WO2021248723A1 - 冷却系统 - Google Patents

冷却系统 Download PDF

Info

Publication number
WO2021248723A1
WO2021248723A1 PCT/CN2020/114536 CN2020114536W WO2021248723A1 WO 2021248723 A1 WO2021248723 A1 WO 2021248723A1 CN 2020114536 W CN2020114536 W CN 2020114536W WO 2021248723 A1 WO2021248723 A1 WO 2021248723A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
channel
coolant
cooling system
cooling
Prior art date
Application number
PCT/CN2020/114536
Other languages
English (en)
French (fr)
Inventor
王丁会
李金梦
尹冉
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US17/996,166 priority Critical patent/US20230193880A1/en
Priority to EP20940039.9A priority patent/EP4123889A4/en
Priority to CA3180145A priority patent/CA3180145A1/en
Priority to AU2020453087A priority patent/AU2020453087A1/en
Priority to BR112022022831A priority patent/BR112022022831A2/pt
Publication of WO2021248723A1 publication Critical patent/WO2021248723A1/zh
Priority to ZA2022/11890A priority patent/ZA202211890B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/004Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for engine or machine cooling systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of cooling technology, in particular to a cooling system.
  • Wind energy is an open and safe renewable energy source.
  • the use of wind energy has received more and more attention.
  • With the increase in single unit capacity the loss of the entire unit has also continued to increase, especially with the rapid development of offshore units. Due to the particular environment in which offshore units are located, their maintenance is much more difficult than onshore units. Therefore, the requirements for the reliability and ease of maintenance of offshore units are constantly increasing.
  • the cooling system is one of the important components of the wind turbine. It is used to effectively dissipate and cool the heating components in the wind turbine to ensure the efficient and stable operation of the wind turbine. Therefore, the improvement of the reliability of the cooling system is the wind power. An important guarantee for the normal operation of generator sets.
  • the purpose of the present disclosure is to provide a new type of cooling system to solve the problem that the existing cooling system cannot meet the reliability requirements.
  • a cooling system includes: a heat exchanger module, the heat exchanger module at least includes a first channel and a second channel independent of each other; a first cooling circuit, a first cooling circuit and a heat The first channel of the exchanger module is connected; the second cooling circuit, the second cooling circuit is connected with the first channel of the heat exchanger module, wherein the first coolant in the first cooling circuit and/or the second cooling circuit The second coolant can flow through the first channel of the heat exchanger module for heat exchange with the third coolant that flows through the second channel of the heat exchanger module.
  • the cooling system of the present disclosure through the dual cooling circuit design, the reliability of the cooling system can be improved. Therefore, when applied to the wind power generator, the shutdown problem of the wind power generator can be reduced, and the utilization rate of the wind power generator can be improved.
  • the cooling system of the present disclosure by providing a heat exchanger module with heat exchange fins, the cooling efficiency of the cooling system can be further improved.
  • the fault-tolerant structure layout of the dual cooling circuit is simple and compact, and is easy to implement and maintain in a limited space.
  • a reasonable component layout can be realized according to the cooling logic and process requirements of the components to be cooled.
  • Fig. 1 is a schematic block diagram of a cooling system according to a first embodiment of the present disclosure.
  • Fig. 2 is a schematic block diagram of a cooling system according to a second embodiment of the present disclosure.
  • Fig. 3 is a schematic block diagram of a cooling system according to a third embodiment of the present disclosure.
  • Fig. 4 is a schematic block diagram of a cooling system according to a fourth embodiment of the present disclosure.
  • 1 Circulating pump; 2: Inlet pipeline; 3: First temperature sensor; 4: First on-off valve; 5: First pressure transmitter; 6: First filter; 7: Second pressure transmitter 8: the first heat exchanger; 8a: the first liquid inlet; 8b: the first liquid outlet; 8c: the second liquid inlet; 8d: the second liquid outlet; 8': the second heat exchanger; 8'a: the first liquid inlet; 8'b: the first liquid outlet; 8'c: the second liquid inlet; 8'd: the second liquid outlet; 9: the third pressure transmitter; 10 : Second temperature sensor; 11: Regulating valve; 12: Outlet pipeline; 13: Third on-off valve; 14: Third temperature sensor; 15: Third coolant return pipeline; 16: Sixth pressure transmitter : 17: the fourth pressure transmitter; 18: the third coolant supply pipeline; 19: the second filter; 20: the second on-off valve; 21: the fifth pressure transmitter; 22: the connecting pipeline; 23 : Three-channel heat exchanger; 24: Inlet main pipe; 25: Outlet main pipe;
  • the existing small-capacity direct-drive wind turbines have relatively small load capacity and relatively few heat-generating components.
  • the on-shore units usually operate with a single cooling system. When the cooling system fails, the wind turbine generator needs to be shut down for processing. As the capacity of a single unit increases, the loss of heat-generating components of the wind power generator increases and the number of heat-generating components increases. Therefore, it is necessary to improve the reliability of the cooling system. However, for a single cooling system, once a failure occurs, the maintenance cost of the entire wind turbine generator and the loss of power generation will increase.
  • the present disclosure provides a new type of cooling system that can realize a reasonable component layout according to the cooling logic and process requirements of the components to be cooled, and the cooling system has dual-circuit backup redundancy. Design, thus improving the reliability of the cooling system.
  • the cooling system is connected to the components to be cooled through two independent cooling circuits, and only heat is transferred between the two cooling circuits without mass transfer. Moreover, for different terminal structures of the components to be cooled, the cooling system can adopt different connection forms, so it can be adapted and matched to the requirements of different terminal structures.
  • the cooling system can realize the fault tolerance of the cooling system while meeting the heat dissipation requirements of the components to be cooled, thereby improving the reliability of the cooling system.
  • the cooling system When the cooling system is applied to a wind power generating set, it can ensure that the wind power generating set is still operating normally without shutting down when a cooling system fails, thereby reducing the loss of power generation.
  • the cooling system may include a heat exchanger module, a first cooling circuit, and a second cooling circuit.
  • the coolant in the first cooling circuit and the second cooling circuit can be combined with a cooling heat source (such as the cooling heat source in the wind turbine generator) in the heat exchanger module.
  • the coolant of the heat-generating component exchanges heat.
  • the coolant in the first cooling circuit and the second cooling circuit are referred to as the first coolant and the second coolant, respectively, and the coolant that directly absorbs heat from the heat source is referred to as the third coolant.
  • the heat exchanger module at least includes a first channel and a second channel that are independent of each other, the first cooling circuit is connected to the first channel of the heat exchanger module, and the second cooling circuit is connected to the first channel of the heat exchanger module.
  • the first coolant in the first cooling circuit and/or the second coolant in the second cooling circuit can flow through the first passage of the heat exchanger module to communicate with the second passage through the heat exchanger module.
  • the third coolant is heat exchanged.
  • the cooling system of the present disclosure is not limited to being applied to wind turbines, and it can also be applied to various components to be cooled in other component systems.
  • Fig. 1 is a schematic block diagram of a cooling system according to a first embodiment of the present disclosure.
  • the cooling system includes a first cooling circuit on the left, a second cooling circuit on the right, and a heat exchanger module including a first heat exchanger 8 and a second heat exchanger 8'.
  • the composition of the first cooling circuit and the second cooling circuit may be basically the same, and the composition of the first heat exchanger 8 and the second heat exchanger 8'may also be basically the same.
  • Each of the first heat exchanger 8 and the second heat exchanger 8' may have at least a first passage and a second passage independent of each other, and the first coolant in the first cooling circuit can flow through the first heat exchanger
  • the first passage of 8 is used for heat exchange with the third coolant flowing through the second passage of the first heat exchanger 8
  • the second coolant can flow through the first passage of the second heat exchanger 8'to It is used for heat exchange with the third coolant flowing through the second passage of the second heat exchanger 8'. That is, the first coolant and the second coolant can exchange heat with the third coolant in the first heat exchanger 8 and the second heat exchanger 8', respectively.
  • the first cooling circuit and the second cooling circuit can adopt full-load fault tolerance (one use and one standby), or can realize full-load operation through two circuits running together.
  • the first cooling circuit Since the composition and connection between the first cooling circuit and the first heat exchanger 8 are similar to the composition and connection between the second cooling circuit and the second heat exchanger 8', the first cooling circuit will be used below. Take the first heat exchanger 8 as an example for description.
  • the first cooling circuit may include a circulating pump 1, and the outlet of the circulating pump 1 is connected to the first end of the first passage of the first heat exchanger 8 (specifically, the first inlet The liquid port 8a), the second end of the first passage of the first heat exchanger 8 (specifically, the first liquid outlet 8b) can be connected to the circulating pump 1 through the liquid outlet pipe 12.
  • the first cooling circuit may further include a first radiator 27 for cooling the first coolant.
  • the first radiator 27 may be an air-cooled radiator.
  • the first coolant and the third coolant exchange heat through the first heat exchanger 8, and the third coolant flows back through the second passage of the first heat exchanger 8, the third coolant supply line 18, and the third coolant.
  • the pipeline 15 circulates.
  • the first end of the third coolant supply line 18 is connected to the first end of the second passage of the first heat exchanger 8 (specifically, the second liquid inlet 8c), and the third coolant return line 15
  • the first end is connected to the second end of the second passage of the first heat exchanger 8 (specifically, the second liquid outlet 8d).
  • the third coolant can flow into the second passage of the first heat exchanger 8 through the third coolant supply line 18 after absorbing heat from the heat source device, and can pass through the first coolant after completing heat exchange with the first coolant.
  • the three-coolant return line 15 flows back to the heat source equipment, thereby continuously cooling the heat source equipment.
  • the first coolant enters the first passage of the first heat exchanger 8 through the liquid inlet pipe 2, while the third coolant enters through the third coolant supply pipe 18.
  • the first coolant and the third coolant can exchange heat in the first heat exchanger 8.
  • the first coolant and the third coolant may flow in opposite directions in the first heat exchanger 8.
  • the first coolant flows through the first passage of the first heat exchanger 8 and then flows back to the first radiator 27 through the liquid outlet line 12 under the action of the circulating pump 1 and passes through the first radiator.
  • the radiator 27 cools down, it enters the first passage of the first heat exchanger 8 again for the next cycle.
  • the third coolant flowing through the second passage of the first heat exchanger 8 can flow back to the heat source device through the third coolant return line 15 under the action of the power source.
  • a first filter 6 may be provided on the liquid inlet pipe 2.
  • the first filter 6 may be provided between the circulating pump 1 and the first liquid inlet 8a of the first heat exchanger 8 to The cleanliness of the first coolant flowing into the first heat exchanger 8 is improved, thereby avoiding blockage of the pipeline.
  • the inlet side of the first filter 6 may be provided with a first pressure transmitter 5, and the outlet side of the first filter 6 may be provided with a second pressure transmitter 7 for monitoring the performance of the first filter 6 Operating status. For example, when the pressure difference ⁇ P1 between the first pressure transmitter 5 and the second pressure transmitter 7 reaches the preset pressure difference ⁇ P1, the first filter 6 needs to be replaced.
  • the outlet side of the first heat exchanger 8 may be provided with a third pressure transmitter 9 for monitoring the blockage of the first passage of the first heat exchanger 8. For example, when the pressure difference ⁇ P2 between the second pressure transmitter 7 and the third pressure transmitter 9 reaches the preset pressure difference ⁇ P2, the first passage of the first heat exchanger 8 needs to be dredged.
  • a first temperature sensor 3 can be provided on the inlet pipe 2 and a second temperature sensor 10 can be provided on the outlet pipe 12 for sensing the temperature of the first coolant entering and exiting the first heat exchanger 8 , To learn the heat exchange state of the first coolant and the third coolant based on the sensed temperature.
  • a first switch valve 4 may be provided on the liquid inlet pipe 2 and/or a regulating valve 11 may be provided on the liquid outlet pipe 12.
  • a second filter 19 may be provided on the third coolant supply line 18 to improve the cleanliness of the third coolant flowing into the second passage of the first heat exchanger 8.
  • a fourth pressure transmitter 17 and a fifth pressure transmitter 21 may be provided on both sides of the second filter 19 for monitoring the operating state of the second filter 19. For example, when the pressure difference ⁇ P3 between the fourth pressure transmitter 17 and the fifth pressure transmitter 21 reaches the preset pressure difference ⁇ P3, the second filter 19 needs to be replaced.
  • a third temperature sensor 14 may be provided on the third coolant return line 15 to adjust the opening degree of the regulating valve 11 in the first cooling circuit according to the temperature value sensed by the third temperature sensor 14, so as to ensure the first cooling process.
  • the temperature of the third coolant is not lower than the temperature set by the process requirements of the parts to be cooled.
  • a sixth pressure transmitter 16 can also be provided on the third coolant return line 15 for monitoring the second channel of the first heat exchanger 8 in combination with the pressure value sensed by the fourth pressure transmitter 17 The blockage.
  • the third coolant supply line 18 may be provided with a second switch valve 20 and/or the third coolant return line 15 may be provided with a third switch valve 13 for maintenance or replacement of parts in the cooling system. At this time, the second on-off valve 20 and/or the third on-off valve 13 are closed to achieve partial pipeline interception, thus facilitating corresponding maintenance and replacement operations.
  • the first heat exchanger 8 may include a plate heat exchanger, and the plate heat exchanger may include heat exchange fins. Therefore, when the first coolant is heat exchanged with the third coolant, the heat exchange fins of the first heat exchanger 8 can simultaneously exchange heat with the outside air, so that the efficiency of cooling the third coolant can be further enhanced.
  • the second heat exchanger 8' may also have a first liquid inlet 8'a, a first liquid outlet 8'b, a second liquid inlet 8'c, and a second liquid outlet 8'd.
