WO2021246497A1 - Shape measurement system and shape measurement method - Google Patents
Shape measurement system and shape measurement method Download PDFInfo
- Publication number
- WO2021246497A1 WO2021246497A1 PCT/JP2021/021283 JP2021021283W WO2021246497A1 WO 2021246497 A1 WO2021246497 A1 WO 2021246497A1 JP 2021021283 W JP2021021283 W JP 2021021283W WO 2021246497 A1 WO2021246497 A1 WO 2021246497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- optical fiber
- core optical
- outer peripheral
- strain
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 31
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 239000013307 optical fiber Substances 0.000 claims abstract description 182
- 230000002093 peripheral effect Effects 0.000 claims abstract description 87
- 238000009826 distribution Methods 0.000 claims abstract description 38
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 238000005452 bending Methods 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 29
- 238000012937 correction Methods 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000002168 optical frequency-domain reflectometry Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/18—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4709—Backscatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
- G01N2021/638—Brillouin effect, e.g. stimulated Brillouin effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
- G01N2021/9542—Inspecting the inner surface of hollow bodies, e.g. bores using a probe
- G01N2021/9546—Inspecting the inner surface of hollow bodies, e.g. bores using a probe with remote light transmitting, e.g. optical fibres
Definitions
- the present disclosure relates to an apparatus and a method for deriving a three-dimensional shape of an object to be measured, such as a pipeline or a submarine cable, by a reflectometry technique using an optical fiber.
- Non-Patent Document 1 A technique has been proposed in which the reflection spectrum in the frequency domain of each core of a multi-core optical fiber is measured and analyzed by OFDR (Optical Frequency Domain Reflectometry) to derive a three-dimensional shape to be measured (for example, Non-Patent Document 1). reference.). Further, a method of imparting FBG (Fiber Bragg Grating) to the entire length of the sensing medium (optical fiber) to improve the measurement resolution has also been proposed (see, for example, Non-Patent Document 2).
- FBG Fiber Bragg Grating
- OFDR When trying to derive the three-dimensional shape of the object to be measured by OFDR, the following difficulties occur. (1) OFDR can realize high resolution on the order of several tens of mm, but the measurement distance is limited to about several tens of meters, and it is difficult to derive a long-distance three-dimensional shape. (2) If an FBG is added to an optical fiber, it becomes difficult to improve the ease of manufacturing and the economic efficiency of the optical fiber. (3) The technique of performing shape identification by quasi-distribution measurement such as addition of FBG has a limitation on the number of measurement points, and it is difficult to identify the shape over a long distance.
- an object of the present invention is to provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution in order to solve the above problems. do.
- the shape measurement system uses a multi-core optical fiber having a predetermined core arrangement as a sensing medium, and analyzes data acquired by BOTDR (Brillouin Optical Time Domain Reflectometer). ..
- the shape measuring system is A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
- a measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber and a measuring device.
- the shape measuring method according to the present invention is A central core arranged in the center of the cross section and a multi-core optical fiber having 3 or more and 6 or less outer peripheral cores arranged outside the central core and concentrically at equal intervals are arranged along the linear structure.
- the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber is measured, and the multi-core optical fiber and the three-dimensional shape arranged along the linear structure whose three-dimensional shape is unknown are known. From the rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a certain linear structure, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated, and the time change thereof is calculated. To identify, I do.
- the present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
- the specific analysis method is as follows. Let z be the position in the longitudinal direction of the multi-core optical fiber.
- the analyzer is The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
- the bending angle ⁇ represents an angle formed by a vector connecting the MCF center and the center of curvature and a reference direction vector, for example, a vector connecting the MCF center and a specific core in the MCF cross section.
- ⁇ r ⁇ ⁇ ⁇ cos ( ⁇ - ⁇ )
- r is the distance between the centers of the central core and the outer peripheral core
- ⁇ is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
- a multi-core optical fiber when a multi-core optical fiber is placed along a structure, an unintended twist may occur, which may cause an error in the measurement result.
- the multi-core optical fiber is given a known torsion, and the analyzer is known to have a torsional strain occurring in the multi-core optical fiber when calculating the position coordinates.
- the unintended torsion that occurs when the three-dimensional shape is placed along a linear structure whose three-dimensional shape is unknown is estimated based on the strain due to the torsion, and the influence of the unintended torsion is excluded. matter, Is preferable.
- the specific analysis method in this case is as follows. Let z be the position in the longitudinal direction of the multi-core optical fiber.
- the analyzer is The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
- r is the distance between the centers of the central core and the outer peripheral core
- k 1 is the twist correction coefficient represented by the equation (3)
- ⁇ is the Poisson's ratio of the multi-core optical fiber
- a i is the core i.
- the initial angle of, ⁇ i is the angle representing the position of the outer peripheral core in the cross section at the position z of the multi-core optical fiber represented by the equation (4)
- p is the spin rate of the outer peripheral core
- ⁇ twisting is the multi-core light.
- the torsional strain generated at the position z of the fiber, ⁇ (z) is the specific torsion angle at the position z of the multi-core optical fiber represented by the equation (5)
- k 2 is the equation (6). It is a correction coefficient of twist represented by.
- the analyzer calculates the spin rate p of the outer peripheral core from the periodic fluctuations of the bending strain ⁇ bending and i of each of the outer peripheral cores.
- the error in the number of twists can be taken into consideration due to the manufacturing error of the multi-core optical fiber, and the shape change of the object to be measured can be specified with high accuracy.
- the multi-core optical fiber preferably has 3 or more outer peripheral cores and a clad diameter of 375 ⁇ m or more. Further, in the multi-core optical fiber, the distance between the center core and the outer peripheral core is preferably 120 ⁇ m or more. Fan-in / fan-out (FIFO) devices can be easily realized by bundling existing single-mode fibers (clad diameter 125 ⁇ m). Further, the wider the distance between the center of the central core and the center of the outer peripheral core, the larger the distortion generated in the outer peripheral core, and the higher the dynamic range can be achieved.
- FIFO Fan-in / fan-out
- the present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
- FIG. 1 is a diagram illustrating a shape measuring system of the present embodiment.
- This shape measurement system is A central core 11 arranged in the center of the cross section, and a multi-core optical fiber 10 having three or more outer peripheral cores 12 arranged concentrically and outside the central core 11 at equal intervals.
- the analysis device 30 that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the above and identifies the time change thereof.
- FIG. 1 shows an example in which a specific one core of the multi-core optical fiber 10 and a measuring device 20 for measuring the rear Brillouin scattered light distribution are connected.
- a fan-out mechanism that separates each core of the multi-core optical fiber into a single-core optical fiber, and a form in which the multi-core optical fiber 10 and the measuring device 20 are connected via an optical switch may be used.
- This shape measurement system uses a multi-core optical fiber 10 as a sensing medium, a measuring device (BOTDR) 20 for detecting rear Brillouin scattered light in the propagation direction of each core of the multi-core optical fiber 10, and measurement data acquired by the BOTDR 12. It is provided with an analysis device 30 for analysis.
- BOTDR measuring device
- the multi-core optical fiber 10 is installed along the longitudinal direction of the linear structure to be measured.
- the linear structure is, for example, a pipeline, a riser (a pipe through which a fluid can pass from the seabed to equipment on the sea surface in offshore drilling and offshore production), a submarine cable, and the like.
- FIG. 2 is a diagram illustrating a cross section of the multi-core optical fiber 10.
- the multi-core optical fiber 10 has a central core in the center of the cross section and an outer peripheral core arranged at substantially equal intervals on the same circumference from the center of the cross section, for a total of four cores.
- the four cores have substantially the same refractive index distribution and optical characteristics, but the structure may be arranged so that the refractive index distributions and optical characteristics of the cores are intentionally different. ..
- the limits on the number of cores are as follows. If the number of cores is 3 or less (2 or less outer peripheral cores), the shape cannot be identified. On the other hand, when the number of cores is 5 or more (4 or more outer peripheral cores), the measurement accuracy is improved, but the measurement time is increased by the number of cores. Also, a circle of a certain radius can be surrounded by six circles of the same radius in contact with it. In this case, the total number of circles is seven. That is, a single-core optical fiber having the same diameter can be used as a multi-core optical fiber at the core position when seven optical fibers are closely arranged, and a FIFO can be easily produced.
- the number of outer circles is 7 or more (the total number of circles is 8 or more)
- the clad diameter of the multi-core optical fiber becomes large, and it becomes difficult to create a fan-in / fan-out (FIFO). Therefore, it is desirable that the number of outer peripheral cores of the multi-core optical fiber is 3 or more and 6 or less.
- the multi-core optical fiber 10 has a larger clad outer diameter (> 125 ⁇ m) than a general communication optical fiber.
- the distance between the center core 11 arranged at the center of the optical fiber and the outer peripheral core 12 arranged on the outer periphery of the central core 11 is set to be larger than 30 ⁇ m. The reason is that in a standard multi-core optical fiber having a clad outer diameter of 125 ⁇ m, the distance between the center core and the outer peripheral core that can be arranged while suppressing the influence of leakage loss is about 30 ⁇ m.
- FIG. 3 is a diagram for explaining the relationship between the center-to-center distance and the strain amount of the outer peripheral core 12 with respect to the curvature of the center of the multi-core optical fiber 10 in which ( ⁇ - ⁇ ) is 0 in the relational expression (1).
- the amount of strain obtained by a standard multi-core optical fiber having a clad outer diameter of 125 ⁇ m even when the distance between the centers of the central core 11 and the outer peripheral core 12 is 120 ⁇ m or more and the curvature is ⁇ 0.5 [1 / m]. It can be seen that a strain amount of 5 times or more can be obtained. This means that by increasing the distance between the centers of the central core 11 and the outer peripheral core 12, the sensitivity to the shape change of the small curvature generated in the multi-core optical fiber 10 can be improved.
- This shape measurement method is Arranging the multi-core optical fiber 10 along the linear structure (step S01), Measuring the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber 10 (step S02), and the multi-core optical fiber 10 and three-dimensionally arranged along a linear structure whose three-dimensional shape is unknown. From the rear Brilluan scattered light distribution of the multi-core optical fiber 10 arranged along the linear structure whose shape is known, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated and changed over time. (Step S03), I do.
- the measuring device 20 performs step S02, and the analysis device 30 performs step S03. In step S02, it is desirable to correct the temperature dependence of the Brilluan frequency shift.
- step S03 The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above 3 It is a difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose dimensional shape is known.
- the bending strain ⁇ of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
- the curvature ⁇ and the bending angle ⁇ at the position z of the multi-core optical fiber are calculated from the bending strain ⁇ for each outer core (step S33), and the bending angle ⁇ is differentiated by the arc length.
- the Frenet-Serret formula calculate the position coordinates in the 3D space of the linear structure whose 3D shape is unknown from the curvature ⁇ and the torsion at the position z, and time. Identifying changes (step S34), I do.
- FIG. 5 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
- the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
- the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
- Step C Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
- Step D Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the bending strain ⁇ at the position z is derived for each outer peripheral core.
- Step E Substitute the ⁇ derived by Step D into the relational expression (1) between the bending strain ⁇ of the outer peripheral core, the curvature ⁇ of the multi-core optical fiber 10 and the bending angle ⁇ .
- ⁇ r ⁇ ⁇ ⁇ cos ( ⁇ - ⁇ )
- r is the distance between the centers of the central core 11 and the outer peripheral core 12
- ⁇ is an angle representing the position of the outer peripheral core 12 in the cross section of the multi-core optical fiber 10.
- r is 125 ⁇ m and ⁇ is 0 °, 120 °, and 240 ° for each outer core.
- a ternary simultaneous equation can be obtained. From this equation, the curvature ⁇ and the bending angle ⁇ at the position z are calculated.
- the bending strain ⁇ differs for each core, but since the curvature ⁇ and the bending angle ⁇ are the same in all cores, the curvature ⁇ and the bending angle ⁇ at the position z are determined by the least squares method.
- Step F Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature ⁇ and the bending angle ⁇ for each distance z determined by Step E.
- FIG. 6 is a diagram illustrating a first example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method.
- the longitudinal distance (position z described above) of the multi-core optical fiber 10 is represented by s [m].
- the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
- the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched.
- the vicinity of the center of the multi-core optical fiber 10 was rotated clockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired.
- 6 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively.
- the dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores.
- 6 (d) and 6 (e) show the evaluation results of the curvature ⁇ and the angle ⁇ of the multi-core optical fiber 10, respectively.
- FIG. 6F shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the curvature given to the vicinity of the center of the multi-core optical fiber 10 can be detected with high accuracy.
- FIG. 7 is a diagram illustrating a second example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method. Also in FIGS. 7A to 7E, the distance in the longitudinal direction of the multi-core optical fiber 10 (position z described above) is represented by s [m]. Also in FIG. 7 (f), the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
- the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched.
- the vicinity of the center of the multi-core optical fiber 10 was rotated counterclockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired.
- 7 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively.
- the dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores.
- 7 (d) and 7 (e) show the evaluation results of the curvature ⁇ and the angle ⁇ of the multi-core optical fiber 10, respectively.
- FIG. 7 (f) shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the shape change in the direction opposite to that of FIG. 6 (f) (counterclockwise) can be detected with high accuracy.
- the system configuration of the shape measurement system of the present embodiment is different from the system configuration of the shape measurement system described in FIG. 1 in that the multi-core optical fiber 10 is given a known twist and the analysis procedure of the analysis device 30 is different. ..
- FIG. 8 is a diagram illustrating a multi-core optical fiber 10.
- FIG. 8A describes bending strain measured by the multi-core optical fiber 10 in a twisted state
- FIG. 8B describes bending strain measured by the multi-core optical fiber 10 in a twisted state.
- the core 0 is the central core
- the cores 1 to 3 are the outer peripheral cores. If there is no bending strain, the bending strain becomes zero and overlaps in all cores regardless of the presence or absence of twisting. In addition, the bending strain of the central core is zero regardless of the presence or absence of twisting.
- FIG. 8 (B) bending with a constant curvature is applied as in FIG. 8 (A), but in the section where bending is applied, the positions of the outer peripheral cores are exchanged by twisting, so that the amount of strain is positive or negative. Can be confirmed to be inverted.
- twisting is required in all the sections arranged in the linear structure.
- the analyzer 30 has a linear structure whose three-dimensional shape is unknown based on the torsional strain generated in the multi-core optical fiber 10 and the known torsional strain when calculating the position coordinates. Estimate the unintended twist that occurs when arranging along an object, and exclude the effects of the unintended twist.
- step S33 described in the shape measuring method of FIG. 4 is different from the description of the first embodiment. That is, in step S03, The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
- Step S31 The bending strain ⁇ bending, i of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32). Using the relational expression (2) excluding the influence of the unintended twist, the curvature ⁇ and the bending angle ⁇ at the position z of the multi-core optical fiber are calculated from the bending strain ⁇ bending, i for each outer core. (Step S33), and using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature ⁇ and the bending angle ⁇ at the position z (step S34). ), I do.
- FIG. 9 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
- "i" is a core number.
- i of 1 or more is the outer peripheral core.
- the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
- Step B Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
- Step C Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
- Step D Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the strains ⁇ mix and i at the position z are derived for each outer peripheral core (i here is 1 or more).
- the strains ⁇ mix and i include bending strains ⁇ bending and i and torsional strains ⁇ twisting (where i is 1 or more). Since the relative positional relationship of the outer peripheral cores does not change, the torsional strain ⁇ twisting at the position z is used as shown in the following equation by utilizing the fact that the bending strain ⁇ bending and i of all the outer peripheral cores become zero when added. Is calculated. max ⁇ i ⁇ means the maximum core number. The torsional strain ⁇ twisting calculated by the equation (7) is substituted into the equation (5) to calculate the specific torsion angle ⁇ (z) at the position z.
- FIG. 11 is an image diagram illustrating the specific twist angle ⁇ .
- the specific twist angle ⁇ is a twist angle per unit length.
- r is the distance from the center to the center of the outer peripheral core in the cross section of the multi-core optical fiber 10.
- k2 is a torsion correction coefficient and is expressed by the following equation.
- p is the spin rate (the amount of twist per unit length) of the outer peripheral core, which is a design value or a value obtained by a measurement method described later.
- Step E The bending strain ⁇ bending, i of the outer peripheral core i is calculated by subtracting the ⁇ twisting derived by Step D- ⁇ from the strain ⁇ mix, i of each outer peripheral core.
- the specific twist angle ⁇ (z) calculated in the equation (5) is substituted into the equation (4) to calculate the angle ⁇ i representing the position of the outer peripheral core i at the position z.
- a i is the initial angle of the outer peripheral core i.
- the bending strain ⁇ bending, i of the outer peripheral core i and the angle ⁇ i derived by the equation (4) are substituted into the relational expression (2) of the curvature ⁇ and the bending angle ⁇ of the multi-core optical fiber 10.
- k 1 is a twist correction coefficient represented by the equation (3).
- ⁇ is the Poisson's ratio of the multi-core optical fiber.
- a ternary simultaneous equation can be obtained.
- FIG. 10 is an image diagram illustrating a radius r, a bending direction (curvature ⁇ ), and a bending angle ⁇ of a multi-core optical fiber having an outer peripheral core of 3.
- 10 (A) is a view seen from the side surface of the multi-core optical fiber
- FIG. 10 (B) is a cross-sectional view of the multi-core optical fiber.
- Step F Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature ⁇ and the bending angle ⁇ for each distance z determined by Step E. In addition, in order to improve the position accuracy, it is preferable to correct the three-dimensional shape by using a known end point.
- FIG. 12 is a diagram showing the results of measuring the strain of each core of the twisted multi-core optical fiber in the z direction.
- the number of twists may differ from the design value due to manufacturing errors and the like. Therefore, the strain period fluctuates in each core. Therefore, the number of twists (spin rate) is calculated from the periodic fluctuation of the strain by the RTM (short-time Fourier transform).
- the value of the spin rate p calculated from the measured strain period can be used.
- the shape measurement system according to the present invention can realize a measurement dynamic range of several km to several tens of km by using rear Brillouin scattered light for shape identification of a linear structure. Further, by setting the distance between the center core of the multi-core optical fiber used for detecting the shape change and the center of the outer peripheral core to 120 ⁇ m or more, it is possible to detect a minute change having a curvature of 0.5 [1 / m] or less.
- Multi-core optical fiber 11 Central core 12: Outer peripheral core 20: Measuring device 30: Analytical device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
(1)OFDRは、数10mmオーダーの高分解能を実現できるが、測定距離が数10m程度に限定され、長距離の3次元形状を導出することが困難である。
(2)光ファイバにFBGを付与すれば、その光ファイバの製造容易性や経済性を向上させることが困難となる。
(3)FBGの付与など準分布測定により形状同定を行う技術は、測定点数に制約があり、長距離にわたる形状同定が困難である。
(4)FBGを付与した光ファイバを非線形材料の被測定対象に埋め込んだ形態の場合、温度や応力でFBGによる反射の中心周波数が変化し、計測する光ファイバの歪と曲率にも非線形性が生じるため、被測定物の形状変化を特定することが困難である。 When trying to derive the three-dimensional shape of the object to be measured by OFDR, the following difficulties occur.
(1) OFDR can realize high resolution on the order of several tens of mm, but the measurement distance is limited to about several tens of meters, and it is difficult to derive a long-distance three-dimensional shape.
(2) If an FBG is added to an optical fiber, it becomes difficult to improve the ease of manufacturing and the economic efficiency of the optical fiber.
(3) The technique of performing shape identification by quasi-distribution measurement such as addition of FBG has a limitation on the number of measurement points, and it is difficult to identify the shape over a long distance.
(4) In the case where the optical fiber to which the FBG is applied is embedded in the object to be measured of the non-linear material, the center frequency of the reflection by the FBG changes due to the temperature and stress, and the distortion and curvature of the optical fiber to be measured also have non-linearity. Therefore, it is difficult to identify the shape change of the object to be measured.
断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバと、
前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置と、
3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定する解析装置と、
を備える。 Specifically, the shape measuring system according to the present invention is
A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
A measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and a measuring device.
The rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a linear structure having an unknown three-dimensional shape and the multi-core optical fiber arranged along a linear structure having a known three-dimensional shape. From the analysis device that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown and identifies the time change.
To prepare for.
断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上6個以下の外周コアを有するマルチコア光ファイバを線状構造物に沿って配置すること、
前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること、及び
3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定すること、
を行う。 Further, the shape measuring method according to the present invention is
A central core arranged in the center of the cross section and a multi-core optical fiber having 3 or more and 6 or less outer peripheral cores arranged outside the central core and concentrically at equal intervals are arranged along the linear structure. matter,
The rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber is measured, and the multi-core optical fiber and the three-dimensional shape arranged along the linear structure whose three-dimensional shape is unknown are known. From the rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a certain linear structure, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated, and the time change thereof is calculated. To identify,
I do.
前記マルチコア光ファイバの長手方向の位置をzとすると、
前記解析装置は、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算し、曲げ角度βを弧長で微分して捩率を計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと捩率から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定すること、
を行うことを特徴とする。
尚、曲げ角度βはMCF断面において、MCF中心と曲率中心を結ぶベクトルと基準方向ベクトル、例えば、MCF中心とある特定の一つのコアを結ぶベクトルのなす角度を表す。
[関係式(1)]
ε=r・κ・cos(α-β)
ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。 The specific analysis method is as follows.
Let z be the position in the longitudinal direction of the multi-core optical fiber.
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (1), the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε for each outer core, and the bending angle β is differentiated by the arc length to calculate the torsion of a curve. Using the Frenet-Serret formula, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated from the curvature κ and the torsion at the position z, and the time change is identified. matter,
It is characterized by doing.
The bending angle β represents an angle formed by a vector connecting the MCF center and the center of curvature and a reference direction vector, for example, a vector connecting the MCF center and a specific core in the MCF cross section.
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
前記マルチコア光ファイバには、既知の捩じりが与えられていること、及び
前記解析装置は、前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
が好ましい。 In this method, when a multi-core optical fiber is placed along a structure, an unintended twist may occur, which may cause an error in the measurement result. In such a case
The multi-core optical fiber is given a known torsion, and the analyzer is known to have a torsional strain occurring in the multi-core optical fiber when calculating the position coordinates. The unintended torsion that occurs when the three-dimensional shape is placed along a linear structure whose three-dimensional shape is unknown is estimated based on the strain due to the torsion, and the influence of the unintended torsion is excluded. matter,
Is preferable.
前記マルチコア光ファイバの長手方向の位置をzとすると、
前記解析装置は、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする。
Let z be the position in the longitudinal direction of the multi-core optical fiber.
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
It is characterized by doing.
また、前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることが好ましい。
既存のシングルモードファイバ(クラッド直径が125μm)をバンドルすることでファンイン/ファンアウト(FIFO)デバイスを容易に実現できる。また、中心コアと外周コアの中心間の間隔が広いほど外周コアに生じる歪が大きくなり、高ダイナミックレンジ化することができる。 The multi-core optical fiber preferably has 3 or more outer peripheral cores and a clad diameter of 375 μm or more.
Further, in the multi-core optical fiber, the distance between the center core and the outer peripheral core is preferably 120 μm or more.
Fan-in / fan-out (FIFO) devices can be easily realized by bundling existing single-mode fibers (clad diameter 125 μm). Further, the wider the distance between the center of the central core and the center of the outer peripheral core, the larger the distortion generated in the outer peripheral core, and the higher the dynamic range can be achieved.
図1は、本実施形態の形状測定システムを説明する図である。本形状測定システムは、
断面の中心に配置される中心コア11、及び中心コア11の外側かつ同心円状に等間隔で配置される3個以上の外周コア12を有するマルチコア光ファイバ10と、
マルチコア光ファイバ10の各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置20と、
3次元形状が未知である線状構造物に沿って配置されたマルチコア光ファイバ10と3次元形状が既知である線状構造物に沿って配置されたマルチコア光ファイバ10の前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定する解析装置30と、
を備える。
尚、図1では、マルチコア光ファイバ10の特定の1コアと、後方ブリルアン散乱光分布を計測する計測装置20とが接続される例を示している。他の構成として、マルチコア光ファイバの各コアを単一コア光ファイバに分離するファンアウト機構、および光スイッチを介してマルチコア光ファイバ10と計測装置20とを接続する形態でも構わない。 [Embodiment 1]
FIG. 1 is a diagram illustrating a shape measuring system of the present embodiment. This shape measurement system is
A
A measuring
The rear Brillouin scattered light distribution of the multi-core
To prepare for.
Note that FIG. 1 shows an example in which a specific one core of the multi-core
また、ある半径の円は、それに接する同じ半径の6個の円で取り囲むことができる。この場合、円の数はトータルで7個である。つまり、同じ直径のシングルコアの光ファイバを7本を最密で配置したときのコア位置のマルチコア光ファイバとすることができ、FIFOを容易に作ることができる。
一方、外周の円が7個以上(円の数はトータルで8個以上)になると、1つの円の周りに7つ以上の円を配置すると中心の円と外周の円との間に隙間が生まれる。つまり、同じ直径のシングルコアの光ファイバを8本以上では最密で配置することができず、マルチコア光ファイバのクラッド径が大きくなり、ファンイン/ファンアウト(FIFO)の作成が難しくなる。
従って、マルチコア光ファイバの外周コア数は3個以上6個以下が望ましい。 The limits on the number of cores are as follows. If the number of cores is 3 or less (2 or less outer peripheral cores), the shape cannot be identified. On the other hand, when the number of cores is 5 or more (4 or more outer peripheral cores), the measurement accuracy is improved, but the measurement time is increased by the number of cores.
Also, a circle of a certain radius can be surrounded by six circles of the same radius in contact with it. In this case, the total number of circles is seven. That is, a single-core optical fiber having the same diameter can be used as a multi-core optical fiber at the core position when seven optical fibers are closely arranged, and a FIFO can be easily produced.
On the other hand, when the number of outer circles is 7 or more (the total number of circles is 8 or more), if 7 or more circles are placed around one circle, a gap will be created between the center circle and the outer circle. to be born. That is, eight or more single-core optical fibers having the same diameter cannot be arranged in the densest position, the clad diameter of the multi-core optical fiber becomes large, and it becomes difficult to create a fan-in / fan-out (FIFO).
Therefore, it is desirable that the number of outer peripheral cores of the multi-core optical fiber is 3 or more and 6 or less.
マルチコア光ファイバ10を線状構造物に沿って配置すること(ステップS01)、
マルチコア光ファイバ10の各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること(ステップS02)、及び
3次元形状が未知である線状構造物に沿って配置されたマルチコア光ファイバ10と3次元形状が既知である線状構造物に沿って配置されたマルチコア光ファイバ10の後方ブリルアン散乱光分布から3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、時間変化を同定すること(ステップS03)、
を行う。なお、計測装置20がステップS02を行い、解析装置30がステップS03を行う。ステップS02では、ブリルアン周波数シフトの温度依存性を補正することが望ましい。 Next, a shape measuring method for measuring a shape change of an object to be measured by using a multi-core
Arranging the multi-core
Measuring the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber 10 (step S02), and the multi-core
I do. The measuring
ステップS03では、
3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること(ステップS31)、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること(ステップS32)、
関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること(ステップS33)、曲げ角度βを弧長で微分して捩率を計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと捩率から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、時間変化を同定すること(ステップS34)、
を行う。 Let z be the position in the longitudinal direction of the multi-core
In step S03
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above 3 It is a difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose dimensional shape is known. Calculating the differential strain at position z (step S31),
The bending strain ε of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
Using the relational expression (1), the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε for each outer core (step S33), and the bending angle β is differentiated by the arc length. And using the Frenet-Serret formula, calculate the position coordinates in the 3D space of the linear structure whose 3D shape is unknown from the curvature κ and the torsion at the position z, and time. Identifying changes (step S34),
I do.
[Step A]
まず、3次元形状が既知である線状構造物(例えば、すでに敷設されている水道管等)に沿ってマルチコア光ファイバ10を敷設し、定常状態(基準状態)における各コアの後方ブリルアン散乱光の分布特性を取得する。これを基準データとする。
[Step B]
次に、線状構造物の3次元形状が変化した状態(例えば、地震などで変形が想定される水道管等)で、改めて各コアの後方ブリルアン散乱光の分布特性を取得する。これを比較データとする。
[Step C]
次に、コア毎且つ位置z毎に比較データと基準データの差分を計算して差分歪を導出する。
[Step D]
次に、それぞれの外周コアの差分歪から中心コアの差分歪を減算し、外周コア毎に位置zにおける曲げ歪εを導出する。
[Step E]
外周コアの曲げ歪εと、マルチコア光ファイバ10の曲率κと曲げ角度βの関係式(1)に、Step Dで導出したεを代入する。
[関係式(1)]
ε=r・κ・cos(α-β)
ただし、rは中心コア11と外周コア12との中心間距離、αはマルチコア光ファイバ10の断面における外周コア12の位置を表す角度である。例えば、rは125μm、αは外周コア毎に0°、120°、240°である。
本実施形態では、外周コアが3つあるので3元連立方程式が得られる。この式により位置zにおける曲率κと曲げ角度βを算出する。ここで、曲げ歪εはコアごとに異なるが、曲率κと曲げ角度βはいずれのコアにおいても等しいため、最小二乗法で位置zにおける曲率κと曲げ角度βを決定する。
[Step F]
フレネ・セレの公式を用い、Step Eで決定した距離z毎の曲率κと曲げ角度βから、マルチコア光ファイバ10の位置ベクトル(3次元形状)を決定する。なお、位置精度を向上するために、既知の終点を用いて3次元形状を補正することが好ましい。 FIG. 5 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
[Step A]
First, the multi-core
[Step B]
Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
[Step C]
Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
[Step D]
Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the bending strain ε at the position z is derived for each outer peripheral core.
[Step E]
Substitute the ε derived by Step D into the relational expression (1) between the bending strain ε of the outer peripheral core, the curvature κ of the multi-core
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the
In this embodiment, since there are three outer cores, a ternary simultaneous equation can be obtained. From this equation, the curvature κ and the bending angle β at the position z are calculated. Here, the bending strain ε differs for each core, but since the curvature κ and the bending angle β are the same in all cores, the curvature κ and the bending angle β at the position z are determined by the least squares method.
[Step F]
Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core
図6は、形状測定方法でマルチコア光ファイバ10の3次元形状を測定した第1の例を説明する図である。図6(a)~(e)では、マルチコア光ファイバ10の長手方向の距離(上で説明した位置z)をs[m]で表している。図6(f)では、マルチコア光ファイバ10が配置された3次元空間をx軸、y軸、z軸で表している。ここでのz軸は上で説明した位置zと異なることに注意する。 (Example 1)
FIG. 6 is a diagram illustrating a first example in which the three-dimensional shape of the multi-core
図7は、形状測定方法でマルチコア光ファイバ10の3次元形状を測定した第2の例を説明する図である。図7(a)~(e)でも、マルチコア光ファイバ10の長手方向の距離(上で説明した位置z)をs[m]で表している。図7(f)でも、マルチコア光ファイバ10が配置された3次元空間をx軸、y軸、z軸で表している。ここでのz軸は上で説明した位置zと異なることに注意する。 (Example 2)
FIG. 7 is a diagram illustrating a second example in which the three-dimensional shape of the multi-core
センシング媒体として線状構造物にマルチコア光ファイバを沿わせる際に、意図しない捩じりが生じ、計測結果に誤差が生じる可能性がある。そこで、本実施形態では、センシング媒体に使用するマルチコア光ファイバに意図的に捩じりを加えることとした。線状構造物の形状同定の際にその捩じり歪以下の意図しない捩じりによる歪分を計算で排除することができ、形状同定の精度を向上させることができる。 [Embodiment 2]
When a multi-core optical fiber is placed along a linear structure as a sensing medium, an unintended twist may occur and an error may occur in the measurement result. Therefore, in the present embodiment, it is decided to intentionally twist the multi-core optical fiber used for the sensing medium. When identifying the shape of a linear structure, the strain due to unintended torsion below the torsional strain can be eliminated by calculation, and the accuracy of shape identification can be improved.
なお、曲げ歪が無い場合、曲げ歪は捩じれの有無によらず全てのコアでゼロとなり重なる。また、中心コアについては捩じれの有無によらず、曲げ歪はゼロとなる。捩じれが無い状態のマルチコア光ファイバ10の場合、曲率が一定の曲げが付与されると測定される曲げ歪は図8(A)の軸方向の位置z=2mからz=12mの間のようにコアごとに異なる歪量であるが一定の歪量が観測される。
また、図8(B)は、軸方向の位置z=2mからz=12mの間で捩じれを付与したマルチコア光ファイバ10の曲げ歪を説明している。図8(B)では、図8(A)と同様に曲率が一定の曲げを付与しているが、曲げが付与された区間において、外周コアの位置が捻じれによって入れ替わるため、歪量の正負が反転していることが確認できる。マルチコア光ファイバ10をセンシング媒体として線状構造物に配置する場合、線状構造物に配置する区間全てに捩じりが必要である。 FIG. 8 is a diagram illustrating a multi-core
If there is no bending strain, the bending strain becomes zero and overlaps in all cores regardless of the presence or absence of twisting. In addition, the bending strain of the central core is zero regardless of the presence or absence of twisting. In the case of the multi-core
Further, FIG. 8B describes the bending strain of the multi-core
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること(ステップS31)、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること(ステップS32)、
前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること(ステップS33)、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること(ステップS34)、
を行う。 In this shape measuring method, step S33 described in the shape measuring method of FIG. 4 is different from the description of the first embodiment. That is, in step S03,
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential strain at a certain position z (step S31),
The bending strain ε bending, i of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. (Step S33), and using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ and the bending angle β at the position z (step S34). ),
I do.
[Step A]
まず、3次元形状が既知である線状構造物(例えば、すでに敷設されている水道管等)に沿ってマルチコア光ファイバ10を敷設し、定常状態(基準状態)における各コアの後方ブリルアン散乱光の分布特性を取得する。これを基準データとする。
[Step B]
次に、線状構造物の3次元形状が変化した状態(例えば、地震などで変形が想定される水道管等)で、改めて各コアの後方ブリルアン散乱光の分布特性を取得する。これを比較データとする。
[Step C]
次に、コア毎且つ位置z毎に比較データと基準データの差分を計算して差分歪を導出する。
[Step D]
次に、それぞれの外周コアの差分歪から中心コアの差分歪を減算し、外周コア毎に位置zにおける歪εmix,iを導出する(ここのiは1以上)。
[Step D-α]
歪εmix,iには、曲げ歪εbending,iと捩じり歪εtwistingが含まれる(ここのiは1以上)。外周コアの相対的な位置関係は変化しないので、全ての外周コアiの曲げ歪εbending,iを加算するとゼロになることを利用し、次式のように位置zにおける捩じり歪εtwistingを算出する。max{i}は最大のコア番号を意味する。
各外周コアの歪εmix,iからStep D-αで導出したεtwistingを減算して外周コアiの曲げ歪εbending,iを算出する。
そして、式(4)に式(5)で算出した比捩じり角φ(z)を代入し、位置zにおける外周コアiの位置を表わす角度ωiを算出する。aiは外周コアiの初期角度である。
本実施形態では、外周コアが3つあるので3元連立方程式が得られる。関係式(2)により位置zにおける曲率κと曲げ角度βを算出する。ここで、曲げ歪εはコアごとに異なるが、曲率κと曲げ角度βはいずれのコアにおいても等しいため、最小二乗法で位置zにおける曲率κと曲げ角度βを決定する。
なお、図10は、外周コアが3であるマルチコア光ファイバの半径r、曲げ方向(曲率κ)、曲げ角度βを説明するイメージ図である。図10(A)はマルチコア光ファイバの側面から見た図、図10(B)はマルチコア光ファイバの断面図である。
[Step F]
フレネ・セレの公式を用い、Step Eで決定した距離z毎の曲率κと曲げ角度βから、マルチコア光ファイバ10の位置ベクトル(3次元形状)を決定する。なお、位置精度を向上するために、既知の終点を用いて3次元形状を補正することが好ましい。 FIG. 9 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method. Here, "i" is a core number. Note that i = 0 is the central core, and i of 1 or more is the outer peripheral core.
[Step A]
First, the multi-core
[Step B]
Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
[Step C]
Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
[Step D]
Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the strains ε mix and i at the position z are derived for each outer peripheral core (i here is 1 or more).
[Step D-α]
The strains ε mix and i include bending strains ε bending and i and torsional strains ε twisting (where i is 1 or more). Since the relative positional relationship of the outer peripheral cores does not change, the torsional strain ε twisting at the position z is used as shown in the following equation by utilizing the fact that the bending strain ε bending and i of all the outer peripheral cores become zero when added. Is calculated. max {i} means the maximum core number.
The bending strain ε bending, i of the outer peripheral core i is calculated by subtracting the ε twisting derived by Step D-α from the strain ε mix, i of each outer peripheral core.
Then, the specific twist angle φ (z) calculated in the equation (5) is substituted into the equation (4) to calculate the angle ω i representing the position of the outer peripheral core i at the position z. a i is the initial angle of the outer peripheral core i.
In this embodiment, since there are three outer cores, a ternary simultaneous equation can be obtained. The curvature κ and the bending angle β at the position z are calculated by the relational expression (2). Here, the bending strain ε differs for each core, but since the curvature κ and the bending angle β are the same in all cores, the curvature κ and the bending angle β at the position z are determined by the least squares method.
Note that FIG. 10 is an image diagram illustrating a radius r, a bending direction (curvature κ), and a bending angle β of a multi-core optical fiber having an outer peripheral core of 3. 10 (A) is a view seen from the side surface of the multi-core optical fiber, and FIG. 10 (B) is a cross-sectional view of the multi-core optical fiber.
[Step F]
Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core
ここで、スピンレートを実測する方法について説明する。
図12は、捩じりを加えたマルチコア光ファイバの各コアの歪をz方向に測定した結果を示す図である。マルチコア光ファイバを捩じった場合、製造誤差などにより捩じり回数(スピンレート)に設計値との誤差が生じる。このため、各コアとも、歪の周期が変動する。そこで、STFT(short-time Fourier transform)により周期的な歪の変動から捩じり回数(スピンレート)を算出する。上述したステップD-αでは、この実測した歪の周期から算出したスピンレートpの値を利用することができる。 (Spin rate measurement method)
Here, a method for actually measuring the spin rate will be described.
FIG. 12 is a diagram showing the results of measuring the strain of each core of the twisted multi-core optical fiber in the z direction. When a multi-core optical fiber is twisted, the number of twists (spin rate) may differ from the design value due to manufacturing errors and the like. Therefore, the strain period fluctuates in each core. Therefore, the number of twists (spin rate) is calculated from the periodic fluctuation of the strain by the RTM (short-time Fourier transform). In step D-α described above, the value of the spin rate p calculated from the measured strain period can be used.
本発明に係る形状測定システムは、線状構造物の形状同定に後方ブリルアン散乱光を用いることで、数kmから数10kmの測定ダイナミックレンジを実現できる。また、形状変化の検出に用いるマルチコア光ファイバの中心コアと外周コアの中心間距離を120μm以上としたことで、曲率0.5[1/m]以下の微小変化を検出できる。 (effect)
The shape measurement system according to the present invention can realize a measurement dynamic range of several km to several tens of km by using rear Brillouin scattered light for shape identification of a linear structure. Further, by setting the distance between the center core of the multi-core optical fiber used for detecting the shape change and the center of the outer peripheral core to 120 μm or more, it is possible to detect a minute change having a curvature of 0.5 [1 / m] or less.
11:中心コア
12:外周コア
20:計測装置
30:解析装置 10: Multi-core optical fiber 11: Central core 12: Outer peripheral core 20: Measuring device 30: Analytical device
Claims (14)
- 断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバと、
前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置と、
3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出する解析装置と、
を備える形状測定システム。 A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
A measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and a measuring device.
The rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a linear structure having an unknown three-dimensional shape and the multi-core optical fiber arranged along a linear structure having a known three-dimensional shape. An analyzer that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from
Shape measurement system. - 前記マルチコア光ファイバの長手方向の位置をzとすると、
前記解析装置は、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする請求項1に記載の形状測定システム。
[関係式(1)]
ε=r・κ・cos(α-β)
ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。 Let z be the position in the longitudinal direction of the multi-core optical fiber.
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (1), calculate the curvature κ and bending angle β at the position z of the multi-core optical fiber from the bending strain ε for each outer core, and using the Frenet-Serret formula, the curvature at the position z. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from κ and the bending angle β.
The shape measuring system according to claim 1.
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber. - 前記マルチコア光ファイバは、既知の捩じりが与えられていること、及び
前記解析装置は、前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
を特徴とする請求項1に記載の形状測定システム。 The multi-core optical fiber is given a known torsion, and when the analyzer calculates the position coordinates, the torsional strain occurring in the multi-core optical fiber and the known torsion. To estimate the unintended torsion that occurred when arranging along a linear structure whose three-dimensional shape is unknown based on the strain due to the kinking, and to exclude the influence of the unintended twist. ,
The shape measuring system according to claim 1. - 前記マルチコア光ファイバの長手方向の位置をzとすると、
前記解析装置は、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする請求項3に記載の形状測定システム。
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
3. The shape measuring system according to claim 3.
- 前記解析装置は、前記外周コアそれぞれの曲げ歪εbending,iの周期的な変動から前記外周コアのスピンレートpを算出することを特徴とする請求項4に記載の形状測定システム。 The shape measuring system according to claim 4, wherein the analysis device calculates the spin rate p of the outer peripheral core from periodic fluctuations of bending strain ε bending and i of each of the outer peripheral cores.
- 前記マルチコア光ファイバは、前記外周コアの数は3であり、クラッド直径が375μm以上であることを特徴とする請求項1から5のいずれかに記載の測定システム。 The measurement system according to any one of claims 1 to 5, wherein the multi-core optical fiber has 3 outer peripheral cores and a clad diameter of 375 μm or more.
- 前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることを特徴とする請求項1から6のいずれかに記載の測定システム。
The measuring system according to any one of claims 1 to 6, wherein the multi-core optical fiber has a center-to-center distance between the central core and the outer peripheral core of 120 μm or more.
- 断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバを線状構造物に沿って配置すること、
前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること、及び
3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行う形状測定方法。 Arranging a central core arranged in the center of the cross section and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically at equal intervals outside the central core along the linear structure.
Measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and knowing the multi-core optical fiber and the three-dimensional shape arranged along a linear structure whose three-dimensional shape is unknown. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the rear Brillouin scattered light distribution of the multi-core optical fiber arranged along a certain linear structure.
Shape measurement method. - 前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出するときに、前記マルチコア光ファイバの長手方向の位置をzとし、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする請求項8に記載の形状測定方法。
[関係式(1)]
ε=r・κ・cos(α-β)
ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。 When calculating the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown, the position in the longitudinal direction of the multi-core optical fiber is defined as z.
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (1), calculate the curvature κ and bending angle β at the position z of the multi-core optical fiber from the bending strain ε for each outer core, and using the Frenet-Serret formula, the curvature at the position z. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from κ and the bending angle β.
8. The shape measuring method according to claim 8.
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber. - 前記マルチコア光ファイバには、既知の捩じりが与えられていること、及び
前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
を特徴とする請求項8に記載の形状測定方法。 The multi-core optical fiber is given a known torsion, and when the position coordinates are calculated, the torsional strain generated in the multi-core optical fiber and the strain due to the known torsion are applied. To estimate the unintended twist that occurred when arranging along a linear structure whose three-dimensional shape is unknown based on the above, and to exclude the influence of the unintended twist.
The shape measuring method according to claim 8. - 前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出するときに、前記マルチコア光ファイバの長手方向の位置をzとし、
前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする請求項10に記載の形状測定方法。
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
10. The shape measuring method according to claim 10.
- 前記外周コアそれぞれの曲げ歪εbending,iの周期的な変動から前記外周コアのスピンレートpを算出することを特徴とする請求項11に記載の形状測定方法。 The shape measuring method according to claim 11, wherein the spin rate p of the outer peripheral core is calculated from periodic fluctuations of bending strain ε bending and i of each of the outer peripheral cores.
- 前記マルチコア光ファイバは、前記外周コアの数は3であり、クラッド直径が375μm以上であることを特徴とする請求項8から12のいずれかに記載の形状測定方法。 The shape measuring method according to any one of claims 8 to 12, wherein the multi-core optical fiber has 3 outer peripheral cores and a clad diameter of 375 μm or more.
- 前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることを特徴とする請求項8から13のいずれかに記載の形状測定方法。 The shape measuring method according to any one of claims 8 to 13, wherein the multi-core optical fiber has a center-to-center distance between the central core and the outer peripheral core of 120 μm or more.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/915,924 US20230147800A1 (en) | 2020-06-05 | 2021-06-03 | Shape measurement system and shape measurement method |
JP2022528897A JP7376052B2 (en) | 2020-06-05 | 2021-06-03 | Shape measurement system and shape measurement method |
EP21818720.1A EP4163586A4 (en) | 2020-06-05 | 2021-06-03 | Shape measurement system and shape measurement method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-098349 | 2020-06-05 | ||
JP2020098349 | 2020-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021246497A1 true WO2021246497A1 (en) | 2021-12-09 |
Family
ID=78831274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021283 WO2021246497A1 (en) | 2020-06-05 | 2021-06-03 | Shape measurement system and shape measurement method |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230147800A1 (en) |
EP (1) | EP4163586A4 (en) |
JP (1) | JP7376052B2 (en) |
WO (1) | WO2021246497A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023120055A1 (en) * | 2021-12-24 | 2023-06-29 | 日本電信電話株式会社 | Shape measurement system and shape measurement method |
CN118149723A (en) * | 2024-05-09 | 2024-06-07 | 武汉理工大学 | Long-distance underwater cable gesture detection method and system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115900579B (en) * | 2023-01-06 | 2023-05-26 | 山东大学 | Self-correcting spliced optical fiber displacement field sensing system and correcting method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013505441A (en) * | 2009-09-18 | 2013-02-14 | ルナ イノベーションズ インコーポレイテッド | Optical position and / or shape sensing |
JP2016102691A (en) * | 2014-11-27 | 2016-06-02 | 日本電信電話株式会社 | Optical fiber bent shape measurement device and bent shape measurement method therefor |
JP2018527041A (en) * | 2015-06-15 | 2018-09-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Optical shape sensing system and method for sensing the position and / or shape of a medical device using backscattered light measurement |
JP2019522776A (en) * | 2016-05-11 | 2019-08-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Redundant core in multi-core optical fiber for safety |
JP2019531487A (en) * | 2016-08-10 | 2019-10-31 | フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Method for determining bending and / or strain of an optical waveguide |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1939596A4 (en) * | 2005-09-29 | 2012-04-25 | Sumitomo Electric Industries | Sensor and external turbulence measuring method using the same |
JP2007101508A (en) * | 2005-10-07 | 2007-04-19 | Sumitomo Electric Ind Ltd | Temperature measurement method and device |
JP5769676B2 (en) * | 2012-08-17 | 2015-08-26 | 公益財団法人地球環境産業技術研究機構 | Material pressure, temperature, strain distribution measurement system, carbon dioxide underground storage monitoring method using the system, method of evaluating the effect of formation of carbon dioxide on formation stability, and ice formation monitoring method |
US9366526B2 (en) * | 2012-11-30 | 2016-06-14 | Neubrex Co., Ltd. | Three-dimensional position measurement system |
US10228556B2 (en) * | 2014-04-04 | 2019-03-12 | The General Hospital Corporation | Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s) |
CN105371781B (en) * | 2015-11-13 | 2018-09-07 | 华中科技大学 | A kind of method for measuring three-dimensional shape |
US10145681B2 (en) * | 2016-07-19 | 2018-12-04 | Corning Incorporated | Brillouin-based distributed bend fiber sensor and method for using same |
US10530114B2 (en) * | 2017-08-31 | 2020-01-07 | United States Of America As Represented By The Administrator Of Nasa | Polarization maintaining, large mode area (PMVLMA) erbium-doped optical fiber and amplifier |
CN110243302B (en) * | 2018-03-08 | 2020-11-06 | 桂林电子科技大学 | Reflection type multi-core circulating series connection optical fiber shape sensor |
EP3832254B1 (en) * | 2018-07-31 | 2023-08-30 | Furukawa Electric Co., Ltd. | Cable, cable shape sensing system, sensing system, and method for sensing cable shape |
AU2020274436A1 (en) * | 2019-05-12 | 2021-12-02 | Hampidjan Hf. | Elongation and heat indicating synthetic fibre rope |
WO2021086129A1 (en) * | 2019-10-31 | 2021-05-06 | (주)옵토닉스 | Special optical fiber for measuring 3d curved shape, manufacturing method thereof, and system for measuring 3d curved shape by using special optical fiber |
-
2021
- 2021-06-03 JP JP2022528897A patent/JP7376052B2/en active Active
- 2021-06-03 WO PCT/JP2021/021283 patent/WO2021246497A1/en active Application Filing
- 2021-06-03 US US17/915,924 patent/US20230147800A1/en active Pending
- 2021-06-03 EP EP21818720.1A patent/EP4163586A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013505441A (en) * | 2009-09-18 | 2013-02-14 | ルナ イノベーションズ インコーポレイテッド | Optical position and / or shape sensing |
JP2016102691A (en) * | 2014-11-27 | 2016-06-02 | 日本電信電話株式会社 | Optical fiber bent shape measurement device and bent shape measurement method therefor |
JP2018527041A (en) * | 2015-06-15 | 2018-09-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Optical shape sensing system and method for sensing the position and / or shape of a medical device using backscattered light measurement |
JP2019522776A (en) * | 2016-05-11 | 2019-08-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Redundant core in multi-core optical fiber for safety |
JP2019531487A (en) * | 2016-08-10 | 2019-10-31 | フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Method for determining bending and / or strain of an optical waveguide |
Non-Patent Citations (3)
Title |
---|
ROGER G. DUNCAN, HIGH-ACCURACY FIBER-OPTIC SHAPE SENSING, 30 April 2020 (2020-04-30), Retrieved from the Internet <URL:https://doi.org/10.1117/12.720914> |
See also references of EP4163586A4 |
YONG-LAE PARK: "Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions", IEEE/ASME, vol. 15, no. 6, 2010, XP011339830, DOI: 10.1109/TMECH.2010.2080360 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023120055A1 (en) * | 2021-12-24 | 2023-06-29 | 日本電信電話株式会社 | Shape measurement system and shape measurement method |
CN118149723A (en) * | 2024-05-09 | 2024-06-07 | 武汉理工大学 | Long-distance underwater cable gesture detection method and system |
Also Published As
Publication number | Publication date |
---|---|
JP7376052B2 (en) | 2023-11-08 |
JPWO2021246497A1 (en) | 2021-12-09 |
EP4163586A4 (en) | 2024-02-21 |
EP4163586A1 (en) | 2023-04-12 |
US20230147800A1 (en) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021246497A1 (en) | Shape measurement system and shape measurement method | |
JP7518243B2 (en) | Redundant cores in multicore optical fibers for safety | |
CN107003473B (en) | Different cores in a multicore fiber for strain and temperature separation | |
CN105865752B (en) | Method and device for comprehensively judging polarization maintaining optical fiber characteristics by adopting distributed polarization crosstalk analyzer | |
WO2014083989A1 (en) | Three-dimensional position measurement device | |
US20100215311A1 (en) | Method and Apparatus for Shape and End Position Determination Using an Optical Fiber | |
US20080212082A1 (en) | Fiber optic position and/or shape sensing based on rayleigh scatter | |
JP6346852B2 (en) | Optical fiber bending shape measuring apparatus and bending shape measuring method thereof | |
Duncan et al. | Characterization of a fiber-optic shape and position sensor | |
CN111982000B (en) | Optical fiber shape reconstruction method and device based on Beta frame | |
CN110073174A (en) | The method and apparatus for determining form parameter using the sensing optical fiber of the single with a variety of light spread modes | |
Marković et al. | Application of fiber-optic curvature sensor in deformation measurement process | |
JP7315009B2 (en) | Optical fiber cable sensing device, optical fiber cable sensing method, and program | |
JP2016102690A (en) | Optical fiber bent shape measurement device and bent shape measurement method therefor | |
JP7406767B2 (en) | Fiber optic cable sensing system, fiber optic cable sensing method, and fiber optic cable | |
EP4455617A1 (en) | Shape measurement system and shape measurement method | |
Maeda et al. | Shape Sensing for Large-scale Line Structures with Multi-core Fibers by Using Brillouin OTDR | |
CN115667840A (en) | System for measuring microbends and arbitrary micro-deformations along three-dimensional space | |
Lebang et al. | Detection of displacement using glass optical fiber sensor with various configuration | |
JP7406768B2 (en) | Optical fiber cable sensing device, optical fiber cable sensing method, and program | |
US20230152170A1 (en) | Measuring device and measuring method using tape core wire | |
JP7523071B2 (en) | Optical fiber twisting period calculation system, optical fiber twisting period calculation method, optical fiber twisting period calculation device, and optical fiber twisting period calculation program | |
WO2024228359A1 (en) | Detection system, detection method, and analysis device | |
JP2023014654A (en) | Optical fiber bending direction calculation system, optical fiber bending direction calculation method, optical fiber bending direction calculation device, and optical fiber bending direction calculation program | |
OGURA et al. | Detection of Buckling in Columnar Structures by Shape Sensing with Multi-Core Optical Fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21818720 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022528897 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021818720 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021818720 Country of ref document: EP Effective date: 20230105 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |