WO2021246497A1 - Shape measurement system and shape measurement method - Google Patents

Shape measurement system and shape measurement method Download PDF

Info

Publication number
WO2021246497A1
WO2021246497A1 PCT/JP2021/021283 JP2021021283W WO2021246497A1 WO 2021246497 A1 WO2021246497 A1 WO 2021246497A1 JP 2021021283 W JP2021021283 W JP 2021021283W WO 2021246497 A1 WO2021246497 A1 WO 2021246497A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
core optical
outer peripheral
strain
Prior art date
Application number
PCT/JP2021/021283
Other languages
French (fr)
Japanese (ja)
Inventor
信智 半澤
和秀 中島
隆 松井
英晶 村山
良太 和田
真輝人 小林
Original Assignee
日本電信電話株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, 国立大学法人東京大学 filed Critical 日本電信電話株式会社
Priority to US17/915,924 priority Critical patent/US20230147800A1/en
Priority to JP2022528897A priority patent/JP7376052B2/en
Priority to EP21818720.1A priority patent/EP4163586A4/en
Publication of WO2021246497A1 publication Critical patent/WO2021246497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4709Backscatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • G01N2021/638Brillouin effect, e.g. stimulated Brillouin effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • G01N2021/9542Inspecting the inner surface of hollow bodies, e.g. bores using a probe
    • G01N2021/9546Inspecting the inner surface of hollow bodies, e.g. bores using a probe with remote light transmitting, e.g. optical fibres

Definitions

  • the present disclosure relates to an apparatus and a method for deriving a three-dimensional shape of an object to be measured, such as a pipeline or a submarine cable, by a reflectometry technique using an optical fiber.
  • Non-Patent Document 1 A technique has been proposed in which the reflection spectrum in the frequency domain of each core of a multi-core optical fiber is measured and analyzed by OFDR (Optical Frequency Domain Reflectometry) to derive a three-dimensional shape to be measured (for example, Non-Patent Document 1). reference.). Further, a method of imparting FBG (Fiber Bragg Grating) to the entire length of the sensing medium (optical fiber) to improve the measurement resolution has also been proposed (see, for example, Non-Patent Document 2).
  • FBG Fiber Bragg Grating
  • OFDR When trying to derive the three-dimensional shape of the object to be measured by OFDR, the following difficulties occur. (1) OFDR can realize high resolution on the order of several tens of mm, but the measurement distance is limited to about several tens of meters, and it is difficult to derive a long-distance three-dimensional shape. (2) If an FBG is added to an optical fiber, it becomes difficult to improve the ease of manufacturing and the economic efficiency of the optical fiber. (3) The technique of performing shape identification by quasi-distribution measurement such as addition of FBG has a limitation on the number of measurement points, and it is difficult to identify the shape over a long distance.
  • an object of the present invention is to provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution in order to solve the above problems. do.
  • the shape measurement system uses a multi-core optical fiber having a predetermined core arrangement as a sensing medium, and analyzes data acquired by BOTDR (Brillouin Optical Time Domain Reflectometer). ..
  • the shape measuring system is A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
  • a measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber and a measuring device.
  • the shape measuring method according to the present invention is A central core arranged in the center of the cross section and a multi-core optical fiber having 3 or more and 6 or less outer peripheral cores arranged outside the central core and concentrically at equal intervals are arranged along the linear structure.
  • the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber is measured, and the multi-core optical fiber and the three-dimensional shape arranged along the linear structure whose three-dimensional shape is unknown are known. From the rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a certain linear structure, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated, and the time change thereof is calculated. To identify, I do.
  • the present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
  • the specific analysis method is as follows. Let z be the position in the longitudinal direction of the multi-core optical fiber.
  • the analyzer is The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
  • the bending angle ⁇ represents an angle formed by a vector connecting the MCF center and the center of curvature and a reference direction vector, for example, a vector connecting the MCF center and a specific core in the MCF cross section.
  • r ⁇ ⁇ ⁇ cos ( ⁇ - ⁇ )
  • r is the distance between the centers of the central core and the outer peripheral core
  • is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
  • a multi-core optical fiber when a multi-core optical fiber is placed along a structure, an unintended twist may occur, which may cause an error in the measurement result.
  • the multi-core optical fiber is given a known torsion, and the analyzer is known to have a torsional strain occurring in the multi-core optical fiber when calculating the position coordinates.
  • the unintended torsion that occurs when the three-dimensional shape is placed along a linear structure whose three-dimensional shape is unknown is estimated based on the strain due to the torsion, and the influence of the unintended torsion is excluded. matter, Is preferable.
  • the specific analysis method in this case is as follows. Let z be the position in the longitudinal direction of the multi-core optical fiber.
  • the analyzer is The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
  • r is the distance between the centers of the central core and the outer peripheral core
  • k 1 is the twist correction coefficient represented by the equation (3)
  • is the Poisson's ratio of the multi-core optical fiber
  • a i is the core i.
  • the initial angle of, ⁇ i is the angle representing the position of the outer peripheral core in the cross section at the position z of the multi-core optical fiber represented by the equation (4)
  • p is the spin rate of the outer peripheral core
  • ⁇ twisting is the multi-core light.
  • the torsional strain generated at the position z of the fiber, ⁇ (z) is the specific torsion angle at the position z of the multi-core optical fiber represented by the equation (5)
  • k 2 is the equation (6). It is a correction coefficient of twist represented by.
  • the analyzer calculates the spin rate p of the outer peripheral core from the periodic fluctuations of the bending strain ⁇ bending and i of each of the outer peripheral cores.
  • the error in the number of twists can be taken into consideration due to the manufacturing error of the multi-core optical fiber, and the shape change of the object to be measured can be specified with high accuracy.
  • the multi-core optical fiber preferably has 3 or more outer peripheral cores and a clad diameter of 375 ⁇ m or more. Further, in the multi-core optical fiber, the distance between the center core and the outer peripheral core is preferably 120 ⁇ m or more. Fan-in / fan-out (FIFO) devices can be easily realized by bundling existing single-mode fibers (clad diameter 125 ⁇ m). Further, the wider the distance between the center of the central core and the center of the outer peripheral core, the larger the distortion generated in the outer peripheral core, and the higher the dynamic range can be achieved.
  • FIFO Fan-in / fan-out
  • the present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
  • FIG. 1 is a diagram illustrating a shape measuring system of the present embodiment.
  • This shape measurement system is A central core 11 arranged in the center of the cross section, and a multi-core optical fiber 10 having three or more outer peripheral cores 12 arranged concentrically and outside the central core 11 at equal intervals.
  • the analysis device 30 that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the above and identifies the time change thereof.
  • FIG. 1 shows an example in which a specific one core of the multi-core optical fiber 10 and a measuring device 20 for measuring the rear Brillouin scattered light distribution are connected.
  • a fan-out mechanism that separates each core of the multi-core optical fiber into a single-core optical fiber, and a form in which the multi-core optical fiber 10 and the measuring device 20 are connected via an optical switch may be used.
  • This shape measurement system uses a multi-core optical fiber 10 as a sensing medium, a measuring device (BOTDR) 20 for detecting rear Brillouin scattered light in the propagation direction of each core of the multi-core optical fiber 10, and measurement data acquired by the BOTDR 12. It is provided with an analysis device 30 for analysis.
  • BOTDR measuring device
  • the multi-core optical fiber 10 is installed along the longitudinal direction of the linear structure to be measured.
  • the linear structure is, for example, a pipeline, a riser (a pipe through which a fluid can pass from the seabed to equipment on the sea surface in offshore drilling and offshore production), a submarine cable, and the like.
  • FIG. 2 is a diagram illustrating a cross section of the multi-core optical fiber 10.
  • the multi-core optical fiber 10 has a central core in the center of the cross section and an outer peripheral core arranged at substantially equal intervals on the same circumference from the center of the cross section, for a total of four cores.
  • the four cores have substantially the same refractive index distribution and optical characteristics, but the structure may be arranged so that the refractive index distributions and optical characteristics of the cores are intentionally different. ..
  • the limits on the number of cores are as follows. If the number of cores is 3 or less (2 or less outer peripheral cores), the shape cannot be identified. On the other hand, when the number of cores is 5 or more (4 or more outer peripheral cores), the measurement accuracy is improved, but the measurement time is increased by the number of cores. Also, a circle of a certain radius can be surrounded by six circles of the same radius in contact with it. In this case, the total number of circles is seven. That is, a single-core optical fiber having the same diameter can be used as a multi-core optical fiber at the core position when seven optical fibers are closely arranged, and a FIFO can be easily produced.
  • the number of outer circles is 7 or more (the total number of circles is 8 or more)
  • the clad diameter of the multi-core optical fiber becomes large, and it becomes difficult to create a fan-in / fan-out (FIFO). Therefore, it is desirable that the number of outer peripheral cores of the multi-core optical fiber is 3 or more and 6 or less.
  • the multi-core optical fiber 10 has a larger clad outer diameter (> 125 ⁇ m) than a general communication optical fiber.
  • the distance between the center core 11 arranged at the center of the optical fiber and the outer peripheral core 12 arranged on the outer periphery of the central core 11 is set to be larger than 30 ⁇ m. The reason is that in a standard multi-core optical fiber having a clad outer diameter of 125 ⁇ m, the distance between the center core and the outer peripheral core that can be arranged while suppressing the influence of leakage loss is about 30 ⁇ m.
  • FIG. 3 is a diagram for explaining the relationship between the center-to-center distance and the strain amount of the outer peripheral core 12 with respect to the curvature of the center of the multi-core optical fiber 10 in which ( ⁇ - ⁇ ) is 0 in the relational expression (1).
  • the amount of strain obtained by a standard multi-core optical fiber having a clad outer diameter of 125 ⁇ m even when the distance between the centers of the central core 11 and the outer peripheral core 12 is 120 ⁇ m or more and the curvature is ⁇ 0.5 [1 / m]. It can be seen that a strain amount of 5 times or more can be obtained. This means that by increasing the distance between the centers of the central core 11 and the outer peripheral core 12, the sensitivity to the shape change of the small curvature generated in the multi-core optical fiber 10 can be improved.
  • This shape measurement method is Arranging the multi-core optical fiber 10 along the linear structure (step S01), Measuring the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber 10 (step S02), and the multi-core optical fiber 10 and three-dimensionally arranged along a linear structure whose three-dimensional shape is unknown. From the rear Brilluan scattered light distribution of the multi-core optical fiber 10 arranged along the linear structure whose shape is known, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated and changed over time. (Step S03), I do.
  • the measuring device 20 performs step S02, and the analysis device 30 performs step S03. In step S02, it is desirable to correct the temperature dependence of the Brilluan frequency shift.
  • step S03 The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above 3 It is a difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose dimensional shape is known.
  • the bending strain ⁇ of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
  • the curvature ⁇ and the bending angle ⁇ at the position z of the multi-core optical fiber are calculated from the bending strain ⁇ for each outer core (step S33), and the bending angle ⁇ is differentiated by the arc length.
  • the Frenet-Serret formula calculate the position coordinates in the 3D space of the linear structure whose 3D shape is unknown from the curvature ⁇ and the torsion at the position z, and time. Identifying changes (step S34), I do.
  • FIG. 5 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
  • the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
  • the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
  • Step C Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
  • Step D Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the bending strain ⁇ at the position z is derived for each outer peripheral core.
  • Step E Substitute the ⁇ derived by Step D into the relational expression (1) between the bending strain ⁇ of the outer peripheral core, the curvature ⁇ of the multi-core optical fiber 10 and the bending angle ⁇ .
  • r ⁇ ⁇ ⁇ cos ( ⁇ - ⁇ )
  • r is the distance between the centers of the central core 11 and the outer peripheral core 12
  • is an angle representing the position of the outer peripheral core 12 in the cross section of the multi-core optical fiber 10.
  • r is 125 ⁇ m and ⁇ is 0 °, 120 °, and 240 ° for each outer core.
  • a ternary simultaneous equation can be obtained. From this equation, the curvature ⁇ and the bending angle ⁇ at the position z are calculated.
  • the bending strain ⁇ differs for each core, but since the curvature ⁇ and the bending angle ⁇ are the same in all cores, the curvature ⁇ and the bending angle ⁇ at the position z are determined by the least squares method.
  • Step F Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature ⁇ and the bending angle ⁇ for each distance z determined by Step E.
  • FIG. 6 is a diagram illustrating a first example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method.
  • the longitudinal distance (position z described above) of the multi-core optical fiber 10 is represented by s [m].
  • the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
  • the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched.
  • the vicinity of the center of the multi-core optical fiber 10 was rotated clockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired.
  • 6 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively.
  • the dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores.
  • 6 (d) and 6 (e) show the evaluation results of the curvature ⁇ and the angle ⁇ of the multi-core optical fiber 10, respectively.
  • FIG. 6F shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the curvature given to the vicinity of the center of the multi-core optical fiber 10 can be detected with high accuracy.
  • FIG. 7 is a diagram illustrating a second example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method. Also in FIGS. 7A to 7E, the distance in the longitudinal direction of the multi-core optical fiber 10 (position z described above) is represented by s [m]. Also in FIG. 7 (f), the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
  • the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched.
  • the vicinity of the center of the multi-core optical fiber 10 was rotated counterclockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired.
  • 7 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively.
  • the dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores.
  • 7 (d) and 7 (e) show the evaluation results of the curvature ⁇ and the angle ⁇ of the multi-core optical fiber 10, respectively.
  • FIG. 7 (f) shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the shape change in the direction opposite to that of FIG. 6 (f) (counterclockwise) can be detected with high accuracy.
  • the system configuration of the shape measurement system of the present embodiment is different from the system configuration of the shape measurement system described in FIG. 1 in that the multi-core optical fiber 10 is given a known twist and the analysis procedure of the analysis device 30 is different. ..
  • FIG. 8 is a diagram illustrating a multi-core optical fiber 10.
  • FIG. 8A describes bending strain measured by the multi-core optical fiber 10 in a twisted state
  • FIG. 8B describes bending strain measured by the multi-core optical fiber 10 in a twisted state.
  • the core 0 is the central core
  • the cores 1 to 3 are the outer peripheral cores. If there is no bending strain, the bending strain becomes zero and overlaps in all cores regardless of the presence or absence of twisting. In addition, the bending strain of the central core is zero regardless of the presence or absence of twisting.
  • FIG. 8 (B) bending with a constant curvature is applied as in FIG. 8 (A), but in the section where bending is applied, the positions of the outer peripheral cores are exchanged by twisting, so that the amount of strain is positive or negative. Can be confirmed to be inverted.
  • twisting is required in all the sections arranged in the linear structure.
  • the analyzer 30 has a linear structure whose three-dimensional shape is unknown based on the torsional strain generated in the multi-core optical fiber 10 and the known torsional strain when calculating the position coordinates. Estimate the unintended twist that occurs when arranging along an object, and exclude the effects of the unintended twist.
  • step S33 described in the shape measuring method of FIG. 4 is different from the description of the first embodiment. That is, in step S03, The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known.
  • Step S31 The bending strain ⁇ bending, i of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32). Using the relational expression (2) excluding the influence of the unintended twist, the curvature ⁇ and the bending angle ⁇ at the position z of the multi-core optical fiber are calculated from the bending strain ⁇ bending, i for each outer core. (Step S33), and using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature ⁇ and the bending angle ⁇ at the position z (step S34). ), I do.
  • FIG. 9 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
  • "i" is a core number.
  • i of 1 or more is the outer peripheral core.
  • the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
  • Step B Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
  • Step C Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
  • Step D Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the strains ⁇ mix and i at the position z are derived for each outer peripheral core (i here is 1 or more).
  • the strains ⁇ mix and i include bending strains ⁇ bending and i and torsional strains ⁇ twisting (where i is 1 or more). Since the relative positional relationship of the outer peripheral cores does not change, the torsional strain ⁇ twisting at the position z is used as shown in the following equation by utilizing the fact that the bending strain ⁇ bending and i of all the outer peripheral cores become zero when added. Is calculated. max ⁇ i ⁇ means the maximum core number. The torsional strain ⁇ twisting calculated by the equation (7) is substituted into the equation (5) to calculate the specific torsion angle ⁇ (z) at the position z.
  • FIG. 11 is an image diagram illustrating the specific twist angle ⁇ .
  • the specific twist angle ⁇ is a twist angle per unit length.
  • r is the distance from the center to the center of the outer peripheral core in the cross section of the multi-core optical fiber 10.
  • k2 is a torsion correction coefficient and is expressed by the following equation.
  • p is the spin rate (the amount of twist per unit length) of the outer peripheral core, which is a design value or a value obtained by a measurement method described later.
  • Step E The bending strain ⁇ bending, i of the outer peripheral core i is calculated by subtracting the ⁇ twisting derived by Step D- ⁇ from the strain ⁇ mix, i of each outer peripheral core.
  • the specific twist angle ⁇ (z) calculated in the equation (5) is substituted into the equation (4) to calculate the angle ⁇ i representing the position of the outer peripheral core i at the position z.
  • a i is the initial angle of the outer peripheral core i.
  • the bending strain ⁇ bending, i of the outer peripheral core i and the angle ⁇ i derived by the equation (4) are substituted into the relational expression (2) of the curvature ⁇ and the bending angle ⁇ of the multi-core optical fiber 10.
  • k 1 is a twist correction coefficient represented by the equation (3).
  • is the Poisson's ratio of the multi-core optical fiber.
  • a ternary simultaneous equation can be obtained.
  • FIG. 10 is an image diagram illustrating a radius r, a bending direction (curvature ⁇ ), and a bending angle ⁇ of a multi-core optical fiber having an outer peripheral core of 3.
  • 10 (A) is a view seen from the side surface of the multi-core optical fiber
  • FIG. 10 (B) is a cross-sectional view of the multi-core optical fiber.
  • Step F Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature ⁇ and the bending angle ⁇ for each distance z determined by Step E. In addition, in order to improve the position accuracy, it is preferable to correct the three-dimensional shape by using a known end point.
  • FIG. 12 is a diagram showing the results of measuring the strain of each core of the twisted multi-core optical fiber in the z direction.
  • the number of twists may differ from the design value due to manufacturing errors and the like. Therefore, the strain period fluctuates in each core. Therefore, the number of twists (spin rate) is calculated from the periodic fluctuation of the strain by the RTM (short-time Fourier transform).
  • the value of the spin rate p calculated from the measured strain period can be used.
  • the shape measurement system according to the present invention can realize a measurement dynamic range of several km to several tens of km by using rear Brillouin scattered light for shape identification of a linear structure. Further, by setting the distance between the center core of the multi-core optical fiber used for detecting the shape change and the center of the outer peripheral core to 120 ⁇ m or more, it is possible to detect a minute change having a curvature of 0.5 [1 / m] or less.
  • Multi-core optical fiber 11 Central core 12: Outer peripheral core 20: Measuring device 30: Analytical device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The purpose of the present invention is to provide a shape measurement system and a shape measurement method whereby the three-dimensional shape of a linear object to be measured can be derived over a long distance and with high resolution. The shape measurement system according to the present invention comprises: a multicore optical fiber 10 having a center core 11 positioned in the center of the cross section thereof and three or more outer peripheral cores 12 positioned at equal intervals concentrically with respect to and outside of the center core 11; a measurement device 20 for measuring the backward Brillouin scattered light distribution in the propagation direction of each core of the multicore optical fiber 10; and an analysis device 30 for calculating position coordinates, in three-dimensional space, of a linear structure having an unknown three-dimensional shape from the backward Brillouin scattered light distributions of a multicore optical fiber 10 positioned along the linear structure having an unknown three-dimensional shape and a multicore optical fiber positioned along a linear structure having a known three-dimensional shape.

