WO2021246399A1 - 腸管免疫異常を原因とする疾患治療薬 - Google Patents

腸管免疫異常を原因とする疾患治療薬 Download PDF

Info

Publication number
WO2021246399A1
WO2021246399A1 PCT/JP2021/020821 JP2021020821W WO2021246399A1 WO 2021246399 A1 WO2021246399 A1 WO 2021246399A1 JP 2021020821 W JP2021020821 W JP 2021020821W WO 2021246399 A1 WO2021246399 A1 WO 2021246399A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
disease
mice
intestinal
acetylcholine receptor
Prior art date
Application number
PCT/JP2021/020821
Other languages
English (en)
French (fr)
Inventor
隆典 金井
俊昭 寺谷
洋平 三上
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Priority to US17/928,894 priority Critical patent/US20230293473A1/en
Priority to EP21817415.9A priority patent/EP4162953A1/en
Priority to JP2022528841A priority patent/JPWO2021246399A1/ja
Publication of WO2021246399A1 publication Critical patent/WO2021246399A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/27Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes

Definitions

  • the present invention relates to a novel therapeutic agent for a disease, a novel screening method for a therapeutic agent for a disease, and a novel therapeutic method for a disease.
  • the intestinal tract functions as an important organ that controls digestion and absorption, and faces the outside world (lumen) with a single layer of columnar epithelial cells.
  • the lumen is constantly exposed to more than 100 trillion intestinal bacteria and foreign substances such as dietary antigens, but the action of peripheral regulatory T cells (pTreg) in the intestine prevents an excessive inflammatory response from occurring in the intestinal tract. Homeostasis is maintained.
  • specific intestinal bacteria, components derived from intestinal bacteria, short-chain fatty acids, cytokines, etc. have been regarded as important for the differentiation and maintenance of peripheral regulatory T cells.
  • Non-Patent Documents 1, 2, 3, and 4 Recent reports suggest that the nervous system may be involved in the intestinal immune system, but the relationship between the nervous system and intestinal peripheral regulatory T cells has long been unclear.
  • the research reports on the gut-brain axis that have been reported so far do not specifically show the neural circuit that connects the brain and intestine, and many ceremonies remain from an anatomical point of view.
  • intestinal peripheral regulatory T cells which is related to intestinal peripheral regulatory T cells. It also leads to the development of new treatment methods for diseases (for example, inflammatory bowel disease).
  • intestinal peripheral regulatory T cells are affected by parasympathetic nerve signals from the brain, and 2) information on the intestinal environment of the liver.
  • Antigen-presenting cells which are extremely important for the differentiation and maintenance of intestinal peripheral regulatory T cells, are the intestinal tract. It was found that the vagus nerve acetylcholine receptor subtype 1 is strongly expressed in these intestinal antigen-presenting cells, which are located in close proximity to the nerves present in the mucosal proper layer of the vagus nerve.
  • muscarinic acetylcholine receptor antagonist is atropine, tropicamide, oxybutynin, propiverine, tolterodine, solifenacin, or imidafenacin.
  • a method for screening a therapeutic drug for a disease which comprises a step of co-culturing intestinal antigen-presenting cells and CD4-positive T cells in the presence of a test substance, and a step of detecting the induction of regulatory T cells.
  • a screening method characterized by that.
  • a method for treating a disease by regulating the amount of peripheral regulatory T cells in the intestinal tract, which activates or suppresses the stray nerve liver branch afferent tract to be treated, and the left stray nerve to be treated.
  • a method for treating a disease comprising activating or suppressing the efferent tract or administering an agonist or antagonist of a muscarinic acetylcholine receptor to a subject to be treated.
  • muscarinic acetylcholine receptor antagonist is atropine, tropicamide, oxybutynin, propiverine, tolterodine, solifenacin, or imidafenacin.
  • the present invention provides a novel therapeutic agent for a disease, a novel screening method for a therapeutic agent for a disease, and a novel therapeutic method for a disease.
  • the hepatic vagal sensory afferent pathway is essential for NTS activation during colitis.
  • the liver-brain-intestinal axis regulates colon Treg homeostasis via the APC muscarinic signal.
  • Disruption of the hepatic vagal tract exacerbates colitis in mice in a muscarinic signal-dependent manner.
  • Muscarinic signals in colon APC activate Treg induction.
  • Colitis activates the hepatic brain axis.
  • VHNS vagus nerve liver branch electrical stimulation
  • the therapeutic agent for the disease of the present invention is a therapeutic agent for a disease containing a substance having an action of regulating the amount of peripheral regulatory T cells in the intestinal tract, and the substance is a vagus nerve liver branch. It is characterized by being a substance that activates or suppresses the cardiac tract, a substance that activates or suppresses the left vagal efferent tract, or an agonist or antagonist of the muscarinic acetylcholine receptor.
  • regulating the amount of peripheral regulatory T cells in the intestinal tract means increasing or decreasing the amount of peripheral regulatory T cells in the intestinal tract.
  • increasing the amount of peripheral regulatory T cells in the intestinal tract excessive immune response can be suppressed, and a therapeutic effect for inflammatory diseases and the like can be expected.
  • reducing the amount of peripheral regulatory T cells in the intestinal tract the immune response can be strengthened and a therapeutic effect on gastrointestinal infections can be expected.
  • the therapeutic agent for the disease of the present invention is a substance that activates the vagus nerve hepatic branch afferent tract, a substance that activates the left vagus nerve efferent tract. , Or contains an agonist of muscarinic acetylcholine receptor.
  • the therapeutic agent for the disease of the present invention suppresses the vagus nerve liver branch afferent tract, the left vagus nerve efferent tract. Or contains an antagonist of the muscarinic acetylcholine receptor.
  • the type of disease is not particularly limited as long as it is a disease that can be treated by regulating (increasing or decreasing) the amount of peripheral regulatory T cells in the intestinal tract.
  • diseases that can be treated by increasing the amount of peripheral regulatory T cells in the intestinal tract include diseases caused by intestinal immune disorders (inflammatory bowel disease, autoimmune disease, allergy, etc.).
  • Diseases that can be treated by reducing the amount of peripheral regulatory T cells in the intestinal tract include gastrointestinal infections and cancer. Examples of gastrointestinal infections include norovirus infections, rotavirus infections, and pathogenic Escherichia coli enterocolitis.
  • Substances that activate or suppress the vagal hepatic branch afferents, substances that activate or suppress the left vagal efferent tract, and agonists or antagonists of the muscarinic acetylcholine receptor can reduce the amount of peripheral regulatory T cells in the intestinal tract. It is not particularly limited as long as it has a regulating action.
  • Specific examples of muscarinic acetylcholine receptor agonists include betanecol, muscarin, pilocarpine, and sevimerin
  • muscarinic acetylcholine receptor antagonists include atropine, tropicamide, oxybutynin, propiverine, tortellodin, solifenasin, and imidafenacin. It can be mentioned, but it is not limited to these.
  • the therapeutic agent for the disease of the present invention can be prepared by formulating a substance having an action of regulating the amount of peripheral regulatory T cells in the intestinal tract by a known pharmaceutical method. Specifically, it can be prepared as an injection (intraperitoneal injection, subcutaneous injection, intravenous injection, intramuscular injection), drip infusion, capsule, liquid, suspension, emulsion and the like.
  • injection intraperitoneal injection, subcutaneous injection, intravenous injection, intramuscular injection
  • drip infusion capsule, liquid, suspension, emulsion and the like.
  • other components such as a pharmacologically acceptable carrier may be included.
  • Other ingredients include, for example, sterile water, saline, solvents, substrates, emulsifiers, vegetable oils, suspensions, surfactants, stabilizers, preservatives, binders, diluents, isotonic agents, painless. Examples thereof include agents, disintegrants, lubricants, buffers, coating agents, colorants, and other additives, and these
  • the therapeutic target of the therapeutic agent for the disease of the present invention is mainly humans, but animals other than humans may be used.
  • animals other than humans include mice, rats, hamsters, rabbits, cats, dogs, cows, horses, pigs, sheep, monkeys and the like.
  • the dose of the therapeutic agent for the disease of the present invention includes the type of substance having an action of regulating the amount of peripheral regulatory T cells in the intestinal tract, the type of disease, the mode of administration, the method of administration, and the age and weight of the subject to be treated. Can be determined as appropriate.
  • the specific dose is, for example, in the case of administering an agonist of muscarinic acetylcholine receptor to humans, it is preferable to administer 0.1 to 100 g per adult per day, and 0.1 to 10 g may be administered. More preferred.
  • the method for administering the therapeutic agent for the disease of the present invention is not particularly limited, and examples thereof include intraperitoneal injection, subcutaneous injection, intralymphatic injection, intravenous injection, and intravenous drip injection.
  • the screening method of the present invention is a screening method for a therapeutic agent for a disease, which is a step of co-culturing intestinal antigen-presenting cells and CD4-positive T cells in the presence of a test substance, and regulatory T cells. It is characterized by including a step of detecting induction.
  • the method for detecting the induction of regulatory T cells is not particularly limited, but it is preferably performed by the method for detecting the expression of FoxP3.
  • the disease may be the same as that of the therapeutic agents described above.
  • the treatment method for the disease of the present invention is a method for treating the disease by regulating the amount of peripheral regulatory T cells in the intestinal tract, and activates the stray nerve liver branch afferent tract to be treated. Alternatively, it comprises suppressing, activating or suppressing the left stray nerve efferent tract of the subject to be treated, or administering to the subject of treatment an agonist or antagonist of the muscarinic acetylcholine receptor.
  • the activation or suppression of the vagal hepatic branch afferent can be performed by administering a substance having such an action to the therapeutic subject, but in addition, electrical stimulation is applied to the vagal hepatic vagus afferent. It can also be done by cutting the vagus nerve liver branch afferents. Similarly, activation or inhibition of the left vagal efferent tract is performed by administering a substance having such an action to a therapeutic subject, applying electrical stimulation to the left vagal nerve efferent tract, and cutting the left vagal nerve efferent tract. Can be done by
  • muscarinic acetylcholine receptors diseases, treatment targets, etc.
  • diseases, treatment targets, etc. may be the same as those of the above-mentioned therapeutic agents.
  • the actuation method of the cuff electrode of the present invention stimulates the vagus nerve liver branch to regulate the amount of peripheral regulatory T cells in the intestinal tract.
  • the amount of peripheral regulatory T cells in the intestinal tract can be increased by activating the cuff electrode installed in the vagus nerve liver branch and applying electrical stimulation to the vagus nerve liver branch. This makes it possible to treat diseases such as inflammatory bowel disease.
  • pTregs peripheral regulatory T cells
  • LP lamina limbal growth factor
  • pTregs peripheral regulatory T cells
  • the production of pTregs is a combination of signals from microorganisms and foods such as cytokines such as TGF- ⁇ and RA, Clostridia clusters IV, XIVa, XVIII, Bacteroides fragilis, microbiota-associated molecular pattern (MAMPs) and short chain fatty acids (SCFA). Promoted by 5-13.
  • cytokines such as TGF- ⁇ and RA
  • Clostridia clusters IV, XIVa, XVIII Bacteroides fragilis, microbiota-associated molecular pattern (MAMPs) and short chain fatty acids (SCFA).
  • MAMPs microbiota-associated molecular pattern
  • SCFA short chain fatty acids
  • the gastrointestinal tract is not only highly innervated, but also very rich in adaptive and innate immune cells 14,17 .
  • ⁇ -tubulin III + mainly CX3CR1 + mononuclear cells (MNP)
  • MNP mononuclear cells
  • APCs were in close proximity (Figs. 1a, b, 5a, b).
  • Intestinal APCs, especially CX3CR1 + MNP and CD103 + dendritic cells (DCs) produce RA and preferentially support the development of pTregs in the TGF- ⁇ -rich intestinal microenvironment 8,18-23 .
  • vagus nerve affects intestinal homeostasis by controlling intestinal APC and pTregs. Not yet fully understood.
  • WT wild-type C57BL / 6
  • VGx subdiaphragmatic main vagotomy
  • vagal amputated mice had significantly reduced numbers of Foxp3 + T helper cells, especially Helios-ROR ⁇ t + pTregs, in the large intestine compared to mice that underwent sham surgery (Fig. 1c, d, Figure 1). 5e, f).
  • APC mRNA-seq from the spleen and intestine was performed to identify neurotransmitters that signal from intestinal neurons to APC in the large intestine.
  • Intestinal APCs have higher expression levels of the muscarinic ACh receptor-encoding gene Chrm1 than spleen APCs, suggesting that neurotransmitters are tissue-specifically involved in the regulation of intestinal APCs.
  • Fig. 1g, Fig. 5g Fig. 5g.
  • expression of Chrm1, Aldh1a1, and Aldh1a2 is common compared to genes that define typical subsets of APC such as Itgae (CD103), Cx3cr1, and Irf8.
  • FIG. 1h i, Fig. 5h
  • Fig. 1j muscarinic and intestinal neurospheroids induced the expression of Aldh1a1 and Aldh1a2 in APCs of the large intestine obtained from WT mice and human intestines (Fig. 1k, l), but APCs lacking Chrm1, 2, and 4 (mAChR).
  • VGx increased susceptibility to a model of sodium dextran sulfate (DSS) -induced colitis (Fig. 6a-c). Since VGx reduced the number of pTregs and induced a localized inflammatory environment, we then investigated which vagal afferent neurons were involved in the regulation and maintenance of the pTreg pool in the intestine.
  • the vagus nerve innervates most of the gastrointestinal tract, and its afferent neurons transmit sensory inputs to bilateral nodular ganglions (NGs) 24 . In colitis, these sensory inputs are further projected onto the isolated nucleus of the brain stem (NTS) (Fig. 6d-f).
  • the onset of acute colitis activates the sensory afferents of the liver in vivo, which selectively surgically divides the common hepatic branch of the vagus nerve (“HVx””. It disappeared by doing 25 ) (Fig. 2a, b, Fig. 7a-c). Since the liver is constantly exposed to nutrients from the intestine, bacterial products, toxins and metabolites, this intestinal-liver axis connected by portal circulation has been demonstrated to cause liver disease. There are 26,27 . In addition, nutrients and bacterial products activate the vagus nerve via the mTORC1 (mechanistic target of rapamycin complex 1) signal 28 (Fig.
  • vagus nerve branching in HVx mice is predominantly from capsaicin-sensitive TRPV1 + sensory afferent nerves, which do not contain sympathetic TH + neurons, according to electrophysiological and immunohistological evaluation. It is configured in (Fig. 7d, e).
  • the present inventor decided to investigate the role of muscarinic Ach signal in intestinal APC in vivo. Genetic removal of mAChR reduced the expression of Aldh1a1 and Aldh1a2 in colonic APCs, resulting in decreased colonic pTregs (Fig. 3a-d). It was confirmed that the number of c-Fos + intestinal neurons in the intestinal muscularis of the large intestine was smaller in VGx and HVx mice than in sham-operated mice, but the transcription factor Hand2 required for terminal differentiation of intestinal neurons was confirmed. There was no effect on the expression of (Fig. 11a-f).
  • mice the parasympathetic nervous system (Ach) intestinal small molecule / peptide neurotransmitter, not the sympathetic nervous system (noradrenaline) or sensory nervous system (calcitonin gene-related peptide (CGRP)), is used for sham surgery. It was reduced compared to mice (Fig. 11g-h). Does mAChR activation restore aldehyde dehydrogenase expression and activity in intestinal APC, as liver-selective vagotomy and trunk vagotomy primarily reduce local intestinal Ach levels. I verified whether it was.
  • liver-brain-intestinal neural arc maintains basal levels of intestinal pTregs, which levels are dependent on the input of tonic microorganisms.
  • HVx did not significantly change the composition of the intestinal flora (Fig. 13a-c), so HVx mice showed more severe colitis than cohabiting sham-operated mice (Fig. 14 g, h).
  • HVx did not increase susceptibility to DSS-induced colitis in antibiotic-treated or MyD88-deficient mice (Fig. 14 il). From this, it is considered that continuous input of microorganisms is required for the liver-brain-intestinal nerve arc to function in order to maintain the pTreg pool of the intestine.
  • the vagal exogenous reflex that connects the hepatic vagal sensory afferents, brain stem, vagal efferent tract, and intestinal neurons stimulates mAChR + APC to provide a reservoir of peripherally controlled T cells. Revealed an interesting activity of maintaining. Recent retrospective cohort study, it is likely that new 44 risk has been reported to be high to patients who develop depression will develop IBD, the balance of the autonomic nervous disturbances contribute to the pathogenesis of IBD .. In addition to the intestinal-brain direct and reciprocal neural reflexes 45-48 that control appetite, food reward, cancer, fatty liver, Parkinson's disease, and other neurological disorders, our findings are with the liver.
  • liver-brain-intestinal neural circuit plays an important role in identifying immunomodulatory niches and fine-tuning the intestinal immune response.
  • This intervention targeting the hepato-cerebral-enteric nerve arc has the potential to be widely applied in the treatment of IBD 49, infectious diseases, and intestinal cancer.
  • Chrm1 / Chrm2 / Chrm4 triple knockout mice were obtained from the Animal Resources Development Center (Kumamoto, Japan).
  • the Wnt1 promoter / enhancer (Wnt1-Cre) was crossed with an EGFP reporter mouse (CAG-CATloxP / loxP-EGFP) to obtain a Wnt1-Cre / Floxed-EGFP double transgenic mouse 50 .
  • Foxp3 CreER T2 mice were mated with floxed-td Tomato reporter mice 51 to obtain Foxp3-reporter mice. All experiments used 6-8 week old mice. All mice were bred under SPF conditions at the animal breeding facility of Keio University School of Medicine. All experiments were approved by the regional animal testing committee (Keio University, Tokyo, Japan) and were conducted in accordance with institutional guidelines and home office regulations.
  • Subdiaphragmatic vagotomy and hepatic selective vagotomy were performed bilaterally or unilaterally (left or right) as previously reported (Fig. 5c, d) 52 .
  • a midline incision was made to widely expose the upper abdominal organs of male mice anesthetized with a combination of medetomidine, midazolam, and butorphanol.
  • the subdiaphragmatic trunks on both sides of the vagus nerve along the esophagus were exposed and amputated. In the sham surgery group, these vagal stems were exposed but not amputated.
  • Liver-selective vagotomy (HVx) was performed as described (Fig. 7) 25 .
  • ventral subdiaphragmatic vagal trunk was exposed under anesthesia as described above. Since the total hepatic branch of the vagus nerve forms a neurovascular bundle, this branch was selectively ligated with silk thread and cut using a microscope. In the sham surgery group, the common hepatic branch was exposed but not amputated.
  • RTX resiniferatoxin
  • capsaicin DRG or TRPV1 + neurons in the spinal cord for targeted ablation using a 25-liter Hamilton syringe with a 28-gauge needle.
  • Toxin (RTX) 25 ng / mouse, vehicle; 0.25% DMSO / 0.02% Tween-80 / 0.05% ascorbic acid in PBS
  • capsaicin 10 ⁇ g / mouse, vehicle; 10% EtOH / 10% Tween 80 in PBS
  • Parabaioshisu Parabaioshisu surgery was carried out in the method described above 54. After shaving the corresponding temporal region of each mouse, a matching skin incision was made from the forelimb to the base of the hindlimb of each mouse, and the subcutaneous fascia was bluntly peeled off to prepare a free skin of about 1/2 cm. .. The corresponding free skin was then tightly sutured with a surgical clip to bind the parabion. Two weeks after surgery, mice were subjected to sham or HVx.
  • T cell reconstitution model was performed as previously described 54 .
  • Rag2 -/- mice were injected intraperitoneally with 3 ⁇ 10 5 wild-type naive CD4 + CD45Rb hi cells sorted by FACS. Mice were weighed weekly. At the end of the experiment, colon Treg cells were analyzed by FACS.
  • DSS-induced colitis model mice were given a 2% sodium dextran sulfate (DSS) solution to induce colitis. Mice were weighed daily and visually confirmed for diarrhea and rectal bleeding. DAI blinded and evaluated the mouse population (maximum total score 12). The histological activity score (maximum total score 40) was evaluated as the sum of three parameters: range, inflammation, and crypto injury 55 .
  • DSS sodium dextran sulfate
  • TNBS-induced colitis model 2,4,6-trinitrobenzene sulfonic acid was obtained from Sigma-Aldrich.
  • TNBS TNBS-induced colitis model 2,4,6-trinitrobenzene sulfonic acid
  • a 1.5 x 1.5 cm area of abdominal skin was scraped and 150 ⁇ l of 1% (w / v) TNBS solution was applied.
  • the mice were 50% ethanol in 2.5% TNBS 150 ⁇ l under general anesthesia with isoflurane and re-administered into the rectum 56. Sections of colon tissue were stained with H & E and histological scores were determined as in the DSS model.
  • Antibiotics Broad-spectrum antibiotics (6.7 g / L ampicillin, 6.7 g / L neomycin, 3.3 g) were given to mice to evaluate the potential contribution of the gut microbiota to the exacerbation of DSS colitis by vagotomy. / L vancomycin, 6.7 g / L metronidazole) was administered through the nasal gastrointestinal tract three times a week for 3 weeks (500 ⁇ L / mouse). As a control, the same amount of distilled water was administered through the nasogastric tube.
  • mice were injected intraperitoneally with PBS (200 ⁇ l per animal), salbutamol (30 ⁇ g per animal) or propranolol (300 ⁇ g per animal) daily 58 .
  • Methyllicaconitin (MLA, ⁇ 7 nicotinic acetylcholine receptor antagonist) and GTS-21 ( ⁇ 7 nicotinic acetylcholine agonist) were used to evaluate the role of ⁇ 7 nicotinic acetylcholine receptors in the maintenance of colonic Treg.
  • MLA and GTS-21 were dissolved in PBS.
  • mice were injected intraperitoneally with PBS (200 ⁇ l per animal), MLA (150 ⁇ g per animal) or GTS-21 (300 ⁇ g per animal) daily 59 .
  • Retrograde tracing from the liver 1 ⁇ l of Alexa Fluor 488-labeled wheat germ aglutinin (WGA488) (5 mg / ml) was injected into the liver at 40 spots using a 30 gauge needle connected to a Hamilton syringe.
  • WGA488 injection mice were first perfused with PBS and then with 4% PFA in PBS.
  • the separated NG and DRG were post-treated after 2 hours and immersed in 30% sucrose in PBS for 24 hours for freeze protection.
  • Frozen NG and DRG sections were cut to a thickness of 6 mm with a cryostat, collected on slides and dried immediately. The slides were mounted with ProLong TM Diamond Antifade Mountant including DAPI.
  • Electrophysiological record of sympathetic activity Measurements of sympathetic nerve activity were performed as previously described 57 .
  • the common hepatic branch of the vagus nerve or CG-SMG was identified and exposed to measure neural activity.
  • the electrical activity of each nerve was amplified 50,000-100,000 times with a 100-1,000 kHz bandpass filter and monitored with an oscilloscope.
  • the amplified and filtered neural activity was converted to standard pulses by a window discriminator, after which discharge and electrical background noise were separated. Both the discharge rate and the neurogram were sampled by PowerLab's analog-to-digital converter, recorded and analyzed by a computer. Background noise measured 30-60 minutes after euthanizing the animal was subtracted. Neural activity was rectified and baseline neural activity was normalized to 100% and integrated.
  • mice After grinding the spleen into 100 ⁇ m nylon, erythrocytes were lysed with 0.84% ammonium chloride solution.
  • Neuronal cells from intestinal neurosphere The entire intestine of Wnt1-Cre / Floxed-EGFP double transgenic day 13.5 (E14.5) was digested with 0.1% trypsin / EDTA trypsin at 37 ° C for 30 minutes. After mechanically lysing and washing the cells, supplemented with DMEM / F12 (25 ⁇ g / ml insulin, 100 ⁇ g / ml transferase, 20 nM progesterone, 30 nM selenic acid) in an ultra-low adhesion T-25 cell culture flask (CORNING).
  • DMEM / F12 25 ⁇ g / ml insulin, 100 ⁇ g / ml transferase, 20 nM progesterone, 30 nM selenic acid
  • the cells were cultured in a CO 2 incubator at 37 ° C for 7 days. After neurosphere formation, intestinal neurosphere is plated on uncoated cell culture plates and cultured in differentiation medium (DMEM / F12 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (PS)) for 7 days. did.
  • differentiation medium DMEM / F12 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (PS)
