WO2021246340A1 - Method for recovering platinum group metal, method for manufacturing film containing platinum group metal, and film-forming apparatus - Google Patents

Method for recovering platinum group metal, method for manufacturing film containing platinum group metal, and film-forming apparatus Download PDF

Info

Publication number
WO2021246340A1
WO2021246340A1 PCT/JP2021/020529 JP2021020529W WO2021246340A1 WO 2021246340 A1 WO2021246340 A1 WO 2021246340A1 JP 2021020529 W JP2021020529 W JP 2021020529W WO 2021246340 A1 WO2021246340 A1 WO 2021246340A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
platinum group
group metal
forming chamber
gas
Prior art date
Application number
PCT/JP2021/020529
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 真鍋
浩一 泉
正 荘所
諒太郎 永山
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Priority to CN202180010030.9A priority Critical patent/CN114981473A/en
Priority to KR1020227021832A priority patent/KR20230017157A/en
Priority to JP2022528809A priority patent/JPWO2021246340A1/ja
Publication of WO2021246340A1 publication Critical patent/WO2021246340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a method for recovering a platinum group metal, a method for producing a platinum group metal-containing film, and a film forming apparatus.
  • This application claims priority based on Japanese Application No. 2020-095296 filed on June 1, 2020, and incorporates all the contents described in the Japanese application.
  • a method of forming a metal-containing film such as ruthenium on the surface of a substrate by using a CVD (Chemical Vapor Deposition) method is known.
  • the raw material gas of the organic metal compound is introduced into the film formation chamber, and the metal-containing film is formed on the surface of the substrate housed in the film formation chamber.
  • the residual organometallic compound is discharged from the exhaust pipe of the film forming chamber and is deposited in the film forming chamber.
  • Patent Document 1 describes a step of recovering an organic metal compound by contacting an exhaust gas containing a reaction product generated in a film forming step and an unreacted raw material gas with a solvent or an adsorbent, and then a step of recovering the organic metal compound.
  • a CVD thin film forming process comprising a step of separating and purifying is described.
  • Patent Document 2 proposes to suppress the number of dry cleanings or eliminate the dry cleaning process itself by forming the inside of the film forming chamber with a specific structure.
  • the purpose of this disclosure is to provide a method for safely recovering precious metals contained in cleaning gas.
  • Another object of the present disclosure is to provide a method for producing a metal film having high recovery efficiency of a noble metal and a film forming apparatus.
  • a raw material gas containing a platinum group metal is introduced into a film forming chamber, and a platinum group metal-containing film is formed on the surface of a substrate housed in the film forming chamber. After that, it is a method of recovering the platinum group metal existing in the film forming chamber.
  • a step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out and
  • the method for producing a platinum group metal-containing film according to the present disclosure is as follows.
  • (III) A step of recovering the platinum group metal existing in the film forming chamber is provided.
  • the step of recovering the platinum group metal existing in the film forming chamber (III) is carried out by the above-mentioned platinum group metal recovery method.
  • the film forming apparatus is A film formation chamber for forming a thin film on the surface of the substrate, A gas supply mechanism connected to the film forming chamber and A gas discharge mechanism connected to the film forming chamber and The film forming chamber, the gas supply mechanism, and a control unit for controlling the gas discharge mechanism are provided.
  • the gas supply mechanism is The first supply pipe for supplying the raw material gas containing a platinum group metal to the film forming chamber, and A second supply pipe for supplying a cleaning gas containing fluorine to the film forming chamber is provided.
  • the gas discharge mechanism is A first exhaust pipe connecting the film forming chamber and a first capturing device capable of capturing the platinum group metal contained in the raw material gas discharged from the film forming chamber.
  • the platinum group metal contained in the cleaning gas can be recovered. Further, according to the method for producing a platinum group metal-containing film and the film forming apparatus of the present disclosure, it is possible to recover the platinum group metal in the cleaning gas, and the recovery efficiency of the platinum group metal is high.
  • FIG. 1 is a diagram showing an outline of a connection state by piping in an example of an embodiment of a film forming apparatus.
  • FIG. 2 is a diagram showing an outline of a control connection state in an example of the embodiment of the film forming apparatus.
  • FIG. 3 is a flowchart showing an example of an embodiment of a method for producing a platinum group metal-containing film.
  • FIG. 4 is a diagram showing an outline of a connection state by piping in an example of the embodiment of the film forming apparatus.
  • platinum group metal does not mean only a simple substance of a platinum group metal, but also means a chemical species containing a platinum group metal, including ions, compounds and complexes.
  • platinum group metal does not mean only a single metal ruthenium, but a ruthenium-containing chemical species, including ruthenium ions, ruthenium compounds and ruthenium complexes. However, this does not apply when a specific compound name (for example, ruthenium fluoride, ruthenium oxide, etc.) is described.
  • a raw material gas containing a platinum group metal is introduced into a film forming chamber, and a platinum group metal-containing film is formed on the surface of a substrate housed in the film forming chamber. After that, it is a method of recovering the platinum group metal existing in the film forming chamber.
  • a step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out and
  • the scavenger may be soda lime.
  • the recovery efficiency of the platinum group metal fluoride fluorided by the cleaning gas is excellent, and the cleaning gas containing fluorine can be reliably detoxified, which is excellent in safety.
  • the platinum group metal may be ruthenium or osmium.
  • the platinum group metal is ruthenium or osmium, a high-quality thin film with few defects can be obtained, and dry cleaning can be performed at a relatively low temperature in the recovery process.
  • ClF 3 can be used as a cleaning gas.
  • ClF 3 has many achievements as a dry cleaning gas in the film formation of platinum group metals, and can reliably perform dry cleaning under mild conditions.
  • a step of extracting the platinum group metal from the scavenger can be further provided.
  • the platinum group metal is separated from the scavenger as a metal compound, further subjected to a treatment such as purification, and then can be used again as a film forming raw material.
  • a step of removing the platinum group metal fluoride adsorbed by the scavenger as a platinum group metal aqueous solution by introducing a strong acid into the scavenger after removing the capture container from the film forming apparatus is performed.
  • the method for producing a platinum group metal-containing film according to the present disclosure is as follows.
  • (III) A step of recovering the platinum group metal existing in the film forming chamber is provided.
  • the step of recovering the platinum group metal existing in the film forming chamber (III) can be carried out by the method of recovering the platinum group metal.
  • the step of forming a platinum group metal-containing film, the step of taking out the substrate, and the step of recovering the platinum group metal existing in the film forming chamber can be continuously carried out as a series of steps. Further, it is possible to recover the platinum group metal without changing the configuration of the existing film forming chamber. Therefore, it is possible to improve the recovery efficiency of the platinum group metal as a whole in the manufacturing method, while it is not necessary to change or readjust the regulation of the film forming process.
  • the film forming apparatus includes a film forming chamber for forming a thin film on the surface of the substrate, a gas supply mechanism connected to the film forming chamber, and a gas discharge mechanism connected to the film forming chamber.
  • the film forming chamber, the gas supply mechanism, and a control unit for controlling the gas discharge mechanism are provided.
  • the gas supply mechanism includes a first supply pipe that supplies a raw material gas containing a platinum group metal to the film forming chamber, and a second supply pipe that supplies a cleaning gas containing fluorine to the film forming chamber. ..
  • the gas discharge mechanism includes a first exhaust pipe and a second exhaust pipe.
  • the first exhaust pipe connects the film forming chamber and the first capturing device capable of capturing the platinum group metal contained in the raw material gas discharged from the film forming chamber.
  • the second exhaust pipe connects the film forming chamber and a second capturing device that holds a scavenger capable of capturing the platinum group metal contained in the cleaning gas discharged from the film forming chamber. do.
  • the above-mentioned method for recovering a platinum group metal and the above-mentioned method for producing a platinum group metal-containing film can be suitably carried out.
  • the second capture device can be made removable from the second exhaust pipe.
  • the second capture device By making the second capture device removable, it is possible to take out the platinum group metal at a timing independent of the film forming process at a place different from the place where the film forming chamber and the gas supply mechanism are installed.
  • the second capture device can be easily replaced. For example, by using a plurality of capture devices while exchanging them, it is possible to recover the platinum group metal without affecting the time control in the film forming process.
  • FIG. 1 is a diagram showing an outline of a connection state by piping in one embodiment of the film forming apparatus of the present disclosure.
  • the ruthenium-containing film and a platinum group metal-containing film osmium-containing film or the like can be deposited, as an example, the Ru 3 (CO) 12 gas as a ruthenium source gas used , an example of using a ClF 3 gas as a cleaning gas fluorine containing.
  • the film forming apparatus 1 is a film forming apparatus for forming a ruthenium-containing film by a CVD method.
  • the film forming apparatus 1 discharges the raw material gas and the cleaning gas from the film forming chamber 10, the gas supply mechanism 20 for supplying the raw material gas and the cleaning gas to the film forming chamber 10, and the film forming chamber 10.
  • the gas discharge mechanism 50 is provided.
  • the film forming chamber 10, the gas supply mechanism 20, and the gas discharge mechanism 50 are controlled by the control unit 100.
  • the film forming chamber 10 may be a single-wafer type film forming chamber or a batch type film forming chamber as long as it has a function of forming a ruthenium-containing film by a CVD method.
  • the film forming chamber 10 includes a gate (not shown) for carrying in and out the substrate to be processed, and a heater (not shown) for bringing the inside of the chamber to a predetermined temperature.
  • the film forming chamber 10 is connected to the gas supply mechanism 20 via the first supply pipe 91 and the second supply pipe 92 of the gas supply mechanism 20.
  • the first supply pipe 91 is configured to supply a raw material gas containing ruthenium for forming a ruthenium-containing film by a CVD method to the film forming chamber 10.
  • the second supply pipe 92 is configured to supply a cleaning gas containing fluorine to the film forming chamber 10.
  • the first supply pipe 91 and the second supply pipe 92 are separately connected to the film forming chamber 10, but the first supply pipe 91 and the second supply pipe are connected separately. It is also possible to combine the 92 with the film forming chamber 10 upstream of the film forming chamber 10 so that the film forming chamber 10 is provided with one gas supply port.
  • valves are provided in each of the first supply pipe 91 and the second supply pipe 92, and the first supply pipe 91 and the second supply pipe 92 are provided with valves. It is possible to switch whether to supply gas from the first supply pipe 91 or the second supply pipe 92.
  • the film forming chamber 10 is connected to the gas discharge mechanism 50 via the first exhaust pipe 75 and the second exhaust pipe 76 of the gas discharge mechanism 50.
  • the first exhaust pipe 75 is provided to discharge the gas discharged from the film forming chamber 10 in the film forming process.
  • the second exhaust pipe 76 is provided to exhaust the gas discharged from the film forming chamber 10 in the cleaning step.
  • first exhaust pipe 75 and the second exhaust pipe 76 are separately connected to the film forming chamber 10, but the gas discharge port of the film forming chamber 10 is provided at one place.
  • the first exhaust pipe 75 and the second exhaust pipe 76 may be branched downstream thereof.
  • the gas supply mechanism 20 is a mechanism for supplying the raw material gas for forming a ruthenium-containing film by the CVD method and the cleaning gas for cleaning the film forming chamber 10 to the film forming chamber 10.
  • the gas supply mechanism 20 has a film forming raw material container 45 for accommodating Ru 3 (CO) 12 as a solid film forming raw material P.
  • a heater 46 is provided around the film-forming raw material container 45.
  • the Ru 3 (CO) 12 housed in the film-forming raw material container 45 is heated by the heater 46 and vaporized to become the Ru 3 (CO) 12 gas (ruthenium carbonyl gas).
  • a carrier gas supply pipe 25 for supplying CO gas as a carrier gas is inserted into the film-forming raw material container 45 from above.
  • a carrier gas supply source 24 for supplying CO gas is connected to the carrier gas supply pipe 25. Further, a raw material gas supply pipe 26 is inserted into the film-forming raw material container 45.
  • the carrier gas supply pipe 25 is provided with a mass flow controller 31 for flow rate control and valves 44a and 44b before and after the mass flow controller 31. Further, the raw material gas supply pipe 26 is provided with a flow meter 35 for grasping the amount of Ru 3 (CO) 12 gas and a valve 44c whose opening and closing can be adjusted based on the measured value of the flow meter 35. ..
  • the gas supply mechanism 20 has an additional gas supply source 23 for supplying Ar, which is a diluted gas, and an additional gas supply pipe 27.
  • the additional gas supply pipe 27 connects the additional gas supply source 23 with the raw material gas supply pipe 26 and the first supply pipe 91.
  • a mass flow controller 32 for flow rate control and valves 43a and 43b before and after the mass flow controller 32 are provided.
  • the raw material gas containing Ru 3 (CO) 12 supplied from the film forming raw material container 45 is conveyed to the CO gas, which is a carrier gas, and mixed with the Ar gas to form the first supply pipe 91. Through it, it can be supplied into the film forming chamber 10.
  • the carrier gas supply pipe 25 may be branched and the CO gas may be introduced into the film forming chamber 10 separately from the raw material gas as a counter gas.
  • the cleaning gas supply pipe 28 having a cleaning gas supply source 22 and a cleaning gas supply pipe 28 for supplying ClF 3 gas used as a cleaning gas is a cleaning gas supply source 22.
  • the carrier gas supply pipe 29 and the second supply pipe 92 are connected.
  • a mass flow controller 33 for flow rate control and valves 42a and 42b before and after the mass flow controller 33 are provided.
  • the ClF 3 gas which is a cleaning gas, is conveyed by an Ar gas supplied as a carrier gas from the carrier gas supply source 21.
  • One end of the carrier gas supply pipe 29 is connected to the carrier gas supply source 21, and the other end of the carrier gas pipe 29 is connected to the cleaning gas supply pipe 28 and the second supply pipe 92.
  • a mass flow controller 34 for flow rate control and valves 41a and 41b before and after the mass flow controller 34 are provided.
  • the ClF 3 gas supplied from the cleaning gas supply source 22 can be carried by the Ar gas and supplied into the film forming chamber 10 via the second supply pipe 92.
  • the gas discharge mechanism 50 is a mechanism for discharging the raw material gas after being subjected to film formation and the cleaning gas after dry cleaning from the film forming chamber 10.
  • the gas discharge mechanism 50 includes a first capture device 51 connected to the film forming chamber 10 by a first exhaust pipe 75.
  • the first capture device 51 can capture ruthenium contained in the raw material gas discharged from the film forming chamber 10.
  • a specific embodiment of the first capture device 51 is, for example, a cold trap.
  • water can be used as the refrigerant.
  • a vacuum cold trap provided with a cooling surface can be used as the first capture device 51.
  • a dry pump 61 is connected to the first capture device 51 via a pipe.
  • the dry pump 61 exhausts air from the film forming chamber 10 based on a measured value of a pressure gauge (not shown), and maintains the inside of the film forming chamber 10 at a predetermined pressure.
  • the abatement device 80 is connected to the dry pump 61 via a pipe.
  • the abatement device 80 removes the CO gas and the raw material gas containing ruthenium that could not be captured by the first capture device 51.
  • a specific embodiment of the abatement device 80 is, for example, a combustion type abatement device.
  • the CO gas conveyed to the abatement device 80 is incinerated in the abatement device 80 and discharged into the atmosphere as CO 2 gas.
  • a heating type aggression device such as a plasma type aggression device and a heater type aggression device can be used.
  • first exhaust pipe 75 is connected to the first capture device 51 in the embodiment of FIG. 1, an auxiliary capture device may be provided in the middle of the first exhaust pipe 75. Further, a dry pump may be arranged upstream of the first capture device 51 so that the first capture device 51 is under atmospheric pressure.
  • the gas discharge mechanism 50 includes a second capture device 52 connected to the film forming chamber 10 by the second exhaust pipe 76.
  • the second scavenger 52 is a dry abatement device that holds the solid-grained scavenger 53 in, for example, a stainless steel container.
  • the scavenger 53 is a scavenger capable of capturing ruthenium contained in the cleaning gas discharged from the film forming chamber 10 when the film forming chamber 10 is cleaned.
  • the scavenger 53 is preferably at least one selected from the group consisting of, for example, soda lime, slaked lime and CaO (calcium oxide), and more preferably soda lime.
  • soda lime slaked lime and CaO (calcium oxide)
  • soda lime slaked lime
  • CaO calcium oxide
  • ruthenium (ruthenium fluoride) fluorinated by the fluorine-based cleaning gas contained in the cleaning gas can be captured as ruthenium oxide.
  • ClF 3 ClF 3 with the scavenger 53.
  • the second capture device 52 includes a cleaning gas introduction pipe 77.
  • the cleaning gas introduction pipe 77 is connected to the second exhaust pipe 76 via the flange 54a and is inserted into the scavenger 53.
  • the second capture device 52 includes an outlet pipe 78.
  • the outlet pipe 78 discharges the detoxified gas that has passed through the scavenger 53.
  • the outlet pipe 78 is provided with a flange 54b.
  • the second capture device 52 is removable from the second exhaust pipe 76. Since the second scavenger 52 is removable from the second exhaust pipe 76, the removal of ruthenium from the scavenger 53 can be carried out with the second scavenger 52 separated from the film forming apparatus 1. That is, the separation and purification of ruthenium from the scavenger 53 can be carried out at a location different from the installation location of the film forming apparatus and at a timing independent of the film forming process.