  • the connection between the second heat exchanger 8'and the second cooling circuit, the third coolant supply line, and the third coolant return line and the first heat exchanger 8 and the first cooling circuit, and the third coolant supply line The connection between the circuit and the third coolant return line is similar, and will not be repeated here.
  • Fig. 2 is a schematic block diagram of a cooling system according to a second embodiment of the present disclosure.
  • the cooling principle of the second embodiment is similar to the cooling principle of the first embodiment, except that a connecting pipe 22 connecting the first heat exchanger 8 and the second heat exchanger 8'is provided.
  • the second liquid inlet 8'c of the second heat exchanger 8'in the first embodiment is in the second embodiment Used as a second liquid outlet and connected to the third coolant return line 15, while the second liquid outlet 8'd in the second heat exchanger 8'in the first embodiment is used in the second embodiment
  • the second liquid inlet is used as the second liquid inlet and is connected to the second liquid outlet 8d of the first heat exchanger 8 through the connecting pipe 22, thus reducing the layout of the third coolant supply pipe 18 and the third coolant return pipe 15 And quantity.
  • the first end of the third coolant supply pipe 18 may be connected to the second passage of the first heat exchanger 8
  • the second end (ie, the second liquid inlet 8c), the first end of the third coolant return line 15 can be connected to the second end of the second channel of the second heat exchanger 8'(ie, the second Outlet).
  • the positions of the third coolant supply line 18 and the third coolant return line 15 may be interchanged.
  • the cooling system adopts the above-mentioned layout method, which can not only realize the independent operation of the first cooling circuit and the second cooling circuit, but when one of them fails, the other cooling circuit is started to realize fault-tolerant operation and ensure the cooling efficiency of the heating components;
  • the pipeline and components of the layout can be further simplified, and it has certain advantages when a compact layout space is required.
  • Fig. 3 is a schematic block diagram of a cooling system according to a third embodiment of the present disclosure.
  • the cooling principle of the third embodiment is similar to the cooling principle of the first embodiment, except that the heat exchanger module of the cooling system uses a three-channel heat exchanger 23, so the arrangement and layout of components can be further effectively simplified. . After one cooling circuit in the cooling system fails, the other cooling circuit in the cooling system can still operate normally.
  • the three-channel heat exchanger 23 may include a first flow channel, a second flow channel, and a third flow channel that are independent of each other.
  • the first flow channel can communicate with the first liquid inlet 23a and the first liquid outlet 23b
  • the second flow channel can communicate with the second liquid inlet 23c and the second liquid outlet 23d
  • the third flow channel can communicate with the third liquid inlet 23e and the third liquid outlet 23f.
  • the first cooling circuit may be connected to the first flow path of the three-channel heat exchanger 23
  • the second cooling circuit may be connected to the third flow path of the three-channel heat exchanger 23, and the third coolant supply line 18 and the third cooling
  • the agent return line 15 may be connected to both ends of the second flow path of the three-channel heat exchanger 23, respectively.
  • the first coolant in the first cooling circuit can flow through the first flow channel of the three-channel heat exchanger 23 and the second coolant in the second cooling circuit can flow through the third flow channel of the three-channel heat exchanger 23 , To exchange heat with the third coolant flowing through the second flow path of the three-channel heat exchanger 23.
  • the cooling system adopts the above-mentioned layout method, which can not only realize the independent operation of the first cooling circuit and the second cooling circuit, but when one of them fails, the other cooling circuit is started to realize fault-tolerant operation and ensure the cooling efficiency of the heating components; Further integrating the two heat exchangers into one heat exchanger, simplifying the layout of pipelines and devices, can further realize the redundant layout of two cooling circuits in a limited space.
  • Fig. 4 is a schematic block diagram of a cooling system according to a fourth embodiment of the present disclosure.
  • the cooling principle of the fourth embodiment is similar to the cooling principle of the first embodiment, except that the layout of the first cooling circuit and the second cooling circuit and the heat exchanger module is different from the corresponding layout in the first embodiment.
  • the first cooling circuit and the second cooling circuit are connected to the first channel of the heat exchanger module in a parallel connection.
  • the heat exchanger module may be a single first heat exchanger 8 or a plurality of first heat exchangers 8 connected in series.
  • the first cooling circuit and the second cooling circuit are connected to the first heat exchanger 8 in parallel connection.
  • the first heat exchanger 8 includes a first liquid inlet 8a, a liquid inlet manifold 24 connected to the first liquid inlet 8a, a first liquid outlet 8b, and a liquid outlet manifold connected to the first liquid outlet 8b 25.
  • the first cooling circuit and the second cooling circuit are connected between the liquid inlet header 24 and the liquid outlet header 25 of the first heat exchanger 8 in parallel connection.
  • the liquid inlet header 24 and the liquid outlet header 25 can realize the collection and distribution of the first cooling circuit and the second cooling circuit. In this way, part of the pipelines of the two cooling circuits can be merged, the pipelines are further simplified, and the overall layout is compact.
  • At least one of the first cooling circuit and the second cooling circuit may be provided with a check valve 26, for example, may be provided on the liquid inlet pipe 2, and the check valve 26 may have a unidirectional conduction function.
  • the other cooling circuit of the first cooling circuit and the second cooling circuit can operate normally, and the coolant in the other cooling circuit It flows into the first heat exchanger 8 through the liquid inlet manifold 24.
  • the coolant in the normally operating cooling circuit cannot enter the failed cooling circuit, ensuring the cooling in the case of a single small-capacity heat exchanger setting efficient.
  • the liquid inlet pipeline 2 includes a liquid inlet manifold 24 and a pipeline connected between the circulating pump 1 and the first heat exchanger 8.
  • the liquid outlet pipeline 12 includes a liquid outlet manifold 25 and a pipeline connected to the circulating pump. 1 and the pipeline between the first heat exchanger 8.
  • the first filter 6 and the second pressure transmitter 7 are arranged on the inlet main pipe 24, and the regulating valve 11 is arranged on the outlet main pipe 25, but it is not limited thereto. That is to say, the layout of the corresponding devices on the first cooling circuit and the second cooling circuit can be designed according to actual conditions, which is not limited to the example shown in the figure.
  • the cooling system of the present disclosure through the dual cooling circuit design, the reliability of the cooling system can be improved. Therefore, when applied to the wind power generator, the shutdown problem of the wind power generator can be reduced, and the utilization rate of the wind power generator can be improved.
  • the cooling system of the present disclosure by providing a heat exchanger module with heat exchange fins, the cooling efficiency of the cooling system can be further improved.
  • the fault-tolerant structure layout of the dual cooling circuit is simple and compact, and is easy to implement and maintain in a limited space.
  • a reasonable component layout can be realized according to the cooling logic and process requirements of the components to be cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

一种冷却系统,冷却系统包括:热交换器模块,热交换器模块至少包括彼此独立的第一通道和第二通道;第一冷却回路,第一冷却回路与热交换器模块的第一通道连接;第二冷却回路,第二冷却回路与热交换器模块的第一通道连接,其中,第一冷却回路中的第一冷却剂和/或第二冷却回路中的第二冷却剂能够流经热交换器模块的第一通道,以用于与流经热交换器模块的第二通道的第三冷却剂热交换。根据该冷却系统,通过双冷却回路设计,可提高冷却系统的可靠性。

Description

冷却系统 技术领域
本公开涉及冷却技术领域,具体地涉及一种冷却系统。
背景技术
风能是一种开放且安全的可再生能源,风能的利用越来越受到重视,作为风力发电最为核心装备的风力发电机组正朝着大型化、更加经济的方向发展。随着单机容量的增加,整个机组的损耗量也随之不断加大,尤其随着海上机组的大步伐发展,海上机组由于所处环境的特殊性,其维护难度比陆上机组大得多,因此,对于海上机组的可靠性及易维护性的要求也不断提升。
冷却系统为风力发电机组的重要组成部分之一,其用于对风力发电机组中的发热部件进行有效的散热和冷却,保证风力发电机组的高效平稳运行,因此冷却系统的可靠性的提升是风力发电机组正常运行的重要保障。
然而,目前的冷却系统已经无法满足可靠性的需求,因此亟需开发一种新型的冷却系统。
发明内容
因此,本公开的目的在于提供一种新型的冷却系统,以解决现有的冷却系统无法满足可靠性需求的问题。
根据本公开的一方面,提供一种冷却系统,冷却系统包括:热交换器模块,热交换器模块至少包括彼此独立的第一通道和第二通道;第一冷却回路,第一冷却回路与热交换器模块的第一通道连接;第二冷却回路,第二冷却回路与热交换器模块的第一通道连接,其中,第一冷却回路中的第一冷却剂和/或第二冷却回路中的第二冷却剂能够流经热交换器模块的第一通道,以用于与流经热交换器模块的第二通道的第三冷却剂热交换。
根据本公开的冷却系统,通过双冷却回路设计,可提高冷却系统的可靠性,因此在应用于风力发电机组时,可减少风力发电机组的停机问题,从而可提高风力发电机组的可利用率。此外,根据本公开的冷却系统,通过设置 具有换热翅片的热交换器模块,可进一步提高冷却系统的冷却效率。此外,根据本公开的冷却系统,双冷却回路的容错结构布局简单紧凑,易于在有限空间内实现和维护。此外,根据本公开的冷却系统,可根据待冷却部件的冷却逻辑及工艺要求而实现合理的零部件布局。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述以及其他目的和特点将会变得更加清楚,在附图中:
图1是根据本公开的第一实施例的冷却系统的示意性框图。
图2是根据本公开的第二实施例的冷却系统的示意性框图。
图3是根据本公开的第三实施例的冷却系统的示意性框图。
图4是根据本公开的第四实施例的冷却系统的示意性框图。
附图标号说明:
1:循环泵;2:进液管路;3:第一温度传感器;4:第一开关阀;5:第一压力变送器;6:第一过滤器;7:第二压力变送器;8:第一热交换器;8a:第一进液口;8b:第一出液口;8c:第二进液口;8d:第二出液口;8’:第二热交换器;8’a:第一进液口;8’b:第一出液口;8’c:第二进液口;8’d:第二出液口;9:第三压力变送器;10:第二温度传感器;11:调节阀;12:出液管路;13:第三开关阀;14:第三温度传感器;15:第三冷却剂回流管路;16:第六压力变送器:17:第四压力变送器;18:第三冷却剂供应管路;19:第二过滤器;20:第二开关阀;21:第五压力变送器;22:连接管路;23:三通道热交换器;24:进液总管;25:出液总管;26:止回阀。
具体实施方式
现在,将参照附图详细地描述根据本公开的实施例,其示例在附图中示出,其中,相同的标号始终表示相同的组件。
目前,现有小容量直驱风力发电机组,其负荷容量相对小、发热部件相对少,尤其陆上机组基于空间布局的限制及成本的考虑,机组通常采用单个冷却系统运行。当冷却系统出现故障时,风力发电机组需要停机来进行处理。随着单机容量增加,风力发电机组的发热部件的损耗量增加且发热部件的数量增多,因此需要提升冷却系统的可靠性。然而,对于单个冷却系统而言, 一旦出现故障,将会增大整个风力发电机组的维护成本及发电量的损失。
尤其对于海上机组,其维护难度大,并且其具有散热需求的部件的数量有所增加,各个部件的控制工艺及逻辑不同,因此其容错结构及系统布局要求也有所不同。而且,随着机组容量的不断增加,机组本身的损耗随之增加,诸如发电机、轴系、变桨、机舱柜、机舱、变流柜、变压器等发热部件均需进行预定的冷量分配才能实现正常运行,因此冷却系统的构成越来越复杂,且冷却系统的数量不断增加,从而冷却系统需要通过不同形式的容错布局来实现。
因此,基于上述需求,本公开提供了一种新型的冷却系统,该冷却系统可根据待冷却部件的冷却逻辑及工艺要求而实现合理的零部件布局,并且该冷却系统进行了双回路备份冗余设计,因此提高了冷却系统的可靠性。
该冷却系统通过独立的两路冷却回路接入到待冷却部件中,两路冷却回路之间仅传递热量而不存在传质现象。而且,对于不同的待冷却部件的末端结构,该冷却系统可采取不同的接入形式,因此可适合及匹配于不同末端结构的要求。当两路冷却回路中的一个冷却回路出现故障时,可启动另一路冷却回路进行工作,实现两个冷却回路的可容错运行。因此,该冷却系统在满足待冷却部件的散热需求的情况下,能够实现冷却系统的容错性,从而提高冷却系统的可靠性。当该冷却系统应用于风力发电机组时,可确保风力发电机组在一个冷却系统出现故障时仍然正常运行而不停机,从而可减小发电量的损失。
冷却系统可包括热交换器模块、第一冷却回路和第二冷却回路,第一冷却回路和第二冷却回路中的冷却剂可在热交换器模块中与冷却热源(诸如,风力发电机组中的发热部件)的冷却剂进行热交换。这里,为了便于描述,将第一冷却回路和第二冷却回路中的冷却剂分别称作第一冷却剂和第二冷却剂,而将从热源直接吸收热量的冷却剂称作第三冷却剂。
热交换器模块至少包括彼此独立的第一通道和第二通道,第一冷却回路与热交换器模块的第一通道连接,第二冷却回路与热交换器模块的第一通道连接。第一冷却回路中的第一冷却剂和/或第二冷却回路中的第二冷却剂能够流经热交换器模块的第一通道,以用于与流经热交换器模块的第二通道的第三冷却剂热交换。
