WO2021245952A1 - Micro screw punch system - Google Patents

Micro screw punch system Download PDF

Info

Publication number
WO2021245952A1
WO2021245952A1 PCT/JP2020/022448 JP2020022448W WO2021245952A1 WO 2021245952 A1 WO2021245952 A1 WO 2021245952A1 JP 2020022448 W JP2020022448 W JP 2020022448W WO 2021245952 A1 WO2021245952 A1 WO 2021245952A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
unit
pump
microscrew
punch system
Prior art date
Application number
PCT/JP2020/022448
Other languages
French (fr)
Japanese (ja)
Inventor
衛 平藤
克之 城口
一郎 富永
Original Assignee
ヨダカ技研株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヨダカ技研株式会社, 国立研究開発法人理化学研究所 filed Critical ヨダカ技研株式会社
Priority to PCT/JP2020/022448 priority Critical patent/WO2021245952A1/en
Publication of WO2021245952A1 publication Critical patent/WO2021245952A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler

Definitions

  • the present invention relates to a microscrew punch for "collecting" a specific cell from a living tissue (organ or organ, cell mass such as embryo or organoid).
  • Ultra-fine liquid volume manipulation is very important from the viewpoint of high sensitivity and labor saving because most of the compounds that make up living organisms are liquids.
  • the technique of "collecting" cells one by one under a microscope can be a technique that brings about dramatically higher accurate results from the conventional bio-research. This is because, in experiments dealing with cell populations or individual organs as in the past, since the average data of those populations is represented, (1) the existence of unique cells (unique phenomena) existing in the population is overlooked. It is possible that 2) individual cells miss different peculiar signals over time, and (3) peculiar signals that differ depending on their position in an organ are missed. The technology to find new phenomena by comparing such peculiar cells with other cells is attracting attention in the world because it leads to correct and essential understanding especially in "basic research" in the medical and diagnostic fields. ..
  • a specific example of the need to "collect" a single cell or a cell mass with certain common characteristics from living tissue is several organs (spleen, lung, lymph node) from experimental animals such as mice. Etc.) to cut out certain cells that are present. Then, when it becomes possible to perform a comprehensive analysis of such cells, it becomes clear that the difference in function between the peculiar part and the other part is larger than the result derived by the conventional experimental method. Therefore, the essential understanding will be advanced, and it will lead to the application in the field of drug discovery and diagnosis in medical treatment.
  • the spleen is a hematopoietic / lymphatic organ on the left flank, and plays a role in immunity such as destruction of aged red blood cells and processing of foreign substances in blood.
  • Most of the spleen tissue is called the red pulp and is occupied by venous sinuses filled with red blood cells.
  • dendritic cells and macrophage cells which are immune cells, present antigens and promote antibody production from lymphocyte cells.
  • macrophage cells are not only involved in the immune response, but also play a role in tissue reconstruction and tissue repair after the inflammatory response, and their analysis is important.
  • the alveoli which control the main function of the lungs, are essential organs for the survival of the human body, which is responsible for gas exchange.
  • a healthy person breathes about 20,000 liters of air a day.
  • the air contains harmful bacteria, viruses and chemical substances.
  • the immune system in the lungs functions normally against these harmful substances to prevent the onset of infectious diseases, cancer, allergies, asthma, and the like.
  • the site called alveoli (several hundred mm) at the end of the lung may be the target of infectious diseases, and to elucidate the defense mechanism of the living body here, only the alveoli are "collected” and analyzed. The method of doing is desirable.
  • lymph node there are stromal cells called stromal cells in addition to immune cells such as B cells, and these cells play a role in the skeleton structure. To put it simply, it is like a soft sponge fiber. Immune cells that reach the lymph nodes through the lymph vessels gather at different sites in the lymph nodes, but probably stromal cells play a role, and depending on the type, the sites where each immune cell gathers also differ. Conceivable.
  • the brain has a multi-layered structure consisting mainly of 6 types of cells. Research is often done on what kind of reaction is occurring in which place in brain wave experiments, but the reality is that the function in more detailed parts is not understood at all. Sections of dissected and removed organs in an analysis to find out more about what is happening in the cerebrum, cerebellum, pituitary gland, hypothalamus, hippocampus, or any particular part of those organs in the brain. It can be imagined that the results are very different between the sample once fixed with formalin and the sample taken raw from the creature.
  • An embryo is a cell population that has just been split from a fertilized egg, and its initial stage is called cleavage, but when it reaches 8 to 16 cleavages, each cell develops as a living body at that point. At that time, the fate of which organ it will be and where it will be placed begins to be made. At present, it is very difficult to cut out one cell in the cleavage, but if this one cell can be cut out, the analysis of the "body plan" will proceed, and the evolutionary research that will be the basis of biology. It can be expected to have a ripple effect in various fields such as regenerative medicine and gene therapy.
  • the pump is placed at a position away from the needle, the pump and the needle are connected by a long tube, and the needle is rotated. You have to do that, but doing so will cause the tube to twist.
  • the pump tries to suck or discharge through the tube from such a distant position, the volume from the inside of the pump to the needle increases, the controllability of the internal pressure deteriorates, and the tube also vibrates due to the rotational movement. , The sucked minute objects (cells, etc.) do not stay at the tip of the needle.
  • the pump and needle are as close as possible, and it is best to integrate them as much as possible, but in that case, a small pump is required, and even if the pump is small, the pump is electrically controlled. It is assumed that the electric cable is twisted or entangled by rotating itself.
  • a method of preventing center shake a method of first pressing a cylindrical guide along the outer circumference of the needle tip against the sample and then inserting the needle in that state is also conceivable.
  • metal needles instead of glass needles, it is possible to install metal needles having a tip diameter of 0.1 mm or less. It is also assumed that even if it is a glass needle, the sharpness can be increased by adhering a piece to the cut end.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a microscrew punch system capable of finely driving a needle portion.
  • the microscrew punch system includes a needle unit, a drive unit that drives the needle unit, and a control unit that controls the drive unit.
  • the needle unit is the drive unit by the control unit. It can move in the front-back direction while being rotated through the device.
  • the needle portion the pump portion that sucks the fluid through the needle portion, the needle portion, the drive portion that drives the pump portion, and the drive portion.
  • a control unit for controlling the pump unit is provided, and the needle unit is driven by the control unit in conjunction with the pump unit driven via the drive unit.
  • the pump portion is configured to be rotatable and movable in the front-rear direction, and the needle portion is rotated in conjunction with the pump portion in the front-rear direction. It is something that is moved.
  • microscrew punch system is provided with a support portion (guide) that pivotally supports the tip portion of the needle portion, and the control unit drives the support portion via the drive portion to drive the support portion and the needle. It is for aligning the parts.
  • the inner diameter of the tip of the needle portion is set to 5 ⁇ m or more and 1000 ⁇ m or less. Further, the microscrew punch system according to the present invention has a saw-like structure in which fine pieces of 1 ⁇ m or less are adsorbed on the tip surface of the needle portion.
  • control unit rotates the needle unit 180 degrees or more left and right and 5 reciprocations / minute or more to 6000 reciprocations / minute or less in the front-rear direction via the drive unit. It moves a distance of 1 ⁇ m to 1000 ⁇ m at 5 round trips / minute or more to 6000 round trips / minute.
  • a container in which a recess is formed and a sample accessed by the needle portion is held in the recess, and a lid in which a penetration portion is formed and placed on the upper portion of the container are formed.
  • the sample is one whose movement is restricted by the recess and the lid.
  • the microscrew punch system according to the present invention is configured to be movable in the front-rear direction while the needle portion is rotated, the drive of the needle portion can be finely controlled, and cells can be obtained from a sample accessed by the needle portion. It is possible to "collect" one by one.
  • the drive of the needle portion can be finely controlled, and the drive control of the needle portion becomes simple.
  • FIG. 1 is a schematic configuration diagram schematically showing a system configuration of a microscrew punch system 100 (hereinafter referred to as a system 100) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the container 60 and the lid 70 of the system 100.
  • FIG. 3 is a schematic diagram schematically showing two configuration examples of the needle portion 40 of the system 100. The configuration of the system 100 will be described with reference to FIGS. 1 to 3.
  • the system 100 has a control unit 10, a drive unit 20, a pump unit 30, a needle unit 40, a support unit 50, a retaining unit 55, a container 60, a lid 70, and a microscope 80, and each cell is contained one by one. It has a structure that makes it possible to cut out.
  • the system 100 "collects" cells from sample S held in a container 60 placed on a support (not shown). The picked up cells are discharged into a capillary or the like (not shown) placed in a place different from the container 60.
  • the control unit 10 controls the drive of the drive unit 20, the pump unit 30, and the support unit 50. Further, the state of the cells observed by the microscope 80 is sent to the control unit 10 as image data.
  • the control unit 10 has, for example, a storage unit for storing programs and information, a communication unit for transmitting and receiving information to and from an external communication device, an arithmetic unit for processing information input / output, display, communication, program execution, and the like. There is.
  • the control unit 10 controls the drive unit 20 to position the tip of the needle unit 40 in the container 60, as shown in FIG.
  • the control unit 10 drives the pump unit 30 to pick up the cells.
  • the specific operation of the control unit 10 will be described with reference to FIG.
  • the drive unit 20 drives the needle unit 40, the pump unit 30, and the support unit 50 by the control unit 10 that receives the operation support from the joystick or the touch panel (not shown).
  • the drive unit 20 can drive the needle unit 40 in the front-rear direction or rotationally drive it via, for example, a motor or a gear.
  • the drive unit 20 drives the pump unit 30 to suck and discharge the fluid through the needle unit 40.
  • the drive unit 20 drives or rotates the support unit 50 in the left-right direction (X direction), the front-rear direction (Y direction), and the up-down direction (Z direction) via, for example, a motor or a gear.
  • the drive portion 20 drives the needle portion 40 by driving the pump portion 30. .. That is, if the pump unit 30 is driven, the needle unit 40 is driven together.
  • the needle portion 40 and the pump portion 30 are not integrally assembled, for example, when the drive portion 20 in which the extension tube 41 is installed is interposed between the needle portion 40 and the pump portion 30.
  • the drive unit 20 may drive the needle unit 40 and the pump unit 30 separately.
  • the drive unit 20 is composed of, for example, three actuator stages having a stroke of up to 15 mm or more on each side and a small rotary motor for driving the actuator stages.
  • the three actuator stages are assembled so as to move at a maximum JOG speed of 10 ⁇ m / sec or more and 50 mm / sec or less in the left-right direction (X direction), the front-back direction (Y direction), and the up-down direction (Z direction).
  • a plate (support portion 50) having a mechanism for holding the cutting blade (that is, the tip of the needle portion 40) and a rotary motor are attached to the tip thereof.
  • the support portion 50 can be driven in the XYZ direction and the rotation direction (rotation angle 0 to 90 degrees, in increments of 0.1 degrees or less).
  • the resolution of this actuator shall be at least 1 ⁇ m or less. If the resolution is coarse and large, it cannot be installed near the observation part of the microscope, and it causes shaking. Therefore, by setting the resolution to 1 ⁇ m or less, it is possible to move with high resolution without vibration even though it is small.
  • the configuration of the pump unit 30 is not particularly limited, but it may be configured to be, for example, a pump unit that can be controlled by a minute volume (liquid amount in the range of 100 pL to 1000 nL).
  • the pump portion 30 may be installed on the other end side of the needle portion 40 and may be integrally configured with the needle portion 40.
  • the extension tube 41 connected to the other end side of the needle portion 40 may be lengthened, and the pump portion 30 may be installed at a position on the downstream side of the drive portion 20 after passing through the drive portion 20.
  • the fact that the needle portion 40 and the pump portion 30 are integrally configured means that the pump portion 30 is directly installed at the other end of the needle portion 40 and is connected to the other end of the needle portion 40. It is also assumed that the pump portion 30 is installed in the extension tube 41 or the like. That is, when the drive of the pump unit 30 can be transmitted to the needle unit 40, in other words, when the needle unit 40 is interlocked with the pump unit 30, it can be said that the needle unit 40 and the pump unit 30 are integrally configured.
  • the extension tube 41 is lengthened so that another member, for example, a drive unit 20 is physically interposed between the needle unit 40 and the pump unit 30, and the pump unit 30 is driven although the extension tube 41 is connected in terms of flow path. If the above cannot be transmitted, it cannot be said that the needle portion 40 and the pump portion 30 are integrally configured.
  • the needle portion 40 is composed of a tubular member with both ends open, the open end portion located on the "collecting" side is the tip end, and the open end portion connected to the pump portion 30 is the other end. 1 and 2 show an example in which the extension tube 41 is connected to the other end. However, as shown in FIG. 3, the pump unit 30 may be installed directly at the other end. Further, the needle portion 40 may be formed linearly as shown in FIG. 3 (A) or may be formed by being curved as shown in FIG. 3 (B), thereby illuminating from above. Does not interfere with observation.
  • the tip of the needle portion 40 is driven by the drive portion 20 so that the sample S held in the container 60 can be accessed.
  • the other end is connected to the pump portion 30 via the extension tube 41 in an airtight state.
  • the extension tube 41 may be lengthened and connected to indirectly connect the pump portion 30. Since the other end of the needle portion 40 is connected to the pump portion 30 in an airtight state, the sample S held in the container 60 from the tip in response to the drive of the pump portion 30, that is, the suction or discharge of the fluid, is 1 You can pick up cells one by one.
  • the tip of the needle portion 40 has a sharper blade than the existing glass needle or metal needle. Specifically, it is desirable that the inner diameter of the tip of the needle portion 40 is 1 ⁇ m or more and 1000 ⁇ m or less. Further, the thin structure at the tip of the needle portion 40 is important when cutting elastic and flexible materials such as skin, and the inner diameter is 85% or more with respect to the outer diameter of the needle tip. Is desirable. Therefore, a case where the needle portion 40 is manufactured from a metal microneedle will be considered. In the case of such a metal microneedle, the original mother tube has a thin structure as described above, that is, an inner diameter of 85 with respect to the outer diameter of the needle tip.
  • metal heating forming which is one of the plastic working techniques, can be adopted to produce a fine tapered shape.
  • the material of the metal microneedles is preferably titanium, but SUS or brass may also be used.
  • the needle portion 40 By pulling the originally thin metal pipe with a certain predetermined force by metal heating forming, it is possible to manufacture the needle portion 40 having a thin tip structure, and it is also possible to control the inner diameter of the tip depending on the conditions.