  • the second capture device 52 when the second capture device 52 has a function of not only capturing ruthenium but also abatement of a fluorine compound, the second capture device 52 does not need to be connected to the abatement device 80 and is expensive. There is no need to use stainless steel piping. As a result, since the fluorine compound is not mixed into the abatement device 80, corrosion does not occur and the maintenance frequency can be reduced.
  • the film forming apparatus 1 includes a film forming chamber 10, a gas supply mechanism 20, a gas discharge mechanism 50, and a control unit 100.
  • the control unit 100 functions as a flow path control device for the film forming apparatus, and controls the entire film forming apparatus from a plurality of gas supply sources and a film forming raw material container to the abatement apparatus via the film forming chamber.
  • the control unit 100 controls the open / closed states of the plurality of valves 41a to 44a, 41b to 44b, and 44c included in the gas supply mechanism 20 to control the types and mixing of the raw material gas and the cleaning gas supplied from the gas supply mechanism 20. Adjust the rate and flow rate. Further, the control unit 100 receives the measured value signal of the flow meter 35 and adjusts the open / closed state of the valve 44c according to the measured value.
  • the control unit 100 adjusts the temperature inside the raw material container 45 by controlling the heater 46 included in the gas supply mechanism 20.
  • the control unit 100 also controls the operation of the heater, susceptor, gate, etc. provided in the film forming chamber 10 so that the film forming according to a predetermined protocol is executed. Regarding these operations, the control unit 100 may receive measured value signals of the temperature sensor, pressure sensor, etc. provided in the film forming chamber 10 and adjust the on / off, degree, and timing of the operation according to the measured values. can.
  • the control unit 100 also controls the open / closed state of the plurality of valves 71 to 73 included in the gas discharge mechanism 50. Further, the control unit 100 controls the outputs of the pumps 61 and 62 included in the gas discharge mechanism 50. By adjusting the outputs of the pumps 61 and 62, the control unit 100 adjusts and maintains the pressure in the film forming chamber 10 and the piping connected to the film forming chamber 10 to a predetermined value. By controlling the outputs of the pumps 61 and 62, the flow rate and pressure of the raw material gas and cleaning gas supplied to the film forming chamber 10, the raw material gas after film forming and the cleaning gas after cleaning discharged from the film forming chamber 10 Flow rate and pressure are adjusted.
  • the metal film formed in the film forming apparatus of the present disclosure is a platinum group metal-containing film, and examples of the platinum group metal include ruthenium, osmium, iridium, and platinum. In particular, a ruthenium-containing film or an osmium-containing film is preferable.
  • Ru 3 (CO) 12 When forming a ruthenium-containing film, various organic and inorganic ruthenium raw material gases can be used as the ruthenium raw material gas.
  • ruthenium carbonyl (Ru 3 (CO) 12 ) can be suitably used.
  • Ru 3 (CO) 12 gas becomes Ru by thermal decomposition.
  • CO gas As the carrier gas of Ru 3 (CO) 12 gas.
  • CO the carrier gas
  • a ruthenium-containing film other than the ruthenium film may be formed by reacting the Ru 3 (CO) 12 gas with the reaction gas.
  • Ru 3 (CO) 12 As ruthenium raw material gas, in addition to Ru 3 (CO) 12 , RuO 2 , Ru (EtCp) 2 , Ru (DMDB) (CO) 3 , RuO 4 (HFE), Ru (HDAC), Ru (PF 3 ), Ru (AMD) 2 CO, RuCOT and the like can be mentioned, and at least one of these raw materials including Ru 3 (CO) 12 can be used.
  • the reaction gas for forming a ruthenium-containing film other than the ruthenium film is appropriately selected depending on the ruthenium raw material gas and the ruthenium-containing film to be obtained.
  • the reaction gas include CO 2 , O 2 , H 2 , Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , NH 3 , CH 3 (NH) NH 2 , C 2 H 8 N. 2 , N 2 H 4, etc. can be mentioned, and at least one of these can be used.
  • a ruthenium film or a ruthenium oxide film can be formed.
  • SiH 4 , Si 2 H 6 , Si 3 H 8 , or Si 4 H 10 is used as the reaction gas, a ruthenium film containing Si can be formed.
  • NH 3 , CH 3 (NH) NH 2 , C 2 H 8 N 2 , and N 2 H 4 are used as the reaction gas, a ruthenium film containing N can be formed. It is also possible to form a doped ruthenium film using a gas containing a dopant.
  • a carrier gas for diluting and transporting the raw material gas in the case of forming a ruthenium single film it is possible to use an inert gas such as N 2 gas or a rare gas.
  • the rare gas include Ar, He, Ne, Xe, Kr and the like.
  • a cleaning gas containing fluorine is used as the cleaning gas.
  • ClF 3 can be preferably used as the cleaning gas containing fluorine.
  • the cleaning gas other than ClF 3 include F 2 , F 2 / N 2 mixed gas, NF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 excited in a plasma state, and the like. These fluorine-containing cleaning gases may be used alone or in combination of two or more.
  • a carrier gas that carries the above-mentioned cleaning gas may be used.
  • the carrier gas may be an inert gas such as N 2 gas or a rare gas.
  • the rare gas include Ar, He, Ne, Xe, Kr and the like.
  • FIG. 3 is a flowchart showing a method for producing a ruthenium-containing film according to an embodiment of the present disclosure.
  • the manufacturing method according to the present embodiment includes a step S10 for forming a ruthenium-containing film on a substrate, a step S20 for taking out the substrate from the film forming chamber, and introducing a cleaning gas into the film forming chamber. It has a step S30 and a step S40 for introducing the cleaning gas into the trapping container.
  • the step S10 for forming a ruthenium-containing film on the substrate will be described.
  • the following operation is executed by the control unit 100.
  • the substrate is conveyed into the film forming chamber 10 of the film forming apparatus 1, and the heater provided in the film forming chamber 10 and the dry pump 61 of the gas discharge mechanism 50 are operated to operate the film forming chamber 10.
  • the inside is set to a predetermined temperature and pressure.
  • the valves 43a and 43b may be opened and Ar, which is a carrier gas, may be introduced into the film forming chamber 10 as a purge gas.
  • the pressure in the film forming chamber 10 in the film forming step S10 can be, for example, 10 to 100 Pa, and the temperature can be, for example, 120 to 250 ° C.
  • the heater 46 of the film-forming raw material container 45 is operated to heat and vaporize the film-forming raw material P (Ru 3 (CO) 12). Further, the valves 44a and 44b are opened, and CO gas is blown into the film forming raw material container 45 via the carrier gas supply pipe 25.
  • the Ru 3 (CO) 12 gas in the film forming raw material container 45 is supplied into the film forming chamber 10 via the raw material gas supply pipe 26 and the first supply pipe 91 in a state of being carrierd by the CO gas.
  • the flow rate of the Ru 3 (CO) 12 gas is measured by the flow meter 35, and the control unit 100 can change the open / closed state of the valve 44c according to the measured value.
  • control unit 100 can adjust the open / closed state of the valves 43a and 43b and supply the added gas (diluted gas) from the added gas supply source 23.
  • the flow rate of the raw material gas and the mixing ratio of the raw material gas and the diluted gas can be appropriately set according to the film thickness of the target ruthenium-containing film, the type of the substrate, and the like.
  • a ruthenium-containing film having a predetermined film thickness is formed on the surface of the substrate placed in the film forming chamber 10.
  • valves 41a, 41b, 42a, 42b of the gas supply mechanism 20 are closed, and the gas from the second supply pipe 92 to the film forming chamber 10 is shut off.
  • the valve 71 is open and the valve 72 is closed. That is, in the film forming step S10, the gas exhausted from the film forming chamber 10 is discharged through the first exhaust pipe 75.
  • the gas exhausted from the film forming chamber in the film forming step S10 includes a raw material gas and a diluted gas.
  • a reaction gas is used as the additional gas, the reaction product of ruthenium and the reaction gas is also contained in the exhaust gas.
  • the exhaust gas in the film forming step S10 passes through the first capture device 51, and the ruthenium contained in the exhaust gas is captured by the first capture device 51.
  • the ruthenium captured by the first capture device 51 is generally considered to be about 70% of the ruthenium used as a film forming raw material.
  • the exhaust gas after passing through the first capture device 51 mainly contains CO gas.
  • the exhaust gas that has passed through the first capture device 51 reaches the abatement device 80 via the dry pump 61.
  • the abatement device 80 for example, by incineration and precipitation separation, the exhaust gas is detoxified and released into the atmosphere.
  • the valves 72 and 73 of the gas discharge mechanism 50 are closed, and the pump 62 is stopped. That is, the exhaust gas in the film forming step S10 is not discharged to the second exhaust pipe 92.
  • the step S20 for taking out the substrate from the film forming chamber will be described.
  • the substrate on which the ruthenium-containing film is formed on the surface is taken out from the film forming chamber 10.
  • This step can be performed by a known method and is not particularly limited.
  • the raw material gas is supplied into the film forming chamber 10 and a predetermined time (for example, 1 to 600 seconds) has elapsed.
  • the substrate can be taken out from the film chamber 10 so that the substrate does not exist in the film forming chamber 10.
  • the film forming step S10 and the taking-out step S20 After repeating the film forming step S10 and the taking-out step S20 once or a plurality of times, it is determined whether or not to clean the inside of the film forming chamber. Specifically, for example, it is determined whether or not the amount of ruthenium deposited in the film forming chamber 10 exceeds the allowable amount (Q10).
  • the determination criterion may be, for example, the number of times the film formation is repeated (the number of film formations), or the elapsed time from the start of the film formation.
  • the film forming step S10 and the taking-out step S20 are carried out again.
  • the step S30 for introducing the cleaning gas into the film forming chamber and the step S40 for introducing the cleaning gas into the trapping container are carried out.
  • the cleaning gas introduction step S30 is carried out in a state where the substrate does not exist in the film forming chamber 10 after the step S20 of taking out the substrate from the film forming chamber.
  • the inside of the film forming chamber 10 is heated to a predetermined temperature, for example, 150 to 250 ° C. by the heater of the film forming chamber 10.
  • valves 43a, 43b, 44a, 44b, 44c of the gas supply mechanism 20 are closed, and the gas from the first supply pipe 91 to the film forming chamber 10 is shut off.
  • the valve 71 of the gas discharge mechanism 50 is closed, and the cleaning gas is not discharged from the first exhaust pipe 75. Since there is a risk of explosion if the cleaning gas is introduced into the first trapping device 51 in which ruthenium or the like is captured, it is avoided to introduce the cleaning gas into the first exhaust pipe 75.
  • the dry pump 62 operates, first opens the valves 41a and 41b, supplies carrier gas (for example, Ar gas) from the carrier gas supply source 21, and purges the inside of the film forming chamber 10.
  • carrier gas for example, Ar gas
  • the pressure in the film forming chamber 10 is adjusted to, for example, 10 to 1000 Pa.
  • ClF 3 which is a cleaning gas, is introduced into the film forming chamber 10 and dry cleaning is performed.
  • valves 41a and 41b are opened and Ar gas, which is a carrier gas, is flowed, and the valves 42a and 42b are further opened to supply ClF 3 gas.
  • the ClF 3 gas flow rate can be appropriately set according to the internal volume of the film forming chamber, the film thickness of the ruthenium film accumulated in the film forming chamber, and the like.
  • the supply time of ClF 3 gas is preferably in the range of 1 to 60 sec, and the number of repetitions is preferably about 1 to 100 times.
  • the valves 73, 79a, 79b are opened, and the cleaning gas is introduced into the second capture device 52 (S40).
  • the second capture device 52 is provided downstream of the dry pump 62, i.e., under atmospheric pressure.
  • the cleaning gas introduced into the second capture container 52 is introduced into the capture agent 53 through the cleaning gas introduction pipe 77 and comes into contact with the capture agent 53.
  • the cleaning gas introduced into the scavenger 53 contains ClF 3 and RuF 5 (ruthenium fluoride).
  • the scavenger 53 is at least one selected from the group consisting of soda lime, slaked lime and CaO (calcium oxide), and the scavenger eliminates the cleaning gas by capturing ClF 3 and ruthenium fluoride.
  • Soda lime is also called soda lime, and is a strong basic solid granular substance containing calcium hydroxide as a main component and water, potassium hydroxide, and sodium hydroxide.
  • Examples of the composition of soda lime include those containing 75 wt% to 85 wt% of calcium hydroxide, 10 wt% to 20 wt% of water, 1 wt% to 5 wt% of potassium hydroxide, and 1 wt% to 5 wt% of sodium hydroxide.
  • the cleaning gas detoxified by the second capture device 52 is released into the atmosphere through the exhaust pipe 78 of the second capture device 52.
  • the replacement time of the capture container 52 is determined whether or not the replacement time of the capture container 52 has been reached (Q20).
  • the determination criterion may be, for example, the number of repetitions of dry cleaning, or the elapsed time from the start of use of the capture device.
  • the replacement time can be determined based on the detection signal from the gas detector (for example, Cl 2 sensor) provided in the second capture device 52. If it is determined that the container replacement time has not been reached (NO in Q20), the cleaning gas introduction step S30 to the film forming chamber 10 and the cleaning gas introduction step S40 to the second capture device 52 are performed again. ..
  • the valves 79a and 79b are closed, the piping is cut off at the flanges 54a and 54b, and the second capture device 52 is seconded. Removed from the exhaust pipe 76 (S50). It is preferable that the second capture device 52 is provided with casters or the like so that the removed capture device can be easily moved.
  • ruthenium is taken out from the capture agent 53 contained in the second capture device 52 (S60).
  • the ruthenium extraction step S60 can be performed independently of the production of the ruthenium film at a location different from the installation location of the film forming apparatus.
  • the ruthenium extraction step S60 can be carried out by introducing a strong acid such as hydrochloric acid or sulfuric acid into the scavenger 53 and allowing ruthenium oxide immobilized on the scavenger to flow out as an aqueous solution of ruthenium chloride.
  • a strong acid such as hydrochloric acid or sulfuric acid
  • the ruthenium chloride taken out as described above can be used again for film formation as a ruthenium precursor after undergoing a predetermined treatment.
  • FIG. 4 shows a film forming apparatus 100 which is another embodiment of the film forming apparatus of the present disclosure.
  • the film forming chamber 10 and the gas supply mechanism 20 are the same as those of the film forming apparatus 1 shown in FIG. 1, and the description thereof will be omitted.
  • the gas supply mechanism 500 in the film forming apparatus 100 includes a first exhaust pipe 75 and a second exhaust pipe 76.
  • the downstream of the first exhaust pipe 75 is the same as that of the film forming apparatus 1, and the description thereof will be omitted.
  • the second exhaust pipe 76 connects the film forming chamber 10 and the second capture device 520.
  • the second capture device 520 includes a cleaning gas introduction pipe 770.
  • the cleaning gas introduction pipe 770 is connected to the second exhaust pipe 76 via the flange 540a and is inserted into the scavenger 530.
  • the second capture device 520 includes an outlet pipe 780.
  • the outlet pipe 780 discharges the detoxified gas that has passed through the scavenger 530.
  • the outlet pipe 780 is provided with a flange 540b. At the flange 540a, the second capture device 520 is removable from the second exhaust pipe 76.
  • a pipe 731 is connected to the downstream of the flange 540b. That is, the second capture device 520 is removable from the second exhaust pipe 76 and the pipe 731 at the positions of the flanges 540a and 540b.
  • the second capture device 520 is connected to the dry pump 620 via the pipe 731. That is, when the dry pump 620 is operated to perform dry cleaning, the second capture device 520 becomes a decompressed atmosphere.
  • the downstream of the dry pump 620 is connected to the abatement device 800, and the gas discharged from the dry pump 620 is detoxified by the abatement device 800 and released into the atmosphere.
  • the abatement function of the fluorine compound is unnecessary and only ruthenium capture is sufficient.
  • the alkaline chemical in the second capture device 520 reacts with the fluorine compound, it is possible to suppress the corrosion of the abatement device 800 by reducing the amount of the fluorine compound mixed in the abatement device 800. can. It was
  • ruthenium film was formed with Ru 3 (CO) 12 gas and CO gas by the above-mentioned film forming method.
  • the ruthenium film deposited on the wall of the film forming chamber was dry-cleaned using ClF 3 as a cleaning gas.
  • the cleaning with ClF 3 is performed for each film forming process, but the cleaning may be determined based on the thickness of the ruthenium film deposited on the wall of the film forming chamber.
  • ruthenium was captured using a trapping device that contained soda lime in a stainless steel outer cylinder container.
  • the scavenger was removed from the exhaust pipe of the cleaning gas, and the appearance of the scavenger inside the scavenger was observed.
  • the scavenger turned dark brown, confirming that ruthenium pentafluoride was immobilized.
  • Hydrochloric acid was injected into the scavenger to recover ruthenium as an aqueous solution of ruthenium chloride.
  • the ruthenium recovered by dry cleaning was about 10% of the ruthenium raw material used for film formation. Since the ruthenium removed by dry cleaning was not recovered by the conventional film forming method, it was confirmed that the recovery efficiency of ruthenium was improved by about 10% in this example as compared with the conventional method. ..
  • the platinum group metal recovery method, the platinum group metal-containing film manufacturing method, and the film forming apparatus of the present disclosure can be particularly advantageously applied in semiconductor manufacturing by the CVD method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method according to the present invention is for recovering a platinum group metal present within a film formation chamber after introducing a feedstock gas containing the platinum group metal into the film formation chamber and forming a film containing the platinum group metal on the surface of a substrate housed within the film formation chamber. The method is provided with: (i) a step for introducing a fluorine-containing cleaning gas into the film formation chamber after the substrate has been removed therefrom; and (ii) a step for introducing the cleaning gas discharged from the film formation chamber into a scavenging container that holds a scavenger comprising at least one selected from the group consisting of soda lime, slaked lime, and CaO.

