WO2021248418A1 - 数据接收、发送方法及装置、通信设备及存储介质 - Google Patents

数据接收、发送方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021248418A1
WO2021248418A1 PCT/CN2020/095678 CN2020095678W WO2021248418A1 WO 2021248418 A1 WO2021248418 A1 WO 2021248418A1 CN 2020095678 W CN2020095678 W CN 2020095678W WO 2021248418 A1 WO2021248418 A1 WO 2021248418A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data
unlicensed spectrum
transmission
indication information
Prior art date
Application number
PCT/CN2020/095678
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/095678 priority Critical patent/WO2021248418A1/zh
Priority to CN202080001227.1A priority patent/CN114080847A/zh
Publication of WO2021248418A1 publication Critical patent/WO2021248418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present disclosure relate to the wireless communication field but are not limited to the wireless communication field, and in particular, to a data receiving and sending method and device, communication equipment, and storage medium.
  • the sender In the 5G communication protocol version 16 (R16) New Radio-Unlicensed (NR-U), the sender usually needs to perform clear channel assessment (CCA) before sending data for evaluation
  • CCA clear channel assessment
  • the level of interference in the channel If the interference is lower than the energy detection threshold (the threshold can be specified by the communication protocol), the sender considers the channel to be idle, and the sender can occupy the channel to send data. If the interference level is higher than the detection threshold, the sender considers the channel to be busy, and the sender will not be able to occupy the channel to send data. This is the channel access mechanism of Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • the embodiments of the present disclosure provide a data receiving and sending method and device, communication equipment, and storage medium.
  • the first aspect of the embodiments of the present disclosure provides a data receiving method, which includes:
  • a second aspect of the embodiments of the present disclosure provides a data sending method, which includes:
  • the M transmission resource units include: M transmission channels or M transmission periods; and the M is a positive integer.
  • a third aspect of the embodiments of the present disclosure provides a data receiving device, which includes:
  • the detection module is configured to perform idle channel detection on the unlicensed spectrum before the sending end sends data
  • the first sending module is configured to send channel occupancy indication information when it is detected that the channel of the unlicensed spectrum is idle;
  • the first receiving module is configured to receive data on M consecutive transmission resource units after sending the indication information, where the M transmission resource units include: M transmission channels or M transmission periods; M is a positive integer.
  • a fourth aspect of the embodiments of the present disclosure provides a data sending device, which includes:
  • the second receiving module is configured to receive, before sending data, the channel occupation indication information sent by the receiving end after detecting that the channel of the unlicensed spectrum is idle;
  • the second sending module is configured to send data on M consecutive transmission resource units after receiving the channel occupation indication information, where the M transmission resource units include: M transmission channels or M transmission periods ;
  • the M is a positive integer.
  • a fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
  • the program executes the method provided in any technical solution of the first aspect or the second aspect.
  • a sixth aspect of the embodiments of the present disclosure provides a computer storage medium that stores an executable program; after the executable program is executed by a processor, it can implement any of the technical solutions provided in the first aspect or the second aspect method.
  • the receiving end will perform idle channel detection on the unlicensed channel before the sending end sends data, and if an idle channel is detected on the unlicensed spectrum, it will send channel occupation indication information to the sending end.
  • the interference of hidden nodes on data transmission is reduced.
  • a single transmission of channel occupancy indication information at the receiving end will trigger the sending end to send data on M consecutive transmission resource units, which reduces the switching of data transmission directions (for example, uplink and downlink). Handover), which reduces unnecessary operations such as delay and transmission detection caused by transmission direction switching, improves data transmission continuity, and reduces the difficulty of network resource scheduling caused by frequent transmission direction switching.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing an extended time slot occupancy of a configured authorized physical uplink shared channel according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing a method for receiving data according to an exemplary embodiment
  • Fig. 4 is a flow chart of hidden nodes according to an exemplary embodiment
  • Fig. 5 is a schematic diagram showing a comparison of two types of configured authorized physical uplink shared channels according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a method for receiving data according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart showing a method for sending data according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram showing a data receiving device according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a data sending device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • an embodiment of the present disclosure exemplifies an application scenario of an electric meter intelligent control system.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or "cellular" phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer built-in device, or a vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, terminal).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • PHY physical
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), and Policy and Charging Rules functional unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • a receiver-assisted channel access method is proposed. That is, when it is known that the sending end is to send data, the receiving end will perform idle channel detection, and if the detected channel is idle, it will send indication information of occupying the channel to the sending end. The neighboring node may also hear the indication information, but will use the indication information as interference. If the interference is higher than a certain threshold, the neighboring node will back off and will not send data at this time.
  • the base station can configure semi-persistant scheduling Physical Downlink Shared Channel (sps-PDSCH) and/or configure authorized uplink transmission (Configuration Granted Physical Uplink Shared Channel, CG) for the terminal. -PUSCH). These two transmissions are very similar. Both are configured by the base station with a set of periodic time-frequency resources, and then on the time-frequency resources in each cycle, the base station/terminal can send downlink/uplink data.
  • the CG-PUSCH design increases the expansion in N slots compared to the CG-PUSCH in the R 15 protocol. This N slot extension It is to transmit different uplink data on consecutive N time slots.
  • the schematic is shown in Figure 2 below.
  • the diagonal filling part represents CG-PUSCH, and its symbol position in each slot is the same.
  • an embodiment of the present disclosure provides a data receiving method, which includes:
  • S110 Perform idle channel detection on the unlicensed spectrum before the sending end sends data
  • S130 Receive data on M consecutive M transmission resource units after sending the indication information, where the M transmission resource units include: M transmission channels or M transmission periods; and the M is a positive integer.
  • the data receiving method here can be applied to the receiving end of data, for example, the receiving end of uplink data-the base station, or the receiving end of downlink data-the terminal.
  • the base station and the terminal Before the base station and the terminal perform data transmission, they will perform resource configuration for data transmission.
  • the resource configuration is semi-static, and the receiving end already knows the resource configuration before the actual data transmission occurs. Therefore, the receiving end can determine the start time for the sending end to send data according to the resource configuration for data transmission. Therefore, in S110, the receiving end can pre-determine when the sending end will send data according to the resource configuration of the sending end to send data, so that before sending data, the unlicensed spectrum can be checked for idle channels, that is, CCA, to determine Whether there is an idle channel on the unlicensed spectrum for the receiving end to receive the data from the sending end, thereby reducing the hidden nodes around the receiving end that cause the receiving end to interfere with the data sent by the sending end.
  • the receiving end If the receiving end detects the unlicensed spectrum around itself and finds that the channel used to transmit data on the unlicensed spectrum is idle, that is, the interference on the unlicensed spectrum monitored by the receiving end is lower than the threshold, it will Send channel occupancy indication information to the receiving end.
  • the channel occupancy indication information informs the sending end that it can send data normally, and there are no hidden nodes around the receiving end, which can ensure the quality and reliability of data transmission reception; on the other hand, it is equivalent to informing For other communication nodes around the receiving end, the channel of the unlicensed spectrum is currently occupied. Do not continue to seize the channel, otherwise the communication environment will be further deteriorated.
  • the above threshold value can be agreed upon by agreement, for example, the threshold value can be agreed as -47dBm.
  • the receiving end after detecting an idle channel on the unlicensed spectrum, the receiving end sends channel occupancy indication information to the sending end. After receiving the channel occupancy indication information, the sending end will send data on consecutive M transmission resource units. This transmission mechanism is commonly known by the sending end and the receiving end. Therefore, after sending the channel occupancy indication information, the receiving end receives data on M transmission resource units after sending the channel occupancy indication information.
  • the receiving end RX1 receives the sending data of the sending end TX1, and before sending the data, TX1 monitors the unlicensed spectrum at its location.
  • TX1 monitors that the channel of the unlicensed spectrum is idle, in fact the transmitting end TX2 sends data to the receiving end RX1 and the receiving end RX2 respectively.
  • TX1 will not be able to monitor the transmission of TX2 on the unlicensed spectrum. Data, you will mistakenly think that the unlicensed spectrum is free around you, but this interferes with the receiving end RX1 receiving data.
  • TX2 is a hidden node. However, if RX1 also monitors the unlicensed spectrum at this time, RX1 can monitor the signal sent by TX2 on the unlicensed spectrum, thereby eliminating the hidden node.
  • M can be any positive integer, for example, M is a positive integer greater than or equal to 2.
  • the continuous M transmission resource units does not mean that the M transmission resource units are continuous in the time domain.
  • the M transmission resource units may be discrete in the time domain. For example, the end time of the previous transmission resource unit in two adjacent transmission resource units does not overlap with the start time of the next transmission resource unit.
  • there are M transmission resource units in the time domain and the M transmission resource units are distributed in an orderly manner in the time domain. For example, the M transmission resource units are distributed in pairs adjacent to each other. However, the distribution of such transmission resource units in the time domain is continuous or discrete.
  • One transmission resource unit may correspond to one transmission channel, or one transmission period.
  • a transmission cycle can include one or more transmission channels.
  • a transmission channel is a time-frequency resource channel that contains one or more consecutive symbols in the time domain in the time domain and occupies a certain frequency domain position in the frequency domain.
  • the sending end will send data on M consecutive transmission resource units, that is, the receiving end will receive data on M consecutive transmission resource units instead of one transmission resource unit, so, It reduces the number of uplink and downlink switching times of data transmission between the receiving end and the sending end, and improves the continuity of data sent by the sending end.
  • the time domain distribution of the M transmission resource units is at least the adjacent distribution of the same type of transmission resource unit, which makes the transmission time relatively concentrated and reduces the time for one-time uplink and downlink data transmission. Span, the time span is small, the difference in the wireless environment will not be too large, and the quality and reliability of this data transmission can be ensured.
  • the method further includes:
  • the receiving end If the receiving end detects idleness and busyness on the unlicensed spectrum, it does not send the channel occupation indication information to the sending end, and stops receiving data of consecutive M transmission resource units after the channel occupation indication information is scheduled to be sent according to the resource configuration.
  • the sender will stop sending data on the resource unit configured according to the resource configuration.
  • the consecutive M transmission resource units are resource units included in the resource configuration.
  • the timing of sending the channel occupation indication information may be the timing after detecting that any channel is idle.
  • a single transmission of the channel occupation indication information at the receiving end will trigger the sending end to perform M consecutive transmission resource units
  • Sending data reduces the switching of the data transmission direction (for example, uplink and downlink switching), reduces the delay caused by the transmission direction switching and unnecessary operations such as transmission detection, improves the continuity of data transmission, and reduces the frequent switching of the transmission direction The difficulty of resource scheduling brought by the network.
  • the foregoing terminal sending uplink data is taken as an example for description, then the S110 may include:
  • the base station Before the terminal sends the uplink data of the CG-PUSCH, the base station performs idle channel detection on the unlicensed spectrum.
  • Multiple channels can be configured on the unlicensed spectrum, and the receiving end performs idle channel detection on the channel on which the sending end is scheduled to send data, so as to determine whether the corresponding channel is idle.
  • the transmitting end is a terminal
  • the channel on the unlicensed spectrum configured by the resource may be: CG-PUSCH resources on the unlicensed spectrum.
  • the uplink data of CG-PUSCH here is the data transmitted on CG-PUSCH.
  • the base station will perform idle channel detection on the terminal on the unlicensed spectrum. If the base station detects that the channel of the unlicensed spectrum is idle, it may send the channel occupation indication information to the terminal.
  • the base station receives data on M consecutive CG-PUSCH cycles after sending the channel occupancy indication information, or the base station receives data on M consecutive CG-PUSCH cycles after the channel occupancy indication information.
  • One CG-PUSCH cycle includes one or more CG-PUSCH.
  • the aforementioned resource configuration may be: CG-PUSCH resource configuration.
  • the CG-PUSCH resource configuration indicates the time-frequency domain resources of the CG-PUSCH.
  • the base station detects that the CG-PUSCH is busy before the terminal sends data, it will not send the channel occupation indication information, the terminal will not receive the channel occupation indication information, and the terminal will not send the CG-PUSCH until the terminal receives the base station transmission. Incoming channel occupancy indication information.
  • the M is: the number of CG-PUSCHs included in one CG-PUSCH cycle.
  • the CG-PUSCH included in the CG-PUSCH period here may be a non-extended normal CG-PUSCH, or may be an extended extended CG-PUSCH.
  • the non-extended normal CG-PUSH may include one time slot, and the extended CG-PUSCH may include N time slots.
  • one CG-PUSCH cycle may include one or more normal CG-PUSCH, or one or more extended CG-PUSCH.
  • CG-PUSCH can have two different configurations.
  • the periods of the two sets of different CG-PUSCHs are different, being a period of 1 time slot and a period of 2 time slots respectively.
  • CG-PUSCH1-1, CG-PUSCH1-2, CG-PUSCH1-3, CG-PUSCH1-4, CG-PUSCH1-5 and CG-PUSCH1-6 corresponding to the filled square in Figure 5, when it is 1
  • the period of the gap CG-PUSCH2-1, CG-PUSCH2-2 and CG-PUSCH2-3, corresponding to the twill filled squares in Fig. 5, are a period of 2 time slots.
  • the aforementioned transmission resource unit may be any one of the two sets of CG-PUSCH configurations.
  • the S110 may include:
  • the terminal Before the base station sends the downlink data of the SPS-PDSCH, the terminal performs idle channel detection on the unlicensed spectrum.
  • the receiving end of the downlink transmission is the terminal.
  • the downlink data of SPS-PDSCH is the downlink data transmitted on SPS-PDSCH.
  • the terminal performs CCA on the unlicensed spectrum on the unlicensed spectrum before sending the SPS-PDSCH downlink data at the base station according to the resource configuration, and if it detects that the channel of the unlicensed spectrum is idle, the terminal will send channel occupation indication information to the base station; If the base station receives the channel occupancy indication information, the base station will send data on M consecutive SPS-PDSCH after receiving the channel occupancy indication information, or the base station will send M consecutive SPS cycles after receiving the channel occupancy indication information Send data on.
  • One SPS cycle contains one or more SPS-PDSCH.
  • the terminal If the terminal detects that the channel is busy on the SPS-PDSCH of the unlicensed spectrum, it will not send the channel occupancy indication information to the base station, and will not detect the continuous M SPS-PDSCH or the continuous M SPS of the busy channel occupancy indication information. -Receive data on the PDSCH cycle.
  • the value of M is negatively related to the duration of the transmission resource unit.
  • the transmission resource unit is a transmission period
  • the longer the transmission period is, the shorter the value of M can be set, and the shorter the transmission period, the larger the value of M can be set.
  • the transmission resource unit is a transmission channel
  • the longer the duration of the transmission channel the shorter the value of M can be set, and the shorter the duration of the transmission channel, the larger the value of M can be set.
  • the method further includes:
  • the M sent by the base station is received through high-level signaling. If the receiving end is a base station, the base station needs to send the M to the terminal.
  • M is carried in high-layer signaling.
  • the high-level signaling may be: radio resource control (Radio Resource Control, RRC) signaling, or media access control (Media Access Control, MAC) signaling to issue the M.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the M may also be carried through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Using high-level signaling to transmit the M has the characteristics of strong transmission flexibility.
  • an embodiment of the present disclosure provides a data sending method, which includes:
  • S220 Send data on M consecutive M transmission resource units after receiving the channel occupation indication information, where the M transmission resource units include: M transmission channels or M transmission periods; the M is positive Integer.
  • the data sending method here is applied to the sending end of the data, and the sending end of the data may be a base station or a terminal.
  • the sending end of the data may be a base station or a terminal.
  • the transmitting end may be a base station; if the transmitted data is uplink data, the transmitting end may be a terminal.
  • the receiving end Before sending data, the receiving end sends the channel occupancy indication information after the unlicensed spectrum detects the idle channel. If the channel occupancy indication information is received, the sending end can consider that there is no hidden node that interferes with data transmission near the receiving end.
  • the sending end sends data on M consecutive transmission resource units after the channel occupancy indication information is received.
  • the sender will not send data on the transmission resource according to the resource configuration.
  • M can be any positive integer, and can be selected as a positive integer equal to or greater than 2.
  • the transmission resource unit here can be a transmission channel or a transmission period.
  • a transmission cycle may include one or more transmission channels.
  • the S210 may include:
  • the base station Before sending the downlink data of the SPS-PDSCH, the base station receives the channel occupation indication information sent by the terminal after detecting that the unlicensed spectrum is idle and indicating that the SPS-PDSCH is occupied.
  • the base station receives the channel occupancy indication information sent by the terminal after the channel of the unlicensed spectrum is free before sending the downlink data of the SPS-PDSCH.
  • S220 may include: after receiving the channel occupancy indication information, sending data on consecutive M SPS-PDSCH channels or consecutive M SPS cycles.
  • the S210 may include:
  • the terminal Before sending the uplink data of the CG-PUSCH, the terminal receives the channel occupation indication information sent by the base station after detecting that the channel of the unlicensed spectrum is idle and indicating that the CG-PUSCH is occupied.
  • the terminal Before sending uplink data, the terminal will receive the channel occupancy indication information sent by the base station after detecting that the channel of the unlicensed spectrum is free. Data is sent on the PUSCH cycle.
  • the method further includes: transmitting the M through higher layer signaling.
  • the base station sends M to the terminal through a higher layer; if the sending end is a terminal, the terminal receives the upper layer signaling carrying M sent by the base station.
  • an embodiment of the present disclosure provides a data receiving device, which includes:
  • the detection module 110 is configured to perform idle channel detection on the unlicensed spectrum before the sending end sends data
  • the first sending module 120 is configured to send channel occupancy indication information when it is detected that the channel of the unlicensed spectrum is idle;
  • the first sending module 130 is configured to receive data on M consecutive transmission resource units after sending the indication information, where the M transmission resource units include: M transmission channels or M transmission periods; Said M is a positive integer.
  • the detection module 110, the first sending module 120, and the first sending module 130 may be program modules; after the program modules are executed by the processor, the unlicensed spectrum before the sending end data can be idle Channel detection, channel occupancy indication information transmission and data reception.
  • the detection module 110, the first sending module 120, and the first sending module 130 may be a combination of software and hardware; the combination of software and hardware includes, but is not limited to: a programmable array; the programmable array Including but not limited to complex programmable arrays or field programmable arrays.
  • the detection module 110, the first sending module 120, and the first sending module 130 further include: pure hardware modules; the pure hardware modules include, but are not limited to: application specific integrated circuits.
  • the detection module 110 is configured to perform idle channel detection on the unlicensed spectrum by the base station before the terminal sends the uplink data of the CG-PUSCH.
  • the transmission resource unit is the CG-PUSCH
  • the M is equal to: the number of CG-PUSCHs included in one CG-PUSCH period.
  • the detection module 110 is configured to perform idle channel detection on the unlicensed spectrum by the terminal before the base station sends the downlink data of the SPS-PDSCH.
  • the device further includes:
  • the first transmission module is configured to transmit the M through higher layer signaling.
  • the value of M is negatively related to the duration of the transmission resource unit.
  • an embodiment of the present disclosure provides a data sending device, which includes:
  • the second receiving module 210 is configured to receive, before sending data, the channel occupation indication information sent by the receiving end after detecting that the channel of the unlicensed spectrum is idle;
  • the second sending module 220 is configured to send data on M consecutive transmission resource units after receiving the channel occupation indication information, where the M transmission resource units include: M transmission channels or M transmissions Period; the M is a positive integer.
  • the second sending module 220 and the second receiving module 210 may be program modules; after the program modules are executed by the processor, the functions of the second receiving module 210 and the second sending module 220 can be realized.
  • the second sending module 220 and the second receiving module 210 may be software-hardware combined modules; the software-hardware combined modules include but are not limited to: programmable arrays; the programmable arrays include but are not limited to Complex programmable array or field programmable array.
  • the second sending module 220 and the second receiving module 210 further include: a pure hardware module; the pure hardware module includes, but is not limited to: an application specific integrated circuit.
  • the second receiving module 210 is configured to receive the indication sent by the terminal after detecting that the unlicensed spectrum is free to occupy the channel occupation of the SPS-PDSCH before the base station sends the downlink data of the SPS-PDSCH. Instructions.
  • the second receiving module 210 is configured to receive, before the terminal sends the uplink data of the CG-PUSCH, the base station sends an instruction to occupy the CG-PUSCH after detecting that the channel of the unlicensed spectrum is free. Channel occupation indication information.
  • the device further includes:
  • the second transmission module is configured to transmit the M through higher layer signaling.
  • the present invention proposes a channel access method assisted by the receiving end in the unlicensed spectrum.
  • the base station will monitor the channel, and send the occupied channel according to the result of the channel monitoring.
  • Channel occupation indication information Each time the terminal receives a channel occupancy indication, it will be able to transmit uplink information on the next M consecutive CG-PUSCHs.
  • This scheme can also be replaced with downlink data transmission.
  • the base station sends SPS PDSCH downlink data, and the terminal is sending channel occupancy indication information. Each time the base station receives a channel occupancy indication information, it will be able to transmit data on the next M consecutive SPS PDSCHs. Transmit downstream information.
  • the base station In an unlicensed frequency band system, if the terminal is configured with CG-PUSCH, the base station will perform idle channel detection before the terminal sends CG-PUSCH, and if the channel is detected to be idle, it will send channel occupancy indication information to the terminal.
  • the terminal Each time the terminal receives the channel occupancy indication from the base station, it will be able to transmit uplink information on the next M consecutive CG-PUSCHs. In this way, the base station sends a channel occupancy indication once to indicate M uplink transmissions, which reduces the number of uplink and downlink handovers, and reduces the difficulty of network resource scheduling caused by frequent uplink and downlink handovers.
  • M is configured by the base station through high-level signaling (for example, including but not limited to RRC layer signaling or MAC layer signaling).
  • the value of M should be appropriate, for example, the value of M should not be too large. Because if M is too large, it means that the time span is longer. During this longer period of time, the interference in the receiving environment on the base station side may have undergone major changes.
  • N is the number of CG-PUSCHs included in one cycle when the CG-PUSCH extension is configured.
  • the terminal may also configure multiple sets of CG-PUSCH resources, and M should be counted on multiple sets of CG-PUSCH resources. As shown in Figure 5, the terminal is configured with 2 sets of CG-PUSCH configurations, with different periods, which are 1 time slot period and 2 time slot periods respectively. At this time, M can be set to 3.
  • the embodiments of the present disclosure provide a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor executes any of the foregoing technical solutions when the executable program is running. It is applied to the data sending method in the sending end, or executes the data receiving method provided in any of the foregoing technical solutions and applied to the receiving end.
  • the communication device may be the aforementioned base station or terminal (the terminal may also be referred to as UE).
  • the transceiver includes one or more antennas and a radio frequency link connected to the antennas.
  • the memory may include various types of storage media.
  • the storage media is a non-temporary computer storage medium that can continue to memorize and store information on it after the communication device is powered off.
  • the communication device includes a base station or user equipment.
  • the processor may be connected to the memory through a bus or the like, and used to read an executable program stored on the memory, for example, at least one of FIG. 3, FIG. 6 and FIG. 7.
  • the embodiments of the present disclosure provide a computer storage medium that stores an executable program; after the executable program is executed by a processor, the method shown in any technical solution of the first aspect or the second aspect can be implemented, For example, at least one of FIG. 3, FIG. 6 and FIG. 7.

Abstract

本公开实施例提供一种数据接收、发送方法及装置、通信设备及存储介质。所述数据接收方法,其中,包括:在发送端发送数据之前,对非授权频谱进行空闲信道检测;在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。

Description

数据接收、发送方法及装置、通信设备及存储介质 技术领域
本公开实施例涉及无线通信领域但不限于无线通信领域,尤其涉及一种数据接收、发送方法及装置、通信设备及存储介质。
背景技术
在5G通信协议版本16(R16)新无线非授权频谱(New Radio-Unlicensed,NR-U)中,发送端要发送数据之前,通常要进行空闲信道检测(Clear Channel Assessment,CCA),用来评估信道中的干扰水平。如果干扰低于能量检测门限(该门限可由通信协议规定),则发送端认为信道空闲,发送端可以占用信道发送数据。如果干扰水平高于检测门限,则发送端认为信道繁忙,发送端将不能占用信道发送数据。这就是先听后说(Listen Before Talk,LBT)的信道接入机制。
发明内容
本公开实施例提供一种数据接收、发送方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种数据接收方法,其中,包括:
在发送端发送数据之前,对非授权频谱进行空闲信道检测;
在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
本公开实施例第二方面提供一种数据发送方法,其中,包括:
在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
本公开实施例第三方面提供一种数据接收装置,其中,包括:
检测模块,被配置为在发送端发送数据之前,对非授权频谱进行空闲信道检测;
第一发送模块,被配置为在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
第一接收模块,被配置为在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
本公开实施例第四方面提供一种数据发送装置,其中,包括:
第二接收模块,被配置为在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
第二发送模块,被配置为在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面任意技术方案提供的方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介 质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面任意技术方案提供的方法。
本公开实施例提供的方法,接收端会在发送端发送数据之前,对非授权信道进行空闲信道检测,若在非授权频谱上检测到空闲信道,则会向发送端发送信道占用指示信息,一方面减少隐藏节点对数据传输的干扰,另一方面,接收端一次信道占用指示信息的发送会触发发送端在连续M个传输资源单位上发送数据,减少了数据传输方向的切换(例如,上下行切换),减少了传输方向切换导致的延时及传输检测等不必要的操作,提高了数据传输连续性,并且降低了传输方向频繁切换带来的网络进行资源调度的困难。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种配置授权物理上行共享信道的扩展后的时隙占用示意图;
图3是根据一示例性实施例示出的一种数据接收方法的流程示意图;
图4是根据一示例性实施例示出的隐藏节点的流程意图;
图5是根据一示例性实施例示出的两类配置授权物理上行共享信道的比对示意图;
图6是根据一示例性实施例示出的一种数据接收方法的流程示意图;
图7是根据一示例性实施例示出的一种数据发送方法的流程示意图;
图8是根据一示例性实施例示出的一种数据接收装置的结构示意图;
图9是根据一示例性实施例示出的一种数据发送装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了更好地描述本公开任一实施例,本公开一实施例以一个电表智能控制系统的应用场景为例进行示例性说明。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为 “蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,终端)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在非授权频谱的通信中,为了解决隐藏节点问题,提出了一种接收端辅助的信道接入方法。也即当得知发送端要发送数据时,接收端将进行空闲信道检测,如果检测信道空闲,则向发送端发送占用信道的指示信息。相邻节点也可能会听到该指示信息,但会将该指示信息作为干扰,如果该干扰高于一定门限值,相邻节点将会退避,此时不会发送数据。
在NR或者NR-U系统中,基站可以为终端配置半持续的下行传输 (semi-persistant scheduling Physical Downlink Shared Channel,sps-PDSCH)和/或者配置授权的上行传输(Configuration Granted Physical Uplink Shared Channel,CG-PUSCH)。这两种传输非常相似,都是由基站配置一套周期性的时频资源,然后在每个周期中的时频资源上,基站/终端可以发送下行/上行数据。另外,参考图2所示,在R16NR-U标准设计中,CG-PUSCH的设计相比于R 15协议中的CG-PUSCH增加了在N个时隙(slot)的扩展,这个N时隙扩展是为了在连续的N个时隙上传输不同的上行数据。其示意如下图2所示。斜纹填充部分表示CG-PUSCH,其在每个时隙中的符号位置是相同的。斜纹填充部分也可以占满整个时隙。如果N=1,相当于没有扩展,就是普通的周期性的时频资源配置的情况。
如图3所示,本公开实施例提供一种数据接收方法,其中,包括:
S110:在发送端发送数据之前,对非授权频谱进行空闲信道检测;
S120:在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
S130:在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
此处的数据接收方法可应用于数据的接收端,例如,上行数据的接收端——基站,或者,下行数据的接收端——终端。
基站和终端在进行数据传输之前,会进行用于数据传输的资源配置。该资源配置是半静态的,在实际的数据传输发生以前,接收端就已经知晓该资源配置。因此,接收端可以根据进行数据传输的资源配置,确定发送端发送数据的起始时间。故在S110中接收端可以根据发送端发送数据的资源配置,预先确定出发送端在何时发送数据,从而可以在发送数据之前,对非授权频谱进行空闲信道检测,即进行CCA,从而确定出非 授权频谱上是否有空闲信道可供接收端接收发送端的数据,从而减少接收端周围的隐藏节点导致接收端对发送端发送数据的干扰。
若接收端在自身周围对非授权频谱进行检测,发现了非授权频谱上用于传输数据的信道是空闲的,也即接收端监听到的非授权频谱上的干扰低于门限值,则会向接收端发送信道占用指示信息,该信道占用指示信息,一方面告知发送端可以正常发送数据,当前接收端周围没有隐藏节点,能够确保数据传输的接收质量和可靠性;另一方面相当于告知接收端周围的其他通信节点,目前非授权频谱的信道已被占用,不要继续抢占信道否则会导致通信环境进一步恶化。上述门限值可以由协议约定,例如门限值可以约定为-47dBm。
因此,在本公开实施例中,接收端在非授权频谱上检测到空闲信道之后,向发送端发送信道占用指示信息。发送端接收到信道占用指示信息之后,会在连续的M个传输资源单位上发送数据。这种传输机制是被发送端和接收端所共同知晓的,因此在发送信道占用指示信息后,接收端在发送信道占用指示信息之后的M个传输资源单位上接收数据。
以图4为例进行隐藏节点的说明,例如,接收端RX1接收发送端TX1的发送数据,TX1在发送数据之前,在自身所在位置处对非授权频谱进行信道监听。在TX1监听到非授权频谱的信道空闲时,实质上发送端TX2分别向接收端RX1和接收端RX2发送数据,由于TX2与TX1相距较远,TX1会监听不到TX2在非授权频谱上发送的数据,会误认为非授权频谱在自己周围是空闲的,但是这干扰了接收端RX1接收数据。对于TX1而言,TX2即为隐藏节点。但是此时若RX1也对非授权频谱进行信道监听,RX1是可以监听到TX2在非授权频谱上发送的信号的,从而可以排除该隐藏节点。
这里的M可以为任意正整数,例如,M为大于或等于2的正整数。
此时,连续的M个传输资源单位并不代表M个传输资源单位是时域上连续的。这M个传输资源单位在时域上可以是离散的,例如,相邻的两个传输资源单位中的前一个传输资源单位的终止时刻,与后一个传输资源单位的起始时刻不重叠。但是在时域上有M个传输资源单位,这M个传输资源单位在时域上分布是有序的,例如,这M个传输资源单位在分布上两两相邻分布的。但是以这种传输资源单位在时域分布是连续的,也可以是离散的。
一个所述传输资源单位可对应于一个传输信道,或者,对应一个传输周期。
一个传输周期可包含一个或多个传输信道。一个传输信道是在时域上包含一个或者多个时域连续的符号,在频域上占据一定频域位置的时频资源信道。
接收端一次信道占用指示信息的发送,发送端会在连续M个传输资源单位上发送数据,即接收端会在连续M个传输资源单位接收数据,而非一个传输资源单位上接收数据,如此,减少了接收端和发送端数据发送的上下行切换次数,提升了发送端发送数据的连续性。且由于在连续的M个传输资源单位,在M个传输资源单位在时域分布上至少是同一个类传输资源单位的相邻分布,使得传输时间相对集中,减少一次性上下行数据传输的时间跨度,时间跨度小则无线环境的差异不会太大,则可以确保本次数据传输的质量和可靠性。
在一些实施例中,所述方法还包括:
若接收端在非授权频谱上检测到空闲繁忙,则不向所述发送端发送信道占用指示信息,且停止根据资源配置在预定发送信道占用指示信息之后的连续M个传输资源单位的数据接收。
同样地,若发送端未接收到发送端发送的信道占用指示信息,则发 送端会停止根据资源配置所配置的输资源单位上发送数据。此处的,连续M个传输资源单位是由该资源配置内包含的资源单位。
在本公开实施例中,发送信道占用指示信息的时机,可为检测到任意信道空闲之后的时机。
总之,采用本公开实施例提供的方法进行数据接收,一方面减少隐藏节点对数据传输的干扰,另一方面,接收端一次信道占用指示信息的发送会触发发送端在连续M个传输资源单位上发送数据,减少了数据传输方向的切换(例如,上下行切换),减少了传输方向切换导致的延时及传输检测等不必要的操作,提高了数据传输连续性,并且降低了传输方向频繁切换带来的网络进行资源调度的困难。
上述终端发送上行数据为例进行说明,则所述S110可包括:
在终端发送CG-PUSCH的上行数据之前,基站对所述非授权频谱进行空闲信道检测。
非授权频谱上可以配置有多个信道,接收端在发送端预定发送数据的信道上进行空闲信道检测,从而确定对应信道是否空闲。
例如,在本公开实施例中,发送端为终端,资源配置的非授权频谱上的信道可为:非授权频谱上的CG-PUSCH的资源。
此处的CG-PUSCH的上行数据,即为在CG-PUSCH上传输的数据。
基站会在终端在非授权频谱上进行空闲信道检测。若基站检测到非授权频谱的信道空闲,则可以向终端发送所述信道占用指示信息。基站在发送信道占用指示信息之后的连续M个CG-PUSCH上接收数据,或者,基站在信道占用指示信息之后的连续M个CG-PUSCH周期上接收数据。一个CG-PUSCH周期包括一个或多个CG-PUSCH。
若进行数据传输的信道为CG-PUSCH,则前述的资源配置可为:CG-PUSCH资源配置。该CG-PUSCH资源配置指示的为CG-PUSCH的 时频域资源。
当然,若基站在终端发送数据之前,检测到CG-PUSCH繁忙,则不会发送信道占用指示信息,则终端接收不到信道占用指示信息,且终端不会发送CG-PUSCH直到终端接收到基站发来的信道占用指示信息。
若所述传输资源单位为所述CG-PUSCH,则所述M为:一个CG-PUSCH周期内所包含CG-PUSCH的个数。
此处的CG-PUSCH周期内包括的CG-PUSCH可为非扩展的普通CG-PUSCH,也可以是是扩展后的扩展CG-PUSCH。
非扩展的普通CG-PUSH可包括一个时隙,而扩展的CG-PUSCH可包括N个时隙。
而一个所述CG-PUSCH周期可包括一个或多个普通CG-PUSCH,或者,一个或多个扩展CG-PUSCH。
参考图2所示,在一个包含10个时隙的周期内扩展4个CG-PUSCH在一个CG-PUSCH周期内。
参考图5所示,CG-PUSCH可具有两套不同的配置。这两套不同的CG-PUSCH的周期不同,分别是1个时隙的周期,和2个时隙的周期。例如,CG-PUSCH1-1、CG-PUSCH1-2、CG-PUSCH1-3、CG-PUSCH1-4、CG-PUSCH1-5及CG-PUSCH1-6,对应于图5中填充方块,是1个时隙的周期。CG-PUSCH2-1、CG-PUSCH2-2及CG-PUSCH2-3,对应于图5中斜纹填充方块,是2个时隙的周期。
前述的传输资源单位可为这两套CG-PUSCH配置中的任意一种。
以基站发送为下行传输为例,则所述S110可包括:
在基站发送SPS-PDSCH的下行数据之前,终端对所述非授权频谱进行空闲信道检测。
下行传输的接收端为终端。SPS-PDSCH的下行数据即为在 SPS-PDSCH上传输的下行数据。
如此,终端在根据资源配置在基站发送SPS-PDSCH下行数据之前,对非授权频谱上的非授权频谱进行CCA,若检测到非授权频谱的信道空闲,则终端会向基站发送信道占用指示信息;若基站接收到信道占用指示信息,则基站会在接收到信道占用指示信息之后的连续M个SPS-PDSCH上发送数据,或者,基站会在接收到信道占用指示信息之后的连续的M个SPS周期上发送数据。一个SPS周期包含一个或多个SPS-PDSCH。
若在终端在非授权频谱的SPS-PDSCH上检测到信道繁忙,则不会向基站发送信道占用指示信息,并不会信道检测繁忙信道占用指示信息的连续M个SPS-PDSCH或者连续M个SPS-PDSCH周期上接收数据。
M过大可能会导致在后续较后传输资源单位传输的过程中,无线环境变化可能导致传输质量下降;若M设置过小,则会导致传输方向切换依然过于频繁,因此M的取值需要适中。例如,M的取值与传输资源单位的时长负相关。例如,传输资源单位为传输周期,则传输周期的时长越长,则M的取值可以设置越短,传输周期越短,则可以M的取值可设置的越大。再例如,传输资源单位为传输信道,则传输信道的时长越长,则M的取值可以设置越短,传输信道的时长越短,则可以M的取值可设置的越大。
在一些实施例中,如图6所示,所述方法还包括:
S100:通过高层信令传输的所述M。
例如,若接收端是终端,则通过高层信令接收基站发送的M。若接收端为基站,则基站需要向终端发送所述M。在本公开实施例中,M携带在高层信令中。该高层信令可为:无线资源控制(Radio Resource Control,RRC)信令,或者,媒体访问控制(Media Access Control,MAC) 信令下发所述M。
在另一些实施例中,也可以通过下行控制信息(Downlink Control Information,DCI)携带所述M。
采用高层信令传输所述M,具有传输灵活性强的特点。
如图7所示,本公开实施例提供一种数据发送方法,其中,包括:
S210:在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
S220:在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
此处的数据发送方法应用于数据的发送端中,该数据的发送端可为基站或者终端。例如,传输的数据为下行数据,则发送端可为基站;传输的数据为上行数据,则发送端可为终端。
在发送数据之前,接收接收端在非授权频谱对空闲信道检测到之后发送的信道占用指示信息,若接收到信道占用指示信息,则发送端可认为接收端附近没有干扰数据传输的隐藏节点。
若接收到信道占用指示信息,发送端则在接收到信道占用指示信息之后的连续M个传输资源单位上发送数据。
若接收到未接收到信道占用指示信息,发送端则不会根据资源配置在传输资源上发送数据。
且若接收到信道占用指示信息,则会在连续M个传输资源单位上发送数据,减少数据传输方向的频繁切换。此处的M可为任意正整数,可选为M为等于或大于2的正整数。
此处的传输资源单位可以传输信道或者传输周期。一个传输周期可包括一个或多个传输信道。
在一些实施例中,所述S210可包括:
基站在发送SPS-PDSCH的下行数据之前,接收终端在检测到非授权频谱空闲后发送的指示占用所述SPS-PDSCH的信道占用指示信息。
基站作为发送端,在发送SPS-PDSCH的下行数据之前,接收终端在非授权频谱的信道空闲后发送的信道占用指示信息。对应地,S220可包括:在接收到信道占用指示信息之后,在连续的M个SPS-PDSCH信道上或者连续M个SPS周期上发送数据。
在另一些实施例中,所述S210可包括:
终端在发送CG-PUSCH的上行数据之前,接收基站在检测到非授权频谱的信道空闲后发送的指示占用所述CG-PUSCH的信道占用指示信息。
终端作为发送端,在发送上行数据之前,会接收基站在检测到非授权频谱的信道空闲后发送的信道占用指示信息,终端接收到之后,会在连续的M个CG-PUSCH或者M个CG-PUSCH周期上发送数据。
在一些实施例中,所述方法还包括:通过高层信令传输所述M。
若发送端是基站,则基站通过高层向终端发送M;若发送端是终端,则终端接收基站发送携带有M的高层信令。
如图8所示,本公开实施例提供一种数据接收装置,其中,包括:
检测模块110,被配置为在发送端发送数据之前,对非授权频谱进行空闲信道检测;
第一发送模块120,被配置为在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
第一发送模块130,被配置为在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
在一些实施例中,所述检测模块110、第一发送模块120及第一发送模块130可为程序模块;所述程序模块被处理器执行后,能够发送端数据发送之前的非授权频谱的空闲信道检测、信道占用指示信息的发送及数据的接收。
在一些实施例中,所述检测模块110、第一发送模块120及第一发送模块130可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在一些实施例中,所述检测模块110、第一发送模块120及第一发送模块130还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述检测模块110,被配置为在终端发送CG-PUSCH的上行数据之前,基站对所述非授权频谱进行空闲信道检测。
在一些实施例中,所述传输资源单位为所述CG-PUSCH,则所述M等于:一个CG-PUSCH周期内所包含CG-PUSCH的个数。
在一些实施例中,所述检测模块110,被配置为在基站发送SPS-PDSCH的下行数据之前,终端对所述非授权频谱进行空闲信道检测。
在一些实施例中,,所述装置还包括:
第一传输模块,被配置为通过高层信令传输的所述M。
在一些实施例中,,所述M的取值与所述传输资源单位的时长负相关。
如图9所示,本公开实施例中提供一种数据发送装置,其中,包括:
第二接收模块210,被配置为在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
第二发送模块220,被配置为在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括: M个传输信道或M个传输周期;所述M为正整数。
在一些实施例中,所述第二发送模块220及第二接收模块210可为程序模块;所述程序模块被处理器执行后,能够实现第二接收模块210及第二发送模块220的功能。
在一些实施例中,所述第二发送模块220及第二接收模块210可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在一些实施例中,所述第二发送模块220及第二接收模块210还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述第二接收模块210,被配置为基站在发送SPS-PDSCH的下行数据之前,接收终端在检测到非授权频谱空闲后发送的指示占用所述SPS-PDSCH的信道占用指示信息。
在一些实施例中,所述第二接收模块210,被配置为终端在发送CG-PUSCH的上行数据之前,接收基站在检测到非授权频谱的信道空闲后发送的指示占用所述CG-PUSCH的信道占用指示信息。
在一些实施例中,所述装置还包括:
第二传输模块,被配置为通过高层信令传输所述M。
本发明提出了在非授权频谱中接收端辅助的信道接入方法,在该方法中,当终端在发送CG-PUSCH的上行数据之前,基站将进行信道监听,根据信道监听的结果发送占用信道的信道占用指示信息。终端每收到一个信道占用指示,将可以在接下来的连续M个CG-PUSCH上的传输上行信息。
这个方案也可以换成下行的数据传输,基站发送SPS PDSCH的下行数据,终端在发送信道占用指示信息,基站每收到一个信道占用指示信息,将可以在接下来的连续M个SPS PDSCH上的传输下行信息。
在非授权频段的系统中,如果终端被配置了CG-PUSCH,则在终端发 送CG-PUSCH之前,基站将进行空闲信道检测,如果检测信道空闲,则向终端发送信道占用指示信息。
终端每次收到基站发来的信道占用指示后,将可以在接下来的连续M个CG-PUSCH上的传输上行信息。通过这种方式,基站发送一次信道占用指示,就可以指示M个上行传输,减少了上下行切换的次数,降低了上下行频繁切换带来的网络进行资源调度的困难。
M是基站通过高层信令(例如,包括但不限于RRC层信令或者MAC层信令)配置的。M的取值应该合适,例如M的取值不应该太大。因为如果M过大,则意味着时间跨度较长,在这较长的时间上,基站侧的接收环境中的干扰可能已经发生了较大的变化。如果终端的CG-PUSCH配置的周期很短,例如7个符号(symbol)(一个时隙可包含14个symbol),M可以取值的稍微大一些,例如M=4,如果终端的CG-PUSCH配置的周期较长,例如5个slot,则M可以取值应该比较小,例如M=1。
在配置了CG-PUSCH情况下,M可以等于N。N为在配置CG-PUSCH扩展情况下,一个周期内包含的CG-PUSCH个数。
终端也有可能会配置多套CG-PUSCH的资源,M应该在多套CG-PUSCH的资源上计数。如图5所示,终端配置了2套CG-PUSCH配置,周期不相同,分别为1个时隙周期2个时隙周期。此时M可以设置为3。
本公开实施例提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述任意技术方案提供的应用于发送端中的数据发送方法,或执行前述任意技术方案提供的应用于接收端中的数据接收方法。
该通信设备可为前述的基站或者终端(终端又可以称为UE)。
所述收发器包含一个或多个天线和天线连接的射频链路。
其中,存储器可包括各种类型的存储介质,该存储介质为非临时性计 算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括基站或用户设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3、图6及图7的至少其中之一。
本公开实施例提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面任意技术方案所示的方法,例如,如图3、图6及图7的至少其中之一。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种数据接收方法,其中,包括:
    在发送端发送数据之前,对非授权频谱进行空闲信道检测;
    在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
    在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
  2. 根据权利要求1所述的方法,其中,所述在发送端发送数据之前,对非授权频谱进行空闲信道检测,包括:
    在终端发送配置授权物理上行共享信道CG-PUSCH的上行数据之前,基站对所述非授权频谱进行空闲信道检测。
  3. 根据权利要求2所述的方法,其中,若所述传输资源单位为所述CG-PUSCH,则所述M为:一个CG-PUSCH周期内所包含CG-PUSCH的个数。
  4. 根据权利要求1所述的方法,其中,所述在发送端发送数据之前,对非授权频谱进行空闲信道检测,包括:
    在基站发送半持续物理下行共享信道SPS-PDSCH的下行数据之前,终端对所述非授权频谱进行空闲信道检测。
  5. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    通过高层信令传输的所述M。
  6. 根据权利要求1至3任一项所述的方法,其中,所述M的取值与所述传输资源单位的时长负相关。
  7. 一种数据发送方法,其中,包括:
    在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
    在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
  8. 根据权利要求7所述的方法,其中,所述在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息,包括:
    基站在发送SPS-PDSCH的下行数据之前,接收终端在检测到非授权频谱空闲后发送的指示占用所述SPS-PDSCH的信道占用指示信息。
  9. 根据权利要求7所述的方法,其中,所述在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息,包括:
    终端在发送CG-PUSCH的上行数据之前,接收基站在检测到非授权频谱的信道空闲后发送的指示占用所述CG-PUSCH的信道占用指示信息。
  10. 根据权利要求7至9任一项所述的方法,其中,所述方法还包括:
    通过高层信令传输所述M。
  11. 一种数据接收装置,其中,包括:
    检测模块,被配置为在发送端发送数据之前,对非授权频谱进行空闲信道检测;
    第一发送模块,被配置为在检测到所述非授权频谱的信道空闲时,发送信道占用指示信息;
    第一接收模块,被配置为在发送所述指示信息后的连续M个传输资源单位上,接收数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
  12. 根据权利要求11所述的装置,其中,所述检测模块,被配置为在终端发送配置授权物理上行共享信道CG-PUSCH的上行数据之前,基站对所述非授权频谱进行空闲信道检测。
  13. 根据权利要求12所述的装置,其中,所述传输资源单位为所述CG-PUSCH,则所述M等于:一个CG-PUSCH周期内所包含CG-PUSCH的个数。
  14. 根据权利要求11所述的装置,其中,所述检测模块,被配置为在基站发送SPS-PDSCH的下行数据之前,终端对所述非授权频谱进行空闲信道检测。
  15. 根据权利要求11至13任一项所述的装置,其中,所述装置还包括:
    第一传输模块,被配置为通过高层信令传输的所述M。
  16. 根据权利要求11至13任一项所述的装置,其中,所述M的取值与所述传输周期负相关。
  17. 一种数据发送装置,其中,包括:
    第二接收模块,被配置为在发送数据之前,接收接收端在检测到非授权频谱的信道空闲后发送的信道占用指示信息;
    第二发送模块,被配置为在接收到所述信道占用指示信息后的连续M个传输资源单位上,发送数据,其中,所述M个传输资源单位包括:M个传输信道或M个传输周期;所述M为正整数。
  18. 根据权利要求17所述的装置,其中,所述第二接收模块,被配置为基站在发送SPS-PDSCH的下行数据之前,接收终端在检测到非授权频谱空闲后发送的指示占用所述SPS-PDSCH的信道占用指示信息。
  19. 根据权利要求17所述的装置,其中,所述第二接收模块,被配置为终端在发送CG-PUSCH的上行数据之前,接收基站在检测到非授权 频谱的信道空闲后发送的指示占用所述CG-PUSCH的信道占用指示信息。
  20. 根据权利要求17至19任一项所述的装置,其中,所述装置还包括:
    第二传输模块,被配置为通过高层信令传输所述M。
  21. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至6或7至10任一项提供的方法。
  22. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至6或7至10任一项提供的方法。
PCT/CN2020/095678 2020-06-11 2020-06-11 数据接收、发送方法及装置、通信设备及存储介质 WO2021248418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/095678 WO2021248418A1 (zh) 2020-06-11 2020-06-11 数据接收、发送方法及装置、通信设备及存储介质
CN202080001227.1A CN114080847A (zh) 2020-06-11 2020-06-11 数据接收、发送方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095678 WO2021248418A1 (zh) 2020-06-11 2020-06-11 数据接收、发送方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021248418A1 true WO2021248418A1 (zh) 2021-12-16

Family

ID=78846732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095678 WO2021248418A1 (zh) 2020-06-11 2020-06-11 数据接收、发送方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN114080847A (zh)
WO (1) WO2021248418A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000129A1 (zh) * 2022-06-27 2024-01-04 北京小米移动软件有限公司 一种传输资源配置信息的方法、装置以及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796920A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 数据传输方法、基站以及终端设备
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105684488B (zh) * 2014-07-31 2019-10-15 华为技术有限公司 一种数据传输方法和通信设备
WO2020086199A1 (en) * 2018-10-24 2020-04-30 Qualcomm Incorporated Uplink clear channel assessment status as a new uplink control information for new radio-unlicensed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796920A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 数据传输方法、基站以及终端设备
CN105684488B (zh) * 2014-07-31 2019-10-15 华为技术有限公司 一种数据传输方法和通信设备
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
WO2020086199A1 (en) * 2018-10-24 2020-04-30 Qualcomm Incorporated Uplink clear channel assessment status as a new uplink control information for new radio-unlicensed

Also Published As

Publication number Publication date
CN114080847A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN110235511B (zh) 用于管理上行链路中的双连接的技术
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
US10827501B2 (en) Techniques for providing proximity services (ProSe) priority-related information to a base station in a wireless network
JP2023100858A (ja) ニューラジオ車車間/路車間通信(nr v2x)における自律的リソース選択のための方法および装置
KR102221428B1 (ko) V2x 메시지 송신 방법, 장치 및 시스템
WO2016175631A1 (en) Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
US20180332659A1 (en) Communication method and device of terminal in wireless communication system
US9622249B2 (en) Apparatus and method to set a control channel configuration in a communication system
US9444605B2 (en) Base station
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
JP2019520727A (ja) 中継伝送方法及び装置
US20220264593A1 (en) Method, system and device of wireless communication
US20230171792A1 (en) Method and apparatus for sidelink communication
US11375509B2 (en) Support for receive-limited user equipment in wireless environments
CN116889075A (zh) 用于侧行链路通信的方法和终端设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
US20230328700A1 (en) Method and device for wireless communication
CN110999382A (zh) 用于控制分组复制的方法及设备
CN109565698B (zh) 基于非授权载波的上行调度方法和装置
WO2021248418A1 (zh) 数据接收、发送方法及装置、通信设备及存储介质
KR20220137726A (ko) Iab 네트워크의 다중화 스케줄링 방법 및 iab 노드
JPWO2019214301A5 (zh)
KR20170062985A (ko) 사용자 협력 통신을 통한 wlan 통신 커버리지 확대를 위한 단말간 연결생성 기법
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
WO2021237573A1 (zh) 信息传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940069

Country of ref document: EP

Kind code of ref document: A1