WO2021246225A1 - Electric leakage detection device - Google Patents

Electric leakage detection device Download PDF

Info

Publication number
WO2021246225A1
WO2021246225A1 PCT/JP2021/019611 JP2021019611W WO2021246225A1 WO 2021246225 A1 WO2021246225 A1 WO 2021246225A1 JP 2021019611 W JP2021019611 W JP 2021019611W WO 2021246225 A1 WO2021246225 A1 WO 2021246225A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
path
electric
connection state
voltage
Prior art date
Application number
PCT/JP2021/019611
Other languages
French (fr)
Japanese (ja)
Inventor
朝道 溝口
大和 宇都宮
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021003120.1T priority Critical patent/DE112021003120T5/en
Publication of WO2021246225A1 publication Critical patent/WO2021246225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure of this application relates to an earth leakage detection device.
  • Patent Document 1 As a power supply system mounted on a vehicle, a system in which a series connection and a parallel connection of a plurality of assembled batteries can be changed has been proposed (for example, Patent Document 1). According to the power supply system described in Patent Document 1, it is possible to suppress heat generation during charging while enabling charging with a large voltage.
  • an insulation resistance detection circuit is generally adopted in order to detect an electric leakage.
  • the insulation resistance detection circuit for example, as shown in Patent Documents 2 to 4, a resistance voltage dividing type insulation resistance detection circuit is known.
  • this resistance voltage divider type insulation resistance detection circuit is adopted, even if the number of electrical equipment in the vehicle increases and the stray capacitance between the assembled battery and the ground (chassis, etc.) increases, the detection accuracy will be affected. Can be suppressed.
  • Japanese Unexamined Patent Publication No. 2019-118221 Japanese Unexamined Patent Publication No. 2003-66090 Japanese Patent No. 5861954 Japanese Patent No. 4785627
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to provide an earth leakage detection device capable of detecting an earth leakage for each route.
  • the means for solving the above problems are a plurality of batteries, a first electric path provided for each of the batteries, one end of which is connected to a positive terminal of the battery, and a first electric path of each of the first electric paths.
  • a power path on the positive side to which the other end is connected a second electric path provided for each battery and one end connected to the negative terminal of the battery, and the other end of each of the second electric paths. It is applied to a power supply system having a power supply path on the negative side to which is connected, and a switch unit provided between each electric path and each power path and switching between energization and de-energization, respectively.
  • a resistor is selected between the reference potential and either the power path on the positive side or the power path on the negative side. It is configured to be connectable, and includes a measuring unit that measures the voltage of each power supply path in a state where the resistor is connected, and a detecting unit that detects electric leakage based on the measurement result from the measuring unit.
  • the measuring unit measures the voltage in a parallel connection state in which the batteries are connected in parallel by the switch unit to the power supply path, and each battery is individually connected by the switch unit for each battery.
  • the detector measures the voltage in the individually connected state connected to, and the detection unit leaks electricity in either the power supply path or the electric path based on the measurement result in the parallel connection state and the measurement result in the individual connection state. Detect if it is done.
  • the measuring unit measures the voltage in the parallel connection state and measures the voltage in the individual connection state
  • the detection unit measures each power supply path and each electricity based on the measurement result in the parallel connection state and the measurement result in the individual connection state. Detects which route is leaking. Therefore, it is possible to identify the leaking path and easily perform work such as replacement.
  • FIG. 1 is a circuit diagram of a power supply system.
  • FIG. 2 is a circuit diagram of a power supply system in a comparative example.
  • FIG. 3 is a circuit diagram of a power supply system in a comparative example.
  • FIG. 4 is a circuit diagram of the power supply system in the comparative example.
  • FIG. 5 is a circuit diagram of a power supply system in a series connection state.
  • FIG. 6 is a flowchart showing the main routine.
  • FIG. 7 is a flowchart showing the total insulation resistance measurement process.
  • FIG. 8 is a flowchart showing the insulation resistance Rpa2 and Rna2 measurement processing.
  • FIG. 9 is a flowchart showing the insulation resistance Rpa3 and Rna3 measurement processing.
  • FIG. 10 is a circuit diagram of a power supply system in an individual connection state.
  • FIG. 11 is a circuit diagram of a power supply system in an individual connection state.
  • FIG. 12 is a circuit diagram of a power supply system in a modified example.
  • FIG. 13 is a circuit diagram of a power supply system in a modified example.
  • the power supply system 10 includes a plurality of assembled batteries Vc1 and Vc2, an earth leakage detection device 20, and a charger 30.
  • the assembled batteries Vc1 and Vc2 are batteries having a terminal voltage of, for example, 100 V or more, and are configured by connecting a plurality of battery cells in series.
  • the battery cell for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used.
  • the power supply system 10 is provided for each of the assembled batteries Vc1 and Vc2, and has electric paths L11 and L12 as a first electric path in which one end is connected to the positive electrode side terminal of the assembled batteries Vc1 and Vc2. Further, the power supply system 10 has a positive electrode side power supply path L10 as a positive electrode side power supply path to which the other ends of the respective electric paths L11 and L12 are connected. A positive electrode side terminal of an electric load (not shown) is connected to the positive electrode side power supply path L10.
  • the positive electrode side power supply path L10 is composed of a conductive member such as a bus bar, and is insulated from a ground GND (chassis ground such as a vehicle body, body GND) which is a reference potential. That is, the positive electrode side power supply path L10 is grounded via the insulation resistor Rp1.
  • each of the electric paths L11 and L12 is composed of a conductive member and is grounded via insulating resistors Rp3 and Rp2, respectively.
  • the power supply system 10 is provided for each of the assembled batteries Vc1 and Vc2, and has electric paths L21 and L22 as a second electric path in which one end is connected to the negative electrode side terminal of the assembled batteries Vc1 and Vc2. Further, the power supply system 10 has a negative electrode side power supply path L20 as a negative electrode side power supply path to which the other ends of the respective electric paths L21 and L22 are connected. A negative electrode side terminal of an electric load (not shown) is connected to the negative electrode side power supply path L20.
  • the negative electrode side power supply path L20 is composed of a conductive member such as a bus bar, and is insulated from the ground GND. That is, the negative electrode side power supply path L20 is grounded via the insulation resistor Rn1.
  • each of the electric paths L21 and L22 is composed of a conductive member, and is grounded via insulating resistors Rn3 and Rn2, respectively.
  • the positive electrode side power supply path L10 and the negative electrode side power supply path L20 are each connected to an electric load via a relay switch SMR (system main relay switch) (not shown), and the relay switch SMR can switch between energization and energization cutoff. Has been done.
  • SMR system main relay switch
  • relays RY1, RY2, RY4, and RY5 are provided as relay switches for switching between energization and energization cutoff. These relays RY1, RY2, RY4, RY5 correspond to the switch unit.
  • the power supply system 10 has an electric path L30 as a third electric path for connecting the assembled batteries Vc1 and Vc2 in series.
  • One end of the electric path L30 is connected to the electric path L11 (to the side of the assembled battery Vc1 from the relay RY1), and the other end is connected to the electric path L22 (to the side of the assembled battery Vc2 from the relay RY5).
  • the electric path L30 is provided with a relay RY3 as a series connection switch unit for switching the energization and the energization cutoff of the electric path L30.
  • the positive electrode side terminal of the charger 30 is connected to the electric path L12 connected to the positive electrode side terminal of the assembled battery Vc2 which is the end in the series connection state among the electric paths L11 and L12.
  • the negative electrode side terminal of the charger 30 is connected to the electric path L21 connected to the negative electrode side terminal of the assembled battery Vc1 which is the end portion of the electric paths L21 and L22 in the series connection state.
  • the positive electrode side terminal of the charger 30 is connected to the electric path L12 via the switch SW5, and the negative electrode side terminal thereof is connected to the electric path L21 via the switch SW6.
  • the leakage detection device 20 includes a voltage dividing circuit 21, an A / D converter 22, and a control unit 23.
  • the voltage dividing circuit 21 has a series connection body of the detection resistor R1 and the detection resistance R2 as a resistor, and one end of the series connection body is connected to the ground GND (body GND).
  • the other end of the series connection body is configured to be selectively connectable to either the positive electrode side power supply path L10 or the negative electrode side power supply path L20. That is, the other end of the series connection body is connected to the positive electrode side power supply path L10 via the switch SW1 and is connected to the negative electrode side power supply path L20 via the switch SW4.
  • a / D converter 22 One end of the A / D converter 22 is connected to the connection point P1 between the detection resistor R1 and the detection resistor R2, and the other end is connected to the ground GND (body GND).
  • the A / D converter 22 is a device that inputs a voltage (analog signal) between the detection resistor R1 and the detection resistor R2, converts it into a digital signal, and outputs the voltage.
  • a control unit 23 is connected to the A / D converter 22.
  • the voltage divider circuit 21 and the A / D converter 22 correspond to the measuring unit.
  • the control unit 23 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, I / O, etc., and the CPU realizes various functions by executing a program stored in the ROM.
  • the various functions may be realized by electronic circuits that are hardware, or at least a part of them may be realized by software, that is, processing executed on a computer.
  • the control unit 23 has a function of controlling the on / off state of each switch and each relay included in the power supply system 10, a function of detecting an electric leakage of the power supply system 10, and the like.
  • a control device having a function of controlling the on / off state of various switches may be provided, and the leakage may be detected in cooperation with the leakage detection device 20.
  • the leakage detection device in the power supply system 10 having the circuit configuration as described above and switching between series connection and parallel connection depending on the situation, when detecting the leakage, the leakage detection device is used, for example, the leakage detection shown in the comparative example of FIG. It is conceivable to have a configuration like the device 201.
  • the voltage dividing circuit 21 in the leakage detection device 201 shown in the comparative example of FIG. 2, unlike the leakage detection device 20 shown in FIG. 1, the voltage dividing circuit 21 (one end of the series connection body) is connected to the electric path L12 via the switch SW2. .. Further, in the leakage detection device 201 shown in the comparative example of FIG. 2, the voltage dividing circuit 21 is connected to the electric path L21 via the switch SW3.
  • the leakage detection device 201 of FIG. 2 when power is supplied by the assembled batteries Vc1 and Vc2 in the parallel connection state as shown in FIG. 3, the leakage can be detected by controlling the switches SW1 and SW4 on and off. can. Further, in the leakage detection device 201 of FIG. 2, when the assembled batteries Vc1 and Vc2 in the series connection state are charged as shown in FIG. 4, the leakage can be detected by controlling the switches SW3 and SW4 on and off. can.
  • the above-mentioned leakage detection method has the following problems. That is, in the power supply system 10 configured so that the series connection and the parallel connection can be changed, a large number of relays are provided, and the positive electrode side power supply path L10 and the electric paths L11 and L12 are configured by different parts (bus bars, etc.). Has been done. Therefore, the positive electrode side power supply path L10 and the electric paths L11 and L12 are configured to be individually replaceable. The same applies to the negative electrode side.
  • the leakage detection device 20 can detect that leakage is occurring on either the positive electrode side or the negative electrode side. , Power path L10, L20, and electric path L11, L12, L21, L22, it is not possible to determine from which path the electric leakage occurs.
  • the parallel composite values of the insulation resistances Rp1, Rp2, and Rp3 can be calculated on the positive electrode side, but the insulation resistances Rp1, Rp2, and Rp3 are calculated individually. I could't.
  • the parallel composite value of the insulation resistances Rn1, Rn2, and Rn3 could be calculated, but the insulation resistances Rn1, Rn2, and Rn3 could not be calculated individually. Therefore, when an electric leakage is detected, it is necessary to replace all the routes on the positive electrode side or the entire negative electrode side, or the operator or the like disassembles the parts one by one and inspects them.
