WO2021248505A1 - Base station reselection using a signal-to-noise ratio - Google Patents

Base station reselection using a signal-to-noise ratio Download PDF

Info

Publication number
WO2021248505A1
WO2021248505A1 PCT/CN2020/095992 CN2020095992W WO2021248505A1 WO 2021248505 A1 WO2021248505 A1 WO 2021248505A1 CN 2020095992 W CN2020095992 W CN 2020095992W WO 2021248505 A1 WO2021248505 A1 WO 2021248505A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
threshold
snr
rsrp
value
Prior art date
Application number
PCT/CN2020/095992
Other languages
French (fr)
Inventor
Chaofeng HUI
Yuankun ZHU
Fojian ZHANG
Hao Zhang
Pan JIANG
Jian Li
Guojing LIU
Dongsheng Wang
Bing LENG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095992 priority Critical patent/WO2021248505A1/en
Publication of WO2021248505A1 publication Critical patent/WO2021248505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00838Resource reservation for handover

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to base station reselection in wireless communication systems.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes communicating, by a user equipment (UE) , with a first base station.
  • the method further includes receiving, by the UE from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value.
  • the method further includes, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
  • RSRP reference signal received power
  • SNR signal-to-noise ratio
  • an apparatus includes a memory and one or more processors coupled to the memory.
  • the one or more processors are configured to communicate with a first base station and to receive, from a second base station, a reference signal associated with a RSRP value and a SNR value.
  • the one or more processors are further configured to determine, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • an apparatus includes means for communicating with a first base station and for receiving, from a second base station, a reference signal associated with a RSRP value and a SNR value.
  • the apparatus further includes means for determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • a non-transitory computer-readable medium stores instructions executable by a processor to perform operations.
  • the operations include communicating, by a UE, with a first base station and receiving, by the UE from a second base station, a reference signal associated with a RSRP value and a SNR value.
  • the operations further include determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • FIG. 1 is a block diagram illustrating an example of a wireless communication system according to some aspects of the disclosure.
  • FIG. 2 is a block diagram illustrating an example of a base station and a user equipment (UE) according to some aspects of the disclosure.
  • FIG. 3 is a block diagram illustrating another example of a wireless communication system according to some aspects of the disclosure.
  • FIG. 4 is a ladder diagram illustrating examples of operations that may be performed by a wireless communication system according to some aspects of the disclosure.
  • FIG. 5 is a flow chart illustrating an example of a method of wireless communication that may be performed by a UE according to some aspects of the disclosure.
  • FIG. 6 is a block diagram conceptually illustrating an example of a UE according to some aspects of the disclosure.
  • Signals transmitted in a wireless communication system may be susceptible to noise, interference, and other conditions that reduce signal quality.
  • reduced quality of a signal may lead to a radio link failure (RLF) between a user equipment (UE) and a base station.
  • RLF radio link failure
  • UE user equipment
  • base station a radio link failure
  • data communications and other services may be interrupted, reducing quality of user experience.
  • a wireless communication system in accordance with some aspects of the disclosure may selectively perform handovers between base stations based on an SNR measured or estimated by a UE.
  • certain wireless communications specify that a handover from a first base station to a second base station is to be performed (or may be performed) if a reference signal received power (RSRP) of a reference signal associated with the second base station satisfies one or more criteria.
  • RSRP reference signal received power
  • the second base station may be associated with a relatively high RSRP, but an RLF may occur upon the UE establishing communications with the second base station (e.g., due to an amount, type, or change of noise or interference that reduces quality of some signals, such as data signals, more than other signals, such as the reference signal) .
  • the UE may determine that a signal-to-noise ratio (SNR) associated with the reference signal satisfies an SNR threshold that is distinct from the one or more criteria associated with the RSRP. If the SNR fails to satisfy the SNR threshold, the UE may avoid transmitting a measurement report that indicates the second base station. In some examples, the UE “filters” a list of cells included in the measurement report by deleting an indication of the second base station from the list of cells.
  • SNR signal-to-noise ratio
  • handover to the second base station may be avoided in cases where the base station is associated with a relatively strong RSRP (e.g., an RSRP that satisfies the one or more criteria) and a relatively poor SNR (e.g., an SNR that fails to satisfy the SNR threshold) . Accordingly, instances of RLF may be reduced.
  • a relatively strong RSRP e.g., an RSRP that satisfies the one or more criteria
  • a relatively poor SNR e.g., an SNR that fails to satisfy the SNR threshold
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM global system for mobile communications
  • 5G 5th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as GSM.
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (Ainterfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network.
  • UTRANs Universal Terrestrial Radio Access Networks
  • An operator network may also include one or more LTE networks, and/or one or more other networks.
  • the various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km ⁇ 2) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km ⁇ 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • ultra-high density
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications.
  • the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of 5G NR.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • FIG. 1 shows wireless network 100 for communication according to some aspects.
  • Wireless network 100 may, for example, comprise a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may comprise a plurality of operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e may correspond to regular macro base stations, while base stations 105a-105c may correspond to macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO.
  • Base stations 105a-105c may operate according to higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f may correspond to a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile device is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP)
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • such apparatus may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology.
  • AT access terminal
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • a mobile device such as the UE 115
  • a mobile device include a mobile phone, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile device may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • UEs 115a-115d of the example illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile device such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a lightning bolt e.g., a communication link
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
  • base stations 105a-105c may serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Base station 105d may perform backhaul communications with base stations 105a-105c, as well as with base station 105f.
  • Base station 105d may transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 may support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which may be a drone. Redundant communication links may be used by UE 115e to communicate with base stations 105d and 105e, as well as base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be a small cell base station (e.g., the base station 105f in FIG. 1)
  • UE 115 may be UE 115c or 115d operating in a service area of the base station 105f.
  • the UE 115 may be included in a list of accessible UEs for the base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • TX multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • controller/processor 280 e.g., for the physical uplink control channel (PUCCH)
  • Transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable,
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the operations illustrated in FIG. 5. Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • the wireless communication system 300 includes multiple base stations, such as a first base station (e.g., the base station 105a) , a second base station (e.g., the base station 105b) , and a third base station (e.g., the base station 105c) .
  • a first base station e.g., the base station 105a
  • a second base station e.g., the base station 105b
  • a third base station e.g., the base station 105c
  • the base station 105a and the base station 105b are associated with a common wireless communication protocol.
  • the common wireless communication protocol is a fourth-generation long term evolution (4G LTE) wireless communication protocol, a fifth-generation new-radio (5G NR) wireless communication protocol, or a non-standalone (NSA) mode that supports communication by the UE 115 based on the 4G LTE wireless communication protocol and also based on the 5G NR wireless communication protocol.
  • 4G LTE fourth-generation long term evolution
  • 5G NR fifth-generation new-radio
  • NSA non-standalone
  • the wireless communication system 300 further includes the UE 115.
  • FIG. 3 illustrates that the UE 115 includes one or more processors (e.g., the controller/processor 280) and one or more memories (e.g., the memory 282) coupled to the one or more processors.
  • processors e.g., the controller/processor 280
  • memories e.g., the memory 282
  • the UE 115 may communicate with one or more base stations, such as the base station 105a. To illustrate, the UE 115 may register with the base station 105a upon entering a coverage area associated with the base station 105a. In some examples, the UE 115 detects based on a first reference signal 302 transmitted by the base station 105a. In some examples, the UE 115 determines to register with the base station 105a based on a first reference signal received power (RSRP) 332 associated with the first reference signal 302, based on a first signal-to-noise ratio (SNR) 336 associated with the first reference signal 302, or both. During communication with the base station 105a, the UE 115 may send data to the base station 105a, receive data from the base station 105a, or both.
  • RSRP reference signal received power
  • SNR signal-to-noise ratio
  • the UE 115 may detect one or more other base stations while in communication with the base station 105a.
  • the UE 115 may be located in or near a coverage area of the base station 105b and may detect a second reference signal 312 transmitted by the base station 105b.
  • the UE 115 may determine a second RSRP 334 based on the second reference signal 312 and may further determine a second SNR 338 based on the second reference signal 312.
  • the UE 115 may determine an RSRP (such as any of the RSRPs 332, 334) using one or more techniques.
  • the first reference signal 302 includes or corresponds to a first synchronization signal, such as a secondary synchronization signal (SSS)
  • the first RSRP 332 corresponds to a first synchronization signal RSRP (SS-RSRP)
  • the second reference signal 312 may include or correspond to a second synchronization signal (e.g., an SSS)
  • the second RSRP 334 may correspond to a second SS-RSRP.
  • the UE 115 may determine a first average power associated with resource elements used to transmit the first reference signal 302 and may determine a second average power associated with resource elements used to transmit the second reference signal 312.
  • the first RSRP 332 may correspond to or may be based on the first average power
  • the second RSRP 334 may correspond to or may be based on the second average power.
  • the UE 115 determines (or estimates) an SNR (such as any of the SNRs 336, 338) based on one or more parameters determined in connection with an RSRP (such as any of the RSRPs 332, 334) .
  • the UE 115 may “borrow” one or more parameters determined in connection with an RSRP to determine (or estimate) an SNR.
  • the UE 115 may determine the first SNR 336 based at least in part on the first average power associated with resource elements used to transmit the first reference signal 302 and may determine the second SNR 338 based at least in part on the second average power associated with resource elements used to transmit the second reference signal 312.
  • the UE 115 determines the first SNR 336 by determining a first noise-plus-interference (NI) estimate associated with the first RSRP 332 (e.g., by performing a first measurement of NI) and by dividing the first RSRP 332 by the first NI estimate.
  • the UE 115 may determine the second SNR 338 by determining a second NI estimate associated with the second RSRP 334 (e.g., by performing a second measurement of NI) and by dividing the second RSRP 334 by the second NI estimate.
  • the UE 115 may determine an NI estimate by tuning to one or more channels unused by the UE 115 and by measuring an amount of power associated with the one or more channels.
  • the UE 115 includes a first circuit that determines the first RSRP 332 and the first NI estimate.
  • the first circuit may store indications of the first RSRP 332 and the first NI estimate to a memory (e.g., a buffer, a cache, or another memory) that is accessible to the first circuit and to a second circuit of the UE 115.
  • the second circuit may access the indications of the first RSRP 332 and the first NI estimate and may determine the first SNR 336 based on the first RSRP 332 and the first NI estimate.
  • the first circuit stores indications of the second RSRP 334 and the second NI estimate to the memory, and the second circuit determines the second SNR 338 based on the second RSRP 334 and the second NI estimate. In some examples, the first circuit overwrites the indications of the first RSRP 332 and the first NI estimate with the indications of the second RSRP 334 and the second NI estimate at the memory. In some other examples, information stored at the memory can be deleted or overwritten using another technique, such as according to a first-in, first out (FIFO) basis.
  • FIFO first-in, first out
  • the UE 115 may determine whether the second RSRP 334 satisfies (e.g., is greater than, or is greater than or equal to) a first threshold 350.
  • the UE includes a comparator that compares the second RSRP 334 to the first threshold 350.
  • the comparator includes circuitry that is coupled to or included in the controller/processor 280. Alternatively or in addition, the comparator may include instructions executed by the controller/processor 280.
  • the comparator may receive an indication of the second RSRP 334 from the controller/processor 280 and may retrieve an indication of the first threshold 350 from the memory 282.
  • the comparator may compare the second RSRP 334 to the first threshold 350 to determine whether the second RSRP 334 satisfies the first threshold 350. In some examples, the comparator provides a first output signal to the controller/processor 280 indicating whether the second RSRP 334 satisfies the first threshold 350.
  • a first value of the first output signal may indicate that the second RSRP 334 satisfies (e.g., is greater than, or is greater than or equal to) the first threshold 350
  • a second value of the first output signal may indicate that the second RSRP 334 fails to satisfy (e.g., is less than or equal to, or is less than) the first threshold 350.
  • the UE 115 may also determine whether the second SNR 338 satisfies a second threshold 360.
  • the comparator compares the second SNR 338 to the second threshold 360.
  • the comparator may receive an indication of the second SNR 338 from the controller/processor 280 and may retrieve an indication of the second threshold 360 from the memory 282.
  • the comparator may compare the second SNR 338 to the second threshold 360 to determine whether the second SNR 338 satisfies the second threshold 360.
  • the comparator provides a second output signal to the controller/processor 280 indicating whether the second SNR 338 satisfies the second threshold 360.
  • a first value of the second output signal may indicate that the second SNR 338 satisfies (e.g., is greater than, or is greater than or equal to) the second threshold 360
  • a second value of the second output signal may indicate that the second SNR 338 fails to satisfy (e.g., is less than or equal to, or is less than) the second threshold 360.
  • the comparator generates the first output signal in parallel with generating the second output signal. For example, the comparator may perform a first comparison of the second RSRP 334 to the first threshold 350 in parallel with a second comparison of the second SNR 338 to the second threshold 360 and may output the first output signal in parallel with outputting the second output signal. In some examples, performing such operations in parallel may reduce latency at the UE 115. In some other examples, the comparator may perform certain operations sequentially. In one example, the comparator performs the second comparison after performing the first comparison. For example, the comparator may perform the first comparison and may perform the second comparison conditionally based on a result of the first comparison, such as if the first output signal has the first value. In this example, the comparator may omit the second comparison if the first output signal has the second value. In some examples, performing such operations sequentially may reduce power consumption or a number of processing cycles used by the UE 115.
  • the UE 115 may determine (e.g., based on the first comparison and the second comparison) whether to include an indication 308 of the base station 105b in a measurement report 304.
  • the UE 115 may transmit the measurement report 304 to the base station 105a to indicate one or more measurements of reference signals received from one or more neighbor base stations of the base station 105a.
  • the base station 105a (or another device of the wireless communications system 300) may use the measurement report 304 in connection with one or more operations, such as in connection with a handover of the UE 115 (e.g., from the base station 105a to the base station 105b) .
  • the measurement report 304 includes a list of cells 306 associated with measurements performed by the UE 115.
  • the list of cells 306 may indicate “candidate” base stations detected by the UE 115 associated with reference signals having RSRPs and SNRs that satisfy the first threshold 350 and the second threshold 360, respectively.
  • the UE 115 determines that the second RSRP 334 satisfies the first threshold 350 and that the second SNR 338 satisfies the second threshold 360. Based on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 satisfying the second threshold 360, the UE 115 may include the indication 308 in the measurement report 304. The UE 115 may transmit the measurement report 304 (including the indication 308) to the base station 105a.
  • the UE 115 determines that the second RSRP 334 satisfies the first threshold 350 and that the second SNR 338 fails to satisfy the second threshold 360. Based on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360, the UE 115 may exclude the indication 308 from the measurement report 304. In some examples, the UE 115 may transmit the measurement report 304 (excluding the indication 308) to the base station 105a, such as if the list of cells 306 indicates at least one other base station (e.g., the base station 105c) .
  • the UE 115 may decline to provide the measurement report 304 (or may provide an “empty” or null measurement report 304) to the base station 105a, such as if no candidate base stations are detected by the UE 115.
  • the UE 115 filters the list of cells 306 on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360.
  • filtering the list of cells 306 includes removing (e.g., deleting, overwriting, or zero-padding) the indication 308 of the base station 105b from the measurement report 304 prior to transmitting the measurement report 304 to the base station 105a.
  • the UE 115 determines that the second RSRP 334 fails to satisfy the first threshold 350 and that the second SNR 338 fails to satisfy the second threshold 360. Based on the second RSRP 334 failing to satisfy the first threshold 350 or the second SNR 338 failing to satisfy the second threshold 360, the UE 115 may exclude the indication 308 from the measurement report 304. In some examples, the UE 115 may transmit the measurement report 304 (excluding the indication 308) to the base station 105a, such as if the list of cells 306 indicates at least one other base station (e.g., the base station 105c) .
  • the UE 115 may decline to provide the measurement report 304 (or may provide an “empty” or null measurement report 304) to the base station 105a, such as if no candidate base stations are detected by the UE 115.
  • the UE 115 filters the list of cells 306 on the second RSRP 334 failing to satisfy the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360.
  • filtering the list of cells 306 includes removing (e.g., deleting, overwriting, or zero-padding) the indication 308 of the base station 105b from the measurement report 304 prior to transmitting the measurement report 304 to the base station 105a.
  • the base station 105 may initiate a handover based on the measurement report 304. For example, based on the indication 308 of the base station 105b, the base station 105 (or another device of the wireless communications system 300) may initiate a handover of the UE 115 from the base station 105a to the base station 105b.
  • the UE 115 may receive a reconfiguration message 310 (e.g., from the base station 105a) in connection with a handover from the base station 105a to the base station 105b. Based on the reconfiguration message 310, the UE 115 may communicate with the base station 105b. For example, the UE 115 may register with the base station 105b, terminate communications with the base station 105a, or both.
  • the UE 115 communicates with the base station 105a and the base station 105b based on a wireless communication protocol, such as a fifth generation new radio (5G NR) wireless communication protocol.
  • a wireless communication protocol such as a fifth generation new radio (5G NR) wireless communication protocol.
  • the wireless communication protocol may specify the first threshold 350, and the second threshold 360 may be independent of the wireless communication protocol (e.g., the second threshold 360 may not be specified of the wireless communication protocol) .
  • the wireless communication protocol specifies that the first threshold 350 is satisfied if the second RSRP 334 exceeds the first RSRP 332 by at least a first offset amount 352.
  • the first threshold 350 may correspond to an A3 event threshold specified by a 5G NR wireless communication protocol.
  • the wireless communication protocol specifies that the first threshold 350 is satisfied if the second RSRP 334 exceeds a reference RSRP value 354.
  • the first threshold 350 may correspond to an A4 event threshold specified by a 5G NR wireless communication protocol.
  • the second threshold 360 may include or correspond to one or more parameters or thresholds.
  • the second threshold 360 includes or corresponds to a second offset amount 362.
  • the second threshold 360 may be satisfied if the second SNR 338 exceeds the first SNR 336 by at least a second offset amount 362.
  • the UE 115 may include the indication 308 in the measurement report 304 based on the second SNR 338 exceeding the first SNR 336 by at least a second offset amount 362 and may exclude the indication 308 from the measurement report 304 based on the second SNR 338 failing to exceed the first SNR 336 by at least a second offset amount 362. Further, in this example, the UE 115 may determine whether the second threshold 360 is satisfied based at least in part on the first SNR 336.
  • the second threshold 360 may include or correspond to a reference SNR value 366, and the UE 115 may determine that the second threshold 360 is satisfied if the second SNR 338 exceeds the reference SNR value 366.
  • the UE 115 may include the indication 308 in the measurement report 304 based on the second SNR 338 exceeding the reference SNR value 366 and may exclude the indication 308 from the measurement report 304 based on the second SNR 338 failing to exceed the reference SNR value 366. Further, in some examples, the UE 115 may determine whether the second threshold 360 is satisfied independently of the first SNR 336.
  • one or more operations described with reference to FIG. 3 may be performed based on a mode of operation of one or more devices of the wireless communication system 300.
  • the UE 115, the base station 105a, and the base station 105b may operate based on a 5G NR standalone (SA) mode of operation.
  • the UE 115 may selectively include or exclude the indication 308 from the measurement report 304 based on detecting the 5G NR SA mode of operation.
  • the UE 115 may omit certain operations described herein (e.g., comparing the second SNR 338 to the second threshold 360 and excluding the indication 308 from the measurement report 304) in one or more other modes of operation, such as in connection with a non-standalone (NSA) mode of operation.
  • NSA non-standalone
  • an NSA mode of operation may be associated with reduced noise, interference, or other parameters. As a result, performance may be improved by omitting certain operations described herein during operation based on the NSA mode.
  • FIG. 4 depicts an example of a ladder diagram illustrating examples of operations 400 that may be performed by a wireless communication system, such as the wireless communication system 300 of FIG. 3.
  • a wireless communication system such as the wireless communication system 300 of FIG. 3.
  • time may advance from top to bottom in FIG. 4.
  • the operations 400 are illustrative and are not intended to limit the scope of the disclosure.
  • a process in accordance with the disclosure may include a different number of operations, may include a different type of operations, may include one or more operations not illustrated in FIG. 4, or may exclude one or more operations illustrated in FIG. 4.
  • the operations 400 may include registering, by a UE, with a first base station, at 402.
  • the UE 115 may register with the base station 105a, such as in response to entering a coverage area associated with the base station 105a.
  • the operations 400 may further include establishing a radio resource control (RRC) connection between the UE and the first base station, at 404.
  • RRC radio resource control
  • the base station 105a may transmit one or more RRC messages to the UE 115.
  • the operations 400 may further include communicating data (e.g., user data) between the UE and the first base station, at 406.
  • the base station 105a may transmit data to the UE 115 via a downlink.
  • the UE 115 may transmit data to the base station 105a via an uplink.
  • the operations 400 may further include receiving an RRC reconfiguration message by the UE from the first base station, at 408.
  • the RRC reconfiguration message may indicate that the UE 115 is to perform one or more measurements of reference signals of one or more neighbor base stations of the base station 105a to generate the measurement report 304.
  • the operations 400 may further include searching for and detecting a second base station, at 410.
  • the UE 115 may detect the base station 105b based on the second reference signal 312.