  • Cells differentiated from intestinal neurospheres were dissociated with trypsin and PE-conjugated anti-mouse CD24 antibody (30F-1), APC-conjugated anti-mouse CD184 antibody (L276F12), PE / Cy7 conjugated anti-mouse / human CD44.
  • Antibodies (IM7), Brilliant Violet 510 conjugated anti-mouse CD45.2 antibody (104) were used for staining on ice for 30 minutes.
  • Cell sorting was performed using FACS aria II, and neurons derived from intestinal neurosphere (GFP + CD45.2-CD184-CD44-CD24 + cells) were collected. Sorted and purified colon APC was added to the culture medium for co-culture.
  • Fluorescent activated cell sorting (FACS) analysis Blocked with anti-mouse CD16 / CD32 antibody for 20 minutes, then incubated with a specific fluorescently labeled monoclonal antibody at 4 ° C for 30 minutes, then permeated with a Permeabilization Buffer for Treg staining. The cells were stained with anti-Foxp3 mAb.
  • the following monoclonal antibodies were used for FACS analysis: anti-mouse CD45.2, CD3e, CD4, CD11b, CD11c, MHC-II, NK1.1, TCR ⁇ , B220, NKp46, Gata3, IL-17A, IL-22, Foxp3, Helios, ROR ⁇ t antibody.
  • Dead cells were excluded using 7-AAD staining or Fixable Viability Dye eFluor. Events were acquired with FACS Canto II (BD Biosciences) and analyzed with FlowJo software (BD Biosciences).
  • Colon APC (CD45.2 + CD3 - NK1.1 - B220 - MHC - II + cells, CD45 + CD3 - B220 - NK1.1 - CD11c + CD11b -, CD45 + CD3 - B220 - NK1.1 - CD11c + CD11b + and CD45 + CD3 - B220 - NK1.1 - CD11c - CD11b + cells) were sorted on BD FACS Aria-II (BD Bioscience ). Colorectal APCs were cultured overnight in RPMI-1640 with 10% fetal bovine serum and 1% penicillin-streptomycin, followed by stimulation of cells with muscarin.
  • Aldehyde dehydrogenase activity was measured using the ALDEFLUOR staining kit according to the manufacturer's protocol. Containing ALDH inhibitor is a diethylamino benzaldehyde (DEAB) (final concentration 15 [mu] M), or ALDEFLUOR assay buffer containing activated ALDEFLUOR substrate (final concentration 1.5 [mu] M) containing no cells were suspended at a concentration of 10 6 cells / ml, Incubated at 37 ° C for 30 minutes. FACS analysis was performed with BD Biosciences FACS Canto II.
  • DEB diethylamino benzaldehyde
  • ALDEFLUOR assay buffer containing activated ALDEFLUOR substrate final concentration 1.5 [mu] M
  • naive CD4 + cells were cultured in 96-well plates using RPMI-1640 medium supplemented with 10% FBS, 2 mM glutamine, 100 U / ml penicillin, 100 lg / ml streptomycin, 55 ⁇ M 2-mercaptoethanol. ..
  • Tissue sample Normal intestinal mucosa was taken from the non-affected area of a colorectal cancer patient. All experiments were approved by the Keio University School of Medicine Clinical Trial Review Committee and all patients received written informed consent.
  • the large intestine was dissected and the mesenteric fat and connective tissue were washed in situ. The entire large intestine was cut to a size of 0.5 cm and digested. These fragments were first washed with HBSS and then incubated with PBS containing 1 mM DTT, 5 mM EDTA for 20 minutes at 37 ° C. The supernatant containing the IEL fraction was discarded. The remaining LP fraction was washed twice with PBS and then digested with 1.0 mg / ml collagenase and 0.05 mg / ml DNase at 37 ° C. for 60 minutes. The LP suspension was passed through a 70- ⁇ m filter.
  • human colon APC was gated on by sorting CD45 + CD3 - CD19 - CD56 - HLA - DR hi cells using BD FACS Aria-II. Human colon APCs were cultured overnight in RPMI-1640 with 10% FSB and 1% penicillin-streptomycin, followed by stimulation of cells with muscarin.
  • RNA sequence analysis RNA sequences were performed and analyzed by the method described previously 61 .
  • Total RNA was prepared from approximately 20,000 to 50,000 cells using TRIzol. Next, the total RNA was used as NEBNext Poly (A) mRNA Magnetic Isolation Module (NEB, E7490S), NEBNext Ultra II Directional RNA Library Prep with Sample Purification Beads (NEB, E7765S), NEBNext Multiplex Oligos for Illumina (Index Primers Set 1 and). 2) Using (NEB, E7335S and E7550S), an mRNA-seq library was generated according to the protocol. The library was sequenced at 150 bp (paired end read) with Illumina.
  • RNA-seq reads were pseudo-aligned to the ENSEMBL transcript (Release 95 GRCm38) using kallisto (v0.44.0, options: -b 100) 62 to quantify the amount of transcript.
  • the expression level of the APC subset signature gene (expressed in at least one sample> 1TPM) with the neurotransmitter receptor gene is shown in a heat map with hierarchically clustered rows and columns (MORPHEUS; https://software.broadinstitute. It was visualized by creating org / morpheus /) and a ternary plot (ggtern v3.1.0).
  • Bacterial DNA was prepared as previously described 63 . Bacterial DNA was separated by enzymatic lysis using lysozyme and achromopeptidase. DNA samples were purified by treating with ribonuclease A and then precipitating with a 20% polyethylene glycol solution (PEG6000 in 2.5 M sodium chloride). The DNA was then centrifuged, washed with 75% ethanol and dissolved in trisEDTA diaminetetraacetic acid (trisEDTA) buffer.
  • PEG6000 polyethylene glycol solution
  • trisEDTA trisEDTA diaminetetraacetic acid
  • V3-V4 region a hypervariable region of the 16S gene
  • AMPure XP Bactet al.
  • Mixing samples were prepared by pooling approximately equal amounts of each amplified DNA and sequenced using the Miseq Reagent Kit V3 (600 Cycle) and Miseq sequencer (Illumina) according to the manufacturer's instructions.
  • the sequence analysis was used QIIME software package version 1.9.1 64,65.
  • Paired-end sequences were joined using the fastq-join tool from the ea-utils software package (https://doi.org/10.2174/18750 36201307010001). High quality sequences (15,000) per sample were randomly selected from the sequences passed by the quality filter. Both primer sequences were cut off using cutadapt (https://doi.org/10.14806/ej.17.1.200), followed by detection of the chimera by the USEARCH 66 de novo method, and then the sequence using UCLUST algorithm 67. Sequences were assigned to operational classification units with an identity threshold of 96%.
  • Fecal samples of sterile mouse Sham and HVx mice were collected. Fecal samples were suspended in an equal volume (w / v) of PBS containing 40% glycerol, snap-frozen and then stored at -80 ° C until use. The frozen stock was thawed, suspended in 5 times the volume of PBS and passed through a 100 ⁇ m cell strainer. GF mice were orally inoculated with a 200 ⁇ l suspension using a sterilized stainless steel needle. After 3 weeks of colonization, the phenotype of immune cells in the large intestine was analyzed.
  • the antigen was activated in an autoclave and blocked with Block Ace. The primary antibody reaction was at room temperature for 4 hours (dilution rate; PGP9.5 (1/1000), pERK1 / 2 (1/500), TUBB3 (1/200), TRPV1 (1/1000), TH (1/1000).
  • mice were transcardially perfused with PBS containing 4% paraformaldehyde and 0.2% picric acid under anesthesia. Nodular ganglion and brain were collected, post-fixed in the same fixation solution at 4 ° C for 2 hours to overnight, and then cultured in phosphate buffer containing 30% sucrose for 48 hours. Longitudinal sections (8 ⁇ m) of NG were cut out at 48 ⁇ m intervals using a precision cryostat (Leica Microsystems, IL).
  • Coronal sections of the posterior brain were cut at 120 ⁇ m intervals using a frozen microtome.
  • Rabbit polyclonal antibody (1/500) against pERK1 / 2 and Alexa 488-labeled goat anti-rabbit IgG (1/500) were used. Fluorescent images were taken with a BX50 microscope and a DP50 digital camera (Olympus).
  • anti-c-Fos antiserum (1/10,000) was used as the primary antibody.
  • Nickel diaminobenzidine (DAB) was used for color development. We counted neurons that immune response to pERK1 / 2 and c-Fos inside the NTS.
  • Figure 1 Possible interactions between APCs and neurons in the intestine.
  • a Representative immunofluorescent staining images of CX3CR1-GFP (green) and ⁇ -tubulin III (red) in the large intestine of mice.
  • Cf 8-week-old male B6 mice (WT mice) underwent sham surgery (Sham) or main vagotomy (VGx).
  • Colon mononuclear cells were incubated with ALDEFLUOR in the absence (fill) or presence (dotted line) of DEAB (ALDH inhibitor). The percentage of Aldefluor + cells is shown above the horizon indicating the positive gate.
  • Right panel quantification.
  • g A heat map of the expression of genes encoding neurotransmitter receptors classified by APC in the large intestine and spleen selected by RNA-seq analysis.
  • h colon CD11b + CD11c - (CD11b SP) , CD11b + CD11c + (DP), CD11b - CD11c + (CD11c SP) macrophages and dendritic cell marker gene heatmap cells.
  • Figure 5 shows the sorting strategy for the experiment.
  • the color scale indicates the concentration of mRNA.
  • Receptors for neurotransmitters, macrophages and representative markers of dendritic cells are shown.
  • FIG. 2 The hepatic vagal sensory afferent pathway is essential for NTS activation during colitis.
  • NTS represents the solitary tract nucleus
  • DMV represents the dorsal vagus nerve nucleus
  • AP represents the occipital lobe
  • NG represents the nodular ganglion.
  • a Representative image of c-Fos immunostaining in the medulla oblongata (upper panel, bar: 200 ⁇ m), segment-by-section count of c-Fos expression in NTS and DMV (lower panel).
  • b Representative image of immunostaining of pERK in nodular ganglion (NG) (upper panel, bar: 100 ⁇ m).
  • Retrograde tracing of c, d, WGA Representative fluorescent images (c) and quantitative images (d) of Alexa Fluor 488 + neurons (green) and DAPI (blue) in NG one week after injecting WGA into the liver. White arrows indicate Alexa Fluor 488 + neurons in NG.
  • e, f Frequency of Foxp3 + cells in CD4 + cells in the large intestine 2 days after surgery. Representatives of two independent experiments (ad, f), or a pool of three independent experiments (e). P-values were obtained by unpaired two-sided Student's t-test (a, b, d) or one-way ANOVA (e, f) using Tukey's post-hook test. Error bars represent the average ⁇ sem.
  • BETH bethanechol
  • b mRNA expression of Aldh1a1 and Aldh1a2 in colon APC.
  • c e, Frequency of Foxp3 + cells in CD4 + cells of the large intestine.
  • d Frequency of ROR ⁇ t + cells in Foxp3 + Tregs of the large intestine. P-values were obtained by unpaired one-way ANOVA using Tukey's post-hook test. Error bars represent the average ⁇ sem.
  • Figure 4 Disruption of the hepatic vagal tract exacerbates colitis in mice in a muscarinic signal-dependent manner.
  • DSS was administered for 7 days from the 2nd postoperative day.
  • Sham or HVx on df, mAchR TKO mice DSS was administered for 7 days from the 2nd postoperative day.
  • d Relative weight changes during acute colitis.
  • FIG. 5 Muscarine signals in colon APC activate Treg induction.
  • a Three-dimensional reconstruction diagram of CX3CR1 + APC (green) and intestinal neurons (purple) in the large intestine of a mouse. 3D reconstruction diagram of b, MHCII + APC (green), intestinal Tuj + neurons (purple), Foxp3 + Tregs (yellow).
  • c, d anatomical chart (c) and surgical field (d) of subdiaphragmatic vagus nerve trunk transection.
  • e, f VGx Phenotype of colon T cells in post-surgery mice.
  • g Expression of Chrm1, Adrb2, Htr7, Chrna7 mRNA in APCs of the large intestine and spleen.
  • h CD11b-CD11c + (CD11c SP) of the large intestine by FACS, CD11b + CD11c + (DP ), CD11b + CD11c - (CD11b SP) method of sorting subsets.
  • retinol metabolism-related genes by neurons derived from intestinal nerve cells in i, j, colon APC was dependent on muscarinic signals.
  • i Schematic diagram of the experiment.
  • muscarinic signals in k, l, colon APC promoted Treg induction.
  • k Schematic diagram of the experiment. Frequency of Foxp3 + Treg in CD4 + T cells (left panel). Typical contour plot (right panel).
  • m, n intestinal neurospheroid-derived neurons promoted the induction of Foxp3 + Treg through activation of muscarinic signals in colon APC.
  • Colitis activates the hepatic brain axis.
  • DSS was administered for 7 days from the 2nd postoperative day.
  • a Relative weight change during colitis. ** indicates P ⁇ 0.01.
  • b DAI.
  • c Representative HE staining of colon sections (left panel, bar: 200 ⁇ m) and histological score (right panel).
  • Quantification of neurons expressing pERK1 / 2 (lower panel). Representative image of c-Fos immune response in e, NTS (left panel, bar: 200 ⁇ m). The number of neurons showing a c-Fos immune response (right panel). f, Representative images of immunofluorescent double staining of pERK1 / 2 (green) and PGP9.5 (red) in mouse liver sections. The co-stained site is shown in yellow (left panel). The scale bar indicates 10 ⁇ m. Quantification of pERK1 / 2 expression sites in PGP9.5-positive nerve fibers (right panel). g. Liver phosphor-mTOR and total mTOR protein levels.
  • FIG. 7 Anatomical view of the hepatic vagus nerve in mice.
  • a anatomical chart.
  • b Surgical field of hepatic vagus nerve amputation.
  • c Schematic diagram showing the firing of liver-brain-intestinal nerve arcs in colitis.
  • d The common hepatic branch of the vagus nerve does not contain the sympathetic nerve.
  • Surgical field for electrical recording of the hepatic sympathetic nerve left panel.
  • Electrical activity of the common hepatic branch of the vagus nerve and the hepatic sympathetic nerve (middle panel). Representative images of immunofluorescent staining of Tyrosine hydroxylase (TH) in the liver branch and DRG (right panel, bar: 100 ⁇ m).
  • Figure 8 Effect of vagal amputation on the maintenance and stability of pTreg in the large intestine.
  • the phenotype and gene expression of immune cells in the large intestine were analyzed 2 days after surgery.
  • a CD4 in the large intestine + Foxp3 in cells + cell frequency.
  • b Frequency of ROR ⁇ t + cells in Foxp3 + Treg in colorectal LP. Typical contour plot (left panel).
  • Quantification (right panel).
  • c Expression of Aldh1a1 and Aldh1a2 mRNA in colon APC.
  • d frequency of ALDH + cells in MHC-II + colon APC.
  • g, h, i CD4 + frequency of Foxp3 + cells in the large intestine 2 days after surgery (g, h, i) and frequency of ROR ⁇ t + cells in the large intestine Foxp3 + Treg (g, h).
  • mice were sacrificed 4 weeks after transplantation and Treg cells in the large intestine were analyzed.
  • j Frequency of Foxp3 + cells in CD4 + cells in the large intestine. Typical contour plot (left panel). Quantification (right panel).
  • k Frequency of ROR ⁇ t + cells in Foxp3 + Treg in the large intestine. Typical contour map (left panel). Quantification (right panel).
  • Figure 9 Maintaining Treg homeostasis in the large intestine involves afferent vagus nerves from the liver rather than the spinal cord.
  • Corn oil (Oil) or capsaicin (Cap) was applied to the hepatic vagus nerve branch of ae and WT mice.
  • the scale bar indicates 100 ⁇ m.
  • c Frequency of Foxp3 + cells in CD4 + cells in the large intestine. Typical contour plot (left panel). Quantification (right panel). d, Frequency of ROR ⁇ t + cells in Foxp3 + Tregs of the large intestine. Typical contour plot (left panel). Quantification (right panel). e, MHC-II + frequency of ALDH + cells in colon APC. Histogram of ALDH + cells and colon APC (left panel). Quantification (right panel). f, Expression of Aldh1a1 and Aldh1a2 mRNAs in colon APC.
  • TRPV1 + nerves (Th4-7 and Th13) in the spinal cord and immune cells in the large intestine were analyzed.
  • TRPV1 + nerve fluorescent immunohistochemical examination (bar: 200 ⁇ m).
  • CD4 + frequency of Foxp3 + cells in the large intestine (h, n) and frequency of ROR ⁇ t + cells in the large intestine Foxp3 + Tregs (i, o).
  • FIG. 10 Semi-diaphragmatic vagotomy revealed functional asymmetry of the vagus nerve.
  • Ac and WT mice underwent Sham, ventral (left) subdiaphragmatic vagotomy (LVx) and dorsal (right) subdiaphragmatic vagotomy (RVx) (n 4 / group).
  • LVx ventral subdiaphragmatic vagotomy
  • RVx dorsal subdiaphragmatic vagotomy
  • c MHC-II + frequency of ALDH + cells in colon APC. Histogram of colon APC and ALDH + cells (left panel). Quantification (right panel). Blocking of sympathetic signals via dj, CG / SMG does not affect the maintenance of Tregs in the large intestine.
  • d CG / SMG ganglion amputation field.
  • MLA ⁇ 7-agonist, 150 ⁇ g / day, ip
  • g Frequency of ROR ⁇ t + cells in colon Foxp3 + Tregs.
  • FIG. 11 Effects of VGx and HVx on endogenous intestinal neurons.
  • the activity of endogenous intestinal nerve cells was measured.
  • Figure 12 Effect of mAChR and ⁇ 7nAChR on the maintenance of Tregs in the large intestine.
  • kl, WT and mAchR TKO mice were injected daily with water or BETH for 2 days after receiving Sham or HVx (n 4 / group), 12 hours after the last injection, in relation to Figures 3c, d.
  • Figure 13 Effect of intestinal flora on liver-brain-intestinal axis colon Treg maintenance.
  • a ⁇ -diversity of microorganisms in feces.
  • b Principal coordinate analysis (PCoA) based on weighted UniFrac analysis of bacterial community structure (black before treatment, red for Sham, blue for HVx). The two components of the weighted PCoA plot described 45% and 22% of the variance. The dissimilarity between the two groups was assessed by a forwarded multivariate analysis of variance (PERMANOVA).
  • c Gate-level taxonomic distribution.
  • P-values were obtained by one-way ANOVA (a, d, e, l, m) using Tukey's post-hook test, or unpaired two-sided Student's t-test (f, g, ik). The data are shown as mean ⁇ sem.
  • FIG 14 Effect of HVx on colitis.
  • the ac and WT mice were sensitized with TNBS. Seven days later, mice were treated with Sham or HVx, and at the same time, TNBS was administered by rectal administration.
  • Mice subjected to g, h, Sham surgery and HVx were cohabited and orally loaded with 2.0% DSS (w / v) for 7 days.
  • mice i, j, Abx treated mice were subjected to Sham and HVx, and after 2 days, 2.0% DSS (w / v) was orally loaded for 7 days.
  • Mice subjected to mo, Sham surgery and hepatic vein amputation were orally loaded with 2.0% DSS (w / v) and treated daily with BETH for 7 days.
  • the liver senses the microenvironment of the intestine and transmits its sensory input to the left NTS of the brain stem, and finally to the parasympathetic nerve of the left vagus nerve and the nerve cells of the intestine.
  • Intestinal APCs activated by hepatic-brain-intestinal neural arcs enhance ALDH expression and RA synthesis via mAChR and maintain a reservoir of peripheral regulatory T cells.
  • Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proc. Natl. Acad. Sci. USA 105, 11008-11013 (2008). 40. Martelli, D., Farmer, DGS, McKinley, MJ, Yao, ST & McAllen, RM Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. Am. J. Physiol. Regul. Integr. Comp. Physiol . 316, R235-R242 (2019). 41. Karimi, K., Bienenstock, J., Wang, L. & Forsythe, P. The vagus nerve modulates CD4 + T cell activity. Brain Behav. Immun. 24, 316-323 (2010). 42.
  • ⁇ 2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537-5552 (2019). 59. Yamamoto, T. et al. Anti-allergic role of cholinergic neuronal pathway via ⁇ 7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS ONE 9, e85888 (2014). 60. Fantini, M.C., Dominitzki, S., Rizzo, A., Neurath, M.F. & Becker, C. In vitro generation of CD4 + CD25 + regulatory cells from murine naive T cells. 2, 1789-1794 (2007).
  • QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336 (2010). 65. Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10, Unit 10.7.-10.7.20 (2011). 66. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200 (2011). 67. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 (2010). 68.
  • FIG. 15 Schematic diagram of vagal nerve liver branch electrical stimulation (VHNS) C57BL6 / J mice (male, 10 weeks old) were purchased. After 1 week of acclimatization, the abdomen was opened under inhalation anesthesia and a cuff electrode (Fig. 15a) was placed on the vagal nerve liver branch of the mouse (Fig. 15b). In order to allow the current to flow from the liver side to the brain side, the liver side was set to the negative pole and the brain side was set to the positive pole. After installing the electrodes, I had a recovery period of about a week.
  • VHNS vagal nerve liver branch electrical stimulation
  • mice were connected to a modular stimulator, and electrical stimulation was applied to mice under free movement under the conditions of 10 Hz, pulse width 500 ⁇ s, ON 10s / OFF 90s, and 3 h / day.
  • Mice with electrodes placed on the liver branch and connected to a modular stimulator but not stimulated were set in the control group.
  • the mice were sacrificed and the large intestine and brain were recovered.
  • the composition ratio of regulatory T cells (Treg) in the large intestine was analyzed by FACS (Fig. 15c).
  • VHNS increased colon Treg.
  • the activated region in the brain by electrical stimulation was evaluated using cFos, which is a nerve activation marker, as an index.
  • NTS left nucleus tractus solitarius
  • AP area postrema
  • Figure 16 We purchased C57BL6 / J mice (male, 10 weeks old) that suppress the pathology of mouse colitis by vagal nerve liver branch electrical stimulation (VHNS). After 1 week of acclimatization, the abdomen was opened under inhalation anesthesia, and a cuff electrode was placed on the vagal nerve liver branch of the mouse. In order to allow the current to flow from the liver side to the brain side, the liver side was set to the negative pole and the brain side was set to the positive pole. After installing the electrodes, I had a recovery period of about a week. Then, in order to cause colitis in the mice, a 2% aqueous solution of dextran sulfate sodium (DSS) was given as free drinking water.
  • DSS dextran sulfate sodium
  • the electrodes were connected to a modular stimulator, and electrical stimulation was applied to mice under free movement under the conditions of 10 Hz, pulse width 500 ⁇ s, ON 10s / OFF 90s, and 3 h / day.
  • Mice with electrodes placed on the liver branch and connected to a modular stimulator but not stimulated were set in the control group.
  • the large intestine was collected from mice 7 days after DSS administration, and the pathological condition of colitis was evaluated using pathological specimens and intestinal length as indicators.
  • VHNS suppressed the weight loss due to DSS colitis (Fig. 16a).
  • VHNS suppressed the shortening of the intestinal tract due to DSS colitis (Fig. 16b). It was observed in histopathological specimens that VHNS suppressed the loss of colonic epithelial cells due to enteritis (Fig. 16c).
  • FIG. 17 Two-bottle preference assays using vagal nerve resection mice I purchased a C57BL6 / J mouse (male, 10 weeks old). After 1 week of acclimatization, the abdomen was opened under inhalation anesthesia and the mouse vagus nerve was resected either bilaterally (VGx), left side (LVx) or right side (RVx) (Fig. 17a). The control was a mouse (Sham) that had only laparotomy. After a recovery period of about 1 week, two-bottle preference assays were performed using these mice.
  • VGx bilaterally
  • LVx left side
  • RVx right side
  • Two drinking bottles were prepared, one side filled with 600 mM glucose aqueous solution (Glu) and the other filled with 30 mM acesulfame potassium aqueous solution (Ace K), which is an artificial sweetener. These were installed in a Rick analysis type selection preference experiment device (Fig. 17b) and experiments were conducted.
  • the above-mentioned mice were bred up to PM8-AM10 in a cage in the device, and the number of times the mouth touched the drinking bottle was measured. This test was repeated for the same individual for 3 days, and the ratio of sucrose to Ace K in the total number of contacts was calculated every day. This ratio was evaluated as preference. On the test start date (Day 1), the selectivity of sucrose and Ace K was almost the same in all the mice.
  • Fig. 18 Control of lung immune cells by vagal nerve liver branch C57BL6 / J mice (male, 10 weeks old) were purchased. After 1 week of acclimatization, the abdomen was opened under inhalation anesthesia, and the mouse vagal liver branch (HVx) was resected (Fig. 18a). The control was a mouse (Sham) that had only laparotomy. After a recovery period of about 1 week, immune cells were recovered from the lungs of these mice. The number of type 2 innate lymphoid cells (ILC2) in the lung was analyzed by FACS. The cell number of lung ILC2 was increased by HVx (Fig. 18b).
  • HVx mouse vagal liver branch
  • Fig. 19 Control of intestinal peristalsis by vagus nerve
  • Fig. 19a C57BL6 / J mice (male, 10 weeks old) were purchased. After 1 week of acclimatization, laparotomy was performed under inhalation anesthesia, and both sides (HVx) of the mouse vagus nerve were resected. The control was a mouse (Sham) that had only laparotomy. After a recovery period of about 1 week, the intestinal peristalsis of these mice was evaluated. The motility of the entire gastrointestinal tract was evaluated in the intestinal transit time (ITT) test, the motility of the stomach was evaluated in the Gastric empty test, and the motility of the small intestine was evaluated in the small-bowel (SB) transit test.
  • ITT intestinal transit time
  • SB small-bowel
  • FIG. 19b C57BL6 / J mice (male, 10 weeks old) were purchased. After 1 week of acclimatization, the abdomen was opened under inhalation anesthesia, and the intrinsic liver branch (HVx) or gastric-duodenal branch (GVx) of the mouse vagus nerve was resected (Fig. 19b). The control was a mouse (Sham) that had only laparotomy. After a recovery period of about 1 week, the intestinal peristalsis of these mice was evaluated.
  • HVx intrinsic liver branch
  • GVx gastric-duodenal branch
  • Gastrointestinal motility in the intestinal transit time (ITT) test stomach motility in the Gastric empty test, small intestine motility in the small-bowel (SB) transit test, and large intestine motility in the colonic transit test. evaluated.
  • HVx nor GVx affected gastric motility. HVx reduced the motility of the small intestine, while GVx reduced the motility of the large intestine.
  • the present invention can be used in the pharmaceutical industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