如此,通过第一冷却剂和/或第二冷却剂分别与第三冷却剂之间的热交换, 可实现对第三冷却剂的冷却。而且,第一冷却回路和第二冷却回路均可单独运行,一旦其中一者出现故障,可以随时启动另一个冷却回路,因此可实现冷却系统的容错运行,从而可确保风力发电机组正常运行而不停机。当然,本公开的冷却系统不限于应用于风力发电机组,其也可应用于其他组件系统的各种待冷却部件。
下面,将参照图1至图4描述根据本公开的冷却系统的具体构成。
图1是根据本公开的第一实施例的冷却系统的示意性框图。
如图1所示,冷却系统包括位于左侧的第一冷却回路、位于右侧的第二冷却回路以及包括第一热交换器8和第二热交换器8’的热交换器模块。第一冷却回路与第二冷却回路的构成可基本相同,第一热交换器8和第二热交换器8’的构成也可基本相同。
第一热交换器8和第二热交换器8’中的每者可至少具有彼此独立的第一通道和第二通道,第一冷却回路中的第一冷却剂能够流经第一热交换器8的第一通道,以用于与流经第一热交换器8的第二通道的第三冷却剂热交换,第二冷却剂能够流经第二热交换器8’的第一通道,以用于与流经第二热交换器8’的第二通道的第三冷却剂热交换。即,第一冷却剂和第二冷却剂能够分别在第一热交换器8和第二热交换器8’中与第三冷却剂热交换。当第一冷却回路和第二冷却回路中的一者出现故障时,另一个冷却回路可继续运行,因此可实现不停机运行。第一冷却回路和第二冷却回路可采用全负荷容错(一用一备),或可通过两路共同运行实现全负荷运行。
由于第一冷却回路和第一热交换器8的构成及彼此之间的连接与第二冷却回路和第二热交换器8’的构成及彼此之间连接相似,因此下面将以第一冷却回路和第一热交换器8为例进行描述。
如图1所示,第一冷却回路可包括循环泵1,循环泵1的出口通过进液管路2连接到第一热交换器8的第一通道的第一端(具体地,第一进液口8a),第一热交换器8的第一通道的第二端(具体地,第一出液口8b)可通过出液管路12连接到循环泵1。如此,在循环泵1的作用下,第一冷却剂可在第一冷却回路中循环流动。第一冷却回路上还可包括第一散热器27,用于对第一冷却剂进行降温。第一散热器27可以为空冷散热器。
第一冷却剂与第三冷却剂通过第一热交换器8进行热交换,第三冷却剂在第一热交换器8的第二通道、第三冷却剂供应管路18和第三冷却剂回流管 路15内循环。第三冷却剂供应管路18的第一端连接到第一热交换器8的第二通道的第一端(具体地,第二进液口8c),并且第三冷却剂回流管路15的第一端连接到第一热交换器8的第二通道的第二端(具体地,第二出液口8d)。第三冷却剂可在从热源设备吸热后,通过第三冷却剂供应管路18流入到第一热交换器8的第二通道,并且可在与第一冷却剂完成热交换后,通过第三冷却剂回流管路15流回到热源设备中,从而持续不断地对热源设备进行降温。
具体地,在循环泵1的作用下,第一冷却剂通过进液管路2进入到第一热交换器8的第一通道内,同时第三冷却剂通过第三冷却剂供应管路18进入到第一热交换器8的第二通道内,第一冷却剂和第三冷却剂可在第一热交换器8内实现热交换。优选地,第一冷却剂和第三冷却剂可在第一热交换器8中逆向流动。在完成热交换后,第一冷却剂在流经第一热交换器8的第一通道后在循环泵1的作用下通过出液管路12流回到第一散热器27内,通过第一散热器27降温后再次进入第一热交换器8的第一通道内,进行下一次循环。流经第一热交换器8的第二通道的第三冷却剂可在动力源作用下通过第三冷却剂回流管路15流回到热源设备中。
可选地,进液管路2上可设置有第一过滤器6,例如,第一过滤器6可设置在循环泵1与第一热交换器8的第一进液口8a之间,以提高流入第一热交换器8内的第一冷却剂的洁净度,从而避免管路堵塞。另外,第一过滤器6的入口侧可设置有第一压力变送器5,并且第一过滤器6的出口侧可设置有第二压力变送器7,用于监测第一过滤器6的运行状态。例如,当第一压力变送器5与第二压力变送器7之间的压差△P1达到预先设置的压差△P1时,需要更换第一过滤器6。另外,第一热交换器8的出口侧可设置有第三压力变送器9,用于监测第一热交换器8的第一通道堵塞情况。例如,当第二压力变送器7与第三压力变送器9之间的压差△P2达到预先设置的压差△P2时,需要对第一热交换器8的第一通道进行疏通。
此外,进液管路2上可设置有第一温度传感器3,出液管路12上可设置有第二温度传感器10,用于感测进出第一热交换器8的第一冷却剂的温度,以基于所感测的温度获知第一冷却剂与第三冷却剂的热交换状态。另外,进液管路2上还可设置有第一开关阀4,和/或出液管路12上可设置有调节阀11。通过设置第一开关阀4和/或调节阀11,在冷却系统进行维护或更换零部件时,可通过关闭第一开关阀4和/或调节阀11而实现局部管路截断,因此 便于进行相应的维护和更换操作。
与第一冷却回路的构成类似,第三冷却剂供应管路18上可设置有第二过滤器19,用于提高流入第一热交换器8的第二通道的第三冷却剂的洁净度。第二过滤器19的两侧可设置有第四压力变送器17和第五压力变送器21,用于监测第二过滤器19的运行状态。例如,当第四压力变送器17与第五压力变送器21之间的压差△P3达到预先设置的压差△P3时,需要更换第二过滤器19。第三冷却剂回流管路15上可设置有第三温度传感器14,以根据第三温度传感器14感测的温度值调节第一冷却回路中的调节阀11的开度,从而确保冷却过程中第三冷却剂的温度不低于待冷却部件的工艺要求所设置的温度。此外,第三冷却剂回流管路15上还可设置有第六压力变送器16,用于结合第四压力变送器17所感测的压力值来监测第一热交换器8的第二通道的堵塞情况。此外,第三冷却剂供应管路18上可设置有第二开关阀20和/或第三冷却剂回流管路15上可设置有第三开关阀13,以在冷却系统进行维护或更换零部件时,关闭第二开关阀20和/或第三开关阀13而实现局部管路截断,因此便于进行相应的维护和更换操作。
优选地,第一热交换器8可包括板式热交换器,板式热交换器可包括换热翅片。因此,在第一冷却剂与第三冷却剂热交换时,第一热交换器8的换热翅片可同时与外部空气进行热交换,从而可进一步增强对第三冷却剂进行冷却的效率。
类似地,第二热交换器8’也可具有第一进液口8’a、第一出液口8’b、第二进液口8’c和第二出液口8’d,第二热交换器8’与第二冷却回路、第三冷却剂供应管路和第三冷却剂回流管路之间的连接与第一热交换器8与第一冷却回路、第三冷却剂供应管路和第三冷却剂回流管路之间的连接类似,在此不再赘述。
图2是根据本公开的第二实施例的冷却系统的示意性框图。
第二实施例的冷却原理与第一实施例的冷却原理相似,不同之处在于:设置了连接第一热交换器8和第二热交换器8’的连接管路22。
与第一实施例中的第二热交换器8’不同,如图2所示,第一实施例中的第二热交换器8’的第二进液口8’c在第二实施例中用作第二出液口并且与第三冷却剂回流管路15连接,而第一实施例中的第二热交换器8’中的第二出液口8’d在第二实施例中用作第二进液口并且通过连接管路22与第一换热器8 的第二出液口8d连接,因此减少了第三冷却剂供应管路18和第三冷却剂回流管路15的布局和数量。即,通过设置连接管路22,有效地实现了第一热交换器8的第二通道和第二热交换器8’的第二通道的串联,由此减少了一路第三冷却剂供应管路18和第三冷却剂回流管路15,从而简化了管路的布局。
在第一热交换器8和第二热交换器8’通过连接管路22串联的情况下,第三冷却剂供应管路18的第一端可连接到第一热交换器8的第二通道的第二端(即,第二进液口8c),第三冷却剂回流管路15的第一端可连接到第二热交换器8’的第二通道的第二端(即,第二出液口)。当然,第三冷却剂供应管路18和第三冷却剂回流管路15的位置可以互换。
冷却系统的其余部件的构造和布局与第一实施例中的部件的构造和布局相似,因此不再赘述。
冷却系统采用上述的布局方式,不仅可以实现第一冷却回路与第二冷却回路的独立运行,当其中一者出现故障后,启动另一个冷却回路实现容错运行,保证对发热部件的冷却效率;还可以进一步简化布局的管路和器件,在需要紧凑布局空间的情况下,具有一定的优势。
图3是根据本公开的第三实施例的冷却系统的示意性框图。
第三实施例的冷却原理与第一实施例的冷却原理相似,不同之处在于:该冷却系统的热交换器模块使用三通道热交换器23,因此可进一步有效地简化零部件的设置及布局。在冷却系统中的一路冷却回路出现故障后,冷却系统中的另一冷却回路仍能够正常运行。
在第三实施例中,三通道热交换器23可包括相互独立的第一流道、第二流道和第三流道。第一流道可连通第一进液口23a和第一出液口23b,第二流道可连通第二进液口23c和第二出液口23d,第三流道可连通第三进液口23e和第三出液口23f。第一冷却回路可与三通道热交换器23的第一流道相连,第二冷却回路可与三通道热交换器23的第三流道相连,并且第三冷却剂供应管路18和第三冷却剂回流管路15可分别连接在三通道热交换器23的第二流道的两端。如此,第一冷却回路中的第一冷却剂能够流经三通道热交换器23的第一流道且第二冷却回路中的第二冷却剂能够流经三通道热交换器23的第三流道,以与流经三通道热交换器23的第二流道的第三冷却剂热交换。
冷却系统的其余部件的构造和布局与第一实施例中的部件的构造和布局相似,因此不再赘述。
冷却系统采用上述的布局方式,不仅可以实现第一冷却回路与第二冷却回路的独立运行,当其中一者出现故障后,启动另一个冷却回路实现容错运行,保证对发热部件的冷却效率;还进一步将两个换热器集成为一个换热器,简化布局的管路和器件,能进一步在有限的空间内实现两个冷却回路的冗余布局。
图4是根据本公开的第四实施例的冷却系统的示意性框图。
第四实施例的冷却原理与第一实施例的冷却原理相似,不同之处在于:第一冷却回路和第二冷却回路与热交换器模块的布局与第一实施例中的相应布局不同。
如图4所示,第一冷却回路和第二冷却回路以并联连接的方式与热交换器模块的第一通道连接。在本实施例中,热交换器模块可以为单个第一热交换器8,也可以是多个串联连接的第一热交换器8。第一冷却回路和第二冷却回路以并联连接的方式与第一热交换器8连接。
具体地,第一热交换器8包括第一进液口8a、与第一进液口8a连接的进液总管24、第一出液口8b以及与第一出液口8b连接的出液总管25,第一冷却回路和第二冷却回路以并联连接的方式连接在第一热交换器8的进液总管24和出液总管25之间。也就是说,进液总管24和出液总管25可实现第一冷却回路和第二冷却回路的汇集及分流。这样就可以合并两个冷却回路的一部分管路,对管路进一步简化设置,实现整体布局的紧凑性。
第一冷却回路和第二冷却回路中的至少一个上可设置有止回阀26,例如,可设置在进液管路2上,止回阀26可具有单向导通功能。当第一冷却回路和第二冷却回路中的一个冷却回路出现故障而停止运行时,第一冷却回路和第二冷却回路中的另一冷却回路能够正常运行,且另一冷却回路中的冷却剂通过进液总管24流入到第一热交换器8内。对于故障停机的冷却回路,由于设置了止回阀26,因此正常运行的冷却回路中的冷却剂不能进入到该故障的冷却回路中,确保了在单个小容量换热器设置的情况下的冷却效率。由此,在确保冷却系统的布局被大大简化的同时,也能够实现冷却系统的容错运行。
在本实施例中,进液管路2包括进液总管24和连接在循环泵1与第一热交换器8之间的管路,出液管路12包括出液总管25和连接在循环泵1与第一热交换器8之间的管路。此外,在图4中,第一过滤器6和第二压力变送器7设置在进液总管24上,调节阀11设置在出液总管25上,但不限于此。 也就是说,第一冷却回路和第二冷却回路上的相应器件的布局可根据实际情况设计,其并不局限于图中所示出的示例。
根据本公开的冷却系统,通过双冷却回路设计,可提高冷却系统的可靠性,因此在应用于风力发电机组时,可减少风力发电机组的停机问题,从而可提高风力发电机组的可利用率。此外,根据本公开的冷却系统,通过设置具有换热翅片的热交换器模块,可进一步提高冷却系统的冷却效率。此外,根据本公开的冷却系统,双冷却回路的容错结构布局简单紧凑,易于在有限空间内实现和维护。此外,根据本公开的冷却系统,可根据待冷却部件的冷却逻辑及工艺要求而实现合理的零部件布局。
虽然上面已经详细描述了本公开的实施例,但本领域技术人员在不脱离本公开的精神和范围内,可对本公开的实施例做出各种修改和变形。但是应当理解,在本领域技术人员看来,这些修改和变形仍将落入权利要求所限定的本公开的实施例的精神和范围内。