  • the leakage detection device 20 of the present embodiment calculates the insulation resistance for each path by executing the following processing, and specifies which path the leakage is in based on each insulation resistance. is doing. Hereinafter, it will be described in detail.
  • the control unit 23 controls the on / off of the switches SW1 and SW4 so that the insulation resistances Rp1 and Rp2 on the positive electrode side are supplied.
  • the parallel composite value of Rp3 is calculated, and the parallel composite value of the insulation resistors Rp1, Rp2, and Rp3 is calculated on the negative electrode side.
  • control unit 23 sets the switch SW1 to the ON state, and the voltage division value (voltage division value) at the connection point P1 between the detection resistor R1 and the detection resistor R2 via the voltage divider circuit 21 and the A / D converter 22. Voltage) is input. Similarly, the control unit 23 turns on the switch SW4 and inputs the voltage dividing value at the connection point P1 between the detection resistor R1 and the detection resistor R2 via the voltage divider circuit 21 and the A / D converter 22.
  • the control unit 23 has the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side in parallel and the insulation on the negative electrode side based on the input voltage dividing value, the voltage dividing ratio, and the voltages of the assembled batteries Vc1 and Vc2.
  • the parallel combined value of the resistors Rn1, Rn2, and Rn3 is calculated.
  • the leakage detection device 20 detects whether or not an leakage has occurred in any of the paths of the power supply system 10 based on the calculated parallel composite value.
  • the value of the voltage division ratio is known, and the voltages of the assembled batteries Vc1 and Vc2 may be obtained from a battery monitoring device (not shown) for monitoring the state of the assembled batteries Vc1 and Vc2.
  • the voltage may be estimated from the charged state of the assembled batteries Vc1 and Vc2.
  • the method for calculating the parallel composite value is the same as the conventional method described in the prior art (Patent Documents 2 to 4, etc.) and is well known, so the description thereof will be omitted.
  • the control unit 23 sets the insulation resistances Rp1, Rp2, Rp3 based on the voltage dividing value acquired by turning on the switch SW1 and the voltage dividing value acquired by turning on the switch SW4. And the combined value of the insulation resistances Rn1, Rn2, Rn3 are calculated. Then, the leakage detection device 20 detects whether or not there is a leakage in any path of the power supply system 10 based on the calculated combined value.
  • control unit 23 executes the main routine shown in FIG.
  • the control unit 23 executes the total insulation resistance measurement process shown in FIG. 7 (step S101).
  • the control unit 23 turns on the relays RY1, RY2, RY4, and RY5, and switches the relay RY3 to the off state (step S201).
  • the control unit 23 turns on the switch SW1 (step S202).
  • the control unit 23 detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S203).
  • control unit 23 puts the switch SW1 in the off state (step S204) and puts the switch SW4 in the on state (step S205). Then, the control unit 23 detects (measures) the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S206), and turns off the switch SW4 (step). S207).
  • the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 in the same manner as described above (step S208).
  • the insulation resistance value Rp calculated in step S208 is a parallel composite value of the insulation resistances Rp1, Rp2, and Rp3.
  • the insulation resistance value Rn calculated in step S208 is a parallel combined value of the insulation resistances Rn1, Rn2, and Rn3.
  • the control unit 23 turns off the relays RY1, RY2, RY4, and RY5 (step S20), ends the total insulation resistance measurement process, and proceeds to step S102 of the main routine.
  • the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S208 as the insulation resistance values Rpa and Rna, respectively. That is, as expressed by mathematical formulas (1) and (2), the insulation resistance value Rpa stores the parallel combined value of the insulation resistances Rp1, Rp2, Rp3, and the insulation resistance value Rna is the insulation resistance Rn1, Rn2, Rn3. The parallel composite value of is stored.
  • the control unit 23 executes the insulation resistance Rpa2 and Rna2 measurement processes shown in FIG. 8 (step S103).
  • the insulation resistance Rpa2, Rna2 measurement process the control unit 23 turns on the relays RY2 and RY5 and switches the relays RY1, RY3 and RY4 to the off state (step S301).
  • a current flows through the power supply paths L10 and L20 and the electric paths L12 and L22. That is, only the assembled battery Vc2 is in an individual connection state in which it is individually connected to the power supply paths L10 and L20.
  • control unit 23 turns on the switch SW1 (step S302), and detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step). S303).
  • control unit 23 turns the switch SW1 into an off state (step S304) and turns the switch SW4 into an on state (step S305).
  • control unit 23 detects (measures) the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S306), and turns off the switch SW4 (step). S307).
  • the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 (step S308).
  • the insulation resistance value Rp calculated in step S308 is a parallel composite value of the insulation resistances Rp1 and Rp2.
  • the insulation resistance value Rn calculated in step S308 is a parallel combined value of the insulation resistances Rn1 and Rn2.
  • the control unit 23 turns off the relays RY2 and RY5 (step S309), ends the insulation resistance Rpa2, Rna2 measurement process, and proceeds to step S104 of the main routine.
  • the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S308 as the insulation resistance values Rpa2 and Rna2, respectively (step S104). That is, as expressed by mathematical formulas (3) and (4), the insulation resistance value Rpa2 stores the parallel composite value of the insulation resistances Rp1 and Rp2, and the insulation resistance value Rna2 is the parallel composite value of the insulation resistances Rn1 and Rn2. Is remembered.
  • the control unit 23 executes the insulation resistance Rpa3 and Rna3 measurement processes shown in FIG. 9 (step S105).
  • the control unit 23 turns on the relays RY1 and RY4 and switches the relays RY2, RY3 and RY5 to the off state (step S401).
  • a current flows through the power supply paths L10 and L20 and the electric paths L11 and L21. That is, only the assembled battery Vc1 is in an individual connection state in which it is individually connected to the power supply paths L10 and L20.
  • control unit 23 turns on the switch SW1 (step S402), and detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step). S403).
  • control unit 23 turns the switch SW1 into an off state (step S404) and turns the switch SW4 into an on state (step S405).
  • control unit 23 detects the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 (step S406), and turns the switch SW4 into an off state (step S407).
  • the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 (step S408).
  • the insulation resistance value Rp calculated in step S408 is a parallel composite value of the insulation resistances Rp1 and Rp3.
  • the insulation resistance value Rn calculated in step S408 is a parallel combined value of the insulation resistances Rn1 and Rn3.
  • the control unit 23 turns off the relays RY1 and RY4 (step S409), ends the insulation resistance Rpa3 and Rna3 measurement processing, and proceeds to step S106 of the main routine.
  • the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S408 as the insulation resistance values Rpa3 and Rna3, respectively. That is, as expressed by mathematical formulas (5) and (6), the insulation resistance value Rpa3 stores the parallel composite value of the insulation resistances Rp1 and Rp3, and the insulation resistance value Rna3 is the parallel composite value of the insulation resistances Rn1 and Rn3. Is remembered.
  • control unit 23 calculates each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 by solving the equations (1) to (6) (step S107). Specifically, as shown in the mathematical formulas (7) to (12), each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 is calculated.
  • the control unit 23 ends the main routine, and as a result of executing the main routine, leakage occurs in any of the paths based on each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 calculated. Detect if you are doing it. Specifically, the control unit 23 compares each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 with the threshold value, and the insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2 whose value is smaller than the threshold value. Identify Rn3. Then, the control unit 23 detects that an electric leakage occurs in the path corresponding to (connected) the specified insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, and Rn3. As described above, the control unit 23 of the present embodiment corresponds to the detection unit and the calculation unit.
  • the A / D converter 22 measures the voltage in the parallel connection state of the assembled batteries Vc1 and Vc2 via the voltage dividing circuit 21, and also measures the voltage in the individually connected state for each of the assembled batteries Vc1 and Vc2.
  • the control unit 23 leaks electricity in any of the power supply paths L10, L20 and each electric path L11, L12, L21, L22 based on the measurement result (partial pressure value) in the parallel connection state and the measurement result in the individual connection state. Is detected. Therefore, it is possible to identify the leaking path and easily perform work such as replacement.
  • control unit 23 specified the insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, and Rn3, respectively, based on the pressure division value in the parallel connection state and the pressure division value in the individual connection state. Thereby, it is possible to accurately determine whether each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 is lower than a predetermined threshold value.
  • the charger 30 charges the assembled batteries Vc1 and Vc2 when the assembled batteries Vc1 and Vc2 are connected in series by the relay RY3. Therefore, it is possible to enable quick charging and suppress heat generation.
  • the charger 30 charges the assembled batteries Vc1 and Vc2, the relays RY2 and RY4 provided between the electric paths L12 and L21 to which the charger 30 is connected and the power supply paths L10 and L20 are turned on. Switch to. Then, the A / D converter 22 measures the voltage dividing value of the voltage in each of the power supply paths L10 and L20 at the time of charging via the voltage dividing circuit 21. The control unit 23 detects that any one of the power supply paths L10 and L20 and the electric paths L11, L12, L21, and L22 is leaking based on the voltage division value measured at the time of charging. Therefore, even when charging in a series connection state, the control unit 23 can detect whether or not there is an electric leakage at any point, and can quickly detect an abnormality.
  • relays RY2 and RY4 are switched to the ON state during charging, it is not necessary to provide the switches SW2 and SW3 as shown in the comparative example of FIG. 2, and the circuit configuration can be simplified.
  • the assembled batteries Vc1 and Vc2 are connected in parallel. Then, in this state, the A / D converter 22 measures the voltage dividing value of the voltage in each of the power supply paths L10 and L20 via the voltage dividing circuit 21, and the control unit 23 sets the measured voltage dividing value. Based on this, it is detected that any one of the power supply paths L10 and L20 and the electric paths L11, L12, L21, and L22 is leaking. Therefore, even when power is supplied in a parallel connection state, the control unit 23 can detect whether or not there is an electric leakage at any point, and can quickly detect an abnormality. ..
  • the control unit 23 has calculated the insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, Rn3, but the detected combined resistance values (Rpa, Rpa2, Rpa3, Rna, Rna2, Rna3) are used. Based on this, the path of leakage (decreased insulation resistance) may be specified. As a result, the amount of calculation can be reduced.
  • the charger 30 is connected to the electric paths L12 and L21, but the charger 30 may be connected to the power supply paths L10 and L20.
  • control unit 23 executes the main routine when an electric leakage occurs at any of the locations, but the main routine is executed every predetermined cycle even if the electric leakage is not detected at any of the locations. May be executed. Further, it may be executed at a predetermined timing (for example, when the power supply system 10 is started). As a result, it is possible to detect the leakage and identify the path of the leakage.
  • the relays RY1, RY2, RY4, and RY5 are controlled as shown in FIGS. 12 or 13, and the minute at the connection point P1.
  • the pressure value may be measured (detected). That is, when charging only the assembled battery Vc1, as shown in FIG. 12, the control unit 23 turns on the switches SW5 and SW6 and the relays RY1, RY2 and RY4. As a result, as shown by the region surrounded by the alternate long and short dash line in FIG. 12, current flows in all the paths. That is, current flows in any of the power supply paths L10, L20 and the electric paths L11, L12, L21, and L22.
  • the control unit 23 calculates the parallel composite value of the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side, and the insulation resistances Rp1, Rp2, on the negative electrode side.
  • the parallel composite value of Rp3 is calculated.
  • the control unit 23 detects an electric leakage in any path of the power supply system 10 based on the calculated parallel composite value.
  • the control unit 23 turns on the switches SW5 and SW6 and the relays RY2, RY3 and RY4. As a result, current flows in all paths, as shown by the region surrounded by the alternate long and short dash line in FIG. That is, current flows in any of the power supply paths L10, L20 and the electric paths L11, L12, L21, and L22.
  • the control unit 23 calculates the parallel composite value of the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side, and the insulation resistances Rp1, Rp2, on the negative electrode side. The parallel composite value of Rp3 is calculated. Then, the control unit 23 detects an electric leakage in any path of the power supply system 10 based on the calculated parallel composite value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

This electric leakage detection device (20) comprises: measurement units (21, 22) which are configured so that a resistor is selectively connectable between the reference potential (GND) and one among a positive electrode-side power supply path (L10) and a negative electrode-side power supply path (L20) and which measure the voltage of each power supply path in a state in which the resistor is connected; and a detection unit (23) the detects electric leakage on the basis of the measurement results from the measurement units. The measurement units measure the voltage in a parallel connection state in which batteries (Vc1, Vc2) are connected in parallel to the power supply path by switch units (RY1, RY2, RY4, and RY5) and measure the voltage in an individual connection state in which the batteries are individually connected by the switching units. The detection unit detects whether or not any one of the power supply paths and electric paths (L11, L12, L21, L22) is leaking, on the basis of the measurement result in the parallel connection state and the measurement result in the individual connection state.

Description

漏電検出装置Leakage detector 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年6月4日に出願された日本出願番号2020-097523号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-997523 filed on June 4, 2020, and the contents of the description are incorporated herein by reference.
 本願開示は、漏電検出装置に関するものである。 The disclosure of this application relates to an earth leakage detection device.
 従来、車両に搭載される電源システムとして、複数の組電池の直列接続と並列接続とを変更可能に構成したものが提案されている(例えば、特許文献1)。この特許文献1に記載されている電源システムによれば、大きな電圧で充電を可能にしつつ、充電時の発熱を抑制することができる。 Conventionally, as a power supply system mounted on a vehicle, a system in which a series connection and a parallel connection of a plurality of assembled batteries can be changed has been proposed (for example, Patent Document 1). According to the power supply system described in Patent Document 1, it is possible to suppress heat generation during charging while enabling charging with a large voltage.
 ところで、車両に搭載される電源システムでは、漏電を検知するため、絶縁抵抗検出回路が一般的に採用されている。この絶縁抵抗検出回路としては、例えば、特許文献2~4等に示すように、抵抗分圧方式の絶縁抵抗検出回路が知られている。この抵抗分圧方式の絶縁抵抗検出回路を採用する場合、車両の電気機器類が増加して、組電池とグランド(シャーシ等)の間に、浮遊容量が増加しても、検出精度への影響を抑制することができる。 By the way, in the power supply system mounted on the vehicle, an insulation resistance detection circuit is generally adopted in order to detect an electric leakage. As the insulation resistance detection circuit, for example, as shown in Patent Documents 2 to 4, a resistance voltage dividing type insulation resistance detection circuit is known. When this resistance voltage divider type insulation resistance detection circuit is adopted, even if the number of electrical equipment in the vehicle increases and the stray capacitance between the assembled battery and the ground (chassis, etc.) increases, the detection accuracy will be affected. Can be suppressed.
特開2019-118221号公報Japanese Unexamined Patent Publication No. 2019-118221 特開2003-66090号公報Japanese Unexamined Patent Publication No. 2003-66090 特許第5861954号公報Japanese Patent No. 5861954 特許第4785627号公報Japanese Patent No. 4785627
 ところで、特許文献1に記載されているような直列接続と並列接続を変更可能に構成した電源システムにおいて、抵抗分圧方式の絶縁抵抗検出回路を採用した場合、接続経路全体における合成絶縁抵抗を測定することができる。しかしながら、合成絶縁抵抗に基づいて、接続経路のいずれかに漏電していることを検出できるものの、接続経路のうちいずれの経路において漏電しているかを特定することができなかった。 By the way, in a power supply system in which series connection and parallel connection can be changed as described in Patent Document 1, when an insulation resistance detection circuit of a resistance voltage division method is adopted, the combined insulation resistance in the entire connection path is measured. can do. However, although it is possible to detect that an electric leakage occurs in one of the connection paths based on the synthetic insulation resistance, it is not possible to specify in which of the connection paths the electric leakage occurs.
 本開示は、上記課題を解決するためになされたものであり、その目的は、経路ごとの漏電を検出可能な漏電検出装置を提供することにある。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to provide an earth leakage detection device capable of detecting an earth leakage for each route.
 上記課題を解決するための手段は、複数の電池と、前記各電池ごとに設けられ、一端が前記電池の正極側端子に接続される第1の電気経路と、前記各第1の電気経路の他端が接続される正極側の電源経路と、前記各電池ごとに設けられ、一端が前記電池の負極側端子に接続される第2の電気経路と、前記各第2の電気経路の他端が接続される負極側の電源経路と、前記各電気経路と前記各電源経路との間に設けられ、その間で通電及び通電遮断をそれぞれ切り替えるスイッチ部と、を有する電源システムに適用され、前記電源システムと絶縁された基準電位との間の絶縁抵抗の低下を検出する漏電検出装置において、正極側の前記電源経路及び負極側の前記電源経路の何れかと前記基準電位との間に抵抗器が選択的に接続可能に構成され、前記抵抗器が接続された状態で前記各電源経路の電圧を測定する測定部と、前記測定部からの測定結果に基づいて漏電を検出する検出部と、を備え、前記測定部は、前記電源経路に対して、前記スイッチ部により前記各電池が並列接続された並列接続状態における電圧を測定するとともに、前記各電池ごとに、前記スイッチ部により前記各電池が個別に接続された個別接続状態における電圧を測定し、前記検出部は、前記並列接続状態における測定結果及び前記個別接続状態における測定結果に基づいて、前記各電源経路及び前記各電気経路のいずれにおいて漏電しているかを検出する。 The means for solving the above problems are a plurality of batteries, a first electric path provided for each of the batteries, one end of which is connected to a positive terminal of the battery, and a first electric path of each of the first electric paths. A power path on the positive side to which the other end is connected, a second electric path provided for each battery and one end connected to the negative terminal of the battery, and the other end of each of the second electric paths. It is applied to a power supply system having a power supply path on the negative side to which is connected, and a switch unit provided between each electric path and each power path and switching between energization and de-energization, respectively. In a leakage detector that detects a decrease in insulation resistance between the system and an isolated reference potential, a resistor is selected between the reference potential and either the power path on the positive side or the power path on the negative side. It is configured to be connectable, and includes a measuring unit that measures the voltage of each power supply path in a state where the resistor is connected, and a detecting unit that detects electric leakage based on the measurement result from the measuring unit. The measuring unit measures the voltage in a parallel connection state in which the batteries are connected in parallel by the switch unit to the power supply path, and each battery is individually connected by the switch unit for each battery. The detector measures the voltage in the individually connected state connected to, and the detection unit leaks electricity in either the power supply path or the electric path based on the measurement result in the parallel connection state and the measurement result in the individual connection state. Detect if it is done.
 測定部は、並列接続状態における電圧を測定するとともに、個別接続状態における電圧を測定し、検出部は、並列接続状態における測定結果及び個別接続状態における測定結果に基づいて、各電源経路及び各電気経路のいずれにおいて漏電しているかを検出する。このため、漏電している経路を特定し、交換などの作業を容易に行うことができる。 The measuring unit measures the voltage in the parallel connection state and measures the voltage in the individual connection state, and the detection unit measures each power supply path and each electricity based on the measurement result in the parallel connection state and the measurement result in the individual connection state. Detects which route is leaking. Therefore, it is possible to identify the leaking path and easily perform work such as replacement.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電源システムの回路図であり、 図2は、比較例における電源システムの回路図であり、 図3は、比較例における電源システムの回路図であり、 図4は、比較例における電源システムの回路図であり、 図5は、直列接続状態における電源システムの回路図であり、 図6は、メインルーチンを示すフローチャートであり、 図7は、全絶縁抵抗測定処理を示すフローチャートであり、 図8は、絶縁抵抗Rpa2,Rna2測定処理を示すフローチャートであり、 図9は、絶縁抵抗Rpa3,Rna3測定処理を示すフローチャートであり、 図10は、個別接続状態における電源システムの回路図であり、 図11は、個別接続状態における電源システムの回路図であり、 図12は、変形例における電源システムの回路図であり、 図13は、変形例における電源システムの回路図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram of a power supply system. FIG. 2 is a circuit diagram of a power supply system in a comparative example. FIG. 3 is a circuit diagram of a power supply system in a comparative example. FIG. 4 is a circuit diagram of the power supply system in the comparative example. FIG. 5 is a circuit diagram of a power supply system in a series connection state. FIG. 6 is a flowchart showing the main routine. FIG. 7 is a flowchart showing the total insulation resistance measurement process. FIG. 8 is a flowchart showing the insulation resistance Rpa2 and Rna2 measurement processing. FIG. 9 is a flowchart showing the insulation resistance Rpa3 and Rna3 measurement processing. FIG. 10 is a circuit diagram of a power supply system in an individual connection state. FIG. 11 is a circuit diagram of a power supply system in an individual connection state. FIG. 12 is a circuit diagram of a power supply system in a modified example. FIG. 13 is a circuit diagram of a power supply system in a modified example.
 以下、「漏電検出装置」を車両(例えば、ハイブリッド車や電気自動車)の電源システムに適用した第1実施形態について、図面を参照しつつ説明する。なお、以下では、実施形態及びその変形例で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。 Hereinafter, the first embodiment in which the "leakage detection device" is applied to the power supply system of a vehicle (for example, a hybrid vehicle or an electric vehicle) will be described with reference to the drawings. In the following, the same or equal parts of the embodiments and variations thereof are designated by the same reference numerals, and the description thereof will be incorporated for the parts having the same reference numerals.
 電源システム10は、複数の組電池Vc1,Vc2と、漏電検出装置20と、充電機30と、を備える。組電池Vc1,Vc2は、例えば百V以上となる端子間電圧を有する電池であり、複数の電池セルが直列接続されて構成されている。電池セルとして、例えば、リチウムイオン蓄電池や、ニッケル水素蓄電池を用いることができる。 The power supply system 10 includes a plurality of assembled batteries Vc1 and Vc2, an earth leakage detection device 20, and a charger 30. The assembled batteries Vc1 and Vc2 are batteries having a terminal voltage of, for example, 100 V or more, and are configured by connecting a plurality of battery cells in series. As the battery cell, for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used.
 また、電源システム10は、各組電池Vc1,Vc2ごとに設けられ、一端が組電池Vc1,Vc2の正極側端子に接続される第1の電気経路としての電気経路L11,L12を有する。また、電源システム10は、各電気経路L11,L12の他端が接続される正極側の電源経路としての正極側電源経路L10を有する。この正極側電源経路L10には、図示しない電気負荷の正極側端子が接続される。 Further, the power supply system 10 is provided for each of the assembled batteries Vc1 and Vc2, and has electric paths L11 and L12 as a first electric path in which one end is connected to the positive electrode side terminal of the assembled batteries Vc1 and Vc2. Further, the power supply system 10 has a positive electrode side power supply path L10 as a positive electrode side power supply path to which the other ends of the respective electric paths L11 and L12 are connected. A positive electrode side terminal of an electric load (not shown) is connected to the positive electrode side power supply path L10.
 正極側電源経路L10は、バスバーなどの導電性部材により構成されており、基準電位となるグランドGND(車体などのシャーシグランド、ボディGND)に対して絶縁されている。すなわち、正極側電源経路L10は、絶縁抵抗Rp1を介して接地されている。同様に、各電気経路L11,L12は、導電性部材により構成されており、それぞれ絶縁抵抗Rp3、Rp2を介して接地されている。 The positive electrode side power supply path L10 is composed of a conductive member such as a bus bar, and is insulated from a ground GND (chassis ground such as a vehicle body, body GND) which is a reference potential. That is, the positive electrode side power supply path L10 is grounded via the insulation resistor Rp1. Similarly, each of the electric paths L11 and L12 is composed of a conductive member and is grounded via insulating resistors Rp3 and Rp2, respectively.
 同様に、電源システム10は、各組電池Vc1,Vc2ごとに設けられ、一端が組電池Vc1,Vc2の負極側端子に接続される第2の電気経路としての電気経路L21,L22を有する。また、電源システム10は、各電気経路L21,L22の他端が接続される負極側の電源経路としての負極側電源経路L20を有する。この負極側電源経路L20には、図示しない電気負荷の負極側端子が接続される。 Similarly, the power supply system 10 is provided for each of the assembled batteries Vc1 and Vc2, and has electric paths L21 and L22 as a second electric path in which one end is connected to the negative electrode side terminal of the assembled batteries Vc1 and Vc2. Further, the power supply system 10 has a negative electrode side power supply path L20 as a negative electrode side power supply path to which the other ends of the respective electric paths L21 and L22 are connected. A negative electrode side terminal of an electric load (not shown) is connected to the negative electrode side power supply path L20.
 負極側電源経路L20は、バスバーなどの導電性部材により構成されており、グランドGNDに対して絶縁されている。すなわち、負極側電源経路L20は、絶縁抵抗Rn1を介して接地されている。同様に、各電気経路L21,L22は、導電性部材により構成されており、それぞれ絶縁抵抗Rn3、Rn2を介して接地されている。 The negative electrode side power supply path L20 is composed of a conductive member such as a bus bar, and is insulated from the ground GND. That is, the negative electrode side power supply path L20 is grounded via the insulation resistor Rn1. Similarly, each of the electric paths L21 and L22 is composed of a conductive member, and is grounded via insulating resistors Rn3 and Rn2, respectively.
 正極側電源経路L10及び負極側電源経路L20は、図示しないそれぞれリレースイッチSMR(システムメインリレースイッチ)を介して電気負荷に接続されており、リレースイッチSMRにより、通電及び通電遮断が切り替え可能に構成されている。 The positive electrode side power supply path L10 and the negative electrode side power supply path L20 are each connected to an electric load via a relay switch SMR (system main relay switch) (not shown), and the relay switch SMR can switch between energization and energization cutoff. Has been done.
 また、電源経路L10,L20と各電気経路L11,L12,L21,L22の間には、その間の通電及び通電遮断を切り替えるリレースイッチとしてのリレーRY1,RY2,RY4,RY5がそれぞれ設けられている。これらのリレーRY1,RY2,RY4,RY5がスイッチ部に相当する。 Further, between the power supply paths L10 and L20 and the respective electric paths L11, L12, L21, and L22, relays RY1, RY2, RY4, and RY5 are provided as relay switches for switching between energization and energization cutoff. These relays RY1, RY2, RY4, RY5 correspond to the switch unit.
 そして、電源システム10は、各組電池Vc1,Vc2を直列に接続する第3の電気経路としての電気経路L30を有する。電気経路L30の一端は、電気経路L11に(リレーRY1よりも組電池Vc1の側に)接続されており、他端は、電気経路L22に(リレーRY5よりも組電池Vc2の側に)接続されている。この電気経路L30には、電気経路L30の通電及び通電遮断を切り替える直列接続用スイッチ部としてのリレーRY3が設けられている。 Then, the power supply system 10 has an electric path L30 as a third electric path for connecting the assembled batteries Vc1 and Vc2 in series. One end of the electric path L30 is connected to the electric path L11 (to the side of the assembled battery Vc1 from the relay RY1), and the other end is connected to the electric path L22 (to the side of the assembled battery Vc2 from the relay RY5). ing. The electric path L30 is provided with a relay RY3 as a series connection switch unit for switching the energization and the energization cutoff of the electric path L30.
 充電機30の正極側端子は、電気経路L11,L12のうち、直列接続状態において端部となる組電池Vc2の正極側端子に接続される電気経路L12に接続されている。同様に、充電機30の負極側端子は、電気経路L21,L22のうち、直列接続状態において端部となる組電池Vc1の負極側端子に接続される電気経路L21に接続されている。なお、充電機30の正極側端子は、スイッチSW5を介して、電気経路L12に接続されており、その負極側端子は、スイッチSW6を介して、電気経路L21に接続されている。 The positive electrode side terminal of the charger 30 is connected to the electric path L12 connected to the positive electrode side terminal of the assembled battery Vc2 which is the end in the series connection state among the electric paths L11 and L12. Similarly, the negative electrode side terminal of the charger 30 is connected to the electric path L21 connected to the negative electrode side terminal of the assembled battery Vc1 which is the end portion of the electric paths L21 and L22 in the series connection state. The positive electrode side terminal of the charger 30 is connected to the electric path L12 via the switch SW5, and the negative electrode side terminal thereof is connected to the electric path L21 via the switch SW6.
 次に、漏電検出装置20について説明する。漏電検出装置20は、分圧回路21と、A/D変換器22と、制御部23と、を備える。分圧回路21は、抵抗器としての検出抵抗R1と検出抵抗R2の直列接続体を有し、直列接続体の一端は、グランドGND(ボディGND)に接続されている。直列接続体の他端は、正極側電源経路L10及び負極側電源経路L20の何れかに対して選択的に接続可能に構成されている。すなわち、直列接続体の他端は、スイッチSW1を介して正極側電源経路L10に接続されているとともに、スイッチSW4を介して負極側電源経路L20に接続されている。 Next, the leakage detection device 20 will be described. The leakage detection device 20 includes a voltage dividing circuit 21, an A / D converter 22, and a control unit 23. The voltage dividing circuit 21 has a series connection body of the detection resistor R1 and the detection resistance R2 as a resistor, and one end of the series connection body is connected to the ground GND (body GND). The other end of the series connection body is configured to be selectively connectable to either the positive electrode side power supply path L10 or the negative electrode side power supply path L20. That is, the other end of the series connection body is connected to the positive electrode side power supply path L10 via the switch SW1 and is connected to the negative electrode side power supply path L20 via the switch SW4.
 A/D変換器22は、一端が検出抵抗R1と検出抵抗R2との間の接続点P1に接続され、他端がグランドGND(ボディGND)に接続されている。A/D変換器22は、検出抵抗R1と検出抵抗R2との間の電圧(アナログ信号)を入力し、デジタル信号に変換して出力する装置である。A/D変換器22には、制御部23が接続されている。分圧回路21とA/D変換器22が、測定部に相当する。 One end of the A / D converter 22 is connected to the connection point P1 between the detection resistor R1 and the detection resistor R2, and the other end is connected to the ground GND (body GND). The A / D converter 22 is a device that inputs a voltage (analog signal) between the detection resistor R1 and the detection resistor R2, converts it into a digital signal, and outputs the voltage. A control unit 23 is connected to the A / D converter 22. The voltage divider circuit 21 and the A / D converter 22 correspond to the measuring unit.
 制御部23は、CPU、ROM、RAM及びI/O等を備えたマイクロコンピュータを主体として構成されており、CPUがROMに記憶されているプログラムを実行することにより、各種機能を実現する。なお、各種機能は、ハードウェアである電子回路によって実現されてもよく、あるいは、少なくとも一部をソフトウェア、すなわちコンピュータ上で実行される処理によって実現されてもよい。制御部23は、電源システム10が備える各スイッチ及び各リレーのオンオフ状態を制御する機能や、電源システム10の漏電を検出する機能などを備える。なお、制御部23とは別に、各種スイッチのオンオフ状態を制御する機能などを有する制御装置を設け、漏電検出装置20と協同して漏電を検出してもよい。 The control unit 23 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, I / O, etc., and the CPU realizes various functions by executing a program stored in the ROM. The various functions may be realized by electronic circuits that are hardware, or at least a part of them may be realized by software, that is, processing executed on a computer. The control unit 23 has a function of controlling the on / off state of each switch and each relay included in the power supply system 10, a function of detecting an electric leakage of the power supply system 10, and the like. In addition to the control unit 23, a control device having a function of controlling the on / off state of various switches may be provided, and the leakage may be detected in cooperation with the leakage detection device 20.
 このような電源システム10を構成することにより、組電池Vc1,Vc2を並列に接続した状態で電力を電気負荷へ供給することができるとともに、充電時には組電池Vc1,Vc2を直列に接続させることができる。これより、充電時において電流量を減らし、発熱を抑制することができる。 By configuring such a power supply system 10, it is possible to supply electric power to an electric load with the assembled batteries Vc1 and Vc2 connected in parallel, and to connect the assembled batteries Vc1 and Vc2 in series during charging. can. As a result, the amount of current can be reduced during charging and heat generation can be suppressed.
 ところで、上述したような回路構成を有し、状況により直列接続と並列接続を切り替えるような電源システム10において、漏電を検出する場合、漏電検出装置を、例えば、図2の比較例に示す漏電検出装置201のような構成とすることが考えられる。図2の比較例に示す漏電検出装置201は、図1に示す漏電検出装置20と異なり、分圧回路21(直列接続体の一端)が、スイッチSW2を介して電気経路L12に接続されている。また、図2の比較例に示す漏電検出装置201は、その分圧回路21が、スイッチSW3を介して電気経路L21に接続されている。 By the way, in the power supply system 10 having the circuit configuration as described above and switching between series connection and parallel connection depending on the situation, when detecting the leakage, the leakage detection device is used, for example, the leakage detection shown in the comparative example of FIG. It is conceivable to have a configuration like the device 201. In the leakage detection device 201 shown in the comparative example of FIG. 2, unlike the leakage detection device 20 shown in FIG. 1, the voltage dividing circuit 21 (one end of the series connection body) is connected to the electric path L12 via the switch SW2. .. Further, in the leakage detection device 201 shown in the comparative example of FIG. 2, the voltage dividing circuit 21 is connected to the electric path L21 via the switch SW3.
 図2の漏電検出装置201では、図3に示すように並列接続状態の組電池Vc1,Vc2により電力供給が行われる場合、スイッチSW1,SW4のオンオフ制御を行うことにより、漏電を検出することができる。また、図2の漏電検出装置201では、図4に示すように直列接続状態の組電池Vc1,Vc2が充電される場合、スイッチSW3,SW4のオンオフ制御を行うことにより、漏電を検出することができる。 In the leakage detection device 201 of FIG. 2, when power is supplied by the assembled batteries Vc1 and Vc2 in the parallel connection state as shown in FIG. 3, the leakage can be detected by controlling the switches SW1 and SW4 on and off. can. Further, in the leakage detection device 201 of FIG. 2, when the assembled batteries Vc1 and Vc2 in the series connection state are charged as shown in FIG. 4, the leakage can be detected by controlling the switches SW3 and SW4 on and off. can.
 しかしながら、上述した漏電の検出方法では次のような問題がある。すなわち、直列接続と並列接続を変更可能に構成された電源システム10では、リレーが多数設けられ、正極側電源経路L10と、電気経路L11,L12とが、それぞれ別の部品(バスバー等)で構成されている。このため、正極側電源経路L10と、電気経路L11,L12は、それぞれ個別に取り換え可能に構成されている。負極側も同様である。 However, the above-mentioned leakage detection method has the following problems. That is, in the power supply system 10 configured so that the series connection and the parallel connection can be changed, a large number of relays are provided, and the positive electrode side power supply path L10 and the electric paths L11 and L12 are configured by different parts (bus bars, etc.). Has been done. Therefore, the positive electrode side power supply path L10 and the electric paths L11 and L12 are configured to be individually replaceable. The same applies to the negative electrode side.
 一方、図3に示すように組電池Vc1,Vc2が並列接続状態で電力供給が行われる場合に、漏電検出装置20は、正極側又は負極側のいずれかで漏電していることを検出できるものの、電源経路L10,L20、及び電気経路L11,L12,L21,L22のうちどの経路から漏電しているかを判定することまではできない。 On the other hand, as shown in FIG. 3, when power is supplied while the assembled batteries Vc1 and Vc2 are connected in parallel, the leakage detection device 20 can detect that leakage is occurring on either the positive electrode side or the negative electrode side. , Power path L10, L20, and electric path L11, L12, L21, L22, it is not possible to determine from which path the electric leakage occurs.
 つまり、図3の状態で絶縁抵抗を算出する場合、正極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出することができるものの、各絶縁抵抗Rp1,Rp2,Rp3を個別に算出することはできなかった。負極側も同様に、絶縁抵抗Rn1,Rn2,Rn3の並列合成値を算出することができるものの、各絶縁抵抗Rn1,Rn2,Rn3を個別に算出することはできなかった。したがって、漏電を検出した場合、正極側全体又は負極側全体の経路をすべて取り換えるか、あるいは、作業者等が一つずつ部品を分解して、検査する必要があった。 That is, when the insulation resistance is calculated in the state of FIG. 3, the parallel composite values of the insulation resistances Rp1, Rp2, and Rp3 can be calculated on the positive electrode side, but the insulation resistances Rp1, Rp2, and Rp3 are calculated individually. I couldn't. Similarly, on the negative electrode side, the parallel composite value of the insulation resistances Rn1, Rn2, and Rn3 could be calculated, but the insulation resistances Rn1, Rn2, and Rn3 could not be calculated individually. Therefore, when an electric leakage is detected, it is necessary to replace all the routes on the positive electrode side or the entire negative electrode side, or the operator or the like disassembles the parts one by one and inspects them.
 また、図4に示す充電状態(直列接続状態)で絶縁抵抗を算出する場合、正極側では、絶縁抵抗Rp1が検出できず、負極側では、絶縁抵抗Rn1が検出できない。これにより、充電時において電源経路L10,L20における漏電を検出することができないという問題があった。 Further, when the insulation resistance is calculated in the charged state (series connection state) shown in FIG. 4, the insulation resistance Rp1 cannot be detected on the positive electrode side, and the insulation resistance Rn1 cannot be detected on the negative electrode side. As a result, there is a problem that leakage in the power supply paths L10 and L20 cannot be detected during charging.
 そこで、本実施形態の漏電検出装置20は、以下に示すような処理を実行することにより、経路ごとの絶縁抵抗を算出し、各絶縁抵抗に基づいて、いずれの経路において漏電しているかを特定している。以下、詳しく説明する。 Therefore, the leakage detection device 20 of the present embodiment calculates the insulation resistance for each path by executing the following processing, and specifies which path the leakage is in based on each insulation resistance. is doing. Hereinafter, it will be described in detail.
 まず、経路全体のうち、いずれかの経路で漏電しているか否かを判定するための方法について説明する。並列接続状態の組電池Vc1,Vc2により電力供給が行われる場合、図3と同様に、制御部23は、スイッチSW1,SW4のオンオフ制御を行うことにより、正極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出し、負極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出する。 First, a method for determining whether or not there is an electric leakage in any of the entire routes will be described. When power is supplied by the assembled batteries Vc1 and Vc2 in the parallel connection state, the control unit 23 controls the on / off of the switches SW1 and SW4 so that the insulation resistances Rp1 and Rp2 on the positive electrode side are supplied. The parallel composite value of Rp3 is calculated, and the parallel composite value of the insulation resistors Rp1, Rp2, and Rp3 is calculated on the negative electrode side.
 具体的には、制御部23は、スイッチSW1のオン状態とし、分圧回路21及びA/D変換器22を介して、検出抵抗R1と検出抵抗R2の接続点P1における分圧値(分圧電圧)を入力する。同様に、制御部23は、スイッチSW4のオン状態とし、分圧回路21及びA/D変換器22を介して、検出抵抗R1と検出抵抗R2の接続点P1における分圧値を入力する。 Specifically, the control unit 23 sets the switch SW1 to the ON state, and the voltage division value (voltage division value) at the connection point P1 between the detection resistor R1 and the detection resistor R2 via the voltage divider circuit 21 and the A / D converter 22. Voltage) is input. Similarly, the control unit 23 turns on the switch SW4 and inputs the voltage dividing value at the connection point P1 between the detection resistor R1 and the detection resistor R2 via the voltage divider circuit 21 and the A / D converter 22.
 そして、制御部23は、前記入力した分圧値と、分圧比と、組電池Vc1、Vc2の電圧に基づいて、正極側における絶縁抵抗Rp1,Rp2,Rp3の並列合成値と、負極側における絶縁抵抗Rn1,Rn2,Rn3の並列合成値を算出する。そして、漏電検出装置20は、算出した並列合成値に基づいて、電源システム10のいずれかの経路において、漏電が発生しているか否かを検出する。なお、分圧比の値は既知であり、組電池Vc1、Vc2の電圧は、組電池Vc1,Vc2の状態を監視する電池監視装置(図示せず)などから取得すればよい。また、組電池Vc1,Vc2の充電状態から電圧を推定してもよい。並列合成値の算出方法は、従来(特許文献2~4等)に記載の従来手法と同様であり、周知であるため、説明を省略する。 Then, the control unit 23 has the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side in parallel and the insulation on the negative electrode side based on the input voltage dividing value, the voltage dividing ratio, and the voltages of the assembled batteries Vc1 and Vc2. The parallel combined value of the resistors Rn1, Rn2, and Rn3 is calculated. Then, the leakage detection device 20 detects whether or not an leakage has occurred in any of the paths of the power supply system 10 based on the calculated parallel composite value. The value of the voltage division ratio is known, and the voltages of the assembled batteries Vc1 and Vc2 may be obtained from a battery monitoring device (not shown) for monitoring the state of the assembled batteries Vc1 and Vc2. Further, the voltage may be estimated from the charged state of the assembled batteries Vc1 and Vc2. The method for calculating the parallel composite value is the same as the conventional method described in the prior art (Patent Documents 2 to 4, etc.) and is well known, so the description thereof will be omitted.
 次に充電時における漏電の検出方法について説明する。図5に示すように、スイッチSW5,SW6及びリレーRY3がオン状態とされ、直列接続状態の組電池Vc1,Vc2が充電される場合、漏電検出装置20の制御部23により、リレーRY2,RY4がオン状態とされる。これにより、図5の一点鎖線で囲まれた領域で示すように、すべての経路において電流が流れる。すなわち、電源経路L10,L20、電気経路L11,L12,L21,L22のいずれにおいても電流が流れる。 Next, we will explain how to detect an electric leakage during charging. As shown in FIG. 5, when the switches SW5, SW6 and the relay RY3 are turned on and the assembled batteries Vc1 and Vc2 in the series connection state are charged, the relays RY2 and RY4 are set by the control unit 23 of the leakage detection device 20. It is turned on. As a result, current flows in all paths, as shown by the region surrounded by the alternate long and short dash line in FIG. That is, current flows in any of the power supply paths L10, L20 and the electric paths L11, L12, L21, and L22.
 この状態において、スイッチSW1をオン状態とすることにより取得した分圧値と、スイッチSW4をオン状態とすることにより取得した分圧値に基づいて、制御部23は、絶縁抵抗Rp1,Rp2,Rp3の合成値と、絶縁抵抗Rn1,Rn2,Rn3の合成値を算出する。そして、漏電検出装置20は、算出した合成値に基づいて、電源システム10のいずれかの経路において漏電しているか否かを検出する。 In this state, the control unit 23 sets the insulation resistances Rp1, Rp2, Rp3 based on the voltage dividing value acquired by turning on the switch SW1 and the voltage dividing value acquired by turning on the switch SW4. And the combined value of the insulation resistances Rn1, Rn2, Rn3 are calculated. Then, the leakage detection device 20 detects whether or not there is a leakage in any path of the power supply system 10 based on the calculated combined value.
 以上により、電力の供給時及び充電時のいずれにおいても電源システム10のいずれかの経路における漏電を検出することができる。 From the above, it is possible to detect an electric leakage in any path of the power supply system 10 both when the electric power is supplied and when the electric power is charged.
 次に、電源システム10のいずれかの経路における漏電を検出した場合、制御部23は、図6に示すメインルーチンを実行する。メインルーチンを開始すると、まず、制御部23は、図7に示す全絶縁抵抗測定処理を実行する(ステップS101)。 Next, when an electric leakage in any path of the power supply system 10 is detected, the control unit 23 executes the main routine shown in FIG. When the main routine is started, first, the control unit 23 executes the total insulation resistance measurement process shown in FIG. 7 (step S101).
 全絶縁抵抗測定処理において、制御部23は、リレーRY1,RY2,RY4,RY5をオン状態とし、リレーRY3をオフ状態に切り替える(ステップS201)。次に、制御部23は、スイッチSW1をオン状態とする(ステップS202)。そして、制御部23は、分圧回路21及びA/D変換器22を介して、接続点P1における分圧値V1を検出(測定)する(ステップS203)。 In the total insulation resistance measurement process, the control unit 23 turns on the relays RY1, RY2, RY4, and RY5, and switches the relay RY3 to the off state (step S201). Next, the control unit 23 turns on the switch SW1 (step S202). Then, the control unit 23 detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S203).
 次に、制御部23は、スイッチSW1をオフ状態とし(ステップS204)、スイッチSW4をオン状態とする(ステップS205)。そして、制御部23は、分圧回路21及びA/D変換器22を介して、接続点P1における分圧値V4を検出(測定)し(ステップS206)、スイッチSW4をオフ状態とする(ステップS207)。 Next, the control unit 23 puts the switch SW1 in the off state (step S204) and puts the switch SW4 in the on state (step S205). Then, the control unit 23 detects (measures) the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S206), and turns off the switch SW4 (step). S207).
 次に、制御部23は、分圧値V1,V4に基づいて、前述同様に、絶縁抵抗値Rp,Rnを算出する(ステップS208)。ステップS208において算出される絶縁抵抗値Rpは、絶縁抵抗Rp1,Rp2,Rp3の並列合成値である。また、ステップS208において算出される絶縁抵抗値Rnは、絶縁抵抗Rn1,Rn2,Rn3の並列合成値である。そして、制御部23は、リレーRY1,RY2,RY4,RY5をオフ状態にして(ステップS20)、全絶縁抵抗測定処理を終了し、メインルーチンのステップS102に移行する。 Next, the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 in the same manner as described above (step S208). The insulation resistance value Rp calculated in step S208 is a parallel composite value of the insulation resistances Rp1, Rp2, and Rp3. The insulation resistance value Rn calculated in step S208 is a parallel combined value of the insulation resistances Rn1, Rn2, and Rn3. Then, the control unit 23 turns off the relays RY1, RY2, RY4, and RY5 (step S20), ends the total insulation resistance measurement process, and proceeds to step S102 of the main routine.
 その後、制御部23は、ステップS208で算出した絶縁抵抗値Rp,Rnを、それぞれ絶縁抵抗値Rpa,Rnaとして記憶する。つまり、数式(1)、(2)で表すように、絶縁抵抗値Rpaには、絶縁抵抗Rp1,Rp2,Rp3の並列合成値が記憶され、絶縁抵抗値Rnaは、絶縁抵抗Rn1,Rn2,Rn3の並列合成値が記憶される。 After that, the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S208 as the insulation resistance values Rpa and Rna, respectively. That is, as expressed by mathematical formulas (1) and (2), the insulation resistance value Rpa stores the parallel combined value of the insulation resistances Rp1, Rp2, Rp3, and the insulation resistance value Rna is the insulation resistance Rn1, Rn2, Rn3. The parallel composite value of is stored.
Figure JPOXMLDOC01-appb-M000001
 そして、制御部23は、図8に示す絶縁抵抗Rpa2,Rna2測定処理を実行する(ステップS103)。絶縁抵抗Rpa2,Rna2測定処理において、制御部23は、リレーRY2,RY5をオン状態とし、リレーRY1,RY3,RY4をオフ状態に切り替える(ステップS301)。これにより、図10に示すように、電源経路L10,L20と、電気経路L12,L22に電流が流れることとなる。つまり、組電池Vc2のみが、電源経路L10,L20に対して個別に接続された個別接続状態となる。
Figure JPOXMLDOC01-appb-M000001
Then, the control unit 23 executes the insulation resistance Rpa2 and Rna2 measurement processes shown in FIG. 8 (step S103). In the insulation resistance Rpa2, Rna2 measurement process, the control unit 23 turns on the relays RY2 and RY5 and switches the relays RY1, RY3 and RY4 to the off state (step S301). As a result, as shown in FIG. 10, a current flows through the power supply paths L10 and L20 and the electric paths L12 and L22. That is, only the assembled battery Vc2 is in an individual connection state in which it is individually connected to the power supply paths L10 and L20.
 次に、制御部23は、スイッチSW1をオン状態とし(ステップS302)、分圧回路21及びA/D変換器22を介して、接続点P1における分圧値V1を検出(測定)する(ステップS303)。次に、制御部23は、スイッチSW1をオフ状態とし(ステップS304)、スイッチSW4をオン状態とする(ステップS305)。そして、制御部23は、分圧回路21及びA/D変換器22を介して、接続点P1における分圧値V4を検出(測定)し(ステップS306)、スイッチSW4をオフ状態とする(ステップS307)。 Next, the control unit 23 turns on the switch SW1 (step S302), and detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step). S303). Next, the control unit 23 turns the switch SW1 into an off state (step S304) and turns the switch SW4 into an on state (step S305). Then, the control unit 23 detects (measures) the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step S306), and turns off the switch SW4 (step). S307).
 次に、制御部23は、分圧値V1,V4に基づいて、絶縁抵抗値Rp,Rnを算出する(ステップS308)。ステップS308において算出される絶縁抵抗値Rpは、絶縁抵抗Rp1,Rp2の並列合成値である。また、ステップS308において算出される絶縁抵抗値Rnは、絶縁抵抗Rn1,Rn2の並列合成値である。そして、制御部23は、リレーRY2,RY5をオフ状態にして(ステップS309)、絶縁抵抗Rpa2,Rna2測定処理を終了し、メインルーチンのステップS104に移行する。 Next, the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 (step S308). The insulation resistance value Rp calculated in step S308 is a parallel composite value of the insulation resistances Rp1 and Rp2. Further, the insulation resistance value Rn calculated in step S308 is a parallel combined value of the insulation resistances Rn1 and Rn2. Then, the control unit 23 turns off the relays RY2 and RY5 (step S309), ends the insulation resistance Rpa2, Rna2 measurement process, and proceeds to step S104 of the main routine.
 その後、制御部23は、ステップS308で算出した絶縁抵抗値Rp,Rnを、それぞれ絶縁抵抗値Rpa2,Rna2として記憶する(ステップS104)。つまり、数式(3)、(4)で表すように、絶縁抵抗値Rpa2には、絶縁抵抗Rp1,Rp2の並列合成値が記憶され、絶縁抵抗値Rna2は、絶縁抵抗Rn1,Rn2の並列合成値が記憶される。 After that, the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S308 as the insulation resistance values Rpa2 and Rna2, respectively (step S104). That is, as expressed by mathematical formulas (3) and (4), the insulation resistance value Rpa2 stores the parallel composite value of the insulation resistances Rp1 and Rp2, and the insulation resistance value Rna2 is the parallel composite value of the insulation resistances Rn1 and Rn2. Is remembered.
Figure JPOXMLDOC01-appb-M000002
 そして、制御部23は、図9に示す絶縁抵抗Rpa3,Rna3測定処理を実行する(ステップS105)。絶縁抵抗Rpa3,Rna3測定処理において、制御部23は、リレーRY1,RY4をオン状態とし、リレーRY2,RY3,RY5をオフ状態に切り替える(ステップS401)。これにより、図11に示すように、電源経路L10,L20と、電気経路L11,L21に電流が流れることとなる。つまり、組電池Vc1のみが、電源経路L10,L20に対して個別に接続された個別接続状態となる。
Figure JPOXMLDOC01-appb-M000002
Then, the control unit 23 executes the insulation resistance Rpa3 and Rna3 measurement processes shown in FIG. 9 (step S105). In the insulation resistance Rpa3, Rna3 measurement process, the control unit 23 turns on the relays RY1 and RY4 and switches the relays RY2, RY3 and RY5 to the off state (step S401). As a result, as shown in FIG. 11, a current flows through the power supply paths L10 and L20 and the electric paths L11 and L21. That is, only the assembled battery Vc1 is in an individual connection state in which it is individually connected to the power supply paths L10 and L20.
 次に、制御部23は、スイッチSW1をオン状態とし(ステップS402)、分圧回路21及びA/D変換器22を介して、接続点P1における分圧値V1を検出(測定)する(ステップS403)。次に、制御部23は、スイッチSW1をオフ状態とし(ステップS404)、スイッチSW4をオン状態とする(ステップS405)。そして、制御部23は、分圧回路21を介して、接続点P1における分圧値V4を検出し(ステップS406)、スイッチSW4をオフ状態とする(ステップS407)。 Next, the control unit 23 turns on the switch SW1 (step S402), and detects (measures) the voltage dividing value V1 at the connection point P1 via the voltage dividing circuit 21 and the A / D converter 22 (step). S403). Next, the control unit 23 turns the switch SW1 into an off state (step S404) and turns the switch SW4 into an on state (step S405). Then, the control unit 23 detects the voltage dividing value V4 at the connection point P1 via the voltage dividing circuit 21 (step S406), and turns the switch SW4 into an off state (step S407).
 次に、制御部23は、分圧値V1,V4に基づいて、絶縁抵抗値Rp,Rnを算出する(ステップS408)。ステップS408において算出される絶縁抵抗値Rpは、絶縁抵抗Rp1,Rp3の並列合成値である。また、ステップS408において算出される絶縁抵抗値Rnは、絶縁抵抗Rn1,Rn3の並列合成値である。そして、制御部23は、リレーRY1,RY4をオフ状態にして(ステップS409)、絶縁抵抗Rpa3,Rna3測定処理を終了し、メインルーチンのステップS106に移行する。 Next, the control unit 23 calculates the insulation resistance values Rp and Rn based on the partial pressure values V1 and V4 (step S408). The insulation resistance value Rp calculated in step S408 is a parallel composite value of the insulation resistances Rp1 and Rp3. The insulation resistance value Rn calculated in step S408 is a parallel combined value of the insulation resistances Rn1 and Rn3. Then, the control unit 23 turns off the relays RY1 and RY4 (step S409), ends the insulation resistance Rpa3 and Rna3 measurement processing, and proceeds to step S106 of the main routine.
 その後、制御部23は、ステップS408で算出した絶縁抵抗値Rp,Rnを、それぞれ絶縁抵抗値Rpa3,Rna3として記憶する。つまり、数式(5)、(6)で表すように、絶縁抵抗値Rpa3には、絶縁抵抗Rp1,Rp3の並列合成値が記憶され、絶縁抵抗値Rna3は、絶縁抵抗Rn1,Rn3の並列合成値が記憶される。 After that, the control unit 23 stores the insulation resistance values Rp and Rn calculated in step S408 as the insulation resistance values Rpa3 and Rna3, respectively. That is, as expressed by mathematical formulas (5) and (6), the insulation resistance value Rpa3 stores the parallel composite value of the insulation resistances Rp1 and Rp3, and the insulation resistance value Rna3 is the parallel composite value of the insulation resistances Rn1 and Rn3. Is remembered.
Figure JPOXMLDOC01-appb-M000003
 そして、制御部23は、数式(1)~(6)の方程式を解くことにより、各絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3を演算する(ステップS107)。具体的には、数式(7)~(12)に示すように、各絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3が演算される。
Figure JPOXMLDOC01-appb-M000003
Then, the control unit 23 calculates each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 by solving the equations (1) to (6) (step S107). Specifically, as shown in the mathematical formulas (7) to (12), each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 is calculated.
Figure JPOXMLDOC01-appb-M000004
 ステップS107の終了後、制御部23は、メインルーチンを終了し、メインルーチンを実行した結果、算出された各絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3に基づいて、いずれの経路において漏電しているかを検出する。具体的には、制御部23は、各絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3と閾値とをそれぞれ比較し、閾値よりも値が小さい絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3を特定する。そして、制御部23は、特定した絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3に対応する(接続されている)経路において漏電していると検出する。以上説明したように、本実施形態の制御部23が、検出部及び演算部に相当する。
Figure JPOXMLDOC01-appb-M000004
After the end of step S107, the control unit 23 ends the main routine, and as a result of executing the main routine, leakage occurs in any of the paths based on each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 calculated. Detect if you are doing it. Specifically, the control unit 23 compares each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 with the threshold value, and the insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2 whose value is smaller than the threshold value. Identify Rn3. Then, the control unit 23 detects that an electric leakage occurs in the path corresponding to (connected) the specified insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, and Rn3. As described above, the control unit 23 of the present embodiment corresponds to the detection unit and the calculation unit.
 上記実施形態の構成によれば、以下の効果を有する。 According to the configuration of the above embodiment, it has the following effects.
 A/D変換器22は、分圧回路21を介して、組電池Vc1,Vc2が並列接続状態における電圧を測定するとともに、組電池Vc1,Vc2ごとに、個別接続状態における電圧を測定する。制御部23は、並列接続状態における測定結果(分圧値)及び個別接続状態における測定結果に基づいて、各電源経路L10,L20及び各電気経路L11,L12,L21,L22のいずれにおいて漏電しているかを検出する。このため、漏電している経路を特定し、交換などの作業を容易に行うことができる。 The A / D converter 22 measures the voltage in the parallel connection state of the assembled batteries Vc1 and Vc2 via the voltage dividing circuit 21, and also measures the voltage in the individually connected state for each of the assembled batteries Vc1 and Vc2. The control unit 23 leaks electricity in any of the power supply paths L10, L20 and each electric path L11, L12, L21, L22 based on the measurement result (partial pressure value) in the parallel connection state and the measurement result in the individual connection state. Is detected. Therefore, it is possible to identify the leaking path and easily perform work such as replacement.
 また、制御部23は、並列接続状態における分圧値及び個別接続状態における分圧値に基づいて、絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3をそれぞれ特定した。これにより、各絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3が所定の閾値よりも低下しているか、精度よく判定することができる。 Further, the control unit 23 specified the insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, and Rn3, respectively, based on the pressure division value in the parallel connection state and the pressure division value in the individual connection state. Thereby, it is possible to accurately determine whether each insulation resistance Rp1, Rp2, Rp3, Rn1, Rn2, Rn3 is lower than a predetermined threshold value.
 充電機30は、リレーRY3により組電池Vc1,Vc2が直列に接続された直列接続状態であるときに、組電池Vc1,Vc2の充電を実行する。このため、急速充電を可能にするとともに、発熱を抑制することができる。 The charger 30 charges the assembled batteries Vc1 and Vc2 when the assembled batteries Vc1 and Vc2 are connected in series by the relay RY3. Therefore, it is possible to enable quick charging and suppress heat generation.
 また、充電機30が組電池Vc1,Vc2を充電する場合、充電機30が接続される電気経路L12,L21と、各電源経路L10、L20との間に設けられたリレーRY2,RY4をオン状態に切り替える。そして、A/D変換器22は、分圧回路21を介して、充電時に各電源経路L10、L20における電圧の分圧値を測定する。制御部23は、充電時に測定された分圧値に基づいて、各電源経路L10、L20及び各電気経路L11,L12,L21,L22のうち、いずれかが漏電していることを検出する。このため、直列接続状態で充電している場合であっても、制御部23は、いずれかの箇所で漏電しているか否かを検出することができ、迅速に異常を検出することができる。 Further, when the charger 30 charges the assembled batteries Vc1 and Vc2, the relays RY2 and RY4 provided between the electric paths L12 and L21 to which the charger 30 is connected and the power supply paths L10 and L20 are turned on. Switch to. Then, the A / D converter 22 measures the voltage dividing value of the voltage in each of the power supply paths L10 and L20 at the time of charging via the voltage dividing circuit 21. The control unit 23 detects that any one of the power supply paths L10 and L20 and the electric paths L11, L12, L21, and L22 is leaking based on the voltage division value measured at the time of charging. Therefore, even when charging in a series connection state, the control unit 23 can detect whether or not there is an electric leakage at any point, and can quickly detect an abnormality.
 また、充電中、リレーRY2,RY4をオン状態に切り替えるため、図2の比較例に示すように、スイッチSW2、SW3を設ける必要がなく、回路構成を簡素化できる。 Further, since the relays RY2 and RY4 are switched to the ON state during charging, it is not necessary to provide the switches SW2 and SW3 as shown in the comparative example of FIG. 2, and the circuit configuration can be simplified.
 電源システム10から電気負荷に電力が供給される場合、組電池Vc1,Vc2は、並列接続状態とされる。そして、この状態で、A/D変換器22は、分圧回路21を介して、各電源経路L10、L20における電圧の分圧値を測定し、制御部23は、測定された分圧値に基づいて、各電源経路L10、L20及び各電気経路L11,L12,L21,L22のうち、いずれかが漏電していることを検出する。このため、並列接続状態で電力供給している場合であっても、制御部23は、いずれかの箇所で漏電しているか否かを検出することができ、迅速に異常を検出することができる。 When power is supplied to the electric load from the power supply system 10, the assembled batteries Vc1 and Vc2 are connected in parallel. Then, in this state, the A / D converter 22 measures the voltage dividing value of the voltage in each of the power supply paths L10 and L20 via the voltage dividing circuit 21, and the control unit 23 sets the measured voltage dividing value. Based on this, it is detected that any one of the power supply paths L10 and L20 and the electric paths L11, L12, L21, and L22 is leaking. Therefore, even when power is supplied in a parallel connection state, the control unit 23 can detect whether or not there is an electric leakage at any point, and can quickly detect an abnormality. ..
 (上記実施形態の変形例)
 ・上記実施形態の電源システム10では、2つの組電池Vc1,Vc2を採用したが、3つ以上の組電池を採用してもよい。その際、3つ以上の組電池を直列接続状態及び並列接続状態に切り替え可能に構成するとともに、各組電池ごとに電源経路L10,L20に対して個別接続状態に切り替え可能に構成する必要がある。
(Modified example of the above embodiment)
-In the power supply system 10 of the above embodiment, two assembled batteries Vc1 and Vc2 are adopted, but three or more assembled batteries may be adopted. At that time, it is necessary to configure the three or more assembled batteries so as to be switchable between the series connection state and the parallel connection state, and to switch each set battery to the individual connection state for the power supply paths L10 and L20. ..
 ・上記実施形態において、制御部23は、絶縁抵抗Rp1,Rp2,Rp3,Rn1,Rn2,Rn3を算出していたが、検出した合成抵抗値(Rpa,Rpa2,Rpa3,Rna,Rna2,Rna3)に基づいて、漏電している(絶縁抵抗が低下している)経路を特定してもよい。これにより、演算量を減らすことができる。 -In the above embodiment, the control unit 23 has calculated the insulation resistances Rp1, Rp2, Rp3, Rn1, Rn2, Rn3, but the detected combined resistance values (Rpa, Rpa2, Rpa3, Rna, Rna2, Rna3) are used. Based on this, the path of leakage (decreased insulation resistance) may be specified. As a result, the amount of calculation can be reduced.
 ・上記実施形態では、電気経路L12,L21に対して充電機30を接続したが、電源経路L10、L20に対して、充電機30を接続してもよい。 -In the above embodiment, the charger 30 is connected to the electric paths L12 and L21, but the charger 30 may be connected to the power supply paths L10 and L20.
 ・上記実施形態において、制御部23は、いずれかの箇所において漏電した場合に、メインルーチンを実行したが、いずれかの箇所において漏電したことを検出していなくても、メインルーチンを所定周期ごとに実行してもよい。また、所定タイミング(例えば、電源システム10の起動時など)に実行してもよい。これにより、漏電を検出するとともに、漏電している経路を特定することができる。 -In the above embodiment, the control unit 23 executes the main routine when an electric leakage occurs at any of the locations, but the main routine is executed every predetermined cycle even if the electric leakage is not detected at any of the locations. May be executed. Further, it may be executed at a predetermined timing (for example, when the power supply system 10 is started). As a result, it is possible to detect the leakage and identify the path of the leakage.
 ・上記実施形態において、組電池Vc1,Vc2のうちいずれかのみを充電する場合には、図12又は図13に示すようにリレーRY1,RY2,RY4,RY5を制御して、接続点P1における分圧値を測定(検出)すればよい。すなわち、組電池Vc1のみを充電する場合、図12に示すように、制御部23は、スイッチSW5,SW6、及びリレーRY1,RY2,RY4をオン状態とする。これにより、図12の一点鎖線で囲まれた領域で示すように、すべての経路において電流が流れる。すなわち、電源経路L10,L20、電気経路L11,L12,L21,L22のいずれにおいても電流が流れる。この状態において、スイッチSW1,SW4のオンオフ制御を行うことにより、制御部23は、正極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出し、負極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出する。そして、制御部23は、算出した並列合成値に基づいて、電源システム10のいずれかの経路における漏電を検出する。 -In the above embodiment, when charging only one of the assembled batteries Vc1 and Vc2, the relays RY1, RY2, RY4, and RY5 are controlled as shown in FIGS. 12 or 13, and the minute at the connection point P1. The pressure value may be measured (detected). That is, when charging only the assembled battery Vc1, as shown in FIG. 12, the control unit 23 turns on the switches SW5 and SW6 and the relays RY1, RY2 and RY4. As a result, as shown by the region surrounded by the alternate long and short dash line in FIG. 12, current flows in all the paths. That is, current flows in any of the power supply paths L10, L20 and the electric paths L11, L12, L21, and L22. In this state, by controlling the on / off of the switches SW1 and SW4, the control unit 23 calculates the parallel composite value of the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side, and the insulation resistances Rp1, Rp2, on the negative electrode side. The parallel composite value of Rp3 is calculated. Then, the control unit 23 detects an electric leakage in any path of the power supply system 10 based on the calculated parallel composite value.
 また、組電池Vc2のみを充電する場合、図13に示すように、制御部23は、スイッチSW5,SW6、及びリレーRY2,RY3,RY4をオン状態とする。これにより、図13の一点鎖線で囲まれた領域で示すように、すべての経路において電流が流れる。すなわち、電源経路L10,L20、電気経路L11,L12,L21,L22のいずれにおいても電流が流れる。この状態において、スイッチSW1,SW4のオンオフ制御を行うことにより、制御部23は、正極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出し、負極側では、絶縁抵抗Rp1,Rp2,Rp3の並列合成値を算出する。そして、制御部23は、算出した並列合成値に基づいて、電源システム10のいずれかの経路における漏電を検出する。 Further, when charging only the assembled battery Vc2, as shown in FIG. 13, the control unit 23 turns on the switches SW5 and SW6 and the relays RY2, RY3 and RY4. As a result, current flows in all paths, as shown by the region surrounded by the alternate long and short dash line in FIG. That is, current flows in any of the power supply paths L10, L20 and the electric paths L11, L12, L21, and L22. In this state, by controlling the on / off of the switches SW1 and SW4, the control unit 23 calculates the parallel composite value of the insulation resistances Rp1, Rp2, Rp3 on the positive electrode side, and the insulation resistances Rp1, Rp2, on the negative electrode side. The parallel composite value of Rp3 is calculated. Then, the control unit 23 detects an electric leakage in any path of the power supply system 10 based on the calculated parallel composite value.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (5)

  1.  複数の電池(Vc1,Vc2)と、前記各電池ごとに設けられ、一端が前記電池の正極側端子に接続される第1の電気経路(L11,L12)と、前記各第1の電気経路の他端が接続される正極側の電源経路(L10)と、前記各電池ごとに設けられ、一端が前記電池の負極側端子に接続される第2の電気経路(L21,L22)と、前記各第2の電気経路の他端が接続される負極側の電源経路(L20)と、前記各電気経路と前記各電源経路との間に設けられ、その間で通電及び通電遮断をそれぞれ切り替えるスイッチ部(RY1,RY2,RY4,RY5)と、を有する電源システム(10)に適用され、前記電源システムと絶縁された基準電位(GND)との間の絶縁抵抗の低下を検出する漏電検出装置(20)において、
     正極側の前記電源経路及び負極側の前記電源経路の何れかと前記基準電位との間に抵抗器が選択的に接続可能に構成され、前記抵抗器が接続された状態で前記各電源経路の電圧を測定する測定部(21,22)と、
     前記測定部からの測定結果に基づいて漏電を検出する検出部(23)と、を備え、
     前記測定部は、前記電源経路に対して、前記スイッチ部により前記各電池が並列接続された並列接続状態における電圧を測定するとともに、前記各電池ごとに、前記スイッチ部により前記各電池が個別に接続された個別接続状態における電圧を測定し、
     前記検出部は、前記並列接続状態における測定結果及び前記個別接続状態における測定結果に基づいて、前記各電源経路及び前記各電気経路のいずれにおいて漏電しているかを検出する漏電検出装置。
    A plurality of batteries (Vc1, Vc2), a first electric path (L11, L12) provided for each of the batteries and one end of which is connected to a positive terminal of the battery, and a first electric path of each of the first electric paths. A power path (L10) on the positive side to which the other end is connected, a second electric path (L21, L22) provided for each battery and one end connected to a terminal on the negative side of the battery, and each of the above. A switch unit (L20) on the negative side to which the other end of the second electric path is connected, and a switch unit (L20) provided between each electric path and each power path, and switching between energization and energization cutoff, respectively. RY1, RY2, RY4, RY5), which is applied to a power supply system (10) and detects a decrease in insulation resistance between the power supply system and an isolated reference potential (GND) (20). In
    A resistor is configured to be selectively connectable between either the power supply path on the positive electrode side or the power supply path on the negative electrode side and the reference potential, and the voltage of each power supply path is connected to the resistor. Measuring unit (21, 22) to measure
    A detection unit (23) for detecting an electric leakage based on the measurement result from the measurement unit is provided.
    The measuring unit measures the voltage in a parallel connection state in which the batteries are connected in parallel by the switch unit to the power supply path, and each battery is individually connected by the switch unit for each battery. Measure the voltage in the connected individual connection state,
    The detection unit is an electric leakage detection device that detects whether an electric leakage occurs in each power supply path or each electric path based on the measurement result in the parallel connection state and the measurement result in the individual connection state.
  2.  前記測定部からの測定結果に基づいて絶縁抵抗を演算する演算部(23)と、を備え、
     前記演算部は、前記並列接続状態における測定結果及び前記個別接続状態における測定結果に基づいて、前記各電源経路の絶縁抵抗及び前記各電気経路の絶縁抵抗をそれぞれ算出し、
     前記検出部は、前記演算部により算出された絶縁抵抗に基づいて、前記各電源経路及び前記各電気経路のいずれにおいて漏電しているかを検出する請求項1に記載の漏電検出装置。
    A calculation unit (23) for calculating insulation resistance based on the measurement result from the measurement unit is provided.
    The arithmetic unit calculates the insulation resistance of each power supply path and the insulation resistance of each electric path based on the measurement result in the parallel connection state and the measurement result in the individual connection state.
    The electric leakage detection device according to claim 1, wherein the detection unit detects whether an electric leakage occurs in each of the power supply paths or the electric paths based on the insulation resistance calculated by the calculation unit.
  3.  前記電源システムは、
     前記各電池を直列に接続する第3の電気経路(L30)と、
     前記第3の電気経路の通電及び通電遮断を切り替える直列接続用スイッチ部(RY3)と、
     前記電池を充電する充電機(30)と、を備え、
     前記充電機は、前記直列接続用スイッチ部により前記電池が直列に接続された直列接続状態であるときに、前記電池の充電を実行可能に構成されている請求項1又は2に記載の漏電検出装置。
    The power supply system
    A third electric path (L30) connecting the batteries in series, and
    A series connection switch unit (RY3) that switches between energization and de-energization of the third electric path, and
    A charger (30) for charging the battery is provided.
    The leakage detection according to claim 1 or 2, wherein the charger is configured to be able to charge the batteries when the batteries are connected in series by the series connection switch unit. Device.
  4.  前記充電機は、前記第1の電気経路及び前記第2の電気経路のうち、前記直列接続状態において端部となる前記電池の正極側端子又は負極側端子に接続される前記電気経路に接続されており、
     前記充電機が前記電池を充電する場合、前記第1の電気経路及び前記第2の電気経路のうち、前記充電機が接続される前記電気経路と、前記電源経路との間に設けられた前記スイッチ部は、通電状態に切り替えられ、
     前記測定部は、充電時に前記各電源経路の電圧を測定し、
     前記検出部は、充電時に測定された電圧の測定結果に基づいて、前記各電源経路及び前記各電気経路のうち、いずれかが漏電していることを検出する請求項3に記載の漏電検出装置。
    The charger is connected to the electric path connected to the positive electrode side terminal or the negative electrode side terminal of the battery, which is an end portion in the series connection state, among the first electric path and the second electric path. And
    When the charger charges the battery, the electric path provided between the electric path to which the charger is connected and the power supply path among the first electric path and the second electric path. The switch part is switched to the energized state,
    The measuring unit measures the voltage of each power supply path at the time of charging.
    The leakage detection device according to claim 3, wherein the detection unit detects that one of the power supply path and the electric path is leaking based on the measurement result of the voltage measured at the time of charging. ..
  5.  前記電源経路には電気負荷が接続され、前記電源システムから前記電気負荷に電力が供給される場合、前記電池は、前記並列接続状態とされ、
     前記測定部は、前記並列接続状態における前記各電源経路の電圧を測定し、
     前記検出部は、前記並列接続状態において測定された電圧の測定結果に基づいて、前記各電源経路及び前記各電気経路のうち、いずれかが漏電していることを検出する請求項1~4のうちいずれか1項に記載の漏電検出装置。
    When an electric load is connected to the power path and power is supplied to the electric load from the power system, the battery is placed in the parallel connection state.
    The measuring unit measures the voltage of each power supply path in the parallel connection state, and measures the voltage.
    The detection unit detects that one of the power supply path and the electric path is leaking based on the measurement result of the voltage measured in the parallel connection state, according to claims 1 to 4. The leakage detection device according to any one of the above.
PCT/JP2021/019611 2020-06-04 2021-05-24 Electric leakage detection device WO2021246225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021003120.1T DE112021003120T5 (en) 2020-06-04 2021-05-24 ELECTRICAL LEAK DETECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020097523A JP7276252B2 (en) 2020-06-04 2020-06-04 Leakage detector
JP2020-097523 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021246225A1 true WO2021246225A1 (en) 2021-12-09

Family

ID=78830469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019611 WO2021246225A1 (en) 2020-06-04 2021-05-24 Electric leakage detection device

Country Status (3)

Country Link
JP (1) JP7276252B2 (en)
DE (1) DE112021003120T5 (en)
WO (1) WO2021246225A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749776B (en) * 2020-09-21 2021-12-11 致茂電子股份有限公司 Voltage isolation circuit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336601A (en) * 1992-06-04 1993-12-17 Mitsubishi Electric Corp Power supply voltage switching system for vehicle
JPH0662530A (en) * 1992-08-03 1994-03-04 Mitsubishi Electric Corp Power supply voltage switching apparatus for vehicle
JP2003066090A (en) * 2001-08-29 2003-03-05 Omron Corp Leak detector
JP2007057490A (en) * 2005-08-26 2007-03-08 Denso Corp Electrical leak detector of on-vehicle ground insulation circuit
JP2015146690A (en) * 2014-02-03 2015-08-13 富士重工業株式会社 Power supply unit
JP2015210085A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device
US20160109500A1 (en) * 2014-10-16 2016-04-21 Ford Global Technologies, Llc Methods and apparatus for detecting electrical leakage in a vehicle
JP2016061717A (en) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 Detection device
US20170108544A1 (en) * 2014-03-17 2017-04-20 Continental Automotive Gmbh Apparatus and method for monitoring an electrical insulation for an onboard power supply system of a vehicle
JP2017102026A (en) * 2015-12-02 2017-06-08 富士通テン株式会社 State determination device and state determination method
JP2017118702A (en) * 2015-12-24 2017-06-29 富士通テン株式会社 Device and method for state determination
JP2019118221A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Charging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785627B2 (en) 2006-06-08 2011-10-05 三洋電機株式会社 Electric vehicle leakage detection circuit and electric vehicle leakage detection method
PL2801837T3 (en) 2012-03-26 2019-05-31 Lg Chemical Ltd Device and method for measuring insulation resistance of battery
EP2894135A1 (en) 2014-01-10 2015-07-15 Saint-Gobain Placo SAS Method of curing a gypsum calcination product

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336601A (en) * 1992-06-04 1993-12-17 Mitsubishi Electric Corp Power supply voltage switching system for vehicle
JPH0662530A (en) * 1992-08-03 1994-03-04 Mitsubishi Electric Corp Power supply voltage switching apparatus for vehicle
JP2003066090A (en) * 2001-08-29 2003-03-05 Omron Corp Leak detector
JP2007057490A (en) * 2005-08-26 2007-03-08 Denso Corp Electrical leak detector of on-vehicle ground insulation circuit
JP2015146690A (en) * 2014-02-03 2015-08-13 富士重工業株式会社 Power supply unit
US20170108544A1 (en) * 2014-03-17 2017-04-20 Continental Automotive Gmbh Apparatus and method for monitoring an electrical insulation for an onboard power supply system of a vehicle
JP2015210085A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device
JP2016061717A (en) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 Detection device
US20160109500A1 (en) * 2014-10-16 2016-04-21 Ford Global Technologies, Llc Methods and apparatus for detecting electrical leakage in a vehicle
JP2017102026A (en) * 2015-12-02 2017-06-08 富士通テン株式会社 State determination device and state determination method
JP2017118702A (en) * 2015-12-24 2017-06-29 富士通テン株式会社 Device and method for state determination
JP2019118221A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Charging device

Also Published As

Publication number Publication date
JP7276252B2 (en) 2023-05-18
JP2021189122A (en) 2021-12-13
DE112021003120T5 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
CN110018349B (en) Ground fault detection device
US11327124B2 (en) Ground fault detection apparatus
US10611243B2 (en) Ground fault detection apparatus
US10613156B2 (en) Ground fault detection apparatus
US9864013B2 (en) Deterioration detecting apparatus and deterioration detecting method
US9857429B2 (en) Device and method for determining a range of a battery characteristic curve
US10241144B2 (en) Deterioration detecting apparatus and deterioration detecting method
CN106461726A (en) Electrical storage system
EP3699616B1 (en) Detection circuit and method
JP6504855B2 (en) Deterioration detection device and deterioration detection method
JP6706688B2 (en) Battery control device
JP2017070024A (en) Battery monitoring device
WO2021246225A1 (en) Electric leakage detection device
US11714119B2 (en) Earth fault detection apparatus
JP2012220344A (en) Cell voltage measurement device
JP6279442B2 (en) Fault detection system
CN111337850B (en) Ground fault detection device
CN114252712A (en) Battery pack insulation detection circuit and method and vehicle
JP6383496B2 (en) Battery monitoring device
JP7286251B2 (en) Insulation resistance detection circuit
JP7107707B2 (en) Battery monitoring device and battery monitoring method
JP2020190529A (en) Voltage measuring circuit
KR20210007569A (en) Apparatus for calculating error of current sensor
JP6632372B2 (en) State determination device and state determination method
EP4261553A1 (en) Battery management method, and battery system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817324

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21817324

Country of ref document: EP

Kind code of ref document: A1