腸管の末梢性制御性T細胞の数を調節し、この細胞に関連する疾患の新たな治療手段の確立を目的として、腸管の末梢性制御性T細胞の量を調節する作用を持つ物質を含有する疾患の治療薬であって、前記物質が迷走神経肝臓枝求心路を活性化若しくは抑制する物質、左迷走神経遠心路を活性化若しくは抑制する物質、又はムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストであることを特徴とする疾患の治療薬を提供する。

Description

腸管免疫異常を原因とする疾患治療薬
 本発明は、疾患の新規な治療薬、疾患の治療薬の新規なスクリーニング方法、及び疾患の新規な治療方法に関する。
 腸管は消化・吸収を司る重要な臓器として機能し、一層の円柱上皮細胞によって外界(管腔)と対峙している。管腔内では100兆個を越す腸内細菌や食餌抗原など異物に絶えずさらされているが、腸管の末梢性制御性T細胞(pTreg)の働きにより、過度の炎症応答が起きないように腸管恒常性が維持されている。これまで、末梢性制御性T細胞の分化・維持には、特定の腸内細菌、腸内細菌由来成分、短鎖脂肪酸、サイトカイン等が重要視されてきた。一方、神経の病気と考えられてきたうつ病や過敏性腸症候群では炎症性腸疾患の発症頻度が比較的高いことから、自律神経が腸管の免疫異常に深く関与している可能性が示唆されてきた(非特許文献1、2、3、及び4)。近年の報告で、神経系が腸管免疫機構へ関与する可能性が示唆されているが、神経系と腸管末梢性制御性T細胞の関係は長い間不明であった。また、これまで報告されてきた脳腸相関に関する研究報告では、脳と腸を結ぶ神経回路が具体的に示されておらず解剖学的な観点からも多くの謎が残っていた。
Godinho-Silva, C., Cardoso, F. & Veiga-Fernandes, H. Neuro-Immune Cell Units: A New Paradigm in Physiology. Annu. Rev. Immunol. 37, 19-46 (2019). Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity 46, 927-942 (2017). Huh, J. R. & Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol 20, 217-228 (2019). Chu, C., Artis, D. & Chiu, I. M. Neuro-immune Interactions in the Tissues. Immunity 52, 464-474 (2020).
 神経系と腸管末梢性制御性T細胞との関係が明らかになれば、腸管末梢性制御性T細胞の数を人為的に調節することが可能になり、腸管末梢性制御性T細胞に関連する疾患(例えば、炎症性腸疾患)の新たな治療方法の開発にもつながる。
 本発明のこのような背景の下になされたものであり、腸管末梢性制御性T細胞の数を調節し、この細胞に関連する疾患の新たな治療手段を提供することを目的とする。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、1)腸管末梢性制御性T細胞が脳からの副交感神経シグナルの影響を受けていること、2)肝臓は腸管環境の情報を集積・統合し、脳へ向かう迷走神経を介して脳に腸管環境の情報を伝えていること、3)腸管末梢性制御性T細胞の分化・維持に極めて重要とされる抗原提示細胞が腸管の粘膜固有層内に存在する神経と密接な位置に存在し、この腸管抗原提示細胞においてムスカリン性アセチルコリン受容体サブタイプ1が強く発現していることを見出した。
 本発明は、以上の知見に基づき完成されたものである。
 即ち、本発明は、以下の〔1〕~〔20〕を提供するものである。
〔1〕腸管の末梢性制御性T細胞の量を調節する作用を持つ物質を含有する疾患の治療薬であって、前記物質が迷走神経肝臓枝求心路を活性化若しくは抑制する物質、左迷走神経遠心路を活性化若しくは抑制する物質、又はムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストであることを特徴とする疾患の治療薬。
〔2〕疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする〔1〕に記載の疾患の治療薬。
〔3〕疾患が、炎症性腸疾患であることを特徴とする〔1〕に記載の疾患の治療薬。
〔4〕腸管の末梢性制御性T細胞の量を調節する作用を持つ物質が、ムスカリン性アセチルコリン受容体のアゴニストであることを特徴とする〔1〕乃至〔3〕のいずれかに記載の疾患の治療薬。
〔5〕ムスカリン性アセチルコリン受容体のアゴニストが、ベタネコール、ムスカリン、ピロカルピン、又はセビメリンであることを特徴とする〔4〕に記載の疾患の治療薬。
〔6〕腸管の末梢性制御性T細胞の量を調節する作用を持つ物質が、ムスカリン性アセチルコリン受容体のアンタゴニストであることを特徴とする〔1〕乃至〔3〕のいずれかに記載の疾患の治療薬。
〔7〕ムスカリン性アセチルコリン受容体のアンタゴニストが、アトロピン、トロピカミド、オキシブチニン、プロピベリン、トルテロジン、ソリフェナシン、又はイミダフェナシンであることを特徴とする〔6〕に記載の疾患の治療薬。
〔8〕疾患の治療薬のスクリーニング方法であって、被験物質の存在下で腸管抗原提示細胞とCD4陽性T細胞を共培養する工程、及び制御性T細胞の誘導の検出を行う工程とを含むことを特徴とするスクリーニング方法。
〔9〕FoxP3の発現の検出によって、制御性T細胞の誘導の検出を行うことを特徴とする〔8〕に記載のスクリーニング方法。
〔10〕疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする〔8〕又は〔9〕に記載のスクリーニング方法。
〔11〕疾患が、炎症性腸疾患であることを特徴とする〔8〕又は〔9〕に記載のスクリーニング方法。
〔12〕腸管の末梢性制御性T細胞の量を調節することによって疾患を治療する方法であって、治療対象の迷走神経肝臓枝求心路を活性化若しくは抑制すること、治療対象の左迷走神経遠心路を活性化若しくは抑制すること、又は治療対象にムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストを投与することを含むことを特徴とする疾患の治療方法。
〔13〕疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする〔12〕に記載の疾患の治療方法。
〔14〕疾患が、炎症性腸疾患であることを特徴とする〔12〕に記載の疾患の治療方法。
〔15〕治療対象にムスカリン性アセチルコリン受容体のアゴニストを投与することを含むことを特徴とする〔12〕乃至〔14〕のいずれかに記載の疾患の治療方法。
〔16〕ムスカリン性アセチルコリン受容体のアゴニストが、ベタネコール、ムスカリン、ピロカルピン、又はセビメリンであることを特徴とする〔15〕に記載の疾患の治療方法。
〔17〕治療対象にムスカリン性アセチルコリン受容体のアンタゴニストを投与することを含むことを特徴とする〔12〕乃至〔14〕のいずれかに記載の疾患の治療方法。
〔18〕ムスカリン性アセチルコリン受容体のアンタゴニストが、アトロピン、トロピカミド、オキシブチニン、プロピベリン、トルテロジン、ソリフェナシン、又はイミダフェナシンであることを特徴とする〔17〕に記載の疾患の治療方法。
〔19〕治療対象が、ヒト以外の動物であることを特徴とする〔12〕乃至〔18〕のいずれかに記載の疾患の治療方法。
〔20〕迷走神経肝臓枝を刺激して腸管の末梢性制御性T細胞の量を調節するカフ電極の作動方法。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2020-095241の明細書及び/又は図面に記載される内容を包含する。
 本発明は、疾患の新規な治療薬、疾患の治療薬の新規なスクリーニング方法、及び疾患の新規な治療方法を提供する。
腸内におけるAPCと神経細胞の相互作用の可能性。 大腸炎時のNTS活性化には、肝迷走神経感覚求心性経路が必須である。 肝臓-脳-腸軸はAPCのムスカリンシグナルを介して大腸Tregのホメオスタシスを制御する。 肝迷走神経路の混乱はムスカリンシグナル依存的にマウスの大腸炎を悪化させる。 大腸APCにおけるムスカリンシグナルがTregの誘導を活性化する。 大腸炎は肝脳軸を活性化する。 マウスの肝迷走神経の解剖図。 大腸のpTregの維持及び安定性に対する迷走神経切断の効果。 大腸のTregの恒常性維持には、脊髄ではなく肝臓からの求心性迷走神経が関与している。 半横隔膜下迷走神経切断術で迷走神経の機能的非対称性が明らかになった。 VGx及びHVxの内在性腸管ニューロンへの影響。 大腸のTregの維持に対するmAChR及びα7nAChRの効果。 肝臓-脳-腸軸の大腸Treg維持に対する腸内細菌叢の効果。 HVxの大腸炎に対する効果。 迷走神経肝臓枝電気刺激法(VHNS)の概略図。 迷走神経肝臓枝電気刺激法(VHNS)はマウス大腸炎病態を抑制する。 迷走神経切除マウスを用いたTwo-bottle preference assays。 迷走神経肝臓枝による肺免疫細胞の制御。 迷走神経による腸管蠕動の制御。
 以下、本発明を詳細に説明する。
(1)治療薬
 本発明の疾患の治療薬は、腸管の末梢性制御性T細胞の量を調節する作用を持つ物質を含有する疾患の治療薬であって、前記物質が迷走神経肝臓枝求心路を活性化若しくは抑制する物質、左迷走神経遠心路を活性化若しくは抑制する物質、又はムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストであることを特徴とするものである。
 本明細書において「腸管の末梢性制御性T細胞の量を調節する」とは、腸管の末梢性制御性T細胞の量を増加又は減少させるという意味である。腸管の末梢性制御性T細胞の量を増加させることにより、過剰な免疫反応を抑制し、炎症性の疾患などに対する治療効果が期待できる。一方、腸管の末梢性制御性T細胞の量を減少させることにより、免疫反応を強化し、消化管感染症などに対する治療効果が期待できる。
 腸管の末梢性制御性T細胞の量を増加させる目的で使用する場合、本発明の疾患の治療薬は、迷走神経肝臓枝求心路を活性化する物質、左迷走神経遠心路を活性化する物質、又はムスカリン性アセチルコリン受容体のアゴニストを含有する。これに対し、腸管の末梢性制御性T細胞の量を減少させる目的で使用する場合、本発明の疾患の治療薬は、迷走神経肝臓枝求心路を抑制する物質、左迷走神経遠心路を抑制する物質、又はムスカリン性アセチルコリン受容体のアンタゴニストを含有する。
 疾患の種類は、腸管の末梢性制御性T細胞の量の調節(増加又は減少)により治療可能な疾患であれば特に限定されない。具体的には、腸管の末梢性制御性T細胞の量を増加させることにより治療可能な疾患としては、腸管免疫異常を原因とする疾患(炎症性腸疾患、自己免疫疾患、アレルギーなど)、がん、うつ病などを挙げることができ、腸管の末梢性制御性T細胞の量を減少させることにより治療可能な疾患としては、消化管感染症、がんなどを挙げることができる。消化管感染症としては、ノロウイルス感染症、ロタウイルス感染症、病原性大腸菌腸炎などを挙げることができる。
 迷走神経肝臓枝求心路を活性化若しくは抑制する物質、左迷走神経遠心路を活性化若しくは抑制する物質、及びムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストは、腸管の末梢性制御性T細胞の量を調節する作用を持つものであれば特に限定されない。ムスカリン性アセチルコリン受容体のアゴニストの具体例としては、ベタネコール、ムスカリン、ピロカルピン、セビメリンを挙げることができ、ムスカリン性アセチルコリン受容体のアンタゴニストとしては、アトロピン、トロピカミド、オキシブチニン、プロピベリン、トルテロジン、ソリフェナシン、イミダフェナシンを挙げることができるが、これらに限定されるわけではない。
 本発明の疾患の治療薬は、腸管の末梢性制御性T細胞の量を調節する作用を持つ物質を、公知の製剤学的方法により製剤化することにより調製することができる。具体的には、注射剤(腹腔内注射剤、皮下注射剤、静脈内注射剤、筋肉内注射剤)、点滴剤、カプセル剤、液剤、懸濁剤、乳剤などとして調製することができる。製剤化に際しては、薬理学上許容される担体などのその他の成分が含まれていてもよい。その他の成分としては、例えば、滅菌水、生理食塩水、溶剤、基材、乳化剤、植物油、懸濁剤、界面活性剤、安定剤、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、崩壊剤、滑沢剤、緩衝材、コーティング剤、着色剤、その他の添加剤などを挙げることができ、これらを適宜組み合わせて用いることができる。
 本発明の疾患の治療薬の治療対象は、主にヒトであるが、ヒト以外の動物であってもよい。ヒト以外の動物としては、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ウマ、ブタ、ヒツジ、サルなどを挙げることができる。
 本発明の疾患の治療薬の投与量は、腸管の末梢性制御性T細胞の量を調節する作用を持つ物質の種類、疾患の種類、投与形態、投与方法、並びに治療対象の年齢及び体重などによって適宜決定することができる。具体的な投与量は、例えば、ムスカリン性アセチルコリン受容体のアゴニストをヒトに投与する場合であれば、成人1人当たり1日に0.1~100g投与されることが好ましく、0.1~10g投与されることがより好ましい。
 本発明の疾患の治療薬の投与方法は特に限定されないが、例えば、腹腔内注射、皮下注射、リンパ内注射、静脈内注射、点滴静脈注射などを挙げることができる。
(2)スクリーニング方法
 本発明のスクリーニング方法は、疾患の治療薬のスクリーニング方法であって、被験物質の存在下で腸管抗原提示細胞とCD4陽性T細胞を共培養する工程、及び制御性T細胞の誘導の検出を行う工程とを含むことを特徴とするものである。制御性T細胞の誘導を検出する方法は特に限定されないが、FoxP3の発現の検出する方法によって行うことが好ましい。疾患は、上述した治療薬のものと同じでよい。
(3)治療方法
 本発明の疾患の治療方法は、腸管の末梢性制御性T細胞の量を調節することによって疾患を治療する方法であって、治療対象の迷走神経肝臓枝求心路を活性化若しくは抑制すること、治療対象の左迷走神経遠心路を活性化若しくは抑制すること、又は治療対象にムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストを投与することを含むことを特徴とするものである。
 迷走神経肝臓枝求心路の活性化や抑制は、このような作用を持つ物質を治療対象に投与することにより行うことができるが、それ以外にも、迷走神経肝臓枝求心路に電気刺激を与えることや迷走神経肝臓枝求心路を切断することによっても行うことができる。同様に、左迷走神経遠心路の活性化や抑制は、このような作用を持つ物質を治療対象に投与すること、左迷走神経遠心路に電気刺激を与えること、左迷走神経遠心路を切断することによって行うことができる。
 ムスカリン性アセチルコリン受容体のアゴニストやアンタゴニスト、疾患、及び治療対象などは、上述した治療薬のものと同じでよい。
(4)カフ電極の作動方法
 本発明のカフ電極の作動方法は、迷走神経肝臓枝を刺激して腸管の末梢性制御性T細胞の量を調節するものである。図15に示すように、迷走神経肝臓枝に設置されたカフ電極を作動させ、迷走神経肝臓枝に電気刺激を与えることにより、腸管の末梢性制御性T細胞の量を増加させることができ、これにより、炎症性腸疾患などの疾患を治療することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
 Foxp3+末梢性制御性T細胞(pTregs)は、粘膜組織、特に大腸固有層(LP)に最も多く存在し、腸管における免疫恒常性を維持している5,6。pTregsの生成は、TGF-βやRAなどのサイトカイン、Clostridia clusters IV, XIVa, XVIII、Bacteroides fragilis、microbiota-associated molecular pattern (MAMPs)、短鎖脂肪酸(SCFA)などの微生物や食物からのシグナルの組み合わせによって促進される5-13。これらの多数の環境刺激に加えて、最近の研究では、免疫細胞が自律神経や腸の神経細胞の制御下にあることが示され、大きな進歩を遂げている3,14-16。このことは、粘膜部位におけるpTregの分化が、これまで認識されていなかったメカニズムによって支配されていることを示唆している。
 実際、消化管には高度に神経支配されているだけでなく、適応及び自然免疫細胞が非常に多く存在している14,17。大腸のLPでは、神経細胞(β-チューブリンIII+)とMHC-II+ APC(主にCX3CR1+単核球(MNP))の局在を免疫組織化学的に解析することで、神経細胞とAPCが近接していることが明らかになった(図1a、b、図5a、b)。腸内APC、特にCX3CR1+ MNPとCD103+樹状細胞(DC)は、RAを産生し、TGF-βが豊富な腸内微小環境でpTregsの発生を優先的にサポートする8,18-23。自律神経系の免疫調節作用は知られているが1-3,15-17、迷走神経が腸のAPCとpTregsを制御することで、腸のホメオスタシスにどのような影響を与えているかについては、まだ十分に理解されていない。迷走神経の免疫学的機能を調べるために、野生型(WT)のC57BL/6(B6)マウスに横隔膜下本幹迷走神経切断術(以下、VGx)を行った(図5c、d)。興味深いことに、迷走神経切断マウスは、偽手術を受けたマウスと比較して、大腸内のFoxp3+ Tヘルパー細胞、特にHelios-RORγt+ pTregsの数が大幅に減少した(図1c、d、図5e、f)。大腸のpTregsの減少に加えて、RA合成酵素RALDH1及びRALDH2をコードするAldh1a1及びAldh1a2のレベル、及び大腸APCのアルデヒドデヒドロゲナーゼ活性の著しい低下が見られた(図1e、f)。
 腸の神経細胞から大腸のAPCにシグナルを伝える神経伝達物質を特定するために、脾臓と腸から採取したAPCのmRNA-seqを行った。腸のAPCは、脾臓のAPCに比べて、ムスカリンACh受容体をコードする遺伝子Chrm1の発現量が高く、腸のAPCの制御に神経伝達物質が組織特異的に関与していることが示唆された(図1g、図5g)。また、CX3CR1+ MNPやCD103+ DCに富むAPCフラクションでは、Chrm1やAldh1a1、Aldh1a2の発現が、Itgae(CD103)、Cx3cr1、Irf8といったAPCの典型的なサブセットを定義する遺伝子と比較して共通していることも注目される(図1h、i、図5h)。さらに、Ach、ムスカリン、アドレナリン、ニューロペプチドY、サブスタンスP、セロトニン(5-HT)、ニューロメジンUなど、複数の神経伝達物質で刺激した大腸のAPCにおけるAldh1a1及びAldh1a2の発現を定量的に評価することで、この知見を確認した(図1j)。さらに、ムスカリンや腸管のニューロスフェロイドは、WTマウスやヒト腸から得られた大腸のAPCにAldh1a1及びAldh1a2の発現を誘導したが(図1k、l)、Chrm1、2、4を欠損したAPC(mAChR TKO)とニューロスフェロイドの共培養は失敗した(図5i、j)。また、ムスカリンやニューロスフェロイドで前培養したWTマウスの大腸APCでは、Foxp3+ Tregsの産生が促進されたが、mAChR TKOマウスのAPCでは促進されなかった(図5k-n)。これらの結果から、APCにおけるACh-mAChRシグナルは、腸内にpTreg集団を保持するのに貢献していることが示唆された。
 この仮説を検証するために、迷走神経を介したシグナルが腸の炎症を防ぐために必要かどうかを評価した。VGx はデキストラン硫酸ナトリウム(DSS)誘発大腸炎モデルに対する感受性を増加させた(図6a-c)。VGxがpTregの数を減少させ、局所的な炎症環境を誘導したことから、次に、迷走神経のどの求心性ニューロンが腸内のpTregプールの調節と維持に関与しているかを調べた。迷走神経は消化管の大部分を支配しており、その求心性ニューロンは感覚入力を両側の結節ガングリオン(NG)に伝えている24。大腸炎になると、これらの感覚入力はさらに脳幹の孤立性神経核(NTS)に投射される(図6d-f)。注目すべきは、急性大腸炎を発症すると、in vivoで肝臓の感覚求心性が活性化されることであり、これは迷走神経の総肝枝を選択的に外科的に分割(以下「HVx」という25)することで消失した(図2a、b、図7a-c)。肝臓は、腸からの栄養分、細菌の生産物、毒素、代謝物に絶えずさらされているため、門脈循環によって結ばれたこの腸-肝臓軸が、肝疾患の原因となることが実証されている26,27。さらに、栄養素や細菌産物は、mTORC1(mechanistic target of rapamycin complex 1)シグナルを介して迷走神経を活性化することから28(図6g-i)、大腸炎の際には迷走神経の肝感覚求心性が活性化されると考えられる。実際、肝の逆行性トレーシングは、肝臓が腸の微小環境を感知し、迷走神経の肝感覚求心性を活性化し、その信号を左NGを介して脳に伝達するという考えを裏付けるものであった(図2c、d)。重要なことは、HVxマウスで分岐している迷走神経の共通肝枝は、電気生理学的及び免疫組織学的評価によると、交感神経TH+ニューロンを含まないカプサイシン感受性TRPV1+感覚求心性神経から主に構成されていることである(図7d、e)。迷走神経の総肝枝をカプサイシンで遮断すると、右NGではなく、左NGでpERK陽性細胞の数が有意に減少した(図2b)。さらに、HVxマウスのDRGではなく、左NGで逆行性標識細胞の数が有意に減少したことから、迷走神経の共通肝枝は、右NGやDRGではなく、左NGを介して信号を送っていることがわかった(図2c、図7f-h)。これらの結果は、腸内環境の感覚情報が、左迷走神経の肝臓から脳への上行路を横切って脳に伝達されることを示唆している。
 迷走神経の解剖学的な側方性から、肝迷走神経の感覚求心性が腸内Tregsにどのような影響を与えるかを探り、HVxの腸と脾臓への影響を特徴づけた。その結果、HVx及びVGxマウスの大腸から得られたAPCにおいて、CD4+T細胞のうちpTregsの割合、及びアルデヒドデヒドロゲナーゼの発現と活性が、偽手術を受けたマウスと比較して有意に減少していることが確認された(図2e、図8a-d)。このHVxによる大腸のpTregsの減少は、2日目に急速に起こり、ネズミの性別、系統、種を問わず一貫して見られた(図8e-i)。生体内で生成されたpTregsは、Treg特異的脱メチル化領域(TSDR)が脱メチル化されていることから、HVxマウスにおけるpTregsの急激な減少は、迷走神経がTSDR29-34のDNAメチル化状態を変化させることで、腸のpTregsの維持・安定性にエピジェネティックな影響を与えていることに起因すると考えられる。同様に、HVxはT細胞再構成マウスにおけるpTregの分化と安定性を損ない、RAを介したTh17分化プログラムの抑制を解き放った(図8j-l)。腸内Tregsの適切なリザーバーを維持する上で、左NGの肝感覚求心性が重要であることは、カプサイシンやRTXによるDRGの脱抑制ではなく、迷走神経のカプサイシン投与による左NGへの肝迷走神経求心性の摂動が、大腸Treg数の減少とAPCのアルデヒドデヒドロゲナーゼ活性の低下をもたらすという結果からも裏付けられた(図9)。このことは、迷走神経の機能が非対称であることを示唆している(図2f、図10a-c)。大腸Tregsの維持は、MMやILC2に比べて交感神経系への依存度が低いことが、ウイルスや寄生虫の感染との関連で既に報告されている35,36(図10d-h)。小腸や大腸での影響とは対照的に、HVxマウスでは脾臓Tregsの頻度は正常であったが、CG-SMGを外科的に切除したり、β2アドレナリン受容体や7-ニコチンAch受容体(7-nAchR)を化学的に遮断したりすると、脾臓Tregsが大幅に減少した(図10i-o)。CG-SMGから発生するアドレナリン線維を主成分とする脾神経は、7-nAchRを介してT細胞の活性化を抑制し、脾臓マクロファージからの全身性サイトカイン産生を抑制することが以前に報告されていることから37-42、迷走神経切断そのものではなく、CG-SMG又は脾神経の切断が脾臓Treg集団に影響を与えると予測された。これらの結果は、肝臓-脳-腸の神経アークが腸の微小環境を監視し、Achシグナルを送って大腸のAPCを制御することにより、腸のpTregのレベルを調整していることを裏付けている。
 そこで本発明者は、腸管APCにおけるムスカリン性Achシグナルの役割をin vivoで調べることにした。遺伝的にmAChRを除去すると、大腸APCにおけるAldh1a1及びAldh1a2の発現が減少し、その結果、大腸のpTregsが減少した(図3a-d)。VGx及びHVxマウスでは、大腸の腸筋叢に存在するc-Fos+腸神経細胞の数が偽手術マウスに比べて少ないことが確認されたが、腸神経細胞の末端分化に必要な転写因子Hand2の発現には影響がなかった(図11a-f)。また、VGx及びHVxマウスでは、交感神経系(ノルアドレナリン)や感覚神経系(カルシトニン遺伝子関連ペプチド(CGRP))ではなく、副交感神経系(Ach)の腸内低分子・ペプチド神経伝達物質が、偽手術マウスに比べて減少していた(図11g-h)。肝選択性迷走神経切断術及び本幹迷走神経切断術は、主に腸の局所的なAchレベルを低下させることから、mAChRの活性化が腸のAPCにおけるアルデヒドデヒドロゲナーゼの発現と活性を回復させるかどうかを検証した。mAChRのアゴニストであるベタネコールを投与すると、HVxマウスの大腸APCにおけるAldh1a1及びAldh1a2の発現は、偽手術を受けたマウスと比較して回復したが、7-nAchRのアゴニスト及びアンタゴニストは、7-nAchR43の遺伝子欠損と同様に、ほとんど寄与しなかった(図12a-j)。また、ベタネコールを投与したHVx WTマウスでは、mAChR TKOマウスではなく、pTregsの頻度が増加したことから、肝脳腸神経アークが大腸のAPCを刺激し、pTregニッチを形成していることが示唆された(図3e、図12k、l)。これらの結果を総合すると、肝臓の感覚求心性神経からの神経入力が、この迷走迷走神経性の肝臓-脳-腸の神経アークを開始するのに必須であり、この反射アークは交感神経系や軸索反射とは独立していることが支持される。
 pTregの生成と維持はマイクロバイオームと代謝物に大きく依存していることから、本発明者はpTregの生成と維持におけるマイクロバイオームの役割を調査した。HVxマウスと偽手術対照マウスに由来する腸内マイクロバイオームは、組成と多様性に大きな違いはなく、これらのマウスの糞便細菌を移植すると、無菌マウスに同等の量の腸内pTregが誘導された(図3及び図13a-e)。これは、HVxによる腸内細菌叢や代謝物の変化とは無関係に、肝脳腸神経アークがpTregプールを保持していることを示唆している。さらに、HVxマウスを腸内で滅菌しても、pTregs、特に微生物に依存しないpTregs 13の減少は認められなかった(図13l、m)。これらのデータを総合すると、肝臓-脳-腸の神経アークは、腸のpTregsの基礎レベルを維持しており、そのレベルは緊張性のある微生物の入力に依存していることを示している。
 肝臓-脳-腸の神経回路が腸のpTregを調節するという作用はこれまで予想されていなかったので、これが大腸炎の発症に関係しているかどうかを調べてみた。肝迷走神経枝を外科的又は化学的に切断したマウスでは、pTregの頻度が低下し(図3a、図8a、b、5c、d)、その結果、DSSや2,4,6-トリニトロベンゼンスルホン酸(TNBS)で誘発される大腸炎にかかりやすくなった(図4a-c、図14a-c)。同様に、Rag2-/-マウスでは、T細胞不足のマウスとは異なり、HVxによる大腸炎の悪化は見られなかった(図14d-f)。さらに、脾臓摘出は、エンドトキシン血症モデル37-39とは異なり、HVxマウスの大腸炎の重症度にほとんど影響を与えなかった(データは示されていない)。また、HVxは腸内細菌叢の組成に大きな変化をもたらさなかったため(図13a-c)、HVxマウスは同居していた偽手術マウスよりも重度の大腸炎を示した(図14g, h)。さらに、抗生物質を投与したマウスやMyD88欠損マウスでは、HVxによってDSS誘発大腸炎に対する感受性が高まることはなかった(図14 i-l)。このことから、腸のpTregプールを保持するためには、肝臓-脳-腸の神経アークを機能させるために、微生物の持続的な入力が必要であると考えられる。一方、HVxマウスのDSS誘発大腸炎の悪化は、コリン作動薬によって抑制された(図4g-i、図14m-o)。これらのデータを総合すると、肝臓-脳-腸の神経回路が、腸を過剰な炎症から守るためのフィードバックループとして機能していることがわかる(図14p)。
 以上のことから、今回の研究では、肝迷走神経感覚求心路、脳幹、迷走神経遠心路、腸管ニューロンをつなぐ迷走神経外因性反射が、mAChR+ APCを刺激し、末梢制御性T細胞のリザーバーを維持するという興味深い活動を明らかにした。最近のレトロスペクティブコホート研究では、新たにうつ病を発症した患者がIBDを発症するリスクが高いことが報告されており44、自律神経のバランスの乱れがIBDの病因に寄与している可能性が高い。食欲、食物報酬、がん、脂肪肝、パーキンソン病、その他の神経疾患を制御する腸-脳間の直接的かつ相互的な神経反射45-48に加えて、本発明者の発見は、肝臓と中枢神経系の両方が介在する組織特異的な免疫細胞の適応に関するユニークな見解を提供している。この肝臓-脳-腸の神経回路の機能低下は、腸に炎症を起こしやすくする。つまり、脱神経により腫瘍形成が抑制されるのは、大腸のpTregsの数が減少したことに起因する可能性がある。今回の研究では、肝臓-脳-腸の神経回路が、免疫調節ニッチを特定し、腸の免疫反応を微調整するという重要な役割を担っていることが明らかになった。この肝脳腸神経アークを標的とした介入は、IBD 49、感染症、腸のがんなどの治療に幅広く応用できる可能性がある。
〔実験方法〕
動物
 C57BL/6(WT)マウス、BALB/cマウス、Jcl:Wistarラットは、日本クレア(Tokyo, Japan)から購入した。5週齢の雄のgerm free (GF) マウス (C57BL/6 background strain) は三共ラボサービス株式会社から購入し、慶應義塾大学医学部GF施設で飼育した。Ly5.1マウス、Foxp3CreERT2マウス、Cx3cr1GFP/GFPトランスジェニック(Cx3cr1gfp)マウス、Rag2ノックアウト(Rag2-/-)マウス、Myd88ノックアウト(Myd88-/-)マウスはThe Jackson Laboratory(Maine, USA)から入手した。Chrm1/Chrm2/Chrm4トリプルノックアウト(mAChR TKO)マウスは、動物資源開発センター(Kumamoto, Japan)から入手した。Wnt1プロモーター/エンハンサー(Wnt1-Cre)をEGFPレポーターマウス(CAG-CATloxP/loxP-EGFP)と交配させ、Wnt1-Cre/Floxed-EGFPダブルトランスジェニックマウス50を得た。Foxp3CreERT2マウスをfloxed-tdTomatoレポーターマウス51と交配させ、Foxp3-レポーターマウスを得た。すべての実験には6~8週齢のマウスを用いた。すべてのマウスは、慶應義塾大学医学部の動物飼育施設において、SPF条件下で飼育した。すべての実験は、地域の動物実験委員会(Keio University, Tokyo, Japan)によって承認され、機関のガイドライン及びホームオフィスの規制に従って行われた。
横隔膜下迷走神経切断術及び肝選択的迷走神経切断術
 横隔膜下迷走神経切断術は、以前に報告されたように、両側又は片側(左又は右)で行った(図5c,d)52。メデトミジン、ミダゾラム、ブトルファノールの組みせん合わせで麻酔をかけた雄マウスの上腹部臓器を広く露出させるため、正中切開を行った。食道に沿った迷走神経の両側の横隔膜下幹を露出させて切断した。偽手術群では、これらの迷走神経幹は露出させたが、切断しなかった。肝選択的迷走神経切断術(HVx)は、記述されたように行われた(図7)25。腹側横隔膜下迷走神経幹を麻酔下で上記のように露出させた。迷走神経の総肝枝は神経血管束を形成しているため、この枝を絹糸で選択的に結紮し、顕微鏡を用いて切断した。偽手術群では、総肝枝は露出させたが切断しなかった。
迷走神経周囲へのカプサイシン塗布による選択的な肝迷走神経求心路の遮断
 迷走神経幹の肝枝をパラフィン紙で周囲の組織から遊離させた後、ビヒクル(Tween80:オリーブオイル=1:9)単独又はビヒクル溶液に溶解した10mg/mlのカプサイシンを浸した綿棒で30分間包んだ。30分後に綿紐を外し、腹腔切開部を閉じた28
腹腔鏡下手術及び上腸間膜神経節切断術
 イソフルランで麻酔したマウスの上腹部臓器を広く露出させるため、正中切開を行った。腹腔神経節(CG)は短い神経幹を介して上腸間膜神経節(SMG)に結合している(図10d)。上腸間膜動脈に沿って腹腔神経節と上腸間膜神経節(CG-SMG)の複合体を露出させ、除去した。偽手術群では、上腸間膜動脈は露出させたが、除去しなかった53
レジニフェラトキシン(RTX)及びカプサイシンの髄腔内投与
 DRG又は脊髄のTRPV1+ニューロンを標的としたアブレーションを行うために、28ゲージの針が付いた25リットルのハミルトンシリンジを用いて、レジニフェラトキシン(RTX)(25 ng/マウス,ビヒクル;PBS中の0.25% DMSO / 0.02% Tween-80 / 0.05% アスコルビン酸)又はカプサイシン(10μg/マウス,ビヒクル;PBS中の10% EtOH / 10% Tween 80)をマウスの髄腔内に注射した。対照マウスにはビヒクルのみを投与した。注射後7日目に大腸の免疫細胞の表現型を分析した。DRG及び脊髄におけるTRPV1+ニューロンの枯渇は、免疫染色により確認した。
パラバイオシス
 パラバイオシス手術は、既述の方法で行った54。各マウスの対応する側頭部を剃毛した後、各マウスの前肢から後肢の付け根にかけて一致する皮膚切開を行い、皮下筋膜を鈍的に剥離して約1/2cmのフリースキンを作製した。その後、外科用クリップで対応する遊離皮膚を密に縫合してパラビオンを結合した。手術の2週間後に、マウスをシャム又はHVxに供した。
T細胞再構成モデル
 T細胞再構成モデルは、以前に記述したように行った54。Rag2-/-マウスに、FACSで選別した野生型ナイーブCD4+CD45Rbhi細胞を3×105個腹腔内に注射した。マウスは毎週、体重をモニターした。実験の最後に、大腸Treg細胞をFACSで分析した。
DSS誘発大腸炎モデル
 マウスに2%のデキストラン硫酸ナトリウム(DSS)溶液を飲用させ、大腸炎を誘発させた。マウスの体重を毎日測定し、下痢や直腸出血の有無を目視で確認した。DAIはマウス群を盲検化して評価した(最大合計スコア12)。組織学的活動性スコア(最大合計スコア40)は、範囲、炎症、クリプト損傷の3つのパラメータの合計として評価した55
TNBS誘発大腸炎モデル
 2,4,6-トリニトロベンゼンスルホン酸(TNBS)はSigma-Aldrich社から入手した。マウスを事前感作するために、腹部皮膚の1.5×1.5cmの領域を削り、1%(w/v)TNBS溶液を150μl塗布した。事前感作の7日後、マウスはイソフルランによる全身麻酔下で50%エタノール中2.5%TNBS 150μlを直腸内に再投与した56。大腸組織の切片をH&Eで染色し、DSSモデルと同様に組織学的スコアを決定した。
抗生物質の投与
 迷走神経切断術によるDSS大腸炎の悪化に対する腸内細菌叢の寄与の可能性を評価するために、マウスに広域抗生物質(6.7g/Lアンピシリン,6.7g/Lネオマイシン,3.3g/Lバンコマイシン,6.7g/Lメトロニダゾール)を週3回、3週間にわたって経鼻胃管から投与した(500μL/マウス)。対照として、同量の蒸留水を経鼻胃管から投与した。
ベタネコール、サルブタモール、プロプラノロール、メチルリカコニチン、GTS-21のin vivo投与
 ベタネコール(BETH)を水に溶解した。12時間の手術後、マウスは毎日、水又はBETH(マウスあたり300μg)57を腹腔内に注射した。大腸のTregsのホメオスタシスに対するアドレナリンシグナルの影響を評価するために、サルブタモール(β2-アゴニスト)及びプロプラノロール(βブロッカー)を使用した。サルブタモールとプロプラノロールはPBSに溶解して使用した。12時間の手術後、マウスは毎日、PBS(1匹あたり200μl)、サルブタモール(1匹あたり30μg)又はプロプラノロール(1匹あたり300μg)を腹腔内に注射した58。メチルリカコニチン(MLA,α7ニコチン性アセチルコリン受容体アンタゴニスト)とGTS-21(α7ニコチン性アセチルコリン受容体アゴニスト)を用いて、大腸Tregの維持に対するα7ニコチン性アセチルコリン受容体の役割を評価した。MLAとGTS-21はPBSに溶解した。12時間の手術後、マウスは毎日、PBS(1匹あたり200μl)、MLA(1匹あたり150μg)又はGTS-21(1匹あたり300μg)を腹腔内に注射した59
肝臓からの逆行性トレーシング
 1μlのAlexa Fluor 488標識小麦胚芽アグルチニン(WGA488) (5mg/ml)を、ハミルトンシリンジに接続した30ゲージの針を用いて、40スポットで肝臓に注入した。WGA488注射の1週間後、マウスはまずPBSで灌流し、次にPBS中の4%PFAで灌流した。分離したNGとDRGを2時間後に後処理し、PBS中の30%スクロースに24時間浸漬して凍結保護した。凍結したNGとDRGの切片をクライオスタットで6mmの厚さに切り、スライドに回収してすぐに乾燥させた。スライドはDAPIを含むProLongTM Diamond Antifade Mountantでマウントした。
交感神経活動の電気生理学的記録 
 交感神経の活動の測定は、以前に記載された方法で行った57。迷走神経の総肝枝又はCG-SMGを特定し、神経活動を測定するために露出させた。各神経の電気的活動を100-1,000kHzのバンドパスフィルターで50,000-100,000倍に増幅し、オシロスコープでモニターした。増幅され、フィルタリングされた神経活動は、ウィンドウディスクリミネータによって標準パルスに変換され、その後、放電と電気的バックグラウンドノイズが分離された。放電率とニューログラムの両方をPowerLab社のアナログ・デジタル変換器でサンプリングし、コンピュータで記録とデータ解析を行った。動物を安楽死させてから30~60分後に測定したバックグラウンドノイズを差し引いた。神経活動は整流され、ベースラインの神経活動を100%に正規化して統合した。
マウスの大腸粘膜固有層単核細胞の分離 
 粘膜固有層単核細胞(LPMC)の分離は、既述の方法で行った6。解剖した大腸粘膜を5mmの大きさに切断した。組織は、1mM DTT及び5μM EDTAを含むCa2+、Mg2+フリーのHBSSで37℃、30分間インキュベートした後、さらにコラゲナーゼ及びDNaseで45分間消化した。その後、Percoll密度勾配を用いて細胞を分離した。生細胞の数はCountess II(Thermo Fisher Scientific)で測定した。
マウスからの脾臓細胞の分離
 脾臓を100μmのナイロンに粉砕した後、0.84%塩化アンモニウム溶液で赤血球を溶解した。
腸管ニューロスフェア由来の神経細胞
 胎生期13.5日目(E14.5)のWnt1-Cre/Floxed-EGFP二重トランスジェニックの全腸を、0.1%トリプシン/EDTAトリプシンで37℃で30分間消化した。細胞を機械的に溶解し、洗浄した後、超低付着性のT-25細胞培養フラスコ(CORNING)で、補充したDMEM/F12(25μg/mlインスリン、100μg/mlトランスフェリン、20nMプロゲステロン、30nMセレン酸ナトリウム、60nMプトレスシン、100ng/mlリコンビナントヒトEGF、100ng/mlリコンビナントヒトFGF、20ng/mlB27 50)を用いて、37℃のCO2インキュベーター内で7日間培養した。ニューロスフェア形成後、腸管ニューロスフェアを非コーティング細胞培養プレートにプレーティングし、分化培地(10%ウシ胎児血清(FBS)及び1%ペニシリン-ストレプトマイシン(PS)を添加したDMEM/F12)で7日間培養した。腸管ニューロスフェアから分化した細胞は、トリプシンを用いて解離させ、PEコンジュゲート抗マウスCD24抗体(30F-1)、APCコンジュゲート抗マウスCD184抗体(L276F12)、PE/Cy7コンジュゲート抗マウス/ヒトCD44抗体(IM7)、Brilliant Violet 510コンジュゲート抗マウスCD45.2抗体(104)の抗体を用いて氷上で30分間染色した。セルソーティングはFACS aria IIを用いて行い、腸管ニューロスフェア由来のニューロン(GFP+CD45.2-CD184-CD44-CD24+細胞)を回収した。共培養のために、ソート精製した大腸APCを培養液に加えた。
蛍光活性化セルソーティング(FACS)解析
 抗マウスCD16/CD32抗体で20分間ブロッキングした後、特異的な蛍光標識モノクローナル抗体と4℃で30分間インキュベートし、その後Permeabilization Bufferで透過させ、Treg染色の場合は抗Foxp3 mAbで細胞内を染色した。FACS解析には以下のモノクローナル抗体を使用した:抗マウスCD45.2、CD3e、CD4、CD11b、CD11c、MHC-II、NK1.1、TCRβ、B220、NKp46、Gata3、IL-17A、IL-22、Foxp3、Helios、RORγt抗体。死細胞は、7-AAD染色又はFixable Viability Dye eFluorを用いて除外した。イベントはFACS Canto II (BD Biosciences)で取得し、FlowJoソフトウェア(BD Biosciences)で解析した。大腸APC(CD45.2+CD3-NK1.1-B220-MHC-II+細胞、CD45+CD3-B220-NK1.1-CD11c+CD11b-、CD45+CD3-B220-NK1.1-CD11c+CD11b+及びCD45+CD3-B220-NK1.1-CD11c-CD11b+細胞)を、BD FACS Aria-II(BD Bioscience)で選別した。大腸APCは、10%ウシ胎児血清と1%ペニシリン-ストレプトマイシンを含むRPMI-1640で一晩培養した後、ムスカリンで細胞を刺激した。
アルデヒドデヒドロゲナーゼ活性の測定
 アルデヒドデヒドロゲナーゼ(ALDH)活性は、ALDEFLUOR染色キットを用いて、製造者のプロトコールに従って測定した。ALDH阻害剤であるジエチルアミノベンズアルデヒド(DEAB)(最終濃度15μM)を含む、又は含まない活性化ALDEFLUOR基質(最終濃度1.5μM)を含むALDEFLUORアッセイバッファーに106細胞/mlの濃度で細胞を懸濁し、37℃で30分間インキュベートした。FACS解析は、BD Biosciences FACS CantoIIで行った。
In vitro Treg誘導アッセイ
 WTマウスの脾臓から、ナイーブCD4+T細胞分離キットを用いてナイーブCD4+細胞を分離した。ナイーブCD4+細胞(1×105)を、10%FBS、2mMグルタミン、100U/mlペニシリン、100lg/mlストレプトマイシン、55μM 2-メルカプトエタノールを添加したRPMI-1640培地を用いて96ウェルプレートで培養した。Tregの誘導には、ナイーブT細胞を、ムスカリン又はニューロスフェロイド由来ニューロン(1×10560の存在下又は非存在下の大腸APC(2×104)を用いて、2μl/wellの抗CD3/CD28マイクロビーズ及び2ng/mlのTGF-βで3日間刺激した。
組織のサンプル
 正常な腸管粘膜は、大腸癌患者の患部ではない部分から採取した。すべての実験は、慶應義塾大学医学部の治験審査委員会で承認され、すべての患者から書面によるインフォームドコンセントを得た。
ヒト大腸LP細胞の分離
 大腸を解剖し、腸間膜の脂肪と結合組織をその場で洗浄した。大腸全体を0.5cmの大きさに切断し、消化した。これらの断片をまずHBSSで洗浄した後、1mM DTT、5mM EDTAを含むPBSで37℃20分間インキュベートした。IEL画分を含む上澄み液を捨てた。残ったLP画分をPBSで2回洗浄した後、1.0mg/mlのコラゲナーゼと0.05mg/mlのDNaseを用いて37℃で60分間消化した。LP懸濁液を70-μmのフィルターに通した。その後、Percoll密度勾配で細胞を分離した。界面を回収し、染色とセルソートの前に細胞を洗浄した。細胞選別のために、CD45+CD3-CD19-CD56-HLA-DRhi細胞をBD FACS Aria-IIを用いて選別することにより、ヒト大腸APCをゲートオンした。ヒト大腸APCは、10%FSBと1%ペニシリン-ストレプトマイシンを含むRPMI-1640で一晩培養した後、ムスカリンで細胞を刺激した。
RNAシークエンス解析
 RNAシーケンス(RNA-seq)は、以前に記述した方法で実施し、解析した61。トータルRNAは、TRIzolを用いて約20,000~50,000個の細胞から調製した。続いて、トータルRNAを、NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, E7490S)、NEBNext Ultra II Directional RNA Library Prep with Sample Purification Beads (NEB, E7765S)、NEBNext Multiplex Oligos for Illumina (Index Primers Set 1 and 2) (NEB, E7335S and E7550S)を用いて、プロトコールにしたがってmRNA-seqライブラリーを生成した。ライブラリーは、Illuminaにより150bp(ペアエンドリード)のシーケンスを行った。転写物の量を定量化するために、kallisto (v0.44.0, options: -b 100)62を用いて、RNA-seqリードをENSEMBLトランスクリプト(リリース95 GRCm38)に擬似的にアラインした。神経伝達物質受容体遺伝子を持つAPCサブセットシグネチャー遺伝子(少なくとも1サンプルで発現>1TPM)の発現レベルを、階層的にクラスタリングされた行と列を持つヒートマップ(MORPHEUS; https://software.broadinstitute.org/morpheus/)と三元プロット(ggtern v3.1.0)を作成することで可視化した。
糞便サンプルの採取と細菌DNAの分離 
 同一のマウスから術後0日目と2日目に順次、糞便を採取した。この実験では、各マウスを別々のケージに入れて飼育した。バクテリアのDNAは、以前記述したように調製した63。細菌のDNAは、リゾチームとアクロモペプチダーゼを用いた酵素溶解法により分離した。DNAサンプルは、リボヌクレアーゼAで処理した後、20%ポリエチレングリコール溶液(2.5M塩化ナトリウム中のPEG6000)で沈殿させることにより精製した。その後、DNAを遠心分離し、75%エタノールで洗浄し、トリスエチレンジアミン四酢酸(trisEDTA)緩衝液に溶解した。
糞便DNA中の細菌16S rRNA遺伝子の配列決定と処理
 16S遺伝子の超可変領域であるV3-V4領域をEx Taq Hot Start(Takara Bio)を用いて増幅し、その後AMPure XP(Beckman Coulter)を用いて精製した。各増幅DNAをほぼ等量ずつプールして混合サンプルを調製し、Miseq Reagent Kit V3 (600 Cycle)とMiseq sequencer (Illumina)を用いて、製造者の指示に従ってシーケンスを行った。配列の解析には、QIIMEソフトウェアパッケージバージョン1.9.164,65を使用した。ペアエンド配列は、ea-utilsソフトウェアパッケージのfastq-joinツールを用いて結合した(https://doi.org/10.2174/18750 36201307010001)。サンプルあたりの高品質な配列(15,000)は、品質フィルターでパスされた配列の中からランダムに選んだ。cutadapt(https://doi.org/10.14806/ej.17.1.200)を用いて両方のプライマー配列を切り落とし、続いてUSEARCH66のde novo法でキメラを検出した後、UCLUSTアルゴリズム67を用いて、配列同一性の閾値を96%として、配列を運用上の分類単位に割り当てた。GLSEARCHプログラムを用いて、一般に公開されている16S(RDP version 10.27及びCORE update 2 September 2012)及びNCBIゲノムデータベースとの類似性検索を行い、各操作上の分類単位の割り当てを行った。データは、希薄化曲線から判断して、サンプルあたり10,000配列に希薄化した。希薄化したデータを用いて、コミュニティメンバーの相対的な存在感を決定した。UniFrac解析は、以前記述したように行った68
無菌状態のマウス
 Sham及びHVxマウスの糞便サンプルを採取した。糞便サンプルは、40%グリセロールを含む等量(w/v)のPBSに懸濁し、スナップフリーズした後、使用するまで-80℃で保存した。凍結したストックを融解し、5倍量のPBSに懸濁し、100μmのセルストレーナーに通した。GFマウスには、滅菌したステンレス製の注射針を用いて、200μlの懸濁液を経口接種した.3週間のコロニー形成後、大腸の免疫細胞の表現型を解析した。
定量的逆転写(qRT-)PCR分析
 RNeasy Mini Kitを用いて、大腸の組織や細胞からRNAを分離・精製した。逆転写は、iScript cDNA Synthesis Kitを用いて行った。リアルタイムPCRの増幅は、Thermal Cycler Dice Real Time System(Takara Bio)を用いて行った。遺伝子の発現量は、18SリボソームmRNAで正規化した。
組織学的及び免疫組織化学的検査 
 肝臓、大腸、NG、DRGを10%ホルマリンで固定し、パラフィンで包埋した。脊髄(Th4-7と13)と大腸は30%スクロース溶液で24時間凍結保護し、OCTコンパウンドで保存した。パラフィン包埋した大腸切片をH&Eで染色した後、検査した。免疫組織化学のために、抗原はオートクレーブで活性化し、ブロックエースでブロックした。一次抗体反応は、室温で4時間(希釈率;PGP9.5(1/1000)、pERK1/2(1/500)、TUBB3(1/200)、TRPV1(1/1000)、TH(1/1000))、又は4℃で一晩(I-A/I-E(1/200)、TUBB3(1/200))行った。PBSで洗浄した後、切片をAlexa Fluor 488又はAlexa Fluor 647で標識した二次抗体(1/400)と室温で2時間インキュベートした。組織サンプルは、BX53顕微鏡(Olympus)及びLSM 710共焦点レーザー走査型顕微鏡(Carl Zeiss)で観察した。画像は、Imaris(Oxford Instruments)、ZEN(Carl Zeiss)、ImageJ(NIH)を用いて解析した。
pERK1/2とc-Fosの免疫組織化学検査
 pEKR1/2とc-Fosの発現は、報告されているように免疫組織化学的に分析した1。DSS投与マウスは、麻酔下で4%パラホルムアルデヒドと0.2%ピクリン酸を含むPBSで経心的に灌流した。結節ガングリオンと脳を採取し、同じ固定液で2時間から一晩、4℃で後固定した後、30%スクロースを含むリン酸緩衝液で48時間培養した。精密クライオスタット(Leica Microsystems, IL)を用いてNGの縦断面(8μm)を48μm間隔で切り出した。後脳の冠状切片(40μm)は、凍結ミクロトームを用いて120μm間隔で切断した。pERK1/2に対するウサギポリクローナル抗体(1/500)及びAlexa 488標識ヤギ抗ウサギIgG(1/500)を用いた。蛍光画像はBX50顕微鏡とDP50デジタルカメラ(Olympus)で取得した。c-Fos染色では、一次抗体として抗c-Fos抗血清(1/10,000)を用いた。発色にはニッケルジアミノベンジジン(DAB)を用いた。NTS内側のpERK1/2とc-Fosに免疫反応するニューロンを数えた。