Description

形状測定システム及び形状測定方法Shape measurement system and shape measurement method
 本開示は、光ファイバを用いたリフレクトメトリ技術により、パイプラインや海底ケーブル等の被測定対象の3次元形状を導出する装置および方法に関する。 The present disclosure relates to an apparatus and a method for deriving a three-dimensional shape of an object to be measured, such as a pipeline or a submarine cable, by a reflectometry technique using an optical fiber.
 マルチコア光ファイバの各コアの周波数領域の反射スペクトルをOFDR(Optical Frequency Domain Reflectometry)で測定及び解析し、被測定対象の3次元形状を導出する技術が提案されている(例えば、非特許文献1を参照。)。また、センシング媒体(光ファイバ)の全長にFBG(Fiber Bragg Grating)を付与し、測定分解能を改善する手法も提案されている(例えば、非特許文献2を参照。)。 A technique has been proposed in which the reflection spectrum in the frequency domain of each core of a multi-core optical fiber is measured and analyzed by OFDR (Optical Frequency Domain Reflectometry) to derive a three-dimensional shape to be measured (for example, Non-Patent Document 1). reference.). Further, a method of imparting FBG (Fiber Bragg Grating) to the entire length of the sensing medium (optical fiber) to improve the measurement resolution has also been proposed (see, for example, Non-Patent Document 2).
 OFDRで被測定対象の3次元形状を導出しようとした場合、次のような困難性が発生する。
(1)OFDRは、数10mmオーダーの高分解能を実現できるが、測定距離が数10m程度に限定され、長距離の3次元形状を導出することが困難である。
(2)光ファイバにFBGを付与すれば、その光ファイバの製造容易性や経済性を向上させることが困難となる。
(3)FBGの付与など準分布測定により形状同定を行う技術は、測定点数に制約があり、長距離にわたる形状同定が困難である。
(4)FBGを付与した光ファイバを非線形材料の被測定対象に埋め込んだ形態の場合、温度や応力でFBGによる反射の中心周波数が変化し、計測する光ファイバの歪と曲率にも非線形性が生じるため、被測定物の形状変化を特定することが困難である。
When trying to derive the three-dimensional shape of the object to be measured by OFDR, the following difficulties occur.
(1) OFDR can realize high resolution on the order of several tens of mm, but the measurement distance is limited to about several tens of meters, and it is difficult to derive a long-distance three-dimensional shape.
(2) If an FBG is added to an optical fiber, it becomes difficult to improve the ease of manufacturing and the economic efficiency of the optical fiber.
(3) The technique of performing shape identification by quasi-distribution measurement such as addition of FBG has a limitation on the number of measurement points, and it is difficult to identify the shape over a long distance.
(4) In the case where the optical fiber to which the FBG is applied is embedded in the object to be measured of the non-linear material, the center frequency of the reflection by the FBG changes due to the temperature and stress, and the distortion and curvature of the optical fiber to be measured also have non-linearity. Therefore, it is difficult to identify the shape change of the object to be measured.
 そこで、本発明は、前記課題を解決するために、線状の被測定物の3次元形状を長距離且つ高分解能で導出することができる形状測定システム及び形状測定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution in order to solve the above problems. do.
 上記目的を達成するために、本発明に係る形状測定システムは、所定のコア配置を持つマルチコア光ファイバをセンシング媒体として用い、BOTDR(Brillouin Optical Time Domain Reflectometry)で取得したデータを解析することとした。 In order to achieve the above object, the shape measurement system according to the present invention uses a multi-core optical fiber having a predetermined core arrangement as a sensing medium, and analyzes data acquired by BOTDR (Brillouin Optical Time Domain Reflectometer). ..
 具体的には、本発明に係る形状測定システムは、
 断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバと、
 前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置と、
 3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定する解析装置と、
を備える。
Specifically, the shape measuring system according to the present invention is
A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
A measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and a measuring device.
The rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a linear structure having an unknown three-dimensional shape and the multi-core optical fiber arranged along a linear structure having a known three-dimensional shape. From the analysis device that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown and identifies the time change.
To prepare for.
 また、本発明に係る形状測定方法は、
 断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上6個以下の外周コアを有するマルチコア光ファイバを線状構造物に沿って配置すること、
 前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること、及び
 3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定すること、
を行う。
Further, the shape measuring method according to the present invention is
A central core arranged in the center of the cross section and a multi-core optical fiber having 3 or more and 6 or less outer peripheral cores arranged outside the central core and concentrically at equal intervals are arranged along the linear structure. matter,
The rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber is measured, and the multi-core optical fiber and the three-dimensional shape arranged along the linear structure whose three-dimensional shape is unknown are known. From the rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a certain linear structure, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated, and the time change thereof is calculated. To identify,
I do.
 マルチコア光ファイバのコア毎に後方ブリルアン散乱光を測定することで長距離測定を可能とする。また、マルチコア光ファイバの中心コアと外周コアとの中心間距離、並びに隣接する外周コア間の距離を保つことで被測定物の微小変動を検知することができる。従って、本発明は、線状の被測定物の3次元形状を長距離且つ高分解能で導出することができる形状測定システム及び形状測定方法を提供することができる。 Long-distance measurement is possible by measuring the rear Brillouin scattered light for each core of the multi-core optical fiber. Further, by maintaining the distance between the center core of the multi-core optical fiber and the outer peripheral core and the distance between the adjacent outer peripheral cores, it is possible to detect minute fluctuations in the object to be measured. Therefore, the present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
 具体的な解析手法は次の通りである。
 前記マルチコア光ファイバの長手方向の位置をzとすると、
 前記解析装置は、
 前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
 前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
 関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算し、曲げ角度βを弧長で微分して捩率を計算すること、及び
 フレネ・セレの公式を用い、位置zにおける曲率κと捩率から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定すること、
を行うことを特徴とする。
尚、曲げ角度βはMCF断面において、MCF中心と曲率中心を結ぶベクトルと基準方向ベクトル、例えば、MCF中心とある特定の一つのコアを結ぶベクトルのなす角度を表す。
[関係式(1)]
 ε=r・κ・cos(α-β)
ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。
The specific analysis method is as follows.
Let z be the position in the longitudinal direction of the multi-core optical fiber.
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (1), the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε for each outer core, and the bending angle β is differentiated by the arc length to calculate the torsion of a curve. Using the Frenet-Serret formula, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated from the curvature κ and the torsion at the position z, and the time change is identified. matter,
It is characterized by doing.
The bending angle β represents an angle formed by a vector connecting the MCF center and the center of curvature and a reference direction vector, for example, a vector connecting the MCF center and a specific core in the MCF cross section.
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
 本手法において、構造物にマルチコア光ファイバを沿わせる際に、意図しない捩じりが生じることにより、計測結果に誤差が生じる可能性がある。このような場合、
 前記マルチコア光ファイバには、既知の捩じりが与えられていること、及び
 前記解析装置は、前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
が好ましい。
In this method, when a multi-core optical fiber is placed along a structure, an unintended twist may occur, which may cause an error in the measurement result. In such a case
The multi-core optical fiber is given a known torsion, and the analyzer is known to have a torsional strain occurring in the multi-core optical fiber when calculating the position coordinates. The unintended torsion that occurs when the three-dimensional shape is placed along a linear structure whose three-dimensional shape is unknown is estimated based on the strain due to the torsion, and the influence of the unintended torsion is excluded. matter,
Is preferable.
 この場合の具体的な解析手法は次の通りである。
 前記マルチコア光ファイバの長手方向の位置をzとすると、
 前記解析装置は、
 前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
 前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
 前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
 フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
を行うことを特徴とする。
Figure JPOXMLDOC01-appb-M000011
ただし、rは前記中心コアと前記外周コアとの中心間距離、kは式(3)で表される捩じりの補正係数、νは前記マルチコア光ファイバのポアソン比、aはコアiの初期角度、ωは式(4)で表される前記マルチコア光ファイバの位置zでの断面における前記外周コアの位置を表す角度、pは前記外周コアのスピンレート、εtwistingは前記マルチコア光ファイバの位置zに発生している捩じり歪、φ(z)は式(5)で表される前記マルチコア光ファイバの位置zでの比捩じり角、及びkは式(6)で表される捩じりの補正係数である。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
The specific analysis method in this case is as follows.
Let z be the position in the longitudinal direction of the multi-core optical fiber.
The analyzer is
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
It is characterized by doing.
Figure JPOXMLDOC01-appb-M000011
However, r is the distance between the centers of the central core and the outer peripheral core, k 1 is the twist correction coefficient represented by the equation (3), ν is the Poisson's ratio of the multi-core optical fiber, and a i is the core i. The initial angle of, ω i is the angle representing the position of the outer peripheral core in the cross section at the position z of the multi-core optical fiber represented by the equation (4), p is the spin rate of the outer peripheral core, and ε twisting is the multi-core light. The torsional strain generated at the position z of the fiber, φ (z) is the specific torsion angle at the position z of the multi-core optical fiber represented by the equation (5), and k 2 is the equation (6). It is a correction coefficient of twist represented by.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 この場合、前記解析装置は、前記外周コアそれぞれの曲げ歪εbending,iの周期的な変動から前記外周コアのスピンレートpを算出することが好ましい。マルチコア光ファイバの製造誤差などにより捩じり回数の誤差をも考慮でき、被測定物の形状変化を高い精度で特定することができる。 In this case, it is preferable that the analyzer calculates the spin rate p of the outer peripheral core from the periodic fluctuations of the bending strain ε bending and i of each of the outer peripheral cores. The error in the number of twists can be taken into consideration due to the manufacturing error of the multi-core optical fiber, and the shape change of the object to be measured can be specified with high accuracy.
 前記マルチコア光ファイバは、前記外周コアの数は3以上であり、クラッド直径が375μm以上であることが好ましい。
 また、前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることが好ましい。
 既存のシングルモードファイバ(クラッド直径が125μm)をバンドルすることでファンイン/ファンアウト(FIFO)デバイスを容易に実現できる。また、中心コアと外周コアの中心間の間隔が広いほど外周コアに生じる歪が大きくなり、高ダイナミックレンジ化することができる。
The multi-core optical fiber preferably has 3 or more outer peripheral cores and a clad diameter of 375 μm or more.
Further, in the multi-core optical fiber, the distance between the center core and the outer peripheral core is preferably 120 μm or more.