  • the configuration of the needle portion 40 is not particularly limited, and the needle portion 40 may be manufactured with a glass needle as long as a sharp tip having a thin structure can be manufactured. Further, a saw-like structure may be formed in which fine pieces of 1 ⁇ m or less are adsorbed on the tip surface of the needle portion 40. By doing so, the blade becomes sharper.
  • the support portion 50 pivotally supports the tip portion of the needle portion 40. That is, the support portion 50 is formed with a hole portion that penetrates the tip portion of the needle portion 40 and rotatably supports the support portion 50, and the support portion 50 is the tip portion of the needle portion 40 located in the hole portion of the support portion 50. Is configured so as not to restrict the rotation of the needle portion 40 while fixing the needle portion 40 to some extent.
  • the diameter of the hole is larger than the tip of the needle 40 and smaller than the body of the needle 40.
  • the retaining portion 55 functions to prevent the tip portion of the needle portion 40 from coming out of the hole portion of the support portion 50. That is, the retaining portion 55 serves as a stopper for the needle portion 40.
  • the container 60 is formed with a plurality of recesses 61 in which the sample S can be held.
  • FIG. 2 shows a case where four recesses 61 are formed as an example.
  • the recess 61 has a predetermined depth and functions to prevent the sample S from slipping or escaping in the horizontal direction (direction parallel to the bottom surface of the container 60). Therefore, the sample S housed in the recess 61 is held by the recess 61.
  • the sample S will be described in the subsequent examples.
  • the dimensions of the container 60 are as follows, for example.
  • the outer dimensions of the container 60 that is, length x width x height, are 20 mm x 20 mm x 5 mm.
  • the length ⁇ width ⁇ depth of the recesses 61 is 5 mm ⁇ 5 mm ⁇ 1 mm.
  • the length ⁇ width ⁇ depth of the recesses 61 is 1 mm ⁇ 1 mm ⁇ 0.3 mm.
  • the length ⁇ width ⁇ depth of the recesses 61 is 0.5 mm ⁇ 0.5 mm 0.2 mm.
  • the container 60 can be molded by making an aluminum mold or an acrylic mold by cutting using a large NC milling cutter, polishing it, and then using it. Depending on the dimensions of the container 60, a photomask may be made, a resist mold may be made, and molding may be performed using the photomask.
  • the lid 70 is made of, for example, PDMS or the like, is placed on the upper part of the container 60, and covers the recess 61 of the container 60. That is, the lid 70 functions to restrict the upward movement of the sample S held in the recess 61 of the container 60 by being placed on the upper part of the container 60.
  • a plurality of penetrating portions 71 are formed through the lid 70 so that the needle portion 40 can access the sample S.
  • the opening shape of the penetrating portion 71 may be circular, polygonal, or slit-shaped.
  • FIG. 2 shows an example in which eight penetrating portions 71 having a square opening shape are formed in the lid 70 with respect to one recess 61 of the container 60.
  • the dimensions of the lid 70 are as follows, for example.
  • the outer dimensions of the lid 70 that is, length x width x height, are 20 mm x 20 mm x 0.5 mm.
  • the length ⁇ width ⁇ depth of the penetrating portion 71 is 1 mm ⁇ 1 mm ⁇ 0.5 mm.
  • the length ⁇ width ⁇ depth of the penetrating portion 71 is set to 0.3 mm ⁇ 0.3 mm ⁇ 0.5 mm.
  • the height of the lid 70 is 0.2 mm and 100 penetration portions 71 are formed, the length ⁇ width ⁇ depth of the penetration portions 71 is 0.2 mm ⁇ 0.2 mm ⁇ 0.2 mm.
  • the microscope 80 observes the sample S held in the container 60.
  • the sample S observed by the microscope 80 is sent to the control unit 10 as image data.
  • the microscope 80 preferably has performance (specs) suitable for detailed observation and analysis of cells. Further, by connecting the microscope 80 to a display or the like, observation may be performed on a magnified screen.
  • FIG. 4 is an explanatory diagram for explaining the operation of the system 100.
  • the control unit 10 controls the operation of each member in an integrated manner based on an instruction from the user.
  • the user gives an instruction to the system 100 by using an operation unit such as a touch panel or a joystick.
  • the control unit 10 moves the support unit 50 to align the needle unit 40 with the sample S. Specifically, as described above, the support portion 50 is moved in the X direction, the Y direction, and the Z direction, and the support portion 50 is rotated to determine the position of the needle portion 40. At the same time, the control unit 10 also performs overall positioning of the pump unit 30 and the needle unit 40 via the drive unit 20.
  • the control unit 10 rotates the pump unit 30. That is, as shown in FIG. 4 (2), the control unit 10 rotates the needle unit 40 via the pump unit 30. Since the needle portion 40 is pivotally supported by the support portion 50 and is prevented from coming off by the retaining portion 55, the needle portion 40 rotates in a positioned state. Depending on the installation position of the pump unit 30, the rotation of the pump unit 30 may not be transmitted to the needle unit 40. In this case, the control unit 10 rotates and drives the needle unit 40 independently.
  • the control unit 10 has a high-speed reciprocating rotation setting (for example, a setting of repeating a rotation of 180 degrees or more to the left and right at a high speed (5 reciprocations / minute or more to 6000 reciprocations / minute or less)), a rotation movement distance setting, a rotation speed setting, and an acceleration setting.
  • the rotation of the pump unit 30 is controlled based on the above. These settings may be saved in the control unit 10 in advance, or may be added later. In addition, the settings can be changed.
  • the rotation distance of the pump unit 30 is set to 0 to 720 degrees.
  • the control unit 10 actually moves the needle unit 40 in the front-rear direction at a rate of 5 reciprocations / minute or more to 6000 reciprocations / minute or less to actually access the sample S ((3) shown in FIG. 4). That is, the needle portion 40 moves in the front-rear direction in a rotated state. As a result, the sample S is picked up at the tip of the needle portion 40.
  • the tip of the needle portion 40 can be made into a three-dimensionally complicated movement. Optimal cutting can be realized by complicating the movement of the tip of the needle portion 40 that functions as a blade.
  • the front-back movement of the pump unit 30 has a maximum stroke of 15 mm or less.
  • FIG. 5 is an explanatory diagram for explaining an embodiment of the system 100.
  • FIG. 6 is a schematic diagram schematically showing an enlarged part of the sample S.
  • An embodiment of the system 100 will be described with reference to FIGS. 5 and 6.
  • This example shows an example in which a hole (hole H) can be made in a fish egg skin by using a fish egg skin (tarako skin) as a sample S.
  • the hole H could not be formed on the skin of the roe simply by pressing the needle portion 40 against the roe. Further, it was found that even if the needle portion 40 is rotated, the hole H cannot be formed in the skin of the roe just by repeating the situation where the rotation angle is small (for example, around 90 degrees). Therefore, as described above, by pressing the needle portion 40 against the fish egg, which is the sample S, while rotating the needle portion 40 at a predetermined rotation angle or more, a hole H can be formed in a part of the skin of the fish egg, and from there. I was able to collect the fish eggs inside.
  • the control content executed by the control unit 10 of the system 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software (program). ..
  • the control unit 10 is a computer (one or more processors, a computer having a memory for storing the program) that executes an instruction of a program that is software that realizes each function. It is equipped with.
  • a CPU Central Processing Unit
  • the memory for example, in addition to a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the present invention can be obtained by appropriately combining the technical means disclosed in the different embodiments.
  • the form is also included in the technical scope of the present invention.
  • the numerical values shown are not particularly limited, and various changes can be made within the range shown in the claims.
  • the present invention can be widely used in various cell analyzes. For example, collection of white pulp scattered in the red pulp, collection of only alveoli from the lungs, site-specific collection of stromal cells, site-specific collection from the brain, fluorescence-labeled single cells from embryos. It can be applied to collection, etc.
  • Control unit 20 Drive unit 30: Pump unit 40: Needle unit 41: Extension tube 50: Support unit 55: Retaining unit 60: Container 61: Recessed 70: Lid 71: Penetration unit 80: Microscope 100: Microscrew punch System S: Sample H: Hall

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[Problem] TO provide a micro screw punch system configured such that cells can be "collected" one at a time. [Solution] This micro screw punch system comprises a needle part, a drive part for driving the needle part, and a control part for controlling the drive part, the needle part being moved forward and backward in a state of being rotated via the drive part by the control part.

Description

マイクロスクリューポンチシステムMicro screw punch system
 本発明は、生体組織(臓器や器官、胚やオルガノイドなどの細胞塊)から特定の細胞について「採取」を行うためのマイクロスクリューポンチに関する。 The present invention relates to a microscrew punch for "collecting" a specific cell from a living tissue (organ or organ, cell mass such as embryo or organoid).
 超微小液量操作は生物体を構成する化合物のほとんどが液体であることから、高感度化、省力化という視点において非常に重要である。その中でも細胞を1個ずつ顕微鏡下で「採取」する技術は従来行われてきたバイオ研究から飛躍的に精度の高い結果をもたらす技術となりうる。なぜなら従来のように細胞集団や一個体の臓器を扱う実験では、それら集団の平均データを表すため、(1)集団内に存在する特異な細胞(特異な現象)の存在を見逃してしまう、(2)個々の細胞で経時的に異なる特異なシグナルを見逃してしまう、(3)臓器における、その位置によって異なる特異なシグナルを見逃してしまう、ということが起こりうる。このような特異な細胞とそれ以外の細胞を比較し新しい現象を見つける技術は、特に医療や診断分野の「基礎研究」で正しく本質的な理解を生み出すことにつながるため、世界でも注目されている。 Ultra-fine liquid volume manipulation is very important from the viewpoint of high sensitivity and labor saving because most of the compounds that make up living organisms are liquids. Among them, the technique of "collecting" cells one by one under a microscope can be a technique that brings about dramatically higher accurate results from the conventional bio-research. This is because, in experiments dealing with cell populations or individual organs as in the past, since the average data of those populations is represented, (1) the existence of unique cells (unique phenomena) existing in the population is overlooked. It is possible that 2) individual cells miss different peculiar signals over time, and (3) peculiar signals that differ depending on their position in an organ are missed. The technology to find new phenomena by comparing such peculiar cells with other cells is attracting attention in the world because it leads to correct and essential understanding especially in "basic research" in the medical and diagnostic fields. ..
 現在米国を中心に、ヒトの全身細胞を1細胞レベルで見る「Human Cell Atlas」プロジェクトが2016年より推進され、欧州でも「Life Time initiative」という1細胞プロジェクトを2019年より開始するなど、世界のライフサイエンス研究において1細胞研究が興隆しつつある。
 日本においても、2018年9月にJST-CRDS(科学技術振興機構-研究開発戦略センター)より「ライブセルアトラス」という1細胞レベルでの技術開発を重視していく報告書が発表された。
Currently, mainly in the United States, the "Human Cell Atlas" project, which looks at human whole body cells at the single cell level, has been promoted since 2016, and in Europe, the one-cell project "Life Time initiative" has been started in 2019. One-cell research is gaining momentum in life science research.
In Japan as well, in September 2018, JST-CRDS (Japan Science and Technology Agency-Research and Development Strategy Center) published a report called "Live Cell Atlas" that emphasizes technological development at the single cell level.
 ここで確実に必要となる、1個の細胞を顕微鏡観察下で「採取」するという概念は、歴史的背景から日本とドイツにしか存在しない。理由として、日本とドイツには、(1)世界4大メーカーである顕微鏡メーカー(オリンパス・ニコン・カールツァイス・ライカ)が存在すること、(2)世界2大メーカーである体外受精マニピュレータメーカー(ナリシゲ・エッペンドルフ)が存在することが挙げられる。そのため、従来の米国主導となる理科学研究機器開発の環境下では、1個の細胞のみを「採取」する装置というものが開発されにくく、その重要性が理解されづらかった。 The concept of "collecting" one cell under a microscope, which is definitely necessary here, exists only in Japan and Germany due to its historical background. The reasons are (1) the world's four largest manufacturers of microscopes (Olympus, Nikon, Carl Zeiss, Leica), and (2) the world's two largest manufacturers of in vitro fertilization manipulators (Narikige).・ The existence of Eppendorf) can be mentioned. Therefore, in the conventional environment of US-led development of scientific research equipment, it was difficult to develop a device that "collects" only one cell, and it was difficult to understand its importance.
 しかしながら、メカニズムを調べる解析においては、細胞が経時的変化する瞬間を調べる(いわゆるダイナイクス解析の)必要があり、顕微鏡観察下においてその瞬間に1個の細胞を「採取」する必要があるため、今後疾患など体内で起こるメカニズムを調べる上では、この手法が主流となりうる。 However, in the analysis to investigate the mechanism, it is necessary to investigate the moment when the cell changes with time (so-called dynaix analysis), and it is necessary to "collect" one cell at that moment under microscopic observation. This method can be the mainstream for investigating the mechanisms that occur in the body such as diseases.
 生体組織から1個の細胞、もしくはある共通の特徴を持った細胞塊を「採取」したいニーズとして具体的な例を挙げると、マウスなどの実験動物からいくつかの臓器(脾臓、肺、リンパ節など)に存在するある種の細胞を切り出すということが挙げられる。そして、そのような細胞の網羅的解析を行うことが可能になると、特異な部位とそれ以外の部位の機能の差が従来行われてきた実験手法で導かれた結果よりも大きな差として判明するため本質的な理解が進み、医療における創薬や診断分野の応用につながることになる。 A specific example of the need to "collect" a single cell or a cell mass with certain common characteristics from living tissue is several organs (spleen, lung, lymph node) from experimental animals such as mice. Etc.) to cut out certain cells that are present. Then, when it becomes possible to perform a comprehensive analysis of such cells, it becomes clear that the difference in function between the peculiar part and the other part is larger than the result derived by the conventional experimental method. Therefore, the essential understanding will be advanced, and it will lead to the application in the field of drug discovery and diagnosis in medical treatment.
 例えば脾臓は、左脇腹にある造血・リンパ器官であり、老化した赤血球の破壊や、血液中の異物の処理などの免疫に関する働きを担っている。脾臓組織の大半は赤脾髄とよばれ、赤血球を満たした静脈洞で占められる。赤脾髄中に点在する白脾髄では、免疫細胞である樹状細胞やマクロファージ細胞が抗原を提示し、リンパ球細胞からの抗体産生が促される。ここで起こる抗原提示などに関する免疫の機能を詳細に解析するためには、白脾髄を効率的に切り出す必要がある。これらのマクロファージ細胞は、免疫応答に関与するのみならず、組織の再構築や炎症応答後の組織の修復などの役割も担っており、その解析は重要である。 For example, the spleen is a hematopoietic / lymphatic organ on the left flank, and plays a role in immunity such as destruction of aged red blood cells and processing of foreign substances in blood. Most of the spleen tissue is called the red pulp and is occupied by venous sinuses filled with red blood cells. In the white pulp scattered in the red pulp, dendritic cells and macrophage cells, which are immune cells, present antigens and promote antibody production from lymphocyte cells. In order to analyze in detail the immune function related to antigen presentation that occurs here, it is necessary to efficiently excise the white pulp. These macrophage cells are not only involved in the immune response, but also play a role in tissue reconstruction and tissue repair after the inflammatory response, and their analysis is important.
 また、肺のうちその主要な機能を司る肺胞は、ガス交換を担う人体の生存に必須な臓器である。健康な人は、一日に約2万リットルの空気を呼吸している。その空気の中には有害な細菌・ウイルスや化学物質などが含まれている。これらの有害物質に対し、肺に備わっている免疫システムが正常に機能することで、感染症、がん、アレルギー、喘息などの発症を防いでいる。肺の末端に存在する肺胞(数百mm)と呼ばれる部位は、感染症のターゲットとなることがあり、ここでの生体の防御機構の解明には、肺胞のみを「採取」して解析する方法が望ましい。 In addition, the alveoli, which control the main function of the lungs, are essential organs for the survival of the human body, which is responsible for gas exchange. A healthy person breathes about 20,000 liters of air a day. The air contains harmful bacteria, viruses and chemical substances. The immune system in the lungs functions normally against these harmful substances to prevent the onset of infectious diseases, cancer, allergies, asthma, and the like. The site called alveoli (several hundred mm) at the end of the lung may be the target of infectious diseases, and to elucidate the defense mechanism of the living body here, only the alveoli are "collected" and analyzed. The method of doing is desirable.
 さらに、リンパ節には、B細胞などの免疫細胞の他にストローマ細胞という間質細胞が存在し、この細胞が骨組み構造の役割を果たしている。分かりやすく言うと、柔らかいスポンジ繊維のようなものである。リンパ管を通じてリンパ節に到達した免疫細胞は、それぞれリンパ節内の違う部位に集まっていくが、恐らくストローマ細胞が何らかの役割を果たしており、その種類に応じて、各免疫細胞の集まる部位も異なると考えられる。 Furthermore, in the lymph node, there are stromal cells called stromal cells in addition to immune cells such as B cells, and these cells play a role in the skeleton structure. To put it simply, it is like a soft sponge fiber. Immune cells that reach the lymph nodes through the lymph vessels gather at different sites in the lymph nodes, but probably stromal cells play a role, and depending on the type, the sites where each immune cell gathers also differ. Conceivable.
 脳は、主に6種類の細胞が多層構造となっていることが現在知られている。よく脳波の実験などでどの場所でどのような反応が起こっているかなどは研究がなされているが、より詳細な部位での働きは全くと言っていいほど理解されていないのが現実である。脳の中でも大脳、小脳、脳下垂体、視床下部、海馬、あるいはそれらの器官のある特定の部位で何が行われているのか詳細を知るための解析において、解剖して取り出した器官の切片を一度ホルマリン固定したサンプルと、生き物から生のまま採取をしたサンプルでは、大いに結果が異なることが想像できる。 It is currently known that the brain has a multi-layered structure consisting mainly of 6 types of cells. Research is often done on what kind of reaction is occurring in which place in brain wave experiments, but the reality is that the function in more detailed parts is not understood at all. Sections of dissected and removed organs in an analysis to find out more about what is happening in the cerebrum, cerebellum, pituitary gland, hypothalamus, hippocampus, or any particular part of those organs in the brain. It can be imagined that the results are very different between the sample once fixed with formalin and the sample taken raw from the creature.
 胚は受精卵から分割したばかりの細胞集団であり、その初期の段階は卵割と呼ぶが、8個~16個の卵割に至ると、各々の細胞がその時点で生体として発生していく際、どの器官になり、どの位置に配置されるかという運命づけがなされ始める。現時点ではこの卵割内の細胞1個を切り出してくる操作は非常に困難であるが、この1個の切り出しが可能になると「ボディプラン」の解析が進み、生物学の根本となる進化の研究や再生医療、あるいは遺伝子治療などへの応用など様々な分野への波及効果が期待できる。 An embryo is a cell population that has just been split from a fertilized egg, and its initial stage is called cleavage, but when it reaches 8 to 16 cleavages, each cell develops as a living body at that point. At that time, the fate of which organ it will be and where it will be placed begins to be made. At present, it is very difficult to cut out one cell in the cleavage, but if this one cell can be cut out, the analysis of the "body plan" will proceed, and the evolutionary research that will be the basis of biology. It can be expected to have a ripple effect in various fields such as regenerative medicine and gene therapy.
 特に、再生医療分野の研究発展は目覚ましいが、実際にはこのような発生過程の運命づけのメカニズムの研究がなされないと試験管内で作製した細胞や臓器は「ボディプラン」の壁を越えられずに奇形種が出来て生体から免疫を受け排除される、またはがん化してしまう可能性が指摘されており、様々な腫瘍形成抑制法も開発されている。
https://www.jstage.jst.go.jp/article/cytometryresearch/21/2/21_D-11-00018/_pdf
 この課題を解決するためには卵割の中にある細胞を1個ずつ取り出し、つぶさに遺伝子発現解析を行うことが必要となる。「この細胞が」「このタイミングで」「この遺伝子が働くことで」「将来この臓器になり得る」という予測が立つことにつながり、現在判明している遺伝子配列情報のみのような「部品表」としての情報のみではなく、真の「設計図」としての情報を見出すことが可能となる。
In particular, research development in the field of regenerative medicine is remarkable, but in reality, cells and organs produced in vitro cannot overcome the wall of "body plan" unless research on the mechanism of fate of such developmental processes is done. It has been pointed out that malformed species may be formed and immune from the living body to be eliminated or become cancerous, and various methods for suppressing tumor formation have been developed.
https://www.jstage.jst.go.jp/article/cytometryresearch/21/2/21_D-11-00018/_pdf
In order to solve this problem, it is necessary to take out the cells in the cleavage one by one and perform gene expression analysis in detail. It leads to the prediction that "this cell", "at this timing", "by this gene working", and "it can become this organ in the future", and it is a "material list" like only the gene sequence information currently known. It is possible to find not only the information as a true "design drawing" but also the information as a true "design drawing".
 従来、このような生の組織から1個の細胞、あるいは微小な細胞塊を吸引する作業は困難であるがために、ほとんど行われていなかった。代わりに、顕微鏡のフォーカス機能と組み合わせた局所レーザーを用いて、ホルマリンなどで固定化されたサンプルの目的部位のみを切り取る「レーザーマイクロダイセクション」が使用されてきた。
https://patents.google.com/patent/JP5467254B2/ja
このような固定化サンプルのレーザーでの切り出しは確かに目的の物を切り取ることができるが、これは生きた状態とはかけ離れており、特にタンパク質や代謝物の情報については信頼性が欠ける。
Conventionally, the work of sucking a single cell or a minute cell mass from such a raw tissue is difficult, so that it is rarely performed. Instead, a "laser microdissection" has been used that cuts out only the target site of a sample immobilized with formalin or the like using a local laser combined with the focus function of a microscope.
https://patents.google.com/patent/JP5467254B2/en
Laser cutting of such immobilized samples can certainly cut out what is of interest, but it is far from alive and unreliable, especially for protein and metabolite information.
 このような背景の中、市場のニーズに応えるため、発明者はガラス微細管と微小液量の吸引ポンプを用いて、「採取」作業を長年にわたって行ってきた。実際には現在の技術では目的の細胞のみを採取することは非常に困難であったが、何度かの挑戦ののち、それを解決するための課題が明確となった。
 解決方法案としては、(1)ニードルを回転させる、(2)現行のガラスニードルよりも肉薄にすることで切れ味を鋭くする、(3)肉薄にするために金属ニードルへの変更が必要、(4)それ以外に先端をのこぎり状の構造を模すような細かいガラス片を付着させる、などが考えられる。
Against this background, in order to meet the needs of the market, the inventor has been performing "collection" work for many years using glass microtubules and suction pumps with a small amount of liquid. Actually, it was very difficult to collect only the target cells with the current technology, but after several challenges, the problem to solve it became clear.
As a solution, (1) the needle is rotated, (2) the sharpness is sharpened by making it thinner than the current glass needle, and (3) it is necessary to change to a metal needle to make it thinner. 4) In addition to that, it is conceivable to attach a fine piece of glass that imitates a saw-like structure at the tip.
特開2017-129735号公報Japanese Unexamined Patent Publication No. 2017-129735
 しかしながら、上記(1)のようにポンプで吸引しながらニードルの先端を回転させることを想定した場合に、ポンプをニードルから離れた位置に置き、ポンプとニードルを長いチューブで接続し、ニードルを回転させなければならないが、そのような作業を行うと、チューブがよじれてしまう。かつ、ポンプがそのように離れた位置からチューブを介して吸引や吐出を行おうとすると、ポンプ内部からニードルまでの体積が増えて内圧の制御性が悪くなり、かつ回転運動によりチューブも振動するため、吸引した微小物(細胞など)がニードル先端にとどまらなくなってしまう。 However, assuming that the tip of the needle is rotated while being sucked by the pump as in (1) above, the pump is placed at a position away from the needle, the pump and the needle are connected by a long tube, and the needle is rotated. You have to do that, but doing so will cause the tube to twist. Moreover, when the pump tries to suck or discharge through the tube from such a distant position, the volume from the inside of the pump to the needle increases, the controllability of the internal pressure deteriorates, and the tube also vibrates due to the rotational movement. , The sucked minute objects (cells, etc.) do not stay at the tip of the needle.
 そのため、ポンプとニードルは極力近いことが理想となり、更に言うとなるべく一体化したほうが最適だが、その場合小型のポンプが必要となること、またポンプが小型であった場合でもポンプは電気制御のため、それ自身を回転させることにより電気ケーブルがよじれたり、絡まってしまうことが想定される。 Therefore, it is ideal that the pump and needle are as close as possible, and it is best to integrate them as much as possible, but in that case, a small pump is required, and even if the pump is small, the pump is electrically controlled. It is assumed that the electric cable is twisted or entangled by rotating itself.
 そこで、小型でありながら、かつ微小な吸引・吐出制御が可能なポンプ技術を用いる。また回転運動について、回転軸にニードルを固定して一方向へ連続回転を行った場合に、今回想定しているような微小領域では、回転ブレが生じてしまい、中心軸に合わせてぶれずに回転させることは非常に困難である。それを解決するために、半回転、もしくは一回転ずつ左右に切り替える方法で動作させて切り出す発想と、チューブで接続することでウツボなどが獲物を食いちぎる時に、獲物を岩や海底などに押し付けて固定させたまま、自分の体を回転させて食いちぎる動き(デスロール)を真似るという発想に至った。また、中心ぶれを起こさせない方法として、先にニードル先端の外周に沿った筒状のガイドをサンプルに押し付け、その状態でニードルを差し込む方法も考えられる。
 また、ガラスニードルではなく金属ニードルの肉薄製造技術を導入することで、0.1mm以下の先端径の金属ニードルを設置することも可能となる。
 また、ガラスニードルであっても、その切り口に欠片を接着することで切れ味を増すことができることも想定している。
Therefore, we use a pump technology that is compact and capable of minute suction and discharge control. In addition, regarding the rotational movement, when the needle is fixed to the rotating shaft and continuous rotation is performed in one direction, rotational blurring occurs in the minute region as assumed this time, and it does not shake according to the central axis. It is very difficult to rotate. In order to solve this, the idea of cutting out by operating it by switching it half a turn or one turn to the left and right, and by connecting it with a tube, when a moray eel etc. eats the prey, press the prey against a rock or the seabed etc. I came up with the idea of imitating the movement of eating (death roll) by rotating my body while keeping it fixed. Further, as a method of preventing center shake, a method of first pressing a cylindrical guide along the outer circumference of the needle tip against the sample and then inserting the needle in that state is also conceivable.
Further, by introducing a thin-walled manufacturing technique for metal needles instead of glass needles, it is possible to install metal needles having a tip diameter of 0.1 mm or less.
It is also assumed that even if it is a glass needle, the sharpness can be increased by adhering a piece to the cut end.
 また、このようにチューブにより回転力をニードルに伝えることで、顕微鏡観察部の光学系にかぶらず邪魔をしない位置でありながら、極力近い部分にポンプを設置できるため内圧の制御性の問題を解決しながらも顕微鏡観察に悪影響を与えない構造を取れる。 In addition, by transmitting the rotational force to the needle through the tube in this way, the problem of internal pressure controllability can be solved because the pump can be installed as close as possible to the position where it does not interfere with the optical system of the microscope observation unit. However, it is possible to take a structure that does not adversely affect microscopic observation.
 本発明は、上述のような課題に鑑みてなされたものであり、ニードル部の駆動を細かくすることを可能にしたマイクロスクリューポンチシステムを提供することを目的としている。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a microscrew punch system capable of finely driving a needle portion.
 本発明に係るマイクロスクリューポンチシステムは、ニードル部と、前記ニードル部を駆動させる駆動部と、前記駆動部を制御する制御部と、を備え、前記ニードル部は、前記制御部により、前記駆動部を介して回転された状態で前後方向に移動できる、ものである。 The microscrew punch system according to the present invention includes a needle unit, a drive unit that drives the needle unit, and a control unit that controls the drive unit. The needle unit is the drive unit by the control unit. It can move in the front-back direction while being rotated through the device.
 また、本発明に係るマイクロスクリューポンチシステムは、ニードル部と、前記ニードル部を介して流体を吸引するポンプ部と、前記ニードル部、及び、前記ポンプ部を駆動させる駆動部と、前記駆動部、及び、前記ポンプ部を制御する制御部と、を備え、前記ニードル部は、前記制御部により、前記駆動部を介して駆動される前記ポンプ部に連動して駆動される、ものである。 Further, in the microscrew punch system according to the present invention, the needle portion, the pump portion that sucks the fluid through the needle portion, the needle portion, the drive portion that drives the pump portion, and the drive portion. A control unit for controlling the pump unit is provided, and the needle unit is driven by the control unit in conjunction with the pump unit driven via the drive unit.
 また、本発明に係るマイクロスクリューポンチシステムは、前記ポンプ部は、回転及び前後方向に移動可能に構成されており、前記ニードル部は、前記ポンプ部に連動して回転された状態で前後方向に移動される、ものである。 Further, in the microscrew punch system according to the present invention, the pump portion is configured to be rotatable and movable in the front-rear direction, and the needle portion is rotated in conjunction with the pump portion in the front-rear direction. It is something that is moved.
 また、本発明に係るマイクロスクリューポンチシステムは、前記ニードル部の先端部分を軸支する支持部(ガイド)を設け、前記制御部は、前記駆動部を介して前記支持部を駆動させ、前記ニードル部の位置合わせを行う、ものである。 Further, the microscrew punch system according to the present invention is provided with a support portion (guide) that pivotally supports the tip portion of the needle portion, and the control unit drives the support portion via the drive portion to drive the support portion and the needle. It is for aligning the parts.
 また、本発明に係るマイクロスクリューポンチシステムは、前記ニードル部の先端内径を5μm以上~1000μm以下とした、ものである。
 また、本発明に係るマイクロスクリューポンチシステムは、前記ニードル部の先端面に1μm以下の微細片を吸着させのこぎり様構造とした、ものである。
Further, in the microscrew punch system according to the present invention, the inner diameter of the tip of the needle portion is set to 5 μm or more and 1000 μm or less.
Further, the microscrew punch system according to the present invention has a saw-like structure in which fine pieces of 1 μm or less are adsorbed on the tip surface of the needle portion.
 また、本発明に係るマイクロスクリューポンチシステムは、前記制御部は、前記駆動部を介して前記ニードル部を左右180度以上かつ5往復/分以上~6000往復/分以下で回転させるともに前後方向に1μm~1000μmの距離を5往復/分以上~6000往復/分で移動させる、ものである。 Further, in the microscrew punch system according to the present invention, the control unit rotates the needle unit 180 degrees or more left and right and 5 reciprocations / minute or more to 6000 reciprocations / minute or less in the front-rear direction via the drive unit. It moves a distance of 1 μm to 1000 μm at 5 round trips / minute or more to 6000 round trips / minute.
 また、本発明に係るマイクロスクリューポンチシステムは、凹部が形成され、前記ニードル部がアクセスするサンプルが前記凹部に保持される容器と、貫通部が形成され、前記容器の上部に載置される蓋と、を備え、前記サンプルは、前記凹部と前記蓋によって動きが規制される、ものである。 Further, in the microscrew punch system according to the present invention, a container in which a recess is formed and a sample accessed by the needle portion is held in the recess, and a lid in which a penetration portion is formed and placed on the upper portion of the container are formed. And, the sample is one whose movement is restricted by the recess and the lid.
 本発明に係るマイクロスクリューポンチシステムは、ニードル部が回転した状態で前後方向に移動可能に構成されているので、ニードル部の駆動を細かく制御することができ、ニードル部でアクセスするサンプルから細胞を1個ずつ「採取」することが可能になる、ものである。 Since the microscrew punch system according to the present invention is configured to be movable in the front-rear direction while the needle portion is rotated, the drive of the needle portion can be finely controlled, and cells can be obtained from a sample accessed by the needle portion. It is possible to "collect" one by one.
 本発明に係るマイクロスクリューポンチシステムは、ニードル部がポンプ部に連動して駆動されるので、ニードル部の駆動を細かく制御することができ、ニードル部の駆動制御が簡易なものとなる。 In the microscrew punch system according to the present invention, since the needle portion is driven in conjunction with the pump portion, the drive of the needle portion can be finely controlled, and the drive control of the needle portion becomes simple.
本発明の実施の形態に係るマイクロスクリューポンチシステムのシステム構成を概略的に示す概略構成図である。It is a schematic block diagram which shows the system configuration of the microscrew punch system which concerns on embodiment of this invention. 本発明の実施の形態に係るマイクロスクリューポンチシステムの容器及び蓋を説明するための模式図である。It is a schematic diagram for demonstrating the container and the lid of the microscrew punch system which concerns on embodiment of this invention. 本発明の実施の形態に係るマイクロスクリューポンチシステムのニードル部の2つの構成例を概略的に示す模式図である。It is a schematic diagram which shows roughly two structural examples of the needle part of the microscrew punch system which concerns on embodiment of this invention. 本発明の実施の形態に係るマイクロスクリューポンチシステムの動作を説明するための説明図である。It is explanatory drawing for demonstrating operation of the microscrew punch system which concerns on embodiment of this invention. 本発明の実施の形態に係るマイクロスクリューポンチシステムの実施例を説明するための説明図である。It is explanatory drawing for demonstrating the Example of the microscrew punch system which concerns on embodiment of this invention. サンプルの一部を拡大して概略的に示す概略図である。It is the schematic which shows the part of the sample enlarged and schematic.
 図1は、本発明の実施の形態に係るマイクロスクリューポンチシステム100(以下、システム100と称する)のシステム構成を概略的に示す概略構成図である。図2は、システム100の容器60及び蓋70を説明するための模式図である。図3は、システム100のニードル部40の2つの構成例を概略的に示す模式図である。図1~図3に基づいて、システム100の構成について説明する。 FIG. 1 is a schematic configuration diagram schematically showing a system configuration of a microscrew punch system 100 (hereinafter referred to as a system 100) according to an embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the container 60 and the lid 70 of the system 100. FIG. 3 is a schematic diagram schematically showing two configuration examples of the needle portion 40 of the system 100. The configuration of the system 100 will be described with reference to FIGS. 1 to 3.
 システム100は、制御部10、駆動部20、ポンプ部30、ニードル部40、支持部50、抜け止め部55、容器60、蓋70、及び、顕微鏡80を有しており、細胞を1個ずつ切り出すことを可能にした構成となっている。
 システム100は、図示省略の支持台に載置された容器60に保持されたサンプルSから細胞を「採取」するものである。なお、拾い上げた細胞は、容器60とは別の場所に載置されている図示省略のキャピラリーなどに吐出される。
The system 100 has a control unit 10, a drive unit 20, a pump unit 30, a needle unit 40, a support unit 50, a retaining unit 55, a container 60, a lid 70, and a microscope 80, and each cell is contained one by one. It has a structure that makes it possible to cut out.
The system 100 "collects" cells from sample S held in a container 60 placed on a support (not shown). The picked up cells are discharged into a capillary or the like (not shown) placed in a place different from the container 60.