Description

白金族金属の回収方法、白金族金属含有膜の製造方法および成膜装置Platinum group metal recovery method, platinum group metal-containing film manufacturing method and film forming apparatus
 本開示は、白金族金属の回収方法、白金族金属含有膜の製造方法および成膜装置に関する。本出願は、2020年6月1日出願の日本出願第2020-095296号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a method for recovering a platinum group metal, a method for producing a platinum group metal-containing film, and a film forming apparatus. This application claims priority based on Japanese Application No. 2020-095296 filed on June 1, 2020, and incorporates all the contents described in the Japanese application.
 CVD(Chemical Vapor Deposition)法を用いて、基板の表面にルテニウム等の金属含有膜を成膜する方法が知られている。金属含有膜の成膜においては、有機金属化合物の原料ガスが成膜チャンバーに導入され、成膜チャンバーに収容された基板の表面に金属含有膜が形成される。このプロセスにおいて、チャンバーに導入される有機金属化合物のうち、基板の表面で金属膜を形成するものは10%程度であると考えられている。残余の有機金属化合物は、成膜チャンバーの排気配管から排出され、また、成膜チャンバー内に堆積する。 A method of forming a metal-containing film such as ruthenium on the surface of a substrate by using a CVD (Chemical Vapor Deposition) method is known. In the film formation of the metal-containing film, the raw material gas of the organic metal compound is introduced into the film formation chamber, and the metal-containing film is formed on the surface of the substrate housed in the film formation chamber. In this process, it is considered that about 10% of the organometallic compounds introduced into the chamber form a metal film on the surface of the substrate. The residual organometallic compound is discharged from the exhaust pipe of the film forming chamber and is deposited in the film forming chamber.
 成膜におけるルテニウム等の貴金属の回収効率を高めるために、成膜工程において排気配管から排出される金属化合物をトラップすることが提案されている。特許文献1には、成膜工程で生じる反応生成物と未反応の原料ガスとを含む排ガスと、溶媒や吸着剤とを接触させることによって有機金属化合物を回収する工程、次いで、有機金属化合物を分離して精製する工程を含む、CVD薄膜形成プロセスが記載されている。 In order to improve the recovery efficiency of precious metals such as ruthenium in film formation, it has been proposed to trap the metal compound discharged from the exhaust pipe in the film formation process. Patent Document 1 describes a step of recovering an organic metal compound by contacting an exhaust gas containing a reaction product generated in a film forming step and an unreacted raw material gas with a solvent or an adsorbent, and then a step of recovering the organic metal compound. A CVD thin film forming process comprising a step of separating and purifying is described.
 また、塩素系やフッ素系のクリーニングガスを用いて成膜チャンバー内の堆積物を除去するドライクリーニング方法が知られている。しかしながら、安全上の理由から、クリーニング時に成膜チャンバーから排気されるクリーニングガスを、原料ガス中の金属化合物を捕捉するためのトラップに導入することはできない。このため、クリーニングガスに含まれる金属化合物は回収されていなかった。そこで、特許文献2では、成膜チャンバーの内部を特定の構造とすることによって、ドライクリーニング回数を抑制し、あるいはドライクリーニング処理自体をなくすことが提案されている。 Further, a dry cleaning method for removing deposits in a film forming chamber using a chlorine-based or fluorine-based cleaning gas is known. However, for safety reasons, the cleaning gas exhausted from the film forming chamber during cleaning cannot be introduced into the trap for capturing the metal compound in the raw material gas. Therefore, the metal compound contained in the cleaning gas was not recovered. Therefore, Patent Document 2 proposes to suppress the number of dry cleanings or eliminate the dry cleaning process itself by forming the inside of the film forming chamber with a specific structure.
特開2001-342566号公報Japanese Unexamined Patent Publication No. 2001-342566 特開2011-192661号公報Japanese Unexamined Patent Publication No. 2011-192661
 しかしながら、既存の成膜チャンバーを利用しつつ、成膜チャンバー内のドライクリーニングを実施し、かつクリーニングガスに含まれる貴金属を回収する方法は存在せず、成膜に用いられる貴金属の回収効率には限界があった。 However, there is no method for performing dry cleaning inside the film forming chamber while using the existing film forming chamber and recovering the noble metal contained in the cleaning gas, and the recovery efficiency of the noble metal used for film forming is not high. There was a limit.
 本開示の目的は、クリーニングガス中に含まれる貴金属を安全に回収する方法を提供することである。また本開示の目的は、貴金属の回収効率が高い金属膜の製造方法および成膜装置を提供することである。 The purpose of this disclosure is to provide a method for safely recovering precious metals contained in cleaning gas. Another object of the present disclosure is to provide a method for producing a metal film having high recovery efficiency of a noble metal and a film forming apparatus.
 本開示に従った白金族金属の回収方法は、成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜した後に、前記成膜チャンバー内に存在する白金族金属を回収する方法であって、
(i)前記基板が取り出された前記成膜チャンバー内に、フッ素を含むクリーニングガスを導入する工程と、
(ii)ソーダライム、消石灰およびCaOからなる群から選択される少なくとも1つからなる捕捉剤を保持する捕捉容器内に、前記成膜チャンバーから排出される前記クリーニングガスを導入する工程と、を備える。
In the method for recovering a platinum group metal according to the present disclosure, a raw material gas containing a platinum group metal is introduced into a film forming chamber, and a platinum group metal-containing film is formed on the surface of a substrate housed in the film forming chamber. After that, it is a method of recovering the platinum group metal existing in the film forming chamber.
(I) A step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out, and
(Ii) A step of introducing the cleaning gas discharged from the film forming chamber into a trapping container holding a trapping agent consisting of at least one selected from the group consisting of soda lime, slaked lime and CaO. ..
 また、本開示に従った白金族金属含有膜の製造方法は、
(I)成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜する工程と、
(II)前記白金族金属含有膜が成膜された前記基板を前記成膜チャンバーから取り出す工程と、
(III)成膜チャンバー内に存在する白金族金属を回収する工程と、を備え、
 前記(III)成膜チャンバー内に存在する白金族金属を回収する工程は、上記の白金族金属の回収方法により実施される。
In addition, the method for producing a platinum group metal-containing film according to the present disclosure is as follows.
(I) A step of introducing a raw material gas containing a platinum group metal into a film forming chamber and forming a platinum group metal-containing film on the surface of a substrate housed in the film forming chamber.
(II) A step of taking out the substrate on which the platinum group metal-containing film is formed from the film forming chamber, and
(III) A step of recovering the platinum group metal existing in the film forming chamber is provided.
The step of recovering the platinum group metal existing in the film forming chamber (III) is carried out by the above-mentioned platinum group metal recovery method.
 また、本開示に従った成膜装置は、
基材の表面に薄膜を形成するための成膜チャンバーと、
前記成膜チャンバーに接続するガス供給機構と、
前記成膜チャンバーに接続するガス排出機構と、
前記成膜チャンバー、前記ガス供給機構、および前記ガス排出機構を制御する制御部と、を備え、
 前記ガス供給機構は、
白金族金属を含む原料ガスを前記成膜チャンバーに供給する第一の供給配管と、
フッ素を含むクリーニングガスを前記成膜チャンバーに供給する第二の供給配管と、を備え、
 前記ガス排出機構は、
前記成膜チャンバーと、前記成膜チャンバーから排出される前記原料ガスに含まれる白金族金属を捕捉可能である第一の捕捉装置と、を接続する第一の排気配管と、
前記成膜チャンバーと、前記成膜チャンバーから排出される前記クリーニングガスに含まれる白金族金属を捕捉可能である捕捉剤を保持する第二の捕捉装置と、を接続する第二の排気配管と、を備える。
In addition, the film forming apparatus according to the present disclosure is
A film formation chamber for forming a thin film on the surface of the substrate,
A gas supply mechanism connected to the film forming chamber and
A gas discharge mechanism connected to the film forming chamber and
The film forming chamber, the gas supply mechanism, and a control unit for controlling the gas discharge mechanism are provided.
The gas supply mechanism is
The first supply pipe for supplying the raw material gas containing a platinum group metal to the film forming chamber, and
A second supply pipe for supplying a cleaning gas containing fluorine to the film forming chamber is provided.
The gas discharge mechanism is
A first exhaust pipe connecting the film forming chamber and a first capturing device capable of capturing the platinum group metal contained in the raw material gas discharged from the film forming chamber.
A second exhaust pipe connecting the film forming chamber and a second capturing device holding a scavenger capable of capturing the platinum group metal contained in the cleaning gas discharged from the film forming chamber. To prepare for.
 本開示の白金族金属の回収方法によれば、クリーニングガス中に含まれる白金族金属を回収することができる。また本開示の白金族金属含有膜の製造方法および成膜装置によれば、クリーニングガス中の白金族金属を回収することが可能であり、白金族金属の回収効率が高い。 According to the platinum group metal recovery method of the present disclosure, the platinum group metal contained in the cleaning gas can be recovered. Further, according to the method for producing a platinum group metal-containing film and the film forming apparatus of the present disclosure, it is possible to recover the platinum group metal in the cleaning gas, and the recovery efficiency of the platinum group metal is high.
図1は、成膜装置の実施の形態の一例における、配管による接続状態の概略を示す図である。FIG. 1 is a diagram showing an outline of a connection state by piping in an example of an embodiment of a film forming apparatus. 図2は、成膜装置の実施の形態の一例における、制御上の接続状態の概略を示す図である。FIG. 2 is a diagram showing an outline of a control connection state in an example of the embodiment of the film forming apparatus. 図3は、白金族金属含有膜の製造方法の実施の形態の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of an embodiment of a method for producing a platinum group metal-containing film. 図4は、成膜装置の実施の形態の一例における、配管による接続状態の概略を示す図である。FIG. 4 is a diagram showing an outline of a connection state by piping in an example of the embodiment of the film forming apparatus.
 本明細書において、「白金族金属」とは、白金族金属の単体のみを意味するのではなく、イオン、化合物および錯体を含む、白金族金属を含有する化学種を意味する。例えば、「ルテニウム」とは、金属ルテニウムの単体のみを意味するのではなく、ルテニウムイオン、ルテニウム化合物およびルテニウム錯体を含む、ルテニウムを含有する化学種を意味する。ただし、具体的な化合物名(例えば、フッ化ルテニウム、酸化ルテニウム等)を記載している場合は、その限りではない。 As used herein, the term "platinum group metal" does not mean only a simple substance of a platinum group metal, but also means a chemical species containing a platinum group metal, including ions, compounds and complexes. For example, "ruthenium" does not mean only a single metal ruthenium, but a ruthenium-containing chemical species, including ruthenium ions, ruthenium compounds and ruthenium complexes. However, this does not apply when a specific compound name (for example, ruthenium fluoride, ruthenium oxide, etc.) is described.
 [実施形態の概要]
 本開示に従った白金族金属の回収方法は、成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜した後に、前記成膜チャンバー内に存在する白金族金属を回収する方法であって、
 (i)前記基板が取り出された前記成膜チャンバー内に、フッ素を含むクリーニングガスを導入する工程と、
 (ii)ソーダライム、消石灰およびCaOからなる群から選択される少なくとも1つからなる捕捉剤を保持する捕捉容器内に、前記成膜チャンバーから排出される前記クリーニングガスを導入する工程と、を備える。
[Outline of Embodiment]
In the method for recovering a platinum group metal according to the present disclosure, a raw material gas containing a platinum group metal is introduced into a film forming chamber, and a platinum group metal-containing film is formed on the surface of a substrate housed in the film forming chamber. After that, it is a method of recovering the platinum group metal existing in the film forming chamber.
(I) A step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out, and
(Ii) A step of introducing the cleaning gas discharged from the film forming chamber into a trapping container holding a trapping agent consisting of at least one selected from the group consisting of soda lime, slaked lime and CaO. ..
 従来、クリーニングガス中に含まれる貴金属を安全に回収する方法は知られておらず、クリーニングガス中に含まれる貴金属は回収されていなかった。また、貴金属の回収効率に優れた金属膜の製造方法および成膜装置が求められていた。発明者らはこの課題について検討を重ね、白金族金属膜の成膜において、成膜時に原料ガスを排出する排気配管とは別に、クリーニング時にクリーニングガスを排出するための排気配管を設けることに想到した。さらに、かかる配管にフッ素を含むクリーニングガスによってフッ化された白金族金属(白金族金属フッ化物)を捕捉可能である捕捉剤を収容する捕捉装置を接続することによって、従来は廃棄されていたクリーニングガス中に含まれる白金族金属を回収することが可能となり、白金族金属膜の製造方法における白金族金属の回収効率を向上させることができることを確認した。 Conventionally, a method for safely recovering the precious metal contained in the cleaning gas has not been known, and the precious metal contained in the cleaning gas has not been recovered. Further, there has been a demand for a metal film manufacturing method and a film forming apparatus having excellent recovery efficiency of precious metals. The inventors have repeatedly studied this problem and came up with the idea of providing an exhaust pipe for discharging the cleaning gas at the time of cleaning, in addition to the exhaust pipe for discharging the raw material gas at the time of forming the platinum group metal film. did. Further, by connecting a catching device containing a catching agent capable of catching a platinum group metal (platinum group metal fluoride) fluorinated by a cleaning gas containing fluorine to such a pipe, cleaning that has been conventionally discarded It has been confirmed that the platinum group metal contained in the gas can be recovered, and the recovery efficiency of the platinum group metal in the method for producing the platinum group metal film can be improved.
 本開示に従った白金族金属の回収方法においては、(i)基板が取り出された前記成膜チャンバー内に、フッ素を含むクリーニングガスを導入する工程と、(ii)ソーダライム、消石灰およびCaOからなる群から選択される少なくとも1つからなる捕捉剤を保持する第二の捕捉容器内に、成膜チャンバーから排出されるクリーニングガスを導入する工程とを備える。この構成によって、原料ガスに含まれる白金族金属を捕捉可能である第一の捕捉装置をクリーニングガスが通過することなく、クリーニングガス中に含まれる白金族金属を捕捉することができる。この構成によって、安全上の問題なく、クリーニングガス中に含まれる白金族金属を回収できる。 In the method for recovering a platinum group metal according to the present disclosure, (i) a step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out, and (ii) from soda lime, slaked lime and CaO. A step of introducing the cleaning gas discharged from the film forming chamber into the second trapping container holding the trapping agent consisting of at least one selected from the group. With this configuration, the platinum group metal contained in the cleaning gas can be captured without the cleaning gas passing through the first capture device capable of capturing the platinum group metal contained in the raw material gas. With this configuration, the platinum group metal contained in the cleaning gas can be recovered without any safety problem.
 上記白金族金属の回収方法において、捕捉剤をソーダライムとしてもよい。捕捉剤がソーダライムである場合、クリーニングガスによってフッ化された白金族金属の回収効率に優れるとともに、フッ素を含むクリーニングガスを確実に無害化可能であり、安全性に優れる。 In the above platinum group metal recovery method, the scavenger may be soda lime. When the scavenger is soda lime, the recovery efficiency of the platinum group metal fluoride fluorided by the cleaning gas is excellent, and the cleaning gas containing fluorine can be reliably detoxified, which is excellent in safety.
 上記白金族金属の回収方法において、白金族金属はルテニウムまたはオスミウムであってもよい。白金族金属がルテニウム又はオスミウムである場合、欠陥の少ない高品質な薄膜が得られるとともに、回収工程においては比較的低温でドライクリーニングが可能である。 In the above method for recovering a platinum group metal, the platinum group metal may be ruthenium or osmium. When the platinum group metal is ruthenium or osmium, a high-quality thin film with few defects can be obtained, and dry cleaning can be performed at a relatively low temperature in the recovery process.
 上記白金族金属の回収方法において、クリーニングガスとしてClFを用いることができる。ClFは白金族金属の成膜におけるドライクリーニングガスとして実績が多く、温和な条件で確実にドライクリーニングを実施できる。 In the method for recovering a platinum group metal, ClF 3 can be used as a cleaning gas. ClF 3 has many achievements as a dry cleaning gas in the film formation of platinum group metals, and can reliably perform dry cleaning under mild conditions.
 上記白金族金属の回収方法において、工程(i)および(ii)の後に、(iii)前記捕捉剤から白金族金属を取り出す工程をさらに備えることができる。工程(iii)では、白金族金属が捕捉剤から金属化合物として分離され、さらに精製等の処理に供された後、再び成膜原料として使用することが可能となる。 In the platinum group metal recovery method, after steps (i) and (ii), (iii) a step of extracting the platinum group metal from the scavenger can be further provided. In the step (iii), the platinum group metal is separated from the scavenger as a metal compound, further subjected to a treatment such as purification, and then can be used again as a film forming raw material.
 上記白金族金属の回収方法において、捕捉容器を成膜装置から取り外した後、捕捉剤に強酸を導入することによって、捕捉剤に吸着された白金族金属フッ化物を白金族金属水溶液として取り出す工程を含むことができる。かかる工程によれば、汎用的な材料を用いてシンプルな工程で捕捉剤から白金族金属を回収することが可能であり、実用上の適合性に優れる。 In the above method for recovering a platinum group metal, a step of removing the platinum group metal fluoride adsorbed by the scavenger as a platinum group metal aqueous solution by introducing a strong acid into the scavenger after removing the capture container from the film forming apparatus is performed. Can include. According to such a step, it is possible to recover the platinum group metal from the scavenger by a simple step using a general-purpose material, and the suitability for practical use is excellent.
 本開示に従った白金族金属含有膜の製造方法は、
(I)成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜する工程と、
(II)前記白金族金属含有膜が成膜された前記基板を前記成膜チャンバーから取り出す工程と、
(III)成膜チャンバー内に存在する白金族金属を回収する工程と、を備え、
 前記(III)成膜チャンバー内に存在する白金族金属を回収する工程は、前記白金族金属の回収方法により実施されるものとできる。
The method for producing a platinum group metal-containing film according to the present disclosure is as follows.
(I) A step of introducing a raw material gas containing a platinum group metal into a film forming chamber and forming a platinum group metal-containing film on the surface of a substrate housed in the film forming chamber.
(II) A step of taking out the substrate on which the platinum group metal-containing film is formed from the film forming chamber, and
(III) A step of recovering the platinum group metal existing in the film forming chamber is provided.
The step of recovering the platinum group metal existing in the film forming chamber (III) can be carried out by the method of recovering the platinum group metal.
 前記の製造方法によれば、白金族金属含有膜の成膜工程、基板の取り出し工程および成膜チャンバー内に存在する白金族金属を回収する工程が、一連の工程として連続的に実施されうる。また、既存の成膜チャンバーの構成を変更することなく白金族金属の回収が可能である。このため、成膜工程のレギュレーションの変更や再調整が不要でありながら、製造方法全体としての白金族金属の回収効率を向上させることができる。 According to the above-mentioned manufacturing method, the step of forming a platinum group metal-containing film, the step of taking out the substrate, and the step of recovering the platinum group metal existing in the film forming chamber can be continuously carried out as a series of steps. Further, it is possible to recover the platinum group metal without changing the configuration of the existing film forming chamber. Therefore, it is possible to improve the recovery efficiency of the platinum group metal as a whole in the manufacturing method, while it is not necessary to change or readjust the regulation of the film forming process.
 前記の製造方法において、(I)前記白金族金属含有膜を成膜する工程および(II)前記基板を前記成膜チャンバーから取り出す工程が、この順に繰り返して複数回実施され、その後に、(III)成膜チャンバー内に存在する白金族金属を回収する工程が実施されるように構成してもよい。かかる構成とすることによって、ドライクリーニングを必要以上に実施することなく、工数の低減を図るとともに、ドライクリーニングガス等の原料の使用量を抑制できる。 In the above-mentioned manufacturing method, (I) the step of forming the platinum group metal-containing film and (II) the step of taking out the substrate from the film-forming chamber are repeated a plurality of times in this order, and then (III). ) It may be configured so that the step of recovering the platinum group metal existing in the film forming chamber is carried out. With such a configuration, it is possible to reduce the number of man-hours and reduce the amount of raw materials used such as dry cleaning gas without performing dry cleaning more than necessary.
 本開示に従った成膜装置は、基材の表面に薄膜を形成するための成膜チャンバーと、前記成膜チャンバーに接続するガス供給機構と、前記成膜チャンバーに接続するガス排出機構と、前記成膜チャンバー、前記ガス供給機構、および前記ガス排出機構を制御する制御部と、を備える。前記ガス供給機構は、白金族金属を含む原料ガスを前記成膜チャンバーに供給する第一の供給配管と、フッ素を含むクリーニングガスを前記成膜チャンバーに供給する第二の供給配管と、を備える。前記ガス排出機構は、第一の排気配管と、第二の排気配管と、を備える。前記第一の排気配管は、前記成膜チャンバーと、前記成膜チャンバーから排出される前記原料ガスに含まれる白金族金属を捕捉可能である第一の捕捉装置と、を接続する。前記第二の排気配管は、前記成膜チャンバーと、前記成膜チャンバーから排出される前記クリーニングガスに含まれる白金族金属を捕捉可能である捕捉剤を保持する第二の捕捉装置と、を接続する。本開示の成膜装置によれば、上述の白金族金属の回収方法および上述の白金族金属含有膜の製造方法を好適に実施可能である。 The film forming apparatus according to the present disclosure includes a film forming chamber for forming a thin film on the surface of the substrate, a gas supply mechanism connected to the film forming chamber, and a gas discharge mechanism connected to the film forming chamber. The film forming chamber, the gas supply mechanism, and a control unit for controlling the gas discharge mechanism are provided. The gas supply mechanism includes a first supply pipe that supplies a raw material gas containing a platinum group metal to the film forming chamber, and a second supply pipe that supplies a cleaning gas containing fluorine to the film forming chamber. .. The gas discharge mechanism includes a first exhaust pipe and a second exhaust pipe. The first exhaust pipe connects the film forming chamber and the first capturing device capable of capturing the platinum group metal contained in the raw material gas discharged from the film forming chamber. The second exhaust pipe connects the film forming chamber and a second capturing device that holds a scavenger capable of capturing the platinum group metal contained in the cleaning gas discharged from the film forming chamber. do. According to the film forming apparatus of the present disclosure, the above-mentioned method for recovering a platinum group metal and the above-mentioned method for producing a platinum group metal-containing film can be suitably carried out.
 前記の製造方法において、第二の捕捉装置を、前記第二の排気配管から取り外し可能とすることができる。第二の捕捉装置を取り外し可能とすることによって、成膜チャンバーやガス供給機構の設置場所とは異なる場所で、成膜工程とは独立したタイミングで白金族金属の取り出しが可能となる。また、容易に第二の捕捉装置を交換することが可能となる。例えば、複数の捕捉装置を交換しながら使用することで、成膜工程の時間管理に影響を及ぼすことなく、白金族金属の回収を行うことができる。 In the above manufacturing method, the second capture device can be made removable from the second exhaust pipe. By making the second capture device removable, it is possible to take out the platinum group metal at a timing independent of the film forming process at a place different from the place where the film forming chamber and the gas supply mechanism are installed. In addition, the second capture device can be easily replaced. For example, by using a plurality of capture devices while exchanging them, it is possible to recover the platinum group metal without affecting the time control in the film forming process.
[実施の形態の具体例]
 以下、図面に基づいて本開示の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
[Specific example of the embodiment]
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numbers, and the description thereof will not be repeated.
<成膜装置>
 図1は、本開示の成膜装置の一実施形態における、配管による接続状態の概要を示した図である。本開示の成膜装置によれば、ルテニウム含有膜、オスミウム含有膜等の白金族金属含有膜が成膜可能であるが、ここでは一例として、ルテニウム原料ガスとしてRu(CO)12ガスを用い、フッ素含むクリーニングガスとしてClFガスを用いる例を示す。
<Film formation device>
FIG. 1 is a diagram showing an outline of a connection state by piping in one embodiment of the film forming apparatus of the present disclosure. According to the deposition apparatus of the present disclosure, the ruthenium-containing film and a platinum group metal-containing film osmium-containing film or the like can be deposited, as an example, the Ru 3 (CO) 12 gas as a ruthenium source gas used , an example of using a ClF 3 gas as a cleaning gas fluorine containing.
 成膜装置1は、CVD法によりルテニウム含有膜を成膜する成膜装置である。図1を参照して、成膜装置1は、成膜チャンバー10と、原料ガスおよびクリーニングガスを成膜チャンバー10に供給するガス供給機構20と、成膜チャンバー10から原料ガスおよびクリーニングガスを排出するガス排出機構50と、を備える。図2を参照して、成膜チャンバー10、ガス供給機構20およびガス排出機構50は、制御部100によって制御される。 The film forming apparatus 1 is a film forming apparatus for forming a ruthenium-containing film by a CVD method. With reference to FIG. 1, the film forming apparatus 1 discharges the raw material gas and the cleaning gas from the film forming chamber 10, the gas supply mechanism 20 for supplying the raw material gas and the cleaning gas to the film forming chamber 10, and the film forming chamber 10. The gas discharge mechanism 50 is provided. With reference to FIG. 2, the film forming chamber 10, the gas supply mechanism 20, and the gas discharge mechanism 50 are controlled by the control unit 100.
 成膜チャンバー10は、CVD法によりルテニウム含有膜を成膜する機能を有するものであれば、枚葉式の成膜チャンバーであっても、バッチ式の成膜チャンバーでもよい。成膜チャンバー10は、処理に供される基板を搬入および搬出するためのゲート(図示せず)、および、チャンバー内を所定の温度にするためのヒーター(図示せず)を備える。 The film forming chamber 10 may be a single-wafer type film forming chamber or a batch type film forming chamber as long as it has a function of forming a ruthenium-containing film by a CVD method. The film forming chamber 10 includes a gate (not shown) for carrying in and out the substrate to be processed, and a heater (not shown) for bringing the inside of the chamber to a predetermined temperature.
 図1を参照して、成膜チャンバー10は、ガス供給機構20の第一の供給配管91および第二の供給配管92を介して、ガス供給機構20と接続されている。第一の供給配管91は、ルテニウム含有膜をCVD法によって成膜するためのルテニウムを含む原料ガスを、成膜チャンバー10に供給するよう構成されている。第二の供給配管92は、フッ素を含むクリーニングガスを成膜チャンバー10に供給するよう構成されている。 With reference to FIG. 1, the film forming chamber 10 is connected to the gas supply mechanism 20 via the first supply pipe 91 and the second supply pipe 92 of the gas supply mechanism 20. The first supply pipe 91 is configured to supply a raw material gas containing ruthenium for forming a ruthenium-containing film by a CVD method to the film forming chamber 10. The second supply pipe 92 is configured to supply a cleaning gas containing fluorine to the film forming chamber 10.
 なお、図1に示される実施形態では、第一の供給配管91および第二の供給配管92が成膜チャンバー10に別々に接続されているが、第一の供給配管91と第二の供給配管92とを成膜チャンバー10よりも上流で合流させて、成膜チャンバー10に設けられるガス供給口は1箇所とすることもできる。第一の供給配管91と第二の供給配管92とを成膜チャンバー10の上流で合流させる場合には、第一の供給配管91および第二の供給配管92のそれぞれにバルブを設けて、第一の供給配管91と第二の供給配管92のいずれからガスを供給するかを切り替えることができる。 In the embodiment shown in FIG. 1, the first supply pipe 91 and the second supply pipe 92 are separately connected to the film forming chamber 10, but the first supply pipe 91 and the second supply pipe are connected separately. It is also possible to combine the 92 with the film forming chamber 10 upstream of the film forming chamber 10 so that the film forming chamber 10 is provided with one gas supply port. When the first supply pipe 91 and the second supply pipe 92 are merged upstream of the film forming chamber 10, valves are provided in each of the first supply pipe 91 and the second supply pipe 92, and the first supply pipe 91 and the second supply pipe 92 are provided with valves. It is possible to switch whether to supply gas from the first supply pipe 91 or the second supply pipe 92.
 成膜チャンバー10は、ガス排出機構50の第一の排気配管75および第二の排気配管76を介して、ガス排出機構50と接続されている。第一の排気配管75は、成膜工程において成膜チャンバー10から排出されるガスを排出するために設けられる。第二の排気配管76は、クリーニング工程において成膜チャンバー10から排出されるガスを排気するために設けられる。 The film forming chamber 10 is connected to the gas discharge mechanism 50 via the first exhaust pipe 75 and the second exhaust pipe 76 of the gas discharge mechanism 50. The first exhaust pipe 75 is provided to discharge the gas discharged from the film forming chamber 10 in the film forming process. The second exhaust pipe 76 is provided to exhaust the gas discharged from the film forming chamber 10 in the cleaning step.
 なお、図1に示される実施形態では、第一の排気配管75および第二の排気配管76が成膜チャンバー10に別々に接続されているが、成膜チャンバー10のガス排出口は一箇所として、その下流において第一の排気配管75と第二の排気配管76とを分岐させる態様としてもよい。 In the embodiment shown in FIG. 1, the first exhaust pipe 75 and the second exhaust pipe 76 are separately connected to the film forming chamber 10, but the gas discharge port of the film forming chamber 10 is provided at one place. The first exhaust pipe 75 and the second exhaust pipe 76 may be branched downstream thereof.
 ガス供給機構20について説明する。
 ガス供給機構20は、ルテニウム含有膜をCVD法によって成膜するための原料ガス、および、成膜チャンバー10をクリーニングするためのクリーニングガスを、成膜チャンバー10に供給するための機構である。ガス供給機構20は、固体状の成膜原料PとしてRu(CO)12を収容する成膜原料容器45を有している。成膜原料容器45の周囲にはヒーター46が設けられている。成膜原料容器45に収容されたRu(CO)12は、ヒーター46によって加熱され、気化してRu(CO)12ガス(ルテニウムカルボニルガス)となる。成膜原料容器45には、上方から、キャリアガスとしてCOガスを供給するキャリアガス供給配管25が挿入されている。キャリアガス供給配管25には、COガスを供給するキャリアガス供給源24が接続されている。また、成膜原料容器45には、原料ガス供給配管26が挿入されている。キャリアガス供給配管25には、流量制御用のマスフローコントローラ31とその前後のバルブ44a、44bが設けられている。また、原料ガス供給配管26には、Ru(CO)12ガス量を把握するための流量計35と、流量計35の計測値に基づいて開閉を調節可能であるバルブ44cが設けられている。
The gas supply mechanism 20 will be described.
The gas supply mechanism 20 is a mechanism for supplying the raw material gas for forming a ruthenium-containing film by the CVD method and the cleaning gas for cleaning the film forming chamber 10 to the film forming chamber 10. The gas supply mechanism 20 has a film forming raw material container 45 for accommodating Ru 3 (CO) 12 as a solid film forming raw material P. A heater 46 is provided around the film-forming raw material container 45. The Ru 3 (CO) 12 housed in the film-forming raw material container 45 is heated by the heater 46 and vaporized to become the Ru 3 (CO) 12 gas (ruthenium carbonyl gas). A carrier gas supply pipe 25 for supplying CO gas as a carrier gas is inserted into the film-forming raw material container 45 from above. A carrier gas supply source 24 for supplying CO gas is connected to the carrier gas supply pipe 25. Further, a raw material gas supply pipe 26 is inserted into the film-forming raw material container 45. The carrier gas supply pipe 25 is provided with a mass flow controller 31 for flow rate control and valves 44a and 44b before and after the mass flow controller 31. Further, the raw material gas supply pipe 26 is provided with a flow meter 35 for grasping the amount of Ru 3 (CO) 12 gas and a valve 44c whose opening and closing can be adjusted based on the measured value of the flow meter 35. ..
 ガス供給機構20は、希釈ガスであるArを供給する付加ガス供給源23と、付加ガス供給配管27とを有する。付加ガス供給配管27は、付加ガス供給源23と、原料ガス供給配管26および第一の供給配管91と、を接続している。付加ガス供給配管27の付加ガス供給源23側には、流量制御用のマスフローコントローラ32とその前後のバルブ43a,43bが設けられている。 The gas supply mechanism 20 has an additional gas supply source 23 for supplying Ar, which is a diluted gas, and an additional gas supply pipe 27. The additional gas supply pipe 27 connects the additional gas supply source 23 with the raw material gas supply pipe 26 and the first supply pipe 91. On the side of the additional gas supply source 23 of the additional gas supply pipe 27, a mass flow controller 32 for flow rate control and valves 43a and 43b before and after the mass flow controller 32 are provided.
 上記の構成により、成膜原料容器45から供給されたRu(CO)12を含む原料ガスは、キャリアガスであるCOガスに搬送され、Arガスと混合されて、第一の供給配管91を通って、成膜チャンバー10内に供給されうる。なお、キャリアガス供給配管25を分岐させて、COガスをカウンターガスとして、原料ガスとは別に成膜チャンバー10内に導入する構成としてもよい。 With the above configuration, the raw material gas containing Ru 3 (CO) 12 supplied from the film forming raw material container 45 is conveyed to the CO gas, which is a carrier gas, and mixed with the Ar gas to form the first supply pipe 91. Through it, it can be supplied into the film forming chamber 10. The carrier gas supply pipe 25 may be branched and the CO gas may be introduced into the film forming chamber 10 separately from the raw material gas as a counter gas.
 ガス供給機構20は、クリーニングガスとして用いられるClFガスを供給する、クリーニングガス供給源22と、クリーニングガス供給配管28と、を有しているクリーニングガス供給配管28は、クリーニングガス供給源22と、キャリアガス供給配管29および第二の供給配管92と、を接続している。クリーニングガス供給配管28のクリーニングガス供給源22側には、流量制御用のマスフローコントローラ33とその前後のバルブ42a、42bが設けられている。 The cleaning gas supply pipe 28 having a cleaning gas supply source 22 and a cleaning gas supply pipe 28 for supplying ClF 3 gas used as a cleaning gas is a cleaning gas supply source 22. , The carrier gas supply pipe 29 and the second supply pipe 92 are connected. On the cleaning gas supply source 22 side of the cleaning gas supply pipe 28, a mass flow controller 33 for flow rate control and valves 42a and 42b before and after the mass flow controller 33 are provided.
 クリーニングガスであるClFガスは、キャリアガス供給源21からキャリアガスとして供給されるArガスにより搬送される。キャリアガス供給源21にはキャリアガス供給配管29の一端が接続されており、キャリアガス配管29の他端はクリーニングガス供給配管28および第二の供給配管92に接続されている。キャリアガス供給配管29のキャリアガス供給源21側には、流量制御用のマスフローコントローラ34とその前後のバルブ41a、41bが設けられている。 The ClF 3 gas, which is a cleaning gas, is conveyed by an Ar gas supplied as a carrier gas from the carrier gas supply source 21. One end of the carrier gas supply pipe 29 is connected to the carrier gas supply source 21, and the other end of the carrier gas pipe 29 is connected to the cleaning gas supply pipe 28 and the second supply pipe 92. On the carrier gas supply source 21 side of the carrier gas supply pipe 29, a mass flow controller 34 for flow rate control and valves 41a and 41b before and after the mass flow controller 34 are provided.
 上記の構成により、クリーニングガス供給源22から供給されたClFガスは、Arガスにキャリアされて、第二の供給配管92を介して成膜チャンバー10内に供給されうる。 With the above configuration, the ClF 3 gas supplied from the cleaning gas supply source 22 can be carried by the Ar gas and supplied into the film forming chamber 10 via the second supply pipe 92.
 ガス排出機構50について説明する。
 ガス排出機構50は、成膜チャンバー10から、成膜に供された後の原料ガスおよびドライクリーニング後のクリーニングガスを排出するための機構である。ガス排出機構50は、第一の排気配管75によって成膜チャンバー10と接続される、第一の捕捉装置51を備える。第一の捕捉装置51は、成膜チャンバー10から排出される原料ガスに含まれるルテニウムを捕捉可能である。第一の捕捉装置51の具体的な態様は、例えば、コールドトラップである。第一の捕捉装置51がコールドトラップである場合、冷媒として水を使用できる。また、冷媒を使用することに替えて、第一の捕捉装置51として冷却面を備える真空コールドトラップを用いることもできる。
The gas discharge mechanism 50 will be described.
The gas discharge mechanism 50 is a mechanism for discharging the raw material gas after being subjected to film formation and the cleaning gas after dry cleaning from the film forming chamber 10. The gas discharge mechanism 50 includes a first capture device 51 connected to the film forming chamber 10 by a first exhaust pipe 75. The first capture device 51 can capture ruthenium contained in the raw material gas discharged from the film forming chamber 10. A specific embodiment of the first capture device 51 is, for example, a cold trap. When the first capture device 51 is a cold trap, water can be used as the refrigerant. Further, instead of using the refrigerant, a vacuum cold trap provided with a cooling surface can be used as the first capture device 51.
 第一の捕捉装置51には、配管を介してドライポンプ61が接続されている。ドライポンプ61は、圧力計(図示していない)の計測値に基づいて成膜チャンバー10からの排気を行い、また、成膜チャンバー10内を所定の圧力に維持する。 A dry pump 61 is connected to the first capture device 51 via a pipe. The dry pump 61 exhausts air from the film forming chamber 10 based on a measured value of a pressure gauge (not shown), and maintains the inside of the film forming chamber 10 at a predetermined pressure.
 ドライポンプ61には、配管を介して除害装置80が接続されている。除害装置80は、COガスおよび第一の捕捉装置51で捕捉できなかったルテニウムを含む原料ガスを除害する。除害装置80の具体的な態様は、例えば燃焼式除害装置である。除害装置80に搬送されるCOガスは除害装置80において焼却され、COガスとして大気中に排出される。除害装置としては、燃焼式除害装置のほか、プラズマ式除害装置、ヒーター式除害装置等、加熱式除害装置を用いることができる。 The abatement device 80 is connected to the dry pump 61 via a pipe. The abatement device 80 removes the CO gas and the raw material gas containing ruthenium that could not be captured by the first capture device 51. A specific embodiment of the abatement device 80 is, for example, a combustion type abatement device. The CO gas conveyed to the abatement device 80 is incinerated in the abatement device 80 and discharged into the atmosphere as CO 2 gas. As the abatement device, in addition to the combustion type abatement device, a heating type aggression device such as a plasma type aggression device and a heater type aggression device can be used.
 なお、図1の実施形態においては、第一の排気配管75は第一の捕捉装置51に接続しているが、第一の排気配管75の途中に補助的な捕捉装置を設けることもできる。また、第一の捕捉装置51の上流にドライポンプを配置し、第一の捕捉装置51を大気圧下にあるものとすることもできる。 Although the first exhaust pipe 75 is connected to the first capture device 51 in the embodiment of FIG. 1, an auxiliary capture device may be provided in the middle of the first exhaust pipe 75. Further, a dry pump may be arranged upstream of the first capture device 51 so that the first capture device 51 is under atmospheric pressure.
 ガス排出機構50は、第二の排気配管76によって成膜チャンバー10と接続される第二の捕捉装置52を備える。第二の捕捉装置52は、例えばステンレス製の容器中に個体粒状の捕捉剤53を保持する、乾式の除害装置である。捕捉剤53は、成膜チャンバー10のクリーニング時に成膜チャンバー10から排出されるクリーニングガスに含まれるルテニウムを捕捉可能である捕捉剤である。 The gas discharge mechanism 50 includes a second capture device 52 connected to the film forming chamber 10 by the second exhaust pipe 76. The second scavenger 52 is a dry abatement device that holds the solid-grained scavenger 53 in, for example, a stainless steel container. The scavenger 53 is a scavenger capable of capturing ruthenium contained in the cleaning gas discharged from the film forming chamber 10 when the film forming chamber 10 is cleaned.
 捕捉剤53は、例えばソーダライム、消石灰およびCaO(酸化カルシウム)からなる群から選択される少なくとも1種であることが好ましく、ソーダライムであることがより好ましい。捕捉剤53としてこれらの物質を用いることによって、クリーニングガスに含まれる、フッ素系クリーニングガスによってフッ化されたルテニウム(フッ化ルテニウム)を酸化ルテニウムとして捕捉することができる。また、捕捉剤53によってClFを除害することが可能である。 The scavenger 53 is preferably at least one selected from the group consisting of, for example, soda lime, slaked lime and CaO (calcium oxide), and more preferably soda lime. By using these substances as the scavenger 53, ruthenium (ruthenium fluoride) fluorinated by the fluorine-based cleaning gas contained in the cleaning gas can be captured as ruthenium oxide. In addition, it is possible to eliminate ClF 3 with the scavenger 53.
 第二の捕捉装置52は、クリーニングガス導入配管77を備える。クリーニングガス導入配管77はフランジ54aを介して第二の排気配管76と接続されており、捕捉剤53に挿入されている。また第二の捕捉装置52は出口配管78を備える。出口配管78は、捕捉剤53を通過した除害後のガスを排出する。出口配管78には、フランジ54bが設けられている。フランジ54a、54bの位置で、第二の捕捉装置52は第二の排気配管76から取り外し可能である。第二の捕捉装置52が第二の排気配管76から取り外し可能であるため、捕捉剤53からのルテニウムの取り出しは、成膜装置1から第二の捕捉装置52を切り離した状態で実施されうる。すなわち、捕捉剤53からのルテニウムの分離精製は、成膜装置の設置場所とは異なる場所で、成膜工程から独立したタイミングで実施されうる。 The second capture device 52 includes a cleaning gas introduction pipe 77. The cleaning gas introduction pipe 77 is connected to the second exhaust pipe 76 via the flange 54a and is inserted into the scavenger 53. The second capture device 52 includes an outlet pipe 78. The outlet pipe 78 discharges the detoxified gas that has passed through the scavenger 53. The outlet pipe 78 is provided with a flange 54b. At the positions of the flanges 54a, 54b, the second capture device 52 is removable from the second exhaust pipe 76. Since the second scavenger 52 is removable from the second exhaust pipe 76, the removal of ruthenium from the scavenger 53 can be carried out with the second scavenger 52 separated from the film forming apparatus 1. That is, the separation and purification of ruthenium from the scavenger 53 can be carried out at a location different from the installation location of the film forming apparatus and at a timing independent of the film forming process.
 図1の実施形態において、第二の捕捉装置52がルテニウムの捕捉のみならず、フッ素化合物の除害機能を有する場合、第二の捕捉装置52は除害装置80に接続する必要はなく、高価なステンレス配管を用いる必要もない。その結果、除害装置80へのフッ素化合物の混入がなくなることから、腐食が起こらず、メンテナンス頻度を減らすことが可能になる。 In the embodiment of FIG. 1, when the second capture device 52 has a function of not only capturing ruthenium but also abatement of a fluorine compound, the second capture device 52 does not need to be connected to the abatement device 80 and is expensive. There is no need to use stainless steel piping. As a result, since the fluorine compound is not mixed into the abatement device 80, corrosion does not occur and the maintenance frequency can be reduced.
 次に、図1、2を参照して、図1に示された実施形態の制御上の接続を説明する。
 図2を参照して、成膜装置1は、成膜チャンバー10と、ガス供給機構20と、ガス排出機構50と、制御部100とを備える。
Next, the control connection of the embodiment shown in FIG. 1 will be described with reference to FIGS. 1 and 2.
With reference to FIG. 2, the film forming apparatus 1 includes a film forming chamber 10, a gas supply mechanism 20, a gas discharge mechanism 50, and a control unit 100.
 制御部100は、成膜装置の流路制御装置として機能し、複数のガス供給源、成膜原料容器から成膜チャンバーを経て除害装置に至る、成膜装置全体を制御する。制御部100は、ガス供給機構20に含まれる複数のバルブ41a~44a、41b~44b、44cの開閉状態を制御することによって、ガス供給機構20から供給される原料ガスおよびクリーニングガスの種類、混合割合および流量を調節する。また、制御部100は、流量計35の計測値信号を受信し、計測値に応じてバルブ44cの開閉状態を調節する。制御部100は、ガス供給機構20に含まれるヒーター46を制御することによって、原料容器45内の温度を調整する。 The control unit 100 functions as a flow path control device for the film forming apparatus, and controls the entire film forming apparatus from a plurality of gas supply sources and a film forming raw material container to the abatement apparatus via the film forming chamber. The control unit 100 controls the open / closed states of the plurality of valves 41a to 44a, 41b to 44b, and 44c included in the gas supply mechanism 20 to control the types and mixing of the raw material gas and the cleaning gas supplied from the gas supply mechanism 20. Adjust the rate and flow rate. Further, the control unit 100 receives the measured value signal of the flow meter 35 and adjusts the open / closed state of the valve 44c according to the measured value. The control unit 100 adjusts the temperature inside the raw material container 45 by controlling the heater 46 included in the gas supply mechanism 20.
 制御部100はまた、所定のプロトコルに従った成膜が実行されるように、成膜チャンバー10に備えられるヒーター、サセプタ、ゲート等の動作を制御する。制御部100は、これらの動作に関して、成膜チャンバー10に備えられる温度センサ、圧力センサ等の計測値信号を受信し、計測値に応じて動作のオン/オフ、程度やタイミングを調整することができる。 The control unit 100 also controls the operation of the heater, susceptor, gate, etc. provided in the film forming chamber 10 so that the film forming according to a predetermined protocol is executed. Regarding these operations, the control unit 100 may receive measured value signals of the temperature sensor, pressure sensor, etc. provided in the film forming chamber 10 and adjust the on / off, degree, and timing of the operation according to the measured values. can.
 制御部100はまた、ガス排出機構50に含まれる複数のバルブ71~73の開閉状態を制御する。また、制御部100は、ガス排出機構50に含まれるポンプ61、62の出力を制御する。制御部100がポンプ61、62の出力を調節することによって、成膜チャンバー10およびそれに接続する配管内の圧力を所定値に調整し、維持する。ポンプ61、62の出力を制御することによって、成膜チャンバー10に供給される原料ガスおよびクリーニングガスの流量および圧力、成膜チャンバー10から排出される成膜後の原料ガスおよびクリーニング後のクリーニングガスの流量および圧力が、調整される。 The control unit 100 also controls the open / closed state of the plurality of valves 71 to 73 included in the gas discharge mechanism 50. Further, the control unit 100 controls the outputs of the pumps 61 and 62 included in the gas discharge mechanism 50. By adjusting the outputs of the pumps 61 and 62, the control unit 100 adjusts and maintains the pressure in the film forming chamber 10 and the piping connected to the film forming chamber 10 to a predetermined value. By controlling the outputs of the pumps 61 and 62, the flow rate and pressure of the raw material gas and cleaning gas supplied to the film forming chamber 10, the raw material gas after film forming and the cleaning gas after cleaning discharged from the film forming chamber 10 Flow rate and pressure are adjusted.
<成膜方法に用いられる材料>
<成膜に用いられる材料>
 本開示の成膜装置において成膜される金属膜は、白金族金属含有膜であり、白金族金属としては、ルテニウム、オスミウム、イリジウム、プラチナが挙げられる。特に、ルテニウム含有膜またはオスミウム含有膜であることが好ましい。
<Material used for film formation method>
<Material used for film formation>
The metal film formed in the film forming apparatus of the present disclosure is a platinum group metal-containing film, and examples of the platinum group metal include ruthenium, osmium, iridium, and platinum. In particular, a ruthenium-containing film or an osmium-containing film is preferable.
 ルテニウム含有膜を成膜する場合、ルテニウム原料ガスとしては、有機系、無機系の種々のものを用いることができる。例えば、ルテニウムカルボニル(Ru(CO)12)を好適に用いることができる。Ru(CO)12ガスは、熱分解によりRuとなる。このとき、Ru(CO)12ガスのキャリアガスとしてCOガスを用いることが好ましい。キャリアガスとしてCOを用いることにより、処理容器内でのRu(CO)12ガスの分解反応を抑制することができ、Ru(CO)12の構造を極力保ったまま被処理基板に供給して成膜を行うことができる。Ru(CO)12ガスと反応ガスとを反応させて、ルテニウム膜以外のルテニウム含有膜を成膜してもよい。 When forming a ruthenium-containing film, various organic and inorganic ruthenium raw material gases can be used as the ruthenium raw material gas. For example, ruthenium carbonyl (Ru 3 (CO) 12 ) can be suitably used. Ru 3 (CO) 12 gas becomes Ru by thermal decomposition. At this time, it is preferable to use CO gas as the carrier gas of Ru 3 (CO) 12 gas. By using CO as the carrier gas, the decomposition reaction of Ru 3 (CO) 12 gas in the processing container can be suppressed, and the structure of Ru 3 (CO) 12 is supplied to the substrate to be processed while maintaining the structure as much as possible. Can form a film. A ruthenium-containing film other than the ruthenium film may be formed by reacting the Ru 3 (CO) 12 gas with the reaction gas.
 ルテニウム原料ガスとしては、Ru(CO)12以外に、RuO、Ru(EtCp)、Ru(DMDB)(CO)、RuO(HFE)、Ru(HDAC)、Ru(PF)、Ru(AMD)CO、RuCOT等を挙げることができ、Ru(CO)12を含むこれら原料の少なくとも一種を用いることができる。 As ruthenium raw material gas, in addition to Ru 3 (CO) 12 , RuO 2 , Ru (EtCp) 2 , Ru (DMDB) (CO) 3 , RuO 4 (HFE), Ru (HDAC), Ru (PF 3 ), Ru (AMD) 2 CO, RuCOT and the like can be mentioned, and at least one of these raw materials including Ru 3 (CO) 12 can be used.
 ルテニウム膜以外のルテニウム含有膜を成膜する場合の反応ガスは、ルテニウム原料ガスおよび得ようとするルテニウム含有膜に応じて適宜選択される。反応ガスとしては、例えば、CO、O、H、SiH、Si、Si、Si10、NH、CH(NH)NH、C、N等を挙げることができ、これらの少なくとも一種を用いることができる。 The reaction gas for forming a ruthenium-containing film other than the ruthenium film is appropriately selected depending on the ruthenium raw material gas and the ruthenium-containing film to be obtained. Examples of the reaction gas include CO 2 , O 2 , H 2 , Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , NH 3 , CH 3 (NH) NH 2 , C 2 H 8 N. 2 , N 2 H 4, etc. can be mentioned, and at least one of these can be used.
 反応ガスとしてCO、O、Hを用いる場合は、ルテニウム膜または酸化ルテニウム膜を形成することができる。反応ガスとしてSiH、Si、Si、Si10を用いる場合は、Siを含有したルテニウム膜を形成することができる。反応ガスとしてNH、CH(NH)NH、C、Nを用いる場合は、Nを含有したルテニウム膜を形成することができる。また、ドーパントを含有するガスを用いてドープされたルテニウム膜を形成することもできる。 When CO 2 , O 2 , or H 2 is used as the reaction gas, a ruthenium film or a ruthenium oxide film can be formed. When SiH 4 , Si 2 H 6 , Si 3 H 8 , or Si 4 H 10 is used as the reaction gas, a ruthenium film containing Si can be formed. When NH 3 , CH 3 (NH) NH 2 , C 2 H 8 N 2 , and N 2 H 4 are used as the reaction gas, a ruthenium film containing N can be formed. It is also possible to form a doped ruthenium film using a gas containing a dopant.
 ルテニウム単体膜を成膜する場合、反応ガスは用いない。ルテニウム単体膜を成膜する場合に原料ガスを希釈および搬送するためのキャリアガスとしては、Nガスや希ガス等の不活性ガスを用いることができる。希ガスとしては、Ar、He、Ne、Xe、Kr等を挙げることができる。 When forming a ruthenium simple substance film, no reaction gas is used. As a carrier gas for diluting and transporting the raw material gas in the case of forming a ruthenium single film, it is possible to use an inert gas such as N 2 gas or a rare gas. Examples of the rare gas include Ar, He, Ne, Xe, Kr and the like.
<クリーニングに用いられる材料>
 本開示の回収方法および製造方法では、クリーニングガスとしてフッ素を含むクリーニングガスを用いる。フッ素を含むクリーニングガスとしては、ClFを好適に用いることができる。ClF以外のクリーニングガスとしては、F、F/N混合ガス、プラズマ状態で励起されたNF、CF、C、C、SF等が挙げられる。これらのフッ素を含むクリーニングガスは、単独でも、2種以上を混合して用いてもよい。
<Material used for cleaning>
In the recovery method and the manufacturing method of the present disclosure, a cleaning gas containing fluorine is used as the cleaning gas. ClF 3 can be preferably used as the cleaning gas containing fluorine. Examples of the cleaning gas other than ClF 3 include F 2 , F 2 / N 2 mixed gas, NF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 excited in a plasma state, and the like. These fluorine-containing cleaning gases may be used alone or in combination of two or more.
 クリーニングにおいては、上記のクリーニングガスを搬送するキャリアガスを用いてもよい。キャリアガスとしてはNガスや希ガス等の不活性ガスを用いることができる。希ガスとしては、Ar、He、Ne、Xe、Kr等を挙げることができる。 In cleaning, a carrier gas that carries the above-mentioned cleaning gas may be used. The carrier gas may be an inert gas such as N 2 gas or a rare gas. Examples of the rare gas include Ar, He, Ne, Xe, Kr and the like.
<成膜方法>
 図1~図3を参照して、本開示の一実施形態であるルテニウム含有膜の製造方法について説明する。
 図3は、本開示の一実施形態であるルテニウム含有膜の製造方法を示すフローチャートである。図3に示すように、本実施形態にかかる製造方法は、基板上にルテニウム含有膜を成膜する工程S10と、成膜チャンバーから基板を取り出す工程S20と、成膜チャンバーにクリーニングガスを導入する工程S30と、クリーニングガスを捕捉容器に導入する工程S40とを有する。
<Film formation method>
A method for producing a ruthenium-containing film according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 3.
FIG. 3 is a flowchart showing a method for producing a ruthenium-containing film according to an embodiment of the present disclosure. As shown in FIG. 3, the manufacturing method according to the present embodiment includes a step S10 for forming a ruthenium-containing film on a substrate, a step S20 for taking out the substrate from the film forming chamber, and introducing a cleaning gas into the film forming chamber. It has a step S30 and a step S40 for introducing the cleaning gas into the trapping container.
 基板上にルテニウム含有膜を成膜する工程S10について説明する。成膜工程S10では、制御部100によって次の動作が実行される。 The step S10 for forming a ruthenium-containing film on the substrate will be described. In the film forming step S10, the following operation is executed by the control unit 100.
 成膜工程S10では、成膜装置1の成膜チャンバー10内に基板を搬送し、成膜チャンバー10に備えられたヒーターとガス排出機構50のドライポンプ61とを稼働させて、成膜チャンバー10内を所定の温度および圧力とする。この時、バルブ43a、43bを開とし、パージガスとしてキャリアガスであるArを成膜チャンバー10内に導入してもよい。成膜工程S10における成膜チャンバー10内の圧力は例えば10~100Paとすることができ、温度は例えば120~250℃とすることができる。 In the film forming step S10, the substrate is conveyed into the film forming chamber 10 of the film forming apparatus 1, and the heater provided in the film forming chamber 10 and the dry pump 61 of the gas discharge mechanism 50 are operated to operate the film forming chamber 10. The inside is set to a predetermined temperature and pressure. At this time, the valves 43a and 43b may be opened and Ar, which is a carrier gas, may be introduced into the film forming chamber 10 as a purge gas. The pressure in the film forming chamber 10 in the film forming step S10 can be, for example, 10 to 100 Pa, and the temperature can be, for example, 120 to 250 ° C.
 同時にまたは続いて、成膜原料容器45のヒーター46を動作させて、成膜原料P(Ru(CO)12)を加熱し、気化させる。また、バルブ44a,44bを開にして、キャリアガス供給配管25を介して成膜原料容器45にCOガスを吹き込む。成膜原料容器45内のRu(CO)12ガスは、COガスによりキャリアされた状態で、原料ガス供給配管26および第一の供給配管91を介して成膜チャンバー10内に供給される。Ru(CO)12ガスの流量は流量計35で計測され、計測値に応じて制御部100はバルブ44cの開閉状態を変更しうる。また、制御部100はバルブ43a、43bの開閉状態を調節し、付加ガス供給源23から付加ガス(希釈ガス)を供給できる。原料ガスの流量および原料ガスと希釈ガスとの混合割合は、目的とするルテニウム含有膜の膜厚や基板の種類等に応じて適宜設定することができる。 At the same time or subsequently, the heater 46 of the film-forming raw material container 45 is operated to heat and vaporize the film-forming raw material P (Ru 3 (CO) 12). Further, the valves 44a and 44b are opened, and CO gas is blown into the film forming raw material container 45 via the carrier gas supply pipe 25. The Ru 3 (CO) 12 gas in the film forming raw material container 45 is supplied into the film forming chamber 10 via the raw material gas supply pipe 26 and the first supply pipe 91 in a state of being carrierd by the CO gas. The flow rate of the Ru 3 (CO) 12 gas is measured by the flow meter 35, and the control unit 100 can change the open / closed state of the valve 44c according to the measured value. Further, the control unit 100 can adjust the open / closed state of the valves 43a and 43b and supply the added gas (diluted gas) from the added gas supply source 23. The flow rate of the raw material gas and the mixing ratio of the raw material gas and the diluted gas can be appropriately set according to the film thickness of the target ruthenium-containing film, the type of the substrate, and the like.
 上述の動作によって、成膜チャンバー10内に載置された基板の表面に、所定の膜厚を有するルテニウム含有膜が成膜される。 By the above operation, a ruthenium-containing film having a predetermined film thickness is formed on the surface of the substrate placed in the film forming chamber 10.
 成膜工程S10では、ガス供給機構20のバルブ41a、41b、42a、42bは閉であり、第二の供給配管92から成膜チャンバー10へのガスは遮断される。 In the film forming step S10, the valves 41a, 41b, 42a, 42b of the gas supply mechanism 20 are closed, and the gas from the second supply pipe 92 to the film forming chamber 10 is shut off.
 成膜工程S10が実施される間、バルブ71は開、バルブ72は閉である。すなわち、成膜工程S10において、成膜チャンバー10から排気されるガスは、第一の排気配管75を通じて排出される。成膜工程S10において成膜チャンバーから排気されるガスは、原料ガスおよび希釈ガスを含む。付加ガスとして反応ガスを用いた場合には、排気ガス中に、ルテニウムと反応ガスとの反応生成物も含まれる。 While the film forming step S10 is being carried out, the valve 71 is open and the valve 72 is closed. That is, in the film forming step S10, the gas exhausted from the film forming chamber 10 is discharged through the first exhaust pipe 75. The gas exhausted from the film forming chamber in the film forming step S10 includes a raw material gas and a diluted gas. When a reaction gas is used as the additional gas, the reaction product of ruthenium and the reaction gas is also contained in the exhaust gas.
 成膜工程S10における排気ガスは、第一の捕捉装置51を通過し、第一の捕捉装置51において排気ガスに含まれるルテニウムが捕捉される。第一の捕捉装置51において捕捉されるルテニウムは、一般的に、成膜原料として用いられるルテニウムのうちの70%程度であると考えられている。第一の捕捉装置51を通過した後の排気ガスは、主にCOガスを含む。 The exhaust gas in the film forming step S10 passes through the first capture device 51, and the ruthenium contained in the exhaust gas is captured by the first capture device 51. The ruthenium captured by the first capture device 51 is generally considered to be about 70% of the ruthenium used as a film forming raw material. The exhaust gas after passing through the first capture device 51 mainly contains CO gas.
 第一の捕捉装置51を通過した排気ガスは、ドライポンプ61を経て、除害装置80に到達する。除害装置80において、例えば焼却および沈殿分離によって、排気ガスは無害化され、大気中に放出される。 The exhaust gas that has passed through the first capture device 51 reaches the abatement device 80 via the dry pump 61. In the abatement device 80, for example, by incineration and precipitation separation, the exhaust gas is detoxified and released into the atmosphere.
 成膜工程S10では、ガス排出機構50のバルブ72,73は閉であり、ポンプ62は停止している。すなわち、成膜工程S10における排気ガスは、第二の排気配管92に排出されない。 In the film forming step S10, the valves 72 and 73 of the gas discharge mechanism 50 are closed, and the pump 62 is stopped. That is, the exhaust gas in the film forming step S10 is not discharged to the second exhaust pipe 92.
 成膜チャンバーから基板を取り出す工程S20について説明する。
 成膜工程S10に続いて、表面にルテニウム含有膜が成膜された基板を成膜チャンバー10内から取り出す。この工程は公知の方法によることができ特に制限されないが、例えば、成膜工程S10において成膜チャンバー10内に原料ガスが供給され、所定の時間(例えば1~600秒)が経過した後に、成膜チャンバー10内から基板を取り出し、成膜チャンバー10内に基板が存在しない状態にすることができる。
The step S20 for taking out the substrate from the film forming chamber will be described.
Following the film forming step S10, the substrate on which the ruthenium-containing film is formed on the surface is taken out from the film forming chamber 10. This step can be performed by a known method and is not particularly limited. For example, in the film forming step S10, the raw material gas is supplied into the film forming chamber 10 and a predetermined time (for example, 1 to 600 seconds) has elapsed. The substrate can be taken out from the film chamber 10 so that the substrate does not exist in the film forming chamber 10.
 成膜工程S10および取り出し工程S20を1回または複数回繰り返した後、成膜チャンバー内のクリーニングを行うかどうかが判断される。具体的には例えば、成膜チャンバー10内のルテニウムの堆積量が許容量を超えているかどうかが判断される(Q10)。判断基準は、例えば、成膜の繰り返し回数(成膜枚数)であってもよく、成膜開始からの経過時間であってもよい。成膜チャンバー10内のルテニウムの堆積量が許容範囲内であると判断されると(Q10においてNO)、成膜工程S10および取り出し工程S20が再び実施される。 After repeating the film forming step S10 and the taking-out step S20 once or a plurality of times, it is determined whether or not to clean the inside of the film forming chamber. Specifically, for example, it is determined whether or not the amount of ruthenium deposited in the film forming chamber 10 exceeds the allowable amount (Q10). The determination criterion may be, for example, the number of times the film formation is repeated (the number of film formations), or the elapsed time from the start of the film formation. When it is determined that the amount of ruthenium deposited in the film forming chamber 10 is within the allowable range (NO in Q10), the film forming step S10 and the taking-out step S20 are carried out again.
 一方、成膜チャンバー10内のルテニウムの堆積量が許容範囲を超えていると判断されると(Q10においてYES)、成膜チャンバー内に存在するルテニウムを回収する方法が実施される。具体的には、成膜チャンバーにクリーニングガスを導入する工程S30およびクリーニングガスを捕捉容器に導入する工程S40が実施される。 On the other hand, if it is determined that the amount of ruthenium deposited in the film forming chamber 10 exceeds the allowable range (YES in Q10), a method of recovering ruthenium existing in the film forming chamber is implemented. Specifically, the step S30 for introducing the cleaning gas into the film forming chamber and the step S40 for introducing the cleaning gas into the trapping container are carried out.
 クリーニングガス導入工程S30は、成膜チャンバーから基板を取り出す工程S20の後、成膜チャンバー10内に基板が存在しない状態で実施する。成膜チャンバー10のヒーターによって、成膜チャンバー10内を所定の温度、例えば150~250℃に加熱する。 The cleaning gas introduction step S30 is carried out in a state where the substrate does not exist in the film forming chamber 10 after the step S20 of taking out the substrate from the film forming chamber. The inside of the film forming chamber 10 is heated to a predetermined temperature, for example, 150 to 250 ° C. by the heater of the film forming chamber 10.
 クリーニングガス導入工程S30において、ガス供給機構20のバルブ43a、43b、44a、44b、44cは閉であり、第一の供給配管91から成膜チャンバー10へのガスは遮断される。 In the cleaning gas introduction step S30, the valves 43a, 43b, 44a, 44b, 44c of the gas supply mechanism 20 are closed, and the gas from the first supply pipe 91 to the film forming chamber 10 is shut off.
 クリーニングガス導入工程S30において、ガス排出機構50のバルブ71は閉であり、クリーニングガスは第一の排気配管75から排出されない。ルテニウム等が捕捉された第一の捕捉装置51にクリーニングガスを導入すると爆発が生じる危険性があることから、第一の排気配管75にクリーニングガスを導入することは回避される。 In the cleaning gas introduction step S30, the valve 71 of the gas discharge mechanism 50 is closed, and the cleaning gas is not discharged from the first exhaust pipe 75. Since there is a risk of explosion if the cleaning gas is introduced into the first trapping device 51 in which ruthenium or the like is captured, it is avoided to introduce the cleaning gas into the first exhaust pipe 75.
 クリーニングガス導入工程S30において、ドライポンプ62が動作し、まずバルブ41a、41bを開として、キャリアガス供給源21からキャリアガス(例えばArガス)を供給して成膜チャンバー10内をパージする。成膜チャンバー10内の圧力は、例えば、10~1000Paに調整する。この状態でクリーニングガスであるClFを成膜チャンバー10内に導入し、ドライクリーニングを実施する。 In the cleaning gas introduction step S30, the dry pump 62 operates, first opens the valves 41a and 41b, supplies carrier gas (for example, Ar gas) from the carrier gas supply source 21, and purges the inside of the film forming chamber 10. The pressure in the film forming chamber 10 is adjusted to, for example, 10 to 1000 Pa. In this state, ClF 3 , which is a cleaning gas, is introduced into the film forming chamber 10 and dry cleaning is performed.
 特に理論に拘束されるものではないが、ドライクリーニングでは次の化学反応が生じ、成膜チャンバー10内に存在するルテニウムはフッ化ルテニウムガスとなって排出される
と考えられている。
 Ru+5/3ClF→RuF↑+5/6Cl↑   
Although not particularly bound by theory, it is considered that the following chemical reaction occurs in dry cleaning, and ruthenium existing in the film forming chamber 10 is discharged as ruthenium pentafluoride gas.
Ru + 5 / 3ClF 3 → RuF 5 ↑ + 5 / 6Cl 2
 ドライクリーニングでは、バルブ41a、41bを開とし、キャリアガスであるArガスを流しながら、さらに、バルブ42a、42bを開としてClFガスを供給する。ClFガス流量は成膜チャンバーの内部体積、成膜チャンバー内に蓄積したルテニウム膜の膜厚等に応じて適宜設定できる。ClFガスの供給時間は1~60secの範囲が好ましく、繰り返し回数は1~100回程度が好ましい。 In the dry cleaning, the valves 41a and 41b are opened and Ar gas, which is a carrier gas, is flowed, and the valves 42a and 42b are further opened to supply ClF 3 gas. The ClF 3 gas flow rate can be appropriately set according to the internal volume of the film forming chamber, the film thickness of the ruthenium film accumulated in the film forming chamber, and the like. The supply time of ClF 3 gas is preferably in the range of 1 to 60 sec, and the number of repetitions is preferably about 1 to 100 times.
 クリーニングガス導入工程S30に続いて、または、クリーニングガス導入工程S30と同時に、バルブ73、79a、79bを開とし、クリーニングガスを第二の捕捉装置52に導入する(S40)。第二の捕捉装置52はドライポンプ62の下流に備えられており、すなわち大気圧下にある。第二の捕捉容器52に導入されたクリーニングガスは、クリーニングガス導入配管77を通じて捕捉剤53の中に導入され、捕捉剤53と接触する。 Following the cleaning gas introduction step S30, or at the same time as the cleaning gas introduction step S30, the valves 73, 79a, 79b are opened, and the cleaning gas is introduced into the second capture device 52 (S40). The second capture device 52 is provided downstream of the dry pump 62, i.e., under atmospheric pressure. The cleaning gas introduced into the second capture container 52 is introduced into the capture agent 53 through the cleaning gas introduction pipe 77 and comes into contact with the capture agent 53.
 捕捉剤53に導入されるクリーニングガスは、ClFとRuF(フッ化ルテニウム)とを含有する。捕捉剤53はソーダライム、消石灰およびCaO(酸化カルシウム)からなる群から選択される少なくとも1種であり、捕捉剤がClFとフッ化ルテニウムとを捕捉することによって、クリーニングガスを除害する。 The cleaning gas introduced into the scavenger 53 contains ClF 3 and RuF 5 (ruthenium fluoride). The scavenger 53 is at least one selected from the group consisting of soda lime, slaked lime and CaO (calcium oxide), and the scavenger eliminates the cleaning gas by capturing ClF 3 and ruthenium fluoride.
 なお、ソーダライムはソーダ石灰とも称され、水酸化カルシウムを主成分とし、水、水酸化カリウム、水酸化ナトリウムを含む強塩基性の固体粒状物質である。ソーダライムの組成としては、例えば、水酸化カルシウム75wt%~85wt%、水10wt%~20wt%、水酸化カリウム1wt%~5wt%および水酸化ナトリウム1wt%~5wt%を含むものを挙げられる。 Soda lime is also called soda lime, and is a strong basic solid granular substance containing calcium hydroxide as a main component and water, potassium hydroxide, and sodium hydroxide. Examples of the composition of soda lime include those containing 75 wt% to 85 wt% of calcium hydroxide, 10 wt% to 20 wt% of water, 1 wt% to 5 wt% of potassium hydroxide, and 1 wt% to 5 wt% of sodium hydroxide.
 特に理論に拘束されるものではないが、フッ化ルテニウムと捕捉剤との接触では次の化学反応が生じ、フッ化ルテニウムは酸化ルテニウムとなって、捕捉剤に固定化されると考えられている。
Ca(OH)+RuF→CaF+RuO+CaCl
Although not particularly bound by theory, it is believed that contact between ruthenium fluoride and a scavenger causes the following chemical reaction, which turns ruthenium fluoride into ruthenium oxide and is immobilized on the scavenger. ..
Ca (OH) 2 + RuF 5 → CaF 2 + RuO 2 + CaCl 2
 第二の捕捉装置52において除害されたクリーニングガスは、第二の捕捉装置52の排気配管78を通じて大気中に放出される。 The cleaning gas detoxified by the second capture device 52 is released into the atmosphere through the exhaust pipe 78 of the second capture device 52.
 成膜チャンバー10へのクリーニングガス導入工程S30および第二の捕捉装置52へのクリーニングガス導入工程S40を1回または複数回繰り返した後、捕捉装置を交換するかどうかが判断される。具体的には、捕捉容器52の交換時期が到達しているかどうかが判断される(Q20)。判断基準は、例えば、ドライクリーニングの繰り返し回数であってもよく、捕捉装置の使用開始からの経過時間であってもよい。また、第二の捕捉装置52に設けられたガス検出器(例えばClセンサ)からの検出信号に基づいて、交換時期を判断することもできる。容器の交換時期に到達していないと判断された場合(Q20においてNO)、成膜チャンバー10へのクリーニングガス導入工程S30および第二の捕捉装置52へのクリーニングガス導入工程S40が再び実施される。 After repeating the cleaning gas introduction step S30 into the film forming chamber 10 and the cleaning gas introduction step S40 into the second capture device 52 once or a plurality of times, it is determined whether to replace the capture device. Specifically, it is determined whether or not the replacement time of the capture container 52 has been reached (Q20). The determination criterion may be, for example, the number of repetitions of dry cleaning, or the elapsed time from the start of use of the capture device. Further, the replacement time can be determined based on the detection signal from the gas detector (for example, Cl 2 sensor) provided in the second capture device 52. If it is determined that the container replacement time has not been reached (NO in Q20), the cleaning gas introduction step S30 to the film forming chamber 10 and the cleaning gas introduction step S40 to the second capture device 52 are performed again. ..
 一方、容器の交換時期に到達していると判断された場合(Q20においてYES)、バルブ79a、79bを閉とし、フランジ54a、54bにおいて配管を遮断して、第二の捕捉装置52を第二の排気配管76から取り外す(S50)。取り外した捕捉装置を容易に移動できるように、第二の捕捉装置52はキャスター等を備えていることが好ましい。 On the other hand, when it is determined that the container replacement time has been reached (YES in Q20), the valves 79a and 79b are closed, the piping is cut off at the flanges 54a and 54b, and the second capture device 52 is seconded. Removed from the exhaust pipe 76 (S50). It is preferable that the second capture device 52 is provided with casters or the like so that the removed capture device can be easily moved.
 第二の捕捉装置52を第二の排気配管76から取り外した後に、第二の捕捉装置52に収容された捕捉剤53から、ルテニウムの取り出しを行う(S60)。ルテニウムの取り出し工程S60は、成膜装置の設置場所とは別の場所で、ルテニウム膜の製造とは独立に行うことが可能である。 After removing the second capture device 52 from the second exhaust pipe 76, ruthenium is taken out from the capture agent 53 contained in the second capture device 52 (S60). The ruthenium extraction step S60 can be performed independently of the production of the ruthenium film at a location different from the installation location of the film forming apparatus.
 ルテニウムの取り出し工程S60は、具体的には例えば、捕捉剤53に塩酸、硫酸等の強酸を導入し、捕捉剤に固定化された酸化ルテニウムを塩化ルテニウム水溶液として流出させることによって実施できる。 Specifically, the ruthenium extraction step S60 can be carried out by introducing a strong acid such as hydrochloric acid or sulfuric acid into the scavenger 53 and allowing ruthenium oxide immobilized on the scavenger to flow out as an aqueous solution of ruthenium chloride.
 上記によって取り出した塩化ルテニウムは、所定の処理を経てルテニウムプリカーサーとして再び成膜に用いることが可能である。 The ruthenium chloride taken out as described above can be used again for film formation as a ruthenium precursor after undergoing a predetermined treatment.
<他の実施形態>
 図4に、本開示の成膜装置の他の実施形態である成膜装置100を示す。成膜装置100において、成膜チャンバー10、ガス供給機構20は図1に示した成膜装置1と同じであり、説明を省略する。
<Other embodiments>
FIG. 4 shows a film forming apparatus 100 which is another embodiment of the film forming apparatus of the present disclosure. In the film forming apparatus 100, the film forming chamber 10 and the gas supply mechanism 20 are the same as those of the film forming apparatus 1 shown in FIG. 1, and the description thereof will be omitted.
 成膜装置100におけるガス供給機構500は、第一の排気配管75と第二の排気配管76とを備える。第一の排気配管75の下流は成膜装置1と同じであり、説明を省略する。 The gas supply mechanism 500 in the film forming apparatus 100 includes a first exhaust pipe 75 and a second exhaust pipe 76. The downstream of the first exhaust pipe 75 is the same as that of the film forming apparatus 1, and the description thereof will be omitted.
 第二の排気配管76は、成膜チャンバー10と第二の捕捉装置520とを接続している。第二の捕捉装置520はクリーニングガス導入配管770を備える。クリーニングガス導入配管770はフランジ540aを介して第二の排気配管76と接続されており、捕捉剤530に挿入されている。また第二の捕捉装置520は出口配管780を備える。出口配管780は、捕捉剤530を通過した除害後のガスを排出する。出口配管780には、フランジ540bが設けられている。フランジ540aにおいて、第二の捕捉装置520は第二の排気配管76から取り外し可能である。フランジ540bの下流には、配管731が接続されている。すなわち、第二の捕捉装置520は、フランジ540a、540bの位置で第二の排気配管76および配管731から取り外し可能である。 The second exhaust pipe 76 connects the film forming chamber 10 and the second capture device 520. The second capture device 520 includes a cleaning gas introduction pipe 770. The cleaning gas introduction pipe 770 is connected to the second exhaust pipe 76 via the flange 540a and is inserted into the scavenger 530. The second capture device 520 includes an outlet pipe 780. The outlet pipe 780 discharges the detoxified gas that has passed through the scavenger 530. The outlet pipe 780 is provided with a flange 540b. At the flange 540a, the second capture device 520 is removable from the second exhaust pipe 76. A pipe 731 is connected to the downstream of the flange 540b. That is, the second capture device 520 is removable from the second exhaust pipe 76 and the pipe 731 at the positions of the flanges 540a and 540b.
 第二の捕捉装置520は、配管731を介してドライポンプ620に接続されている。すなわち、ドライポンプ620を動作させてドライクリーニングを実施する時、第二の捕捉装置520は減圧雰囲気となる。ドライポンプ620の下流は除害装置800に接続されており、ドライポンプ620から排出されるガスは、除害装置800で無害化されて大気に放出される。 The second capture device 520 is connected to the dry pump 620 via the pipe 731. That is, when the dry pump 620 is operated to perform dry cleaning, the second capture device 520 becomes a decompressed atmosphere. The downstream of the dry pump 620 is connected to the abatement device 800, and the gas discharged from the dry pump 620 is detoxified by the abatement device 800 and released into the atmosphere.
 図4の実施形態においては、第二の捕捉装置520は、除害装置800に接続されることから、フッ素化合物の除害機能は不要でルテニウムの捕捉のみで良い。この場合、第二の捕捉装置520内にあるアルカリ薬剤がフッ素化合物と反応する為、除害装置800へのフッ素化合物の混入量を減少させることで、除害装置800の腐食を抑制することができる。  In the embodiment of FIG. 4, since the second capture device 520 is connected to the abatement device 800, the abatement function of the fluorine compound is unnecessary and only ruthenium capture is sufficient. In this case, since the alkaline chemical in the second capture device 520 reacts with the fluorine compound, it is possible to suppress the corrosion of the abatement device 800 by reducing the amount of the fluorine compound mixed in the abatement device 800. can. It was
<実施例>
 以下、実施例について説明する。
 図1に示す成膜装置を用いて、上述の成膜方法によって、Ru(CO)12ガスとCOガスにより、ルテニウム膜の成膜を行った。成膜チャンバーの壁部に堆積したルテニウム膜を、ClFをクリーニングガスとしてドライクリーニングを行った。なお、本実施例では、ClFによるクリーニングは成膜処理1回毎に実施したが、成膜チャンバーの壁部に堆堆するルテニウム膜の厚さによりクリーニング実施の判断をしてもよい。ドライクリーニング時には、ステンレス外筒容器内にソーダライムを収容する捕捉装置を用いて、ルテニウムを捕捉した。
<Example>
Hereinafter, examples will be described.
Using the film forming apparatus shown in FIG. 1, a ruthenium film was formed with Ru 3 (CO) 12 gas and CO gas by the above-mentioned film forming method. The ruthenium film deposited on the wall of the film forming chamber was dry-cleaned using ClF 3 as a cleaning gas. In this embodiment, the cleaning with ClF 3 is performed for each film forming process, but the cleaning may be determined based on the thickness of the ruthenium film deposited on the wall of the film forming chamber. During dry cleaning, ruthenium was captured using a trapping device that contained soda lime in a stainless steel outer cylinder container.
 ドライクリーニングを実施した後、クリーニングガスの排気配管から捕捉装置を取り外し、捕捉装置内の捕捉剤の外観を観察した。捕捉剤は黒褐色に変色しており、フッ化ルテニウムが固定化されていることが確認された。捕捉剤に塩酸を注入し、塩化ルテニウム水溶液としてルテニウムを回収した。 After performing dry cleaning, the scavenger was removed from the exhaust pipe of the cleaning gas, and the appearance of the scavenger inside the scavenger was observed. The scavenger turned dark brown, confirming that ruthenium pentafluoride was immobilized. Hydrochloric acid was injected into the scavenger to recover ruthenium as an aqueous solution of ruthenium chloride.
 ドライクリーニングにおいて回収されたルテニウムは、成膜に用いたルテニウム原料の約10%であると計算された。従来の成膜方法では、ドライクリーニングによって除去されるルテニウムは回収されていなかったことから、本実施例においては、従来と比較して、ルテニウムの回収効率が約10%向上したことが確認された。 It was calculated that the ruthenium recovered by dry cleaning was about 10% of the ruthenium raw material used for film formation. Since the ruthenium removed by dry cleaning was not recovered by the conventional film forming method, it was confirmed that the recovery efficiency of ruthenium was improved by about 10% in this example as compared with the conventional method. ..
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are exemplary in all respects and are not restrictive in any respect. The scope of the present invention is defined by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 本開示の白金族金属の回収方法、白金族金属含有膜の製造方法および成膜装置は、CVD法による半導体製造において、特に有利に適用されうる。 The platinum group metal recovery method, the platinum group metal-containing film manufacturing method, and the film forming apparatus of the present disclosure can be particularly advantageously applied in semiconductor manufacturing by the CVD method.
1、100 成膜装置
10 成膜チャンバー
20 ガス供給機構
21 キャリアガス供給源
22 クリーニングガス供給源
23 付加ガス供給源
24 キャリアガス供給源
25 キャリアガス供給配管
26 原料ガス供給配管
27 付加ガス供給配管
28 クリーニングガス供給配管
29 キャリアガス供給配管
31、32、33、34 マスフローコントローラ
35 流量計
41a、41b、42a、42b、43a、43b、44a、44b、71、72、73、79a、79b バルブ
45 成膜原料容器
46 ヒーター
50、500 ガス排出機構
51、52、520 捕捉装置
53、530 捕捉剤
54a、54b、540a、540b フランジ
61、62、620 ドライポンプ
731 配管
75、76 排気配管
77、770 クリーニングガス導入配管
78、780 排気配管
80、800 除害装置
91、92 供給配管
1,100 Formation device 10 Formation chamber 20 Gas supply mechanism 21 Carrier gas supply source 22 Cleaning gas supply source 23 Additional gas supply source 24 Carrier gas supply source 25 Carrier gas supply pipe 26 Raw material gas supply pipe 27 Additional gas supply pipe 28 Cleaning gas supply piping 29 Carrier gas supply piping 31, 32, 33, 34 Mass flow controller 35 Flow meter 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, 71, 72, 73, 79a, 79b Valve 45 film formation Raw material container 46 Heater 50, 500 Gas discharge mechanism 51, 52, 520 Capture device 53, 530 Capture agent 54a, 54b, 540a, 540b Flange 61, 62, 620 Dry pump 731 Piping 75, 76 Exhaust piping 77, 770 Cleaning gas introduction Piping 78, 780 Exhaust piping 80, 800 Abatement device 91, 92 Supply piping