Fan-in / fan-out (FIFO) devices can be easily realized by bundling existing single-mode fibers (clad diameter 125 μm). Further, the wider the distance between the center of the central core and the center of the outer peripheral core, the larger the distortion generated in the outer peripheral core, and the higher the dynamic range can be achieved.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、線状の被測定物の3次元形状を長距離且つ高分解能で導出することができる形状測定システム及び形状測定方法を提供することができる。 The present invention can provide a shape measurement system and a shape measurement method capable of deriving a three-dimensional shape of a linear object to be measured over a long distance and with high resolution.
本発明に係る形状測定システムの構成を説明する図である。It is a figure explaining the structure of the shape measurement system which concerns on this invention. 本発明に係る形状測定システムのマルチコア光ファイバの断面を説明する図である。It is a figure explaining the cross section of the multi-core optical fiber of the shape measurement system which concerns on this invention. 本発明に係る形状測定システムの効果を説明する図である。It is a figure explaining the effect of the shape measurement system which concerns on this invention. 本発明に係る形状測定方法を説明する図である。It is a figure explaining the shape measuring method which concerns on this invention. 本発明に係る形状測定方法を説明する図である。It is a figure explaining the shape measuring method which concerns on this invention. 本発明に係る形状測定システムでの計測例を説明する図である。It is a figure explaining the measurement example in the shape measuring system which concerns on this invention. 本発明に係る形状測定システムでの計測例を説明する図である。It is a figure explaining the measurement example in the shape measuring system which concerns on this invention. 本発明に係る形状測定システムに備わるマルチコア光ファイバを説明する図である。It is a figure explaining the multi-core optical fiber provided in the shape measuring system which concerns on this invention. 本発明に係る形状測定方法を説明する図である。It is a figure explaining the shape measuring method which concerns on this invention. 本発明に係る形状測定システムに備わるマルチコア光ファイバを説明する図である。It is a figure explaining the multi-core optical fiber provided in the shape measuring system which concerns on this invention. マルチコア光ファイバの比捩じり角を説明する図である。It is a figure explaining the specific twist angle of a multi-core optical fiber. マルチコア光ファイバのスピンレート実測方法を説明する図である。It is a figure explaining the spin rate measurement method of a multi-core optical fiber.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
[実施形態1]
 図1は、本実施形態の形状測定システムを説明する図である。本形状測定システムは、
 断面の中心に配置される中心コア11、及び中心コア11の外側かつ同心円状に等間隔で配置される3個以上の外周コア12を有するマルチコア光ファイバ10と、
 マルチコア光ファイバ10の各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置20と、
 3次元形状が未知である線状構造物に沿って配置されたマルチコア光ファイバ10と3次元形状が既知である線状構造物に沿って配置されたマルチコア光ファイバ10の前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、その時間変化を同定する解析装置30と、
を備える。
 尚、図1では、マルチコア光ファイバ10の特定の1コアと、後方ブリルアン散乱光分布を計測する計測装置20とが接続される例を示している。他の構成として、マルチコア光ファイバの各コアを単一コア光ファイバに分離するファンアウト機構、および光スイッチを介してマルチコア光ファイバ10と計測装置20とを接続する形態でも構わない。
[Embodiment 1]
FIG. 1 is a diagram illustrating a shape measuring system of the present embodiment. This shape measurement system is
A central core 11 arranged in the center of the cross section, and a multi-core optical fiber 10 having three or more outer peripheral cores 12 arranged concentrically and outside the central core 11 at equal intervals.
A measuring device 20 for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber 10 and a measuring device 20.
The rear Brillouin scattered light distribution of the multi-core optical fiber 10 arranged along a linear structure whose three-dimensional shape is unknown and the multi-core optical fiber 10 arranged along a linear structure whose three-dimensional shape is known. The analysis device 30 that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the above and identifies the time change thereof.
To prepare for.
Note that FIG. 1 shows an example in which a specific one core of the multi-core optical fiber 10 and a measuring device 20 for measuring the rear Brillouin scattered light distribution are connected. As another configuration, a fan-out mechanism that separates each core of the multi-core optical fiber into a single-core optical fiber, and a form in which the multi-core optical fiber 10 and the measuring device 20 are connected via an optical switch may be used.
 本形状測定システムは、センシング媒体であるマルチコア光ファイバ10と、マルチコア光ファイバ10の各コアの伝搬方向における後方ブリルアン散乱光を検出する計測装置(BOTDR)20と、BOTDR12で取得された測定データを解析する解析装置30とを備える。 This shape measurement system uses a multi-core optical fiber 10 as a sensing medium, a measuring device (BOTDR) 20 for detecting rear Brillouin scattered light in the propagation direction of each core of the multi-core optical fiber 10, and measurement data acquired by the BOTDR 12. It is provided with an analysis device 30 for analysis.
 マルチコア光ファイバ10は、被測定対象である線状構造物の長手方向に沿って設置される。線状構造物とは、例えば、パイプライン、ライザー(海洋掘削や海洋生産において海底から海面上の設備まで流体が通れるパイプ)、海底ケーブル等である。図2は、マルチコア光ファイバ10の断面を説明する図である。マルチコア光ファイバ10は、断面の中心にある中心コア、および断面中心から概ね同一円周上に概ね等間隔で配置された外周コアの計4個のコアを有する。本実施形態では、4個のコアは概ね同等の屈折率分布および光学特性を有するものを使用したが、各コアの屈折率分布や光学特性が意図的に異なるように配置される構造でも構わない。 The multi-core optical fiber 10 is installed along the longitudinal direction of the linear structure to be measured. The linear structure is, for example, a pipeline, a riser (a pipe through which a fluid can pass from the seabed to equipment on the sea surface in offshore drilling and offshore production), a submarine cable, and the like. FIG. 2 is a diagram illustrating a cross section of the multi-core optical fiber 10. The multi-core optical fiber 10 has a central core in the center of the cross section and an outer peripheral core arranged at substantially equal intervals on the same circumference from the center of the cross section, for a total of four cores. In the present embodiment, the four cores have substantially the same refractive index distribution and optical characteristics, but the structure may be arranged so that the refractive index distributions and optical characteristics of the cores are intentionally different. ..
 また、コアの数の制限については次の通りである。コア数が3以下(外周コア2個以下)では、形状の同定を行うことができない。一方、コア数が5以上(外周コア4個以上)の場合、測定精度の面では向上するが、測定時間はコア数分増える。
 また、ある半径の円は、それに接する同じ半径の6個の円で取り囲むことができる。この場合、円の数はトータルで7個である。つまり、同じ直径のシングルコアの光ファイバを7本を最密で配置したときのコア位置のマルチコア光ファイバとすることができ、FIFOを容易に作ることができる。
 一方、外周の円が7個以上(円の数はトータルで8個以上)になると、1つの円の周りに7つ以上の円を配置すると中心の円と外周の円との間に隙間が生まれる。つまり、同じ直径のシングルコアの光ファイバを8本以上では最密で配置することができず、マルチコア光ファイバのクラッド径が大きくなり、ファンイン/ファンアウト(FIFO)の作成が難しくなる。
 従って、マルチコア光ファイバの外周コア数は3個以上6個以下が望ましい。
The limits on the number of cores are as follows. If the number of cores is 3 or less (2 or less outer peripheral cores), the shape cannot be identified. On the other hand, when the number of cores is 5 or more (4 or more outer peripheral cores), the measurement accuracy is improved, but the measurement time is increased by the number of cores.
Also, a circle of a certain radius can be surrounded by six circles of the same radius in contact with it. In this case, the total number of circles is seven. That is, a single-core optical fiber having the same diameter can be used as a multi-core optical fiber at the core position when seven optical fibers are closely arranged, and a FIFO can be easily produced.
On the other hand, when the number of outer circles is 7 or more (the total number of circles is 8 or more), if 7 or more circles are placed around one circle, a gap will be created between the center circle and the outer circle. to be born. That is, eight or more single-core optical fibers having the same diameter cannot be arranged in the densest position, the clad diameter of the multi-core optical fiber becomes large, and it becomes difficult to create a fan-in / fan-out (FIFO).
Therefore, it is desirable that the number of outer peripheral cores of the multi-core optical fiber is 3 or more and 6 or less.
 マルチコア光ファイバ10は、一般的な通信用光ファイバより大きなクラッド外径(>125μm)を有する。光ファイバの中心に配置された中心コア11と、中心コア11の外周に配置された外周コア12との中心間距離は30μmより大きく設定する。その理由は、クラッド外径125μmの標準的なマルチコア光ファイバにおいて漏洩損失などの影響を抑えて配置可能な中心コアと外周コアの中心間距離が30μm程度であるからである。 The multi-core optical fiber 10 has a larger clad outer diameter (> 125 μm) than a general communication optical fiber. The distance between the center core 11 arranged at the center of the optical fiber and the outer peripheral core 12 arranged on the outer periphery of the central core 11 is set to be larger than 30 μm. The reason is that in a standard multi-core optical fiber having a clad outer diameter of 125 μm, the distance between the center core and the outer peripheral core that can be arranged while suppressing the influence of leakage loss is about 30 μm.
 図3は、関係式(1)において(α-β)が0としたマルチコア光ファイバ10の中心の曲率に対する前記中心間距離と外周コア12の歪量との関係を説明する図である。図3より、中心コア11と外周コア12の中心間距離を120μm以上で、曲率κ=0.5[1/m]においてもクラッド外径125μmの標準的なマルチコア光ファイバで得られる歪量の5倍以上の歪量を得ることができることがわかる。これは、中心コア11と外周コア12の中心間距離を長くすることで、マルチコア光ファイバ10に発生した小さい曲率の形状変化に対して感度を向上できることを意味する。 FIG. 3 is a diagram for explaining the relationship between the center-to-center distance and the strain amount of the outer peripheral core 12 with respect to the curvature of the center of the multi-core optical fiber 10 in which (α-β) is 0 in the relational expression (1). From FIG. 3, the amount of strain obtained by a standard multi-core optical fiber having a clad outer diameter of 125 μm even when the distance between the centers of the central core 11 and the outer peripheral core 12 is 120 μm or more and the curvature is κ = 0.5 [1 / m]. It can be seen that a strain amount of 5 times or more can be obtained. This means that by increasing the distance between the centers of the central core 11 and the outer peripheral core 12, the sensitivity to the shape change of the small curvature generated in the multi-core optical fiber 10 can be improved.
 以上説明したように、既存のシングルモードファイバ(クラッド直径125μm)をバンドルすることでFIFOデバイスを容易に実現できること、並びに既存のシングルモードファイバで作成されたFIFOを用いればマルチコア光ファイバ10の中心コア11と外周コア12の中心間距離が125μmとなり小さな形状変化に対しても十分な感度を得られること、から、本実施形態では、マルチコア光ファイバ10のクラッド外径を375μmと(=125μm×3)として検討を行った。 As described above, a FIFO device can be easily realized by bundling an existing single-mode fiber (clad diameter 125 μm), and a central core of a multi-core optical fiber 10 can be used by using a FIFO made of an existing single-mode fiber. Since the distance between the center of the 11 and the outer peripheral core 12 is 125 μm and sufficient sensitivity can be obtained even for a small shape change, in the present embodiment, the clad outer diameter of the multi-core optical fiber 10 is 375 μm (= 125 μm × 3). ) Was examined.
 次に、図4を用いてマルチコア光ファイバ10を用いて被測定物の形状変化を測定する形状測定方法を説明する。本形状測定方法は、
 マルチコア光ファイバ10を線状構造物に沿って配置すること(ステップS01)、
 マルチコア光ファイバ10の各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること(ステップS02)、及び
 3次元形状が未知である線状構造物に沿って配置されたマルチコア光ファイバ10と3次元形状が既知である線状構造物に沿って配置されたマルチコア光ファイバ10の後方ブリルアン散乱光分布から3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、時間変化を同定すること(ステップS03)、
を行う。なお、計測装置20がステップS02を行い、解析装置30がステップS03を行う。ステップS02では、ブリルアン周波数シフトの温度依存性を補正することが望ましい。
Next, a shape measuring method for measuring a shape change of an object to be measured by using a multi-core optical fiber 10 will be described with reference to FIG. This shape measurement method is
Arranging the multi-core optical fiber 10 along the linear structure (step S01),
Measuring the rear Brilluan scattered light distribution in the propagation direction of each core of the multi-core optical fiber 10 (step S02), and the multi-core optical fiber 10 and three-dimensionally arranged along a linear structure whose three-dimensional shape is unknown. From the rear Brilluan scattered light distribution of the multi-core optical fiber 10 arranged along the linear structure whose shape is known, the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown are calculated and changed over time. (Step S03),
I do. The measuring device 20 performs step S02, and the analysis device 30 performs step S03. In step S02, it is desirable to correct the temperature dependence of the Brilluan frequency shift.
 ステップS03についてより詳細に説明する、測定装置20からマルチコア光ファイバ10の長手方向の位置をzとする。
 ステップS03では、
 3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること(ステップS31)、
 前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること(ステップS32)、
 関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること(ステップS33)、曲げ角度βを弧長で微分して捩率を計算すること、及び
 フレネ・セレの公式を用い、位置zにおける曲率κと捩率から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出し、時間変化を同定すること(ステップS34)、
を行う。
Let z be the position in the longitudinal direction of the multi-core optical fiber 10 from the measuring device 20, which will be described in more detail with respect to step S03.
In step S03
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above 3 It is a difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose dimensional shape is known. Calculating the differential strain at position z (step S31),
The bending strain ε of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
Using the relational expression (1), the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε for each outer core (step S33), and the bending angle β is differentiated by the arc length. And using the Frenet-Serret formula, calculate the position coordinates in the 3D space of the linear structure whose 3D shape is unknown from the curvature κ and the torsion at the position z, and time. Identifying changes (step S34),
I do.
 図5は、本形状測定方法で3次元形状が未知である線状構造物を計測するときの具体的手順を説明する図である。
[Step A]
 まず、3次元形状が既知である線状構造物(例えば、すでに敷設されている水道管等)に沿ってマルチコア光ファイバ10を敷設し、定常状態(基準状態)における各コアの後方ブリルアン散乱光の分布特性を取得する。これを基準データとする。
[Step B]
 次に、線状構造物の3次元形状が変化した状態(例えば、地震などで変形が想定される水道管等)で、改めて各コアの後方ブリルアン散乱光の分布特性を取得する。これを比較データとする。
[Step C]
 次に、コア毎且つ位置z毎に比較データと基準データの差分を計算して差分歪を導出する。
[Step D]
 次に、それぞれの外周コアの差分歪から中心コアの差分歪を減算し、外周コア毎に位置zにおける曲げ歪εを導出する。
[Step E]
 外周コアの曲げ歪εと、マルチコア光ファイバ10の曲率κと曲げ角度βの関係式(1)に、Step Dで導出したεを代入する。
[関係式(1)]
 ε=r・κ・cos(α-β)
ただし、rは中心コア11と外周コア12との中心間距離、αはマルチコア光ファイバ10の断面における外周コア12の位置を表す角度である。例えば、rは125μm、αは外周コア毎に0°、120°、240°である。
 本実施形態では、外周コアが3つあるので3元連立方程式が得られる。この式により位置zにおける曲率κと曲げ角度βを算出する。ここで、曲げ歪εはコアごとに異なるが、曲率κと曲げ角度βはいずれのコアにおいても等しいため、最小二乗法で位置zにおける曲率κと曲げ角度βを決定する。
[Step F]
 フレネ・セレの公式を用い、Step Eで決定した距離z毎の曲率κと曲げ角度βから、マルチコア光ファイバ10の位置ベクトル(3次元形状)を決定する。なお、位置精度を向上するために、既知の終点を用いて3次元形状を補正することが好ましい。
FIG. 5 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method.
[Step A]
First, the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
[Step B]
Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
[Step C]
Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
[Step D]
Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the bending strain ε at the position z is derived for each outer peripheral core.
[Step E]
Substitute the ε derived by Step D into the relational expression (1) between the bending strain ε of the outer peripheral core, the curvature κ of the multi-core optical fiber 10 and the bending angle β.
[Relational formula (1)]
ε = r ・ κ ・ cos (α-β)
However, r is the distance between the centers of the central core 11 and the outer peripheral core 12, and α is an angle representing the position of the outer peripheral core 12 in the cross section of the multi-core optical fiber 10. For example, r is 125 μm and α is 0 °, 120 °, and 240 ° for each outer core.
In this embodiment, since there are three outer cores, a ternary simultaneous equation can be obtained. From this equation, the curvature κ and the bending angle β at the position z are calculated. Here, the bending strain ε differs for each core, but since the curvature κ and the bending angle β are the same in all cores, the curvature κ and the bending angle β at the position z are determined by the least squares method.
[Step F]
Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature κ and the bending angle β for each distance z determined by Step E. In addition, in order to improve the position accuracy, it is preferable to correct the three-dimensional shape by using a known end point.
(実施例1)
 図6は、形状測定方法でマルチコア光ファイバ10の3次元形状を測定した第1の例を説明する図である。図6(a)~(e)では、マルチコア光ファイバ10の長手方向の距離(上で説明した位置z)をs[m]で表している。図6(f)では、マルチコア光ファイバ10が配置された3次元空間をx軸、y軸、z軸で表している。ここでのz軸は上で説明した位置zと異なることに注意する。
(Example 1)
FIG. 6 is a diagram illustrating a first example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method. In FIGS. 6A to 6E, the longitudinal distance (position z described above) of the multi-core optical fiber 10 is represented by s [m]. In FIG. 6 (f), the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
 本実施例では、センシング用のマルチコア光ファイバ10を直線状に延伸した状態で、図5のStep Aの基準データを取得した。次に、マルチコア光ファイバ10の中央付近を時計回りに一定曲率で回転させ、図5のStep Bの比較データを取得した。図6(a)、(b)、(c)は、それぞれ図5のStep Aの基準データ、Step Bの比較データ、Step Cの差分歪の結果である。図中の点線、破線、一点鎖線は、それぞれ外周コアの違いを表す。図6(d)、(e)は、それぞれマルチコア光ファイバ10の曲率κおよび角度βの評価結果を表す。図6(f)は、位置ベクトルを考慮した、マルチコア光ファイバ10の空間座標を表しており、マルチコア光ファイバ10の中央付近に与えた曲率が精度良く検出できている。 In this embodiment, the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched. Next, the vicinity of the center of the multi-core optical fiber 10 was rotated clockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired. 6 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively. The dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores. 6 (d) and 6 (e) show the evaluation results of the curvature κ and the angle β of the multi-core optical fiber 10, respectively. FIG. 6F shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the curvature given to the vicinity of the center of the multi-core optical fiber 10 can be detected with high accuracy.
(実施例2)
 図7は、形状測定方法でマルチコア光ファイバ10の3次元形状を測定した第2の例を説明する図である。図7(a)~(e)でも、マルチコア光ファイバ10の長手方向の距離(上で説明した位置z)をs[m]で表している。図7(f)でも、マルチコア光ファイバ10が配置された3次元空間をx軸、y軸、z軸で表している。ここでのz軸は上で説明した位置zと異なることに注意する。
(Example 2)
FIG. 7 is a diagram illustrating a second example in which the three-dimensional shape of the multi-core optical fiber 10 is measured by the shape measuring method. Also in FIGS. 7A to 7E, the distance in the longitudinal direction of the multi-core optical fiber 10 (position z described above) is represented by s [m]. Also in FIG. 7 (f), the three-dimensional space in which the multi-core optical fiber 10 is arranged is represented by the x-axis, the y-axis, and the z-axis. Note that the z-axis here is different from the position z described above.
 本実施例では、センシング用のマルチコア光ファイバ10を直線状に延伸した状態で、図5のStep Aの基準データを取得した。次に、マルチコア光ファイバ10の中央付近を反時計回りに一定曲率で回転させ、図5のStep Bの比較データを取得した。図7(a)、(b)、(c)は、それぞれ図5のStep Aの基準データ、Step Bの比較データ、Step Cの差分歪の結果である。図中の点線、破線、一点鎖線は、それぞれ外周コアの違いを表す。図7(d)、(e)は、それぞれマルチコア光ファイバ10の曲率κおよび角度βの評価結果を表す。図7(f)は、位置ベクトルを考慮した、マルチコア光ファイバ10の空間座標を表しており、図6(f)と逆方向(反時計回り)の形状変化が精度良く検出できている。 In this embodiment, the reference data of Step A in FIG. 5 was acquired in a state where the multi-core optical fiber 10 for sensing was linearly stretched. Next, the vicinity of the center of the multi-core optical fiber 10 was rotated counterclockwise with a constant curvature, and the comparison data of Step B in FIG. 5 was acquired. 7 (a), (b), and (c) are the results of the reference data of Step A, the comparison data of Step B, and the difference distortion of Step C, respectively. The dotted line, broken line, and alternate long and short dash line in the figure indicate the difference between the outer peripheral cores. 7 (d) and 7 (e) show the evaluation results of the curvature κ and the angle β of the multi-core optical fiber 10, respectively. FIG. 7 (f) shows the spatial coordinates of the multi-core optical fiber 10 in consideration of the position vector, and the shape change in the direction opposite to that of FIG. 6 (f) (counterclockwise) can be detected with high accuracy.
[実施形態2]
 センシング媒体として線状構造物にマルチコア光ファイバを沿わせる際に、意図しない捩じりが生じ、計測結果に誤差が生じる可能性がある。そこで、本実施形態では、センシング媒体に使用するマルチコア光ファイバに意図的に捩じりを加えることとした。線状構造物の形状同定の際にその捩じり歪以下の意図しない捩じりによる歪分を計算で排除することができ、形状同定の精度を向上させることができる。
[Embodiment 2]
When a multi-core optical fiber is placed along a linear structure as a sensing medium, an unintended twist may occur and an error may occur in the measurement result. Therefore, in the present embodiment, it is decided to intentionally twist the multi-core optical fiber used for the sensing medium. When identifying the shape of a linear structure, the strain due to unintended torsion below the torsional strain can be eliminated by calculation, and the accuracy of shape identification can be improved.
 本実施形態の形状測定システムのシステム構成は図1で説明した形状測定システムのシステム構成に対し、マルチコア光ファイバ10に既知の捩じれが与えられていること、及び解析装置30の解析手順が相違する。 The system configuration of the shape measurement system of the present embodiment is different from the system configuration of the shape measurement system described in FIG. 1 in that the multi-core optical fiber 10 is given a known twist and the analysis procedure of the analysis device 30 is different. ..
 図8は、マルチコア光ファイバ10について説明する図である。図8(A)は捩じれが無い状態のマルチコア光ファイバ10で測定される曲げ歪、図8(B)は捩じれがある状態のマルチコア光ファイバ10で測定される曲げ歪を説明している。コア0が中心コア、コア1からコア3が外周コアである。
 なお、曲げ歪が無い場合、曲げ歪は捩じれの有無によらず全てのコアでゼロとなり重なる。また、中心コアについては捩じれの有無によらず、曲げ歪はゼロとなる。捩じれが無い状態のマルチコア光ファイバ10の場合、曲率が一定の曲げが付与されると測定される曲げ歪は図8(A)の軸方向の位置z=2mからz=12mの間のようにコアごとに異なる歪量であるが一定の歪量が観測される。
 また、図8(B)は、軸方向の位置z=2mからz=12mの間で捩じれを付与したマルチコア光ファイバ10の曲げ歪を説明している。図8(B)では、図8(A)と同様に曲率が一定の曲げを付与しているが、曲げが付与された区間において、外周コアの位置が捻じれによって入れ替わるため、歪量の正負が反転していることが確認できる。マルチコア光ファイバ10をセンシング媒体として線状構造物に配置する場合、線状構造物に配置する区間全てに捩じりが必要である。
FIG. 8 is a diagram illustrating a multi-core optical fiber 10. FIG. 8A describes bending strain measured by the multi-core optical fiber 10 in a twisted state, and FIG. 8B describes bending strain measured by the multi-core optical fiber 10 in a twisted state. The core 0 is the central core, and the cores 1 to 3 are the outer peripheral cores.
If there is no bending strain, the bending strain becomes zero and overlaps in all cores regardless of the presence or absence of twisting. In addition, the bending strain of the central core is zero regardless of the presence or absence of twisting. In the case of the multi-core optical fiber 10 without twisting, the bending strain measured when a bending with a constant curvature is applied is as shown between the axial position z = 2m and z = 12m in FIG. 8 (A). Although the amount of strain differs for each core, a certain amount of strain is observed.
Further, FIG. 8B describes the bending strain of the multi-core optical fiber 10 in which a twist is applied between the axial positions z = 2 m and z = 12 m. In FIG. 8 (B), bending with a constant curvature is applied as in FIG. 8 (A), but in the section where bending is applied, the positions of the outer peripheral cores are exchanged by twisting, so that the amount of strain is positive or negative. Can be confirmed to be inverted. When the multi-core optical fiber 10 is arranged in a linear structure as a sensing medium, twisting is required in all the sections arranged in the linear structure.
 解析装置30は、前記位置座標を算出するときに、マルチコア光ファイバ10に生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外する。 The analyzer 30 has a linear structure whose three-dimensional shape is unknown based on the torsional strain generated in the multi-core optical fiber 10 and the known torsional strain when calculating the position coordinates. Estimate the unintended twist that occurs when arranging along an object, and exclude the effects of the unintended twist.
 本形状測定方法は、図4の形状測定方法で説明したステップS33が実施形態1の説明と異なる。すなわち、ステップS03では、
 前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること(ステップS31)、
 前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること(ステップS32)、
 前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること(ステップS33)、及び
 フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること(ステップS34)、
を行う。
In this shape measuring method, step S33 described in the shape measuring method of FIG. 4 is different from the description of the first embodiment. That is, in step S03,
The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential strain at a certain position z (step S31),
The bending strain ε bending, i of each of the outer peripheral cores is calculated by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores (step S32).
Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. (Step S33), and using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ and the bending angle β at the position z (step S34). ),
I do.
 図9は、本形状測定方法で3次元形状が未知である線状構造物を計測するときの具体的手順を説明する図である。ここで、“i”はコア番号とする。なお、i=0は中心コア、1以上のiは外周コアである。
[Step A]
 まず、3次元形状が既知である線状構造物(例えば、すでに敷設されている水道管等)に沿ってマルチコア光ファイバ10を敷設し、定常状態(基準状態)における各コアの後方ブリルアン散乱光の分布特性を取得する。これを基準データとする。
[Step B]
 次に、線状構造物の3次元形状が変化した状態(例えば、地震などで変形が想定される水道管等)で、改めて各コアの後方ブリルアン散乱光の分布特性を取得する。これを比較データとする。
[Step C]
 次に、コア毎且つ位置z毎に比較データと基準データの差分を計算して差分歪を導出する。
[Step D]
 次に、それぞれの外周コアの差分歪から中心コアの差分歪を減算し、外周コア毎に位置zにおける歪εmix,iを導出する(ここのiは1以上)。
[Step D-α]
 歪εmix,iには、曲げ歪εbending,iと捩じり歪εtwistingが含まれる(ここのiは1以上)。外周コアの相対的な位置関係は変化しないので、全ての外周コアiの曲げ歪εbending,iを加算するとゼロになることを利用し、次式のように位置zにおける捩じり歪εtwistingを算出する。max{i}は最大のコア番号を意味する。
Figure JPOXMLDOC01-appb-M000016
 式(7)で算出した捩じり歪εtwistingを式(5)に代入して位置zにおける比捩じり角φ(z)を算出する。図11は比捩じり角φを説明するイメージ図である。比捩じり角φは、単位長当たりの捩じれ角度である。
Figure JPOXMLDOC01-appb-M000017
 ここで、rはマルチコア光ファイバ10の断面において中心から外周コアの中心までの距離である。k2は捩じりの補正係数であり、次式で表される。pは外周コアのスピンレート(単位長あたりの捩じれ量)であり、設計上の値もしくは後述する測定手法で得た値である。
Figure JPOXMLDOC01-appb-M000018
[Step E]
 各外周コアの歪εmix,iからStep D-αで導出したεtwistingを減算して外周コアiの曲げ歪εbending,iを算出する。
 そして、式(4)に式(5)で算出した比捩じり角φ(z)を代入し、位置zにおける外周コアiの位置を表わす角度ωを算出する。aは外周コアiの初期角度である。
Figure JPOXMLDOC01-appb-M000019
 さらに、外周コアiの曲げ歪εbending,iと、式(4)で導出した角度ωをマルチコア光ファイバ10の曲率κと曲げ角度βの関係式(2)に代入する。
Figure JPOXMLDOC01-appb-M000020
ただし、kは式(3)で表される捩じりの補正係数である。
Figure JPOXMLDOC01-appb-M000021
ここで、νは前記マルチコア光ファイバのポアソン比である。
 本実施形態では、外周コアが3つあるので3元連立方程式が得られる。関係式(2)により位置zにおける曲率κと曲げ角度βを算出する。ここで、曲げ歪εはコアごとに異なるが、曲率κと曲げ角度βはいずれのコアにおいても等しいため、最小二乗法で位置zにおける曲率κと曲げ角度βを決定する。
 なお、図10は、外周コアが3であるマルチコア光ファイバの半径r、曲げ方向(曲率κ)、曲げ角度βを説明するイメージ図である。図10(A)はマルチコア光ファイバの側面から見た図、図10(B)はマルチコア光ファイバの断面図である。
[Step F]
 フレネ・セレの公式を用い、Step Eで決定した距離z毎の曲率κと曲げ角度βから、マルチコア光ファイバ10の位置ベクトル(3次元形状)を決定する。なお、位置精度を向上するために、既知の終点を用いて3次元形状を補正することが好ましい。
FIG. 9 is a diagram illustrating a specific procedure when measuring a linear structure whose three-dimensional shape is unknown by this shape measuring method. Here, "i" is a core number. Note that i = 0 is the central core, and i of 1 or more is the outer peripheral core.
[Step A]
First, the multi-core optical fiber 10 is laid along a linear structure whose three-dimensional shape is known (for example, a water pipe that has already been laid), and the rear Brillouin scattered light of each core in a steady state (reference state). Get the distribution characteristics of. This is used as the reference data.
[Step B]
Next, in a state where the three-dimensional shape of the linear structure has changed (for example, a water pipe that is expected to be deformed due to an earthquake or the like), the distribution characteristics of the rear Brillouin scattered light of each core are acquired again. This is used as comparison data.
[Step C]
Next, the difference between the comparison data and the reference data is calculated for each core and each position z to derive the difference strain.
[Step D]
Next, the differential strain of the central core is subtracted from the differential strain of each outer peripheral core, and the strains ε mix and i at the position z are derived for each outer peripheral core (i here is 1 or more).
[Step D-α]
The strains ε mix and i include bending strains ε bending and i and torsional strains ε twisting (where i is 1 or more). Since the relative positional relationship of the outer peripheral cores does not change, the torsional strain ε twisting at the position z is used as shown in the following equation by utilizing the fact that the bending strain ε bending and i of all the outer peripheral cores become zero when added. Is calculated. max {i} means the maximum core number.
Figure JPOXMLDOC01-appb-M000016
The torsional strain ε twisting calculated by the equation (7) is substituted into the equation (5) to calculate the specific torsion angle φ (z) at the position z. FIG. 11 is an image diagram illustrating the specific twist angle φ. The specific twist angle φ is a twist angle per unit length.
Figure JPOXMLDOC01-appb-M000017
Here, r is the distance from the center to the center of the outer peripheral core in the cross section of the multi-core optical fiber 10. k2 is a torsion correction coefficient and is expressed by the following equation. p is the spin rate (the amount of twist per unit length) of the outer peripheral core, which is a design value or a value obtained by a measurement method described later.
Figure JPOXMLDOC01-appb-M000018
[Step E]
The bending strain ε bending, i of the outer peripheral core i is calculated by subtracting the ε twisting derived by Step D-α from the strain ε mix, i of each outer peripheral core.
Then, the specific twist angle φ (z) calculated in the equation (5) is substituted into the equation (4) to calculate the angle ω i representing the position of the outer peripheral core i at the position z. a i is the initial angle of the outer peripheral core i.
Figure JPOXMLDOC01-appb-M000019
Further, the bending strain ε bending, i of the outer peripheral core i and the angle ω i derived by the equation (4) are substituted into the relational expression (2) of the curvature κ and the bending angle β of the multi-core optical fiber 10.
Figure JPOXMLDOC01-appb-M000020
However, k 1 is a twist correction coefficient represented by the equation (3).
Figure JPOXMLDOC01-appb-M000021
Here, ν is the Poisson's ratio of the multi-core optical fiber.
In this embodiment, since there are three outer cores, a ternary simultaneous equation can be obtained. The curvature κ and the bending angle β at the position z are calculated by the relational expression (2). Here, the bending strain ε differs for each core, but since the curvature κ and the bending angle β are the same in all cores, the curvature κ and the bending angle β at the position z are determined by the least squares method.
Note that FIG. 10 is an image diagram illustrating a radius r, a bending direction (curvature κ), and a bending angle β of a multi-core optical fiber having an outer peripheral core of 3. 10 (A) is a view seen from the side surface of the multi-core optical fiber, and FIG. 10 (B) is a cross-sectional view of the multi-core optical fiber.
[Step F]
Using the Frenet-Serret formula, the position vector (three-dimensional shape) of the multi-core optical fiber 10 is determined from the curvature κ and the bending angle β for each distance z determined by Step E. In addition, in order to improve the position accuracy, it is preferable to correct the three-dimensional shape by using a known end point.
(スピンレート測定方法)
 ここで、スピンレートを実測する方法について説明する。
 図12は、捩じりを加えたマルチコア光ファイバの各コアの歪をz方向に測定した結果を示す図である。マルチコア光ファイバを捩じった場合、製造誤差などにより捩じり回数(スピンレート)に設計値との誤差が生じる。このため、各コアとも、歪の周期が変動する。そこで、STFT(short-time Fourier transform)により周期的な歪の変動から捩じり回数(スピンレート)を算出する。上述したステップD-αでは、この実測した歪の周期から算出したスピンレートpの値を利用することができる。
(Spin rate measurement method)
Here, a method for actually measuring the spin rate will be described.
FIG. 12 is a diagram showing the results of measuring the strain of each core of the twisted multi-core optical fiber in the z direction. When a multi-core optical fiber is twisted, the number of twists (spin rate) may differ from the design value due to manufacturing errors and the like. Therefore, the strain period fluctuates in each core. Therefore, the number of twists (spin rate) is calculated from the periodic fluctuation of the strain by the RTM (short-time Fourier transform). In step D-α described above, the value of the spin rate p calculated from the measured strain period can be used.
(効果)
 本発明に係る形状測定システムは、線状構造物の形状同定に後方ブリルアン散乱光を用いることで、数kmから数10kmの測定ダイナミックレンジを実現できる。また、形状変化の検出に用いるマルチコア光ファイバの中心コアと外周コアの中心間距離を120μm以上としたことで、曲率0.5[1/m]以下の微小変化を検出できる。
(effect)
The shape measurement system according to the present invention can realize a measurement dynamic range of several km to several tens of km by using rear Brillouin scattered light for shape identification of a linear structure. Further, by setting the distance between the center core of the multi-core optical fiber used for detecting the shape change and the center of the outer peripheral core to 120 μm or more, it is possible to detect a minute change having a curvature of 0.5 [1 / m] or less.
10:マルチコア光ファイバ
11:中心コア
12:外周コア
20:計測装置
30:解析装置
10: Multi-core optical fiber 11: Central core 12: Outer peripheral core 20: Measuring device 30: Analytical device

Claims (14)

  1.  断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバと、
     前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測する計測装置と、
     3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出する解析装置と、
    を備える形状測定システム。
    A central core arranged in the center of the cross section, and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically and outside the central core at equal intervals.
    A measuring device for measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and a measuring device.
    The rear Brilluan scattered light distribution of the multi-core optical fiber arranged along a linear structure having an unknown three-dimensional shape and the multi-core optical fiber arranged along a linear structure having a known three-dimensional shape. An analyzer that calculates the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from
    Shape measurement system.
  2.  前記マルチコア光ファイバの長手方向の位置をzとすると、
     前記解析装置は、
     前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
     前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
     関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
     フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
    を行うことを特徴とする請求項1に記載の形状測定システム。
    [関係式(1)]
     ε=r・κ・cos(α-β)
    ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。
    Let z be the position in the longitudinal direction of the multi-core optical fiber.
    The analyzer is
    The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
    To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
    Using the relational expression (1), calculate the curvature κ and bending angle β at the position z of the multi-core optical fiber from the bending strain ε for each outer core, and using the Frenet-Serret formula, the curvature at the position z. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from κ and the bending angle β.
    The shape measuring system according to claim 1.
    [Relational formula (1)]
    ε = r ・ κ ・ cos (α-β)
    However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
  3.  前記マルチコア光ファイバは、既知の捩じりが与えられていること、及び
     前記解析装置は、前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
    を特徴とする請求項1に記載の形状測定システム。
    The multi-core optical fiber is given a known torsion, and when the analyzer calculates the position coordinates, the torsional strain occurring in the multi-core optical fiber and the known torsion. To estimate the unintended torsion that occurred when arranging along a linear structure whose three-dimensional shape is unknown based on the strain due to the kinking, and to exclude the influence of the unintended twist. ,
    The shape measuring system according to claim 1.
  4.  前記マルチコア光ファイバの長手方向の位置をzとすると、
     前記解析装置は、
     前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
     前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
     前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
     フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
    を行うことを特徴とする請求項3に記載の形状測定システム。
    Figure JPOXMLDOC01-appb-M000001
    ただし、rは前記中心コアと前記外周コアとの中心間距離、kは式(3)で表される捩じりの補正係数、νは前記マルチコア光ファイバのポアソン比、aはコアiの初期角度、ωは式(4)で表される前記マルチコア光ファイバの位置zでの断面における前記外周コアの位置を表す角度、pは前記外周コアのスピンレート、εtwistingは前記マルチコア光ファイバの位置zに発生している捩じり歪、φ(z)は式(5)で表される前記マルチコア光ファイバの位置zでの比捩じり角、及びkは式(6)で表される捩じりの補正係数である。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Let z be the position in the longitudinal direction of the multi-core optical fiber.
    The analyzer is
    The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
    To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
    Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
    3. The shape measuring system according to claim 3.
    Figure JPOXMLDOC01-appb-M000001
    However, r is the distance between the centers of the central core and the outer peripheral core, k 1 is the twist correction coefficient represented by the equation (3), ν is the Poisson's ratio of the multi-core optical fiber, and a i is the core i. The initial angle of, ω i is the angle representing the position of the outer peripheral core in the cross section at the position z of the multi-core optical fiber represented by the equation (4), p is the spin rate of the outer peripheral core, and ε twisting is the multi-core light. The torsional strain generated at the position z of the fiber, φ (z) is the specific torsion angle at the position z of the multi-core optical fiber represented by the equation (5), and k 2 is the equation (6). It is a correction coefficient of twist represented by.
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
  5.  前記解析装置は、前記外周コアそれぞれの曲げ歪εbending,iの周期的な変動から前記外周コアのスピンレートpを算出することを特徴とする請求項4に記載の形状測定システム。 The shape measuring system according to claim 4, wherein the analysis device calculates the spin rate p of the outer peripheral core from periodic fluctuations of bending strain ε bending and i of each of the outer peripheral cores.
  6.  前記マルチコア光ファイバは、前記外周コアの数は3であり、クラッド直径が375μm以上であることを特徴とする請求項1から5のいずれかに記載の測定システム。 The measurement system according to any one of claims 1 to 5, wherein the multi-core optical fiber has 3 outer peripheral cores and a clad diameter of 375 μm or more.
  7.  前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることを特徴とする請求項1から6のいずれかに記載の測定システム。
    The measuring system according to any one of claims 1 to 6, wherein the multi-core optical fiber has a center-to-center distance between the central core and the outer peripheral core of 120 μm or more.
  8.  断面の中心に配置される中心コア、及び前記中心コアの外側かつ同心円状に等間隔で配置される3個以上の外周コアを有するマルチコア光ファイバを線状構造物に沿って配置すること、
     前記マルチコア光ファイバの各コアの伝搬方向における後方ブリルアン散乱光分布を計測すること、及び
     3次元形状が未知である線状構造物に沿って配置された前記マルチコア光ファイバと3次元形状が既知である線状構造物に沿って配置された前記マルチコア光ファイバの前記後方ブリルアン散乱光分布から前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
    を行う形状測定方法。
    Arranging a central core arranged in the center of the cross section and a multi-core optical fiber having three or more outer peripheral cores arranged concentrically at equal intervals outside the central core along the linear structure.
    Measuring the rear Brillouin scattered light distribution in the propagation direction of each core of the multi-core optical fiber, and knowing the multi-core optical fiber and the three-dimensional shape arranged along a linear structure whose three-dimensional shape is unknown. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the rear Brillouin scattered light distribution of the multi-core optical fiber arranged along a certain linear structure.
    Shape measurement method.
  9.  前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出するときに、前記マルチコア光ファイバの長手方向の位置をzとし、
     前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
     前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εを計算すること、
     関係式(1)を用い、前記外周コア毎の前記曲げ歪εから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
     フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
    を行うことを特徴とする請求項8に記載の形状測定方法。
    [関係式(1)]
     ε=r・κ・cos(α-β)
    ただし、rは前記中心コアと前記外周コアとの中心間距離、αは前記マルチコア光ファイバの断面における前記外周コアの位置を表す角度である。
    When calculating the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown, the position in the longitudinal direction of the multi-core optical fiber is defined as z.
    The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
    To calculate the bending strain ε of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
    Using the relational expression (1), calculate the curvature κ and bending angle β at the position z of the multi-core optical fiber from the bending strain ε for each outer core, and using the Frenet-Serret formula, the curvature at the position z. To calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from κ and the bending angle β.
    8. The shape measuring method according to claim 8.
    [Relational formula (1)]
    ε = r ・ κ ・ cos (α-β)
    However, r is the distance between the centers of the central core and the outer peripheral core, and α is an angle representing the position of the outer peripheral core in the cross section of the multi-core optical fiber.
  10.  前記マルチコア光ファイバには、既知の捩じりが与えられていること、及び
     前記位置座標を算出するときに、前記マルチコア光ファイバに生じている捩じり歪と前記既知の捩じりによる歪とに基づいて前記3次元形状が未知である線状構造物に沿って配置するときに発生した意図しない捩じりを推定し、前記意図しない捩じりによる影響を除外すること、
    を特徴とする請求項8に記載の形状測定方法。
    The multi-core optical fiber is given a known torsion, and when the position coordinates are calculated, the torsional strain generated in the multi-core optical fiber and the strain due to the known torsion are applied. To estimate the unintended twist that occurred when arranging along a linear structure whose three-dimensional shape is unknown based on the above, and to exclude the influence of the unintended twist.
    The shape measuring method according to claim 8.
  11.  前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出するときに、前記マルチコア光ファイバの長手方向の位置をzとし、
     前記3次元形状が未知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量と、前記3次元形状が既知である線状構造物に沿って前記マルチコア光ファイバを配置したときの前記後方ブリルアン散乱光分布から得られた前記マルチコア光ファイバの各コアの位置zの歪量との差分である位置zの差分歪を計算すること、
     前記外周コアそれぞれの前記差分歪から前記中心コアの前記差分歪を減算して前記外周コアそれぞれの曲げ歪εbending,iを計算すること、
     前記意図しない捩じりによる影響を除外する関係式(2)を用い、前記外周コア毎の前記曲げ歪εbending,iから前記マルチコア光ファイバの位置zにおける曲率κと曲げ角度βを計算すること、及び
     フレネ・セレの公式を用い、位置zにおける曲率κと曲げ角度βから前記3次元形状が未知である線状構造物の3次元空間における位置座標を算出すること、
    を行うことを特徴とする請求項10に記載の形状測定方法。
    Figure JPOXMLDOC01-appb-M000006
    ただし、rは前記中心コアと前記外周コアとの中心間距離、kは式(3)で表される捩じりの補正係数、νは前記マルチコア光ファイバのポアソン比、aはコアiの初期角度、ωは式(4)で表される前記マルチコア光ファイバの位置zでの断面における前記外周コアの位置を表す角度、pは前記外周コアのスピンレート、εtwistingは前記マルチコア光ファイバの位置zに発生している捩じり歪、φ(z)は式(5)で表される前記マルチコア光ファイバの位置zでの比捩じり角、及びkは式(6)で表される捩じりの補正係数である。
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
    When calculating the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown, the position in the longitudinal direction of the multi-core optical fiber is defined as z.
    The amount of strain at the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is unknown, and the above-mentioned The difference from the strain amount of the position z of each core of the multi-core optical fiber obtained from the rear Brillouin scattered light distribution when the multi-core optical fiber is arranged along a linear structure whose three-dimensional shape is known. Calculating the differential distortion at a certain position z,
    To calculate the bending strain ε bending, i of each of the outer peripheral cores by subtracting the differential strain of the central core from the differential strain of each of the outer peripheral cores.
    Using the relational expression (2) excluding the influence of the unintended twist, the curvature κ and the bending angle β at the position z of the multi-core optical fiber are calculated from the bending strain ε bending, i for each outer core. , And, using the Frenet-Serret formula, calculate the position coordinates in the three-dimensional space of the linear structure whose three-dimensional shape is unknown from the curvature κ at the position z and the bending angle β.
    10. The shape measuring method according to claim 10.
    Figure JPOXMLDOC01-appb-M000006
    However, r is the distance between the centers of the central core and the outer peripheral core, k 1 is the twist correction coefficient represented by the equation (3), ν is the Poisson's ratio of the multi-core optical fiber, and a i is the core i. The initial angle of, ω i is the angle representing the position of the outer peripheral core in the cross section at the position z of the multi-core optical fiber represented by the equation (4), p is the spin rate of the outer peripheral core, and ε twisting is the multi-core light. The torsional strain generated at the position z of the fiber, φ (z) is the specific torsion angle at the position z of the multi-core optical fiber represented by the equation (5), and k 2 is the equation (6). It is a correction coefficient of twist represented by.
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
  12.  前記外周コアそれぞれの曲げ歪εbending,iの周期的な変動から前記外周コアのスピンレートpを算出することを特徴とする請求項11に記載の形状測定方法。 The shape measuring method according to claim 11, wherein the spin rate p of the outer peripheral core is calculated from periodic fluctuations of bending strain ε bending and i of each of the outer peripheral cores.
  13.  前記マルチコア光ファイバは、前記外周コアの数は3であり、クラッド直径が375μm以上であることを特徴とする請求項8から12のいずれかに記載の形状測定方法。 The shape measuring method according to any one of claims 8 to 12, wherein the multi-core optical fiber has 3 outer peripheral cores and a clad diameter of 375 μm or more.
  14.  前記マルチコア光ファイバは、前記中心コアと前記外周コアとの中心間距離が120μm以上であることを特徴とする請求項8から13のいずれかに記載の形状測定方法。 The shape measuring method according to any one of claims 8 to 13, wherein the multi-core optical fiber has a center-to-center distance between the central core and the outer peripheral core of 120 μm or more.
PCT/JP2021/021283 2020-06-05 2021-06-03 Shape measurement system and shape measurement method WO2021246497A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/915,924 US20230147800A1 (en) 2020-06-05 2021-06-03 Shape measurement system and shape measurement method
JP2022528897A JP7376052B2 (en) 2020-06-05 2021-06-03 Shape measurement system and shape measurement method
EP21818720.1A EP4163586A4 (en) 2020-06-05 2021-06-03 Shape measurement system and shape measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-098349 2020-06-05
JP2020098349 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246497A1 true WO2021246497A1 (en) 2021-12-09

Family

ID=78831274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021283 WO2021246497A1 (en) 2020-06-05 2021-06-03 Shape measurement system and shape measurement method

Country Status (4)

Country Link
US (1) US20230147800A1 (en)
EP (1) EP4163586A4 (en)
JP (1) JP7376052B2 (en)
WO (1) WO2021246497A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120055A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Shape measurement system and shape measurement method
CN118149723A (en) * 2024-05-09 2024-06-07 武汉理工大学 Long-distance underwater cable gesture detection method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900579B (en) * 2023-01-06 2023-05-26 山东大学 Self-correcting spliced optical fiber displacement field sensing system and correcting method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505441A (en) * 2009-09-18 2013-02-14 ルナ イノベーションズ インコーポレイテッド Optical position and / or shape sensing
JP2016102691A (en) * 2014-11-27 2016-06-02 日本電信電話株式会社 Optical fiber bent shape measurement device and bent shape measurement method therefor
JP2018527041A (en) * 2015-06-15 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical shape sensing system and method for sensing the position and / or shape of a medical device using backscattered light measurement
JP2019522776A (en) * 2016-05-11 2019-08-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Redundant core in multi-core optical fiber for safety
JP2019531487A (en) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for determining bending and / or strain of an optical waveguide

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939596A4 (en) * 2005-09-29 2012-04-25 Sumitomo Electric Industries Sensor and external turbulence measuring method using the same
JP2007101508A (en) * 2005-10-07 2007-04-19 Sumitomo Electric Ind Ltd Temperature measurement method and device
JP5769676B2 (en) * 2012-08-17 2015-08-26 公益財団法人地球環境産業技術研究機構 Material pressure, temperature, strain distribution measurement system, carbon dioxide underground storage monitoring method using the system, method of evaluating the effect of formation of carbon dioxide on formation stability, and ice formation monitoring method
US9366526B2 (en) * 2012-11-30 2016-06-14 Neubrex Co., Ltd. Three-dimensional position measurement system
US10228556B2 (en) * 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
CN105371781B (en) * 2015-11-13 2018-09-07 华中科技大学 A kind of method for measuring three-dimensional shape
US10145681B2 (en) * 2016-07-19 2018-12-04 Corning Incorporated Brillouin-based distributed bend fiber sensor and method for using same
US10530114B2 (en) * 2017-08-31 2020-01-07 United States Of America As Represented By The Administrator Of Nasa Polarization maintaining, large mode area (PMVLMA) erbium-doped optical fiber and amplifier
CN110243302B (en) * 2018-03-08 2020-11-06 桂林电子科技大学 Reflection type multi-core circulating series connection optical fiber shape sensor
EP3832254B1 (en) * 2018-07-31 2023-08-30 Furukawa Electric Co., Ltd. Cable, cable shape sensing system, sensing system, and method for sensing cable shape
AU2020274436A1 (en) * 2019-05-12 2021-12-02 Hampidjan Hf. Elongation and heat indicating synthetic fibre rope
WO2021086129A1 (en) * 2019-10-31 2021-05-06 (주)옵토닉스 Special optical fiber for measuring 3d curved shape, manufacturing method thereof, and system for measuring 3d curved shape by using special optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505441A (en) * 2009-09-18 2013-02-14 ルナ イノベーションズ インコーポレイテッド Optical position and / or shape sensing
JP2016102691A (en) * 2014-11-27 2016-06-02 日本電信電話株式会社 Optical fiber bent shape measurement device and bent shape measurement method therefor
JP2018527041A (en) * 2015-06-15 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical shape sensing system and method for sensing the position and / or shape of a medical device using backscattered light measurement
JP2019522776A (en) * 2016-05-11 2019-08-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Redundant core in multi-core optical fiber for safety
JP2019531487A (en) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Method for determining bending and / or strain of an optical waveguide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROGER G. DUNCAN, HIGH-ACCURACY FIBER-OPTIC SHAPE SENSING, 30 April 2020 (2020-04-30), Retrieved from the Internet <URL:https://doi.org/10.1117/12.720914>
See also references of EP4163586A4
YONG-LAE PARK: "Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions", IEEE/ASME, vol. 15, no. 6, 2010, XP011339830, DOI: 10.1109/TMECH.2010.2080360

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120055A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Shape measurement system and shape measurement method
CN118149723A (en) * 2024-05-09 2024-06-07 武汉理工大学 Long-distance underwater cable gesture detection method and system

Also Published As

Publication number Publication date
JP7376052B2 (en) 2023-11-08
JPWO2021246497A1 (en) 2021-12-09
EP4163586A4 (en) 2024-02-21
EP4163586A1 (en) 2023-04-12
US20230147800A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2021246497A1 (en) Shape measurement system and shape measurement method
JP7518243B2 (en) Redundant cores in multicore optical fibers for safety
CN107003473B (en) Different cores in a multicore fiber for strain and temperature separation
CN105865752B (en) Method and device for comprehensively judging polarization maintaining optical fiber characteristics by adopting distributed polarization crosstalk analyzer
WO2014083989A1 (en) Three-dimensional position measurement device
US20100215311A1 (en) Method and Apparatus for Shape and End Position Determination Using an Optical Fiber
US20080212082A1 (en) Fiber optic position and/or shape sensing based on rayleigh scatter
JP6346852B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
Duncan et al. Characterization of a fiber-optic shape and position sensor
CN111982000B (en) Optical fiber shape reconstruction method and device based on Beta frame
CN110073174A (en) The method and apparatus for determining form parameter using the sensing optical fiber of the single with a variety of light spread modes
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
JP7315009B2 (en) Optical fiber cable sensing device, optical fiber cable sensing method, and program
JP2016102690A (en) Optical fiber bent shape measurement device and bent shape measurement method therefor
JP7406767B2 (en) Fiber optic cable sensing system, fiber optic cable sensing method, and fiber optic cable
EP4455617A1 (en) Shape measurement system and shape measurement method
Maeda et al. Shape Sensing for Large-scale Line Structures with Multi-core Fibers by Using Brillouin OTDR
CN115667840A (en) System for measuring microbends and arbitrary micro-deformations along three-dimensional space
Lebang et al. Detection of displacement using glass optical fiber sensor with various configuration
JP7406768B2 (en) Optical fiber cable sensing device, optical fiber cable sensing method, and program
US20230152170A1 (en) Measuring device and measuring method using tape core wire
JP7523071B2 (en) Optical fiber twisting period calculation system, optical fiber twisting period calculation method, optical fiber twisting period calculation device, and optical fiber twisting period calculation program
WO2024228359A1 (en) Detection system, detection method, and analysis device
JP2023014654A (en) Optical fiber bending direction calculation system, optical fiber bending direction calculation method, optical fiber bending direction calculation device, and optical fiber bending direction calculation program
OGURA et al. Detection of Buckling in Columnar Structures by Shape Sensing with Multi-Core Optical Fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528897

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021818720

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021818720

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE