WO2021246527A1 - Production method for semiconductor device - Google Patents

Production method for semiconductor device Download PDF

Info

Publication number
WO2021246527A1
WO2021246527A1 PCT/JP2021/021439 JP2021021439W WO2021246527A1 WO 2021246527 A1 WO2021246527 A1 WO 2021246527A1 JP 2021021439 W JP2021021439 W JP 2021021439W WO 2021246527 A1 WO2021246527 A1 WO 2021246527A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
semiconductor film
substrate
semiconductor
manufacturing
Prior art date
Application number
PCT/JP2021/021439
Other languages
French (fr)
Japanese (ja)
Inventor
孝仁 大島
安史 樋口
Original Assignee
株式会社Flosfia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Flosfia filed Critical 株式会社Flosfia
Publication of WO2021246527A1 publication Critical patent/WO2021246527A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • dielectric breakdown occurs when a certain voltage (withstand voltage) is exceeded.
  • the voltage at which this breakdown occurs differs between the interior of the semiconductor and the surface where the pn junction and / or Schottky junction terminates, and generally before the breakdown voltage inside the semiconductor is reached, breakdown occurs at the junction termination of the semiconductor. It will occur. Since the withstand voltage of the semiconductor device becomes the dielectric breakdown voltage at the junction end portion, the maximum value of the reverse voltage that can be applied to the semiconductor device becomes low, and there is a problem that the semiconductor device has a low withstand voltage.
  • Patent Document 3 after forming a groove by sandblasting or the like, an etching solution containing hydrofluoric acid and nitric acid is sprayed into the groove to form a bevel structure.
  • a method such as grinding in which a part of a semiconductor is removed to provide a bevel structure is used, there is a problem that the process becomes complicated. Further, even if etching is performed using an acid to form the bevel structure, there is a problem that the surface is roughened. Further, with these methods, it is difficult to create a bevel structure having a desired structure and angle.
  • Examples of semiconductors include silicon carbide, gallium nitride, gallium nitride, gallium nitride, and gallium nitride nitride semiconductors including mixed crystals thereof. It is known and is used in various semiconductor devices such as blue LEDs and power semiconductors. In recent years, gallium oxide (Ga 2 O 3 ) has been attracting attention as a new semiconductor.
  • gallium oxide Ga 2 O 3
  • semiconductor devices using gallium oxide (Ga 2 O 3 ) having a large bandgap are attracting attention, and are used for power semiconductor devices such as inverters.
  • Ga 2 O 3 gallium oxide
  • gallium oxide, ⁇ -Ga 2 O 3 and the like having a corundum structure can control the band gap by mixing indium and aluminum with each other or in combination, which is extremely attractive as an InAlGaO-based semiconductor. It constitutes a material system.
  • Patent Document 5 describes an avalanche photodiode having a single crystal of gallium oxide (Ga 2 O 3 ), and the avalanche photodiode is a laminated structure of a single crystal of Ga 2 O 3 and a dielectric layer on a side surface. Has a mesa shape that is inclined in a reverse taper shape. However, a manufacturing method for obtaining such a mesa shape is not disclosed.
  • gallium oxide Ga 2 O 3
  • gallium oxide has a ⁇ -gallia structure as the most stable phase
  • the crystal film having a corundum structure there are still many problems in improving the film formation rate and crystal quality, suppressing cracks and abnormal growth, suppressing twins, and cracking the substrate due to warpage.
  • One of the objects of the present invention is to provide a manufacturing method capable of obtaining a semiconductor device including at least a semiconductor film having an inclined surface at an end portion in an industrially advantageous manner.
  • a semiconductor film having an inclined surface is formed in a method for manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end thereof.
  • a semiconductor film having a bevel structure is formed at an end thereof. It was found that the film can be obtained in an industrially advantageous manner, and it has been found that the above-mentioned conventional problems can be solved at once by such a method.
  • a method for manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end, wherein the semiconductor film having the inclined surface is formed by forming an inclined surface of the semiconductor film in the direction opposite to the inclined surface.
  • a method for manufacturing a semiconductor device which is performed by epitaxially growing the semiconductor film on the first surface of a substrate on which a mask is arranged.
  • the mask is made of a material having a higher insulating property than the semiconductor film.
  • the mask has a first surface and a second surface on the opposite side of the first surface, which is in direct contact with the first surface of the substrate or through another layer.
  • any of the above [1] to [14] which comprises forming an electrode by covering at least a part of the semiconductor film and at least a part of the mask and arranging the end portion of the electrode on the mask.
  • the semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask.
  • the semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask. A side surface including the first surface, a second surface on the opposite side of the first surface, which is in contact with the first surface of the substrate, and the inclined surface located between the first surface and the second surface. [1] to [18], further comprising forming the first surface of the semiconductor film at a position higher than the first surface of the mask.
  • the manufacturing method according to any one of.
  • the mask is used as a first mask, and a second mask which is arranged on the first surface of the substrate and has a thickness thinner than the thickness of the first mask is arranged.
  • the second mask comprises the epitaxial growth of the semiconductor film on the first surface of the substrate on which the mask and the second mask are arranged to form a semiconductor film having an inclined surface at the end, wherein the second mask is the second.
  • the manufacturing method according to any one of [19] to [21] above, which is located in the opening of the mask of 1.
  • the manufacturing method according to any one of [1] to [25] wherein the inclined surface of the semiconductor film is formed so as to engage with the inclined surface of the mask in the opposite direction.
  • a semiconductor device including a semiconductor film having an inclined surface at an end and / or a laminated structure having an inclined surface at an end can be obtained industrially advantageous.
  • FIG. 3 is a partial cross-sectional view of a substrate and a mask schematically showing a method of forming a mask as shown in FIGS. 1 and / or 2.
  • FIG. 3A is a partial cross-sectional view of a substrate having a mask layer formed on the first surface of the substrate.
  • FIG. 3B is a partial cross-sectional view of the substrate and the mask in which an opening having an inclined surface is formed in the mask layer by etching, and shows, for example, a cross section of the portion IIIb-IIIb of FIG.
  • FIG. 3C shows, as another embodiment, a substrate and a mask on which a thinner second mask is formed on the first surface of the substrate in the opening of the mask layer (first mask). It is a partial sectional view. As one of the embodiments of the present invention, it is a figure which shows typically the cross section of the opening of the mask when the protective film is arranged on the mask. It is a figure explaining the halide vapor deposition (HVPE) apparatus used as one of the embodiments of this invention.
  • HVPE halide vapor deposition
  • FIG. 1 it is sectional drawing schematically showing the laminated structure grown on the 1st surface of a substrate and on the inclined surface of a mask in the opening of the mask shown in FIG.
  • FIG. 1 it is sectional drawing schematically showing the laminated structure in which the semiconductor film having different conductivity is grown on the semiconductor film shown in FIG.
  • FIG. 1 it is sectional drawing which shows typically the semiconductor film grown on the protective film shown in FIG. It is a figure explaining the mist CVD apparatus used in embodiment of this invention. It is a photograph which shows the semiconductor film which has the inclined surface at the end part obtained in the Example of this invention.
  • the figure in which electrodes are formed on the first surface of a semiconductor film having the same height and the first surface of a mask is shown.
  • a figure showing an electrode formed on a first surface of a semiconductor film and a first surface of a mask located at a position higher than the first surface of the semiconductor film is shown.
  • a figure showing an electrode formed on a first surface of a semiconductor film and a first surface of a mask located at a position lower than the first surface of the semiconductor film is shown.
  • An example of a substrate used in one of the embodiments of the present invention is shown.
  • An example of a substrate used in one of the embodiments of the present invention is shown.
  • FIG. 1 shows the manufacturing method of the semiconductor device using the substrate shown in FIG.
  • FIG. 1 it is a schematic diagram showing one aspect of the uneven portion formed on the surface of the substrate which is preferably used when preparing the substrate.
  • it is a schematic diagram showing one aspect of the uneven portion formed and arranged on the surface of the substrate which is preferably used when preparing the substrate. In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed on the surface of the substrate which is preferably used when preparing the substrate.
  • (A) is a schematic perspective view of the uneven portion
  • (b) is a schematic surface view of the uneven portion. In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed and arranged on the surface of the substrate which is preferably used when preparing the substrate.
  • (A) is a schematic perspective view of the uneven portion
  • (b) is a schematic surface view of the uneven portion.
  • a cross-sectional view of a semiconductor device is shown as one of the embodiments of the present invention.
  • a cross-sectional view of a semiconductor device is shown as one of the embodiments of the present invention.
  • the semiconductor device (a) in which the end of the first electrode is located on the semiconductor film and the semiconductor device with a bevel structure obtained by the embodiment of the present invention are the first.
  • the electric field distributions of the semiconductor devices (b) to (d) in which the ends of the electrodes are located on the insulator are shown graphically.
  • the semiconductor device without and the electric field strength distribution of 10 nm (near the surface of the semiconductor film) under the first electrode of each semiconductor device are shown.
  • One of the embodiments of the present invention is a method of manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end, wherein the inclined surface is formed on a substrate on which a mask having an inclined surface is arranged.
  • it is characterized in that it is carried out by epitaxially growing the semiconductor film.
  • the semiconductor film is not particularly limited as long as it can be epitaxially grown, and is at least selected from, for example, a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method. It can be formed by one method.
  • a metal source containing a metal is gasified to obtain a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto a substrate in a reaction chamber on which a mask having an inclined surface is arranged.
  • a semiconductor film can be formed.
  • the metal-containing raw material gas, the oxygen-containing raw material gas, and the reactive gas are supplied onto the substrate on which the mask having the inclined surface is arranged to perform the film formation. be able to.
  • the HVPE apparatus 50 includes, for example, a reaction chamber 51, a heater 52a for heating the metal source 57, and a heater 52b for heating the substrate fixed to the substrate holder 56.
  • the reaction chamber 51 may include an oxygen-containing raw material gas supply pipe 55b, a reactive gas supply pipe 54b, and a base holder 56 on which a base is placed.
  • a metal-containing raw material gas supply pipe 53b is provided in the reactive gas supply pipe 54b to form a double pipe structure.
  • the oxygen-containing raw material gas supply pipe 55b is connected to the oxygen-containing raw material gas supply source 55a, and the oxygen-containing raw material gas is a substrate holder from the oxygen-containing raw material gas supply source 55a via the oxygen-containing raw material gas supply pipe 55b.
  • the flow path of the oxygen-containing raw material gas is configured so that it can be supplied to the substrate fixed to 56.
  • the reactive gas supply pipe 54b is connected to the reactive gas supply source 54a, and the reactive gas is fixed to the substrate holder 56 from the reactive gas supply source 54a via the reactive gas supply pipe 54b.
  • the flow path of the reactive gas is configured so that it can be supplied to the substrate.
  • the metal-containing raw material gas supply pipe 53b is connected to the halogen-containing raw material gas supply source 53a, and the halogen-containing raw material gas is supplied to the metal source to become the metal-containing raw material gas, and the metal-containing raw material gas is fixed to the substrate holder 56. It is supplied to the board.
  • the reaction chamber 51 is provided with a gas discharge unit 59 for exhausting used gas, and further, a protective sheet 58 for preventing the precipitate of reactants is provided on the inner wall of the reaction chamber 51.
  • the metal source is not particularly limited as long as it contains a metal and can be gasified, and may be a simple substance of a metal or a metal compound.
  • the metal include one or more metals selected from gallium, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like.
  • the metal is preferably one or more metals selected from gallium, aluminum and indium, more preferably gallium, and the metal source is gallium alone. Most preferred.
  • the metal source may be a gas, a liquid, or a solid, but in the present invention, for example, when gallium is used as the metal, the metal is used.
  • the source is preferably a liquid.
  • the gasification means is not particularly limited and may be a known means as long as the object of the present invention is not impaired. In the embodiment of the present invention, it is preferable that the gasification means is carried out by halogenating the metal source.
  • the halogenating agent used for the halogenation is not particularly limited as long as the metal source can be halogenated, and may be a known halogenating agent.
  • the halogenating agent include halogens and hydrogen halides.
  • the halogen include fluorine, chlorine, bromine, iodine and the like.
  • the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide and the like.
  • the gasification is carried out by supplying halogen or hydrogen halide as a halogenating agent to the metal source, and reacting the metal source with halogen or hydrogen halide at a temperature equal to or higher than the vaporization temperature of the metal halide. It is preferable to carry out the process by forming a halogenated metal.
  • the halogenation reaction temperature is not particularly limited, but in the present invention, for example, when the metal source is gallium and the halogenating agent is HCl, 900 ° C. or lower is preferable, and 700 ° C. or lower is preferable.
  • the metal-containing raw material gas is not particularly limited as long as it is a gas containing the metal of the metal source.
  • the metal-containing raw material gas include halides (fluoride, chloride, bromide, iodide, etc.) of the metal.
  • the metal source containing a metal is gasified into a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto the substrate in the reaction chamber. Further, in the present invention, the reactive gas is supplied onto the substrate.
  • the oxygen-containing raw material gas include O 2 gas, CO 2 gas, NO gas, NO 2 gas, N 2 O gas, H 2 O gas, O 3 gas and the like.
  • the oxygen-containing raw material gas may contain CO 2.
  • the reactive gas is usually a reactive gas different from the metal-containing raw material gas and the oxygen-containing raw material gas, and does not contain the inert gas.
  • the reactive gas is not particularly limited, and examples thereof include an etching gas and the like.
  • the etching gas is not particularly limited and may be a known etching gas as long as the object of the present invention is not impaired.
  • the reactive gas is a halogen gas (for example, fluorine gas, chlorine gas, bromine gas, iodine gas, etc.), hydrogen halide gas (for example, hydrofluoric acid gas, hydrochloric acid gas, hydrogen bromide gas, iodine gas, etc.).
  • the metal-containing raw material gas, the oxygen-containing raw material gas, or the reactive gas may contain a carrier gas.
  • the carrier gas include an inert gas such as nitrogen and argon.
  • the partial pressure of the metal-containing raw material gas is not particularly limited, but in the present invention, it is preferably 0.5 Pa to 1 kPa, more preferably 5 Pa to 0.5 kPa.
  • the partial pressure of the oxygen-containing raw material gas is not particularly limited, but in the present invention, it is preferably 0.5 to 100 times the partial pressure of the metal-containing raw material gas, and is 1 to 20 times. Is more preferable.
  • the partial pressure of the reactive gas is also not particularly limited, but in the present invention, it is preferably 0.1 to 5 times, preferably 0.2 to 3 times, the partial pressure of the metal-containing raw material gas. Is more preferable.
  • the dopant-containing gas is not particularly limited as long as it contains a dopant.
  • the dopant is also not particularly limited, but in the present invention, the dopant preferably contains one or more elements selected from germanium, silicon, titanium, zirconium, vanadium, niobium and tin, preferably germanium. It is more preferably containing silicon or tin, and most preferably it contains germanium.
  • the dopant-containing gas preferably has the dopant in the form of a compound (for example, a halide, an oxide, etc.), and more preferably in the form of a halide.
  • the partial pressure of the dopant-containing raw material gas is not particularly limited, but in the present invention, it is preferably 1 ⁇ 10 -7 times to 0.1 times the partial pressure of the metal-containing raw material gas, and 2.5 ⁇ . It is more preferably 10-6 times to 7.5 ⁇ 10-2 times. In the present invention, it is preferable to supply the dopant-containing gas onto the substrate together with the reactive gas.
  • At least a part of the semiconductor film and / or the substrate in the embodiment of the present invention can be formed by using the mist CVD apparatus as shown in FIG.
  • the substrate is not particularly limited as long as it can support the mask and / or the semiconductor film.
  • the material of the substrate is not particularly limited as long as it does not impair the object of the present invention, and may be a known substrate, an organic compound, or an inorganic compound.
  • the shape of the substrate may be any shape, and is effective for any shape. For example, a plate-like, fibrous, rod-like, columnar, or prismatic shape such as a flat plate or a disk Cylindrical, spiral, spherical, ring-shaped and the like can be mentioned, but in one of the embodiments of the present invention, a substrate is preferable. Further, in another embodiment of the present invention, it is also preferable that the substrate contains a crystal layer.
  • the crystal layer may be a semiconductor layer.
  • the substrate 11 may have a substrate 16 and a crystal layer (including a semiconductor layer) 17 formed on the substrate 16.
  • the thickness of the substrate is not particularly limited in the present invention.
  • another layer such as a buffer layer may be laminated on the substrate as described later.
  • a semiconductor layer having different electrical conductivity may be included as a substrate, or the substrate itself may be a semiconductor layer.
  • the substrate 11 is a substrate 16, a crystal layer 17 arranged on the substrate 16 (for example, a semiconductor layer such as an n + type semiconductor layer), and the crystal layer 17.
  • the mask layer is arranged on the semiconductor layer 18 which is the first surface 11a of the substrate 11.
  • a part of the mask layer is removed by etching to form an opening 12d having an inclined surface 12c, and the semiconductor layer 18 to be the first surface 11a of the substrate 11 is exposed in the opening 12d.
  • the semiconductor film 14 can be continuously grown with the same semiconductor material as the semiconductor layer 18.
  • the layer located on the first surface 11a of the substrate 11 and the layer located on the second surface 11b on the opposite side of the first surface 11a are crystal layers and / or semiconductor layers having different compositions from each other. You may.
  • the opening may be formed so that the inclined surface is arranged at least a part of the side surface of the opening 12, or another embodiment is the opening of the mask layer.
  • the opening may be formed so that the annular inclined surface is arranged on the entire side surface of the.
  • the crystal substrate is not particularly limited as long as it is a substrate containing a crystal as a main component, and may be a known substrate. It may be an insulator substrate, a conductive substrate, or a semiconductor substrate. It may be a single crystal substrate or a polycrystalline substrate. Examples of the crystal substrate include a SiC substrate, a GaN substrate, a substrate containing a crystal having a corundum structure as a main component, a substrate containing a crystal having a ⁇ -gallium structure as a main component, and a substrate having a hexagonal structure. Can be mentioned.
  • the "main component” refers to a composition ratio in the substrate containing 50% or more of the crystals, preferably 70% or more, and more preferably 90% or more.
  • Examples of the substrate containing the crystal having a corundum structure as a main component include a sapphire substrate and an ⁇ -type gallium oxide substrate.
  • Examples of the substrate containing the crystal having a ⁇ -Galia structure as a main component include a ⁇ -Ga 2 O 3 substrate or a mixed crystal substrate containing ⁇ -Ga 2 O 3 and Al 2 O 3. ..
  • As the mixed crystal substrate containing ⁇ -Ga 2 O 3 and Al 2 O 3 for example, a mixed crystal substrate containing Al 2 O 3 in an atomic ratio of more than 0% and 60% or less is preferable. Is mentioned as.
  • Examples of the substrate having the hexagonal structure include a SiC substrate, a ZnO substrate, and a GaN substrate. Examples of other crystal substrates include Si substrates.
  • the crystal substrate is a sapphire substrate.
  • the sapphire substrate include a c-plane sapphire substrate, an m-plane sapphire substrate, and an a-plane sapphire substrate.
  • the sapphire substrate may have an off angle. The off angle is not particularly limited, but is preferably 0 ° to 15 °.
  • the thickness of the crystal substrate is not particularly limited, but is preferably 50 to 2000 ⁇ m, and more preferably 200 to 800 ⁇ m.
  • FIG. 1 schematically shows a part of one aspect of a mask arranged on the surface of the substrate 11.
  • a mask layer is formed as a mask 12 on the first surface 11a of the substrate 11.
  • the mask material can be formed of a material having higher electrical insulation than the semiconductor film, and for example, the mask material is preferably a semi-insulator material or an insulator material.
  • the semi-insulating material include polysilicon (polycrystalline silicon), amorphous silicon, diamond-like carbon (DLC) and an undoped crystal layer, magnesium (Mg), ruthenium (Ru), and iron (Fe).
  • Crystal layers containing semi-insulating dopants such as berylium (Be), cesium (Cs), strontium (Sr), barium (Ba) and the like.
  • the insulator material include silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon (Si), germanium (Ge), titanium (Ti), zirconium (Zr), and Hf (Huff II). Oxides such as um), Ta (tantal) and tin (Sn), nitrides or carbides and the like can be mentioned.
  • the mask layer is made of an insulator.
  • the substrate 11 has a first surface 11a and a second surface 11b on the opposite side of the first surface 11a.
  • a mask layer 12 (hereinafter, also referred to as a mask and / or a first mask) is formed on the first surface 11a of the substrate 11, and for example, a resist layer is arranged on at least a part of the mask layer 12, and an etching gas and / or Alternatively, by etching the mask layer 12 with an etching solution, as shown in FIG. 3B, an annular inclined surface 12c can be formed on the side surface of the opening 12d of the mask layer.
  • the etching may be dry etching or wet etching, but isotropic etching is preferable because an inclined surface is formed on the mask layer.
  • anisotropic etching and isotropic etching may be combined.
  • the mask layer may be provided with an opening by anisotropic etching, and isotropic etching may be additionally performed to adjust the inclination angle of the inclined surface.
  • FIG. 3B shows, for example, a cross section of the portion IIIb-IIIb of FIG.
  • the opening 12d of the mask 12 penetrates from the first surface 12a of the mask 12 to the second surface 12b on the opposite side, and the second surface of the mask 12 is more than the first surface 12a of the mask 12. 12b is located near the first surface 11a of the substrate 11.
  • the thick film formation and processing of the mask layer can be easily performed in a short time, and it is also easy to obtain a smooth inclined surface on the mask.
  • the mask having an inclined surface in the embodiment of the present invention is used for one purpose of forming a bevel structure at the end of the semiconductor film and / or the laminated structure, the thickness is the same as the thickness of the semiconductor film. It has a thicker thickness.
  • the thickness of the mask on which the inclined surface is formed is preferably at least 1 ⁇ m or more, and preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • a mask layer is formed as the mask 12 on the first surface 11a of the substrate 11, an opening 12d having the inclined surface 12c is formed, and then as shown in FIG. 3 (c).
  • a convex second mask 12' that has a height of less than half the height of the first mask and a surface area smaller than the size of the opening is placed in the opening 12d. It can also be arranged on the first surface 11a of the substrate 11 of the above.
  • the semiconductor film 14 is epitaxially grown from the first surface 11a of the substrate 11 onto the second mask 12'including the lateral growth, and further laterally on the inclined surface 12c of the first mask 12.
  • the semiconductor film 14 including growth it is also possible to obtain a semiconductor film 14 having an inclined surface at an end portion and having less dislocations. Since the inclined surface can be formed in an annular shape at the peripheral end of the semiconductor film, a semiconductor device having a bevel structure can be easily manufactured.
  • the shape of the opening 12d is preferably a shape having no corners in a plan view. As shown in FIG. 2, the shape of the opening 12d may be a square with rounded corners in a plan view.
  • the opening 12d of the mask 12 is circular in a plan view, and the side surface of the mask 12 in the opening 12d is toward the first surface 11a of the substrate 11 in a plan view.
  • the inclined surface 12c is inclined in a direction approaching the center of the opening 12d.
  • the inclined surface 12c of the mask 12 has a tapered shape in which the thickness decreases from the first surface of the mask toward the second surface of the mask.
  • the first surface 12a of the mask 12 and the second surface 12b are parallel to each other, and the second surface 12b of the mask 12 has a larger area than the first surface 12a of the mask 12.
  • the semiconductor film 14 having an annular inclined surface at the peripheral end is formed, for example, in a circular shape in a plan view. can do.
  • the semiconductor device 100 as shown in FIG. 23 can be easily obtained.
  • the semiconductor device 100 includes a first surface 64a, a second surface 64b located on the opposite side of the first surface 64a, a side surface located between the first surface 64a and the second surface 64b, and the side surface. 64c, a first region 64f located adjacent to the inclined surface 64c, and a position distant from the inclined surface 64c in a plan view from the first region 64f.
  • the first region 64f is located near the side surface of the semiconductor film 64, and the second region 64g is located at a position including the central portion of the semiconductor film 64.
  • the first region 64f near the end of the semiconductor film where the electric field tends to concentrate contains crystals grown in the lateral direction, and the dislocation density of the first region 64f is the first. Since it is lower than the dislocation density of 64 g in two regions, it leads to improvement of semiconductor characteristics.
  • It has a semiconductor layer 64 and a non-conductive layer 62 in which at least a part of the side surface of the semiconductor layer 64 is in contact with each other.
  • the non-conductive layer 62 is preferably an insulator layer, the side surface of the insulator layer 62 has a first inclined surface 62c, and the side surface of the semiconductor layer 64 has the first inclined surface 62c. It has a second inclined surface 64c inclined in the opposite direction to the above, and the first inclined surface 62c of the insulator layer 62 and the second inclined surface 64c of the semiconductor layer 64 are engaged with each other. ..
  • the first inclined surface 62c of the insulator layer 62 and the second inclined surface 64c of the semiconductor layer 64 are in close contact with each other.
  • the angle formed by the first surface 64a of the semiconductor layer 64 and the inclined surface 64c of the semiconductor layer 64 is less than 90 °.
  • the inclined surface 64c of the semiconductor layer 64 is an inclined surface whose film thickness increases in the direction from the first surface 64a of the semiconductor layer toward the second surface 64b.
  • the semiconductor device 100 in the present embodiment has a rectifying junction interface 90, and has a first electrode 65 (here, a Schottky electrode) bonded to the semiconductor film 64 at the rectifying junction interface 90.
  • the first electrode 65 is arranged on the first surface 64a of the semiconductor layer 64 and the first surface 62a of the insulator layer 62.
  • the end portion 65c (also referred to as a terminal portion) of the Schottky electrode 65 is located on the insulator layer 62.
  • the leak current can be suppressed in the positive bevel structure, and the electric field concentration at the terminal portion of the Schottky electrode can be effectively suppressed.
  • the second surface 64b of the semiconductor layer 64 and the second surface 62b of the insulator layer 62 are flush with each other.
  • the first surface 64a of the semiconductor layer 64 and the first surface 62a of the insulator layer 62 are flush with each other, and the Schottky electrode 65 can be arranged on a flat surface, so that the Schottky electrode can be arranged. It has a structure that suppresses electric field concentration at the end of the semiconductor device and leads to a thinner semiconductor device.
  • the semiconductor layer 64 is, for example, an n-type semiconductor layer, and the semiconductor device 100 is further arranged in contact with the second surface 64b of the n-type semiconductor layer 64. It has a 61 and a second electrode 66 (here, an ohmic electrode) arranged in contact with the n + type semiconductor layer 61.
  • the semiconductor device in the embodiment of the present invention is a vertical Schottky barrier diode (SBD).
  • the "rectifying interface” is not particularly limited as long as it is a bonding interface having a rectifying action.
  • the rectifying junction is preferably a Schottky junction or a PN junction.
  • a mask may be placed on the crystal layer 61 to epitaxially grow a semiconductor layer having an inclined surface at an end (for example, an n + type semiconductor layer). .. If a semiconductor film 64 (for example, an n-type semiconductor layer) having an inclined surface continuous with the inclined surface of the n + type semiconductor layer is epitaxially grown on the n + semiconductor layer, a positive bevel structure is formed at the end of the laminated structure.
  • a Schottky barrier diode which is a semiconductor device having the above, can be easily obtained. Further, according to the manufacturing method according to the embodiment of the present invention, for example, the semiconductor device 200 as shown in FIG. 24 can be easily obtained.
  • the semiconductor device 200 includes a first surface 64a, a second surface 64b on the opposite side of the first surface 64a and a smaller area than the first surface 64a, and the first surface 64a and the second surface 64b.
  • the semiconductor film 64 as a first semiconductor film having an inclined surface 64c at an end located between the semiconductor film 64 and the first semiconductor film 64 arranged on the first surface 64a of the first semiconductor film 64 It has at least a second semiconductor film 67 having different electrical conductivity.
  • the second semiconductor film 67 has a first surface 67a, a second surface 67b arranged in contact with the first surface 64a of the first semiconductor film 64, the first surface 67a, and the second surface. It has an inclined surface 67c located between it and 67b.
  • the inclination angle 64e formed by the first surface 64a of the first semiconductor film 64 and the inclined surface 64c is preferably in the range of 10 ° ⁇ inclination angle 64e ⁇ 90 °, and the inclination angle 12e is 70 ° or less. Is more preferable, and most preferably 20 ° or more and 70 ° or less.
  • the inclination angle 67e formed by the first surface 67a of the second semiconductor film 67 and the inclined surface 67c is equal to the inclination angle 64e formed by the first surface 64a of the first semiconductor film 64 and the inclined surface 64c.
  • a continuous inclined surface is formed from the inclined surface 64c of the first semiconductor film 64 to the inclined surface 67c of the second semiconductor film 67, and a positive bevel structure is formed at the end portions (including the peripheral end surface) of the plurality of semiconductor layers. It is also possible to obtain a semiconductor device having the above.
  • the cross-sectional area at the end of the semiconductor film and / or the laminated structure including two or more semiconductor films becomes smaller toward the side where the depletion layer spreads.
  • the rectifying junction interface 90 serves as a junction (Schottky junction) interface between the Schottky electrode and the n-semiconductor layer, and is a low impurity layer.
  • the end face becomes the end face of the n-semiconductor layer.
  • the structure includes a structure in which the cross-sectional area of the semiconductor film parallel to the Schottky electrode becomes smaller in the direction from the Schottky electrode side to the ohmic electrode side.
  • the semiconductor film and / or the laminated structure of two or more semiconductor films has a shape like an inverted circular stand.
  • the rectified junction interface 90 becomes a pn junction interface, and the angle between the pn junction interface and the end face of the low impurity layer is 90.
  • the angle between the pn junction interface and the end face of the low impurity layer is preferably in the range of 20 ° or more and 70 ° or less.
  • the semiconductor device may include a p-type semiconductor layer as a high impurity layer and an n-type semiconductor layer as a low impurity layer laminated on the p-type semiconductor layer. Further, as another embodiment of the present invention, the semiconductor device may include an n-type semiconductor layer as a high impurity layer and a p-type semiconductor layer as a low impurity layer laminated on the n-type semiconductor layer. ..
  • the mask 12 can also be used as the insulator layer 62 of the semiconductor device 100 shown in FIG. 23. Since the thickness of the mask 12 can be appropriately set and can be arranged as an insulator layer so as to embed at least a part of the mask 12 in the semiconductor film (layer), the mask 12 can be field-insulated in the semiconductor device. It can also be used as a film. Further, as another embodiment, by making the thickness of the mask 12 the same as that of the semiconductor film or larger than the thickness of the semiconductor film, an inclined surface can be formed at least a part of the end portion of the semiconductor film.
  • the thickness of the mask 12 may be the same as or larger than the thickness of the laminated structure.
  • An inclined surface can be formed on at least a part of the end portion of the laminated structure.
  • the inclined surface 64c may be provided on at least a part of an end portion located between the first surface 64a and the second surface 64b, but in the present embodiment, the entire end portion may be provided. That is, it is preferable that the inclined surface 64c is provided on the entire peripheral end portion of the semiconductor film 64.
  • the Schottky electrode By arranging the Schottky electrode on the first surface 64a side of the semiconductor film 64, a Schottky barrier diode having a positive bevel structure in which the inclination angle formed by the first surface 64a and the inclined surface 64c is less than 90 ° can be obtained. Can be done. Further, in the present embodiment, the inclination angle 64e formed by the first surface 64a of the semiconductor film 64 and the inclined surface 64c is preferably in the range of 10 ° ⁇ inclined angle 64e ⁇ 90 °, and the inclined angle 64e. Is more preferably 70 ° or less, and most preferably 20 ° or more and 70 ° or less.
  • FIG. 4 is a diagram schematically showing a cross section of the opening of the mask shown in FIG.
  • the tilt angle) is in the range of 10 ° ⁇ tilt 12e ⁇ 90 °.
  • the inclination angle 12e formed by the second surface 12b of the mask 12 and the inclined surface 12c is preferably in the range of 10 ° ⁇ inclined angle 64e ⁇ 90 °, and the inclined angle 12e is set.
  • the mask can be formed of a material having higher electrical insulation than the semiconductor film 14.
  • an insulator such as silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) can be used.
  • the protective film 13 may be arranged on the first surface 12a and the inclined surface 12c of the mask 12. By arranging the protective film 13, it can be expected to prevent the diffusion of impurities such as silicon contained in the mask material.
  • the semiconductor film 14 can be formed at a position where the first surface 14a of the semiconductor film 14 is lower than the first surface 12a of the mask 12.
  • the semiconductor film has a first surface 14a, a second surface 14b opposite to the first surface 14a, and an inclined surface 14c located between the first surface 14a and the second surface 14b.
  • the mask 12 has a first surface 12a, a second surface 12b opposite to the first surface 12a, and a side surface including an inclined surface 12c located between the first surface 12a and the second surface 12b.
  • the first surface 14a of the semiconductor film 14 can be formed at a position lower than the first surface 12a of the mask 12. As shown in FIG.
  • the p-type semiconductor film 9 can be epitaxially grown on the first surface 14a of the semiconductor film 14.
  • the p-type semiconductor film 9 can also be formed so that the first surface 9a of the p-type semiconductor film 9 and the first surface 12a of the mask 12 have the same height.
  • a semiconductor device having a bevel structure is easily formed at the peripheral end of a laminated structure of semiconductor layers having different conductive types. be able to.
  • a bevel structure can be usually obtained at the end of the semiconductor film where the electric field tends to concentrate, and further, in the vicinity of the end having the bevel structure rather than the center of the semiconductor film. Since a semiconductor crystal with fewer dislocations can be obtained by lateral growth, it leads to improvement of semiconductor characteristics.
  • the substrate 11 is prepared, the substrate 1 is provided with irregularities to form a crystal layer such as a buffer layer, whereby a semiconductor film is formed using the substrate containing the crystals grown in the lateral direction. You can also do it.
  • a semiconductor film having as few dislocations as the vicinity of the end having a bevel structure can be formed even in the center of the semiconductor film. It is possible to obtain a semiconductor device having higher dielectric breakdown strength.
  • the semiconductor film 14 is formed so that the first surface 14a of the semiconductor film 14 and the first surface 12a of the mask 12 are at the same height position as shown in FIG. You can also do it.
  • the semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an end portion located between the first surface 14a and the second surface 14b.
  • the mask 12 has a first surface 12a, a second surface 12b opposite the first surface 12a, and a side surface including the inclined surface 12c located between the first surface 12a and the second surface 12b. Have.
  • the inclined surface 14a of the semiconductor film 14 and the inclined surface 12c of the mask 12 in the opposite direction are engaged with each other, and the first surface 14a of the semiconductor film 14 and the mask 12 of the insulator are the first.
  • One surface 12a is flush with each other.
  • the semiconductor film 14 is epitaxially grown, the first surface 14a of the semiconductor film 14 and / or the first surface 14a of the mask 14 is polished to be flush with each other by, for example, CMP (chemical mechanical polishing) or the like. May be good.
  • CMP chemical mechanical polishing
  • the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the semiconductor film 14 is formed.
  • the electrode 15 can be formed on a flat surface composed of the first surface 14a of the above and the first surface 12a of the mask 12, which not only facilitates the formation of the electrode but also has a bevel structure at the end of the semiconductor film.
  • the semiconductor device can be flattened and thinned.
  • the first surface 14a of the semiconductor film 14 can be formed so as to be at a position higher than the first surface 12a of the mask 12.
  • the semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an inclined surface 14c at an end located between the first surface 14a and the second surface 14b.
  • the mask 12 has a first surface 12a, a second surface 12b that contacts the first surface 11a of the substrate 11 on the opposite side of the first surface 12a, and the first surface 12a and the second surface. It has a side surface including the inclined surface 12c located between the surface 12b, and further, the first surface 14a of the semiconductor film 14 is located at a position lower than the first surface 12a of the mask 12.
  • the annular inclined surface 14a of the semiconductor film 14 and the annular inclined surface 12c of the mask 12 in the opposite direction are engaged with each other.
  • the semiconductor film 14a and the inclined surface of the mask 12 are in close contact with each other.
  • the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the end of the electrode 15 is formed.
  • the portion 15c so as to be located on the mask 12 having higher electrical insulation than the semiconductor film 14, it is possible to avoid electric field concentration at the electrode end portion.
  • the electrode 15 is formed from the first surface 14a of the semiconductor film 14 beyond the inclined surface 14c at the end, and the end 15c of the electrode 15 is formed. It is located on the first surface 12a of the mask 12.
  • the first surface 14a of the semiconductor film 14 can be formed so as to be at a position lower than the first surface 12a of the mask 12.
  • the semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an inclined surface 14c at an end located between the first surface 14a and the second surface 14b.
  • the mask 12 has a first surface 12a, a second surface 12b that contacts the first surface 11a of the substrate 11 on the opposite side of the first surface 12a, and the first surface 12a and the second surface. It has a side surface including the inclined surface 12c located between the surface 12b, and further, the first surface 14a of the semiconductor film 14 is located higher than the first surface 12a of the mask 12.
  • the annular inclined surface 14a of the semiconductor film 14 and the annular inclined surface 12c of the mask 12 in the opposite direction are engaged with each other, and the inclined surface 14a of the semiconductor film 14a and the mask 12 are engaged with each other.
  • the inclined surface 12c is in close contact with the protective film 13 arranged on the mask 12.
  • the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the end of the electrode 15 is formed.
  • FIG. 25 shows, as a comparative example, a semiconductor device without a bevel structure, a semiconductor device (a) in which the end of the first electrode is located on the semiconductor film, and a semiconductor device with a bevel structure obtained by the embodiment of the present invention.
  • the electric field distributions of the semiconductor devices (b) to (d) in which the end of the first electrode 85 is located on the insulator 82 are shown graphically.
  • the semiconductor device (b) is a semiconductor device having a bevel structure as shown in FIG. 11 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film 84.
  • the first surface of the semiconductor film 84 and the first surface of the insulator 82 of the semiconductor device (b) are flush with each other, and are arranged on the first surface of the flush semiconductor film 84 and the first surface of the insulator 82.
  • the end of the first electrode 85 is located on the insulator 82.
  • a second electrode 86 is arranged on the opposite side of the first electrode 85.
  • the semiconductor device (c) is a semiconductor device having a bevel structure as shown in FIG. 12 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film.
  • the first surface of the semiconductor film 84 of the semiconductor device (c) is located higher than the first surface of the insulator 82, and the first electrode 85 forms an inclined surface at the end from the first surface of the semiconductor film 84. It is formed beyond and the end of the first electrode 85 is located on the first surface of the insulator 82.
  • the semiconductor device (d) is a semiconductor device having a bevel structure as shown in FIG. 13 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film.
  • the first surface of the semiconductor film 84 of the semiconductor device (d) is located at a position lower than the first surface of the insulator 92, and the first electrode 85 forms an inclined surface at the end from the first surface of the semiconductor film 84.
  • FIG. 26 is a semiconductor device having a bevel structure obtained by an embodiment of the present invention, and is a semiconductor device (b) to (d) having a bevel structure shown in FIG. 25, and a comparative example (a) shown in FIG. 25. ), And the electric field strength distribution of 10 nm below the first electrode (near the surface of the semiconductor film) of each semiconductor device.
  • the structure is such that dielectric breakdown is unlikely to occur near the surface of the semiconductor having the bevel structure obtained in the embodiment of the present invention, that is, at the rectifying junction interface between the semiconductor and the electrode. Further, also in the semiconductor device as shown in FIG. 24, by forming the end surface of the pn junction of the semiconductor into a bevel structure, dielectric breakdown occurs in the vicinity of the end of the pn junction of the semiconductor, that is, on the surface of the semiconductor. It was found that a difficult structure can be obtained.
  • the semiconductor film 14 is formed so that the first surface 14a of the semiconductor film 14 is located higher than the first surface 12a of the mask 12, as shown in FIG. You can also do it. Since the thickness of the mask 12 can be appropriately set, according to the embodiment of the present invention, the thickness of the semiconductor film having a bevel structure can also be appropriately set, and the end portion within the opening 12d of the mask 12 can be appropriately set. It is also easy to obtain a laminated structure having a plurality of semiconductor layers having a continuous bevel structure. Further, in FIG. 26, similarly to the semiconductor device shown in FIG.
  • the semiconductor film 84 has a bevel structure, and the first surface 84a of the semiconductor film is higher than the first surface 82a of the insulator 82 (c).
  • a semiconductor device (d) is added in which the semiconductor film 84 has a bevel structure and the first surface 84a of the semiconductor film 84 is lower than the first surface 82a of the insulator 82.
  • the simulation result is shown. It was found that the semiconductor device (c) and the semiconductor device (d) also have a structure in which dielectric breakdown does not easily occur on the surface of the semiconductor, similar to the semiconductor device (b).
  • a substrate as exemplified by any of FIGS. 17 to 22 can be used.
  • the uneven portion formed of concave portions or convex portions is formed on the surface of the substrate, so that the crystal film of higher quality can be obtained more efficiently. Therefore, it is preferable.
  • the uneven portion is not particularly limited as long as it is composed of a convex portion or a concave portion, and may be an uneven portion composed of a convex portion, an uneven portion composed of a concave portion, or from the convex portion and the concave portion. It may be an uneven portion.
  • the uneven portion may be formed from a regular convex portion or a concave portion, or may be formed from an irregular convex portion or a concave portion.
  • the uneven portion is formed periodically, and it is more preferable that the uneven portion is periodically and regularly patterned.
  • the shape of the uneven portion is not particularly limited, and examples thereof include a striped shape, a dot shape, a mesh shape, and a random shape.
  • the dot shape or the striped shape is preferable, and the dot shape is more preferable. ..
  • the pattern shape of the uneven portion is a polygonal shape such as a triangle, a quadrangle (for example, a square, a rectangle or a trapezoid), a pentagon or a hexagon.
  • the shape is preferably circular or elliptical.
  • the grid shape of the dots is a grid shape such as a square lattice, an orthorhombic lattice, a triangular lattice, or a hexagonal lattice, and the lattice shape of the triangular lattice is used. Is more preferable.
  • the cross-sectional shape of the concave portion or the convex portion of the uneven portion is not particularly limited, and is, for example, U-shaped, U-shaped, inverted U-shaped, corrugated, or triangular, quadrangular (for example, square, rectangular, trapezoidal, etc.). ), Polygons such as pentagons or hexagons, etc.
  • the constituent material of the convex portion is not particularly limited and may be a known material. It may be an insulator material, a conductor material, or a semiconductor material. Further, the constituent material may be amorphous, single crystal, or polycrystal. Examples of the constituent material of the convex portion include oxides such as Si, Ge, Ti, Zr, Hf, Ta, Sn, nitrides or carbides, carbon, diamond, metal, and mixtures thereof. More specifically, a Si-containing compound containing SiO 2 , SiN or polycrystalline silicon as a main component, and a metal having a melting point higher than the crystal growth temperature of the crystalline oxide semiconductor (for example, platinum, gold, silver, palladium). , Rhodium, iridium, ruthenium and other precious metals, etc.). The content of the constituent material is preferably 50% or more, more preferably 70% or more, and most preferably 90% or more in the convex portion in terms of composition ratio.
  • the means for forming the convex portion may be a known means, for example, a known patterning processing means such as photolithography, electron beam lithography, laser patterning, and subsequent etching (for example, dry etching or wet etching). Can be mentioned.
  • the convex portion is preferably striped or dot-shaped, and more preferably dot-shaped.
  • the crystal substrate is a PSS (Patterned Sapphire Substrate) substrate.
  • the pattern shape of the PSS substrate is not particularly limited and may be a known pattern shape.
  • the pattern shape examples include a cone shape, a bell shape, a dome shape, a hemispherical shape, a square or a triangular pyramid shape, and the like, but in the present invention, the pattern shape is preferably a cone shape.
  • the pitch interval of the pattern shape is also not particularly limited, but in the present invention, it is preferably 5 ⁇ m or less, and more preferably 1 ⁇ m to 3 ⁇ m.
  • the concave portion is not particularly limited, but may be the same as the constituent material of the convex portion, or may be a substrate.
  • the recess is a void layer provided on the surface of the substrate.
  • the means for forming the concave portion the same means as the means for forming the convex portion can be used.
  • the void layer can be formed on the surface of the substrate by providing a groove on the substrate by a known groove processing means.
  • the groove width, groove depth, terrace width, etc. of the void layer are not particularly limited and can be appropriately set as long as the object of the present invention is not impaired. Further, the void layer may contain air or may contain an inert gas or the like.
  • FIG. 17 shows, for example, one aspect of a dot-shaped uneven portion provided on the surface of a substrate in an embodiment of the present invention.
  • the uneven portion of FIG. 17 is formed of a substrate main body 1 and a plurality of convex portions 2a provided on the surface 1a of the substrate.
  • the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C.
  • FIG. 18 shows the surface of the uneven portion shown in FIG. 17 when viewed from the zenith direction. As can be seen from FIGS. 17 and 18, the uneven portion has a configuration in which a conical convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate.
  • the convex portion 2a can be formed by a known processing means such as photolithography.
  • the grid points of the triangular lattice are provided at regular intervals a.
  • the period a is not particularly limited, but in the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and most preferably 1 ⁇ m to 3 ⁇ m.
  • the period a refers to the distance between the peak positions (that is, the grid points) of the heights in the adjacent convex portions 2a.
  • FIG. 19 shows one aspect of the dot-shaped uneven portion provided on the surface of the substrate in the present invention, and shows another aspect from FIG.
  • the uneven portion of FIG. 19 is formed of a substrate main body 1 and a convex portion 2a provided on the surface 1a of the substrate.
  • FIG. 20 shows the surface of the uneven portion shown in FIG. 4 as viewed from the zenith direction.
  • the uneven portion has a configuration in which a triangular pyramid-shaped convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate.
  • the convex portion 2a can be formed by a known processing means such as photolithography.
  • the grid points of the triangular lattice are provided at regular intervals a.
  • the period a is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and most preferably 1 ⁇ m to 3 ⁇ m.
  • the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C.
  • the height of the protrusions is not more than half the height of the opening of the mask, and it is also preferable that the protrusions are arranged at regular intervals.
  • FIG. 21 (a) shows one aspect of the uneven portion which may be provided on the surface of a substrate as at least a part of the substrate in embodiment of this invention
  • FIG. 21 (b) shows FIG. 21 (a).
  • the uneven portion of FIG. 21 is formed of a substrate main body 1 and a convex portion 2a having a triangular pattern shape provided on the surface 1a of the substrate.
  • the convex portion 2a is made of the material of the substrate or a silicon-containing compound such as SiO 2, and can be formed by using a known means such as photolithography.
  • the period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • FIG. 22 (a) shows one aspect of the uneven portion provided on the surface of the substrate as at least a part of the substrate in the embodiment of the present invention, similarly to FIG. 21 (a), and FIG. 22 (b) shows. 2 schematically shows the surface of the uneven portion shown in FIG. 22 (a).
  • the uneven portion of FIG. 22A is formed of the substrate main body 1 and the void layer having a triangular pattern shape.
  • the recess 2b can be formed by a known groove processing means such as laser dicing.
  • the period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C.
  • a plurality of convex portions are arranged in the opening portion 12d of the first mask 12.
  • the height of the protrusions is not more than half the height of the opening of the mask, and it is also preferable that the protrusions are arranged at regular intervals.
  • the width and height of the convex portion of the uneven portion, the width and depth of the concave portion, the spacing, and the like are not particularly limited, but in the embodiment of the present invention, each is preferably in the range of, for example, about 10 nm to about 1 mm. It is about 10 nm to about 300 ⁇ m, more preferably about 10 nm to about 1 ⁇ m, and most preferably about 100 nm to about 1 ⁇ m.
  • a buffer layer including a stress relaxation layer or the like may be provided on the substrate as at least a part of the substrate, and when the buffer layer is provided, the uneven portion is formed on the buffer layer as well. You may. Further, in the embodiment of the present invention, it is preferable that the substrate has a buffer layer on a part or all of the surface.
  • the means for forming the buffer layer is not particularly limited and may be a known means. Examples of the forming means include a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method, a sputtering method and the like.
  • the buffer layer formed by the mist CVD method can improve the film quality of the crystal film formed on the buffer layer, and in particular, causes crystal defects such as tilt. It is preferable because it can be suppressed.
  • a preferred embodiment of forming the buffer layer by the mist CVD method will be described in more detail.
  • the buffer layer preferably, for example, atomizes the raw material solution to obtain atomized droplets (atomization step), and conveys the obtained atomized droplets to the substrate using a carrier gas ( It can be formed by subjecting the mist or droplets to a thermal reaction (buffer layer forming step) on a part or all of the substrate and / or the surface of the substrate.
  • the atomization step atomizes the raw material solution to obtain atomized droplets.
  • the method for atomizing the raw material solution is not particularly limited as long as the raw material solution can be atomized, and may be a known means, but in the present invention, the atomization method using ultrasonic waves is preferable.
  • Atomized droplets obtained using ultrasonic waves have a zero initial velocity and are preferable because they float in the air. For example, instead of spraying them like a spray, they float in space and are transported as gas. Since it is a possible mist, it is not damaged by collision energy, so it is very suitable.
  • the droplet size is not particularly limited and may be a droplet of about several mm, but is preferably 50 ⁇ m or less, and more preferably 0.1 to 10 ⁇ m.
  • the raw material solution is not particularly limited as long as it is a solution in which the buffer layer, the crystal layer, and / or the semiconductor layer can be obtained by mist CVD.
  • the raw material solution include an organic metal complex of an atomizing metal (for example, an acetylacetonate complex) and an aqueous solution of a halide (for example, fluoride, chloride, bromide, iodide, etc.).
  • the atomizing metal is not particularly limited, and examples of such atomizing metal are selected from, for example, aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium.
  • the atomizing metal preferably contains at least gallium, indium or aluminum, and more preferably at least gallium.
  • the content of the atomizing metal in the raw material solution is not particularly limited as long as the object of the present invention is not impaired, but is preferably 0.001 mol% to 50 mol%, and more preferably 0.01 mol% to 0.01 mol%. It is 50 mol%.
  • the raw material solution contains a dopant.
  • the dopant is preferably tin, germanium, or silicon, more preferably tin or germanium, and most preferably tin.
  • the concentration of the dopant may be usually about 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 22 / cm 3 , and the concentration of the dopant may be as low as about 1 ⁇ 10 17 / cm 3 or less, for example.
  • the dopant may be contained in a high concentration of about 1 ⁇ 10 20 / cm 3 or more.
  • the concentration of the dopant is preferably 1 ⁇ 10 20 / cm 3 or less, and more preferably 5 ⁇ 10 19 / cm 3 or less.
  • the solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent.
  • the solvent preferably contains water, more preferably water or a mixed solvent of water and alcohol, and most preferably water. More specific examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. Ultrapure water is preferred.
  • the atomized droplets are transported to the film forming chamber by the carrier gas.
  • the carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include an inert gas such as oxygen, ozone, nitrogen and argon, and a reducing gas such as hydrogen gas and forming gas. ..
  • the type of the carrier gas may be one type, but may be two or more types, and a diluted gas having a reduced flow rate (for example, a 10-fold diluted gas) or the like is further used as the second carrier gas. May be good.
  • the carrier gas may be supplied not only at one place but also at two or more places.
  • the flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min.
  • the flow rate of the diluted gas is preferably 0.001 to 2 L / min, more preferably 0.1 to 1 L / min.
  • Step of forming buffer layer, crystal layer and / or semiconductor layer In the step of forming the buffer layer, the crystal layer and / or the semiconductor layer (hereinafter, also referred to as the crystal layer), the crystal layer is formed on the substrate by thermally reacting the mist or the droplet in the film forming chamber.
  • the thermal reaction may be any effect as long as the mist or droplet reacts with heat, and the reaction conditions and the like are not particularly limited as long as the object of the present invention is not impaired.
  • the thermal reaction is usually carried out at a temperature equal to or higher than the evaporation temperature of the solvent, but is preferably not too high (for example, 1000 ° C.) or lower, more preferably 650 ° C.
  • the thermal reaction may be carried out under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxygen atmosphere as long as the object of the present invention is not impaired, and the thermal reaction may be carried out under atmospheric pressure or pressure. It may be carried out under either reduced pressure or reduced pressure, but in the present invention, it is preferably carried out under atmospheric pressure.
  • the thickness of the crystal layer can be set by adjusting the formation time.
  • a crystal layer is formed as a buffer layer on a part or all of the surface on the substrate to form a substrate, and the above-mentioned mask is placed on the crystal layer of the substrate to epitaxially grow a semiconductor film. be able to.
  • the uneven portion is provided on the substrate to form a crystal layer, so that a crystal layer containing lateral growth can be obtained.
  • the buffer layer is formed. Defects such as tilt in the crystal layer can be further reduced, and the film quality can be improved.
  • the crystal layer can also be used as a semiconductor layer of a semiconductor device, and by forming a semiconductor film having a bevel structure on the semiconductor layer, the film quality of the semiconductor film is further improved. Can be.
  • the crystal layer is not particularly limited, but in one of the embodiments of the present invention, it is preferable that the crystal layer contains a metal oxide as a main component.
  • the metal oxide include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Be done.
  • the metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. Most preferably it contains gallium.
  • the buffer layer may contain a metal oxide as a main component, and the metal oxide contained in the buffer layer may contain gallium and a smaller amount of aluminum than gallium. ..
  • the buffer layer may include a superlattice structure.
  • the "main component" means that the metal oxide has an atomic ratio of preferably 50% or more, more preferably 70% or more, still more preferably 90% with respect to all the components of the buffer layer. It means that the above is included, and it means that it may be 100%.
  • the crystal structure of the crystalline oxide semiconductor is not particularly limited, but in the present invention, it is preferably a corundum structure or a ⁇ -gallia structure, and more preferably a corundum structure. Further, the crystal film and the buffer layer may have the same main component or different components as long as the object of the present invention is not impaired, but in the present invention, they are the same. Is preferable.
  • a metal-containing raw material gas, an oxygen-containing raw material gas, a reactive gas and, if desired, a dopant-containing gas are supplied onto the substrate on which the buffer layer may be provided, and the reaction gas is circulated.
  • Membrane it is preferable that the film formation is performed on a heated substrate.
  • the film formation temperature is not particularly limited as long as it does not impair the object of the present invention, but is preferably 900 ° C. or lower, more preferably 700 ° C. or lower, and most preferably 400 ° C. to 700 ° C.
  • the film formation may be performed under any atmosphere of vacuum, non-vacuum, reducing gas atmosphere, inert gas atmosphere and oxidizing gas atmosphere as long as the object of the present invention is not impaired. Further, it may be carried out under any conditions of normal pressure, atmospheric pressure, pressure and reduced pressure, but in the present invention, it is preferably carried out under normal pressure or atmospheric pressure.
  • the film thickness can be set by adjusting the film formation time.
  • the semiconductor film according to the embodiment of the present invention is formed by at least one method selected from a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method.
  • the main component of the semiconductor is, for example, a gallium nitride nitride semiconductor including silicon carbide, gallium nitride, gallium nitride, aluminum nitride and a mixture thereof. It may be contained as a main component, or it may contain a crystalline metal oxide as a main component.
  • the crystalline metal oxide examples include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Can be mentioned.
  • the crystalline metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. , Gallium or a mixed crystal thereof is most preferable.
  • the "main component" means that the crystalline metal oxide is an atomic ratio of the crystalline metal oxide.
  • the crystal structure of the crystalline metal oxide is not particularly limited, but as one of the embodiments of the present invention, a corundum structure or a ⁇ -gallia structure is preferable, a corundum structure is more preferable, and the semiconductor film is more preferable. However, it is most preferable that the crystal growth film has a corundum structure.
  • the buffer layer uses a substrate containing a corundum structure as at least a part of the substrate.
  • a crystal layer, and / or a semiconductor layer can be formed to obtain a crystal growth film having a corundum structure.
  • the crystalline metal oxide may be a single crystal or a polycrystal, but in the embodiment of the present invention, it is preferably a single crystal.
  • the film thickness of the semiconductor film is not particularly limited, but is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, and most preferably 20 ⁇ m or more.
  • the semiconductor film obtained by the manufacturing method of the present invention can be particularly suitably used for semiconductor devices, and is particularly useful for power devices.
  • Semiconductor devices formed using the crystal film include transistors and TFTs such as MIS and HEMT, Schottky barrier diodes using semiconductor-metal junctions, PN or PIN diodes combined with other P layers, and light receiving / receiving elements. Can be mentioned.
  • the semiconductor film can be used as it is in a semiconductor device or the like by epitaxially growing the semiconductor film on the substrate on which the mask is formed. Further, it may be applied to a semiconductor device or the like after using a known means such as peeling from the substrate or the like.
  • the mist CVD device 19 used in this embodiment will be described with reference to FIG.
  • the mist CVD apparatus 19 includes a carrier gas supply source 22a for supplying a carrier gas, a flow control valve 23a for adjusting the flow rate of the carrier gas sent out from the carrier gas supply source 22a, and a carrier for supplying the carrier gas (diluted).
  • Gallium acetylacetonate is mixed with ultrapure water, and the aqueous solution is adjusted to 0.05 mol / L of gallium acetylacetonate. At this time, hydrobromic acid is contained in a volume ratio of 5%, and this is used as a raw material. It was made into a solution.
  • Preparation for film formation (formation of buffer layer) 1-2.
  • the raw material solution 24a obtained in 1) was housed in the mist generation source 24.
  • a sapphire substrate was placed on the hot plate 28 as the object to be filmed 20, and the hot plate 28 was operated to raise the temperature of the object to be filmed to 550 ° C.
  • the flow control valves 23a and 23b are opened to supply the carrier gas into the film forming chamber 30 from the carrier gas source 22a and the carrier gas (dilution) source 22b, and the atmosphere of the film forming chamber 30 is sufficiently replaced with the carrier gas.
  • the flow rate of the carrier gas was adjusted to 0.8 L / min
  • the flow rate of the carrier gas (diluted) was adjusted to 0.2 L / min.
  • Oxygen was used as the carrier gas.
  • Mask formation 2-1 Formation of mask layer 1-4.
  • a mask layer of silicon oxide (SiO 2 ) was formed on the buffer layer obtained in 1) by plasma-enhanced CVD method using liquid tetraethyl orthosilicate. The film thickness of the mask layer was 1.3 ⁇ m.
  • a photoresist layer was formed on at least a part of the mask layer obtained in 1) by photolithography.
  • 2-3 Formation of a mask with an inclined surface 2-2. An opening was formed in the SiO 2 mask layer having the photoresist layer obtained in 1 above using buffered hydrofluoric acid (BHF) at room temperature.
  • BHF buffered hydrofluoric acid
  • the isotropic wet etching undercut formed an opening in the mask layer with an inclined surface at the end.
  • An angle (tilt angle) formed by the surface of the mask layer in contact with the substrate and the inclined surface was formed at 29 ° to obtain a substrate on which the mask having the inclined surface was arranged.
  • film forming apparatus As the film forming apparatus according to the embodiment of the present invention, an apparatus capable of epitaxial growth can be used, and as an example of such an apparatus, the mist CVD apparatus shown in FIG. 9 was used.
  • Gallium bromide is mixed with ultrapure water, and the aqueous solution is adjusted to 0.05 mol / L of gallium. At this time, hydrobromic acid is further contained so as to be 20% by volume, and this is used as a raw material. It was made into a solution.
  • the semiconductor film obtained in 1 was a clean film without cracks or abnormal growth.
  • the obtained film was identified by performing a 2 ⁇ / ⁇ scan at an angle of 15 to 95 degrees using an XRD diffractometer for thin films. The measurement was performed using CuK ⁇ ray. As a result, the obtained film was ⁇ -Ga 2 O 3 . Further, as shown in FIG. 10, an inclined surface is formed at the end of the semiconductor film of ⁇ -Ga 2 O 3.
  • the SiO 2 and the Pt film on the semiconductor film are provided for the purpose of facilitating observation. By forming a Schottky electrode on the SiO 2 and the semiconductor film, a Schottky contact having a positive bevel structure as a terminal structure can be obtained. It was also found that the region near the end of the semiconductor film contained crystals grown in the lateral direction, and a semiconductor film with less dislocations could be obtained near the end of the positive bevel structure.
  • the manufacturing method of the present invention can be used in all fields such as semiconductors (for example, compound semiconductor electronic devices, etc.), electronic parts / electrical equipment parts, optical / electrophotographic related devices, industrial parts, etc., but in particular, semiconductors having a pn junction. It is useful for manufacturing semiconductor devices including power semiconductors used for devices, power supplies, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

The present invention provides a production method for a semiconductor device containing a semiconductor film having an inclined surface on the edge thereof. This production method for a semiconductor device comprises causing the epitaxial growth of a semiconductor film upon a substrate on which a mask having an inclined surface is disposed, and thereby forming a semiconductor film having an inclined surface on the edge thereof.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.
 半導体装置の整流接合(ショットキー接合またはpn接合)に逆方向電圧を印加すると、ある電圧(耐圧)を超えた場合に絶縁破壊が生じる。この絶縁破壊が生じる電圧が、半導体の内部とpn接合および/またはショットキー接合が終端する表面とで異なり、一般には半導体内部の絶縁破壊電圧に達する前に、半導体の接合終端部で絶縁破壊が生じてしまう。半導体装置の耐圧が、その接合終端部での絶縁破壊電圧となることで、半導体装置に印加可能な逆方向電圧の最大値が低くなり、低耐圧の半導体装置となる問題があった。また、接合終端部で生じる絶縁破壊は不安定であり、半導体装置の特性に悪影響を与えるという問題もあった。そのため、接合終端部の絶縁破壊強度を向上させるために、半導体の接合端部を露出させ、その表面の形状を斜めに加工することが知られている。例えば、特許文献1は、半導体ウェハのエッジ部を砥石面に押し当てて研削することによりベベル加工を実施している。また、特許文献2は、pn接合表面をベベル構造に加工する工程は技術的にも難しく歩留まりが悪くなる問題があることから、ベベル構造を施す場所を限定的にしている。また、特許文献3は、サンドブラストなどで溝を形成した後に、溝内にフッ酸及び硝酸を含むエッチング液を噴射してベベル構造を形成している。しかしながら、研削のように半導体の一部を除去してベベル構造を設ける方法を用いる場合、工程が複雑になる問題があった。また、ベベル構造の形成に酸を用いてエッチングを施しても、表面が荒れるなどの課題があった。また、これらの方法では、所望の構造や角度を有するベベル構造を作成することが困難であった。 When a reverse voltage is applied to the rectified junction (Schottky junction or pn junction) of a semiconductor device, dielectric breakdown occurs when a certain voltage (withstand voltage) is exceeded. The voltage at which this breakdown occurs differs between the interior of the semiconductor and the surface where the pn junction and / or Schottky junction terminates, and generally before the breakdown voltage inside the semiconductor is reached, breakdown occurs at the junction termination of the semiconductor. It will occur. Since the withstand voltage of the semiconductor device becomes the dielectric breakdown voltage at the junction end portion, the maximum value of the reverse voltage that can be applied to the semiconductor device becomes low, and there is a problem that the semiconductor device has a low withstand voltage. Further, there is a problem that the dielectric breakdown that occurs at the end of the junction is unstable and adversely affects the characteristics of the semiconductor device. Therefore, in order to improve the dielectric breakdown strength of the junction end portion, it is known that the junction end portion of the semiconductor is exposed and the shape of the surface thereof is processed diagonally. For example, in Patent Document 1, bevel processing is performed by pressing an edge portion of a semiconductor wafer against a grindstone surface to grind it. Further, in Patent Document 2, since the process of processing the pn junction surface into a bevel structure is technically difficult and there is a problem that the yield is deteriorated, the place where the bevel structure is applied is limited. Further, in Patent Document 3, after forming a groove by sandblasting or the like, an etching solution containing hydrofluoric acid and nitric acid is sprayed into the groove to form a bevel structure. However, when a method such as grinding in which a part of a semiconductor is removed to provide a bevel structure is used, there is a problem that the process becomes complicated. Further, even if etching is performed using an acid to form the bevel structure, there is a problem that the surface is roughened. Further, with these methods, it is difficult to create a bevel structure having a desired structure and angle.
 なお、半導体としては、例えば、炭化珪素(Silicon Carbide)や、窒化ガリウム(Gallium Nitride)、窒化インジウム(Gallium Indium)、窒化アルミニウム(Gallium Alminium)およびそれらの混晶を含めた窒化ガリウム窒化物半導体が知られており、青色LEDやパワー半導体等の様々な半導体装置に用いられている。近年、新しい半導体として、酸化ガリウム(Ga)が注目されている。 Examples of semiconductors include silicon carbide, gallium nitride, gallium nitride, gallium nitride, and gallium nitride nitride semiconductors including mixed crystals thereof. It is known and is used in various semiconductor devices such as blue LEDs and power semiconductors. In recent years, gallium oxide (Ga 2 O 3 ) has been attracting attention as a new semiconductor.
 高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。また、広いバンドギャップからLEDやセンサー等の受発光装置としての幅広い応用も期待されている。特に、酸化ガリウムの中でもコランダム構造を有するα―Ga等は、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し(特許文献4等)、酸化ガリウムを内包する同一材料系統として俯瞰することができる。 As a next-generation switching element capable of achieving high withstand voltage, low loss, and high heat resistance, semiconductor devices using gallium oxide (Ga 2 O 3 ) having a large bandgap are attracting attention, and are used for power semiconductor devices such as inverters. Expected to be applied. Further, it is expected to be widely applied as a light receiving / receiving device such as an LED or a sensor due to a wide band gap. In particular, among gallium oxide, α-Ga 2 O 3 and the like having a corundum structure can control the band gap by mixing indium and aluminum with each other or in combination, which is extremely attractive as an InAlGaO-based semiconductor. It constitutes a material system. Here In the InAlGaO based semiconductor X Al Y Ga Z O 3 ( 0 ≦ X ≦ 2,0 ≦ Y ≦ 2,0 ≦ Z ≦ 2, X + Y + Z = 1.5 ~ 2.5) indicates (Patent Document 4 Etc.), it can be overlooked as the same material system containing gallium oxide.
 また、特許文献5に、酸化ガリウム(Ga)の単結晶を有するアバランシェフォトダイオードが記載され、前記アバランシェフォトダイオードがGaの単結晶と誘電体層の積層構造体が、側面が逆テーパ状に傾斜したメサ形状を有している。しかしながら、そのようなメサ形状を得るための製法は開示されていない。 Further, Patent Document 5 describes an avalanche photodiode having a single crystal of gallium oxide (Ga 2 O 3 ), and the avalanche photodiode is a laminated structure of a single crystal of Ga 2 O 3 and a dielectric layer on a side surface. Has a mesa shape that is inclined in a reverse taper shape. However, a manufacturing method for obtaining such a mesa shape is not disclosed.
 一方で、酸化ガリウム(Ga)は、最安定相がβガリア構造であるので、特殊な成膜法を用いなければ、準安定相であるコランダム構造の結晶膜を成膜することが困難である。また、コランダム構造の結晶膜に限らず、成膜レートや結晶品質の向上、クラックや異常成長の抑制、ツイン抑制、反りによる基板の割れ等においてもまだまだ課題が数多く存在している。 On the other hand, since gallium oxide (Ga 2 O 3 ) has a β-gallia structure as the most stable phase, it is possible to form a crystal film having a corundum structure, which is a metastable phase, unless a special film forming method is used. Have difficulty. In addition to the crystal film having a corundum structure, there are still many problems in improving the film formation rate and crystal quality, suppressing cracks and abnormal growth, suppressing twins, and cracking the substrate due to warpage.
 上記のような半導体材料で、ベベル構造を有する半導体装置が検討されて来たが、研削などによる半導体の一部除去によるベベル構造の形成の難しさ、また工程も複雑になるなどの課題があり、ベベル構造の角度や形状を所望のものとすることが困難であり、工業的に有利に利用できるレベルには至っていなかった。 Semiconductor devices with a bevel structure have been studied for the above-mentioned semiconductor materials, but there are problems such as difficulty in forming a bevel structure by removing a part of the semiconductor by grinding and the like, and the process becomes complicated. It was difficult to obtain the desired angle and shape of the bevel structure, and the level was not industrially advantageous.
特許2588326号Patent No. 2588326 特許公告昭57(1982)-23435号Patent Announcement No. 57 (1982) -23435 特許公告平5(1993)-43288号Patent Announcement No. 5 (1993) -43288 国際公開第2014/050793号公報International Publication No. 2014/050793 特開2017-220550JP-A-2017-220550
 本発明は、端部に傾斜面を有する半導体膜を少なくとも含む半導体装置を工業的有利に得ることができる製造方法を提供することを目的の1つとする。 One of the objects of the present invention is to provide a manufacturing method capable of obtaining a semiconductor device including at least a semiconductor film having an inclined surface at an end portion in an industrially advantageous manner.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、端部に傾斜面を有する半導体膜を少なくとも含む半導体装置を製造する方法において、前記傾斜面を有する半導体膜の形成を、前記半導体膜の前記傾斜面と係合する逆向きの傾斜面を有するマスクが配置された基体の第1面上に、前記半導体膜を成長させると、驚くべきことに、端部にベベル構造を有する半導体膜を工業的有利に得られることが分かり、このような方法によれば、上記した従来の問題を一挙に解決できることを見出した。 As a result of diligent studies to achieve the above object, the present inventors have determined that a semiconductor film having an inclined surface is formed in a method for manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end thereof. When the semiconductor film is grown on the first surface of a substrate on which a mask having an oppositely inclined surface that engages with the inclined surface of the film is placed, surprisingly, a semiconductor having a bevel structure at an end thereof. It was found that the film can be obtained in an industrially advantageous manner, and it has been found that the above-mentioned conventional problems can be solved at once by such a method.
 また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。 In addition, the present inventors have completed the present invention by further studying after obtaining the above findings.
 すなわち、本発明は、以下の発明に関する。
[1] 端部に傾斜面を有する半導体膜を少なくとも含む半導体装置を製造する方法であって、前記傾斜面を有する半導体膜の形成を、前記半導体膜の前記傾斜面と逆向きの傾斜面を有するマスクが配置された基体の第1面上に、前記半導体膜をエピタキシャル成長させることにより行うことを特徴とする、半導体装置の製造方法。
[2] 前記マスクが前記半導体膜よりも絶縁性の高い材料からできている、前記[1]記載の製造方法。
[3] 前記マスクが絶縁体材料を含む、前記[1]または[2]に記載の製造方法。
[4] 前記マスクが二酸化ケイ素(SiO)および窒化ケイ素(SiN)から選択される少なくとも1つの材料を含んでいる、前記[1]~[3]のいずれかに記載の製造方法。
[5] 前記マスクが、半絶縁体材料を含んでいる、前記[1]または[2]に記載の製造方法。
[6] 前記マスクの厚みは少なくとも1μm以上である、前記[1]~[5]のいずれかに記載の製造方法。
[7] 前記基体が結晶基板を含む、前記[1]~[6]のいずれかに記載の製造方法。
[8] 前記基体が結晶層を含む、前記[1]~[7]のいずれかに記載の製造方法。
[9] 前記結晶層が半導体層を含む、前記[8]記載の製造方法。
[10] 前記結晶層が横方向成長を含んでエピタキシャル成長されている、前記[8]または[9]に記載の製造方法。
[11] 前記半導体膜がn-型半導体膜であり、前記半導体層がn+型半導体膜である
前記[9]記載の製造方法。
[12] 前記半導体膜が横方向成長を含んでエピタキシャル成長されている、前記[1]~[11]のいずれかに記載の製造方法。
[13] 前記マスクが、第1面と、前記第1面の反対側で、基体の第1面と直接または他の層を介して接触する第2面とを有しており、前記マスクの傾斜面が、前記マスクの前記第1面から前記マスクの前記第2面に向かって厚みが減少するテーパ形状を有している、前記[1]~[12]のいずれかに記載の製造方法。
[14] 前記マスクの前記第2面と前記マスクの傾斜面とのなす角である傾斜角 が20°以上70°以下である、前記[13]記載の製造方法。
[15]
 さらに、前記半導体膜の少なくとも一部と前記マスクの少なくとも一部を覆って電極を形成し、前記電極の端部を前記マスク上に配置することを含む、前記[1]~[14]のいずれかに記載の製造方法。
[16] 前記マスクをフィールド絶縁膜として用いる、前記[1]~[15]のいずれかに記載の製造方法。
[17] さらに、前記マスク上に、前記マスクの材料とは異なる材料の保護膜を形成すること、を含む、前記[1]~[16]のいずれかに記載の製造方法。
[18] 前記半導体膜が、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法およびスパッタリング法から選択される少なくとも1つの方法により形成される、前記[1]~[17]のいずれかに記載の製造方法。
[19] 前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面と前記マスクの前記第1面とを面一になるように形成すること、を含む、前記[1]~[18]のいずれかに記載の製造方法。
[20] 前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面を、前記マスクの前記第1面よりも低い位置になるように形成すること、を含む、前記[1]~[18]のいずれかに記載の製造方法。
[21] 前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面を、前記マスクの前記第1面よりも高い位置になるように形成すること、を含む、前記[1]~[18]のいずれかに記載の製造方法。
[22] 前記半導体膜の第2面の少なくとも一部と、前記マスクの第2面とが面一となるように前記半導体膜を形成する、[19]~[21]のいずれかに記載の製造方法。
[23] 前記結晶層が前記基体の第1面側に位置しており、前記結晶層上に前記マスクを配置した後、前記半導体膜を前記結晶層上にエピタキシャル成長させる、前記[8]~[10]のいずれかに記載の製造方法。
[24] 前記マスクを第1のマスクとし、前記基体の第1面上に、前記第1のマスクよりも薄い厚みの第2のマスクが配置されている、前記[1]~[23]のいずれかに記載の製造方法。
[25] 前記マスクを第1のマスクとし、前記基体の第1面上に配置されて、前記第1のマスクの厚みよりも薄い厚みの第2のマスクとを配置すること、前記第1のマスクと第2のマスクが配置された前記基体の第1面上に前記半導体膜をエピタキシャル成長させて端部に傾斜面を有する半導体膜を形成すること、を含み、前記第2のマスクが前記第1のマスクの開口部内に位置している、前記[19]~[21]のいずれかに記載の製造方法。
[26] 前記マスクの前記逆向きの傾斜面に、前記半導体膜の前記傾斜面が係合するように形成されている、前記[1]~[25]のいずれかに記載の製造方法。
That is, the present invention relates to the following invention.
[1] A method for manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end, wherein the semiconductor film having the inclined surface is formed by forming an inclined surface of the semiconductor film in the direction opposite to the inclined surface. A method for manufacturing a semiconductor device, which is performed by epitaxially growing the semiconductor film on the first surface of a substrate on which a mask is arranged.
[2] The manufacturing method according to the above [1], wherein the mask is made of a material having a higher insulating property than the semiconductor film.
[3] The production method according to the above [1] or [2], wherein the mask contains an insulating material.
[4] The production method according to any one of [1] to [3] above, wherein the mask contains at least one material selected from silicon dioxide (SiO 2 ) and silicon nitride (Si 3 N 4). ..
[5] The production method according to the above [1] or [2], wherein the mask contains a semi-insulator material.
[6] The production method according to any one of [1] to [5] above, wherein the thickness of the mask is at least 1 μm or more.
[7] The production method according to any one of [1] to [6] above, wherein the substrate contains a crystal substrate.
[8] The production method according to any one of [1] to [7] above, wherein the substrate contains a crystal layer.
[9] The production method according to the above [8], wherein the crystal layer includes a semiconductor layer.
[10] The production method according to the above [8] or [9], wherein the crystal layer is epitaxially grown including lateral growth.
[11] The manufacturing method according to the above [9], wherein the semiconductor film is an n-type semiconductor film and the semiconductor layer is an n + type semiconductor film.
[12] The production method according to any one of [1] to [11] above, wherein the semiconductor film is epitaxially grown including lateral growth.
[13] The mask has a first surface and a second surface on the opposite side of the first surface, which is in direct contact with the first surface of the substrate or through another layer. The manufacturing method according to any one of [1] to [12], wherein the inclined surface has a tapered shape in which the thickness decreases from the first surface of the mask toward the second surface of the mask. ..
[14] The manufacturing method according to the above [13], wherein the inclination angle formed by the second surface of the mask and the inclined surface of the mask is 20 ° or more and 70 ° or less.
[15]
Further, any of the above [1] to [14], which comprises forming an electrode by covering at least a part of the semiconductor film and at least a part of the mask and arranging the end portion of the electrode on the mask. The manufacturing method described in Crab.
[16] The production method according to any one of [1] to [15], wherein the mask is used as a field insulating film.
[17] The production method according to any one of the above [1] to [16], further comprising forming a protective film of a material different from that of the mask on the mask.
[18] Any of the above [1] to [17], wherein the semiconductor film is formed by at least one method selected from a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method. The manufacturing method described in.
[19] The semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask. A side surface including the first surface, a second surface on the opposite side of the first surface, which is in contact with the first surface of the substrate, and the inclined surface located between the first surface and the second surface. [1] to [18], further comprising forming the first surface of the semiconductor film and the first surface of the mask so as to be flush with each other. The manufacturing method according to any one.
[20] The semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask. A side surface including the first surface, a second surface on the opposite side of the first surface, which is in contact with the first surface of the substrate, and the inclined surface located between the first surface and the second surface. [1] to [18], further comprising forming the first surface of the semiconductor film at a position lower than the first surface of the mask. The manufacturing method according to any one of.
[21] The semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask. A side surface including the first surface, a second surface on the opposite side of the first surface, which is in contact with the first surface of the substrate, and the inclined surface located between the first surface and the second surface. [1] to [18], further comprising forming the first surface of the semiconductor film at a position higher than the first surface of the mask. The manufacturing method according to any one of.
[22] The invention according to any one of [19] to [21], wherein the semiconductor film is formed so that at least a part of the second surface of the semiconductor film and the second surface of the mask are flush with each other. Production method.
[23] The crystal layer is located on the first surface side of the substrate, the mask is placed on the crystal layer, and then the semiconductor film is epitaxially grown on the crystal layer. 10] The manufacturing method according to any one of.
[24] The above-mentioned [1] to [23], wherein the mask is used as a first mask, and a second mask having a thickness thinner than that of the first mask is arranged on the first surface of the substrate. The manufacturing method according to any one.
[25] The mask is used as a first mask, and a second mask which is arranged on the first surface of the substrate and has a thickness thinner than the thickness of the first mask is arranged. The second mask comprises the epitaxial growth of the semiconductor film on the first surface of the substrate on which the mask and the second mask are arranged to form a semiconductor film having an inclined surface at the end, wherein the second mask is the second. The manufacturing method according to any one of [19] to [21] above, which is located in the opening of the mask of 1.
[26] The manufacturing method according to any one of [1] to [25], wherein the inclined surface of the semiconductor film is formed so as to engage with the inclined surface of the mask in the opposite direction.
 本発明の製造方法によれば、端部に傾斜面を有する半導体膜および/または端部に傾斜面を有する積層構造体を含む半導体装置を工業的有利に得ることができる。 According to the manufacturing method of the present invention, a semiconductor device including a semiconductor film having an inclined surface at an end and / or a laminated structure having an inclined surface at an end can be obtained industrially advantageous.
本発明の実施態様において好適に用いられる基体の表面上に配置されたマスクの一態様の一部を示す模式図である。It is a schematic diagram which shows a part of one aspect of the mask arranged on the surface of the substrate which is preferably used in embodiment of this invention. 本発明の実施態様において好適に用いられる基体の表面上に配置されたマスクの一態様の一部を示す模式図である。It is a schematic diagram which shows a part of one aspect of the mask arranged on the surface of the substrate which is preferably used in embodiment of this invention. 図1および/または図2で示されるようなマスクの形成方法を模式的に示す基体とマスクの一部断面図である。図3(a)は、基体の第1面上にマスク層を形成された基体の一部断面図である。図3(b)はエッチングにより、マスク層に傾斜面を有する開口部が形成された基体とマスクの一部断面図であり、例えば、図1のIIIb-IIIb部分の断面を示す。図3(c)は、別の実施態様として、前記マスク層(第1のマスク)の開口部内において、基体の第1面上により厚みの薄い第2のマスクが形成された基体とマスクの一部断面図である。FIG. 3 is a partial cross-sectional view of a substrate and a mask schematically showing a method of forming a mask as shown in FIGS. 1 and / or 2. FIG. 3A is a partial cross-sectional view of a substrate having a mask layer formed on the first surface of the substrate. FIG. 3B is a partial cross-sectional view of the substrate and the mask in which an opening having an inclined surface is formed in the mask layer by etching, and shows, for example, a cross section of the portion IIIb-IIIb of FIG. FIG. 3C shows, as another embodiment, a substrate and a mask on which a thinner second mask is formed on the first surface of the substrate in the opening of the mask layer (first mask). It is a partial sectional view. 本発明の実施態様の一つとして、マスク上に保護膜を配置した場合の、マスクの開口部の断面を模式的に示す図である。As one of the embodiments of the present invention, it is a figure which shows typically the cross section of the opening of the mask when the protective film is arranged on the mask. 本発明の実施態様の一つとして用いられるハライド気相成長(HVPE)装置を説明する図である。It is a figure explaining the halide vapor deposition (HVPE) apparatus used as one of the embodiments of this invention. 実施態様の一つとして、図4で示されるマスクの開口部において、基体の第1面上およびマスクの傾斜面上に成長させた積層構造体を模式的に示す断面図である。As one of the embodiments, it is sectional drawing schematically showing the laminated structure grown on the 1st surface of a substrate and on the inclined surface of a mask in the opening of the mask shown in FIG. 実施態様の一つとして、図6で示される半導体膜上に、異なる導電性を有する半導体膜を成長させた積層構造体を模式的に示す断面図である。As one of the embodiments, it is sectional drawing schematically showing the laminated structure in which the semiconductor film having different conductivity is grown on the semiconductor film shown in FIG. 実施態様の一つとして、図5で示される保護膜上に成長させた半導体膜を模式的に示す断面図である。As one of the embodiments, it is sectional drawing which shows typically the semiconductor film grown on the protective film shown in FIG. 本発明の実施態様で用いたミストCVD装置を説明する図である。It is a figure explaining the mist CVD apparatus used in embodiment of this invention. 本発明の実施例において得られた、端部に傾斜面を有する半導体膜を示す写真である。It is a photograph which shows the semiconductor film which has the inclined surface at the end part obtained in the Example of this invention. 本発明の実施態様の一つとして、同じ高さの半導体膜の第1面とマスクの第1面上に、電極を形成した図を示す。As one of the embodiments of the present invention, the figure in which electrodes are formed on the first surface of a semiconductor film having the same height and the first surface of a mask is shown. 本発明の実施態様の一つとして、半導体膜の第1面と半導体膜の第1面よりも高い位置にあるマスクの第1面上に、電極を形成した図を示す。As one of the embodiments of the present invention, a figure showing an electrode formed on a first surface of a semiconductor film and a first surface of a mask located at a position higher than the first surface of the semiconductor film is shown. 本発明の実施態様の一つとして、半導体膜の第1面と半導体膜の第1面よりも低い位置にあるマスクの第1面上に、電極を形成した図を示す。As one of the embodiments of the present invention, a figure showing an electrode formed on a first surface of a semiconductor film and a first surface of a mask located at a position lower than the first surface of the semiconductor film is shown. 本発明の実施態様の一つで用いられる、基体の一例を示す。An example of a substrate used in one of the embodiments of the present invention is shown. 本発明の実施態様の一つで用いられる、基体の一例を示す。An example of a substrate used in one of the embodiments of the present invention is shown. 本発明の実施態様の一つとして、図15で示す基体を用いた半導体装置の製造方法を示す図である。As one of the embodiments of the present invention, it is a figure which shows the manufacturing method of the semiconductor device using the substrate shown in FIG. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed on the surface of the substrate which is preferably used when preparing the substrate. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に配置形成された凹凸部一態様を示す模式図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed and arranged on the surface of the substrate which is preferably used when preparing the substrate. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed on the surface of the substrate which is preferably used when preparing the substrate. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に配置形成された凹凸部一態様を示す模式図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed and arranged on the surface of the substrate which is preferably used when preparing the substrate. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に形成された凹凸部の一態様を示す模式図である。(a)は凹凸部の模式的斜視図であり、(b)は凹凸部の模式的表面図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed on the surface of the substrate which is preferably used when preparing the substrate. (A) is a schematic perspective view of the uneven portion, and (b) is a schematic surface view of the uneven portion. 本発明の実施態様の一つにおいて、基体を準備する際に、好適に用いられる基板の表面上に配置形成された凹凸部一態様を示す模式図である。(a)は凹凸部の模式的斜視図であり、(b)は凹凸部の模式的表面図である。In one of the embodiments of the present invention, it is a schematic diagram showing one aspect of the uneven portion formed and arranged on the surface of the substrate which is preferably used when preparing the substrate. (A) is a schematic perspective view of the uneven portion, and (b) is a schematic surface view of the uneven portion. 本発明の実施態様の一つとして、半導体装置の断面図を示す。A cross-sectional view of a semiconductor device is shown as one of the embodiments of the present invention. 本発明の実施態様の一つとして、半導体装置の断面図を示す。A cross-sectional view of a semiconductor device is shown as one of the embodiments of the present invention. 比較例として、ベベル構造なし半導体装置で、第1の電極の終端が半導体膜上に位置する半導体装置(a)と、本発明の実施態様で得られるベベル構造ありの半導体装置で、第1の電極の終端が絶縁体上に位置する半導体装置(b)~(d)の電界分布を線図で示す。As a comparative example, in the semiconductor device without a bevel structure, the semiconductor device (a) in which the end of the first electrode is located on the semiconductor film and the semiconductor device with a bevel structure obtained by the embodiment of the present invention are the first. The electric field distributions of the semiconductor devices (b) to (d) in which the ends of the electrodes are located on the insulator are shown graphically. 本発明の実施態様で得られるベベル構造ありの半導体装置で、図25で示されるベベル構造ありの半導体装置(b)~(d)、および図25で示される、比較例(a)のベベル構造なしの半導体装置と、それぞれの半導体装置の第1の電極下10nm(半導体膜の表面近傍)の電界強度分布を示すThe semiconductor device having a bevel structure obtained by the embodiment of the present invention, the semiconductor devices (b) to (d) having a bevel structure shown in FIG. 25, and the bevel structure of Comparative Example (a) shown in FIG. 25. The semiconductor device without and the electric field strength distribution of 10 nm (near the surface of the semiconductor film) under the first electrode of each semiconductor device are shown.
 本発明の実施態様の一つとして、端部に傾斜面を有する半導体膜を少なくとも含む半導体装置を製造する方法であって、前記傾斜面の形成を、傾斜面を有するマスクが配置された基体上に、前記半導体膜をエピタキシャル成長させることにより行うことを特長とする。本発明の実施態様において、半導体膜をエピタキシャル成長することが可能なものあれば、特に限定されず、例えば、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法およびスパッタリング法から選択される少なくとも1つの方法により形成することができる。
 一例として、図5で示すHVPE法を用いて半導体膜を形成する場合について説明する。例えば、金属を含む金属源をガス化して金属含有原料ガスとし、ついで、前記金属含有原料ガスと、酸素含有原料ガスとを反応室内の、傾斜面を有するマスクが配置された基体上に供給して半導体膜を成膜することができる。また、前記半導体膜を成膜する際に、前記金属含有原料ガスと酸素含有原料ガスと反応性ガスとを、前記傾斜面を有するマスクが配置された基体上に供給し、前記成膜を行うことができる。HVPE装置50は、例えば、反応室51と、金属源57を加熱するヒータ52aおよび基体ホルダ56に固定されている基体を加熱するヒータ52bとを備えている。さらに、反応室51内に、酸素含有原料ガス供給管55bと、反応性ガス供給管54bと、基体を設置する基体ホルダ56とを備えていてもよい。そして、反応性ガス供給管54b内には、金属含有原料ガス供給管53bが備えられており、二重管構造を形成している。なお、酸素含有原料ガス供給管55bは、酸素含有原料ガス供給源55aと接続されており、酸素含有原料ガス供給源55aから酸素含有原料ガス供給管55bを介して、酸素含有原料ガスが基板ホルダ56に固定されている基板に供給可能なように、酸素含有原料ガスの流路を構成している。また、反応性ガス供給管54bは、反応性ガス供給源54aと接続されており、反応性ガス供給源54aから反応性ガス供給管54bを介して、反応性ガスが基板ホルダ56に固定されている基板に供給可能なように、反応性ガスの流路を構成している。金属含有原料ガス供給管53bは、ハロゲン含有原料ガス供給源53aと接続されており、ハロゲン含有原料ガスが金属源に供給されて金属含有原料ガスとなり金属含有原料ガスが基板ホルダ56に固定されている基板に供給される。反応室51には、使用済みのガスを排気するガス排出部59が設けられており、さらに、反応室51の内壁には、反応物が析出するのを防ぐ保護シート58が備え付けられている。
One of the embodiments of the present invention is a method of manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end, wherein the inclined surface is formed on a substrate on which a mask having an inclined surface is arranged. In addition, it is characterized in that it is carried out by epitaxially growing the semiconductor film. In the embodiment of the present invention, the semiconductor film is not particularly limited as long as it can be epitaxially grown, and is at least selected from, for example, a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method. It can be formed by one method.
As an example, a case where a semiconductor film is formed by using the HVPE method shown in FIG. 5 will be described. For example, a metal source containing a metal is gasified to obtain a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto a substrate in a reaction chamber on which a mask having an inclined surface is arranged. A semiconductor film can be formed. Further, when the semiconductor film is formed, the metal-containing raw material gas, the oxygen-containing raw material gas, and the reactive gas are supplied onto the substrate on which the mask having the inclined surface is arranged to perform the film formation. be able to. The HVPE apparatus 50 includes, for example, a reaction chamber 51, a heater 52a for heating the metal source 57, and a heater 52b for heating the substrate fixed to the substrate holder 56. Further, the reaction chamber 51 may include an oxygen-containing raw material gas supply pipe 55b, a reactive gas supply pipe 54b, and a base holder 56 on which a base is placed. A metal-containing raw material gas supply pipe 53b is provided in the reactive gas supply pipe 54b to form a double pipe structure. The oxygen-containing raw material gas supply pipe 55b is connected to the oxygen-containing raw material gas supply source 55a, and the oxygen-containing raw material gas is a substrate holder from the oxygen-containing raw material gas supply source 55a via the oxygen-containing raw material gas supply pipe 55b. The flow path of the oxygen-containing raw material gas is configured so that it can be supplied to the substrate fixed to 56. Further, the reactive gas supply pipe 54b is connected to the reactive gas supply source 54a, and the reactive gas is fixed to the substrate holder 56 from the reactive gas supply source 54a via the reactive gas supply pipe 54b. The flow path of the reactive gas is configured so that it can be supplied to the substrate. The metal-containing raw material gas supply pipe 53b is connected to the halogen-containing raw material gas supply source 53a, and the halogen-containing raw material gas is supplied to the metal source to become the metal-containing raw material gas, and the metal-containing raw material gas is fixed to the substrate holder 56. It is supplied to the board. The reaction chamber 51 is provided with a gas discharge unit 59 for exhausting used gas, and further, a protective sheet 58 for preventing the precipitate of reactants is provided on the inner wall of the reaction chamber 51.
(金属源)
 前記金属源は、金属を含んでおり、ガス化が可能なものであれば、特に限定されず、金属単体であってもよいし、金属化合物であってもよい。前記金属としては、例えば、ガリウム、アルミニウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属等が挙げられる。本発明においては、前記金属が、ガリウム、アルミニウムおよびインジウムから選ばれる1種または2種以上の金属であるのが好ましく、ガリウムであるのがより好ましく、前記金属源が、ガリウム単体であるのが最も好ましい。また、前記金属源は、気体であってもよいし、液体であってもよいし、固体であってもよいが、本発明においては、例えば、前記金属としてガリウムを用いる場合には、前記金属源が液体であるのが好ましい。
(Metal source)
The metal source is not particularly limited as long as it contains a metal and can be gasified, and may be a simple substance of a metal or a metal compound. Examples of the metal include one or more metals selected from gallium, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. In the present invention, the metal is preferably one or more metals selected from gallium, aluminum and indium, more preferably gallium, and the metal source is gallium alone. Most preferred. Further, the metal source may be a gas, a liquid, or a solid, but in the present invention, for example, when gallium is used as the metal, the metal is used. The source is preferably a liquid.
 前記ガス化の手段は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってよい。本発明の実施態様においては、前記ガス化の手段が、前記金属源をハロゲン化することにより行われるのが好ましい。前記ハロゲン化に用いるハロゲン化剤は、前記金属源をハロゲン化できさえすれば、特に限定されず、公知のハロゲン化剤であってよい。前記ハロゲン化剤としては、例えば、ハロゲンまたはハロゲン化水素等が挙げられる。前記ハロゲンとしては、例えば、フッ素、塩素、臭素、またはヨウ素等が挙げられる。また、前記ハロゲン化水素としては、例えば、フッ化水素、塩化水素、臭化水素、ヨウ化水素等が挙げられる。本発明においては、前記ハロゲン化に、ハロゲン化水素を用いるのが好ましく、塩化水素を用いるのがより好ましい。本発明においては、前記ガス化を、前記金属源に、ハロゲン化剤として、ハロゲンまたはハロゲン化水素を供給して、前記金属源とハロゲンまたはハロゲン化水素とをハロゲン化金属の気化温度以上で反応させてハロゲン化金属とすることにより行うのが好ましい。前記ハロゲン化反応温度は、特に限定されないが、本発明においては、例えば、前記金属源がガリウムであり、前記ハロゲン化剤が、HClである場合には、900℃以下が好ましく、700℃以下がより好ましく、400℃~700℃であるのが最も好ましい。前記金属含有原料ガスは、前記金属源の金属を含むガスであれば、特に限定されない。前記金属含有原料ガスとしては、例えば、前記金属のハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物など)等が挙げられる。 The gasification means is not particularly limited and may be a known means as long as the object of the present invention is not impaired. In the embodiment of the present invention, it is preferable that the gasification means is carried out by halogenating the metal source. The halogenating agent used for the halogenation is not particularly limited as long as the metal source can be halogenated, and may be a known halogenating agent. Examples of the halogenating agent include halogens and hydrogen halides. Examples of the halogen include fluorine, chlorine, bromine, iodine and the like. Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide and the like. In the present invention, it is preferable to use hydrogen halide for the halogenation, and it is more preferable to use hydrogen chloride. In the present invention, the gasification is carried out by supplying halogen or hydrogen halide as a halogenating agent to the metal source, and reacting the metal source with halogen or hydrogen halide at a temperature equal to or higher than the vaporization temperature of the metal halide. It is preferable to carry out the process by forming a halogenated metal. The halogenation reaction temperature is not particularly limited, but in the present invention, for example, when the metal source is gallium and the halogenating agent is HCl, 900 ° C. or lower is preferable, and 700 ° C. or lower is preferable. More preferably, it is most preferably 400 ° C. to 700 ° C. The metal-containing raw material gas is not particularly limited as long as it is a gas containing the metal of the metal source. Examples of the metal-containing raw material gas include halides (fluoride, chloride, bromide, iodide, etc.) of the metal.
 本発明の実施態様においては、金属を含む金属源をガス化して金属含有原料ガスとした後、前記金属含有原料ガスと、前記酸素含有原料ガスとを、前記反応室内の基板上に供給する。また、本発明においては、反応性ガスを前記基板上に供給する。前記酸素含有原料ガスとしては、例えば、Oガス、COガス、NOガス、NOガス、NOガス、HOガスまたはOガス等が挙げられる。本発明においては、前記酸素含有原料ガスが、O、HOおよびNOからなる群から選ばれる1種または2種以上のガスであるのが好ましく、Oを含むのがより好ましい。なお、本発明の実施形態の一つとして、前記酸素含有原料ガスはCOを含んでいてもよい。前記反応性ガスは、通常、金属含有原料ガスおよび酸素含有原料ガスとは異なる反応性のガスであり、不活性ガスは含まれない。前記反応性ガスとしては、特に限定されないが、例えば、エッチングガス等が挙げられる。前記エッチングガスは、本発明の目的を阻害しない限り、特に限定されず、公知のエッチングガスであってよい。本発明においては、前記反応性ガスが、ハロゲンガス(例えば、フッ素ガス、塩素ガス、臭素ガスまたはヨウ素ガス等)、ハロゲン化水素ガス(例えば、フッ酸ガス、塩酸ガス、臭化水素ガス、ヨウ化水素ガス等)、水素ガスまたはこれら2種以上の混合ガス等であるのが好ましく、ハロゲン化水素ガスを含むのが好ましく、塩化水素を含むのが最も好ましい。なお、前記金属含有原料ガス、前記酸素含有原料ガスまたは前記反応性ガスは、キャリアガスを含んでいてもよい。前記キャリアガスとしては、例えば、窒素やアルゴン等の不活性ガス等が挙げられる。また、前記金属含有原料ガスの分圧は特に限定されないが、本発明においては、0.5Pa~1kPaであるのが好ましく、5Pa~0.5kPaであるのがより好ましい。前記酸素含有原料ガスの分圧は、特に限定されないが、本発明においては、前記金属含有原料ガスの分圧の0.5倍~100倍であるのが好ましく、1倍~20倍であるのがより好ましい。前記反応性ガスの分圧も、特に限定されないが、本発明においては、前記金属含有原料ガスの分圧の0.1倍~5倍であるのが好ましく、0.2倍~3倍であるのがより好ましい。 In the embodiment of the present invention, the metal source containing a metal is gasified into a metal-containing raw material gas, and then the metal-containing raw material gas and the oxygen-containing raw material gas are supplied onto the substrate in the reaction chamber. Further, in the present invention, the reactive gas is supplied onto the substrate. Examples of the oxygen-containing raw material gas include O 2 gas, CO 2 gas, NO gas, NO 2 gas, N 2 O gas, H 2 O gas, O 3 gas and the like. In the present invention, the oxygen-containing feed gas, O 2, H and even preferably one or more kinds of gas selected from 2 O and N 2 O consisting of the group, and more preferably comprises an O 2 .. As one of the embodiments of the present invention, the oxygen-containing raw material gas may contain CO 2. The reactive gas is usually a reactive gas different from the metal-containing raw material gas and the oxygen-containing raw material gas, and does not contain the inert gas. The reactive gas is not particularly limited, and examples thereof include an etching gas and the like. The etching gas is not particularly limited and may be a known etching gas as long as the object of the present invention is not impaired. In the present invention, the reactive gas is a halogen gas (for example, fluorine gas, chlorine gas, bromine gas, iodine gas, etc.), hydrogen halide gas (for example, hydrofluoric acid gas, hydrochloric acid gas, hydrogen bromide gas, iodine gas, etc.). Hydrogen acid gas or the like), hydrogen gas or a mixed gas of two or more of these is preferable, hydrogen halide gas is preferably contained, and hydrogen chloride is most preferable. The metal-containing raw material gas, the oxygen-containing raw material gas, or the reactive gas may contain a carrier gas. Examples of the carrier gas include an inert gas such as nitrogen and argon. The partial pressure of the metal-containing raw material gas is not particularly limited, but in the present invention, it is preferably 0.5 Pa to 1 kPa, more preferably 5 Pa to 0.5 kPa. The partial pressure of the oxygen-containing raw material gas is not particularly limited, but in the present invention, it is preferably 0.5 to 100 times the partial pressure of the metal-containing raw material gas, and is 1 to 20 times. Is more preferable. The partial pressure of the reactive gas is also not particularly limited, but in the present invention, it is preferably 0.1 to 5 times, preferably 0.2 to 3 times, the partial pressure of the metal-containing raw material gas. Is more preferable.
 本発明の実施態様においては、さらに、ドーパント含有ガスを前記基板に供給するのも好ましい。前記ドーパント含有ガスは、ドーパントを含んでいれば、特に限定されない。前記ドーパントも、特に限定されないが、本発明においては、前記ドーパントが、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム、ニオブおよびスズから選ばれる1種または2種以上の元素を含むのが好ましく、ゲルマニウム、ケイ素、またはスズを含むのがより好ましく、ゲルマニウムを含むのが最も好ましい。このようにドーパント含有ガスを用いることにより、得られる膜の導電率を容易に制御することができる。前記ドーパント含有ガスは、前記ドーパントを化合物(例えば、ハロゲン化物、酸化物等)の形態で有するのが好ましく、ハロゲン化物の形態で有するのがより好ましい。前記ドーパント含有原料ガスの分圧は、特に限定されないが、本発明においては、前記金属含有原料ガスの分圧の1×10-7倍~0.1倍であるのが好ましく、2.5×10-6倍~7.5×10-2倍であるのがより好ましい。なお、本発明においては、前記ドーパント含有ガスを、前記反応性ガスとともに前記基板上に供給するのが好ましい。 In the embodiment of the present invention, it is also preferable to supply the dopant-containing gas to the substrate. The dopant-containing gas is not particularly limited as long as it contains a dopant. The dopant is also not particularly limited, but in the present invention, the dopant preferably contains one or more elements selected from germanium, silicon, titanium, zirconium, vanadium, niobium and tin, preferably germanium. It is more preferably containing silicon or tin, and most preferably it contains germanium. By using the dopant-containing gas in this way, the conductivity of the obtained film can be easily controlled. The dopant-containing gas preferably has the dopant in the form of a compound (for example, a halide, an oxide, etc.), and more preferably in the form of a halide. The partial pressure of the dopant-containing raw material gas is not particularly limited, but in the present invention, it is preferably 1 × 10 -7 times to 0.1 times the partial pressure of the metal-containing raw material gas, and 2.5 ×. It is more preferably 10-6 times to 7.5 × 10-2 times. In the present invention, it is preferable to supply the dopant-containing gas onto the substrate together with the reactive gas.
 なお、後述するが、別の一例として、図9で示すようなミストCVD装置を用いて本発明の実施態様における半導体膜および/または基体の少なくとも一部を形成することができる。 As will be described later, as another example, at least a part of the semiconductor film and / or the substrate in the embodiment of the present invention can be formed by using the mist CVD apparatus as shown in FIG.
(基体)
 前記基体は、マスクおよび/または前記半導体膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明の実施態様の一つにおいては、基板が好ましい。また、本発明の別の実施態様においては、基体が結晶層を含むのも好ましい。前記結晶層が半導体層であってもよい。例えば、図14に示すように、基体11が基板16と、前記基板16上に形成された結晶層(半導体層を含む)17を有していてもよい。基板の厚さは、本発明においては特に限定されない。また、基体として、後述するように、基板上にバッファ層等の他の層を積層してもよい。異なる電気導電を有する半導体層を含めて基体として用いてもよく、基体自体が半導体層であってもよい。例えば図15に示すように、基体11が基板16と、前記基板16上に配置された結晶層17(例えば、n+型半導体層のような半導体層であってもよい)と、前記結晶層17上に配置されたさらに別の結晶層18(例えば、n-型半導体層のような半導体層であってもよい)とを含んでいてもよい。この場合、図16に示すように、基体11の一部として半導体層18を形成した後に、基体11の第1面11aとなる前記半導体層18上に、マスク層を配置する。次に、エッチングにより、マスク層の一部を除去して、傾斜面12cを有する開口部12dを形成し、基体11の第1面11aとなる半導体層18を開口部12d内に露出させ、前記半導体層18と同じ半導体材料で半導体膜14を続けて成長させることもできる。このように、基体11の一部である前記半導体層18から同じ材料を用いて半導体膜14をエピタキシャル成長させることで、半導体膜内に少なくとも一部が埋設された傾斜面を有するマスクを配置し、かつ半導体膜の少なくとも一部に、前記マスクの傾斜面と係合するベベル構造を有する半導体膜を含む半導体装置を容易に得ることが出来る。本実施態様のように、基体11の第1面11aに位置する層と、第1面11aの反対側の第2面11bに位置する層が互いに組成の異なる結晶層および/または半導体層であってもよい。本発明の実施態様の一つとして、前記開口部12の側面の少なくとも一部に傾斜面が配置されるように開口部を形成してもよいし、別の実施態様として、マスク層の開口部の側面全体に環状の傾斜面が配置されるように開口部を形成してもよい。
(Hypokeimenon)
The substrate is not particularly limited as long as it can support the mask and / or the semiconductor film. The material of the substrate is not particularly limited as long as it does not impair the object of the present invention, and may be a known substrate, an organic compound, or an inorganic compound. The shape of the substrate may be any shape, and is effective for any shape. For example, a plate-like, fibrous, rod-like, columnar, or prismatic shape such as a flat plate or a disk Cylindrical, spiral, spherical, ring-shaped and the like can be mentioned, but in one of the embodiments of the present invention, a substrate is preferable. Further, in another embodiment of the present invention, it is also preferable that the substrate contains a crystal layer. The crystal layer may be a semiconductor layer. For example, as shown in FIG. 14, the substrate 11 may have a substrate 16 and a crystal layer (including a semiconductor layer) 17 formed on the substrate 16. The thickness of the substrate is not particularly limited in the present invention. Further, as the substrate, another layer such as a buffer layer may be laminated on the substrate as described later. A semiconductor layer having different electrical conductivity may be included as a substrate, or the substrate itself may be a semiconductor layer. For example, as shown in FIG. 15, the substrate 11 is a substrate 16, a crystal layer 17 arranged on the substrate 16 (for example, a semiconductor layer such as an n + type semiconductor layer), and the crystal layer 17. It may include yet another crystal layer 18 arranged above (for example, it may be a semiconductor layer such as an n-type semiconductor layer). In this case, as shown in FIG. 16, after the semiconductor layer 18 is formed as a part of the substrate 11, the mask layer is arranged on the semiconductor layer 18 which is the first surface 11a of the substrate 11. Next, a part of the mask layer is removed by etching to form an opening 12d having an inclined surface 12c, and the semiconductor layer 18 to be the first surface 11a of the substrate 11 is exposed in the opening 12d. The semiconductor film 14 can be continuously grown with the same semiconductor material as the semiconductor layer 18. In this way, by epitaxially growing the semiconductor film 14 from the semiconductor layer 18 which is a part of the substrate 11 using the same material, a mask having an inclined surface at least partially embedded in the semiconductor film is arranged. Moreover, it is possible to easily obtain a semiconductor device including a semiconductor film having a bevel structure that engages with the inclined surface of the mask in at least a part of the semiconductor film. As in this embodiment, the layer located on the first surface 11a of the substrate 11 and the layer located on the second surface 11b on the opposite side of the first surface 11a are crystal layers and / or semiconductor layers having different compositions from each other. You may. As one embodiment of the present invention, the opening may be formed so that the inclined surface is arranged at least a part of the side surface of the opening 12, or another embodiment is the opening of the mask layer. The opening may be formed so that the annular inclined surface is arranged on the entire side surface of the.
(結晶基板)
 前記基体が結晶基板を含む場合あるいは前記基体が結晶基板である場合、前記結晶基板は、結晶物を主成分として含む基板であれば特に限定されず、公知の基板であってよい。絶縁体基板であってもよいし、導電性基板であってもよいし、半導体基板であってもよい。単結晶基板であってもよいし、多結晶基板であってもよい。前記結晶基板としては、例えば、SiC基板、GaN基板、コランダム構造を有する結晶物を主成分として含む基板、またはβ-ガリア構造を有する結晶物を主成分として含む基板、六方晶構造を有する基板などが挙げられる。なお、前記「主成分」とは、基板中の組成比で、前記結晶物を50%以上含むものをいい、好ましくは70%以上含むものであり、より好ましくは90%以上含むものである。
(Crystal substrate)
When the substrate contains a crystal substrate or the substrate is a crystal substrate, the crystal substrate is not particularly limited as long as it is a substrate containing a crystal as a main component, and may be a known substrate. It may be an insulator substrate, a conductive substrate, or a semiconductor substrate. It may be a single crystal substrate or a polycrystalline substrate. Examples of the crystal substrate include a SiC substrate, a GaN substrate, a substrate containing a crystal having a corundum structure as a main component, a substrate containing a crystal having a β-gallium structure as a main component, and a substrate having a hexagonal structure. Can be mentioned. The "main component" refers to a composition ratio in the substrate containing 50% or more of the crystals, preferably 70% or more, and more preferably 90% or more.
 前記コランダム構造を有する結晶物を主成分として含む基板としては、例えば、サファイア基板、α型酸化ガリウム基板などが挙げられる。前記β-ガリア構造を有する結晶物を主成分として含む基板としては、例えば、β-Ga基板、またはβ-GaとAlとを含む混晶体基板などが挙げられる。なお、β-GaとAlとを含む混晶体基板としては、例えば、Alが原子比で0%より多くかつ60%以下含まれる混晶体基板などが好適な例として挙げられる。また、前記六方晶構造を有する基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。その他の結晶基板の例示としては、例えば、Si基板などが挙げられる。 Examples of the substrate containing the crystal having a corundum structure as a main component include a sapphire substrate and an α-type gallium oxide substrate. Examples of the substrate containing the crystal having a β-Galia structure as a main component include a β-Ga 2 O 3 substrate or a mixed crystal substrate containing β-Ga 2 O 3 and Al 2 O 3. .. As the mixed crystal substrate containing β-Ga 2 O 3 and Al 2 O 3 , for example, a mixed crystal substrate containing Al 2 O 3 in an atomic ratio of more than 0% and 60% or less is preferable. Is mentioned as. Examples of the substrate having the hexagonal structure include a SiC substrate, a ZnO substrate, and a GaN substrate. Examples of other crystal substrates include Si substrates.
 本発明の実施態様の一つとして、前記結晶基板が、サファイア基板であるのが好ましい。前記サファイア基板としては、例えば、c面サファイア基板、m面サファイア基板、a面サファイア基板などが挙げられる。また、前記サファイア基板はオフ角を有していてもよい。前記オフ角は、特に限定されないが、好ましくは0°~15°である。なお、前記結晶基板の厚さは、特に限定されないが、好ましくは、50~2000μmであり、より好ましくは200~800μmである。 As one of the embodiments of the present invention, it is preferable that the crystal substrate is a sapphire substrate. Examples of the sapphire substrate include a c-plane sapphire substrate, an m-plane sapphire substrate, and an a-plane sapphire substrate. Further, the sapphire substrate may have an off angle. The off angle is not particularly limited, but is preferably 0 ° to 15 °. The thickness of the crystal substrate is not particularly limited, but is preferably 50 to 2000 μm, and more preferably 200 to 800 μm.
 本発明の実施態様の一つとして、図1に、基体11の表面上に配置されたマスクの一態様の一部を模式的に示す。詳細には、図3の(a)で示すように、基体11の第1面11a上にマスク12としてマスク層を形成する。マスク材料としては半導体膜よりも電気絶縁性の高い材料で形成することができ、例えば、マスク材料が半絶縁体材料や絶縁体材料であるのが好ましい。半絶縁体材料としては、例えば、ポリシリコン(多結晶シリコン)、アモルファスシリコン、ダイヤモンドライクカーボン(DLC)およびドーピング処理していない結晶層や、マグネシウム(Mg)、ルテニウム(Ru)、鉄(Fe)、ベリリウム(Be)、セシウム(Cs)、ストロンチウム(Sr)、バリウム(Ba)等の半絶縁体ドーパントを含む結晶層が挙げられる。また、絶縁体材料としては、例えば、二酸化ケイ素(SiO)や窒化ケイ素(Si)、シリコン(Si)、ゲルマニウム(Ge)、チタン(Ti)、ジルコニウム(Zr)、Hf(ハフ二ウム)、Ta(タンタル)、スズ(Sn)等の酸化物、窒化物または炭化物等が挙げられる。なお、本発明の実施態様においては、マスク層が絶縁体からなるのがより好ましい。基体11は、第1面11aと第1面11aの反対側の第2面11bとを有している。基体11の第1面11a上にマスク層12(以下、マスクおよび/または第1のマスクともいう)を形成し、例えば、マスク層12の少なくとも一部にレジスト層を配置し、エッチングガスおよび/またはエッチング液を用いてマスク層12をエッチングすることで、図3(b)で示すように、マスク層の開口部12dの側面に環状の傾斜面12cを形成することができる。本発明の実施態様において、エッチングはドライエッチングでもウェットエッチングでもよいが、マスク層に傾斜面を形成するので、等方性エッチングであることが好ましい。また、本発明の別の実施態様として、異方性エッチングと等方性エッチングを組み合わせてもよい。例えば、マスク層に異方性エッチングにより開口部を設けて、等方性エッチングを追加で実施して傾斜面の傾斜角度を調整してもよい。図3(b)は、例えば、図1のIIIb-IIIb部分の断面を示す。前記マスク12の前記開口部12dが前記マスク12の第1面12aから反対側の第2面12bまで貫通しており、前記マスク12の前記第1面12aよりも前記マスク12の前記第2面12bが前記基体11の前記第1面11aに近い位置にある。半導体膜の研削などの加工に比べて、マスク層の厚膜形成および加工は短時間で容易に行うことができ、マスクに平滑な傾斜面を得ることも容易である。本発明の実施態様における傾斜面を有するマスクは、半導体膜および/または積層構造体の端部にベベル構造を形成することを目的の1つとして用いられるので、半導体膜の厚みと同じ厚みか、それ以上の厚みを有する。したがって、前記傾斜面が形成されるマスクの厚みは少なくとも1μm以上が好ましく、1μm以上100μm以下であるのが好ましい。さらに別の実施態様として、基体11の第1面11a上に、マスク12として、マスク層を形成し、前記傾斜面12cを有する開口部12dを形成した後、さらに図3(c)で示すように、マスク12を第1のマスクとして、第1のマスクの高さの半分以下の高さで、開口部の大きさよりも表面積の小さい凸状の第2のマスク12’を前記開口部12d内の基体11の第1面11a上に配置することもできる。このようにして、基体11の第1面11aから第2のマスク12’上に横方向成長を含めて半導体膜14をエピタキシャル成長させて、さらに、第1のマスク12の傾斜面12c上に横方向成長を含めて半導体膜14をエピタキシャル成長させることにより、端部に傾斜面を有し、かつ転位のより少ない半導体膜14を得ることもできる。前記傾斜面は、半導体膜の周端部に環状に形成することができるので、ベベル構造を有する半導体装置を容易に製造することができる。なお、本発明の実施態様においては、開口部12dの形状は、平面視で角部のない形状が好ましい。図2に示すように、開口部12dの形状が、平面視で角丸正方形としてもよい。なお、本実施態様においては、前記マスク12の開口部12dが平面視で円形であり、前記開口部12d内の前記マスク12の側面が、平面視で、基体11の第1面11aに向かって、前記開口部12dの中心に近づく方向に傾斜する傾斜面12cとなっている。前記開口部12dの断面図においては、前記マスク12の傾斜面12cは、前記マスクの前記第1面から前記マスクの前記第2面に向かって厚みが減少するテーパ形状を有している。前記マスク12の前記第1面12aと前記第2面12bは平行であって、前記マスク12の前記第2面12bは、前記マスク12の第1面12aよりも面積が大きい。前記傾斜面12cを有するマスク12が配置された基体11上に、半導体膜14を成長させることで、周端部に環状の傾斜面を有する半導体膜14を、例えば、平面視で円形状に形成することができる。本発明の実施態様における製造方法によれば、例えば、図23で示すような半導体装置100を容易に得ることができる。半導体装置100は、第1面64aと、前記第1面64aの反対側に位置する第2面64bと、前記第1面64aと前記第2面64bとの間に位置する側面と、前記側面の少なくとも一部に設けられた傾斜面64cと、前記傾斜面64cに隣接する位置にある第1領域64fと、前記第1領域64fよりも前記傾斜面64cから平面視で離れた位置にある第2領域64gとを含む半導体膜64を有している。前記第1領域64fが半導体膜64の側面に近い位置にあり、前記第2領域64gは半導体膜64の中心部を含む位置にある。本実施態様において、電界の集中する傾向にある半導体膜の端部付近となる前記第1領域64fが、横方向に成長した結晶を含んでおり、前記第1領域64fの転位密度が、前記第2領域64gの転位密度よりも低いことから半導体特性の向上につながる。半導体層64と、前記半導体層64の側面の少なくとも一部が接触している、非導電層62とを有している。前記非導電層62は絶縁体層であるのが好ましく、前記絶縁体層62の前記側面が第1の傾斜面62cを有し、前記半導体層64の前記側面が、前記第1の傾斜面62cと逆向きに傾斜する第2の傾斜面64cを有しており、前記絶縁体層62の第1の傾斜面62cと前記半導体層64の前記第2の傾斜面64cとが係合している。絶縁体層62の第1の傾斜面62cと、半導体層64の第2の傾斜面64cとが密着している。本実施態様において、前記半導体層64の第1面64aと前記半導体層64の傾斜面64cとのなす角度が90°未満となっている。すなわち、前記半導体層64の傾斜面64cは、前記半導体層の前記第1面64aから前記第2面64bに向かう方向に膜厚が増加する傾斜面となっている。さらに、本実施態様における半導体装置100は整流接合界面90を有し、整流接合界面90において、前記半導体膜64と接合された第1の電極65(ここではショットキー電極)を有している。第1の電極65は、前記半導体層64の第1面64aおよび絶縁体層62の第1面62a上に配置されている。前記ショットキー電極65の端部65c(終端部ともいう)が、前記絶縁体層62上に位置している。上記のような構造とすることで、正ベベル構造においてリーク電流を抑制し、ショットキー電極の終端部での電界集中を効果的に抑制することができる。また、本実施態様においては、半導体層64の第2面64bと、絶縁体層62の第2面62bとが面一である。また、前記半導体層64の第1面64aと、前記絶縁体層62の第1面62aとが面一となっており、平坦面にショットキー電極65を配置することができて、ショットキー電極の終端部での電界集中を抑制し、かつ半導体装置の薄型化につながる構造を有している。また、本実施態様においては、前記絶縁体層の第2面62bが、前記半導体層の第2面64bよりも前記ショットキー電極に近い位置にあるため、より耐圧性に優れた半導体装置を得ることができる。本実施態様において、前記半導体層64は、例えば、n-型半導体層であり、半導体装置100は、さらに、n-型半導体層64の第2面64bに接触して配置されたn+型半導体層61と、n+型半導体層61に接触して配置された第2の電極66(ここではオーミック電極)を有している。本発明の実施態様における半導体装置は、縦型のショットキーバリアダイオード(SBD)である。なお、「整流接合界面」とは、整流作用を有する接合界面であれば、特に限定されない。本発明の実施態様においては、前記整流接合が、ショットキー接合またはPN接合であるのが好ましい。
 また、本発明の実施態様における半導体装置の製造方法において、前記結晶層61上にマスクを配置して、端部に傾斜面を有する半導体層(例えば、n+型半導体層)をエピタキシャル成長させることもできる。前記n+半導体層上に、前記n+型半導体層の傾斜面に連続する傾斜面を有する半導体膜64(例えば、n-型半導体層)をエピタキシャル成長させれば、積層構造体の端部に正ベベル構造を有する半導体装置であるショットキーバリアダイオード(SBD)を容易に得ることができる。また、本発明の実施態様における製造方法によれば、例えば、図24で示すような半導体装置200を容易に得ることができる。半導体装置200は、第1面64aと、前記第1面64aの反対側で、前記第1面64aよりも面積の小さい第2面64bと、前記第1面64aと前記第2面64bとの間に位置する端部に傾斜面64cを有する第1の半導体膜として半導体膜64と、前記第1の半導体膜64の前記第1面64a上に配置された、第1の半導体膜64とは電気導電の異なる第2の半導体膜67とを少なくとも有している。前記第2の半導体膜67は、第1面67aと、前記第1の半導体膜64の第1面64aに接触して配置される第2面67bと、前記第1面67aと前記第2面67bとの間に位置する傾斜面67cとを有している。なお、前記第1の半導体膜64の第1面64aと前記傾斜面64cのなす傾斜角64eが、10°<傾斜角64e<90°の範囲にあるのが好ましく、傾斜角12eが70°以下であるのがより好ましく、20°以上70°以下であるのが最も好ましい。前記第2の半導体膜67の第1面67aと前記傾斜面67cのなす傾斜角67eは、前記第1の半導体膜64の第1面64aと前記傾斜面64cのなす傾斜角64eに等しい。前記第1の半導体膜64の傾斜面64cから前記第2の半導体膜67の傾斜面67cへと連続する傾斜面が形成され、複数の半導体層の端部(周端面を含む)に正ベベル構造を有する半導体装置を得ることもできる。なお、ここで「正ベベル構造」を有する半導体装置とは、半導体膜および/または2以上の半導体膜を含む積層構造体の端部での断面積が、空乏層が広がる側に向かって小さくなっていく構造をいう。また、整流接合界面と低不純物濃度層の端面とのなす角が鋭角となる構造を言う。例えば、半導体装置が、図23のような縦型のSBDの場合には、前記整流接合界面90は、ショットキー電極とn-半導体層との接合(ショットキー接合)界面となり、低不純物層の端面がn-半導体層の端面となる。この場合、ショットキー電極側からオーミック電極側に向かう方向に、前記ショットキー電極に平行な半導体膜の断面積が小さくなっていく構造を含む。半導体膜および/または2以上の半導体膜の積層構造体が逆円垂台のような形状となる場合も含む。また、図24のようなpn接合を含む半導体装置が「正ベベル構造」を有する場合には、前記整流接合界面90はpn接合界面となり、pn接合界面と低不純物層の端面との角度が90°未満のものをいい、本発明の実施態様においては、pn接合界面と低不純物層の端面との角度が20°以上70°以下の範囲にあるのが好ましい。本発明の実施態様の一つとして、半導体装置が、高不純物層となるp型半導体層と、p型半導体層上に積層された低不純物層となるn型半導体層を含んでいてもよい。また、本発明の別の実施態様として、半導体装置が、高不純物層となるn型半導体層と、n型半導体層上に積層された低不純物層となるp型半導体層を含んでいてもよい。
As one of the embodiments of the present invention, FIG. 1 schematically shows a part of one aspect of a mask arranged on the surface of the substrate 11. Specifically, as shown in FIG. 3A, a mask layer is formed as a mask 12 on the first surface 11a of the substrate 11. The mask material can be formed of a material having higher electrical insulation than the semiconductor film, and for example, the mask material is preferably a semi-insulator material or an insulator material. Examples of the semi-insulating material include polysilicon (polycrystalline silicon), amorphous silicon, diamond-like carbon (DLC) and an undoped crystal layer, magnesium (Mg), ruthenium (Ru), and iron (Fe). , Crystal layers containing semi-insulating dopants such as berylium (Be), cesium (Cs), strontium (Sr), barium (Ba) and the like. Examples of the insulator material include silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon (Si), germanium (Ge), titanium (Ti), zirconium (Zr), and Hf (Huff II). Oxides such as um), Ta (tantal) and tin (Sn), nitrides or carbides and the like can be mentioned. In the embodiment of the present invention, it is more preferable that the mask layer is made of an insulator. The substrate 11 has a first surface 11a and a second surface 11b on the opposite side of the first surface 11a. A mask layer 12 (hereinafter, also referred to as a mask and / or a first mask) is formed on the first surface 11a of the substrate 11, and for example, a resist layer is arranged on at least a part of the mask layer 12, and an etching gas and / or Alternatively, by etching the mask layer 12 with an etching solution, as shown in FIG. 3B, an annular inclined surface 12c can be formed on the side surface of the opening 12d of the mask layer. In the embodiment of the present invention, the etching may be dry etching or wet etching, but isotropic etching is preferable because an inclined surface is formed on the mask layer. Further, as another embodiment of the present invention, anisotropic etching and isotropic etching may be combined. For example, the mask layer may be provided with an opening by anisotropic etching, and isotropic etching may be additionally performed to adjust the inclination angle of the inclined surface. FIG. 3B shows, for example, a cross section of the portion IIIb-IIIb of FIG. The opening 12d of the mask 12 penetrates from the first surface 12a of the mask 12 to the second surface 12b on the opposite side, and the second surface of the mask 12 is more than the first surface 12a of the mask 12. 12b is located near the first surface 11a of the substrate 11. Compared with processing such as grinding of a semiconductor film, the thick film formation and processing of the mask layer can be easily performed in a short time, and it is also easy to obtain a smooth inclined surface on the mask. Since the mask having an inclined surface in the embodiment of the present invention is used for one purpose of forming a bevel structure at the end of the semiconductor film and / or the laminated structure, the thickness is the same as the thickness of the semiconductor film. It has a thicker thickness. Therefore, the thickness of the mask on which the inclined surface is formed is preferably at least 1 μm or more, and preferably 1 μm or more and 100 μm or less. As yet another embodiment, a mask layer is formed as the mask 12 on the first surface 11a of the substrate 11, an opening 12d having the inclined surface 12c is formed, and then as shown in FIG. 3 (c). In addition, using the mask 12 as the first mask, a convex second mask 12'that has a height of less than half the height of the first mask and a surface area smaller than the size of the opening is placed in the opening 12d. It can also be arranged on the first surface 11a of the substrate 11 of the above. In this way, the semiconductor film 14 is epitaxially grown from the first surface 11a of the substrate 11 onto the second mask 12'including the lateral growth, and further laterally on the inclined surface 12c of the first mask 12. By epitaxially growing the semiconductor film 14 including growth, it is also possible to obtain a semiconductor film 14 having an inclined surface at an end portion and having less dislocations. Since the inclined surface can be formed in an annular shape at the peripheral end of the semiconductor film, a semiconductor device having a bevel structure can be easily manufactured. In the embodiment of the present invention, the shape of the opening 12d is preferably a shape having no corners in a plan view. As shown in FIG. 2, the shape of the opening 12d may be a square with rounded corners in a plan view. In this embodiment, the opening 12d of the mask 12 is circular in a plan view, and the side surface of the mask 12 in the opening 12d is toward the first surface 11a of the substrate 11 in a plan view. The inclined surface 12c is inclined in a direction approaching the center of the opening 12d. In the cross-sectional view of the opening 12d, the inclined surface 12c of the mask 12 has a tapered shape in which the thickness decreases from the first surface of the mask toward the second surface of the mask. The first surface 12a of the mask 12 and the second surface 12b are parallel to each other, and the second surface 12b of the mask 12 has a larger area than the first surface 12a of the mask 12. By growing the semiconductor film 14 on the substrate 11 on which the mask 12 having the inclined surface 12c is arranged, the semiconductor film 14 having an annular inclined surface at the peripheral end is formed, for example, in a circular shape in a plan view. can do. According to the manufacturing method according to the embodiment of the present invention, for example, the semiconductor device 100 as shown in FIG. 23 can be easily obtained. The semiconductor device 100 includes a first surface 64a, a second surface 64b located on the opposite side of the first surface 64a, a side surface located between the first surface 64a and the second surface 64b, and the side surface. 64c, a first region 64f located adjacent to the inclined surface 64c, and a position distant from the inclined surface 64c in a plan view from the first region 64f. It has a semiconductor film 64 including two regions of 64 g. The first region 64f is located near the side surface of the semiconductor film 64, and the second region 64g is located at a position including the central portion of the semiconductor film 64. In the present embodiment, the first region 64f near the end of the semiconductor film where the electric field tends to concentrate contains crystals grown in the lateral direction, and the dislocation density of the first region 64f is the first. Since it is lower than the dislocation density of 64 g in two regions, it leads to improvement of semiconductor characteristics. It has a semiconductor layer 64 and a non-conductive layer 62 in which at least a part of the side surface of the semiconductor layer 64 is in contact with each other. The non-conductive layer 62 is preferably an insulator layer, the side surface of the insulator layer 62 has a first inclined surface 62c, and the side surface of the semiconductor layer 64 has the first inclined surface 62c. It has a second inclined surface 64c inclined in the opposite direction to the above, and the first inclined surface 62c of the insulator layer 62 and the second inclined surface 64c of the semiconductor layer 64 are engaged with each other. .. The first inclined surface 62c of the insulator layer 62 and the second inclined surface 64c of the semiconductor layer 64 are in close contact with each other. In this embodiment, the angle formed by the first surface 64a of the semiconductor layer 64 and the inclined surface 64c of the semiconductor layer 64 is less than 90 °. That is, the inclined surface 64c of the semiconductor layer 64 is an inclined surface whose film thickness increases in the direction from the first surface 64a of the semiconductor layer toward the second surface 64b. Further, the semiconductor device 100 in the present embodiment has a rectifying junction interface 90, and has a first electrode 65 (here, a Schottky electrode) bonded to the semiconductor film 64 at the rectifying junction interface 90. The first electrode 65 is arranged on the first surface 64a of the semiconductor layer 64 and the first surface 62a of the insulator layer 62. The end portion 65c (also referred to as a terminal portion) of the Schottky electrode 65 is located on the insulator layer 62. With the above structure, the leak current can be suppressed in the positive bevel structure, and the electric field concentration at the terminal portion of the Schottky electrode can be effectively suppressed. Further, in the present embodiment, the second surface 64b of the semiconductor layer 64 and the second surface 62b of the insulator layer 62 are flush with each other. Further, the first surface 64a of the semiconductor layer 64 and the first surface 62a of the insulator layer 62 are flush with each other, and the Schottky electrode 65 can be arranged on a flat surface, so that the Schottky electrode can be arranged. It has a structure that suppresses electric field concentration at the end of the semiconductor device and leads to a thinner semiconductor device. Further, in the present embodiment, since the second surface 62b of the insulator layer is located closer to the Schottky electrode than the second surface 64b of the semiconductor layer, a semiconductor device having higher pressure resistance can be obtained. be able to. In the present embodiment, the semiconductor layer 64 is, for example, an n-type semiconductor layer, and the semiconductor device 100 is further arranged in contact with the second surface 64b of the n-type semiconductor layer 64. It has a 61 and a second electrode 66 (here, an ohmic electrode) arranged in contact with the n + type semiconductor layer 61. The semiconductor device in the embodiment of the present invention is a vertical Schottky barrier diode (SBD). The "rectifying interface" is not particularly limited as long as it is a bonding interface having a rectifying action. In the embodiment of the present invention, the rectifying junction is preferably a Schottky junction or a PN junction.
Further, in the method for manufacturing a semiconductor device according to the embodiment of the present invention, a mask may be placed on the crystal layer 61 to epitaxially grow a semiconductor layer having an inclined surface at an end (for example, an n + type semiconductor layer). .. If a semiconductor film 64 (for example, an n-type semiconductor layer) having an inclined surface continuous with the inclined surface of the n + type semiconductor layer is epitaxially grown on the n + semiconductor layer, a positive bevel structure is formed at the end of the laminated structure. A Schottky barrier diode (SBD), which is a semiconductor device having the above, can be easily obtained. Further, according to the manufacturing method according to the embodiment of the present invention, for example, the semiconductor device 200 as shown in FIG. 24 can be easily obtained. The semiconductor device 200 includes a first surface 64a, a second surface 64b on the opposite side of the first surface 64a and a smaller area than the first surface 64a, and the first surface 64a and the second surface 64b. The semiconductor film 64 as a first semiconductor film having an inclined surface 64c at an end located between the semiconductor film 64 and the first semiconductor film 64 arranged on the first surface 64a of the first semiconductor film 64 It has at least a second semiconductor film 67 having different electrical conductivity. The second semiconductor film 67 has a first surface 67a, a second surface 67b arranged in contact with the first surface 64a of the first semiconductor film 64, the first surface 67a, and the second surface. It has an inclined surface 67c located between it and 67b. The inclination angle 64e formed by the first surface 64a of the first semiconductor film 64 and the inclined surface 64c is preferably in the range of 10 ° <inclination angle 64e <90 °, and the inclination angle 12e is 70 ° or less. Is more preferable, and most preferably 20 ° or more and 70 ° or less. The inclination angle 67e formed by the first surface 67a of the second semiconductor film 67 and the inclined surface 67c is equal to the inclination angle 64e formed by the first surface 64a of the first semiconductor film 64 and the inclined surface 64c. A continuous inclined surface is formed from the inclined surface 64c of the first semiconductor film 64 to the inclined surface 67c of the second semiconductor film 67, and a positive bevel structure is formed at the end portions (including the peripheral end surface) of the plurality of semiconductor layers. It is also possible to obtain a semiconductor device having the above. Here, in the semiconductor device having the "positive bevel structure", the cross-sectional area at the end of the semiconductor film and / or the laminated structure including two or more semiconductor films becomes smaller toward the side where the depletion layer spreads. It refers to the structure that goes on. Further, it refers to a structure in which the angle formed by the rectifying junction interface and the end face of the low impurity concentration layer is an acute angle. For example, when the semiconductor device is a vertical SBD as shown in FIG. 23, the rectifying junction interface 90 serves as a junction (Schottky junction) interface between the Schottky electrode and the n-semiconductor layer, and is a low impurity layer. The end face becomes the end face of the n-semiconductor layer. In this case, the structure includes a structure in which the cross-sectional area of the semiconductor film parallel to the Schottky electrode becomes smaller in the direction from the Schottky electrode side to the ohmic electrode side. This also includes the case where the semiconductor film and / or the laminated structure of two or more semiconductor films has a shape like an inverted circular stand. Further, when the semiconductor device including the pn junction as shown in FIG. 24 has a "positive bevel structure", the rectified junction interface 90 becomes a pn junction interface, and the angle between the pn junction interface and the end face of the low impurity layer is 90. In the embodiment of the present invention, the angle between the pn junction interface and the end face of the low impurity layer is preferably in the range of 20 ° or more and 70 ° or less. As one of the embodiments of the present invention, the semiconductor device may include a p-type semiconductor layer as a high impurity layer and an n-type semiconductor layer as a low impurity layer laminated on the p-type semiconductor layer. Further, as another embodiment of the present invention, the semiconductor device may include an n-type semiconductor layer as a high impurity layer and a p-type semiconductor layer as a low impurity layer laminated on the n-type semiconductor layer. ..
 また、前記マスク12は、図23で示す半導体装置100の絶縁体層62として用いることもできる。なお、適宜マスク12の厚みを設定することが可能であり、半導体膜(層)内に少なくとも一部を埋設するように絶縁体層として配置することができることから、マスク12を半導体装置のフィールド絶縁膜として用いることもできる。また、別の実施態様として、マスク12の厚みを半導体膜と同じか、半導体膜の厚みよりも大きくすることで、半導体膜の端部の少なくとも一部に傾斜面を形成することができる。2以上の半導体膜の積層構造体の端部の少なくとも一部に傾斜面を形成する場合には、マスク12の厚みは、積層構造体と同じか、積層構造体の厚みよりも大きくすることで、前記積層構造体の端部の少なくとも一部に傾斜面を形成することができる。本発明の実施態様によれば、ベベル構造を容易に形成できるだけでなく、フィールド絶縁膜の形成も容易に行うことができる。なお、前記傾斜面64cは、前記第1面64aと前記第2面64bとの間に位置する端部の少なくとも一部に設けられていてもよいが、本実施態様においては、端部全体、すなわち半導体膜64の周端部全体に傾斜面64cがあるのが好ましい。前記半導体膜64の第1面64a側にショットキー電極を配置すれば、前記第1面64aと前記傾斜面64cのなす傾斜角が90°未満の正ベベル構造を有するショットキーバリアダイオードを得ることができる。また、本実施態様においては、前記半導体膜64の第1面64aと、前記傾斜面64cのなす傾斜角64eが、10°<傾斜角64e<90°の範囲にあるのが好ましく、傾斜角64eが70°以下であるのがより好ましく、20°以上70°以下であるのが最も好ましい。 Further, the mask 12 can also be used as the insulator layer 62 of the semiconductor device 100 shown in FIG. 23. Since the thickness of the mask 12 can be appropriately set and can be arranged as an insulator layer so as to embed at least a part of the mask 12 in the semiconductor film (layer), the mask 12 can be field-insulated in the semiconductor device. It can also be used as a film. Further, as another embodiment, by making the thickness of the mask 12 the same as that of the semiconductor film or larger than the thickness of the semiconductor film, an inclined surface can be formed at least a part of the end portion of the semiconductor film. When an inclined surface is formed on at least a part of the end portion of the laminated structure of two or more semiconductor films, the thickness of the mask 12 may be the same as or larger than the thickness of the laminated structure. , An inclined surface can be formed on at least a part of the end portion of the laminated structure. According to the embodiment of the present invention, not only the bevel structure can be easily formed, but also the field insulating film can be easily formed. The inclined surface 64c may be provided on at least a part of an end portion located between the first surface 64a and the second surface 64b, but in the present embodiment, the entire end portion may be provided. That is, it is preferable that the inclined surface 64c is provided on the entire peripheral end portion of the semiconductor film 64. By arranging the Schottky electrode on the first surface 64a side of the semiconductor film 64, a Schottky barrier diode having a positive bevel structure in which the inclination angle formed by the first surface 64a and the inclined surface 64c is less than 90 ° can be obtained. Can be done. Further, in the present embodiment, the inclination angle 64e formed by the first surface 64a of the semiconductor film 64 and the inclined surface 64c is preferably in the range of 10 ° <inclined angle 64e <90 °, and the inclined angle 64e. Is more preferably 70 ° or less, and most preferably 20 ° or more and 70 ° or less.
 図4は、図3で示されるマスクの開口部の断面を模式的に示す図である。基体11の第1面11a上に配置されたマスク12の開口部12dにおいて、基体11の第1面11aに接しているマスク12の第2面12bと傾斜面12cとのなす角12e(マスクの傾斜角)を10°<傾斜12e<90°の範囲とする。また、本実施態様においては、前記マスク12の第2面12bと、前記傾斜面12cのなす傾斜角12eが、10°<傾斜角64e<90°の範囲にあるのが好ましく、傾斜角12eが70°以下であるのがより好ましく、20°以上70°以下であるのが最も好ましい。図6で示すように、傾斜面12cを有するマスク12が配置された基体11上に、半導体膜14を成長させることにより、第1面14aと、第1面14aよりも面積の小さい第2面14bと、第1面14aと第2面14bとの間に傾斜面14cを有する半導体膜14を形成することができ、半導体膜14の第1面14aと第2面14bとは互いに平行な平行面とすることができる。本発明の実施態様においては、マスクは半導体膜14よりも電気絶縁性の高い材料で形成することができる。例えば、マスク材料として、二酸化ケイ素(SiO)や窒化ケイ素(Si)などの絶縁体を用いることができる。また、図4に示すように、マスク12の第1面12aおよび傾斜面12c上に保護膜13を配置してもよい。保護膜13を配置することで、マスク材料に含まれるシリコン等の不純物拡散防止が期待できる。 FIG. 4 is a diagram schematically showing a cross section of the opening of the mask shown in FIG. In the opening 12d of the mask 12 arranged on the first surface 11a of the substrate 11, the angle 12e (of the mask) formed by the second surface 12b of the mask 12 in contact with the first surface 11a of the substrate 11 and the inclined surface 12c. The tilt angle) is in the range of 10 ° <tilt 12e <90 °. Further, in the present embodiment, the inclination angle 12e formed by the second surface 12b of the mask 12 and the inclined surface 12c is preferably in the range of 10 ° <inclined angle 64e <90 °, and the inclined angle 12e is set. It is more preferably 70 ° or less, and most preferably 20 ° or more and 70 ° or less. As shown in FIG. 6, by growing the semiconductor film 14 on the substrate 11 on which the mask 12 having the inclined surface 12c is arranged, the first surface 14a and the second surface having a smaller area than the first surface 14a are formed. A semiconductor film 14 having an inclined surface 14c can be formed between the 14b and the first surface 14a and the second surface 14b, and the first surface 14a and the second surface 14b of the semiconductor film 14 are parallel to each other and parallel to each other. Can be a face. In the embodiment of the present invention, the mask can be formed of a material having higher electrical insulation than the semiconductor film 14. For example, as a mask material, an insulator such as silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) can be used. Further, as shown in FIG. 4, the protective film 13 may be arranged on the first surface 12a and the inclined surface 12c of the mask 12. By arranging the protective film 13, it can be expected to prevent the diffusion of impurities such as silicon contained in the mask material.
 なお、前記半導体膜14は、図6で示すように、半導体膜14の第1面14aが、マスク12の第1面12aよりも低い位置に形成することができる。
 前記半導体膜が第1面14aと、前記第1面14aの反対側の第2面14bと、前記第1面14aと前記第2面14bとの間に位置する傾斜面14cとを有し、前記マスク12が第1面12aと、前記第1面12aの反対側の第2面12bと、前記第1面12aと第2面12bとの間に位置する傾斜面12cを含む側面と、を有しており、さらに、前記半導体膜14の第1面14aを、前記マスク12の第1面12aよりも低い位置に形成することができる。なお、図7で示すように、前記半導体膜14をn-型半導体としてエピタキシャル成長した後に、前記半導体膜14の第1面14a上に、p型半導体膜9をエピタキシャル成長させることもできる。前記p型半導体膜9の第1面9aと、前記マスク12の第1面12aを同じ高さになるように、前記p型半導体膜9を形成することもできる。このように、本発明の実施態様における製造方法によれば、図24で示すように、導電型の異なる半導体層の積層構造体の周端部において、ベベル構造を有する半導体装置を容易に形成することができる。また、本発明の実施態様によれば、通常、電界が集中する傾向にある半導体膜の端部にベベル構造を得ることができ、さらに半導体膜の中心部よりもベベル構造のある端部付近において、横方向成長でより転位の少ない半導体結晶が得られることから、半導体特性の向上につながる。なお、後述するが、基体11を準備する際に、基板1上に凸凹を設けてバッファ層などの結晶層を形成することで、横方向成長した結晶を含む基体を用いて半導体膜を形成することもできる。半導体膜の形成に2回以上の横方向成長を含む結晶形成の工程を組み込むことで、半導体膜の中心部においても、ベベル構造のある端部付近と同等に転位の少ない半導体膜を形成することができ、より絶縁破壊強度の高い半導体装置を得ることができる。
As shown in FIG. 6, the semiconductor film 14 can be formed at a position where the first surface 14a of the semiconductor film 14 is lower than the first surface 12a of the mask 12.
The semiconductor film has a first surface 14a, a second surface 14b opposite to the first surface 14a, and an inclined surface 14c located between the first surface 14a and the second surface 14b. The mask 12 has a first surface 12a, a second surface 12b opposite to the first surface 12a, and a side surface including an inclined surface 12c located between the first surface 12a and the second surface 12b. Further, the first surface 14a of the semiconductor film 14 can be formed at a position lower than the first surface 12a of the mask 12. As shown in FIG. 7, after the semiconductor film 14 is epitaxially grown as an n-type semiconductor, the p-type semiconductor film 9 can be epitaxially grown on the first surface 14a of the semiconductor film 14. The p-type semiconductor film 9 can also be formed so that the first surface 9a of the p-type semiconductor film 9 and the first surface 12a of the mask 12 have the same height. As described above, according to the manufacturing method according to the embodiment of the present invention, as shown in FIG. 24, a semiconductor device having a bevel structure is easily formed at the peripheral end of a laminated structure of semiconductor layers having different conductive types. be able to. Further, according to the embodiment of the present invention, a bevel structure can be usually obtained at the end of the semiconductor film where the electric field tends to concentrate, and further, in the vicinity of the end having the bevel structure rather than the center of the semiconductor film. Since a semiconductor crystal with fewer dislocations can be obtained by lateral growth, it leads to improvement of semiconductor characteristics. As will be described later, when the substrate 11 is prepared, the substrate 1 is provided with irregularities to form a crystal layer such as a buffer layer, whereby a semiconductor film is formed using the substrate containing the crystals grown in the lateral direction. You can also do it. By incorporating a crystal forming step including two or more lateral growths into the formation of the semiconductor film, a semiconductor film having as few dislocations as the vicinity of the end having a bevel structure can be formed even in the center of the semiconductor film. It is possible to obtain a semiconductor device having higher dielectric breakdown strength.
 また、本発明の別の実施態様として、前記半導体膜14は、図11で示すように、半導体膜14の第1面14aとマスク12の第1面12aが同じ高さ位置になるように形成することもできる。前記半導体膜14が第1面14aと、前記第1面14aの反対側の第2面14bと、前記第1面14aと第2面14bとの間に位置する端部とを有し、前記マスク12が第1面12aと、前記第1面12aの反対側の第2面12bと、前記第1面12aと第2面12bとの間に位置する前記傾斜面12cを含む側面と、を有している。本実施態様において、前記半導体膜14の前記傾斜面14aと逆向きの前記マスク12の傾斜面12cが係合しており、前記半導体膜14の第1面14aと前記絶縁体のマスク12の第1面12aとが面一になっている。前記半導体膜14をエピタキシャル成長させた後に、例えばCMP(化学的機械研磨)等により、前記半導体膜14の第1面14aおよび/または前記マスク14の前記第1面14aを研磨して面一にしてもよい。
本実施態態様においては、前記半導体膜14aと前記マスク12の傾斜面が密着している。この場合、図11で示すように、前記半導体膜14の第1面14aの少なくとも一部と前記マスク12の第1面12aの少なくとも一部を覆って電極15を形成するが、前記半導体膜14の第1面14aと前記マスク12の第1面12aからなる平坦面上に電極15を形成することができ、電極の形成が容易になるだけでなく、半導体膜の端部にベベル構造を有しながら、半導体装置の平坦化、薄型化が可能となる。なお、電極の端部15cを、半導体膜よりも電気絶縁性の高いマスク12上に位置するように形成することで、電極端部の電界集中を避けることができる。
Further, as another embodiment of the present invention, the semiconductor film 14 is formed so that the first surface 14a of the semiconductor film 14 and the first surface 12a of the mask 12 are at the same height position as shown in FIG. You can also do it. The semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an end portion located between the first surface 14a and the second surface 14b. The mask 12 has a first surface 12a, a second surface 12b opposite the first surface 12a, and a side surface including the inclined surface 12c located between the first surface 12a and the second surface 12b. Have. In the present embodiment, the inclined surface 14a of the semiconductor film 14 and the inclined surface 12c of the mask 12 in the opposite direction are engaged with each other, and the first surface 14a of the semiconductor film 14 and the mask 12 of the insulator are the first. One surface 12a is flush with each other. After the semiconductor film 14 is epitaxially grown, the first surface 14a of the semiconductor film 14 and / or the first surface 14a of the mask 14 is polished to be flush with each other by, for example, CMP (chemical mechanical polishing) or the like. May be good.
In this embodiment, the semiconductor film 14a and the inclined surface of the mask 12 are in close contact with each other. In this case, as shown in FIG. 11, the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the semiconductor film 14 is formed. The electrode 15 can be formed on a flat surface composed of the first surface 14a of the above and the first surface 12a of the mask 12, which not only facilitates the formation of the electrode but also has a bevel structure at the end of the semiconductor film. At the same time, the semiconductor device can be flattened and thinned. By forming the end portion 15c of the electrode so as to be located on the mask 12 having higher electrical insulation than the semiconductor film, it is possible to avoid electric field concentration at the end portion of the electrode.
 さらに、図12で示すように、半導体膜14の第1面14aをマスク12の第1面12aよりも高い位置になるように形成することもできる。前記半導体膜14が第1面14aと、前記第1面14aの反対側の第2面14bと、前記第1面14aと前記第2面14bとの間に位置する端部に傾斜面14cとを有し、前記マスク12が第1面12aと、前記第1面12aの反対側で、前記基体11の第1面11aと接触する第2面12bと、前記第1面12aと前記第2面12bとの間に位置する前記傾斜面12cを含む側面と、を有しており、さらに、前記半導体膜14の前記第1面14aが前記マスク12の前記第1面12aよりも低い位置になるように形成されている。本実施態様において、前記半導体膜14の環状の前記傾斜面14aと逆向きの前記マスク12の環状の傾斜面12cが係合している。本実施態態様においては、前記半導体膜14aと前記マスク12の傾斜面が密着している。さらに、図12で示すように、前記半導体膜14の第1面14aの少なくとも一部と前記マスク12の第1面12aの少なくとも一部を覆って電極15を形成するが、前記電極15の端部15cを、前記半導体膜14よりも電気絶縁性の高いマスク12上に位置するように形成することで、電極端部の電界集中を避けることができる。本実施態様においては、図12で示すように、前記電極15は、半導体膜14の第1面14aから端部の傾斜面14cを越えて形成されており、前記電極15の端部15cは、マスク12の第1面12a上に位置している。 Further, as shown in FIG. 12, the first surface 14a of the semiconductor film 14 can be formed so as to be at a position higher than the first surface 12a of the mask 12. The semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an inclined surface 14c at an end located between the first surface 14a and the second surface 14b. The mask 12 has a first surface 12a, a second surface 12b that contacts the first surface 11a of the substrate 11 on the opposite side of the first surface 12a, and the first surface 12a and the second surface. It has a side surface including the inclined surface 12c located between the surface 12b, and further, the first surface 14a of the semiconductor film 14 is located at a position lower than the first surface 12a of the mask 12. It is formed to be. In this embodiment, the annular inclined surface 14a of the semiconductor film 14 and the annular inclined surface 12c of the mask 12 in the opposite direction are engaged with each other. In this embodiment, the semiconductor film 14a and the inclined surface of the mask 12 are in close contact with each other. Further, as shown in FIG. 12, the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the end of the electrode 15 is formed. By forming the portion 15c so as to be located on the mask 12 having higher electrical insulation than the semiconductor film 14, it is possible to avoid electric field concentration at the electrode end portion. In the present embodiment, as shown in FIG. 12, the electrode 15 is formed from the first surface 14a of the semiconductor film 14 beyond the inclined surface 14c at the end, and the end 15c of the electrode 15 is formed. It is located on the first surface 12a of the mask 12.
 さらに、図13で示すように、半導体膜14の第1面14aをマスク12の第1面12aよりも低い位置になるように形成することもできる。前記半導体膜14が第1面14aと、前記第1面14aの反対側の第2面14bと、前記第1面14aと前記第2面14bとの間に位置する端部に傾斜面14cとを有し、前記マスク12が第1面12aと、前記第1面12aの反対側で、前記基体11の第1面11aと接触する第2面12bと、前記第1面12aと前記第2面12bとの間に位置する前記傾斜面12cを含む側面と、を有しており、さらに、前記半導体膜14の前記第1面14aを、前記マスク12の前記第1面12aよりも高い位置になるように形成されている。本実施態様において、前記半導体膜14の環状の前記傾斜面14aと逆向きの前記マスク12の環状の傾斜面12cが係合しており、前記半導体膜14aの前記傾斜面14aと前記マスク12の傾斜面12cが、前記マスク12上に配置された保護膜13を介して密着している。さらに、図13で示すように、前記半導体膜14の第1面14aの少なくとも一部と前記マスク12の第1面12aの少なくとも一部を覆って電極15を形成するが、前記電極15の端部15cを、前記半導体膜14よりも電気絶縁性の高いマスク12上に位置するように形成することで、電極端部の電界集中を避けることができる。 Further, as shown in FIG. 13, the first surface 14a of the semiconductor film 14 can be formed so as to be at a position lower than the first surface 12a of the mask 12. The semiconductor film 14 has a first surface 14a, a second surface 14b on the opposite side of the first surface 14a, and an inclined surface 14c at an end located between the first surface 14a and the second surface 14b. The mask 12 has a first surface 12a, a second surface 12b that contacts the first surface 11a of the substrate 11 on the opposite side of the first surface 12a, and the first surface 12a and the second surface. It has a side surface including the inclined surface 12c located between the surface 12b, and further, the first surface 14a of the semiconductor film 14 is located higher than the first surface 12a of the mask 12. It is formed to be. In the present embodiment, the annular inclined surface 14a of the semiconductor film 14 and the annular inclined surface 12c of the mask 12 in the opposite direction are engaged with each other, and the inclined surface 14a of the semiconductor film 14a and the mask 12 are engaged with each other. The inclined surface 12c is in close contact with the protective film 13 arranged on the mask 12. Further, as shown in FIG. 13, the electrode 15 is formed by covering at least a part of the first surface 14a of the semiconductor film 14 and at least a part of the first surface 12a of the mask 12, but the end of the electrode 15 is formed. By forming the portion 15c so as to be located on the mask 12 having higher electrical insulation than the semiconductor film 14, it is possible to avoid electric field concentration at the electrode end portion.
 図25は、比較例として、ベベル構造なし半導体装置で、第1の電極の終端が半導体膜上に位置する半導体装置(a)と、本発明の実施態様で得られるベベル構造ありの半導体装置で、第1の電極85の終端が絶縁体82上に位置する半導体装置(b)~(d)の電界分布を線図で示す。半導体装置(b)は、本発明の実施態様の一つとして図11で示すようなベベル構造ありの半導体装置で、半導体膜84の端部にベベル構造を有している。半導体装置(b)の半導体膜84の第1面および絶縁体82の第1面は面一となっており、面一な半導体膜84の第1面と絶縁体82の第1面上に配置された第1の電極85の終端が絶縁体82上に位置している。また、第1の電極85の反対側に、第2の電極86が配置されている。半導体装置(c)は、本発明の実施態様の一つとして図12に示すようなベベル構造ありの半導体装置で、半導体膜の端部にベベル構造を有している。半導体装置(c)の半導体膜84の第1面は、絶縁体82の第1面よりも高い位置にあり、第1の電極85が、半導体膜84の第1面から端部の傾斜面を越えて形成されており、第1の電極85の端部は、絶縁体82の第1面上に位置している。半導体装置(d)は、本発明の実施態様の一つとして図13に示すようなベベル構造ありの半導体装置で、半導体膜の端部にベベル構造を有している。半導体装置(d)の半導体膜84の第1面は、絶縁体92の第1面よりも低い位置にあり、第1の電極85が、半導体膜84の第1面から端部の傾斜面を越えて形成されており、第1の電極85の端部は、絶縁体82の第1面上に位置している。ベベル構造なしの半導体装置(a)では、半導体膜84上に位置する電極85の端部で、電界が集中しているが、ベベル構造ありの半導体装置(b)~(d)では、電界の集中はみられなかった。図26は、本発明の実施態様で得られるベベル構造ありの半導体装置で、図25で示されるベベル構造ありの半導体装置(b)~(d)、および図25で示される、比較例(a)のベベル構造なしの半導体装置と、それぞれの半導体装置の第1の電極下10nm(半導体膜の表面近傍)の電界強度分布を示す。本発明の実施態様で得られるベベル構造を有する半導体の表面近傍、すなわち、半導体と電極との整流接合界面で絶縁破壊が生じにくい構造となることが分かった。また、図24で示されるような半導体装置においても、半導体のpn接合の端部表面をベベル構造とすることで、同様に半導体のpn接合の端部付近、すなわち半導体の表面で絶縁破壊が生じにくい構造が得られることが分かった。 FIG. 25 shows, as a comparative example, a semiconductor device without a bevel structure, a semiconductor device (a) in which the end of the first electrode is located on the semiconductor film, and a semiconductor device with a bevel structure obtained by the embodiment of the present invention. , The electric field distributions of the semiconductor devices (b) to (d) in which the end of the first electrode 85 is located on the insulator 82 are shown graphically. The semiconductor device (b) is a semiconductor device having a bevel structure as shown in FIG. 11 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film 84. The first surface of the semiconductor film 84 and the first surface of the insulator 82 of the semiconductor device (b) are flush with each other, and are arranged on the first surface of the flush semiconductor film 84 and the first surface of the insulator 82. The end of the first electrode 85 is located on the insulator 82. Further, a second electrode 86 is arranged on the opposite side of the first electrode 85. The semiconductor device (c) is a semiconductor device having a bevel structure as shown in FIG. 12 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film. The first surface of the semiconductor film 84 of the semiconductor device (c) is located higher than the first surface of the insulator 82, and the first electrode 85 forms an inclined surface at the end from the first surface of the semiconductor film 84. It is formed beyond and the end of the first electrode 85 is located on the first surface of the insulator 82. The semiconductor device (d) is a semiconductor device having a bevel structure as shown in FIG. 13 as one of the embodiments of the present invention, and has a bevel structure at the end of the semiconductor film. The first surface of the semiconductor film 84 of the semiconductor device (d) is located at a position lower than the first surface of the insulator 92, and the first electrode 85 forms an inclined surface at the end from the first surface of the semiconductor film 84. It is formed beyond and the end of the first electrode 85 is located on the first surface of the insulator 82. In the semiconductor device (a) without the bevel structure, the electric field is concentrated at the end of the electrode 85 located on the semiconductor film 84, but in the semiconductor devices (b) to (d) with the bevel structure, the electric field is concentrated. No concentration was seen. FIG. 26 is a semiconductor device having a bevel structure obtained by an embodiment of the present invention, and is a semiconductor device (b) to (d) having a bevel structure shown in FIG. 25, and a comparative example (a) shown in FIG. 25. ), And the electric field strength distribution of 10 nm below the first electrode (near the surface of the semiconductor film) of each semiconductor device. It has been found that the structure is such that dielectric breakdown is unlikely to occur near the surface of the semiconductor having the bevel structure obtained in the embodiment of the present invention, that is, at the rectifying junction interface between the semiconductor and the electrode. Further, also in the semiconductor device as shown in FIG. 24, by forming the end surface of the pn junction of the semiconductor into a bevel structure, dielectric breakdown occurs in the vicinity of the end of the pn junction of the semiconductor, that is, on the surface of the semiconductor. It was found that a difficult structure can be obtained.
 さらに、本発明の別の実施態様として、前記半導体膜14は、図8で示すように、半導体膜14の第1面14aがマスク12の第1面12aよりも高い位置になるように形成することもできる。マスク12の厚みは適宜設定が可能であるため、本発明の実施態様によれば、ベベル構造を有する半導体膜の厚さも適宜設定が可能であり、またマスク12の開口部12d内に、端部に連続するベベル構造を有する複数の半導体層を有する積層構造体を得ることも容易である。さらに、図26では、図13で示される半導体装置と同様に、半導体膜84がベベル構造を有し、半導体膜の第1面84aが絶縁体82の第1面82aより高い半導体装置(c)と、図12で示される半導体装置と同様に、半導体膜84がベベル構造を有し、半導体膜84の第1面84aが絶縁体82の第1面82aより低い半導体装置(d)を追加したシミュレーション結果を示す。半導体装置(c)および半導体装置(d)についても、半導体装置(b)と同様に半導体の表面で絶縁破壊が生じにくい構造であることが分かった。 Further, as another embodiment of the present invention, the semiconductor film 14 is formed so that the first surface 14a of the semiconductor film 14 is located higher than the first surface 12a of the mask 12, as shown in FIG. You can also do it. Since the thickness of the mask 12 can be appropriately set, according to the embodiment of the present invention, the thickness of the semiconductor film having a bevel structure can also be appropriately set, and the end portion within the opening 12d of the mask 12 can be appropriately set. It is also easy to obtain a laminated structure having a plurality of semiconductor layers having a continuous bevel structure. Further, in FIG. 26, similarly to the semiconductor device shown in FIG. 13, the semiconductor film 84 has a bevel structure, and the first surface 84a of the semiconductor film is higher than the first surface 82a of the insulator 82 (c). As with the semiconductor device shown in FIG. 12, a semiconductor device (d) is added in which the semiconductor film 84 has a bevel structure and the first surface 84a of the semiconductor film 84 is lower than the first surface 82a of the insulator 82. The simulation result is shown. It was found that the semiconductor device (c) and the semiconductor device (d) also have a structure in which dielectric breakdown does not easily occur on the surface of the semiconductor, similar to the semiconductor device (b).
 また、本発明の別の実施態様として、基体11を準備する際に、図17~22のいずれかで例示されるような基板を用いることができる。基体11が結晶膜を含む場合には、例えば、基板の表面に凹部または凸部からなる凹凸部が形成されているのも、より効率的に、より高品質な前記結晶膜を得ることができるため、好ましい。前記凹凸部は、凸部または凹部からなるものであれば特に限定されず、凸部からなる凹凸部であってもよいし、凹部からなる凹凸部であってもよいし、凸部および凹部からなる凹凸部であってもよい。また、前記凹凸部は、規則的な凸部または凹部から形成されていてもよいし、不規則な凸部または凹部から形成されていてもよい。本発明においては、前記凹凸部が周期的に形成されているのが好ましく、周期的かつ規則的にパターン化されているのがより好ましい。前記凹凸部の形状としては、特に限定されず、例えば、ストライプ状、ドット状、メッシュ状またはランダム状などが挙げられるが、本発明においては、ドット状またはストライプ状が好ましく、ドット状がより好ましい。また、凹凸部が周期的かつ規則的にパターン化されている場合には、前記凹凸部のパターン形状が、三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形状、円状、楕円状などの形状であるのが好ましい。なお、ドット状に凹凸部を形成する場合には、ドットの格子形状を、例えば正方格子、斜方格子、三角格子、六角格子などの格子形状にするのが好ましく、三角格子の格子形状にするのがより好ましい。前記凹凸部の凹部または凸部の断面形状としては、特に限定されないが、例えば、コの字型、U字型、逆U字型、波型、または三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形等が挙げられる。 Further, as another embodiment of the present invention, when preparing the substrate 11, a substrate as exemplified by any of FIGS. 17 to 22 can be used. When the substrate 11 contains a crystal film, for example, the uneven portion formed of concave portions or convex portions is formed on the surface of the substrate, so that the crystal film of higher quality can be obtained more efficiently. Therefore, it is preferable. The uneven portion is not particularly limited as long as it is composed of a convex portion or a concave portion, and may be an uneven portion composed of a convex portion, an uneven portion composed of a concave portion, or from the convex portion and the concave portion. It may be an uneven portion. Further, the uneven portion may be formed from a regular convex portion or a concave portion, or may be formed from an irregular convex portion or a concave portion. In the present invention, it is preferable that the uneven portion is formed periodically, and it is more preferable that the uneven portion is periodically and regularly patterned. The shape of the uneven portion is not particularly limited, and examples thereof include a striped shape, a dot shape, a mesh shape, and a random shape. In the present invention, the dot shape or the striped shape is preferable, and the dot shape is more preferable. .. Further, when the uneven portion is patterned periodically and regularly, the pattern shape of the uneven portion is a polygonal shape such as a triangle, a quadrangle (for example, a square, a rectangle or a trapezoid), a pentagon or a hexagon. The shape is preferably circular or elliptical. When forming the uneven portion in a dot shape, it is preferable that the grid shape of the dots is a grid shape such as a square lattice, an orthorhombic lattice, a triangular lattice, or a hexagonal lattice, and the lattice shape of the triangular lattice is used. Is more preferable. The cross-sectional shape of the concave portion or the convex portion of the uneven portion is not particularly limited, and is, for example, U-shaped, U-shaped, inverted U-shaped, corrugated, or triangular, quadrangular (for example, square, rectangular, trapezoidal, etc.). ), Polygons such as pentagons or hexagons, etc.
 前記凸部の構成材料は、特に限定されず、公知の材料であってよい。絶縁体材料であってもよいし、導電体材料であってもよいし、半導体材料であってもよい。また、前記構成材料は、非晶であってもよいし、単結晶であってもよいし、多結晶であってもよい。前記凸部の構成材料としては、例えば、Si、Ge、Ti、Zr、Hf、Ta、Sn等の酸化物、窒化物または炭化物、カーボン、ダイヤモンド、金属、これらの混合物などが挙げられる。より具体的には、SiO、SiNまたは多結晶シリコンを主成分として含むSi含有化合物、前記結晶性酸化物半導体の結晶成長温度よりも高い融点を有する金属(例えば、白金、金、銀、パラジウム、ロジウム、イリジウム、ルテニウムなどの貴金属等)などが挙げられる。なお、前記構成材料の含有量は、凸部中、組成比で、50%以上が好ましく、70%以上がより好ましく、90%以上が最も好ましい。 The constituent material of the convex portion is not particularly limited and may be a known material. It may be an insulator material, a conductor material, or a semiconductor material. Further, the constituent material may be amorphous, single crystal, or polycrystal. Examples of the constituent material of the convex portion include oxides such as Si, Ge, Ti, Zr, Hf, Ta, Sn, nitrides or carbides, carbon, diamond, metal, and mixtures thereof. More specifically, a Si-containing compound containing SiO 2 , SiN or polycrystalline silicon as a main component, and a metal having a melting point higher than the crystal growth temperature of the crystalline oxide semiconductor (for example, platinum, gold, silver, palladium). , Rhodium, iridium, ruthenium and other precious metals, etc.). The content of the constituent material is preferably 50% or more, more preferably 70% or more, and most preferably 90% or more in the convex portion in terms of composition ratio.
 前記凸部の形成手段としては、公知の手段であってよく、例えば、フォトリソグラフィー、電子ビームリソグラフィー、レーザーパターニング、その後のエッチング(例えばドライエッチングまたはウェットエッチング等)などの公知のパターニング加工手段などが挙げられる。本発明においては、前記凸部がストライプ状またはドット状であるのが好ましく、ドット状であるのがより好ましい。また、本発明においては、前記結晶基板が、PSS(Patterned  Sapphire  Substrate)基板であるのも好ましい。前記PSS基板のパターン形状は、特に限定されず、公知のパターン形状であってよい。前記パターン形状としては、例えば、円錐形、釣鐘形、ドーム形、半球形、正方形または三角形のピラミッド形等が挙げられるが、本発明においては、前記パターン形状が、円錐形であるのが好ましい。また、前記パターン形状のピッチ間隔も、特に限定されないが、本発明においては、5μm以下であるのが好ましく、1μm~3μmであるのがより好ましい。 The means for forming the convex portion may be a known means, for example, a known patterning processing means such as photolithography, electron beam lithography, laser patterning, and subsequent etching (for example, dry etching or wet etching). Can be mentioned. In the present invention, the convex portion is preferably striped or dot-shaped, and more preferably dot-shaped. Further, in the present invention, it is also preferable that the crystal substrate is a PSS (Patterned Sapphire Substrate) substrate. The pattern shape of the PSS substrate is not particularly limited and may be a known pattern shape. Examples of the pattern shape include a cone shape, a bell shape, a dome shape, a hemispherical shape, a square or a triangular pyramid shape, and the like, but in the present invention, the pattern shape is preferably a cone shape. The pitch interval of the pattern shape is also not particularly limited, but in the present invention, it is preferably 5 μm or less, and more preferably 1 μm to 3 μm.
 前記凹部は、特に限定されないが、上記凸部の構成材料と同様のものであってよいし、基板であってもよい。本発明においては、前記凹部が基板の表面上に設けられた空隙層であるのが好ましい。前記凹部の形成手段としては、前記の凸部の形成手段と同様の手段を用いることができる。前記空隙層は、公知の溝加工手段により、基板に溝を設けることで、前記基板の表面上に形成することができる。空隙層の溝幅、溝深さ、テラス幅等は、本発明の目的を阻害しない限り、特に限定されず、適宜に設定することができる。また、空隙層には、空気が含まれていてもよいし、不活性ガス等が含まれていてもよい。 The concave portion is not particularly limited, but may be the same as the constituent material of the convex portion, or may be a substrate. In the present invention, it is preferable that the recess is a void layer provided on the surface of the substrate. As the means for forming the concave portion, the same means as the means for forming the convex portion can be used. The void layer can be formed on the surface of the substrate by providing a groove on the substrate by a known groove processing means. The groove width, groove depth, terrace width, etc. of the void layer are not particularly limited and can be appropriately set as long as the object of the present invention is not impaired. Further, the void layer may contain air or may contain an inert gas or the like.
 以下、本発明の実施態様における基板の好ましい態様を、図面を用いて説明する。
 図17は、本発明の実施態様において、例えば、基板の表面上に設けられたドット状の凹凸部の一態様を示す。図17の凹凸部は、基板本体1と、基板の表面1aに設けられた複数の凸部2aとから形成されている。なお、基板を基体として用いる場合には、基板の第1面に設けた凸部を、図3(c)で示す第2のマスク12’として用いてもよい。この場合、第1のマスク12の開口部12d内に複数の凸部が配置されるのが好ましく、第2のマスク12’の凸部の高さは、マスクの開口部の高さの半分以下の厚みであるのが好ましい。複数の第2のマスク12’が一定間隔をあけて配置されるのも好ましい。図18は、天頂方向から見た図17に示す凹凸部の表面を示している。図17および図18からわかるように、前記凹凸部は、基板の表面1aの三角格子上に、円錐状の凸部2aが形成された構成となっている。前記凸部2aは、フォトリソグラフィー等の公知の加工手段により形成することができる。なお、前記三角格子の格子点は、それぞれ一定の周期aの間隔ごとに設けられている。周期aは、特に限定されないが、本発明においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましく、1μm~3μmであるのが最も好ましい。ここで、周期aは、隣接する凸部2aにおける高さのピーク位置(すなわち格子点)間の距離をいう。
Hereinafter, preferred embodiments of the substrate according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 17 shows, for example, one aspect of a dot-shaped uneven portion provided on the surface of a substrate in an embodiment of the present invention. The uneven portion of FIG. 17 is formed of a substrate main body 1 and a plurality of convex portions 2a provided on the surface 1a of the substrate. When the substrate is used as a substrate, the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C. In this case, it is preferable that a plurality of convex portions are arranged in the opening portion 12d of the first mask 12, and the height of the convex portions of the second mask 12'is less than half the height of the opening portion of the mask. It is preferably the thickness of. It is also preferable that a plurality of second masks 12'are arranged at regular intervals. FIG. 18 shows the surface of the uneven portion shown in FIG. 17 when viewed from the zenith direction. As can be seen from FIGS. 17 and 18, the uneven portion has a configuration in which a conical convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate. The convex portion 2a can be formed by a known processing means such as photolithography. The grid points of the triangular lattice are provided at regular intervals a. The period a is not particularly limited, but in the present invention, it is preferably 0.5 μm to 10 μm, more preferably 1 μm to 5 μm, and most preferably 1 μm to 3 μm. Here, the period a refers to the distance between the peak positions (that is, the grid points) of the heights in the adjacent convex portions 2a.
 図19は、本発明における基板の表面上に設けられたドット状の凹凸部の一態様を示し、図17とは別の態様を示している。図19の凹凸部は、基板本体1と、基板の表面1a上に設けられた凸部2aとから形成されている。図20は、天頂方向から見た図4に示す凹凸部の表面を示している。図19および図20からわかるように、前記凹凸部は、基板の表面1aの三角格子上に、三角錐状の凸部2aが形成された構成となっている。前記凸部2aは、フォトリソグラフィー等の公知の加工手段により形成することができる。なお、前記三角格子の格子点は、それぞれ一定の周期aの間隔ごとに設けられている。周期aは、特に限定されないが、本発明の実施態様においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましく、1μm~3μmであるのが最も好ましい。なお、基板を基体として用いる場合には、基板の第1面に設けた凸部を、図3(c)で示す第2のマスク12’として用いてもよい。この場合、第1のマスク12の開口部12d内に複数の凸部が配置されるのが好ましい。凸部の高さは、マスクの開口部の高さの半分以下の厚みで、一定間隔をあけて配置されるのも好ましい。 FIG. 19 shows one aspect of the dot-shaped uneven portion provided on the surface of the substrate in the present invention, and shows another aspect from FIG. The uneven portion of FIG. 19 is formed of a substrate main body 1 and a convex portion 2a provided on the surface 1a of the substrate. FIG. 20 shows the surface of the uneven portion shown in FIG. 4 as viewed from the zenith direction. As can be seen from FIGS. 19 and 20, the uneven portion has a configuration in which a triangular pyramid-shaped convex portion 2a is formed on a triangular lattice on the surface 1a of the substrate. The convex portion 2a can be formed by a known processing means such as photolithography. The grid points of the triangular lattice are provided at regular intervals a. The period a is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 μm to 10 μm, more preferably 1 μm to 5 μm, and most preferably 1 μm to 3 μm. When the substrate is used as a substrate, the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C. In this case, it is preferable that a plurality of convex portions are arranged in the opening portion 12d of the first mask 12. The height of the protrusions is not more than half the height of the opening of the mask, and it is also preferable that the protrusions are arranged at regular intervals.
 図21(a)は、本発明の実施態様において、基体の少なくとも一部として、基板の表面上に設けられてもよい凹凸部の一態様を示し、図21(b)は、図21(a)に示す凹凸部の表面を模式的に示している。図21の凹凸部は、基板本体1と、基板の表面1a上に設けられた三角形のパターン形状を有する凸部2aとから形成されている。なお、凸部2aは、前記基板の材料またはSiO等のシリコン含有化合物からなり、フォトリソグラフィー等の公知の手段を用いて形成することができる。なお、前記三角形のパターン形状の交点間の周期aは、特に限定されないが、本発明の実施態様においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましい。 21 (a) shows one aspect of the uneven portion which may be provided on the surface of a substrate as at least a part of the substrate in embodiment of this invention, and FIG. 21 (b) shows FIG. 21 (a). ) Is schematically shown on the surface of the uneven portion. The uneven portion of FIG. 21 is formed of a substrate main body 1 and a convex portion 2a having a triangular pattern shape provided on the surface 1a of the substrate. The convex portion 2a is made of the material of the substrate or a silicon-containing compound such as SiO 2, and can be formed by using a known means such as photolithography. The period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 μm to 10 μm, and more preferably 1 μm to 5 μm.
 図22(a)は、図21(a)と同様、本発明の実施態様において、基体の少なくとも一部として、基板の表面上に設けられた凹凸部の一態様を示し、図22(b)は、図22(a)に示す凹凸部の表面を模式的に示している。図22(a)の凹凸部は、基板本体1と三角形のパターン形状を有する空隙層とから形成されている。なお、凹部2bは、例えばレーザーダイシング等の公知の溝加工手段により形成することができる。なお、前記三角形のパターン形状の交点間の周期aは、特に限定されないが、本発明の実施態様においては、0.5μm~10μmであるのが好ましく、1μm~5μmであるのがより好ましい。なお、基板を基体として用いる場合には、基板の第1面に設けた凸部を、図3(c)で示す第2のマスク12’として用いてもよい。この場合、第1のマスク12の開口部12d内に複数の凸部が配置されるのが好ましい。凸部の高さは、マスクの開口部の高さの半分以下の厚みで、一定間隔をあけて配置されるのも好ましい。 22 (a) shows one aspect of the uneven portion provided on the surface of the substrate as at least a part of the substrate in the embodiment of the present invention, similarly to FIG. 21 (a), and FIG. 22 (b) shows. 2 schematically shows the surface of the uneven portion shown in FIG. 22 (a). The uneven portion of FIG. 22A is formed of the substrate main body 1 and the void layer having a triangular pattern shape. The recess 2b can be formed by a known groove processing means such as laser dicing. The period a between the intersections of the triangular pattern shapes is not particularly limited, but in the embodiment of the present invention, it is preferably 0.5 μm to 10 μm, and more preferably 1 μm to 5 μm. When the substrate is used as a substrate, the convex portion provided on the first surface of the substrate may be used as the second mask 12'shown in FIG. 3C. In this case, it is preferable that a plurality of convex portions are arranged in the opening portion 12d of the first mask 12. The height of the protrusions is not more than half the height of the opening of the mask, and it is also preferable that the protrusions are arranged at regular intervals.
 凹凸部の凸部の幅および高さ、凹部の幅および深さ、間隔などが特に限定されないが、本発明の実施態様においては、それぞれが例えば約10nm~約1mmの範囲内であり、好ましくは約10nm~約300μmであり、より好ましくは約10nm~約1μmであり、最も好ましくは約100nm~約1μmである。 The width and height of the convex portion of the uneven portion, the width and depth of the concave portion, the spacing, and the like are not particularly limited, but in the embodiment of the present invention, each is preferably in the range of, for example, about 10 nm to about 1 mm. It is about 10 nm to about 300 μm, more preferably about 10 nm to about 1 μm, and most preferably about 100 nm to about 1 μm.
 本発明の実施態様においては、前記基体の少なくとも一部として、基板上に応力緩和層等を含むバッファ層を設けてもよく、バッファ層を設ける場合には、バッファ層上でも前記凹凸部を形成してもよい。また、本発明の実施態様においては、前記基板が、表面の一部または全部に、バッファ層を有しているのが好ましい。前記バッファ層の形成手段は、特に限定されず、公知の手段であってよい。前記形成手段としては、例えば、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法、スパッタリング法等が挙げられる。本発明においては、前記バッファ層が、ミストCVD法により形成されているのが、前記バッファ層上に形成される前記結晶膜の膜質をより優れたものとでき、特に、チルト等の結晶欠陥を抑制できるため、好ましい。以下、前記バッファ層をミストCVD法により形成する好適な態様を、より詳細に説明する。 In the embodiment of the present invention, a buffer layer including a stress relaxation layer or the like may be provided on the substrate as at least a part of the substrate, and when the buffer layer is provided, the uneven portion is formed on the buffer layer as well. You may. Further, in the embodiment of the present invention, it is preferable that the substrate has a buffer layer on a part or all of the surface. The means for forming the buffer layer is not particularly limited and may be a known means. Examples of the forming means include a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method, a sputtering method and the like. In the present invention, the buffer layer formed by the mist CVD method can improve the film quality of the crystal film formed on the buffer layer, and in particular, causes crystal defects such as tilt. It is preferable because it can be suppressed. Hereinafter, a preferred embodiment of forming the buffer layer by the mist CVD method will be described in more detail.
 前記バッファ層は、好適には、例えば、原料溶液を霧化して霧化液滴を得ること(霧化工程)、得られた霧化液滴をキャリアガスを用いて前記基板まで搬送すること(搬送工程)、前記基板および/または基体の表面の一部または全部で、前記ミストまたは前記液滴を熱反応させる(バッファ層形成工程)ことにより形成することができる。 The buffer layer preferably, for example, atomizes the raw material solution to obtain atomized droplets (atomization step), and conveys the obtained atomized droplets to the substrate using a carrier gas ( It can be formed by subjecting the mist or droplets to a thermal reaction (buffer layer forming step) on a part or all of the substrate and / or the surface of the substrate.
(霧化工程)
 霧化工程は、前記原料溶液を霧化して霧化液滴を得る。前記原料溶液の霧化方法は、前記原料溶液を霧化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化方法が好ましい。超音波を用いて得られた霧化液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは0.1~10μmである。
(Atomization process)
The atomization step atomizes the raw material solution to obtain atomized droplets. The method for atomizing the raw material solution is not particularly limited as long as the raw material solution can be atomized, and may be a known means, but in the present invention, the atomization method using ultrasonic waves is preferable. Atomized droplets obtained using ultrasonic waves have a zero initial velocity and are preferable because they float in the air. For example, instead of spraying them like a spray, they float in space and are transported as gas. Since it is a possible mist, it is not damaged by collision energy, so it is very suitable. The droplet size is not particularly limited and may be a droplet of about several mm, but is preferably 50 μm or less, and more preferably 0.1 to 10 μm.
(原料溶液)
 前記原料溶液は、ミストCVDにより、前記バッファ層、結晶層、および/または半導体層が得られる溶液であれば特に限定されない。前記原料溶液としては、例えば、霧化用金属の有機金属錯体(例えばアセチルアセトナート錯体等)やハロゲン化物(例えばフッ化物、塩化物、臭化物またはヨウ化物等)の水溶液などが挙げられる。前記霧化用金属は、特に限定されず、このような霧化用金属としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属等が挙げられる。本発明においては、前記霧化用金属が、ガリウム、インジウムまたはアルミニウムを少なくとも含むのが好ましく、ガリウムを少なくとも含むのがより好ましい。原料溶液中の霧化用金属の含有量は、本発明の目的を阻害しない限り特に限定されないが、好ましくは、0.001モル%~50モル%であり、より好ましくは0.01モル%~50モル%である。
(Raw material solution)
The raw material solution is not particularly limited as long as it is a solution in which the buffer layer, the crystal layer, and / or the semiconductor layer can be obtained by mist CVD. Examples of the raw material solution include an organic metal complex of an atomizing metal (for example, an acetylacetonate complex) and an aqueous solution of a halide (for example, fluoride, chloride, bromide, iodide, etc.). The atomizing metal is not particularly limited, and examples of such atomizing metal are selected from, for example, aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium. Seeds or two or more kinds of metals and the like can be mentioned. In the present invention, the atomizing metal preferably contains at least gallium, indium or aluminum, and more preferably at least gallium. The content of the atomizing metal in the raw material solution is not particularly limited as long as the object of the present invention is not impaired, but is preferably 0.001 mol% to 50 mol%, and more preferably 0.01 mol% to 0.01 mol%. It is 50 mol%.
 また、原料溶液には、ドーパントが含まれているのも好ましい。原料溶液にドーパントを含ませることにより、イオン注入等を行わずに、結晶構造を壊すことなく、バッファ層、結晶層、および/または半導体層の導電性を容易に制御することができる。本発明においては、前記ドーパントがスズ、ゲルマニウム、またはケイ素であるのが好ましく、スズ、またはゲルマニウムであるのがより好ましく、スズであるのが最も好ましい。前記ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよいし、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。本発明においては、ドーパントの濃度が1×1020/cm以下であるのが好ましく、5×1019/cm以下であるのがより好ましい。 It is also preferable that the raw material solution contains a dopant. By including the dopant in the raw material solution, the conductivity of the buffer layer, the crystal layer, and / or the semiconductor layer can be easily controlled without implanting ions or the like and without destroying the crystal structure. In the present invention, the dopant is preferably tin, germanium, or silicon, more preferably tin or germanium, and most preferably tin. The concentration of the dopant may be usually about 1 × 10 16 / cm 3 to 1 × 10 22 / cm 3 , and the concentration of the dopant may be as low as about 1 × 10 17 / cm 3 or less, for example. Alternatively, the dopant may be contained in a high concentration of about 1 × 10 20 / cm 3 or more. In the present invention, the concentration of the dopant is preferably 1 × 10 20 / cm 3 or less, and more preferably 5 × 10 19 / cm 3 or less.
 原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましく、水であるのが最も好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明においては、超純水が好ましい。 The solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent. In the present invention, the solvent preferably contains water, more preferably water or a mixed solvent of water and alcohol, and most preferably water. More specific examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. Ultrapure water is preferred.
(搬送工程)
 搬送工程では、キャリアガスでもって前記霧化液滴を成膜室内に搬送する。前記キャリアガスは、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01~20L/分であるのが好ましく、1~10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001~2L/分であるのが好ましく、0.1~1L/分であるのがより好ましい。
(Transport process)
In the transport step, the atomized droplets are transported to the film forming chamber by the carrier gas. The carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include an inert gas such as oxygen, ozone, nitrogen and argon, and a reducing gas such as hydrogen gas and forming gas. .. Further, the type of the carrier gas may be one type, but may be two or more types, and a diluted gas having a reduced flow rate (for example, a 10-fold diluted gas) or the like is further used as the second carrier gas. May be good. Further, the carrier gas may be supplied not only at one place but also at two or more places. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min. In the case of the diluted gas, the flow rate of the diluted gas is preferably 0.001 to 2 L / min, more preferably 0.1 to 1 L / min.
(バッファ層、結晶層および/または半導体層の形成工程)
 バッファ層、結晶層および/または半導体層(以下、結晶層ともいう)の形成工程では、成膜室内で前記ミストまたは液滴を熱反応させることによって、基板上に、前記結晶層を形成する。熱反応は、熱でもって前記ミストまたは液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、400℃~650℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、結晶層の厚みは、形成時間を調整することにより、設定することができる。
(Step of forming buffer layer, crystal layer and / or semiconductor layer)
In the step of forming the buffer layer, the crystal layer and / or the semiconductor layer (hereinafter, also referred to as the crystal layer), the crystal layer is formed on the substrate by thermally reacting the mist or the droplet in the film forming chamber. The thermal reaction may be any effect as long as the mist or droplet reacts with heat, and the reaction conditions and the like are not particularly limited as long as the object of the present invention is not impaired. In this step, the thermal reaction is usually carried out at a temperature equal to or higher than the evaporation temperature of the solvent, but is preferably not too high (for example, 1000 ° C.) or lower, more preferably 650 ° C. or lower, and most preferably 400 ° C. to 650 ° C. preferable. Further, the thermal reaction may be carried out under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxygen atmosphere as long as the object of the present invention is not impaired, and the thermal reaction may be carried out under atmospheric pressure or pressure. It may be carried out under either reduced pressure or reduced pressure, but in the present invention, it is preferably carried out under atmospheric pressure. The thickness of the crystal layer can be set by adjusting the formation time.
 上記のようにして、前記基板上の表面の一部または全部に、結晶層をバッファ層として形成して基体とし、前記基体の該結晶層上に上記したマスクを配置し、半導体膜をエピタキシャル成長させることができる。前記基体を準備する際に、基板上に凹凸部を設けて結晶層を形成することから、横方向成長を含む結晶層を得ることができ、前記結晶膜を成膜することにより、前記バッファ層としての結晶層におけるチルト等の欠陥をより低減することができ、膜質をより優れたものとすることができる。また、上記のように、前記結晶層を半導体装置の半導体層として用いることも可能であり、前記半導体層上にベベル構造を有する半導体膜を形成することで、前記半導体膜の膜質をさらに優れたものとすることができる。 As described above, a crystal layer is formed as a buffer layer on a part or all of the surface on the substrate to form a substrate, and the above-mentioned mask is placed on the crystal layer of the substrate to epitaxially grow a semiconductor film. be able to. When the substrate is prepared, the uneven portion is provided on the substrate to form a crystal layer, so that a crystal layer containing lateral growth can be obtained. By forming the crystal film, the buffer layer is formed. Defects such as tilt in the crystal layer can be further reduced, and the film quality can be improved. Further, as described above, the crystal layer can also be used as a semiconductor layer of a semiconductor device, and by forming a semiconductor film having a bevel structure on the semiconductor layer, the film quality of the semiconductor film is further improved. Can be.
 また、前記結晶層は、特に限定されないが、本発明の実施態様の一つにおいては、金属酸化物を主成分として含んでいるのが好ましい。前記金属酸化物としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが挙げられる。本発明においては、前記金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、少なくともガリウムを含んでいるのが最も好ましい。本発明の成膜方法の実施形態の一つとして、バッファ層が金属酸化物を主成分として含み、バッファ層が含む金属酸化物がガリウムと、ガリウムよりも少ない量のアルミニウムを含んでいてもよい。また、本発明の成膜方法の実施形態の一つとして、バッファ層が超格子構造を含んでいてもよい。なお、本発明において、「主成分」とは、前記金属酸化物が、原子比で、前記バッファ層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶性酸化物半導体の結晶構造は、特に限定されないが、本発明においては、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましい。また、前記結晶膜と前記バッファ層とは、本発明の目的を阻害しない限り、それぞれ互いに主成分が同一であってもよいし、異なっていてもよいが、本発明においては、同一であるのが好ましい。 The crystal layer is not particularly limited, but in one of the embodiments of the present invention, it is preferable that the crystal layer contains a metal oxide as a main component. Examples of the metal oxide include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Be done. In the present invention, the metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. Most preferably it contains gallium. As one of the embodiments of the film forming method of the present invention, the buffer layer may contain a metal oxide as a main component, and the metal oxide contained in the buffer layer may contain gallium and a smaller amount of aluminum than gallium. .. Further, as one of the embodiments of the film forming method of the present invention, the buffer layer may include a superlattice structure. In the present invention, the "main component" means that the metal oxide has an atomic ratio of preferably 50% or more, more preferably 70% or more, still more preferably 90% with respect to all the components of the buffer layer. It means that the above is included, and it means that it may be 100%. The crystal structure of the crystalline oxide semiconductor is not particularly limited, but in the present invention, it is preferably a corundum structure or a β-gallia structure, and more preferably a corundum structure. Further, the crystal film and the buffer layer may have the same main component or different components as long as the object of the present invention is not impaired, but in the present invention, they are the same. Is preferable.
 本発明においては、前記バッファ層が設けられていてもよい前記基板上に金属含有原料ガス、酸素含有原料ガス、反応性ガスおよび所望によりドーパント含有ガスを供給し、反応性ガスの流通下で成膜する。本発明においては、前記成膜が、加熱されている基板上で行われるのが好ましい。前記成膜温度は、本発明の目的を阻害しない限り、特に限定されないが、900℃以下が好ましく、700℃以下がより好ましく、400℃~700℃であるのが最も好ましい。また、前記成膜は、本発明の目的を阻害しない限り、真空下、非真空下、還元ガス雰囲気下、不活性ガス雰囲気下および酸化ガス雰囲気下のいずれの雰囲気下で行われてもよく、また、常圧下、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、常圧下または大気圧下で行われるのが好ましい。なお、膜厚は成膜時間を調整することにより、設定することができる。 In the present invention, a metal-containing raw material gas, an oxygen-containing raw material gas, a reactive gas and, if desired, a dopant-containing gas are supplied onto the substrate on which the buffer layer may be provided, and the reaction gas is circulated. Membrane. In the present invention, it is preferable that the film formation is performed on a heated substrate. The film formation temperature is not particularly limited as long as it does not impair the object of the present invention, but is preferably 900 ° C. or lower, more preferably 700 ° C. or lower, and most preferably 400 ° C. to 700 ° C. Further, the film formation may be performed under any atmosphere of vacuum, non-vacuum, reducing gas atmosphere, inert gas atmosphere and oxidizing gas atmosphere as long as the object of the present invention is not impaired. Further, it may be carried out under any conditions of normal pressure, atmospheric pressure, pressure and reduced pressure, but in the present invention, it is preferably carried out under normal pressure or atmospheric pressure. The film thickness can be set by adjusting the film formation time.
 なお、本発明の実施態様における半導体膜は、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法およびスパッタリング法から選択される少なくとも1つの方法により形成される。半導体としては、例えば、炭化珪素(Silicon Carbide)や、窒化ガリウム(Gallium Nitride)、窒化インジウム(Gallium Indium)、窒化アルミニウム(Gallium Alminium)およびそれらの混晶を含めた窒化ガリウム窒化物半導体を主成分として含んでいてもよいし、結晶性金属酸化物を主成分として含んでいてもよい。前記結晶性金属酸化物としては、例えば、アルミニウム、ガリウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウム等から選ばれる1種または2種以上の金属を含む金属酸化物などが挙げられる。本発明においては、前記結晶性金属酸化物が、インジウム、アルミニウムおよびガリウムから選ばれる1種または2種以上の元素を含有するのが好ましく、少なくともインジウムまたは/およびガリウムを含んでいるのがより好ましく、ガリウムまたはその混晶であるのが最も好ましい。なお、本発明の実施態様の一つとして、半導体膜が主成分として結晶性金属酸化物を含む場合、「主成分」とは、前記結晶性金属酸化物が、原子比で、前記結晶膜の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。前記結晶性金属酸化物の結晶構造は、特に限定されないが、本発明の実施態様の一つとして、コランダム構造またはβガリア構造であるのが好ましく、コランダム構造であるのがより好ましく、前記半導体膜が、コランダム構造を有する結晶成長膜であるのが最も好ましい。本発明の実施態様の一つとして、得ようとする半導体膜が前記結晶性金属酸化物を主成分として含む場合、前記基体の少なくとも一部として、コランダム構造を含む基板を用いて、前記バッファ層、結晶層、および/または半導体層の成膜を行うことにより、コランダム構造を有する結晶成長膜を得ることができる。前記結晶性金属酸化物は、単結晶であってもよいし、多結晶であってもよいが、本発明の実施態様においては、単結晶であるのが好ましい。また、前記半導体膜の膜厚は、特に限定されないが、3μm以上であるのが好ましく、10μm以上であるのがより好ましく、20μm以上であるのが最も好ましい。 The semiconductor film according to the embodiment of the present invention is formed by at least one method selected from a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method. The main component of the semiconductor is, for example, a gallium nitride nitride semiconductor including silicon carbide, gallium nitride, gallium nitride, aluminum nitride and a mixture thereof. It may be contained as a main component, or it may contain a crystalline metal oxide as a main component. Examples of the crystalline metal oxide include metal oxides containing one or more metals selected from aluminum, gallium, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, iridium and the like. Can be mentioned. In the present invention, the crystalline metal oxide preferably contains one or more elements selected from indium, aluminum and gallium, more preferably at least indium and / and gallium. , Gallium or a mixed crystal thereof is most preferable. As one of the embodiments of the present invention, when the semiconductor film contains a crystalline metal oxide as a main component, the "main component" means that the crystalline metal oxide is an atomic ratio of the crystalline metal oxide. It means that it is preferably contained in an amount of 50% or more, more preferably 70% or more, still more preferably 90% or more, and may be 100% or more with respect to all the components. The crystal structure of the crystalline metal oxide is not particularly limited, but as one of the embodiments of the present invention, a corundum structure or a β-gallia structure is preferable, a corundum structure is more preferable, and the semiconductor film is more preferable. However, it is most preferable that the crystal growth film has a corundum structure. As one of the embodiments of the present invention, when the semiconductor film to be obtained contains the crystalline metal oxide as a main component, the buffer layer uses a substrate containing a corundum structure as at least a part of the substrate. , A crystal layer, and / or a semiconductor layer can be formed to obtain a crystal growth film having a corundum structure. The crystalline metal oxide may be a single crystal or a polycrystal, but in the embodiment of the present invention, it is preferably a single crystal. The film thickness of the semiconductor film is not particularly limited, but is preferably 3 μm or more, more preferably 10 μm or more, and most preferably 20 μm or more.
 本発明の製造方法によって得られた半導体膜は、特に、半導体装置に好適に用いることができ、とりわけ、パワーデバイスに有用である。前記結晶膜を用いて形成される半導体装置としては、MISやHEMT等のトランジスタやTFT、半導体‐金属接合を利用したショットキーバリアダイオード、他のP層と組み合わせたPN又はPINダイオード、受発光素子が挙げられる。本発明の実施態様においては、前記マスクが形成された基体上に半導体膜をエピタキシャル成長させることで、そのまま半導体装置等に用いることができるという利点がある。また、前記基体等から剥離する等の公知の手段を用いた後に、半導体装置等に適用してもよい。 The semiconductor film obtained by the manufacturing method of the present invention can be particularly suitably used for semiconductor devices, and is particularly useful for power devices. Semiconductor devices formed using the crystal film include transistors and TFTs such as MIS and HEMT, Schottky barrier diodes using semiconductor-metal junctions, PN or PIN diodes combined with other P layers, and light receiving / receiving elements. Can be mentioned. In the embodiment of the present invention, there is an advantage that the semiconductor film can be used as it is in a semiconductor device or the like by epitaxially growing the semiconductor film on the substrate on which the mask is formed. Further, it may be applied to a semiconductor device or the like after using a known means such as peeling from the substrate or the like.
 以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
(実施例)
1.基体の準備(バッファ層の形成)
1-1.ミストCVD装置
 図9を用いて、本実施例で用いたミストCVD装置19を説明する。ミストCVD装置19は、キャリアガスを供給するキャリアガス供給源22aと、キャリアガス供給源22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源22bと、キャリアガス(希釈)源22bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、成膜室30と、ミスト発生源24から成膜室30までをつなぐ石英製の供給管27と、成膜室30内に設置されたホットプレート28と、排気口29とを備えている。ホットプレート28上には、成膜する対象物(被成膜対象物)20が設置される。
(Example)
1. 1. Preparation of substrate (formation of buffer layer)
1-1. Mist CVD device The mist CVD device 19 used in this embodiment will be described with reference to FIG. The mist CVD apparatus 19 includes a carrier gas supply source 22a for supplying a carrier gas, a flow control valve 23a for adjusting the flow rate of the carrier gas sent out from the carrier gas supply source 22a, and a carrier for supplying the carrier gas (diluted). A gas (diluted) source 22b, a flow control valve 23b for adjusting the flow rate of the carrier gas (diluted) sent out from the carrier gas (diluted) source 22b, a mist generation source 24 containing the raw material solution 24a, and water. A container 25 in which the 25a is placed, an ultrasonic transducer 26 attached to the bottom surface of the container 25, a film forming chamber 30, and a quartz supply pipe 27 connecting the mist generation source 24 to the film forming chamber 30. It includes a hot plate 28 installed in the membrane chamber 30 and an exhaust port 29. An object to be filmed (object to be filmed) 20 is installed on the hot plate 28.
1-2.原料溶液の作製(バッファ層の形成)
 ガリウムアセチルアセトナートを超純水に混合し、ガリウムアセチルアセトナート0.05モル/Lとなるように水溶液を調整し、この際、臭化水素酸を体積比で5%含有させ、これを原料溶液とした。
1-2. Preparation of raw material solution (formation of buffer layer)
Gallium acetylacetonate is mixed with ultrapure water, and the aqueous solution is adjusted to 0.05 mol / L of gallium acetylacetonate. At this time, hydrobromic acid is contained in a volume ratio of 5%, and this is used as a raw material. It was made into a solution.
1-3.成膜準備(バッファ層の形成)
 上記1-2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、被成膜対象物20としてサファイア基板をホットプレート28上に設置させ、ホットプレート28を作動させて被成膜対象物の温度を550℃にまで昇温させた。次に、流量調節弁23aおよび23bを開いてキャリアガス源22aおよびキャリアガス(希釈)源22bからキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を0.8L/min、キャリアガス(希釈)の流量を0.2L/minにそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
1-3. Preparation for film formation (formation of buffer layer)
1-2. The raw material solution 24a obtained in 1) was housed in the mist generation source 24. Next, a sapphire substrate was placed on the hot plate 28 as the object to be filmed 20, and the hot plate 28 was operated to raise the temperature of the object to be filmed to 550 ° C. Next, the flow control valves 23a and 23b are opened to supply the carrier gas into the film forming chamber 30 from the carrier gas source 22a and the carrier gas (dilution) source 22b, and the atmosphere of the film forming chamber 30 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 0.8 L / min, and the flow rate of the carrier gas (diluted) was adjusted to 0.2 L / min. Oxygen was used as the carrier gas.
1-4.成膜(バッファ層の形成)
 次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて原料微粒子を生成した。この原料微粒子が、キャリアガスによって成膜室30内に導入され、550℃にて、成膜室30内で反応して、基板20上にバッファ層(コランダム構造を有するGaバッファ層)を形成して基体とした。なお、成膜時間は10分で膜厚は0.1μmであった。
1-4. Film formation (formation of buffer layer)
Next, the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a to atomize the raw material solution 24a to generate raw material fine particles. The raw material fine particles are introduced into the film forming chamber 30 by the carrier gas and react in the film forming chamber 30 at 550 ° C. to form a buffer layer (Ga 2 O 3 buffer layer having a corundum structure) on the substrate 20. Was formed into a substrate. The film formation time was 10 minutes and the film thickness was 0.1 μm.
2.マスクの形成
2-1.マスク層の形成
 上記1-4.で得られたバッファ層上に、プラズマ強化CVD法により、液体オルトケイ酸テトラエチルを用いて酸化ケイ素(SiO)のマスク層を形成した。マスク層の膜厚は1.3μmであった。
2-2.フォトレジスト層の形成
 上記2-1.で得られたマスク層の少なくとも一部に、フォトリソグラフィーにより、フォトレジスト層を形成した。
2-3.傾斜面を有するマスクの形成
 上記2-2.で得られたフォトレジスト層を有するSiOマスク層に、室温でバッファードフッ酸(BHF)を用いて開口部を形成した。等方性ウェットエッチングのアンダーカットにより、端部に傾斜面を有するマスク層の開口部が形成された。基体と接するマスク層の面と傾斜面とのなす角(傾斜角)を29°に形成して、傾斜面を有するマスクが配置された基体を得た。
2. 2. Mask formation 2-1. Formation of mask layer 1-4. A mask layer of silicon oxide (SiO 2 ) was formed on the buffer layer obtained in 1) by plasma-enhanced CVD method using liquid tetraethyl orthosilicate. The film thickness of the mask layer was 1.3 μm.
2-2. Formation of photoresist layer 2-1. A photoresist layer was formed on at least a part of the mask layer obtained in 1) by photolithography.
2-3. Formation of a mask with an inclined surface 2-2. An opening was formed in the SiO 2 mask layer having the photoresist layer obtained in 1 above using buffered hydrofluoric acid (BHF) at room temperature. The isotropic wet etching undercut formed an opening in the mask layer with an inclined surface at the end. An angle (tilt angle) formed by the surface of the mask layer in contact with the substrate and the inclined surface was formed at 29 ° to obtain a substrate on which the mask having the inclined surface was arranged.
3.半導体膜の形成
3-1.成膜装置
 本発明の実施態様における成膜装置として、エピタキシャル成長させることが可能な装置を用いることができるが、そのような装置の一例として、図9で示されるミストCVD装置を用いた。
3. 3. Formation of semiconductor film 3-1. Film forming apparatus As the film forming apparatus according to the embodiment of the present invention, an apparatus capable of epitaxial growth can be used, and as an example of such an apparatus, the mist CVD apparatus shown in FIG. 9 was used.
3-2.原料溶液の作製(半導体膜の形成)
 臭化ガリウムを超純水に混合し、ガリウム0.05mol/Lとなるように水溶液を調整し、この際、さらに臭化水素酸を体積比で20%となるように含有させ、これを原料溶液とした。
3-2. Preparation of raw material solution (formation of semiconductor film)
Gallium bromide is mixed with ultrapure water, and the aqueous solution is adjusted to 0.05 mol / L of gallium. At this time, hydrobromic acid is further contained so as to be 20% by volume, and this is used as a raw material. It was made into a solution.
3-3.成膜準備(半導体膜の形成)
 上記3-2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、2-3.で得た傾斜面を有するマスクが配置された基体を被成膜対象物20として、ホットプレート28上に設置して、基体の温度を630℃にまで昇温させた。次に、流量調節弁23aおよび23bを開いてキャリアガス源22aおよびキャリアガス(希釈)源22bからキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を0.8L/min、キャリアガス(希釈)の流量を0.2L/minにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
3-3. Preparation for film formation (formation of semiconductor film)
3-2. The raw material solution 24a obtained in 1) was housed in the mist generation source 24. Next, 2-3. The substrate on which the mask having the inclined surface obtained in the above step was arranged was placed on the hot plate 28 as the object to be filmed 20, and the temperature of the substrate was raised to 630 ° C. Next, the flow control valves 23a and 23b are opened to supply the carrier gas into the film forming chamber 30 from the carrier gas source 22a and the carrier gas (dilution) source 22b, and the atmosphere of the film forming chamber 30 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 0.8 L / min, and the flow rate of the carrier gas (diluted) was adjusted to 0.2 L / min. Nitrogen was used as the carrier gas.
3-4.成膜(半導体膜の形成)
 次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて原料微粒子を生成した。この原料微粒子が、キャリアガスによって成膜室30内に導入され、630℃にて、成膜室30内で反応して、前記2-3で得られた、傾斜面を有するマスクが配置された基体20上に半導体膜を形成した。なお、成膜時間は3.5時間であった。
3-4. Film formation (formation of semiconductor film)
Next, the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a to atomize the raw material solution 24a to generate raw material fine particles. The raw material fine particles were introduced into the film forming chamber 30 by a carrier gas and reacted in the film forming chamber 30 at 630 ° C., and the mask having an inclined surface obtained in the above 2-3 was arranged. A semiconductor film was formed on the substrate 20. The film formation time was 3.5 hours.
3-5.評価
 上記3-4.にて得られた半導体膜は、クラックや異常成長もなく、きれいな膜であった。得られた膜につき、薄膜用XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことによって、膜の同定を行った。測定は、CuKα線を用いて行った。その結果、得られた膜は、α―Gaであった。また、図10に示すとおり、α―Gaの半導体膜の端部に傾斜面が形成されている。なお、SiOおよび半導体膜上のPt皮膜は、観察を容易にする目的で設けたものである。このSiOおよび半導体膜上に、ショットキー電極を形成することで、正ベベル構造を終端構造としたショットキー接触を得ることができる。また、半導体膜の端部付近となる領域が横方向に成長した結晶を含んでおり、正ベベル構造を形成した端部付近において転位のより少ない半導体膜が得られることが分かった。
 
3-5. Evaluation 3-4. The semiconductor film obtained in 1 was a clean film without cracks or abnormal growth. The obtained film was identified by performing a 2θ / ω scan at an angle of 15 to 95 degrees using an XRD diffractometer for thin films. The measurement was performed using CuKα ray. As a result, the obtained film was α-Ga 2 O 3 . Further, as shown in FIG. 10, an inclined surface is formed at the end of the semiconductor film of α-Ga 2 O 3. The SiO 2 and the Pt film on the semiconductor film are provided for the purpose of facilitating observation. By forming a Schottky electrode on the SiO 2 and the semiconductor film, a Schottky contact having a positive bevel structure as a terminal structure can be obtained. It was also found that the region near the end of the semiconductor film contained crystals grown in the lateral direction, and a semiconductor film with less dislocations could be obtained near the end of the positive bevel structure.
 本発明の製造方法は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、特に、pn接合を有する半導体装置、電源などに用いられるパワー半導体を含む半導体装置の製造等に有用である。 The manufacturing method of the present invention can be used in all fields such as semiconductors (for example, compound semiconductor electronic devices, etc.), electronic parts / electrical equipment parts, optical / electrophotographic related devices, industrial parts, etc., but in particular, semiconductors having a pn junction. It is useful for manufacturing semiconductor devices including power semiconductors used for devices, power supplies, and the like.
 a   周期
 1   基板
 1a  基板の表面
 2a  凸部
 2b  凹部
 9   p型半導体膜
 9a  p型半導体膜の第1面
 9b  p型半導体膜の第2面
 11  基体
 11a 基体の第1面
 11b 基体の第2面
 12  マスク
 12a マスクの第1面
 12b マスクの第2面
 12c マスクの傾斜面
 12d マスクの開口部
  12e  マスクの傾斜角
 12’ 第2のマスク
 13  保護膜
 14  半導体膜
 14a 半導体膜の第1面
 14b 半導体膜の第2面
 14c 半導体膜の傾斜面
 15  電極
 16  基板
 17  結晶層
 18  結晶層
 19  ミストCVD装置
 20  被成膜対象物
 21  試料台
 22a キャリアガス源
 22b キャリアガス(希釈)源
 23a 流量調節弁
 23b 流量調節弁
 24  ミスト発生源
 24a 原料溶液
 25  容器
 25a 水
 26  超音波振動子
 27  供給管
 28  ホットプレート
 30  成膜室
 50  ハライド気相成長(HVPE)装置
 51  反応室
 52a ヒータ
 52b ヒータ
 53a 金属含有原料ガス供給源
 53b 金属含有原料ガス供給管
 54a 反応性ガス供給源
 54b 反応性ガス供給管
 55a 酸素含有原料ガス供給源
 55b 酸素含有原料ガス供給管
 56  基板ホルダ
 57  金属源
 58  保護シート
 59  ガス排出部
 61  結晶層
 62  絶縁体層
 64  半導体膜
 64a 半導体膜の第1面
 64b 半導体膜の第2面
 64c 半導体膜の傾斜面
 64e 半導体膜の第1面と傾斜面のなす傾斜角
 65  第1の電極 (ショットキー電極)
 66  第2の電極 (オーミック電極)
 67  第2の半導体膜
 67a 第2の半導体膜の第1面
 67b  第2の半導体膜の第2面
 67c  第2の半導体膜の第1面と第2面との間に位置する傾斜面
 67e  第2の半導体膜の第1面と傾斜面とのなす傾斜角
 82  絶縁体
 84  半導体膜
 85  第1の電極
 86  第2の電極
 90  整流接合界面
 100 半導体装置
 200 半導体装置
 

 
a Period 1 Substrate 1a Substrate surface 2a Convex 2b Concave 9 p-type semiconductor film 9a First surface of p-type semiconductor film 9b Second surface of p-type semiconductor film 11 Substrate 11a First surface of substrate 11b Second surface of substrate 12 Mask 12a First surface of mask 12b Second surface of mask 12c Inclined surface of mask 12d Opening of mask 12e Inclined angle of mask 12'Second mask 13 Protective film 14 Semiconductor film 14a First surface of semiconductor film 14b Semiconductor Second surface of the film 14c Inclined surface of the semiconductor film 15 Electrode 16 Substrate 17 Crystal layer 18 Crystal layer 19 Mist CVD device 20 Object to be deposited 21 Sample stand 22a Carrier gas source 22b Carrier gas (diluted) source 23a Flow control valve 23b Flow control valve 24 Mist generator 24a Raw material solution 25 Container 25a Water 26 Ultrasonic transducer 27 Supply pipe 28 Hot plate 30 Formation chamber 50 Halide vapor phase growth (HVPE) device 51 Reaction chamber 52a Heater 52b Heater 53a Metal-containing raw material gas Supply source 53b Metal-containing raw material gas supply pipe 54a Reactive gas supply source 54b Reactive gas supply pipe 55a Oxygen-containing raw material gas supply source 55b Oxygen-containing raw material gas supply pipe 56 Substrate holder 57 Metal source 58 Protective sheet 59 Gas discharge part 61 Crystal Layer 62 Insulation layer 64 Semiconductor film 64a First surface of semiconductor film 64b Second surface of semiconductor film 64c Inclined surface of semiconductor film 64e Inclined angle between the first surface of semiconductor film and inclined surface 65 First electrode (shot key) electrode)
66 Second electrode (ohmic electrode)
67 Second semiconductor film 67a First surface of the second semiconductor film 67b Second surface of the second semiconductor film 67c Inclined surface located between the first surface and the second surface of the second semiconductor film 67e Second Inclined angle between the first surface and the inclined surface of the semiconductor film of 2 82 Insulator 84 Semiconductor film 85 First electrode 86 Second electrode 90 Rectification junction interface 100 Semiconductor device 200 Semiconductor device

Claims (26)

  1.  端部に傾斜面を有する半導体膜を少なくとも含む半導体装置を製造する方法であって、前記傾斜面を有する半導体膜の形成を、前記半導体膜の前記傾斜面と逆向きの傾斜面を有するマスクが配置された基体の第1面上に、前記半導体膜をエピタキシャル成長させることにより行うことを特徴とする、半導体装置の製造方法。 A method for manufacturing a semiconductor device including at least a semiconductor film having an inclined surface at an end, wherein the semiconductor film having the inclined surface is formed by a mask having an inclined surface opposite to the inclined surface of the semiconductor film. A method for manufacturing a semiconductor device, which is performed by epitaxially growing the semiconductor film on the first surface of the arranged substrate.
  2.  前記マスクが前記半導体膜よりも絶縁性の高い材料からできている、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the mask is made of a material having a higher insulating property than the semiconductor film.
  3.  前記マスクが絶縁体材料を含む、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the mask contains an insulating material.
  4.  前記マスクが二酸化ケイ素(SiO)および窒化ケイ素(SiN)から選択される少なくとも1つの材料を含んでいる、請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the mask contains at least one material selected from silicon dioxide (SiO 2 ) and silicon nitride (Si 3 N 4).
  5.  前記マスクが、半絶縁体材料を含んでいる、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the mask contains a semi-insulator material.
  6.  前記マスクの厚みは少なくとも1μm以上である、請求項1~5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the thickness of the mask is at least 1 μm or more.
  7.  前記基体が結晶基板を含む、請求項1~6のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the substrate includes a crystal substrate.
  8.  前記基体が結晶層を含む、請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the substrate contains a crystal layer.
  9.  前記結晶層が半導体層を含む、請求項8記載の製造方法。 The manufacturing method according to claim 8, wherein the crystal layer includes a semiconductor layer.
  10.  前記結晶層が横方向成長を含んでエピタキシャル成長されている、請求項8または9に記載の製造方法。 The production method according to claim 8 or 9, wherein the crystal layer is epitaxially grown including lateral growth.
  11.  前記半導体膜がn-型半導体膜であり、前記半導体層がn+型半導体膜である請求項9記載の製造方法。 The manufacturing method according to claim 9, wherein the semiconductor film is an n-type semiconductor film, and the semiconductor layer is an n + type semiconductor film.
  12.  前記半導体膜が横方向成長を含んでエピタキシャル成長されている、請求項1~11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein the semiconductor film is epitaxially grown including lateral growth.
  13.  前記マスクが、第1面と、前記第1面の反対側で、基体の第1面と直接または他の層を介して接触する第2面とを有しており、前記マスクの傾斜面が、前記マスクの前記第1面から前記マスクの前記第2面に向かって厚みが減少するテーパ形状を有している請求項1~12のいずれかに記載の製造方法。 The mask has a first surface and a second surface on the opposite side of the first surface that comes into contact with the first surface of the substrate directly or via another layer, the inclined surface of the mask. The manufacturing method according to any one of claims 1 to 12, wherein the mask has a tapered shape whose thickness decreases from the first surface of the mask toward the second surface of the mask.
  14.  前記マスクの前記第2面と前記マスクの傾斜面とのなす角である傾斜角 が20°以上70°以下である、請求項13記載の製造方法。 The manufacturing method according to claim 13, wherein the inclination angle, which is an angle formed by the second surface of the mask and the inclined surface of the mask, is 20 ° or more and 70 ° or less.
  15.  さらに、前記半導体膜の少なくとも一部と前記マスクの少なくとも一部を覆って電極を形成し、前記電極の端部を前記マスク上に配置することを含む、請求項1~14のいずれかに記載の製造方法。 The invention according to any one of claims 1 to 14, further comprising forming an electrode by covering at least a part of the semiconductor film and at least a part of the mask and arranging an end portion of the electrode on the mask. Manufacturing method.
  16.  前記マスクをフィールド絶縁膜として用いる、請求項1~15のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 15, wherein the mask is used as a field insulating film.
  17.  さらに、前記マスク上に、前記マスクの材料とは異なる材料の保護膜を形成すること、を含む、請求項1~16のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 16, further comprising forming a protective film of a material different from that of the mask on the mask.
  18.  前記半導体膜が、スプレー法、ミストCVD法、HVPE法、MBE法、MOCVD法およびスパッタリング法から選択される少なくとも1つの方法により形成される、請求項1~17のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 17, wherein the semiconductor film is formed by at least one method selected from a spray method, a mist CVD method, an HVPE method, an MBE method, a MOCVD method and a sputtering method.
  19.  前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面と前記マスクの前記第1面とを面一になるように形成すること、を含む、請求項1~18のいずれかに記載の製造方法。 The semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask is a first surface. A surface, a second surface on the opposite side of the first surface that contacts the first surface of the substrate, and a side surface including the inclined surface located between the first surface and the second surface. The production according to any one of claims 1 to 18, further comprising forming the first surface of the semiconductor film and the first surface of the mask so as to be flush with each other. Method.
  20.  前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面を、前記マスクの前記第1面よりも低い位置になるように形成すること、を含む、請求項1~18のいずれかに記載の製造方法。 The semiconductor film has a first surface, a second surface opposite to the first surface, and an end portion located between the first surface and the second surface, and the mask is a first surface. A surface, a second surface on the opposite side of the first surface that contacts the first surface of the substrate, and a side surface including the inclined surface located between the first surface and the second surface. The invention according to any one of claims 1 to 18, further comprising forming the first surface of the semiconductor film at a position lower than the first surface of the mask. Production method.
  21.  前記半導体膜が第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面との間に位置する前記端部とを有し、前記マスクが第1面と、前記第1面の反対側で、前記基体の第1面と接触する第2面と、前記第1面と前記第2面との間に位置する前記傾斜面を含む側面と、を有しており、さらに、前記半導体膜の前記第1面を、前記マスクの前記第1面よりも高い位置になるように形成すること、を含む、請求項1~18のいずれかに記載の方法。記載の製造方法。 The semiconductor film has a first surface, a second surface on the opposite side of the first surface, and an end portion located between the first surface and the second surface, and the mask is a first surface. A surface, a second surface on the opposite side of the first surface that contacts the first surface of the substrate, and a side surface including the inclined surface located between the first surface and the second surface. The invention according to any one of claims 1 to 18, further comprising forming the first surface of the semiconductor film at a position higher than the first surface of the mask. Method. The manufacturing method described.
  22.  前記半導体膜の第2面の少なくとも一部と、前記マスクの第2面とが面一となるように前記半導体膜を形成する、請求項19~21のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 19 to 21, wherein the semiconductor film is formed so that at least a part of the second surface of the semiconductor film and the second surface of the mask are flush with each other.
  23.  前記結晶層が前記基体の第1面側に位置しており、前記結晶層上に前記マスクを配置した後、前記半導体膜を前記結晶層上にエピタキシャル成長させる、請求項8~10のいずれかに記載の製造方法。 The method according to any one of claims 8 to 10, wherein the crystal layer is located on the first surface side of the substrate, the mask is placed on the crystal layer, and then the semiconductor film is epitaxially grown on the crystal layer. The manufacturing method described.
  24.  前記マスクを第1のマスクとし、前記基体の第1面上に、前記第1のマスクよりも薄い厚みの第2のマスクが配置されている、請求項1~23のいずれかに記載の製造方法。 The production according to any one of claims 1 to 23, wherein the mask is used as a first mask, and a second mask having a thickness thinner than that of the first mask is arranged on the first surface of the substrate. Method.
  25.  前記マスクを第1のマスクとし、前記基体の第1面上に配置されて、前記第1のマスクの厚みよりも薄い厚みの第2のマスクとを配置すること、前記第1のマスクと第2のマスクが配置された前記基体の第1面上に前記半導体膜をエピタキシャル成長させて端部に傾斜面を有する半導体膜を形成すること、を含み、前記第2のマスクが前記第1のマスクの開口部内に位置している、請求項19~21のいずれかに記載の製造方法 Using the mask as a first mask, a second mask arranged on the first surface of the substrate and having a thickness thinner than the thickness of the first mask is arranged, the first mask and the first mask. The second mask comprises the epitaxial growth of the semiconductor film on the first surface of the substrate on which the mask 2 is arranged to form a semiconductor film having an inclined surface at an end, wherein the second mask is the first mask. The manufacturing method according to any one of claims 19 to 21, which is located in the opening of the above.
  26.  前記マスクの前記逆向きの傾斜面に、前記半導体膜の前記傾斜面が係合するように形成されている、請求項1~25のいずれかに記載の製造方法。

     
    The manufacturing method according to any one of claims 1 to 25, wherein the inclined surface of the semiconductor film is formed so as to engage with the inclined surface in the opposite direction of the mask.

PCT/JP2021/021439 2020-06-05 2021-06-04 Production method for semiconductor device WO2021246527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020098783 2020-06-05
JP2020-098783 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246527A1 true WO2021246527A1 (en) 2021-12-09

Family

ID=78830321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021439 WO2021246527A1 (en) 2020-06-05 2021-06-04 Production method for semiconductor device

Country Status (1)

Country Link
WO (1) WO2021246527A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280314A (en) * 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Manufacturing method of iii nitride compound semiconductor group, and the iii nitride compound semiconductor element based thereon
JP2003179066A (en) * 2001-12-12 2003-06-27 Sony Corp Semiconductor device and its manufacturing method
JP2011066390A (en) * 2009-08-20 2011-03-31 Pawdec:Kk Method of manufacturing semiconductor element
JP2015099903A (en) * 2013-10-17 2015-05-28 ローム株式会社 Nitride semiconductor device and manufacturing method of the same
JP2017212296A (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Semiconductor device
JP2019131441A (en) * 2018-01-31 2019-08-08 京セラ株式会社 Crystal growth method and method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280314A (en) * 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Manufacturing method of iii nitride compound semiconductor group, and the iii nitride compound semiconductor element based thereon
JP2003179066A (en) * 2001-12-12 2003-06-27 Sony Corp Semiconductor device and its manufacturing method
JP2011066390A (en) * 2009-08-20 2011-03-31 Pawdec:Kk Method of manufacturing semiconductor element
JP2015099903A (en) * 2013-10-17 2015-05-28 ローム株式会社 Nitride semiconductor device and manufacturing method of the same
JP2017212296A (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Semiconductor device
JP2019131441A (en) * 2018-01-31 2019-08-08 京セラ株式会社 Crystal growth method and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP7480937B2 (en) Crystal film, semiconductor device, and method for manufacturing the crystal film
JP7460975B2 (en) Crystal film manufacturing method
JP7166522B2 (en) Crystalline film manufacturing method
JP7163540B2 (en) Crystalline film manufacturing method
WO2021246528A1 (en) Semiconductor device
WO2021065940A1 (en) Laminated structure and semiconductor device
WO2021246527A1 (en) Production method for semiconductor device
JP7486121B2 (en) Semiconductor Device
JP2021172555A (en) Production method of crystal film
US20220189769A1 (en) Crystal film, semiconductor device including crystal film, and method of producing crystal film
JP7453609B2 (en) Peeling method and crystalline oxide film manufacturing method
WO2021066156A1 (en) Crystalline laminate structure and semiconductor device
US11804519B2 (en) Crystalline multilayer structure, semiconductor device, and method of manufacturing crystalline structure
US11694894B2 (en) Crystalline film containing a crystalline metal oxide and method for manufacturing the same under partial pressure
WO2023048150A1 (en) Method for producing crystal film, and crystal film
JP2021172552A (en) Crystal film
JP2021172553A (en) Crystalline laminated structure and semiconductor device
JP2021172554A (en) Method for manufacturing crystalline laminated structure
JP2022047720A (en) Method for growing crystal film and crystalline oxide film
JP2020074363A (en) Crystalline laminate structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP