steel balls 7-2, and the plurality of steel balls 7-2 are fixed to the holder.
  • a reduced diameter hole 7-3 is formed in the frame 7-1.
  • step (1) the necking treatment performed on the heat pipe tube 1 includes the following steps:
  • the spin-compression die 8 described in step (1) includes an upper die 8-1 and a lower die 8-2, and a first recess is provided on one side of the upper die 8-1.
  • Slot 8-3-1 one side of the lower die 8-2 is provided with a second groove 8-3-2, the upper die 8-1 and the lower die 8-2 are spliced, and the first recess
  • the groove 8-3-1 and the second groove 8-3-2 are spliced together to form a necked groove 8-3.
  • the outer diameter of the reduced diameter heat pipe tube 1 in step (1) is 7 mm.
  • step (3) the inert gas used in the inert gas glove box is helium.
  • step (4) the heating temperature is 275°C, and the length of the heating section of the heat pipe 1 is 200 mm.
  • the material of the heat pipe tube 1 is molybdenum alloy, and the encapsulating working medium 4 in the tube is molten salt.
  • the inner wall of the heat pipe material 1 is designed with a wire mesh type capillary structure.
  • the screen-type capillary structure is simple to manufacture and has certain anti-gravity performance.
  • the diameter of the reduced heat pipe tube 1 in step (1) has an outer diameter of 8 mm.
  • step (4) the heating temperature is 300° C., and the length of the heating section of the heat pipe 1 is 300 mm.
  • the material of the heat pipe tube 1 is a niobium alloy.
  • the inner wall of the heat pipe material 1 is designed with a powder sintered capillary structure.
  • the powder sintered capillary structure has high anti-gravity performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Gasket Seals (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种高温热管的封装方法,包括以下步骤:(1)将热管管材(1)的两端分别缩口及缩径处理后,得到缩口端和缩径端;(2)采用激光焊或电子束(6)焊对缩口端进行封口;(3)将热管管材(1)置于惰性气体保护手套箱(2)中,再将除杂后的工质灌注入热管管材(1)内;(4)对热管管材(1)进行加热,并将缩径端接入真空泵,此真空泵抽取热管管材内进行抽真空处理,以令热管管材(1)的内腔达到目标压强,再对缩径端压扁;(5)采用电子束焊(6)接或激光焊(6)接对压扁后的缩径端的端口进行封口,以得高温热管。克服现有技术中高温热管封装工序繁杂,起到简化高温热管制造工序及有效提高高温热管内部不凝性气体与防止工质受氧化的有益效果。

Description

一种高温热管的封装方法 技术领域
本发明属于高温热结构技术领域,尤其涉及一种高温热管的封装方法。
背景技术
热管根据其使用温度可分为低温热管(-270~0℃)、常温热管(200~600℃)和高温热管(600℃以上)。高温热管使用温度高,非能动的热能传输方式在航天、核能发电和军工领域都具有广阔的应用前景。高温热管以液态金属或熔融盐为工质,高温下具有良好的热稳定性及较低的饱和蒸汽压力;以不锈钢、高温合金、难熔金属为热管管材。
基于难熔合金的高温热管封装多为管体与端盖组合,制作过程繁杂,并且需要在端盖处增加一个阀门以留作后续灌注和真空除气。部分难熔金属硬度和脆性较大,属于难加工材料,制造一个带端盖的阀门加工难度大,成本高,限制了高温热管的制造效率。
发明内容
本发明要解决的技术问题是克服现有技术中高温热管的制作过程繁杂,提出了一种高温热管的封装方法,此高温热管的封装方法可降低成本,提高制造效率。
本发明为解决上述提出的技术问题所采取技术方案为:一种高温热管的封装方法,其特征在于,包括如下步骤:
(1)将热管管材的两端分别缩口及缩径处理后,得到缩口端和缩径端;
(2)采用激光焊或电子束焊对缩口端进行封口;
(3)将热管管材置于惰性气体保护手套箱中,再将除杂后的工质灌注入热管管材内;
(4)对热管管材进行加热,并将缩径端接入真空泵,此真空泵抽取热管管材内进行抽真空处理,以令热管管材的内腔达到目标压强,再对缩径端压扁;
(5)采用电子束焊接或激光焊接对压扁后的缩径端的端口进行封口,以得高温热管。
更优的选择,在步骤(1)中,对热管管材进行的缩径处理包括以下步骤:
(1-1-1)将热管管材固定于车床的夹具,将旋压缩径模具安装于车床中;
(1-1-2)驱动旋压缩径模具转动,同时驱动热管管材轴向进给,令热管管材插入旋压缩径模具内,以对热管管材的一端进行缩径处理。
更优的选择,所述的旋压缩径模具包括保持架和多颗钢球,所述多颗钢球固定于保持架内以形成缩径孔。
更优的选择,在步骤(1)中,对热管管材进行的缩口处理包括以下步骤:
(1-2-1)将热管管材固定于车床的夹具,再将旋压缩口模具固定于车床卡盘;
(1-2-2)驱动旋压缩口模具转动,同时驱动热管管材轴向进给,令热管管材插入旋压缩口模具内,以对热管管材的另一端进行缩口处理。
更优的选择,在步骤(1)中所述的旋压缩口模具包括上压模和下压模,所述上压模一侧设有第一凹槽,所述下压模的一侧设有第二凹槽,所述上压模和下压模拼接,第一凹槽和第二凹槽拼接一起形成缩口凹槽。
更优的选择,在步骤(4)中,经抽真空后,热管管材的内腔的压强低于1×10-3Pa。
更优的选择,在步骤(1)中的经缩径后的热管管材的外径为6~8mm。
更优的选择,在步骤(1)和步骤(2)之间,包括以下步骤:清洗去除缩口及缩径后的热管管材的表面氧化皮及润滑油。
更优的选择,在步骤(3)中,所述的惰性气体保护手套箱的水含量与氧含量均低于0.5ppm。
更优的选择,在步骤(5)之后,还具有以下步骤:将高温热管放置于具有高压氦气的保压容器中,放置时间大于或等于2小时,然后再对保压容器抽真空,接着检验保压容器内氦气的残留量;当保压容器内氦气的分压低于1×10 -3Pa时,高温热管为合格品。
本发明的有益效果在于:
1、采用将热管管材的两端分别缩口及缩径,并对热管管材的缩口端进行激光或电子束点焊封口来简化高温热管制造工序,降低成本;
2、通过对抽真空后的热管管材的缩径端压扁来实现快速临时封口,然后采用电子束或激光焊对压扁后的缩径端的端口进行封口来实现有效提高高温热管内部不凝性气体与防止工质受氧化,获取气密性良好的高温热管。
附图说明
图1为本发明的热管管材示意图;
图2为本发明的旋压缩径模具示意图;
图3为本发明的旋压缩径操作示意图;图中的箭头为进给方向;
图4为本发明的旋压缩口模具示意图;
图5为本法明的旋压缩口操作示意图;图中的箭头为进给方向;
图6为本发明中热管管材工质灌注与封口过程示意图;
图7为本发明中对热管管材进行电子束焊/激光焊封口示意图。
附图中各部件的标记为:1热管管材、2惰性气体保护手套箱、3电动液压钳、4工质、5管式加热炉、6电子束焊/激光焊;7旋压缩径模具、7-1保持架、7-2钢球、缩径孔7-3;8旋压缩口模具、8-1上压模、8-2下压模、8-3缩口凹槽、8-3-1第一凹槽、8-3-2第二凹槽。
具体实施方式
下面结合附图和具体实施例对本发明的发明目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。
实施例一
如图1-7所示,本发明提出的一种高温热管的封装方法,包括如下步骤:
(1)将热管管材1的两端分别缩口及缩径处理后,得到缩口端和缩径端,便于后续压扁封口及焊接密封操作;清洗去除缩口及缩径后的热管管材1的表面氧化皮及润滑油,能有效减少高温热管的不凝性气体,表面氧化皮及润滑油影响后续压扁及焊接的强度。
(2)采用激光焊或电子束焊6对缩口端进行封口;
(3)保持惰性气体保护手套箱2的内部水含量与氧含量均低于0.5ppm,再将热管管材1置于惰性气体保护手套箱2中,防止工质4在灌注过程中氧化变质,再将除杂后的工质4灌注入热管管材1内;
(4)使用管式加热炉5对热管管材1进行加热,并将缩径端接入真空泵,此真空泵抽取热管管材1内进行抽真空处理,以令热管管材1的内腔低于1×10 -3Pa,然后采用电动液压钳3对缩径端压扁,该电动液压钳3的吨位大于12T,压扁磨具刃口半径小于10mm;加热温度需高于工质4的熔点,高温熔融使其内部杂气快 速排出;
(5)采用电子束焊接或激光焊6接对压扁后的缩径端的端口进行封口,以得高温热管;
(6)将高温热管放置于具有的高压氦气的保压容器中,本实施例中的高压氮气是指的压强范围为0.3-0.4MPa的氮气,放置时间大于或等于2小时,然后再对保压容器抽真空,接着检验保压容器内氦气的残留量;当保压容器内氦气的分压低于1×10 -3Pa时,高温热管为合格品。
在步骤(1)中的经缩径后的热管管材1的外径为6mm。
在步骤(3)中惰性气体手套箱中使用的惰性气体为氩气。
在步骤(4)中,加热温度为250℃,热管管材1加热段长度为100mm。
热管管材1的材料为镍基高温合金,管内封装工质4为碱金属。热管管材1的内壁设计有沟槽型毛细结构。毛细结构在高温热管工作时有减少液态金属工质4回流阻力、增加抗重力性能等作用。沟槽型毛细结构经由旋压方法制造,加工效率高,能有效减少液态金属工质4回流阻力。
如图3所示,在步骤(1)中,对热管管材1进行的缩径处理包括以下步骤:
(1-1-1)将热管管材1固定于车床的夹具,将旋压缩径模具7安装于车床中;
(1-1-2)驱动旋压缩径模具7转动,同时驱动热管管材1轴向进给,令热管管材1插入旋压缩径模具7内,热管管材1的一端的直径随着旋压缩径模具7的缩径孔7-3的直径变小而变小,热管管材的一端直径达到6cm后,保持旋压缩径模具7的缩径孔7-3的直径不变,直到得到热管管材的缩径端。
如图2所示,在步骤(1)中的旋压缩径模具7所述的旋压缩径模具包括保持架7-1和多颗钢球7-2,多颗钢球7-2固定于保持架7-1内以形成缩径孔7-3。
如图5所示,在步骤(1)中,对热管管材1进行的缩口处理包括以下步骤:
(1-2-1)将热管管材1固定于车床的夹具,再将旋压缩口模具8固定于车床卡盘;
(1-2-2)驱动旋压缩口模具8转动,同时驱动热管管材1轴向进给,令热管管材1插入旋压缩口模具8的缩口凹槽内,热管管材另一端的管壁随着缩口凹槽转动而形变,直到热管管材的另一端缩口达到密封状态。
如图4所示,在步骤(1)中所述的旋压缩口模具8包括上压模8-1和下压模8-2,所述上压模8-1一侧设有第一凹槽8-3-1,所述下压模8-2的一侧设有第二凹槽8-3-2,所述上压模8-1和下压模8-2拼接,第一凹槽8-3-1和第二凹槽8-3-2拼接一起形成缩口凹槽8-3。
实施例二
本实施例中除以下技术特征与实施例一不同外,其他技术特征相同:
在步骤(1)中的经缩径后的热管管材1的外径为7mm。
在步骤(3)中惰性气体手套箱中使用的惰性气体为氦气。
在步骤(4)中,加热温度为275℃,热管管材1加热段长度为200mm。
热管管材1的材料为钼合金,管内封装工质4为熔融盐。所述的热管管材1的内壁设计有丝网型毛细结构。丝网型毛细结构制造简单具有一定的抗重力性能。
实施例三
本实施例中除以下技术特征与实施例一不同外,其他技术特征相同:
在步骤(1)中的经缩径后的热管管材1的外径为8mm。
在步骤(4)中,加热温度为300℃,热管管材1加热段长度为300mm。
热管管材1的材料为铌合金。所述的热管管材1的内壁设计有粉末烧结型毛细结构。粉末烧结型毛细结构具有较高的抗重力性能。
上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种高温热管的封装方法,其特征在于,包括如下步骤:
    (1)将热管管材的两端分别缩口及缩径处理后,得到缩口端和缩径端;
    (2)采用激光焊或电子束焊对缩口端进行封口;
    (3)将热管管材置于惰性气体保护手套箱中,再将除杂后的工质灌注入热管管材内;
    (4)对热管管材进行加热,并将缩径端接入真空泵,此真空泵抽取热管管材内进行抽真空处理,以令热管管材的内腔达到目标压强,再对缩径端压扁;
    (5)采用电子束焊接或激光焊接对压扁后的缩径端的端口进行封口,以得高温热管。
  2. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(1)中,对热管管材进行的缩径处理包括以下步骤:
    (1-1-1)将热管管材固定于车床的夹具,将旋压缩径模具安装于车床中;
    (1-1-2)驱动旋压缩径模具转动,同时驱动热管管材轴向进给,令热管管材插入旋压缩径模具内,以对热管管材的一端进行缩径处理。
  3. 根据权利要求2所述的一种高温热管的封装方法,其特征在于,所述的旋压缩径模具包括保持架和多颗钢球,所述多颗钢球固定于保持架内以形成缩径孔。
  4. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(1)中,对热管管材进行的缩口处理包括以下步骤:
    (1-2-1)将热管管材固定于车床的夹具,再将旋压缩口模具固定于车床卡盘;
    (1-2-2)驱动旋压缩口模具转动,同时驱动热管管材轴向进给,令热管管材插入旋压缩口模具内,以对热管管材的另一端进行缩口处理。
  5. 根据权利要求4所述的一种高温热管的封装方法,其特征在于,在步骤(1) 中所述的旋压缩口模具包括上压模和下压模,所述上压模一侧设有第一凹槽,所述下压模的一侧设有第二凹槽,所述上压模和下压模拼接,第一凹槽和第二凹槽拼接一起形成缩口凹槽。
  6. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(4)中,经抽真空后,热管管材的内腔的压强低于1×10 -3Pa。
  7. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(1)中的经缩径后的热管管材的外径为6~8mm。
  8. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(1)和步骤(2)之间,包括以下步骤:清洗去除缩口及缩径后的热管管材的表面氧化皮及润滑油。
  9. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(3)中,所述的惰性气体保护手套箱的水含量与氧含量均低于0.5ppm。
  10. 根据权利要求1所述的一种高温热管的封装方法,其特征在于,在步骤(5)之后,还具有以下步骤:将高温热管放置于具有高压氦气的保压容器中,放置时间大于或等于2小时,然后再对保压容器抽真空,接着检验保压容器内氦气的残留量;当保压容器内氦气的分压低于1×10 -3Pa时,高温热管为合格品。
PCT/CN2020/119392 2020-06-08 2020-09-30 一种高温热管的封装方法 WO2021248753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510277.4A CN111780599A (zh) 2020-06-08 2020-06-08 一种高温热管的封装方法
CN202010510277.4 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021248753A1 true WO2021248753A1 (zh) 2021-12-16

Family

ID=72754676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119392 WO2021248753A1 (zh) 2020-06-08 2020-09-30 一种高温热管的封装方法

Country Status (3)

Country Link
US (1) US11389912B1 (zh)
CN (1) CN111780599A (zh)
WO (1) WO2021248753A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907412A (zh) * 2009-06-03 2010-12-08 富瑞精密组件(昆山)有限公司 热管
CN102506597A (zh) * 2008-11-03 2012-06-20 赵耀华 一种板状热管及其加工工艺
CN102878840A (zh) * 2012-09-29 2013-01-16 中国航天空气动力技术研究院 一种制备碱金属高温热管的无氧化分装装置及方法
CN103063069A (zh) * 2013-01-08 2013-04-24 上海卫星工程研究所 卫星用热管充液管封装技术
CN203018559U (zh) * 2012-12-05 2013-06-26 沈阳黎明航空发动机(集团)有限责任公司 一种管端缩口模具
US20130239410A1 (en) * 2012-03-16 2013-09-19 Foxconn Technology Co., Ltd. Method for manufacturing heat pipe
CN203586894U (zh) * 2013-10-29 2014-05-07 昆明理工大学 一种排液法热管密封装置
CN210098752U (zh) * 2019-04-22 2020-02-21 杭州沈氏节能科技股份有限公司 一种缩口模具
CN110906768A (zh) * 2019-11-11 2020-03-24 中国航天空气动力技术研究院 一种高温热管的封口方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769674A (en) * 1972-10-10 1973-11-06 Isothermics Method for producing heat pipes
JPS57142485A (en) * 1981-02-28 1982-09-03 Furukawa Electric Co Ltd:The Manufacture of heat pipe
TW493058B (en) * 1998-07-02 2002-07-01 Showa Denko Kk The remains of non condensing gas in heat pipe, the detecting method of non-remains, and the manufacturing method of pipes
US20020178561A1 (en) * 1999-07-21 2002-12-05 Huang Meng Cheng Pipe sealing structure for forming thermal pipe
TW593961B (en) * 2002-12-13 2004-06-21 Huei-Chiun Shiu Method and device for removing non-condensing gas in a heat pipe
US6957691B2 (en) * 2003-11-12 2005-10-25 Pao-Shu Hsieh Sealing structure of a heat-dissipating tube
JP2005180723A (ja) * 2003-12-16 2005-07-07 Toshiba Home Technology Corp ヒートパイプの端部封止方法
US7650915B2 (en) * 2004-02-19 2010-01-26 Hul-Chun Hsu Method for removing vapor within heat pipe
US7538298B2 (en) * 2004-12-02 2009-05-26 Jia-Hao Li Gas removing apparatus for heat pipe
US20060117565A1 (en) * 2004-12-02 2006-06-08 Jia-Hao Li Shrinking apparatus for a heat pipe and method for the same
US7430803B2 (en) * 2004-12-28 2008-10-07 Jia-Hao Li Gas removing apparatus for removing non-condensate gas from a heat pipe and method for the same
US7404255B2 (en) * 2005-01-05 2008-07-29 Jia-Hao Li Apparatus and method for removing non-condensing gas in heat pipe
US20060162160A1 (en) * 2005-01-27 2006-07-27 Hul-Chun Hsu Gas removal method and apparatus for heat pipe
CN100462661C (zh) * 2005-04-29 2009-02-18 捷飞有限公司 热管压合封口方法
US7275409B1 (en) * 2006-04-17 2007-10-02 Chaun-Choung Technology Corp. Method for manufacturing a heat pipe having an enlarged portion
TW200743544A (en) * 2006-05-25 2007-12-01 Yeh Chiang Technology Corp Method and equipment of cutting a piece of heat conduction pipe with fixed length
CN101349520B (zh) * 2007-07-20 2010-12-29 富准精密工业(深圳)有限公司 热管的制造方法
CN101799249A (zh) * 2009-12-12 2010-08-11 中山伟强科技有限公司 一种热管的制造方法
US20130048247A1 (en) * 2011-08-25 2013-02-28 Cooler Master Co., Ltd. Heat pipe manufacturing method and heat pipe thereof
CN102688952A (zh) * 2012-05-31 2012-09-26 华南理工大学 一种全自动热管除气封口装置
CN102829658B (zh) * 2012-08-16 2014-06-11 华南理工大学 一种金属热管的密封封口方法
CN204085271U (zh) * 2014-08-29 2015-01-07 常州综研加热炉有限公司 低温热管的管端密封装置
US10016857B2 (en) * 2015-02-02 2018-07-10 Asia Vital Components Co., Ltd. Method of removing ineffective portion of flat heat pipe
EP3374681A4 (en) 2015-11-11 2019-07-24 Greene, Tweed Technologies, Inc. SEALING RINGS AND SEAL RING ASSEMBLIES FOR FINAL APPLICATIONS AT HIGH TEMPERATURE
US10168104B2 (en) 2016-06-24 2019-01-01 Tamkang University Filling pipe for use in high-temperature heat pipe filling operation
CN110622219B (zh) 2017-03-10 2024-01-19 杰创科增强现实有限公司 交互式增强现实
CN109141086A (zh) * 2018-08-31 2019-01-04 中国航天空气动力技术研究院 一种高温热管工质的充装方法
CN109940343B (zh) * 2019-02-13 2021-01-01 中国电子科技集团公司第十六研究所 一种扁平型热管的封装方法
CN110411253B (zh) * 2019-07-11 2020-10-09 桂林电子科技大学 一种高温热管工质充注装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506597A (zh) * 2008-11-03 2012-06-20 赵耀华 一种板状热管及其加工工艺
CN101907412A (zh) * 2009-06-03 2010-12-08 富瑞精密组件(昆山)有限公司 热管
US20130239410A1 (en) * 2012-03-16 2013-09-19 Foxconn Technology Co., Ltd. Method for manufacturing heat pipe
CN102878840A (zh) * 2012-09-29 2013-01-16 中国航天空气动力技术研究院 一种制备碱金属高温热管的无氧化分装装置及方法
CN203018559U (zh) * 2012-12-05 2013-06-26 沈阳黎明航空发动机(集团)有限责任公司 一种管端缩口模具
CN103063069A (zh) * 2013-01-08 2013-04-24 上海卫星工程研究所 卫星用热管充液管封装技术
CN203586894U (zh) * 2013-10-29 2014-05-07 昆明理工大学 一种排液法热管密封装置
CN210098752U (zh) * 2019-04-22 2020-02-21 杭州沈氏节能科技股份有限公司 一种缩口模具
CN110906768A (zh) * 2019-11-11 2020-03-24 中国航天空气动力技术研究院 一种高温热管的封口方法

Also Published As

Publication number Publication date
US11389912B1 (en) 2022-07-19
CN111780599A (zh) 2020-10-16
US20220241909A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
CN106017176A (zh) 一种手机散热用超薄热管及其制造方法
CN100453954C (zh) 热管的封口方法
CN112935507B (zh) 一种印刷电路板式换热器芯体的扩散焊接工艺
CN115647555A (zh) 一种高温合金微通道换热器的焊接方法及焊接产品
CN107662045A (zh) 铝合金产品的制造方法
CN107663631A (zh) 靶材组件的制造方法
WO2021248753A1 (zh) 一种高温热管的封装方法
CN112719821A (zh) 一种超薄真空腔均热板复合材料及其密封成型方法
US3004907A (en) Fuel tube element and method of preparing the same
CN111006527B (zh) 热换器中热管用堵头、换热器中热管的真空密封方法
CN111360260A (zh) 一种制件的热等静压系统及方法
CN112620634A (zh) 一种基于热等静压工艺的空心出口导向叶片的制备方法
CN208998614U (zh) 一种具有多层吸液芯结构的相变传热元件
CN115007988B (zh) 一种铜合金-钢复合筒形件及其制备方法
CN116571748A (zh) 一种钛合金制件的粉末热等静压近净成形方法
CN115781204A (zh) 一种扁铜管的成型工艺方法
CN111636056A (zh) 靶材的制备方法
CN213767339U (zh) 一种基于液态金属热压介质的热等静压系统
TWI293041B (zh)
CN114178794A (zh) 一种薄壁射频超导腔的制造方法
CN112658253A (zh) 一种热等静压成形高温合金半球体及其制备方法
CN111451633A (zh) 一种钼合金事故容错燃料棒的焊接封装方法
CN108817879A (zh) 一种无需退火的热导管的制作方法
CN221185017U (zh) 一种高强密封真空焊接炉
WO2022262297A1 (zh) 一种x射线管阳极靶材制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20940008

Country of ref document: EP

Kind code of ref document: A1