Claims (11)

  1.  成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜した後に、前記成膜チャンバー内に存在する白金族金属を回収する方法であって、
     (i)前記基板が取り出された前記成膜チャンバー内に、フッ素を含むクリーニングガスを導入する工程と、
     (ii)ソーダライム、消石灰およびCaOからなる群から選択される少なくとも1つからなる捕捉剤を保持する捕捉容器内に、前記成膜チャンバーから排出される前記クリーニングガスを導入する工程と、を備える、白金族金属の回収方法。
    After introducing a raw material gas containing a platinum group metal into the film forming chamber and forming a platinum group metal-containing film on the surface of the substrate housed in the film forming chamber, the platinum group existing in the film forming chamber is formed. It ’s a way to recover metal,
    (I) A step of introducing a cleaning gas containing fluorine into the film forming chamber from which the substrate is taken out, and
    (Ii) A step of introducing the cleaning gas discharged from the film forming chamber into a trapping container holding a trapping agent consisting of at least one selected from the group consisting of soda lime, slaked lime and CaO. , Platinum group metal recovery method.
  2.  前記捕捉剤がソーダライムである、請求項1に記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to claim 1, wherein the scavenger is soda lime.
  3.  前記白金族金属が、ルテニウムまたはオスミウムである、請求項1又は請求項2に記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to claim 1 or 2, wherein the platinum group metal is ruthenium or osmium.
  4.  前記クリーニングガスがClFである、請求項1から請求項3のいずれか1項に記載の白金族金属の回収方法。 The method for recovering a platinum group metal according to any one of claims 1 to 3 , wherein the cleaning gas is ClF 3.
  5.  (i)前記成膜チャンバー内に前記クリーニングガスを導入する工程および(ii)前記捕捉容器内に前記成膜チャンバーから排出される前記クリーニングガスを導入する工程の後に、
     (iii)前記捕捉剤から白金族金属を取り出す工程をさらに備える、請求項1から請求項4のいずれか1項に記載の白金族金属の回収方法。
    After (i) the step of introducing the cleaning gas into the film forming chamber and (ii) the step of introducing the cleaning gas discharged from the film forming chamber into the trapping container.
    (Iii) The method for recovering a platinum group metal according to any one of claims 1 to 4, further comprising a step of extracting the platinum group metal from the scavenger.
  6.  前記(iii)前記捕捉剤から白金族金属を取り出す工程は、前記捕捉容器を成膜装置から取り外した後、前記捕捉剤に強酸を導入することによって、前記捕捉剤に吸着された白金族金属フッ化物を白金族金属塩溶液として取り出す工程を含む、
    請求項5に記載の白金族金属の回収方法。
    (Iii) In the step of taking out the platinum group metal from the scavenger, the platinum group metal foot adsorbed by the scavenger is introduced by introducing a strong acid into the scavenger after removing the trapping container from the film forming apparatus. Including the step of taking out the compound as a platinum group metal salt solution,
    The method for recovering a platinum group metal according to claim 5.
  7.  (I)成膜チャンバー内に白金族金属を含む原料ガスを導入し、前記成膜チャンバー内に収容された基板の表面に白金族金属含有膜を成膜する工程と、
     (II)前記白金族金属含有膜が成膜された前記基板を前記成膜チャンバーから取り出す工程と、
     (III)成膜チャンバー内に存在する白金族金属を回収する工程と、を備え、
     前記(III)成膜チャンバー内に存在する白金族金属を回収する工程は、請求項1から請求項6のいずれか1項に記載の白金族金属の回収方法により実施される、
    白金族金属含有膜の製造方法。
    (I) A step of introducing a raw material gas containing a platinum group metal into a film forming chamber and forming a platinum group metal-containing film on the surface of a substrate housed in the film forming chamber.
    (II) A step of taking out the substrate on which the platinum group metal-containing film is formed from the film forming chamber, and
    (III) A step of recovering the platinum group metal existing in the film forming chamber is provided.
    The step of recovering the platinum group metal existing in the film forming chamber (III) is carried out by the method for recovering the platinum group metal according to any one of claims 1 to 6.
    A method for producing a platinum group metal-containing film.
  8.  (I)前記白金族金属含有膜を成膜する工程および(II)前記基板を前記成膜チャンバーから取り出す工程が、この順に繰り返して複数回実施され、
    その後に、
     (III)成膜チャンバー内に存在する白金族金属を回収する工程が実施される、
    請求項7に記載の白金族金属含有膜の製造方法。
    (I) The step of forming the platinum group metal-containing film and (II) the step of taking out the substrate from the film forming chamber were repeated a plurality of times in this order.
    After that,
    (III) A step of recovering the platinum group metal existing in the film forming chamber is carried out.
    The method for producing a platinum group metal-containing film according to claim 7.
  9.  基材の表面に薄膜を形成するための成膜チャンバーと、
     前記成膜チャンバーに接続するガス供給機構と、
     前記成膜チャンバーに接続するガス排出機構と、
     前記成膜チャンバー、前記ガス供給機構、および前記ガス排出機構を制御する制御部と、を備え、
     前記ガス供給機構は、
    白金族金属を含む原料ガスを前記成膜チャンバーに供給する第一の供給配管と、
    フッ素を含むクリーニングガスを前記成膜チャンバーに供給する第二の供給配管と、を備え、
     前記ガス排出機構は、
    前記成膜チャンバーと、前記成膜チャンバーから排出される前記原料ガスに含まれる白金族金属を捕捉可能である第一の捕捉装置と、を接続する第一の排気配管と、
    前記成膜チャンバーと、前記成膜チャンバーから排出される前記クリーニングガスに含まれる白金族金属を捕捉可能である捕捉剤を保持する第二の捕捉装置と、を接続する第二の排気配管と、を備える、
    成膜装置。
    A film formation chamber for forming a thin film on the surface of the substrate,
    A gas supply mechanism connected to the film forming chamber and
    A gas discharge mechanism connected to the film forming chamber and
    The film forming chamber, the gas supply mechanism, and a control unit for controlling the gas discharge mechanism are provided.
    The gas supply mechanism is
    The first supply pipe for supplying the raw material gas containing a platinum group metal to the film forming chamber, and
    A second supply pipe for supplying a cleaning gas containing fluorine to the film forming chamber is provided.
    The gas discharge mechanism is
    A first exhaust pipe connecting the film forming chamber and a first capturing device capable of capturing the platinum group metal contained in the raw material gas discharged from the film forming chamber.
    A second exhaust pipe connecting the film forming chamber and a second capturing device holding a scavenger capable of capturing the platinum group metal contained in the cleaning gas discharged from the film forming chamber. Equipped with
    Film forming equipment.
  10. 前記捕捉剤が、ソーダライム、消石灰およびCaOからなる群から選択される少なくとも1つである、請求項9に記載の成膜装置。 The film forming apparatus according to claim 9, wherein the scavenger is at least one selected from the group consisting of soda lime, slaked lime and CaO.
  11. 前記第二の捕捉装置は、前記第二の排気配管から取り外し可能である、請求項9又は請求項10に記載の成膜装置。 The film forming apparatus according to claim 9, wherein the second capture device is removable from the second exhaust pipe.
PCT/JP2021/020529 2020-06-01 2021-05-28 Method for recovering platinum group metal, method for manufacturing film containing platinum group metal, and film-forming apparatus WO2021246340A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180010030.9A CN114981473A (en) 2020-06-01 2021-05-28 Platinum group metal recovery method, method for producing platinum group metal-containing film, and film forming apparatus
KR1020227021832A KR20230017157A (en) 2020-06-01 2021-05-28 Method for recovering platinum group metal, method for producing a film containing platinum group metal, and film forming apparatus
JP2022528809A JPWO2021246340A1 (en) 2020-06-01 2021-05-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095296 2020-06-01
JP2020-095296 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021246340A1 true WO2021246340A1 (en) 2021-12-09

Family

ID=78830265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020529 WO2021246340A1 (en) 2020-06-01 2021-05-28 Method for recovering platinum group metal, method for manufacturing film containing platinum group metal, and film-forming apparatus

Country Status (5)

Country Link
JP (1) JPWO2021246340A1 (en)
KR (1) KR20230017157A (en)
CN (1) CN114981473A (en)
TW (1) TW202212580A (en)
WO (1) WO2021246340A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238337A (en) * 1986-04-09 1987-10-19 Nichibi:Kk Method for recovering noble metal
JPS62273038A (en) * 1986-05-21 1987-11-27 Kanto Denka Kogyo Kk Treatment of chemical vapor deposition exhaust gas
JPH04311570A (en) * 1991-04-10 1992-11-04 Central Glass Co Ltd Film forming device provided with deposit recovering device
JPH10279317A (en) * 1997-03-31 1998-10-20 Korea Atom Energ Res Inst Method for removing ruthenium compound in industrial waste gas, and collecting material
JP2001342566A (en) * 2000-03-31 2001-12-14 Tanaka Kikinzoku Kogyo Kk Manufacturing process and apparatus of cvd thin film
JP2004190092A (en) * 2002-12-11 2004-07-08 Toyota Motor Corp Method and apparatus for recovering noble metal from waste
JP2005185961A (en) * 2003-12-25 2005-07-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Removing method of volatile inorganic noble metal compound and device therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060526B2 (en) * 2000-12-13 2008-03-12 株式会社日立国際電気 Manufacturing method of semiconductor device
JP5277784B2 (en) * 2008-08-07 2013-08-28 東京エレクトロン株式会社 Raw material recovery method, trap mechanism, exhaust system, and film forming apparatus using the same
JP5482282B2 (en) * 2009-03-03 2014-05-07 東京エレクトロン株式会社 Mounting table structure and film forming apparatus
JP5843065B2 (en) * 2012-01-26 2016-01-13 三菱マテリアル株式会社 Ruthenium recovery method
JP6007715B2 (en) * 2012-03-29 2016-10-12 東京エレクトロン株式会社 Trap mechanism, exhaust system, and film forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238337A (en) * 1986-04-09 1987-10-19 Nichibi:Kk Method for recovering noble metal
JPS62273038A (en) * 1986-05-21 1987-11-27 Kanto Denka Kogyo Kk Treatment of chemical vapor deposition exhaust gas
JPH04311570A (en) * 1991-04-10 1992-11-04 Central Glass Co Ltd Film forming device provided with deposit recovering device
JPH10279317A (en) * 1997-03-31 1998-10-20 Korea Atom Energ Res Inst Method for removing ruthenium compound in industrial waste gas, and collecting material
JP2001342566A (en) * 2000-03-31 2001-12-14 Tanaka Kikinzoku Kogyo Kk Manufacturing process and apparatus of cvd thin film
JP2004190092A (en) * 2002-12-11 2004-07-08 Toyota Motor Corp Method and apparatus for recovering noble metal from waste
JP2005185961A (en) * 2003-12-25 2005-07-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Removing method of volatile inorganic noble metal compound and device therefor

Also Published As

Publication number Publication date
KR20230017157A (en) 2023-02-03
CN114981473A (en) 2022-08-30
JPWO2021246340A1 (en) 2021-12-09
TW202212580A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP4669605B2 (en) Cleaning method for semiconductor manufacturing equipment
US8623148B2 (en) NF3 chamber clean additive
US6277173B1 (en) System and method for discharging gas
KR101140059B1 (en) Method of recovering noble gas using gas recovery container, apparatus for recovering gas into gas recovery container and apparatus for extracting gas from gas recovery container
US6872323B1 (en) In situ plasma process to remove fluorine residues from the interior surfaces of a CVD reactor
JP2614827B2 (en) Apparatus and method for cleaning material or (and) tool surfaces in semiconductor manufacturing using nitrogen trifluoride
JP2001214272A (en) Exhaust system structure of film forming device and method of removing impurity gas
US5714011A (en) Diluted nitrogen trifluoride thermal cleaning process
GB2321222A (en) Cleaning semiconductor fabrication equipment using heated NF3/oxygen mixture
CN112020766A (en) Apparatus for gas byproduct abatement and foreline cleaning
JPS60198394A (en) Gas discharging device in vacuum disposer
WO2021246340A1 (en) Method for recovering platinum group metal, method for manufacturing film containing platinum group metal, and film-forming apparatus
JP5178342B2 (en) Deposit removing method and deposited film forming method
EP1441043A2 (en) Supply of gas to semiconductor process chamber
JP3780307B2 (en) Method for cleaning epitaxial growth furnace system
US8834824B2 (en) Method of treating a gas stream
JP2922440B2 (en) How to open pneumatic equipment to atmosphere
JPH09249975A (en) Gas cleaning method of tungsten or tungsten compound film forming device
EP1154037A1 (en) Methods for improving chemical vapor deposition processing
JPH08209350A (en) Thin film forming device and cleaning of the same
WO2024014405A1 (en) Vacuum exhaust system and cleaning method
JP2005259932A (en) Semiconductor manufacturing apparatus
KR102114042B1 (en) Hybrid scrubber having heating chamber and dry scrubber chamber and method for operating the hybrid scrubber
JP6844083B2 (en) After-corrosion suppression treatment method
TW202408671A (en) Vacuum exhaust system and cleaning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817326

Country of ref document: EP

Kind code of ref document: A1