腸管神経叢におけるc-Fos免疫染色 
 腸神経叢の準備のために、Sham、VGx、HVxマウスの摂食状態の大腸を3cm縦に切り、氷冷したPBSの入ったプラスチックプレートに浸した。粘膜層を除去し、腸管神経叢を4%PFAに一晩落とし、室温で冷PBSで洗浄した。サンプルをブロッキング液で室温で1時間ブロッキングした。その後、サンプルを抗体希釈液で希釈した一次抗体(HuC/HuD, 1/500; c-Fos, 1/500)と室温で一晩インキュベートし、PBSで3回洗浄した後、二次抗体(1/400)と室温で90分インキュベートし、PBSで3回洗浄した。サンプルは蛍光マウント剤でマウントした。異なる組織の蛍光を共焦点Zeiss Laser Scanning Microscope LSM-710で測定した。
大腸におけるCGRP、ACH、NEレベルの測定
 大腸における神経伝達物質のレベルは、既述の方法で測定した69-71。大腸の組織をPBSで洗浄し、ホモジナイズした。ホモジネートを15,000 x g, 10分間, 4℃で遠心分離し、上清を回収した。サンプルは使用するまで-80℃で保存した。タンパク質濃度はBCAアッセイ(Thermo Fisher Scientific)で測定した。ホモジネート中のCGRP(Phoenix Pharmaceuticals)、アセチルコリン(Abcam)、ノルアドレナリン(LsBio)の濃度をELISAで測定した。
ウェスタンブロット分析
 プロテアーゼ阻害剤を含むT-PERとPhosSTOP(Sigma)を用いて肝臓組織からタンパク質を抽出した。ウェスタンブロッティングは、Clarity Western ECL Substrate及びChemiDoc Imaging System(Bio-Rad)を用いて、以前記述したように行った72
肝臓におけるRaptorのRNA干渉によるノックダウン
 Si-ネガティブコントロール(Si-Cont)及びSi-Raptor(In-VivoReadyグレード)を、製造者のプロトコールに正確に従ってInvivofectamine 2.0 Reagent(Invitrogen)で複合化した。その後、雄のWTマウス(体重22-25g)に、体重1kgあたり約7mgのsiRNAの用量で、200μlの複合体化したsiRNAを尾静脈から静脈内に注射した。
統計情報 
 すべての値は平均値±s.e.m.で示されている。統計解析は、ペアになっていない両側のStudentのt検定又は多重比較のためのTukeyのポストホックテストと一方向ANOVを用いて行った。
データの入手 
 本明細書中に掲載されているすべての生データ及び処理済みのシーケンスデータは、NCBI GEOを通じてアクセッション番号GSE140952で入手可能である。また、RNA-seqを解析するためのすべてのコンピュータコードは、https://github.com/mikamiy/liver-brain-gut-neural-arcで利用可能である。
〔図の説明〕
図1 腸内におけるAPCと神経細胞の相互作用の可能性。
 a, マウスの大腸におけるCX3CR1-GFP(緑)とβ-tubulin III(赤)の代表的な免疫蛍光染色像。b, Cx3cr1GfpマウスのCD45.2+TCRβ- CD3-B220-NK1.1ゲート化大腸扁平上皮単核細胞の代表的なCD11c及びMHC-II染色。c-f, 8週齢の雄B6マウス(WTマウス)に、偽手術(Sham)又は本幹迷走神経切断術(VGx)を行った。大腸T細胞の表現型と大腸の遺伝子発現を2日後に解析した(n = 12/グループ)。 c, 大腸固有層(LP)におけるCD4+T細胞のうちFoxp3+細胞(Treg)の頻度。d, 大腸の Foxp3+ Treg における RORγt の発現。e, 大腸の APC における Aldh1a1 及び Aldh1a2 mRNA の発現。f, 大腸の MHC-II+ APC (CD45+TCRβ-CD3-B220-NK1.1-MHC-II+)における ALDH+ 細胞の頻度。 左パネル、APCにおけるALDH+細胞のヒストグラム。大腸単核細胞をDEAB(ALDH阻害剤)の非存在下(塗りつぶし)又は存在下(点線)でALDEFLUORとインキュベートした。ポジティブゲートを示す水平線の上にAldefluor+細胞の割合を示した。右パネル、定量化。g, RNA-seq解析により、選別した大腸及び脾臓のAPCで分類した神経伝達物質受容体をコードする遺伝子の発現のヒートマップ。 h, 大腸CD11b+CD11c-(CD11b SP)、CD11b+CD11c+(DP)、CD11b-CD11c+(CD11c SP)細胞のマクロファージ及び樹状細胞マーカー遺伝子のヒートマップ。実験のためのソート戦略を図5に示す。i, 大腸のCD11b SP, DP, CD11c SP細胞における遺伝子発現の三段プロット。カラースケールはmRNAの濃度を示す。神経伝達物質の受容体、マクロファージや樹状細胞の代表的なマーカーを示す。j, PBS(コントロール)、10μMアセチルコリン(Ach)、10μMムスカリン(Mus)、100nMアドレナリン(Adre)、100μMニューロペプチドY(NPY)、100nMサブスタンスP(Sub-P)、10μMセロトニン(5-HT)又は100ng/mlニューロメジンU(NMU)で12時間処理した大腸APCにおけるAldh1a1及びAldh1a2のmRNA発現レベル(n = 5/グループ)。k, WT及びmAChR TKOの大腸APCにおけるAldh1a1及びAldh1a2の発現。WT又はChrm1,2,4欠損(mAChR TKO)マウスから大腸APCを分離し、10μMのMusで処理するか、12h放置した(n = 6/group)。 l, ヒト大腸APCにおけるALDH1A1及びALDH1A2のmRNAレベル。大腸APCを10μMのMusで処理するか、12時間放置した(n=7/グループ)。3回の独立した実験(a, b, j-l)の代表、又は3回の独立した実験からのプール(c-f)である。P値はペアになっていない両側のStudentのt検定(c-f、k)、又はTukeyのポストホックテストを用いた一方向ANOVA(j-l)によって得られた。エラーバーは平均±s.e.m.を表す。
図2 大腸炎時のNTS活性化には、肝迷走神経感覚求心性経路が必須である。
 a, b, WTマウスに偽手術又はHVxを行い、術後2日目から7日間DSSを投与した(n = 4/群)。NTSは孤束核、DMVは迷走神経背側運動核、APは後頭葉、NGは結節神経節を表す。a, 延髄におけるc-Fosの免疫染色の代表的な画像(上パネル、バー:200μm)、NTSとDMVにおけるc-Fosの発現の切片ごとのカウント(下パネル)。b, 結節神経節(NG)におけるpERKの免疫染色の代表的な画像(上パネル、バー:100μm)。c, d, WGAの逆行性トレーシング。肝臓にWGAを注入してから1週間後のNGにおけるAlexa Fluor 488+ニューロン(緑)とDAPI(青)の代表的な蛍光画像(c)と定量画像(d)。白矢印はNG中のAlexa Fluor 488+ニューロンを示す。e, WTマウスにSham、VGx、又は肝迷走神経切断術(HVx)を施した(n = 9/グループ)。 f, WTマウスにSham、腹側横隔膜下迷走神経切断術(LVx)、又は背側横隔膜下迷走神経切断術(RVx)を施した(n = 4/グループ)。e, f, 術後2日目の大腸におけるCD4+細胞の中のFoxp3+細胞の頻度。2つの独立した実験(a-d, f)の代表、又は3つの独立した実験(e)のプール。P値はペアになっていない両側のStudentのt検定(a, b, d)又はTukeyのポストホックテストを用いた一方向ANOVA(e, f)によって得られた。 エラーバーは平均±s.e.m.を表す。
図3 肝臓-脳-腸軸はAPCのムスカリンシグナルを介して大腸Tregのホメオスタシスを制御する。
 a-d, WT及びmAChR TKOマウスにSham又はHVxを行った。e, WT及びmAchR TKOマウスにSham又はHVxを行い、さらにベタネコール(BETH; i.p. 300μg/day)を毎日注射し、術後2日目に大腸免疫細胞の表現型を解析した(n = 5/グループ)。 a, MHC-II+大腸APCにおけるALDH+細胞の頻度。ALDH+細胞と大腸のAPCのヒストグラム(左パネル)。定量化(右パネル)。b, 大腸APCにおけるAldh1a1及びAldh1a2のmRNA発現。 c, e, 大腸のCD4+細胞におけるFoxp3+細胞の頻度。 d, 大腸のFoxp3+ TregsにおけるRORγt+細胞の頻度。P値はTukeyのポストホックテストを用いたペアになっていない一方向ANOVAによって得られた。エラーバーは平均±s.e.m.を表す。
図4 肝迷走神経路の混乱はムスカリンシグナル依存的にマウスの大腸炎を悪化させる。
 a-c, WTマウスにSham又はHVxを行った後、術後2日目から7日間DSSを投与した。グラフは、3回の独立した実験から得られたデータをまとめたものである(n = 15/グループ)。d-f, mAchR TKOマウスにSham又はHVxを行った後、術後2日目から7日間DSSを投与した。グラフは、3回の独立した実験から得られたデータをまとめたものである(n = 12/グループ)。, d, 急性大腸炎時の相対的な体重変化。b, e, DAI c, f, 大腸切片の代表的なHE染色(左パネル、バー:200μm)及び組織学的スコア(右パネル)。P値はペアになっていない両側のStudentのt検定によって得られた。エラーバーは平均±s.e.m.を表す。
図5 大腸APCにおけるムスカリンシグナルがTregの誘導を活性化する。
 a, マウスの大腸におけるCX3CR1+ APC(緑)と腸内ニューロン(紫)の3次元再構成図。b, MHCII+ APC(緑)、腸内Tuj+ニューロン(紫)、Foxp3+ Tregs(黄)の3次元再構成図。c, d, 横隔膜下迷走神経本幹切断の解剖図(c)と術野(d)。e, f, VGx手術後のマウスにおける大腸T細胞の表現型。大腸LPにおけるCD4+T細胞中のFoxp3+細胞(Treg)の頻度(e)と、大腸Foxp3+Tregs中のRORγt+ pTregsの頻度(f)の代表的な等高線プロット。g, 大腸と脾臓のAPCにおけるChrm1、Adrb2、Htr7、Chrna7 mRNAの発現。h, FACSによる大腸のCD11b-CD11c+ (CD11c SP)、CD11b+CD11c+ (DP)、 CD11b+CD11c- (CD11b SP)サブセットの選別方法。i, j, 大腸APCにおける腸管神経細胞由来のニューロンによるレチノール代謝関連遺伝子の発現は、ムスカリンシグナルに依存していた。i, 実験の概略図。j, 大腸APCにおけるAldh1a1及びAldh1a2のmRNAレベル(n = 6/グループ)。 k, l, 大腸APCにおけるムスカリンシグナルは、Tregの誘導を促進した。k, 実験の概略図。CD4+T細胞中のFoxp3+Tregの頻度 (左パネル)。代表的な等高線プロット(右パネル)。m, n, 腸管ニューロスフェロイド由来ニューロンは、大腸APCにおけるムスカリンシグナルの活性化を介してFoxp3+ Tregの誘導を促進した。m, 実験の概略図。n, CD4+T細胞中のFoxp3+Tregの頻度(左パネル)。代表的な等高線プロット(右パネル)。定量化(n = 6/グループ)。2回(a、b、i-k)又は3回(e、f)の独立した実験の代表。P値はTukeyのポストホックテストを用いた一方向ANOVAによって得られた。データは平均±SEMで示した(j、l、n)。
図6 大腸炎は肝脳軸を活性化する。
 a-c, WTマウスにSham又はVGxを行った後、術後2日目から7日間DSSを投与した。グラフは3回の独立した実験のデータをプールしたものである(n = 15/群)。 a, 大腸炎時の相対的な体重変化。**はP<0.01を示す。b, DAI。c, 大腸切片の代表的なHE染色(左パネル、バー:200μm)及び組織学的スコア(右パネル)。 d-f, WTマウスにDSS又は水を6日間投与(n=6/グループ)。d, NGにおけるpERK1/2(緑)の免疫蛍光染色の代表的な画像(上パネル、バー:100μm)。pERK1/2が発現している神経細胞の定量化(下パネル)。e, NTSにおけるc-Fos免疫反応の代表的な画像(左パネル、バー:200μm)。c-Fos免疫反応を示すニューロンの数(右パネル)。f, マウス肝切片におけるpERK1/2(緑)とPGP9.5(赤)の免疫蛍光二重染色の代表的な画像。共染色部位は黄色で示している(左パネル)。スケールバーは10μmを示す。PGP9.5陽性の神経線維におけるpERK1/2発現部位の定量化(右パネル)。g. 肝臓のphosphor-mTOR及び総mTORタンパク質レベル。WTマウスにAbx-cocktailを3週間投与した後、DSSを4日間投与した。h,i, WTマウスにSi陰性コントロール(Si-Contin)又はRaptor(Si-Raptor)を静脈内注射し、3日後にSham又はHVxを行った(n = 6/group)。大腸T細胞の表現型は術後2日目に解析した。h, CD4+T細胞の中のFoxp3+Tregの頻度 (左パネル)。代表的な等高線プロット(右パネル)。i, 大腸のFoxp3+ Treg中のRORγt+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。2回の独立した実験の代表例(d-i)。P値はペアになっていない両側のStudentのt検定(a-f)及びTukeyのポストホックテストを用いた一方向ANOVA(h,i)によって得られた。データは平均±SEMで示した(b-f, h, i)。
図7 マウスの肝迷走神経の解剖図。
 a, 解剖図。b, 肝迷走神経切断の術野。c, 大腸炎における肝臓-脳-腸の神経アークの発火を示す模式図。 d, 迷走神経の総肝枝には交感神経が含まれていない。肝交感神経の電気記録のための術野(左パネル)。迷走神経の総肝枝と肝交感神経の電気的活動(中パネル)。肝枝とDRGにおけるTyrosine hydroxylase(TH)の免疫蛍光染色の代表的な画像(右パネル、バー:100μm)。e, カプサイシン投与後2日目の肝迷走神経枝におけるTRPV1+ニューロンの蛍光免疫染色(バー:200μm)。f, g, h, WGAの逆行性トレーシング。f, g, WTマウスにSham又はVGxを行った後、術後2日目にAlexa Fluor 488標識WGAを注入した(n = 3/group)。肝臓にWGAを注入してから1週間後のNG(f)及びTh4 DRG(g)におけるAlexa Fluor 488+ニューロン(緑)とDAPI(青)の蛍光画像。代表的な画像(左パネル、バー:50μm)。h, 肝臓にWGAを注入してから1週間後のDRG(Th4-7及びTh13)におけるAlexa Fluor 488+ニューロン(緑)とDAPI(青)の蛍光画像(バー: 100μm)。2回の独立した実験の代表値(d-h)。P値はペアになっていない両側のStudentのt検定によって得られた。データは平均±SEMで示した(f, g)。
図8 大腸のpTregの維持及び安定性に対する迷走神経切断の効果。
 WTマウスにSham、VGx、HVxのいずれかを施した(n = 9/group)。大腸の免疫細胞の表現型と遺伝子発現を術後2日目に解析した。a, 大腸のCD4+細胞中のFoxp3+細胞の頻度。代表的な等高線プロット。b, 大腸LPにおけるFoxp3+ Treg中のRORγt+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。c, 大腸APCにおけるAldh1a1及びAldh1a2 mRNAの発現。d, MHC-II+大腸APCにおけるALDH+細胞の頻度。ALDH+細胞と大腸APCのヒストグラム(左パネル)。定量化(右パネル)。e, f, WTマウスにSham又はHVxを行った。e, f, WTマウスにSham又はHVxを行い、HVx後の指示された時点で大腸T細胞の表現型を分析した(n = 9/グループ)。大腸LPにおけるCD4+T細胞中のFoxp3+細胞の頻度(e)、及び大腸LPにおけるFoxp3+Treg中のRORγt+細胞の頻度(f)。代表的な等高線プロット(左パネル)及び定量化(右パネル)が示される(e, f)。g, h, i, 術後2日目の大腸におけるCD4+細胞中のFoxp3+細胞の頻度(g, h, i)及び大腸Foxp3+ Treg中のRORγt+細胞の頻度(g, h)。g, B6マウスにSham又はHVxを行った(n = 10/グループ)。h, BALB/cマウスにSham又はHVxを行った(n = 4/グループ)。i, 6週齢のWTラットにSham又はHVxを行った(n = 4/グループ)。j, k, Rag2-/-マウスにSham又はHVxを行い、CD4+ CD45RBhi T細胞を移植した(n = 8/グループ)。移植から4週間後にマウスを犠牲にし、大腸のTreg細胞を分析した。j, 大腸におけるCD4+細胞中のFoxp3+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。k, 大腸のFoxp3+ Treg中のRORγt+細胞の頻度。代表的な等高線図(左パネル)。定量化(右パネル)。l, WTマウスにSham又はHVxを行った。大腸の免疫細胞の表現型は2日後に分析した。大腸におけるCD4+細胞中のIFN-γ+、Gata3+、及びIL-17A+細胞の頻度(n = 9/グループ)。2回の独立した実験(e, f, h, i)の代表値、又は3回の独立した実験のプール値(a-d, g, j-l)。P値はTukeyのポストホックテストを用いた一方向ANOVA(b-f)及びペアになっていない両側のStudentのt検定(g-l)によって得られた。データは平均値±s.e.m.で示した。
図9 大腸のTregの恒常性維持には、脊髄ではなく肝臓からの求心性迷走神経が関与している。
 a-e, WTマウスに、コーン油(Oil)又はカプサイシン(Cap)を肝迷走神経枝に塗布した。カプサイシン塗布後2日目に大腸のT細胞とAPCの表現型解析を行った(c, d, n = 16/グループ; e, f, n = 8/グループ)。a, b, NG(a)とTh4-DRG(b)におけるTRPV1(赤)とDAPI(青)の代表的な蛍光画像。スケールバーは100μmを示す。c, 大腸におけるCD4+細胞中のFoxp3+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。d, 大腸のFoxp3+ Tregs中のRORγt+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。e, MHC-II+大腸APC中のALDH+細胞の頻度。ALDH+細胞と大腸APCのヒストグラム(左パネル)。定量化(右パネル)。f, 大腸APCにおけるAldh1a1及びAldh1a2のmRNAの発現。g-p, 8週齢のWTタイプにカプサイシン(g-j, n = 5/group)及びレジニフェラトキシン(RTX)(k-p, n = 4/group)を髄腔内に注射した。投与後7日目に、脊髄のTRPV1+神経(Th4-7及びTh13)及び大腸の免疫細胞を分析した。g, 脊髄のTRPV1+神経の蛍光免疫組織化学的検査(バー:200μm)。大腸におけるCD4+細胞中のFoxp3+細胞の頻度(h, n)と大腸Foxp3+ Tregs中のRORγt+細胞の頻度(i, o)。k, l, DRG(k)及びNG(l)におけるRTXの髄腔内注射の効果。スケールバーは100μmを示す。m, 大腸のCGRPレベル。2回の独立した実験(a-b, g-o)の代表、又は2回(e)又は3回(c, d, f)の独立した実験のプール。P値はペアになっていない両側のStudentのt検定によって得られた。データは平均±s.e.m.で示した。
図10半横隔膜下迷走神経切断術で迷走神経の機能的非対称性が明らかになった。
 a-c, WTマウスにSham、腹側(左)横隔膜下迷走神経切断術(LVx)、背側(右)横隔膜下迷走神経切断術(RVx)を施した(n = 4/グループ)。術後2日目に大腸のT細胞とAPCの表現型解析を行った。 a, 大腸におけるCD4+細胞中のFoxp3+細胞の頻度。b, 大腸LPにおけるFoxp3+ Treg中のRORγt+細胞の頻度。代表的な等高線プロット(左パネル)。定量化(右パネル)。c, MHC-II+大腸APC中のALDH+細胞の頻度。大腸APCとALDH+細胞のヒストグラム(左パネル)。定量化(右パネル)。d-j, CG/SMGを介した交感神経シグナルの遮断は、大腸におけるTregの維持には影響しない。d, CG/SMG神経節切断術の術野。 e, 脾臓神経の電気的活動。括弧内の数字はdで示した神経に対応する。f-l, WTマウスにSham(n = 4)又はCG/SMG神経節切断(n = 5)を行った。j, WTマウスにMLA(α7-agonist, 150μg/day, i.p.)を2日間投与し、最後の投与から12時間後に脾臓のT細胞を分析した(n = 5/グループ)。f, i, j, 大腸(f)及び脾臓(i, j)におけるCD4+細胞中のFoxp3+細胞の頻度。g, 大腸Foxp3+ Tregs中のRORγt+細胞の頻度。 h, MHC-II+大腸APC中のALDH+細胞の頻度。k-m, WTマウスにSham又はHVxを行った後、ビヒクル、サルブタモール(30μg/day, i.p.)又はプロパノール(300μg/day, i.p.)を2日間毎日注射した(n = 6/group)。最後の注射から12時間後の大腸におけるCD4+細胞中のFoxp3+細胞(k)の頻度、大腸Foxp3+ Tregs中のRORγt+細胞(l)の頻度、MHC-II+大腸APC中のALDH+細胞(m)の頻度。O, WTマウスにSham又はHVxを行った。術後2日目に大腸、小腸、脾臓におけるT細胞の表現型を解析した。大腸、小腸、脾臓におけるCD4+T細胞中のFoxp3+細胞の頻度(n = 4/グループ)。2回の独立した実験の代表値(a-o)。P値はTukeyのポストホックテストを用いた一方向ANOVA(b、c、k-o)、及びペアになっていない両側のStudentのt検定(f-j)によって得られた。データは平均値±s.e.m.で示した。
図11 VGx及びHVxの内在性腸管ニューロンへの影響。
 a-c, g, WTマウスにSham(n=4)又はVGx(n=5)を行った。d-f, h, WTマウスにSham(n=6)又はHVx(n=6)を行った。術後2日目に内在性腸管神経細胞の活動を測定した。a, d, 大腸におけるHuC/D(白)とc-Fos(赤)の免疫蛍光染色の代表画像。スケールバーは、100μmを示す。b, e, c-Fos +ニューロンの定量化。c, f, 大腸におけるHand2 mRNAの発現。 g, h, 大腸のアセチルコリン、ノルエピネフリン、及びCGRPレベル。***はそれぞれp < 0.05とp < 0.01を示す。P値はペアになっていない両側のStudentのt検定によって得られた。データは平均±s.e.m.で示した。
図12 大腸のTregの維持に対するmAChR及びα7nAChRの効果。
 a-g, WTマウスにSham又はHVxを投与した後、水又はベタネコール(BETH;i.p.300μg/day)(a-d)又はGST-21(i.p.300μg/day)(e-g)を2日間毎日注射した(a, b, n = 5/group)。300μg/day)(e-g)を2日間注射した(a, b, n = 5/group; c, d, n = 10/group; e-g, n = 6/group)。 h-j, WTマウスはSham又はHVxを受けた後、水、BETHのみ、又はBETH+MLAを2日間毎日注射した(n = 6/group)。k-l, WT及びmAchR TKOマウスは、Sham又はHVxを受けた後、水又はBETHを2日間毎日注射した(n = 4/グループ)図3c, dに関連して、最後の注射から12時間後に大腸免疫細胞の表現型を分析した。a, g, j, l, MHC-II+大腸APCにおけるALDH+細胞の頻度 b, 大腸APCにおけるAldh1a1及びAldh1a2 mRNAの発現 c, e, h, 大腸のCD4+細胞におけるFoxp3+細胞の頻度 d, f, i, k, 大腸のFoxp3+ TregsにおけるRORγt+細胞の頻度。P値はTukeyのポストホックテストを用いた一方向ANOVAによって得られた。データは平均値±s.e.m.で示した。
図13 肝臓-脳-腸軸の大腸Treg維持に対する腸内細菌叢の効果。
 a-c, WTマウスにSham又はHVxを行った(n = 4/グループ)。同一のマウスから治療前と術後2日目に糞便を採取した。a, 糞便中の微生物のα-多様性。b, 細菌群集構造の加重UniFrac分析に基づく主座標分析(PCoA)(黒が治療前、赤がSham、青がHVx)。重み付けされたPCoAプロットの2つの成分は、分散の45%と22%を説明した。2群間の非類似性は、順列多変量分散分析(PERMANOVA)により評価した。 c, 門レベルの分類学的分布。 d, e, Sham処理又はHVxマウス由来の糞便サンプルを5週齢の雄GFマウスに接種し、接種後21日目に免疫学的表現型を測定した(n = 5/グループ)。 f, g, WTマウスにSham又はHVxを行い、発明者のSPF施設で2日間共同飼育した。グラフは3回の独立した実験のプールしたデータを示す(n = 14/グループ)。h-k, 生後14日目に、マウスにSham又はHVxを行った(n = 10/グループ)。大腸免疫細胞の表現型を2日後に分析した(h)。l, m, WTマウスをAbx-cocktail(メトロニダゾール、バンコマイシン、アンピシリン、ネオマイシン)で3週間処理し、Sham又はHVxを行った。大腸T細胞の表現型を2日後に解析した。グラフは3回の独立した実験のプールしたデータを示す(n = 10/グループ)。d, f, i, l, 大腸におけるCD4+ T 細胞中のFoxp3+ 細胞の頻度。 e, g, j, m, 大腸 Foxp3+ Treg におけるRORγt+ の発現。 k, MHC-II+ 大腸 APC中のALDH+ 細胞の頻度。P値はTukeyのポストホックテストを用いた一方向ANOVA(a, d, e, l, m)、又はペアになっていない両側のStudentのt検定(f, g, i-k)によって得られた。データは平均値±s.e.m.で示した。
図14 HVxの大腸炎に対する効果。
 a-c, WTマウスをTNBSで感作した。7日後、マウスにSham又はHVxを行い、同時に直腸内投与によりTNBSを投与した。グラフは3回の独立した実験のプールしたデータを示す(n = 20/グループ)。d-f, 8週齢の雄のRag2-/-マウスにSham手術又はHVxを行い、術後2日目から7日間DSSを投与した(n=12/グループ)。g, h, Sham手術及びHVxを行ったマウスを同居させ、2.0%DSS(w/v)を7日間経口的に負荷した。グラフは2つの独立した実験のプールしたデータを示す(n = 8/グループ)。i, j, Abx処理マウスをSham及びHVxを行い、2日後に2.0%DSS(w/v)を7日間経口的に負荷した。グラフは2つの独立した実験のプールデータを示す(n = 10/グループ)。 k, l, Sham手術及びHVxを行ったMyd88欠損マウスに2.0%DSS(w/v)を7日間経口的に負荷した(n = 13/グループ)。m-o, Sham手術及び肝静脈切断を行ったマウスに2.0%DSS(w/v)を経口的に負荷し、BETHで7日間毎日処理した。グラフは2つの独立した実験のプールデータを示す(n = 10/グループ)。 a, d, g, I, k, m, 急性大腸炎の間の相対的な体重変化。 b, e, h, j, l, n, DAI。c, f, o, 大腸切片の代表的なHE染色(左パネル、バー:200μm)及び組織学的スコア(右パネル)。各実験は少なくとも2回繰り返したが、同様の結果が得られた。P値はペアになっていない両側のStudentのt検定によって得られた。エラーバーは平均±s.e.m.を示す。p, 肝-脳-腸の神経アークの模式図。仰臥位のマウスを図示している。肝臓は腸の微小環境を感知し、その感覚入力を脳幹の左NTSに伝え、最終的には左迷走神経の副交感神経と腸の神経細胞に伝える。肝-脳-腸の神経アークによって活性化された腸APCは、mAChRを介してALDHの発現とRAの合成を亢進し、末梢の制御性T細胞のリザーバーを維持する。
〔参考文献〕
1.  Pavlov, V. A. & Tracey, K. J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20, 156-166 (2017).
2.  Sharon, G., Sampson, T. R. & Geschwind, D. H. The Central Nervous System and the Gut Microbiome. Cell 167, 915-932 (2016).
3.  Godinho-Silva, C., Cardoso, F. & Veiga-Fernandes, H. Neuro-Immune Cell Units: A New Paradigm in Physiology. Annu. Rev. Immunol. 37, 19-46 (2019).
4.  Graham, D. B. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527-539 (2020).
5.  Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845-858 (2010).
6.  Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75-84 (2016).
7.  Jin, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198, 1875-1886 (2003).
8.  Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256-260 (2007).
9.  Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573 (2013).
10.  Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620-625 (2008).
11.  Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121-141 (2014).
12.  Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8, 435-446 (2008).
13.  Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858-863 (2016).
14.  Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity 46, 927-942 (2017).
15.  Huh, J. R. & Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol 20, 217-228 (2019).
16.  Chu, C., Artis, D. & Chiu, I. M. Neuro-immune Interactions in the Tissues. Immunity 52, 464-474 (2020).
17.  Veiga-Fernandes, H. & Mucida, D. Neuro-Immune Interactions at Barrier Surfaces. Cell 165, 801-811 (2016).
18.  Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204, 1757-1764 (2007).
19.  Sun, C.-M., Hall, J. A., Blank, R. B. & Belkaid, Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204, 1775-1785 (2007).
20.  Schulz, O. et al. Intestinal CD103 +, but not CX3CR1 +, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206, 3101-3114 (2009).
21.  Merad, M., Sathe, P., Helft, J. & Miller, J. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563-604 (2013).
22.  Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9, 769-776 (2008).
23.  Denning, T. L., Patel, S. R. & Williams, I. R. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8, 1086-1094 (2007).
24.  Berthoud, H.-R. Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 280, 827-835 (2004).
25.  Iwasaki, Y. et al. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Comms 9, 113 (2018).
26.  Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830-834 (2015).
27.  Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97-101 (2013).
28.  Uno, K. et al. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nat Comms 6, 7940-15 (2015).
29.  Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654-1663 (2008).
30.  Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 209, 1723-42- S1 (2012).
31.  Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531-564 (2012).
32.  Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O’Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707-731 (2012).
33.  Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10, 1000-1007 (2009).
34.  Ohkura, N. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res. 133, 775-10 (2020).
35.  Gabanyi, I. et al. Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages. Cell 164, 378-391 (2016).
36.  Moriyama, S. et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056-1061 (2018).
37.  Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98-101 (2011).
38.  Huston, J. M. et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203, 1623-1628 (2006).
39.  Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl. Acad. Sci. U.S.A. 105, 11008-11013 (2008).
40.  Martelli, D., Farmer, D. G. S., McKinley, M. J., Yao, S. T. & McAllen, R. M. Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R235-R242 (2019).
41.  Karimi, K., Bienenstock, J., Wang, L. & Forsythe, P. The vagus nerve modulates CD4+ T cell activity. Brain Behav. Immun. 24, 316-323 (2010).
42.  O'Mahony, C., van der Kleij, H., Bienenstock, J., Shanahan, F. & O'Mahony, L. Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1118-26 (2009).
43.  Di Giovangiulio, M. et al. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor. Mol. Med. 22, 464-476 (2016).
44.  Frolkis, A. D. et al. Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut 68, 1606-1612 (2019).
45.  Zhao, C.-M. et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 6, 250ra115-250ra115 (2014).
46.  Han, W. et al. A Neural Circuit for Gut-Induced Reward. Cell 175, 665-678.e23 (2018).
47.  Glass, C. K., Saijo, K., Winner, B. & Marchetto, M. C. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934 (2010).
48.  Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22, 1079-1089 (2016).
49.  Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28, 948-953 (2016).
50.  Nagoshi, N. et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2, 392-403 (2008).
51.  Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133-140 (2010).
52.  Dezfuli, G. et al. Subdiaphragmatic vagotomy with Pyloroplasty Ameliorates the obesity caused by genetic deletion of the Melanocortin 4 receptor in the mouse. Front Neurosci 12, 104 (2018).
53.  Yamada, M., Terayama, R., Bando, Y., Kasai, S. & Yoshida, S. Regeneration of the abdominal postganglionic sympathetic system. Neurosci. Res. 54, 261-268 (2006).
54.  Mikami, Y. et al. Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis. Eur. J. Immunol. 40, 2409-2422 (2010).
55.  Hayashi, A. et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe 13, 711-722 (2013).
56.  Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. 12, 1295-1309 (2017).
57.  Kimura, K. et al. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor. Cell Rep 14, 2362-2374 (2016).
58.  Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537-5552 (2019).
59.  Yamamoto, T. et al. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS ONE 9, e85888 (2014).
60.  Fantini, M. C., Dominitzki, S., Rizzo, A., Neurath, M. F. & Becker, C. In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. 2, 1789-1794 (2007).
61.  Iwata, S. et al. The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells. Immunity 46, 983-991.e4 (2017).
62.  Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525-527 (2016).
63.  Nakamoto, N. et al. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice. Cell Rep 21, 1215-1226 (2017).
64.  Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336 (2010).
65.  Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10, Unit 10.7.-10.7.20 (2011).
66.  Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200 (2011).
67.  Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 (2010).
68.  Tsuda, A. et al. Influence of Proton-Pump Inhibitors on the Luminal Microbiota in the Gastrointestinal Tract. Clin Transl Gastroenterol 6, e89 (2015).
69.  de Jong, P. R. et al. TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol 8, 491-504 (2015).
70.  Ghia, J.-E., Blennerhassett, P. & Collins, S. M. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J. Clin. Invest. 118, 2209-2218 (2008).
71.  Houlden, A. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 57, 10-20 (2016).
72.  Teratani, T. et al. Aortic carboxypeptidase-like protein, a WNT ligand, exacerbates nonalcoholic steatohepatitis. J. Clin. Invest. 128, 1581-1596 (2018).
〔実施例2〕
〔図の説明〕
図15 迷走神経肝臓枝電気刺激法 (VHNS)の概略図
 C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹し、カフ電極(図15a)をマウス迷走神経肝臓枝に設置した(図15b)。電流が肝臓側から脳側に流れるようにするため、肝臓側をマイナス極に脳側をプラス極に設定した。電極を設置した後、回復期間を1週間ほどもうけた。その後、電極をモジュール式刺激装置と接続し、電気刺激を10Hz, pulse width 500μs, ON 10s/ OFF 90s, 3h/dayの条件で自由行動下のマウスに与えた。電極を肝臓枝に設置しモジュール式刺激装置には接続しているが、刺激を与えないマウスをコントロール群に設定した。その後、電気刺激を3日間連続で与えた後、マウスを屠殺し、大腸および脳を回収した。大腸における制御性T細胞(Treg)の構成比をFACSで解析した(図15c)。VHNSは、大腸Tregを増加させた。電気刺激による脳内の活性化領域を神経活性化マーカーであるcFosを指標に評価した。in situ hybridization法でcFos mRNA発現領域を確認したところ、迷走神経肝臓枝の投射先である左延髄孤束核(nucleus tractus solitarius: NTS)、遠心性迷走神経の細胞体が属する左迷走神経背側運動核(dorsal nucleus of vagus nerve: DMV)および最後野(area postrema: AP)の活性化を認めた(図15d)。
図16 迷走神経肝臓枝電気刺激法 (VHNS)はマウス大腸炎病態を抑制する
 C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹し、カフ電極をマウス迷走神経肝臓枝に設置した。電流が肝臓側から脳側に流れるようにするため、肝臓側をマイナス極に脳側をプラス極に設定した。電極を設置した後、回復期間を1週間ほどもうけた。その後、マウスに大腸炎を発症させるため、2% デキストラン硫酸ナトリウム(dextran sulfate sodium: DSS)水溶液を自由飲水で与えた。DSS投与開始と同時に電極をモジュール式刺激装置と接続し、電気刺激を10Hz, pulse width 500μs, ON 10s/ OFF 90s, 3h/dayの条件で自由行動下のマウスに与えた。電極を肝臓枝に設置しモジュール式刺激装置には接続しているが刺激を与えないマウスをコントロール群に設定した。DSS投与7日後にマウスより大腸を回収し、大腸炎病態を病理標本および腸管長を指標に評価した。大腸炎発症後7日間の体重を経時的に計測したところ、DSS大腸炎による体重減少をVHNSは抑制した(図16a)。また、DSS大腸炎による腸管短縮がVHNSにより抑制された(図16b)。腸炎による大腸上皮細胞の脱落がVHNSにより抑制されることを病理組織標本で観察した(図16c)。
図17 迷走神経切除マウスを用いたTwo-bottle preference assays
 C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹し、マウス迷走神経を両側(VGx)、左側(LVx)もしくは右側(RVx)のいずれかで切除した(図17a)。開腹のみを行ったマウス(Sham)をコントロールとした。回復期間を1週間ほど設けた後、これらマウスを用いてTwo-bottle preference assaysを実施した。2本の飲水瓶を用意し、片側には600mMグルコース水溶液(Glu)を、もう一方に人口甘味料である30mM アセスルファムカリウム水溶液(Ace K)を充填した。これらをリック解析式選択嗜好実験装置(図17b)に設置して実験を行った。上述のマウスを装置内のケージでPM8-AM10まで飼育し、飲水瓶に口が触れた回数を計測した。この試験を同一個体で3日間繰り返し、1日ごとに総接触回数におけるショ糖とAce Kの比率を算出した。この比率を嗜好性として評価した。試験開始日(Day 1)において、いずれのマウスにおいて、ショ糖とAce Kの選択性はほぼ同じであった。しかし、ShamおよびRVxマウスは、日を追うにつれて、ショ糖を選択的に摂取した。一方で、VGxおよびLVxマウスにおいては、試験開始3日においてもショ糖とAce Kを均等に選択して摂取していた(図17c)。
図18 迷走神経肝臓枝による肺免疫細胞の制御
 C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹し、マウス迷走神経肝臓枝(HVx)を切除した(図18a)。開腹のみを行ったマウス(Sham)をコントロールとした。回復期間を1週間ほど設けた後、これらマウスの肺より免疫細胞を回収した。肺における2型自然リンパ球(ILC2)の細胞数をFACSで解析した。肺ILC2の細胞数は、HVxにより増加した(図18b)。
図19 迷走神経による腸管蠕動の制御
 (図19a)C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹を行い、マウス迷走神経の両側(HVx)を切除した。開腹のみを行ったマウス(Sham)をコントロールとした。回復期間を1週間ほど設けた後、これらマウスの腸管蠕動運動を評価した。消化管全体の運動能はintestinal transit time (ITT)試験で、胃の運動能はGastric empty試験で、小腸の運動能はsmall-bowel (SB) transit試験で評価した。迷走神経の切除は、胃および小腸の運動能を低下させ、消化管の蠕動を抑制した。
 (図19b) C57BL6/Jマウス(オス、10週齢)を購入した。1週間の馴化飼育後に、吸入麻酔下で開腹し、マウス迷走神経の固有肝臓枝(HVx)もしくは胃-十二指腸枝(GVx)を切除した(図19b)。開腹のみを行ったマウス(Sham)をコントロールとした。回復期間を1週間ほど設けた後、これらマウスの腸管蠕動運動を評価した。消化管全体の運動能はintestinal transit time (ITT)試験で、胃の運動能はGastric empty試験で、小腸の運動能はsmall-bowel (SB) transit試験で、大腸の運動能はcolonic transit試験で評価した。HVxおよびGVxのいずれも胃の運動能には影響を与えなかった。HVxは小腸の運動能を低下させたが、一方で、GVxは大腸の運動能を低下させた。これらの結果は、迷走神経は分枝ごとに異なる消化管領域の蠕動運動を制御していることを示唆している。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、医薬に関連する産業において利用可能である。

Claims (20)

  1.  腸管の末梢性制御性T細胞の量を調節する作用を持つ物質を含有する疾患の治療薬であって、前記物質が迷走神経肝臓枝求心路を活性化若しくは抑制する物質、左迷走神経遠心路を活性化若しくは抑制する物質、又はムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストであることを特徴とする疾患の治療薬。
  2.  疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする請求項1に記載の疾患の治療薬。
  3.  疾患が、炎症性腸疾患であることを特徴とする請求項1に記載の疾患の治療薬。
  4.  腸管の末梢性制御性T細胞の量を調節する作用を持つ物質が、ムスカリン性アセチルコリン受容体のアゴニストであることを特徴とする請求項1乃至3のいずれか一項に記載の疾患の治療薬。
  5.  ムスカリン性アセチルコリン受容体のアゴニストが、ベタネコール、ムスカリン、ピロカルピン、又はセビメリンであることを特徴とする請求項4に記載の疾患の治療薬。
  6.  腸管の末梢性制御性T細胞の量を調節する作用を持つ物質が、ムスカリン性アセチルコリン受容体のアンタゴニストであることを特徴とする請求項1乃至3のいずれか一項に記載の疾患の治療薬。
  7.  ムスカリン性アセチルコリン受容体のアンタゴニストが、アトロピン、トロピカミド、オキシブチニン、プロピベリン、トルテロジン、ソリフェナシン、又はイミダフェナシンであることを特徴とする請求項6に記載の疾患の治療薬。
  8.  疾患の治療薬のスクリーニング方法であって、被験物質の存在下で腸管抗原提示細胞とCD4陽性T細胞を共培養する工程、及び制御性T細胞の誘導の検出を行う工程とを含むことを特徴とするスクリーニング方法。
  9.  FoxP3の発現の検出によって、制御性T細胞の誘導の検出を行うことを特徴とする請求項8に記載のスクリーニング方法。
  10.  疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする請求項8又は9に記載のスクリーニング方法。
  11.  疾患が、炎症性腸疾患であることを特徴とする請求項8又は9に記載のスクリーニング方法。
  12.  腸管の末梢性制御性T細胞の量を調節することによって疾患を治療する方法であって、治療対象の迷走神経肝臓枝求心路を活性化若しくは抑制すること、治療対象の左迷走神経遠心路を活性化若しくは抑制すること、又は治療対象にムスカリン性アセチルコリン受容体のアゴニスト若しくはアンタゴニストを投与することを含むことを特徴とする疾患の治療方法。
  13.  疾患が、炎症性腸疾患、自己免疫疾患、アレルギー、がん、うつ病、又は消化管感染症であることを特徴とする請求項12に記載の疾患の治療方法。
  14.  疾患が、炎症性腸疾患であることを特徴とする請求項12に記載の疾患の治療方法。
  15.  治療対象にムスカリン性アセチルコリン受容体のアゴニストを投与することを含むことを特徴とする請求項12乃至14のいずれか一項に記載の疾患の治療方法。
  16.  ムスカリン性アセチルコリン受容体のアゴニストが、ベタネコール、ムスカリン、ピロカルピン、又はセビメリンであることを特徴とする請求項15に記載の疾患の治療方法。
  17.  治療対象にムスカリン性アセチルコリン受容体のアンタゴニストを投与することを含むことを特徴とする請求項12乃至14のいずれか一項に記載の疾患の治療方法。
  18.  ムスカリン性アセチルコリン受容体のアンタゴニストが、アトロピン、トロピカミド、オキシブチニン、プロピベリン、トルテロジン、ソリフェナシン、又はイミダフェナシンであることを特徴とする請求項17に記載の疾患の治療方法。
  19.  治療対象が、ヒト以外の動物であることを特徴とする請求項12乃至18のいずれか一項に記載の疾患の治療方法。
  20.  迷走神経肝臓枝を刺激して腸管の末梢性制御性T細胞の量を調節するカフ電極の作動方法。
PCT/JP2021/020821 2020-06-01 2021-06-01 腸管免疫異常を原因とする疾患治療薬 WO2021246399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/928,894 US20230293473A1 (en) 2020-06-01 2021-06-01 Therapeutic drug for disease caused by intestinal immune disorder
EP21817415.9A EP4162953A1 (en) 2020-06-01 2021-06-01 Therapeutic drug for disease caused by intestinal immune disorder
JP2022528841A JPWO2021246399A1 (ja) 2020-06-01 2021-06-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-095241 2020-06-01
JP2020095241 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021246399A1 true WO2021246399A1 (ja) 2021-12-09

Family

ID=78831133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020821 WO2021246399A1 (ja) 2020-06-01 2021-06-01 腸管免疫異常を原因とする疾患治療薬

Country Status (4)

Country Link
US (1) US20230293473A1 (ja)
EP (1) EP4162953A1 (ja)
JP (1) JPWO2021246399A1 (ja)
WO (1) WO2021246399A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522457A (ja) * 2002-02-26 2005-07-28 ノース ショア−ロング アイランド ジューイッシュ リサーチ インスティチュート 脳ムスカリン性レセプターの刺激による炎症性サイトカイン産生の阻害
WO2007037544A1 (ja) * 2005-09-30 2007-04-05 Kyoto University 制御性t細胞の製造を向上させる薬剤のスクリーニング方法の開発、及び免疫抑制性のマクロライド系抗生剤を用いる制御性t細胞の製造方法
US20170203103A1 (en) * 2016-01-20 2017-07-20 Jacob A. Levine Control of vagal stimulation
JP2020095241A (ja) 2018-12-10 2020-06-18 京セラドキュメントソリューションズ株式会社 現像装置及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522457A (ja) * 2002-02-26 2005-07-28 ノース ショア−ロング アイランド ジューイッシュ リサーチ インスティチュート 脳ムスカリン性レセプターの刺激による炎症性サイトカイン産生の阻害
WO2007037544A1 (ja) * 2005-09-30 2007-04-05 Kyoto University 制御性t細胞の製造を向上させる薬剤のスクリーニング方法の開発、及び免疫抑制性のマクロライド系抗生剤を用いる制御性t細胞の製造方法
US20170203103A1 (en) * 2016-01-20 2017-07-20 Jacob A. Levine Control of vagal stimulation
JP2020095241A (ja) 2018-12-10 2020-06-18 京セラドキュメントソリューションズ株式会社 現像装置及び画像形成装置

Non-Patent Citations (75)

* Cited by examiner, † Cited by third party
Title
BELKAID, Y.HAND, T. W.: "Role of the microbiota in immunity and inflammation", CELL, vol. 157, 2014, pages 121 - 141, XP028601900, DOI: 10.1016/j.cell.2014.03.011
BERTHOUD, H.-R.: "Anatomy and function of sensory hepatic nerves", ANAT REC A DISCOV MOL CELL EVOL BIOL, vol. 280, 2004, pages 827 - 835
BONAZ, B ET AL.: "Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study", NEUROGASTROENTEROL. MOTIL., vol. 28, 2016, pages 948 - 953
BRAY, N. L.PIMENTEL, H.MELSTED, P.PACHTER, L.: "Near-optimal probabilistic RNA-seq quantification", NAT BIOTECHNOL, vol. 34, 2016, pages 525 - 527
CAPORASO, J. G. ET AL.: "QIIME allows analysis of high-throughput community sequencing data", NAT. METHODS, vol. 7, 2010, pages 335 - 336, XP055154026, DOI: 10.1038/nmeth.f.303
CHAVAN, S. S.PAVLOV, V. A.TRACEY, K. J.: "Mechanisms and Therapeutic Relevance of Neuro-immune Communication", IMMUNITY, vol. 46, 2017, pages 927 - 942, XP085094637, DOI: 10.1016/j.immuni.2017.06.008
CHU, C.ARTIS, D.CHIU, I. M.: "Neuro-immune Interactions in the Tissues", IMMUNITY, vol. 52, 2020, pages 464 - 474, XP086099268, DOI: 10.1016/j.immuni.2020.02.017
COOMBES, J. L. ET AL.: "A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism", J EXP MED, vol. 204, 2007, pages 1757 - 1764, XP055049227, DOI: 10.1084/jem.20070590
COOMBES, J. L.POWRIE, F.: "Dendritic cells in intestinal immune regulation", NAT REV IMMUNOL, vol. 8, 2008, pages 435 - 446
DE JONG, P. R. ET AL.: "TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP", MUCOSAL IMMUNOL, vol. 8, 2015, pages 491 - 504
DENNING, T. L., PATEL, S. R., WILLIAMS, I. R.: "Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses", NAT IMMUNOL, vol. 8, 2007, pages 1086 - 1094, XP055049229, DOI: 10.1038/ni1511
DEZFULI, G. ET AL.: "Subdiaphragmatic vagotomy with Pyloroplasty Ameliorates the obesity caused by genetic deletion of the Melanocortin 4 receptor in the mouse", FRONT NEUROSCI, vol. 12, 2018, pages 104
DHAWAN S., HIEMSTRA I. H., VERSEIJDEN C., HILBERS F. W., TE VELDE A. A., WILLEMSEN L. E. M., STAP J., DEN HAAN J. M., DE JONGE W. : "Cholinergic receptor activation on epithelia protects against cytokine-induced barrier dysfunction", ACTA PHYSIOLOGICA, vol. 213, no. 4, 1 April 2015 (2015-04-01), GB , pages 846 - 859, XP055881886, ISSN: 1748-1708, DOI: 10.1111/apha.12469 *
DI GIOVANGIULIO, M. ET AL.: "Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor", MOL. MED., vol. 22, 2016, pages 464 - 476
EDGAR, R. C.: "Search and clustering orders of magnitude faster than BLAST", BIOINFORMATICS, vol. 26, 2010, pages 2460 - 2461
EDGAR, R. C.HAAS, B. J.CLEMENTE, J. CQUINCE, CKNIGHT, R: "UCHIME improves sensitivity and speed of chimera detection", BIOINFORMATICS, vol. 27, 2011, pages 2194 - 2200, XP055534113, DOI: 10.1093/bioinformatics/btr381
FANTINI, M. C.DOMINITZKI, S.RIZZO, A.NEURATH, M. F.BECKER, C., IN VITRO GENERATION OF CD4+ CD25+ REGULATORY CELLS FROM MURINE NAIVE T CELLS, vol. 2, 2007, pages 1789 - 1794
FROLKIS, A. D. ET AL.: "Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression", GUT, vol. 68, 2019, pages 1606 - 1612
GABANYI, I. ET AL.: "Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages", CELL, vol. 164, 2016, pages 378 - 391
GHIA, J.-E.BLENNERHASSETT, P.COLLINS, S. M.: "Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression", J. CLIN. INVEST., vol. 118, 2008, pages 2209 - 2218
GLASS, C. K., SAIJO, K., WINNER, B., MARCHETTO, M.C: "Mechanisms underlying inflammation in neurodegeneration", CELL, vol. 140, 2010, pages 918 - 934, XP055280584, DOI: 10.1016/j.cell.2010.02.016
GODINHO-SILVA, C., CARDOSO, F. & VEIGA-FERNANDES, H.: "Neuro-Immune Cell Units: A New Paradigm in Physiology", ANNU. REV. IMMUNOL., vol. 37, 2019, pages 19 - 46
GRAHAM, D. B.: "Pathway paradigms revealed from the genetics of inflammatory bowel disease", NATURE, vol. 578, 2020, pages 527 - 539, XP037041142, DOI: 10.1038/s41586-020-2025-2
HAN, W. ET AL.: "A Neural Circuit for Gut-Induced Reward", CELL, vol. 175, 2018, pages 665 - 678
HAYASHI, A. ET AL.: "A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice", CELL HOST MICROBE, vol. 13, 2013, pages 711 - 722
HONDA, K.LITTMAN, D. R.: "The microbiota in adaptive immune homeostasis and disease", NATURE, vol. 535, 2016, pages 75 - 84, XP055704338, DOI: 10.1038/nature18848
HOULDEN, A. ET AL.: "Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production", BRAIN BEHAV. IMMUN., vol. 57, 2016, pages 10 - 20
HUH, J. R., VEIGA-FERNANDES H: "Neuroimmune circuits in inter-organ communication", NAT REV IMMUNOL, vol. 20, 2019, pages 217 - 228, XP037080540, DOI: 10.1038/s41577-019-0247-z
HUSTON, J. M. ET AL.: "Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis", J EXP MED, vol. 203, 2006, pages 1623 - 1628
IWASAKI, Y. ET AL.: "GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose", NAT COMMS, vol. 9, 2018, pages 113, XP055707360, DOI: 10.1038/s41467-017-02488-y
IWATA, S. ET AL.: "The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells", IMMUNITY, vol. 46, 2017, pages 983 - 991
JIN, W. ET AL.: "Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3", J EXP MED, vol. 198, 2003, pages 1875 - 1886, XP003010702, DOI: 10.1084/jem.20030152
JOSEFOWICZ, S. Z.LU, L.-FRUDENSKY, A. Y.: "Regulatory T cells: mechanisms of differentiation and function", ANNU. REV. IMMUNOL., vol. 30, 2012, pages 531 - 564, XP055240580, DOI: 10.1146/annurev.immunol.25.022106.141623
KANNO, Y.VAHEDI, G.HIRAHARA, K.SINGLETON, K.O'SHEA, J.: "J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity", ANNU. REV. IMMUNOL., vol. 30, 2012, pages 707 - 731
KARIMI, K.BIENENSTOCK, J.WANG, L.FORSYTHE, P.: "The vagus nerve modulates CD4+ T cell activity", BRAIN BEHAV. IMMUN., vol. 24, 2010, pages 316 - 323, XP026816850
KIM, K. S. ET AL.: "Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine", SCIENCE, vol. 351, 2016, pages 858 - 863
KIMURA, K. ET AL.: "Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor", CELL REP, vol. 14, 2016, pages 2362 - 2374
LITTMAN, D. R.RUDENSKY, A. Y.: "Th17 and regulatory T cells in mediating and restraining inflammation", CELL, vol. 140, 2010, pages 845 - 858
MADISEN, L. ET AL.: "A robust and high-throughput Cre reporting and characterization system for the whole mouse brain", NAT. NEUROSCI., vol. 13, 2010, pages 133 - 140, XP055199562, DOI: 10.1038/nn.2467
MAZMANIAN, S. K.ROUND, J. L.KASPER, D. L.: "A microbial symbiosis factor prevents intestinal inflammatory disease", NATURE, vol. 453, 2008, pages 620 - 625, XP002560841, DOI: 10.1038/nature07008
MERAD, M.SATHE, P.HELFT, J.MILLER, J.: "The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting", ANNU. REV. IMMUNOL., vol. 31, 2013, pages 563 - 604, XP055297703, DOI: 10.1146/annurev-immunol-020711-074950
MIKAMI, Y. ET AL.: "Competition between colitogenic Th1 and Thl7 cells contributes to the amelioration of colitis", EUR. J. IMMUNOL., vol. 40, 2010, pages 2409 - 2422, XP071225466, DOI: 10.1002/eji.201040379
MOHAMMADPOUR, H. ET AL.: "β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells", J. CLIN. INVEST., vol. 129, 2019, pages 5537 - 5552
MORISHITA KOJI, COIMBRA RAUL, LANGNESS SIMONE, ELICEIRI BRIAN P., COSTANTINI TODD W.: "Neuroenteric axis modulates the balance of regulatory T cells and T-helper 17 cells in the mesenteric lymph node following trauma/hemorrhagic shock", AMERICAN JOURNAL OF PHYSIOLOGY, vol. 309, no. 3, 1 August 2015 (2015-08-01), US , pages G202 - G208, XP055881892, ISSN: 0193-1857, DOI: 10.1152/ajpgi.00097.2015 *
MORIYAMA, S. ET AL.: "β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses", SCIENCE, vol. 359, 2018, pages 1056 - 1061, XP055702325, DOI: 10.1126/science.aan4829
MUCIDA, D. ET AL.: "Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid", SCIENCE, vol. 317, 2007, pages 256 - 260, XP002503701, DOI: 10.1126/science.1145697
NAGOSHI, N. ET AL.: "Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad", CELL STEM CELL, vol. 2, 2008, pages 392 - 403
NAKAMOTO, N. ET AL.: "Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice", CELL REP, vol. 21, 2017, pages 1215 - 1226, XP055634898, DOI: 10.1016/j.celrep.2017.10.022
OHKURA, N.: "Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune disease", CELL RES, vol. 133, 2020, pages 775 - 10
O'MAHONY, C.VAN DER KLEIJ, H.BIENENSTOCK, J.SHANAHAN, F.O'MAHONY, L.: "Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer", AM. J. PHYSIOL. REGUL. INTEGR. COMP. PHYSIOL., vol. 297, 2009, pages R1118 - 26
PAVLOV, V. A.TRACEY, K. J.: "Neural regulation of immunity: molecular mechanisms and clinical translation", NAT. NEUROSCI., vol. 20, 2017, pages 156 - 166
POLANSKY, J. K. ET AL.: "DNA methylation controls Foxp3 gene expression", EUR. J. IMMUNOL., vol. 38, 2008, pages 1654 - 1663
ROSAS-BALLINA, M. ET AL.: "Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit", SCIENCE, vol. 334, 2011, pages 98 - 101, XP055723597, DOI: 10.1126/science.1209985
ROSAS-BALLINA, M. ET AL.: "Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia", PROC. NATL. ACAD. SCI. U.S.A., vol. 105, 2008, pages 11008 - 11013, XP055672233, DOI: 10.1073/pnas.0803237105
SCHROEDER, B. O.BACKHED, F.: "Signals from the gut microbiota to distant organs in physiology and disease", NAT MED, vol. 22, 2016, pages 1079 - 1089
SCHULZ, O. ET AL.: "Intestinal CD103 +, but not CX3CR1 +, antigen sampling cells migrate in lymph and serve classical dendritic cell functions", J EXP MED, vol. 206, 2009, pages 3101 - 3114
SHARON, G.SAMPSON, T. R.GESCHWIND, D. H.: "The Central Nervous System and the Gut Microbiome", CELL, vol. 167, 2016, pages 915 - 932, XP029802730, DOI: 10.1016/j.cell.2016.10.027
SMITH, P. M. ET AL.: "The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis", SCIENCE, vol. 341, 2013, pages 569 - 573, XP055247108, DOI: 10.1126/science.1241165
SPADONI, I. ET AL.: "A gut-vascular barrier controls the systemic dissemination of bacteria", SCIENCE, vol. 350, 2015, pages 830 - 834
SUN, C.-M.HALL, J. A.BLANK, R. B.BELKAID, Y.: "Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid", J EXP MED, vol. 204, 2007, pages 1775 - 1785, XP055831828, DOI: 10.1084/jem.20070602
TERATANI TOSHIAKI; MIKAMI YOHEI; NAKAMOTO NOBUHIRO; SUZUKI TAKAHIRO; HARADA YOSUKE; OKABAYASHI KOJI; HAGIHARA YUYA; TANIKI NOBUHIT: "The liver-brain-gut neural arc maintains the Treg cell niche in the gut", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 585, no. 7826, 11 June 2020 (2020-06-11), London, pages 591 - 596, XP037254007, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2425-3 *
TERATANI, T. ET AL.: "Aortic carboxypeptidase-like protein, a WNT ligand, exacerbates nonalcoholic steatohepatitis", J. CLIN. INVEST., vol. 128, 2018, pages 1581 - 1596
TSUDA, A. ET AL.: "Influence of Proton-Pump Inhibitors on the Luminal Microbiota in the Gastrointestinal Tract", CLIN TRANSL GASTROENTEROL, vol. 6, 2015, pages e89
UEMATSU, S. ET AL.: "Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5", NAT IMMUNOL, vol. 9, 2008, pages 769 - 776, XP055511128, DOI: 10.1038/ni.1622
UNO, K. ET AL.: "A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals", NAT COMMS, vol. 6, 2015, pages 7940 - 15
VEIGA-FERNANDES, H.MUCIDA, D.: "Neuro-Immune Interactions at Barrier Surfaces", CELL, vol. 165, 2016, pages 801 - 811, XP029530769, DOI: 10.1016/j.cell.2016.04.041
VRIES, A. D. ET AL.: "Immune dampening effects of the vagus nerve in a model for food allergy", CLINICAL AND TRANSLATIONAL ALLERGY, vol. 3, 2013, XP021157473, DOI: 10.1186/2045-7022-3-S3-P11 *
WEISS, J. M. ET AL.: "Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells", J EXP MED, vol. 209, 2012, pages 1723 - 42
WIRTZ, S. ET AL., CHEMICALLY INDUCED MOUSE MODELS OF ACUTE AND CHRONIC INTESTINAL INFLAMMATION., vol. 12, 2017, pages 1295 - 1309
YAMADA, M.TERAYAMA, R.BANDO, Y.KASAI, S.YOSHIDA, S: "Regeneration of the abdominal postganglionic sympathetic system", NEUROSCI. RES., vol. 54, 2006, pages 261 - 268, XP024955919, DOI: 10.1016/j.neures.2005.12.007
YAMAMOTO, T. ET AL.: "Anti-allergic role of cholinergic neuronal pathway via a7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model", PLOS ONE, vol. 9, 2014, pages e85888
YAO, S. T.MCALLEN, R. M.: "Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs", AM. J. PHYSIOL. REGUL. INTEGR. COMP. PHYSIOL., vol. 316, 2019, pages R235 - R242
YOSHIMOTO, S. ET AL.: "Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome", NATURE, vol. 499, 2013, pages 97 - 101, XP055142518, DOI: 10.1038/nature12347
ZHAO, C.-M. ET AL.: "Denervation suppresses gastric tumorigenesis", SCI TRANSL MED, vol. 6, 2014, pages 250 - 115, XP055849625, DOI: 10.1126/scitranslmed.3009569
ZHOU, X. ET AL.: "Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo", NAT IMMUNOL, vol. 10, 2009, pages 1000 - 1007, XP055048032, DOI: 10.1038/ni.1774

Also Published As

Publication number Publication date
JPWO2021246399A1 (ja) 2021-12-09
EP4162953A1 (en) 2023-04-12
US20230293473A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
Wang et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo
De Schepper et al. Self-maintaining gut macrophages are essential for intestinal homeostasis
Yui et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration
Kasagi et al. The esophageal organoid system reveals functional interplay between notch and cytokines in reactive epithelial changes
CN104703609B (zh) 干细胞微粒
Dulauroy et al. Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury
Kasagi et al. Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α
Choi et al. Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase
Moroncini et al. Mesenchymal stromal cells from human umbilical cord prevent the development of lung fibrosis in immunocompetent mice
US20200199541A1 (en) Blood vessel organoid, methods of producing and using said organoids
Monaghan et al. Fecal microbiota transplantation for recurrent Clostridioides difficile infection associates with functional alterations in circulating microRNAs
CN109476716A (zh) 治疗线粒体障碍的方法
Wu et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution
Xiong et al. Vi4-miR-185-5p-Igfbp3 network protects the brain from neonatal hypoxic ischemic injury via promoting neuron survival and suppressing the cell apoptosis
Yuan et al. Blockade of immune-checkpoint B7-H4 and lysine demethylase 5B in esophageal squamous cell carcinoma confers protective immunity against P. gingivalis infection
Lenz et al. Interleukin 10 restores lipopolysaccharide-induced alterations in synaptic plasticity probed by repetitive magnetic stimulation
Schwörer et al. Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell–derived cytokines
Zhang et al. TMEM25 modulates neuronal excitability and NMDA receptor subunit NR2B degradation
Rehimi et al. A novel role of CXCR4 and SDF‐1 during migration of cloacal muscle precursors
Fan et al. The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions
Byun et al. Stress induces behavioral abnormalities by increasing expression of phagocytic receptor MERTK in astrocytes to promote synapse phagocytosis
US20220370562A1 (en) Methods and compositions for treatment of pancreatic cancer
WO2021246399A1 (ja) 腸管免疫異常を原因とする疾患治療薬
Conte et al. Clearance of defective muscle stem cells by senolytics restores myogenesis in myotonic dystrophy type 1
US20240076624A1 (en) Methods and Tools for Studying Enteroendocrine Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021817415

Country of ref document: EP

Effective date: 20230102