  • Searching for and detecting the second base station may include determining that an RSRP associated with the second base station satisfies an RSRP threshold.
  • the UE 115 may determine that the second RSRP 334 of the second reference signal 312 satisfies the first threshold 350.
  • the operations 400 further include determining whether an SNR associated with the second base station satisfies an SNR threshold (e.g., “snr_decode_threshold” ) , at 412.
  • an SNR threshold e.g., “snr_decode_threshold”
  • the UE 115 may determine whether the second SNR 338 of the second reference signal 312 satisfies the second threshold 360.
  • the UE 115 determines whether the second SNR 338 of the second reference signal 312 satisfies the second threshold 360 conditioned on determining (e.g., at 410) that the second RSRP 334 of the second reference signal 312 satisfies the first threshold 350.
  • the operations 400 may continue, at 410.
  • the UE 115 may continue searching for and performing one or more measurements of reference signals of one or more neighbor base stations of the base station 105a to generate the measurement report 304.
  • the operations 400 may include transmitting, to the first base station, a measurement report indicating the second base station, the RSRP associated with the second base station, or both, at 414.
  • the UE 115 may transmit, to the base station 105a, the measurement report 304 including the indication 308.
  • the measurement report 304 includes an indication of the base station 105b, an indication of the second RSRP 334, or both.
  • the operations 400 may further include initiating a handover request, at 416.
  • the base station 105a may transmit, in response to the measurement report 304, the handover request to the base station 105b.
  • the operations 400 may further include receiving a handover request acknowledgement, at 418.
  • the base station 105a may receive the handover request acknowledgement from the base station 105b in response to the handover request.
  • the operations 400 may further include receiving a reconfiguration message, at 420.
  • the base station 105a may transmit the reconfiguration message 310 to the UE 115, and the UE 115 may receive the reconfiguration message 310 from the base station 105a.
  • the reconfiguration message 310 includes or corresponds to an RRC connection reconfiguration message.
  • the operations 400 may further include transmitting an RRC connection reconfiguration completion message, at 422.
  • the UE 115 may transmit the RRC connection reconfiguration completion message to the base station 105b.
  • the operations 400 may further include establishing and maintaining communications with the second base station without radio link failure (RLF) , at 424.
  • the operations 400 may also include communicating data with the second base station, at 426.
  • the base station 105b may transmit data to the UE 115 via a downlink.
  • the UE 115 may transmit data to the base station 105b via an uplink.
  • the operations 400 of FIG. 4 may end, at 428.
  • FIGS. 3 and 4 may improve performance within a wireless communication system, such as the wireless communication system 300.
  • use of the second SNR 338 may enable the wireless communication system 300 to avoid handover of the UE 115 from the base station 105a to the base station 105b during conditions that can lead to a radio link failure (RLF) .
  • the base station 105b may be associated with a relatively high second RSRP 334, but an RLF may occur upon the UE 115 establishing communications with the base station 105b (e.g., due to an amount, type, or change of noise or interference that reduces quality of some signals, such as data signals, more than other signals, such as the second reference signal 312) .
  • instances of RLF may be reduced.
  • FIG. 5 is a flow chart illustrating an example of a method 500 of wireless communication performed by a UE according to some aspects of the disclosure. In some examples, the method 500 is performed by the UE 115.
  • the method 500 includes communicating, by a UE, with a first base station, at 502.
  • the UE 115 may communicate with the base station 105a.
  • the method 500 further includes receiving, by the UE from a second base station, a reference signal associated with an RSRP value and an SNR value, at 504.
  • the UE 115 may receive the second reference signal 312 and may determine the second RSRP 334 and the second SNR 338 based on the second reference signal 312.
  • the method 500 further includes determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station, at 506.
  • the UE 115 may determine whether to include the indication 308 in the measurement report 304 using one or more techniques described with reference to FIG. 3.
  • FIG. 6 is a block diagram illustrating an example of a UE 115 according to some aspects of the disclosure.
  • the UE 115 may include one or more components described with reference to FIG. 2.
  • the UE 115 includes the controller/processor 280 and the memory 282.
  • the UE 115 under control of the controller/processor 280, transmits and receives signals via wireless radios 601a-r and the antennas 252a-r.
  • the wireless radios 601a-r may include one or more components of FIG. 2, such as one or more of the modulator/demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, or the TX MIMO processor 266.
  • the memory 282 may store instructions executable by the controller/processor 280 to perform, initiate, or control one or more operations described herein.
  • the memory 282 may store RSRP instructions 602 executable by the controller/processor 280 to determine the first RSRP 332 based on the first reference signal 302, to determine the second RSRP 334 based on the second reference signal 312, or both.
  • the memory 282 may store SNR instructions 603 executable by the controller/processor 280 to determine the first SNR 336 based on the first reference signal 302, to determine the second SNR 338 based on the second reference signal 312, or both.
  • the memory may store measurement report filtering instructions 604 executable by the controller/processor 280 to selectively remove the indication 308 from the measurement report 304 based on a determination that the second SNR 338 fails to satisfy the second threshold 360.
  • a method of wireless communication includes communicating, by a UE, with a first base station.
  • the method further includes receiving, by the UE from a second base station, a reference signal associated with an RSRP value and a SNR value.
  • the method further includes, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
  • the method further includes determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value satisfies the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  • the method further includes receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicating, by the UE, with the second base station.
  • the method further includes determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  • the method further includes filtering a list of cells included in the measurement report, where filtering the list of cells includes removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  • the method further includes determining, by the UE, that the RSRP value fails to satisfy the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  • the UE communicates with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
  • the first base station is associated with a first RSRP
  • the second base station is associated with a second RSRP corresponding to the RSRP value
  • the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  • the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  • the first base station is associated with a first SNR
  • the second base station is associated with a second SNR corresponding to the SNR value
  • the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  • the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  • the UE, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
  • an apparatus in a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, includes a memory and one or more processors coupled to the memory.
  • the one or more processors are configured to communicate with a first base station and to receive, from a second base station, a reference signal associated with a RSRP value and a SNR value.
  • the one or more processors are further configured to determine, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • the one or more processors are further configured to: determine that the RSRP value satisfies the first threshold; determine that the SNR value satisfies the second threshold; and transmit, to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  • the one or more processors are further configured to: receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicate with the second base station.
  • the one or more processors are further configured to determine that the RSRP value satisfies the first threshold; determine that the SNR value fails to satisfy the second threshold; and transmit, to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  • the one or more processors are further configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  • the one or more processors are further configured to: determine that the RSRP value fails to satisfy the first threshold; determine that the SNR value fails to satisfy the second threshold; and transmit, to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  • the one or more processors are further configured to communicate with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
  • the first base station is associated with a first RSRP
  • the second base station is associated with a second RSRP corresponding to the RSRP value
  • the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  • the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  • the first base station is associated with a first SNR
  • the second base station is associated with a second SNR corresponding to the SNR value
  • the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  • the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  • the one or more processors, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
  • an apparatus in a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-fourth aspects, includes means for communicating with a first base station and for receiving, from a second base station, a reference signal associated with a RSRP value and a SNR value. The apparatus further includes means for determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • the means for determining is configured to: determine that the RSRP value satisfies the first threshold; and determine that the SNR value satisfies the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  • the means for communicating is configured to: receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicate with the second base station.
  • the means for determining is configured to: determine that the RSRP value satisfies the first threshold; and determine that the SNR value fails to satisfy the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  • the means for determining is configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  • the means for determining is configured to: determine that the RSRP value fails to satisfy the first threshold; and determine that the SNR value fails to satisfy the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  • the means for communicating is configured to communicate with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
  • the first base station is associated with a first RSRP
  • the second base station is associated with a second RSRP corresponding to the RSRP value
  • the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  • the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  • the first base station is associated with a first SNR
  • the second base station is associated with a second SNR corresponding to the SNR value
  • the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  • the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  • the means for communicating, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
  • a non-transitory computer-readable medium stores instructions executable by a processor to perform operations.
  • the operations include communicating, by a UE, with a first base station and receiving, by the UE from a second base station, a reference signal associated with a RSRP value and a SNR value.
  • the operations further include determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  • the operations further include: determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value satisfies the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  • the operations further include: receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicating, by the UE, with the second base station.
  • the operations further include: determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  • the operations further include filtering a list of cells included in the measurement report, where filtering the list of cells includes removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  • the operations further include: determining, by the UE, that the RSRP value fails to satisfy the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  • the UE communicates with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
  • the first base station is associated with a first RSRP
  • the second base station is associated with a second RSRP corresponding to the RSRP value
  • the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  • the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  • the first base station is associated with a first SNR
  • the second base station is associated with a second SNR corresponding to the SNR value
  • the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  • the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  • the UE, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
  • the functional blocks and modules described herein may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • features described herein may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general- purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Abstract

A method of wireless communication includes communicating, by a user equipment (UE), with a first base station. The method further includes receiving, by the UE from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value. The method further includes, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.

Description

BASE STATION RESELECTION USING A SIGNAL-TO-NOISE RATIO TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to base station reselection in wireless communication systems.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
In some aspects of the disclosure, a method of wireless communication includes communicating, by a user equipment (UE) , with a first base station. The method further includes receiving, by the UE from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value. The method further includes, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
In some other aspects of the disclosure, an apparatus includes a memory and one or more processors coupled to the memory. The one or more processors are configured to communicate with a first base station and to receive, from a second base station, a reference signal associated with a RSRP value and a SNR value. The one or more processors are further configured to determine, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
In some other aspects of the disclosure, an apparatus includes means for communicating with a first base station and for receiving, from a second base station, a reference signal associated with a RSRP value and a SNR value. The apparatus further includes means for determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
In some other aspects of the disclosure, a non-transitory computer-readable medium stores instructions executable by a processor to perform operations. The operations include communicating, by a UE, with a first base station and receiving, by the UE from a second base station, a reference signal associated with a RSRP value and a SNR value. The operations further include determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating an example of a wireless communication system according to some aspects of the disclosure.
FIG. 2 is a block diagram illustrating an example of a base station and a user equipment (UE) according to some aspects of the disclosure.
FIG. 3 is a block diagram illustrating another example of a wireless communication system according to some aspects of the disclosure.
FIG. 4 is a ladder diagram illustrating examples of operations that may be performed by a wireless communication system according to some aspects of the disclosure.
FIG. 5 is a flow chart illustrating an example of a method of wireless communication that may be performed by a UE according to some aspects of the disclosure.
FIG. 6 is a block diagram conceptually illustrating an example of a UE according to some aspects of the disclosure.
DETAILED DESCRIPTION
Signals transmitted in a wireless communication system may be susceptible to noise, interference, and other conditions that reduce signal quality. In some cases, reduced quality of a signal may lead to a radio link failure (RLF) between a user equipment (UE) and a base station. As a result of an RLF, data communications and other services may be interrupted, reducing quality of user experience.
A wireless communication system in accordance with some aspects of the disclosure may selectively perform handovers between base stations based on an SNR measured or estimated by a UE. To illustrate, certain wireless communications specify that a handover from a first base station to a second base station is to be performed (or may be performed) if a reference signal received power (RSRP) of a reference signal associated with the second base station satisfies one or more criteria. In some cases, the second base station may be associated with a relatively high RSRP, but an RLF may occur upon the UE establishing  communications with the second base station (e.g., due to an amount, type, or change of noise or interference that reduces quality of some signals, such as data signals, more than other signals, such as the reference signal) .
To reduce or avoid instances of RLF, the UE may determine that a signal-to-noise ratio (SNR) associated with the reference signal satisfies an SNR threshold that is distinct from the one or more criteria associated with the RSRP. If the SNR fails to satisfy the SNR threshold, the UE may avoid transmitting a measurement report that indicates the second base station. In some examples, the UE “filters” a list of cells included in the measurement report by deleting an indication of the second base station from the list of cells. As a result, handover to the second base station may be avoided in cases where the base station is associated with a relatively strong RSRP (e.g., an RSRP that satisfies the one or more criteria) and a relatively poor SNR (e.g., an SNR that fails to satisfy the SNR threshold) . Accordingly, instances of RLF may be reduced.
To further illustrate, certain aspects of the disclosure may be used in wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as GSM. 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (Ainterfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be  coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. An operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km^2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10  Tbps/km^2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to exemplary LTE implementations or in an LTE-centric way, and LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications. Indeed, the  present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of 5G NR.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
FIG. 1 shows wireless network 100 for communication according to some aspects. Wireless network 100 may, for example, comprise a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may comprise a plurality of operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A  small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e may correspond to regular macro base stations, while base stations 105a-105c may correspond to macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c may operate according to higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f may correspond to a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile device is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP) , such apparatus may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile device (such as the UE 115) include a mobile phone, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile device may  additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the example illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100  A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile device, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a lightning bolt (e.g., a communication link) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
In operation at wireless network 100, base stations 105a-105c may serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Base station 105d may perform backhaul communications with base stations 105a-105c, as well as with base station 105f. Base station 105d may transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 may support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which may be a drone. Redundant communication links may be used by UE 115e to communicate with  base stations  105d and 105e, as well as base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as base station 105f and base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with base station 105e.
FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be a small cell base station (e.g., the base station 105f in FIG. 1) , and UE 115 may be  UE  115c or 115d operating in a service area of the base station 105f. In some examples, to access the base station 105f, the UE 115 may be included in a list of accessible UEs for the base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or  the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the operations illustrated in FIG. 5.  Memories  242 and 282 may  store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal  power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
Referring to FIG. 3, an illustrative example of a wireless communication system is depicted and generally designated 300. The wireless communication system 300 includes multiple base stations, such as a first base station (e.g., the base station 105a) , a second base station (e.g., the base station 105b) , and a third base station (e.g., the base station 105c) .
In some examples, the base station 105a and the base station 105b are associated with a common wireless communication protocol. In some implementations, the common wireless communication protocol is a fourth-generation long term evolution (4G LTE) wireless communication protocol, a fifth-generation new-radio (5G NR) wireless communication protocol, or a  non-standalone (NSA) mode that supports communication by the UE 115 based on the 4G LTE wireless communication protocol and also based on the 5G NR wireless communication protocol.
The wireless communication system 300 further includes the UE 115. FIG. 3 illustrates that the UE 115 includes one or more processors (e.g., the controller/processor 280) and one or more memories (e.g., the memory 282) coupled to the one or more processors.
During operation, the UE 115 may communicate with one or more base stations, such as the base station 105a. To illustrate, the UE 115 may register with the base station 105a upon entering a coverage area associated with the base station 105a. In some examples, the UE 115 detects based on a first reference signal 302 transmitted by the base station 105a. In some examples, the UE 115 determines to register with the base station 105a based on a first reference signal received power (RSRP) 332 associated with the first reference signal 302, based on a first signal-to-noise ratio (SNR) 336 associated with the first reference signal 302, or both. During communication with the base station 105a, the UE 115 may send data to the base station 105a, receive data from the base station 105a, or both.
In some circumstances, the UE 115 may detect one or more other base stations while in communication with the base station 105a. As an example, the UE 115 may be located in or near a coverage area of the base station 105b and may detect a second reference signal 312 transmitted by the base station 105b. The UE 115 may determine a second RSRP 334 based  on the second reference signal 312 and may further determine a second SNR 338 based on the second reference signal 312.
The UE 115 may determine an RSRP (such as any of the RSRPs 332, 334) using one or more techniques. In one example, the first reference signal 302 includes or corresponds to a first synchronization signal, such as a secondary synchronization signal (SSS) , and the first RSRP 332 corresponds to a first synchronization signal RSRP (SS-RSRP) . The second reference signal 312 may include or correspond to a second synchronization signal (e.g., an SSS) , and the second RSRP 334 may correspond to a second SS-RSRP. The UE 115 may determine a first average power associated with resource elements used to transmit the first reference signal 302 and may determine a second average power associated with resource elements used to transmit the second reference signal 312. The first RSRP 332 may correspond to or may be based on the first average power, and the second RSRP 334 may correspond to or may be based on the second average power.
In some examples, the UE 115 determines (or estimates) an SNR (such as any of the SNRs 336, 338) based on one or more parameters determined in connection with an RSRP (such as any of the RSRPs 332, 334) . In this case, the UE 115 may “borrow” one or more parameters determined in connection with an RSRP to determine (or estimate) an SNR. To illustrate, the UE 115 may determine the first SNR 336 based at least in part on the first average power associated with resource elements used to transmit the first reference signal 302 and may determine the second SNR 338 based at least in part on the second average power associated with resource elements used to transmit the second reference signal 312. In some examples, the UE 115 determines the first SNR 336 by determining a first noise-plus-interference (NI) estimate associated with the first RSRP 332 (e.g., by performing a first measurement of NI) and by dividing the first RSRP 332 by the first NI estimate. The UE 115 may determine the second SNR 338 by determining a second NI estimate associated with the second RSRP 334 (e.g., by performing a second measurement of NI) and by dividing the second RSRP 334 by the second NI estimate. In some examples, the UE 115 may determine an NI estimate by tuning to one or more channels unused by the UE 115 and by measuring an amount of power associated with the one or more channels.
To further illustrate, in some examples, the UE 115 includes a first circuit that determines the first RSRP 332 and the first NI estimate. The first circuit may store indications of the first RSRP 332 and the first NI estimate to a memory (e.g., a buffer, a cache, or another memory) that is accessible to the first circuit and to a second circuit of the UE 115. The second circuit may access the indications of the first RSRP 332 and the first NI estimate  and may determine the first SNR 336 based on the first RSRP 332 and the first NI estimate. In some examples, the first circuit stores indications of the second RSRP 334 and the second NI estimate to the memory, and the second circuit determines the second SNR 338 based on the second RSRP 334 and the second NI estimate. In some examples, the first circuit overwrites the indications of the first RSRP 332 and the first NI estimate with the indications of the second RSRP 334 and the second NI estimate at the memory. In some other examples, information stored at the memory can be deleted or overwritten using another technique, such as according to a first-in, first out (FIFO) basis.
The UE 115 may determine whether the second RSRP 334 satisfies (e.g., is greater than, or is greater than or equal to) a first threshold 350. In some examples, the UE includes a comparator that compares the second RSRP 334 to the first threshold 350. In some implementations, the comparator includes circuitry that is coupled to or included in the controller/processor 280. Alternatively or in addition, the comparator may include instructions executed by the controller/processor 280. In some examples, the comparator may receive an indication of the second RSRP 334 from the controller/processor 280 and may retrieve an indication of the first threshold 350 from the memory 282. Upon receiving the indication of the second RSRP 334 and the indication of the first threshold 350, the comparator may compare the second RSRP 334 to the first threshold 350 to determine whether the second RSRP 334 satisfies the first threshold 350. In some examples, the comparator provides a first output signal to the controller/processor 280 indicating whether the second RSRP 334 satisfies the first threshold 350. For example, a first value of the first output signal may indicate that the second RSRP 334 satisfies (e.g., is greater than, or is greater than or equal to) the first threshold 350, and a second value of the first output signal may indicate that the second RSRP 334 fails to satisfy (e.g., is less than or equal to, or is less than) the first threshold 350.
The UE 115 may also determine whether the second SNR 338 satisfies a second threshold 360. In some examples, the comparator compares the second SNR 338 to the second threshold 360. In some examples, the comparator may receive an indication of the second SNR 338 from the controller/processor 280 and may retrieve an indication of the second threshold 360 from the memory 282. Upon receiving the indication of the second SNR 338 and the indication of the second threshold 360, the comparator may compare the second SNR 338 to the second threshold 360 to determine whether the second SNR 338 satisfies the second threshold 360. In some examples, the comparator provides a second output signal to the controller/processor 280 indicating whether the second SNR 338 satisfies  the second threshold 360. For example, a first value of the second output signal may indicate that the second SNR 338 satisfies (e.g., is greater than, or is greater than or equal to) the second threshold 360, and a second value of the second output signal may indicate that the second SNR 338 fails to satisfy (e.g., is less than or equal to, or is less than) the second threshold 360.
In some examples, the comparator generates the first output signal in parallel with generating the second output signal. For example, the comparator may perform a first comparison of the second RSRP 334 to the first threshold 350 in parallel with a second comparison of the second SNR 338 to the second threshold 360 and may output the first output signal in parallel with outputting the second output signal. In some examples, performing such operations in parallel may reduce latency at the UE 115. In some other examples, the comparator may perform certain operations sequentially. In one example, the comparator performs the second comparison after performing the first comparison. For example, the comparator may perform the first comparison and may perform the second comparison conditionally based on a result of the first comparison, such as if the first output signal has the first value. In this example, the comparator may omit the second comparison if the first output signal has the second value. In some examples, performing such operations sequentially may reduce power consumption or a number of processing cycles used by the UE 115.
The UE 115 may determine (e.g., based on the first comparison and the second comparison) whether to include an indication 308 of the base station 105b in a measurement report 304. In some examples, the UE 115 may transmit the measurement report 304 to the base station 105a to indicate one or more measurements of reference signals received from one or more neighbor base stations of the base station 105a. In some examples, the base station 105a (or another device of the wireless communications system 300) may use the measurement report 304 in connection with one or more operations, such as in connection with a handover of the UE 115 (e.g., from the base station 105a to the base station 105b) . In some implementations, the measurement report 304 includes a list of cells 306 associated with measurements performed by the UE 115. For example, the list of cells 306 may indicate “candidate” base stations detected by the UE 115 associated with reference signals having RSRPs and SNRs that satisfy the first threshold 350 and the second threshold 360, respectively.
To illustrate, in one example, the UE 115 determines that the second RSRP 334 satisfies the first threshold 350 and that the second SNR 338 satisfies the second threshold  360. Based on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 satisfying the second threshold 360, the UE 115 may include the indication 308 in the measurement report 304. The UE 115 may transmit the measurement report 304 (including the indication 308) to the base station 105a.
In another example, the UE 115 determines that the second RSRP 334 satisfies the first threshold 350 and that the second SNR 338 fails to satisfy the second threshold 360. Based on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360, the UE 115 may exclude the indication 308 from the measurement report 304. In some examples, the UE 115 may transmit the measurement report 304 (excluding the indication 308) to the base station 105a, such as if the list of cells 306 indicates at least one other base station (e.g., the base station 105c) . Alternatively, the UE 115 may decline to provide the measurement report 304 (or may provide an “empty” or null measurement report 304) to the base station 105a, such as if no candidate base stations are detected by the UE 115. To further illustrate, in some implementations, the UE 115 filters the list of cells 306 on the second RSRP 334 satisfying the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360. In some examples, filtering the list of cells 306 includes removing (e.g., deleting, overwriting, or zero-padding) the indication 308 of the base station 105b from the measurement report 304 prior to transmitting the measurement report 304 to the base station 105a.
In another example, the UE 115 determines that the second RSRP 334 fails to satisfy the first threshold 350 and that the second SNR 338 fails to satisfy the second threshold 360. Based on the second RSRP 334 failing to satisfy the first threshold 350 or the second SNR 338 failing to satisfy the second threshold 360, the UE 115 may exclude the indication 308 from the measurement report 304. In some examples, the UE 115 may transmit the measurement report 304 (excluding the indication 308) to the base station 105a, such as if the list of cells 306 indicates at least one other base station (e.g., the base station 105c) . Alternatively, the UE 115 may decline to provide the measurement report 304 (or may provide an “empty” or null measurement report 304) to the base station 105a, such as if no candidate base stations are detected by the UE 115. To further illustrate, in some implementations, the UE 115 filters the list of cells 306 on the second RSRP 334 failing to satisfy the first threshold 350 and the second SNR 338 failing to satisfy the second threshold 360. In some examples, filtering the list of cells 306 includes removing (e.g., deleting, overwriting, or zero-padding) the indication 308 of the base station 105b from the  measurement report 304 prior to transmitting the measurement report 304 to the base station 105a.
In some examples, the base station 105 (or another device of the wireless communications system 300) may initiate a handover based on the measurement report 304. For example, based on the indication 308 of the base station 105b, the base station 105 (or another device of the wireless communications system 300) may initiate a handover of the UE 115 from the base station 105a to the base station 105b. In some examples, the UE 115 may receive a reconfiguration message 310 (e.g., from the base station 105a) in connection with a handover from the base station 105a to the base station 105b. Based on the reconfiguration message 310, the UE 115 may communicate with the base station 105b. For example, the UE 115 may register with the base station 105b, terminate communications with the base station 105a, or both.
In some examples, the UE 115 communicates with the base station 105a and the base station 105b based on a wireless communication protocol, such as a fifth generation new radio (5G NR) wireless communication protocol. The wireless communication protocol may specify the first threshold 350, and the second threshold 360 may be independent of the wireless communication protocol (e.g., the second threshold 360 may not be specified of the wireless communication protocol) .
To illustrate, in one example, the wireless communication protocol specifies that the first threshold 350 is satisfied if the second RSRP 334 exceeds the first RSRP 332 by at least a first offset amount 352. As an example, the first threshold 350 may correspond to an A3 event threshold specified by a 5G NR wireless communication protocol. Alternatively or in addition, in some examples, the wireless communication protocol specifies that the first threshold 350 is satisfied if the second RSRP 334 exceeds a reference RSRP value 354. As an example, the first threshold 350 may correspond to an A4 event threshold specified by a 5G NR wireless communication protocol.
Depending on the implementation, the second threshold 360 may include or correspond to one or more parameters or thresholds. In some examples, the second threshold 360 includes or corresponds to a second offset amount 362. In this example, the second threshold 360 may be satisfied if the second SNR 338 exceeds the first SNR 336 by at least a second offset amount 362. In this example, the UE 115 may include the indication 308 in the measurement report 304 based on the second SNR 338 exceeding the first SNR 336 by at least a second offset amount 362 and may exclude the indication 308 from the measurement report 304 based on the second SNR 338 failing to exceed the first SNR 336 by at least a  second offset amount 362. Further, in this example, the UE 115 may determine whether the second threshold 360 is satisfied based at least in part on the first SNR 336.
Alternatively or in addition, the second threshold 360 may include or correspond to a reference SNR value 366, and the UE 115 may determine that the second threshold 360 is satisfied if the second SNR 338 exceeds the reference SNR value 366. In this example, the UE 115 may include the indication 308 in the measurement report 304 based on the second SNR 338 exceeding the reference SNR value 366 and may exclude the indication 308 from the measurement report 304 based on the second SNR 338 failing to exceed the reference SNR value 366. Further, in some examples, the UE 115 may determine whether the second threshold 360 is satisfied independently of the first SNR 336.
In some examples, one or more operations described with reference to FIG. 3 may be performed based on a mode of operation of one or more devices of the wireless communication system 300. To illustrate, the UE 115, the base station 105a, and the base station 105b may operate based on a 5G NR standalone (SA) mode of operation. The UE 115 may selectively include or exclude the indication 308 from the measurement report 304 based on detecting the 5G NR SA mode of operation. In other examples, the UE 115 may omit certain operations described herein (e.g., comparing the second SNR 338 to the second threshold 360 and excluding the indication 308 from the measurement report 304) in one or more other modes of operation, such as in connection with a non-standalone (NSA) mode of operation. In some examples, an NSA mode of operation may be associated with reduced noise, interference, or other parameters. As a result, performance may be improved by omitting certain operations described herein during operation based on the NSA mode.
FIG. 4 depicts an example of a ladder diagram illustrating examples of operations 400 that may be performed by a wireless communication system, such as the wireless communication system 300 of FIG. 3. In FIG. 4, time may advance from top to bottom in FIG. 4. It is noted that the operations 400 are illustrative and are not intended to limit the scope of the disclosure. For example, a process in accordance with the disclosure may include a different number of operations, may include a different type of operations, may include one or more operations not illustrated in FIG. 4, or may exclude one or more operations illustrated in FIG. 4.
The operations 400 may include registering, by a UE, with a first base station, at 402. For example, the UE 115 may register with the base station 105a, such as in response to entering a coverage area associated with the base station 105a.
The operations 400 may further include establishing a radio resource control (RRC) connection between the UE and the first base station, at 404. For example, the base station 105a may transmit one or more RRC messages to the UE 115.
The operations 400 may further include communicating data (e.g., user data) between the UE and the first base station, at 406. For example, the base station 105a may transmit data to the UE 115 via a downlink. Alternatively or in addition, the UE 115 may transmit data to the base station 105a via an uplink.
The operations 400 may further include receiving an RRC reconfiguration message by the UE from the first base station, at 408. For example, the RRC reconfiguration message may indicate that the UE 115 is to perform one or more measurements of reference signals of one or more neighbor base stations of the base station 105a to generate the measurement report 304.
The operations 400 may further include searching for and detecting a second base station, at 410. For example, the UE 115 may detect the base station 105b based on the second reference signal 312. Searching for and detecting the second base station may include determining that an RSRP associated with the second base station satisfies an RSRP threshold. For example, the UE 115 may determine that the second RSRP 334 of the second reference signal 312 satisfies the first threshold 350.
The operations 400 further include determining whether an SNR associated with the second base station satisfies an SNR threshold (e.g., “snr_decode_threshold” ) , at 412. For example, the UE 115 may determine whether the second SNR 338 of the second reference signal 312 satisfies the second threshold 360. In some examples, the UE 115 determines whether the second SNR 338 of the second reference signal 312 satisfies the second threshold 360 conditioned on determining (e.g., at 410) that the second RSRP 334 of the second reference signal 312 satisfies the first threshold 350.
In some examples, if the SNR associated with the second base station fails to satisfy the SNR threshold, the operations 400 may continue, at 410. For example, in some implementations, the UE 115 may continue searching for and performing one or more measurements of reference signals of one or more neighbor base stations of the base station 105a to generate the measurement report 304.
In some other examples, if the SNR associated with the second base station satisfies the SNR threshold, the operations 400 may include transmitting, to the first base station, a measurement report indicating the second base station, the RSRP associated with the second base station, or both, at 414. For example, the UE 115 may transmit, to the base station 105a,  the measurement report 304 including the indication 308. In some implementations, the measurement report 304 includes an indication of the base station 105b, an indication of the second RSRP 334, or both.
The operations 400 may further include initiating a handover request, at 416. For example, the base station 105a may transmit, in response to the measurement report 304, the handover request to the base station 105b.
The operations 400 may further include receiving a handover request acknowledgement, at 418. For example, the base station 105a may receive the handover request acknowledgement from the base station 105b in response to the handover request.
The operations 400 may further include receiving a reconfiguration message, at 420. For example, in response to receiving the handover request acknowledgement from the base station 105b, the base station 105a may transmit the reconfiguration message 310 to the UE 115, and the UE 115 may receive the reconfiguration message 310 from the base station 105a. In some examples, the reconfiguration message 310 includes or corresponds to an RRC connection reconfiguration message.
The operations 400 may further include transmitting an RRC connection reconfiguration completion message, at 422. For example, in response to receiving the reconfiguration message 310 from the base station 105a, the UE 115 may transmit the RRC connection reconfiguration completion message to the base station 105b.
The operations 400 may further include establishing and maintaining communications with the second base station without radio link failure (RLF) , at 424. The operations 400 may also include communicating data with the second base station, at 426. For example, the base station 105b may transmit data to the UE 115 via a downlink. Alternatively or in addition, the UE 115 may transmit data to the base station 105b via an uplink. The operations 400 of FIG. 4 may end, at 428.
One or more aspects of FIGS. 3 and 4 may improve performance within a wireless communication system, such as the wireless communication system 300. To illustrate, in some circumstances, use of the second SNR 338 may enable the wireless communication system 300 to avoid handover of the UE 115 from the base station 105a to the base station 105b during conditions that can lead to a radio link failure (RLF) . In some cases, the base station 105b may be associated with a relatively high second RSRP 334, but an RLF may occur upon the UE 115 establishing communications with the base station 105b (e.g., due to an amount, type, or change of noise or interference that reduces quality of some signals, such as data signals, more than other signals, such as the second reference signal 312) . As a result,  by using the second SNR 338 to “filter” the measurement report 304, instances of RLF may be reduced.
FIG. 5 is a flow chart illustrating an example of a method 500 of wireless communication performed by a UE according to some aspects of the disclosure. In some examples, the method 500 is performed by the UE 115.
The method 500 includes communicating, by a UE, with a first base station, at 502. For example, the UE 115 may communicate with the base station 105a.
The method 500 further includes receiving, by the UE from a second base station, a reference signal associated with an RSRP value and an SNR value, at 504. For example, the UE 115 may receive the second reference signal 312 and may determine the second RSRP 334 and the second SNR 338 based on the second reference signal 312.
The method 500 further includes determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station, at 506. For example, the UE 115 may determine whether to include the indication 308 in the measurement report 304 using one or more techniques described with reference to FIG. 3.
FIG. 6 is a block diagram illustrating an example of a UE 115 according to some aspects of the disclosure. The UE 115 may include one or more components described with reference to FIG. 2. For example, the UE 115 includes the controller/processor 280 and the memory 282. The UE 115, under control of the controller/processor 280, transmits and receives signals via wireless radios 601a-r and the antennas 252a-r. The wireless radios 601a-r may include one or more components of FIG. 2, such as one or more of the modulator/demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, or the TX MIMO processor 266.
The memory 282 may store instructions executable by the controller/processor 280 to perform, initiate, or control one or more operations described herein. To illustrate, the memory 282 may store RSRP instructions 602 executable by the controller/processor 280 to determine the first RSRP 332 based on the first reference signal 302, to determine the second RSRP 334 based on the second reference signal 312, or both. As another example, the memory 282 may store SNR instructions 603 executable by the controller/processor 280 to determine the first SNR 336 based on the first reference signal 302, to determine the second SNR 338 based on the second reference signal 312, or both. As an additional example, the memory may store measurement report filtering instructions 604 executable by the  controller/processor 280 to selectively remove the indication 308 from the measurement report 304 based on a determination that the second SNR 338 fails to satisfy the second threshold 360.
In a first aspect, a method of wireless communication includes communicating, by a UE, with a first base station. The method further includes receiving, by the UE from a second base station, a reference signal associated with an RSRP value and a SNR value. The method further includes, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
In a second aspect, alone or in combination with the first aspect, the method further includes determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value satisfies the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
In a third aspect, alone or in combination with one or more of the first through second aspects, the method further includes receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicating, by the UE, with the second base station.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the method further includes determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the method further includes filtering a list of cells included in the measurement report, where filtering the list of cells includes removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the method further includes determining, by the UE, that the RSRP value fails to  satisfy the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the UE communicates with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first base station is associated with a first RSRP, the second base station is associated with a second RSRP corresponding to the RSRP value, and the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the first base station is associated with a first SNR, the second base station is associated with a second SNR corresponding to the SNR value, and the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the UE, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, an apparatus includes a memory and one or more processors coupled to the memory. The one or more processors are configured to communicate with a first base station and to receive, from a second base station, a reference signal associated with a RSRP value and a SNR value. The one or more processors are further configured to determine, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR  value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the one or more processors are further configured to: determine that the RSRP value satisfies the first threshold; determine that the SNR value satisfies the second threshold; and transmit, to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the one or more processors are further configured to: receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicate with the second base station.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the one or more processors are further configured to determine that the RSRP value satisfies the first threshold; determine that the SNR value fails to satisfy the second threshold; and transmit, to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the one or more processors are further configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, the one or more processors are further configured to: determine that the RSRP value fails to satisfy the first threshold; determine that the SNR value fails to satisfy the second threshold; and transmit, to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the one or more processors are further configured to communicate with  the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, the first base station is associated with a first RSRP, the second base station is associated with a second RSRP corresponding to the RSRP value, and the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
In a twenty-second-first aspect, alone or in combination with one or more of the first through twenty-first aspects, the first base station is associated with a first SNR, the second base station is associated with a second SNR corresponding to the SNR value, and the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
In a twenty-fourth aspect, alone or in combination with one or more of the first through twenty-third aspects, the one or more processors, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
In a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-fourth aspects, an apparatus includes means for communicating with a first base station and for receiving, from a second base station, a reference signal associated with a RSRP value and a SNR value. The apparatus further includes means for determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
In a twenty-sixth aspect, alone or in combination with one or more of the first through twenty-fifth aspects, the means for determining is configured to: determine that the RSRP value satisfies the first threshold; and determine that the SNR value satisfies the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report includes the indication of  the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
In a twenty-seventh aspect, alone or in combination with one or more of the first through twenty-sixth aspects, the means for communicating is configured to: receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and based on the reconfiguration message, communicate with the second base station.
In a twenty-eighth aspect, alone or in combination with one or more of the first through twenty-seventh aspects, the means for determining is configured to: determine that the RSRP value satisfies the first threshold; and determine that the SNR value fails to satisfy the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
In a twenty-ninth aspect, alone or in combination with one or more of the first through twenty-eighth aspects, the means for determining is configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
In a thirtieth aspect, alone or in combination with one or more of the first through twenty-ninth aspects, the means for determining is configured to: determine that the RSRP value fails to satisfy the first threshold; and determine that the SNR value fails to satisfy the second threshold, where the means for communicating is configured to transmit, to the first base station, the measurement report, and where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
In a thirty-first aspect, alone or in combination with one or more of the first through thirtieth aspects, the means for communicating is configured to communicate with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
In a thirty-second aspect, alone or in combination with one or more of the first through thirty-first aspects, the first base station is associated with a first RSRP, the second base station is associated with a second RSRP corresponding to the RSRP value, and the  wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
In a thirty-third aspect, alone or in combination with one or more of the first through thirty-second aspects, the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
In a thirty-fourth aspect, alone or in combination with one or more of the first through thirty-third aspects, the first base station is associated with a first SNR, the second base station is associated with a second SNR corresponding to the SNR value, and the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
In a thirty-fifth aspect, alone or in combination with one or more of the first through thirty-fourth aspects, the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
In a thirty-sixth aspect, alone or in combination with one or more of the first through thirty-fifth aspects, the means for communicating, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
In a thirty-seventh aspect, alone or in combination with one or more of the first through thirty-sixth aspects, a non-transitory computer-readable medium stores instructions executable by a processor to perform operations. The operations include communicating, by a UE, with a first base station and receiving, by the UE from a second base station, a reference signal associated with a RSRP value and a SNR value. The operations further include determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
In a thirty-eighth aspect, alone or in combination with one or more of the first through thirty-seventh aspects, the operations further include: determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value satisfies the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
In a thirty-ninth aspect, alone or in combination with one or more of the first through thirty-eighth aspects, the operations further include: receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to  the second base station; and based on the reconfiguration message, communicating, by the UE, with the second base station.
In a fortieth aspect, alone or in combination with one or more of the first through thirty-ninth aspects, the operations further include: determining, by the UE, that the RSRP value satisfies the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
In a forty-first aspect, alone or in combination with one or more of the first through fortieth aspects, the operations further include filtering a list of cells included in the measurement report, where filtering the list of cells includes removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
In a forty-second aspect, alone or in combination with one or more of the first through forty-first aspects, the operations further include: determining, by the UE, that the RSRP value fails to satisfy the first threshold; determining, by the UE, that the SNR value fails to satisfy the second threshold; and transmitting, by the UE to the first base station, the measurement report, where the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
In a forty-third aspect, alone or in combination with one or more of the first through forty-second aspects, the UE communicates with the first base station and the second base station based on a wireless communication protocol, the wireless communication protocol specifies the first threshold, and the second threshold is independent of the wireless communication protocol.
In a forty-fourth aspect, alone or in combination with one or more of the first through forty-third aspects, the first base station is associated with a first RSRP, the second base station is associated with a second RSRP corresponding to the RSRP value, and the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
In a forty-fifth aspect, alone or in combination with one or more of the first through forty-fourth aspects, the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
In a forty-sixth aspect, alone or in combination with one or more of the first through forty-fifth aspects, the first base station is associated with a first SNR, the second base station is associated with a second SNR corresponding to the SNR value, and the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
In a forty-seventh aspect, alone or in combination with one or more of the first through forty-sixth aspects, the second threshold corresponds to a reference SNR value, and the second threshold is satisfied if the SNR value exceeds the reference SNR value.
In a forty-eighth aspect, alone or in combination with one or more of the first through forty-seventh aspects, the UE, the first base station, and the second base station operate based on a 5G NR SA mode of operation.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules described herein (e.g., the functional blocks and modules in FIG. 2) may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features described herein may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and operations (e.g., the operations of FIG. 5) described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that  the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The operations of a method or process described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general- purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (48)

  1. A method of wireless communication, comprising:
    communicating, by a user equipment (UE) , with a first base station;
    receiving, by the UE from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value; and
    based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
  2. The method of claim 1, further comprising:
    determining, by the UE, that the RSRP value satisfies the first threshold;
    determining, by the UE, that the SNR value satisfies the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  3. The method of claim 2, further comprising:
    receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and
    based on the reconfiguration message, communicating, by the UE, with the second base station.
  4. The method of claim 1, further comprising:
    determining, by the UE, that the RSRP value satisfies the first threshold;
    determining, by the UE, that the SNR value fails to satisfy the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  5. The method of claim 4, further comprising filtering a list of cells included in the measurement report, wherein filtering the list of cells includes removing the indication of the  second base station from the measurement report prior to transmitting the measurement report to the first base station.
  6. The method of claim 1, further comprising:
    determining, by the UE, that the RSRP value fails to satisfy the first threshold;
    determining, by the UE, that the SNR value fails to satisfy the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  7. The method of any of claims 1-6, wherein the UE communicates with the first base station and the second base station based on a wireless communication protocol, wherein the wireless communication protocol specifies the first threshold, and wherein the second threshold is independent of the wireless communication protocol.
  8. The method of claim 7, wherein the first base station is associated with a first RSRP, wherein the second base station is associated with a second RSRP corresponding to the RSRP value, and wherein the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  9. The method of claim 7, wherein the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  10. The method of any of claims 1-9, wherein the first base station is associated with a first SNR, wherein the second base station is associated with a second SNR corresponding to the SNR value, and wherein the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  11. The method of any of claims 1-10, wherein the second threshold corresponds to a reference SNR value, and wherein the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  12. The method of any of claims 1-11, wherein the UE, the first base station, and the second base station operate based on a fifth generation new radio (5G NR) standalone (SA) mode of operation.
  13. An apparatus comprising:
    a memory; and
    one or more processors coupled to the memory and configured to:
    communicate with a first base station;
    receive, from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value; and
    based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determine whether to include an indication of the second base station in a measurement report to the first base station.
  14. The apparatus of claim 13, wherein the one or more processors are further configured to:
    determine that the RSRP value satisfies the first threshold;
    determine that the SNR value satisfies the second threshold; and
    transmit, to the first base station, the measurement report, wherein the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  15. The apparatus of claim 14, wherein the one or more processors are further configured to:
    receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and
    based on the reconfiguration message, communicate with the second base station.
  16. The apparatus of claim 13, wherein the one or more processors are further configured to:
    determine that the RSRP value satisfies the first threshold;
    determine that the SNR value fails to satisfy the second threshold; and
    transmit, to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  17. The apparatus of claim 16, wherein the one or more processors are further configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  18. The apparatus of claim 13, wherein the one or more processors are further configured to:
    determine that the RSRP value fails to satisfy the first threshold;
    determine that the SNR value fails to satisfy the second threshold; and
    transmit, to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  19. The apparatus of any of claims 13-18, wherein the one or more processors are further configured to communicate with the first base station and the second base station based on a wireless communication protocol, wherein the wireless communication protocol specifies the first threshold, and wherein the second threshold is independent of the wireless communication protocol.
  20. The apparatus of claim 19, wherein the first base station is associated with a first RSRP, wherein the second base station is associated with a second RSRP corresponding to the RSRP value, and wherein the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  21. The apparatus of claim 19, wherein the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  22. The apparatus of any of claims 13-21, wherein the first base station is associated with a first SNR, wherein the second base station is associated with a second SNR corresponding to the SNR value, and wherein the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  23. The apparatus of any of claims 13-22, wherein the second threshold corresponds to a reference SNR value, and wherein the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  24. The apparatus of any of claims 13-23, wherein the one or more processors, the first base station, and the second base station operate based on a fifth generation new radio (5G NR) standalone (SA) mode of operation.
  25. An apparatus comprising:
    means for communicating with a first base station and for receiving, from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value; and
    means for determining, based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, whether to include an indication of the second base station in a measurement report to the first base station.
  26. The apparatus of claim 25, wherein the means for determining is configured to:
    determine that the RSRP value satisfies the first threshold; and
    determine that the SNR value satisfies the second threshold,
    wherein the means for communicating is configured to transmit, to the first base station, the measurement report, and wherein the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  27. The apparatus of claim 26, wherein the means for communicating is configured to:
    receive, from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and
    based on the reconfiguration message, communicate with the second base station.
  28. The apparatus of claim 25, wherein the means for determining is configured to:
    determine that the RSRP value satisfies the first threshold; and
    determine that the SNR value fails to satisfy the second threshold,
    wherein the means for communicating is configured to transmit, to the first base station, the measurement report, and wherein the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  29. The apparatus of claim 28, wherein the means for determining is configured to filter a list of cells included in the measurement report by removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  30. The apparatus of claim 25, wherein the means for determining is configured to:
    determine that the RSRP value fails to satisfy the first threshold; and
    determine that the SNR value fails to satisfy the second threshold,
    wherein the means for communicating is configured to transmit, to the first base station, the measurement report, and wherein the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  31. The apparatus of any of claims 25-30, wherein the means for communicating is configured to communicate with the first base station and the second base station based on a wireless communication protocol, wherein the wireless communication protocol specifies the first threshold, and wherein the second threshold is independent of the wireless communication protocol.
  32. The apparatus of claim 31, wherein the first base station is associated with a first RSRP, wherein the second base station is associated with a second RSRP corresponding to the RSRP value, and wherein the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  33. The apparatus of claim 31, wherein the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  34. The apparatus of any of claims 25-33, wherein the first base station is associated with a first SNR, wherein the second base station is associated with a second SNR corresponding to the SNR value, and wherein the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  35. The apparatus of any of claims 25-34, wherein the second threshold corresponds to a reference SNR value, and wherein the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  36. The apparatus of any of claims 25-35, wherein the means for communicating, the first base station, and the second base station operate based on a fifth generation new radio (5G NR) standalone (SA) mode of operation.
  37. A non-transitory computer-readable medium storing instructions executable by a processor to perform operations, the operations comprising:
    communicating, by a user equipment (UE) , with a first base station;
    receiving, by the UE from a second base station, a reference signal associated with a reference signal received power (RSRP) value and a signal-to-noise ratio (SNR) value; and
    based on whether the RSRP value satisfies a first threshold and further based on whether the SNR value satisfies a second threshold, determining whether to include an indication of the second base station in a measurement report to the first base station.
  38. The non-transitory computer-readable medium of claim 37, the operations further comprising:
    determining, by the UE, that the RSRP value satisfies the first threshold;
    determining, by the UE, that the SNR value satisfies the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report includes the indication of the second base station based on the RSRP value satisfying the first threshold and further based on the SNR value satisfying the second threshold.
  39. The non-transitory computer-readable medium of claim 38, the operations further comprising:
    receiving, by the UE from the first base station, a reconfiguration message in connection with a handover from the first base station to the second base station; and
    based on the reconfiguration message, communicating, by the UE, with the second base station.
  40. The non-transitory computer-readable medium of claim 37, the operations further comprising:
    determining, by the UE, that the RSRP value satisfies the first threshold;
    determining, by the UE, that the SNR value fails to satisfy the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the SNR value failing to satisfy the second threshold.
  41. The non-transitory computer-readable medium of claim 40, the operations further comprising filtering a list of cells included in the measurement report, wherein filtering the list of cells includes removing the indication of the second base station from the measurement report prior to transmitting the measurement report to the first base station.
  42. The non-transitory computer-readable medium of claim 37, the operations further comprising:
    determining, by the UE, that the RSRP value fails to satisfy the first threshold;
    determining, by the UE, that the SNR value fails to satisfy the second threshold; and
    transmitting, by the UE to the first base station, the measurement report, wherein the measurement report excludes the indication of the second base station based on the RSRP value failing to satisfy the first threshold or based on the SNR value failing to satisfy the second threshold.
  43. The non-transitory computer-readable medium of any of claims 37-42, wherein the UE communicates with the first base station and the second base station based on a wireless communication protocol, wherein the wireless communication protocol specifies the  first threshold, and wherein the second threshold is independent of the wireless communication protocol.
  44. The non-transitory computer-readable medium of claim 43, wherein the first base station is associated with a first RSRP, wherein the second base station is associated with a second RSRP corresponding to the RSRP value, and wherein the wireless communication protocol specifies that the first threshold is satisfied if the second RSRP exceeds the first RSRP by at least a first offset amount.
  45. The non-transitory computer-readable medium of claim 43, wherein the wireless communication protocol specifies that the first threshold is satisfied if the RSRP value exceeds a first reference RSRP value.
  46. The non-transitory computer-readable medium of any of claims 37-45, wherein the first base station is associated with a first SNR, wherein the second base station is associated with a second SNR corresponding to the SNR value, and wherein the second threshold is satisfied if the second SNR exceeds the first SNR by at least a second offset amount.
  47. The non-transitory computer-readable medium of any of claims 37-46, wherein the second threshold corresponds to a reference SNR value, and wherein the second threshold is satisfied if the SNR value exceeds the reference SNR value.
  48. The non-transitory computer-readable medium of any of claims 37-47, wherein the UE, the first base station, and the second base station operate based on a fifth generation new radio (5G NR) standalone (SA) mode of operation.
PCT/CN2020/095992 2020-06-13 2020-06-13 Base station reselection using a signal-to-noise ratio WO2021248505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095992 WO2021248505A1 (en) 2020-06-13 2020-06-13 Base station reselection using a signal-to-noise ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095992 WO2021248505A1 (en) 2020-06-13 2020-06-13 Base station reselection using a signal-to-noise ratio

Publications (1)

Publication Number Publication Date
WO2021248505A1 true WO2021248505A1 (en) 2021-12-16

Family

ID=78846681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095992 WO2021248505A1 (en) 2020-06-13 2020-06-13 Base station reselection using a signal-to-noise ratio

Country Status (1)

Country Link
WO (1) WO2021248505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286038A (en) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 Video data transmission method, airborne terminal, computer device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357100A1 (en) * 2017-02-03 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Automatic neighbour relation (anr) based on detection and reporting of unknown cell based on measurement triggering criterion
US20200015136A1 (en) * 2017-04-05 2020-01-09 Aleksandar Damnjanovic User equipment autonomous serving cell selection in new radio
CN110831079A (en) * 2018-08-09 2020-02-21 惠州Tcl移动通信有限公司 Communication switching method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357100A1 (en) * 2017-02-03 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Automatic neighbour relation (anr) based on detection and reporting of unknown cell based on measurement triggering criterion
US20200015136A1 (en) * 2017-04-05 2020-01-09 Aleksandar Damnjanovic User equipment autonomous serving cell selection in new radio
CN110831079A (en) * 2018-08-09 2020-02-21 惠州Tcl移动通信有限公司 Communication switching method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286038A (en) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 Video data transmission method, airborne terminal, computer device and storage medium
CN114286038B (en) * 2021-12-27 2024-03-22 中国联合网络通信集团有限公司 Video data transmission method, airborne terminal, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
US20220046503A1 (en) Quality of experience techniques for a wireless communication system
AU2017340229A1 (en) Coverage enhancement and normal modes switching related optimization
WO2021217648A1 (en) Cross-link interference (cli) measurements for cli resources
US20220417776A1 (en) Configuration of csi reference resource and csi target resource for predictive estimation of channel state information
WO2021030970A1 (en) Ul transmission method for endc dual connection device
US20230071803A1 (en) Radio access network (ran)-centric data collection for dual connectivity (dc)/carrier aggregation (ca)
US11101871B1 (en) Beam selection for multi-subscriber identity module (MSIM) devices
WO2021041232A1 (en) Full configuration handover techniques
EP3994812A1 (en) Ue aided fast carrier selection
WO2021248505A1 (en) Base station reselection using a signal-to-noise ratio
US20220052861A1 (en) Group-based signaling for a wireless communication system
US11115990B2 (en) UE autonomous beam selection
WO2021026908A1 (en) User equipment behavior on obtaining new radio early measurement configuration
US11825459B2 (en) Mode-based beam management for a user equipment device
WO2021243551A1 (en) Techniques for handover or redirection of ue from 4g to 5g (sa)
US20220322431A1 (en) Network configured sensing bandwidth and channel occupancy time (cot) sharing
WO2022221977A1 (en) Uplink scheduling using a timing parameter associated with an internet-of-things (iot) service session
WO2021237589A1 (en) A method to accelerate ue return 5g from 4g
WO2021237566A1 (en) Network service recovery from abnormal 5g (sa) networks
WO2021146830A1 (en) Search space set for monitoring physical downlink control channel (pdcch) of one cell in multiple cells
WO2021159455A1 (en) Data transfer latency reduction for a mobile device
WO2021237576A1 (en) Network service recovery from abnormal 5g (sa) networks for a dual sim ue
WO2021237610A1 (en) Low-power data scheduling and reception techniques
US20220345960A1 (en) Device performance when t312 configured
WO2021179303A1 (en) Power headroom reporting for a full-duplex mode of operation of a device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940308

Country of ref document: EP

Kind code of ref document: A1