Claims (12)

  1. 一种冷却系统,其特征在于,所述冷却系统包括:
    热交换器模块,所述热交换器模块至少包括彼此独立的第一通道和第二通道;
    第一冷却回路,所述第一冷却回路与所述热交换器模块的第一通道连接;
    第二冷却回路,所述第二冷却回路与所述热交换器模块的第一通道连接,
    其中,所述第一冷却回路中的第一冷却剂和/或所述第二冷却回路中的第二冷却剂能够流经所述热交换器模块的第一通道,以用于与流经所述热交换器模块的第二通道的第三冷却剂热交换。
  2. 根据权利要求1所述的冷却系统,其特征在于,所述热交换器模块包括第一热交换器(8)和第二热交换器(8’),所述第一热交换器(8)和所述第二热交换器(8’)中的每者至少包括彼此独立的第一通道和第二通道,
    其中,所述第一冷却剂能够流经所述第一热交换器(8)的第一通道,以用于与流经所述第一热交换器(8)的第二通道的第三冷却剂热交换,
    所述第二冷却剂能够流经所述第二热交换器(8’)的第一通道,以用于与流经所述第二热交换器(8’)的第二通道的第三冷却剂热交换。
  3. 根据权利要求2所述的冷却系统,其特征在于,所述第一热交换器(8)的第二通道与所述第二热交换器(8’)的第二通道连通。
  4. 根据权利要求1所述的冷却系统,其特征在于,所述热交换器模块包括三通道热交换器(23),所述三通道热交换器(23)具有相互独立的第一流道、第二流道、第三流道,所述第一流道和所述第三流道用作所述第一通道,所述第二流道用作所述第二通道,
    其中,所述第一冷却剂能够流经所述第一流道且所述第二冷却剂能够流经所述第三流道,以用于与流经所述第二流道的第三冷却剂热交换。
  5. 根据权利要求1所述的冷却系统,其特征在于,所述热交换器模块还包括第一进液口(8a)、与第一进液口(8a)连接的进液总管(24)、第一出液口(8b)以及与第一出液口(8b)连接的出液总管(25),所述第一冷却回路和所述第二冷却回路并联在所述进液总管(24)和所述出液总管(25)之间。
  6. 根据权利要求5所述的冷却系统,其特征在于,所述第一冷却回路和 所述第二冷却回路中的至少一者上设置有止回阀(26)。
  7. 根据权利要求1所述的冷却系统,其特征在于,所述热交换器模块还包括与所述热交换器模块的第一进液口(8a)连接的进液管路(2)以及与所述热交换器模块的第一出液口(8b)连接的出液管路(12),所述进液管路(2)上设置有第一过滤器(6),
    其中,所述第一过滤器(6)的进口侧设置有第一压力变送器(5),并且所述第一过滤器(6)的出口侧设置有第二压力变送器(7)。
  8. 根据权利要求7所述的冷却系统,其特征在于,所述热交换器模块的出液管路(12)上设置有第三压力变送器(9)。
  9. 根据权利要求7所述的冷却系统,其特征在于,所述热交换器模块的进液管路(2)上还设置有第一开关阀(4)和/或第一温度传感器(3),所述热交换器模块的出液管路(12)上还设置有调节阀(11)和/或第二温度传感器(10)。
  10. 根据权利要求1所述的冷却系统,其特征在于,所述冷却系统还包括第三冷却剂供应管路(18)和第三冷却剂回流管路(15),
    其中,所述第三冷却剂供应管路(18)的第一端连接到所述热交换器模块的第二通道的第一端,并且所述第三冷却剂回流管路(15)的第一端连接到所述热交换器模块的第二通道的第二端。
  11. 根据权利要求10所述的冷却系统,其特征在于,所述第三冷却剂供应管路(18)上设置有第二过滤器(19)和/或第二开关阀(20)和/或位于所述第二过滤器(19)两侧的第四压力变送器(17)和第五压力变送器(21),
    和/或,所述第三冷却剂回流管路(15)上设置有第六压力变送器(16)和/或第三温度传感器(14)和/或第三开关阀(13)。
  12. 根据权利要求1-11中任一项所述的冷却系统,其特征在于,所述热交换器模块包括板式热交换器,所述板式热交换器包括换热翅片。
PCT/CN2020/114536 2020-06-09 2020-09-10 冷却系统 WO2021248723A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/996,166 US20230193880A1 (en) 2020-06-09 2020-09-10 Cooling system
EP20940039.9A EP4123889A4 (en) 2020-06-09 2020-09-10 COOLING SYSTEM
CA3180145A CA3180145A1 (en) 2020-06-09 2020-09-10 Cooling system
AU2020453087A AU2020453087A1 (en) 2020-06-09 2020-09-10 Cooling system
BR112022022831A BR112022022831A2 (pt) 2020-06-09 2020-09-10 Sistema de resfriamento
ZA2022/11890A ZA202211890B (en) 2020-06-09 2022-11-01 Cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010516498.2A CN113783361B (zh) 2020-06-09 2020-06-09 冷却系统
CN202010516498.2 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021248723A1 true WO2021248723A1 (zh) 2021-12-16

Family

ID=78834222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114536 WO2021248723A1 (zh) 2020-06-09 2020-09-10 冷却系统

Country Status (8)

Country Link
US (1) US20230193880A1 (zh)
EP (1) EP4123889A4 (zh)
CN (1) CN113783361B (zh)
AU (1) AU2020453087A1 (zh)
BR (1) BR112022022831A2 (zh)
CA (1) CA3180145A1 (zh)
WO (1) WO2021248723A1 (zh)
ZA (1) ZA202211890B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202319951D0 (en) 2023-12-22 2024-02-07 Evolito Ltd An electric propulsion unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104355A (ja) * 2008-01-21 2008-05-01 Hitachi Ltd 水力発電所用発電機軸受の冷却システム
CN101506044A (zh) * 2006-08-28 2009-08-12 空中客车德国有限公司 用于冷却飞行器上热负载的冷却系统以及用于操作该冷却系统的方法
CN102099651A (zh) * 2008-07-15 2011-06-15 开利公司 集成多回路微通道换热器
CN107120305A (zh) * 2017-06-16 2017-09-01 珠海格力电器股份有限公司 空调设备、冷油系统及其控制方法
CN208027834U (zh) * 2018-03-29 2018-10-30 比亚迪股份有限公司 制动电阻冷却系统及车辆
CN209232912U (zh) * 2019-01-09 2019-08-09 北京新能源汽车股份有限公司 一种电池热管理系统及汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820136B2 (ja) * 1990-01-24 1996-03-04 株式会社日立製作所 水冷却装置
US6053238A (en) * 1998-10-30 2000-04-25 International Business Machines Corporation Center feed parallel flow cold plate for dual refrigeration systems
EP2072763B1 (fr) * 2007-12-21 2015-04-08 Techspace Aero S.A. Système d'échange de chaleur dans une turbomachine
DE102008057455A1 (de) * 2008-11-14 2010-05-20 Aerodyn Engineering Gmbh Hydraulische Versorgungseinheit
EP2803855A1 (en) * 2013-05-16 2014-11-19 Siemens Aktiengesellschaft Cooling system with two bridged cooling circuits, wind turbine with such a cooling system
CN109065193A (zh) * 2018-07-27 2018-12-21 中国核动力研究设计院 一种双冷却辐照试验系统及方法
CN114599878A (zh) * 2019-08-09 2022-06-07 尼森冷却解决方案有限公司 风力涡轮机冷却系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506044A (zh) * 2006-08-28 2009-08-12 空中客车德国有限公司 用于冷却飞行器上热负载的冷却系统以及用于操作该冷却系统的方法
JP2008104355A (ja) * 2008-01-21 2008-05-01 Hitachi Ltd 水力発電所用発電機軸受の冷却システム
CN102099651A (zh) * 2008-07-15 2011-06-15 开利公司 集成多回路微通道换热器
CN107120305A (zh) * 2017-06-16 2017-09-01 珠海格力电器股份有限公司 空调设备、冷油系统及其控制方法
CN208027834U (zh) * 2018-03-29 2018-10-30 比亚迪股份有限公司 制动电阻冷却系统及车辆
CN209232912U (zh) * 2019-01-09 2019-08-09 北京新能源汽车股份有限公司 一种电池热管理系统及汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123889A4 *

Also Published As

Publication number Publication date
ZA202211890B (en) 2024-04-24
EP4123889A1 (en) 2023-01-25
BR112022022831A2 (pt) 2022-12-20
AU2020453087A1 (en) 2022-11-24
CN113783361B (zh) 2022-11-29
US20230193880A1 (en) 2023-06-22
CN113783361A (zh) 2021-12-10
CA3180145A1 (en) 2021-12-16
EP4123889A4 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
US20230228251A1 (en) Cooling system and wind-driven generator system
CN208042440U (zh) 一种基于数据中心的余热回收系统
CN108469111A (zh) 一种基于数据中心的余热回收系统及余热回收系统的控制方法
WO2021248723A1 (zh) 冷却系统
US20230349365A1 (en) Cooling system and wind power generator set
WO2024103675A1 (zh) 一种热管理系统及其控制方法
WO2024011961A1 (zh) 一种环路式热管理系统
US11885310B2 (en) Cooling system and wind power generator set
CN212566458U (zh) 用于燃气-蒸汽联合循环电厂的循环冷却水系统
WO2020220786A1 (zh) 换热系统及电机
CN214537463U (zh) 一种冗余冷却系统
CN214537464U (zh) 一种冗余冷却系统
CN113179613B (zh) 一种基于压缩空气储能优质冷源的换流阀外冷却系统及方法
CN210399086U (zh) 具有不停机切换循环水功能的湿冷高背压供热机组系统
CN113982700B (zh) 一种高温气冷堆轴封供汽系统
CN220134116U (zh) 一种海上风机塔下集成式水冷系统
CN218672137U (zh) 背压机供热系统
JP2021148611A (ja) 原子力発電システム
CN116110622A (zh) 核电厂设备冷却水系统
CN112944716A (zh) 一种基于大温差换热技术的井口防冻系统及运行控制方法
CN117804144A (zh) 工艺冷却水系统
CN114687964A (zh) 用于风力发电机组的水冷系统及其控制方法
CN112923597A (zh) 一种回收焦化余热的大温差取、放热装置及运行控制方法
CN116753127A (zh) 一种海上风机塔下集成式水冷系统及水冷控制方法
CN111372421A (zh) 一种数据中心用水冷散热双通道系统及其散热方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3180145

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020940039

Country of ref document: EP

Effective date: 20221019

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022022831

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020453087

Country of ref document: AU

Date of ref document: 20200910

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022022831

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221109

NENP Non-entry into the national phase

Ref country code: DE