 制御部10は、駆動部20、ポンプ部30、及び、支持部50の駆動を制御するものである。また、制御部10には、顕微鏡80で観察された細胞の状態が画像データとして送られるようになっている。制御部10は、たとえばプログラムや情報を記憶する記憶部、外部の通信機器と情報を送受信する通信部、情報の入出力、表示、通信、プログラムの実行などを処理する演算部などを有している。
 細胞を拾い上げる際においては、制御部10は、図1に示すように、駆動部20を制御してニードル部40の先端を容器60に位置させる。それから、制御部10は、ポンプ部30を駆動して細胞を拾い上げる。制御部10の具体的な動作は図4で説明する。
The control unit 10 controls the drive of the drive unit 20, the pump unit 30, and the support unit 50. Further, the state of the cells observed by the microscope 80 is sent to the control unit 10 as image data. The control unit 10 has, for example, a storage unit for storing programs and information, a communication unit for transmitting and receiving information to and from an external communication device, an arithmetic unit for processing information input / output, display, communication, program execution, and the like. There is.
When picking up the cells, the control unit 10 controls the drive unit 20 to position the tip of the needle unit 40 in the container 60, as shown in FIG. Then, the control unit 10 drives the pump unit 30 to pick up the cells. The specific operation of the control unit 10 will be described with reference to FIG.
 駆動部20は、図示省略のジョイスティック又はタッチパネルからの操作支持を受け取った制御部10によってニードル部40、ポンプ部30、及び、支持部50を駆動するものである。駆動部20は、例えばモータやギアなどを介してニードル部40を前後方向に駆動させたり、回転駆動させたりすることができる。また、駆動部20は、ポンプ部30を駆動して、ニードル部40を介して流体を吸引したり吐出したりする。さらに、駆動部20は、例えばモータやギアなどを介して支持部50を左右方向(X方向)、前後方向(Y方向)、上下方向(Z方向)に駆動させたり、回転駆動させたりする。駆動部20によって支持部50が駆動されることで、ニードル部40の先端がサンプルSにアクセス可能になっている。 The drive unit 20 drives the needle unit 40, the pump unit 30, and the support unit 50 by the control unit 10 that receives the operation support from the joystick or the touch panel (not shown). The drive unit 20 can drive the needle unit 40 in the front-rear direction or rotationally drive it via, for example, a motor or a gear. Further, the drive unit 20 drives the pump unit 30 to suck and discharge the fluid through the needle unit 40. Further, the drive unit 20 drives or rotates the support unit 50 in the left-right direction (X direction), the front-rear direction (Y direction), and the up-down direction (Z direction) via, for example, a motor or a gear. By driving the support portion 50 by the drive portion 20, the tip of the needle portion 40 can access the sample S.
 図1に示すようにニードル部40とポンプ部30とが一体的に組み上げられている構成においては、駆動部20は、ポンプ部30を駆動することでニードル部40を駆動させるようになっている。つまり、ポンプ部30を駆動させれば一緒にニードル部40が駆動するのである。ただし、ニードル部40とポンプ部30とが一体的に組み上げられていない場合、例えばニードル部40とポンプ部30の間に、延長チューブ41が設置されている駆動部20が介在するような場合、駆動部20は、ニードル部40、ポンプ部30を別々に駆動させてもよい。 As shown in FIG. 1, in the configuration in which the needle portion 40 and the pump portion 30 are integrally assembled, the drive portion 20 drives the needle portion 40 by driving the pump portion 30. .. That is, if the pump unit 30 is driven, the needle unit 40 is driven together. However, when the needle portion 40 and the pump portion 30 are not integrally assembled, for example, when the drive portion 20 in which the extension tube 41 is installed is interposed between the needle portion 40 and the pump portion 30. The drive unit 20 may drive the needle unit 40 and the pump unit 30 separately.
 駆動部20は、例えば一辺が最大15mm以上のストロークのアクチュエータステージ3台と、アクチュエータステージを駆動する小型の回転モータと、で構成される。具体的には、3台のアクチュエータステージを、左右方向(X方向)、前後方向(Y方向)、上下方向(Z方向)に最大JOG速度10μm/秒以上~50mm/秒以下で動くように組み上げた後に、その先に切断刃(つまりニードル部40の先端)を保持する機構を持たせた板(支持部50)と回転モータを取り付ける。 The drive unit 20 is composed of, for example, three actuator stages having a stroke of up to 15 mm or more on each side and a small rotary motor for driving the actuator stages. Specifically, the three actuator stages are assembled so as to move at a maximum JOG speed of 10 μm / sec or more and 50 mm / sec or less in the left-right direction (X direction), the front-back direction (Y direction), and the up-down direction (Z direction). After that, a plate (support portion 50) having a mechanism for holding the cutting blade (that is, the tip of the needle portion 40) and a rotary motor are attached to the tip thereof.
 こうすることで、支持部50をXYZ方向、回転方向(回転角度0~90度、0.1度刻み以下)に駆動できる。このアクチュエータの分解能は少なくとも1μm以下で動くものとする。分解能が粗く大型であると顕微鏡の観察部近くに設置できず、また揺れの原因となる。そこで、分解能を1μm以下とすることで、小型でありながら振動がなく、高分解能で移動できることになる。 By doing so, the support portion 50 can be driven in the XYZ direction and the rotation direction (rotation angle 0 to 90 degrees, in increments of 0.1 degrees or less). The resolution of this actuator shall be at least 1 μm or less. If the resolution is coarse and large, it cannot be installed near the observation part of the microscope, and it causes shaking. Therefore, by setting the resolution to 1 μm or less, it is possible to move with high resolution without vibration even though it is small.
 ポンプ部30は、構成を特に限定するものではないが、たとえば微小な体積(100pL~1000nLの範囲の液量)の液体で制御できるもので構成するとよい。ポンプ部30は、図1に示すようにニードル部40の他端側に設置され、ニードル部40と一体的に構成するとよい。または、ニードル部40の他端側に接続した延長チューブ41を長くし、駆動部20を経由させた後に、駆動部20の下流側となる位置にポンプ部30を設置してもよい。 The configuration of the pump unit 30 is not particularly limited, but it may be configured to be, for example, a pump unit that can be controlled by a minute volume (liquid amount in the range of 100 pL to 1000 nL). As shown in FIG. 1, the pump portion 30 may be installed on the other end side of the needle portion 40 and may be integrally configured with the needle portion 40. Alternatively, the extension tube 41 connected to the other end side of the needle portion 40 may be lengthened, and the pump portion 30 may be installed at a position on the downstream side of the drive portion 20 after passing through the drive portion 20.
 ポンプ部30の小型化を実現することによって、ポンプ部30とニードル部40の一体化を実現することが可能になった。そのため、ポンプ部30の駆動を制御することでニードル部40の駆動も制御できることになるので、ニードル部40の駆動を直接的に制御するものに比較して、ニードル部40の駆動制御が簡易なものとなった。 By realizing the miniaturization of the pump unit 30, it has become possible to realize the integration of the pump unit 30 and the needle unit 40. Therefore, since the drive of the needle unit 40 can also be controlled by controlling the drive of the pump unit 30, the drive control of the needle unit 40 is simpler than that of directly controlling the drive of the needle unit 40. It became a thing.
 なお、ニードル部40とポンプ部30が一体的に構成されているとは、ニードル部40の他端に直接的にポンプ部30が設置されている場合の他、ニードル部40の他端に接続された延長チューブ41などにポンプ部30が設置されている場合も含むものとする。つまり、ポンプ部30の駆動がニードル部40に伝達できる場合、言い換えればニードル部40がポンプ部30に連動する場合には、ニードル部40とポンプ部30が一体的に構成されていると言え、延長チューブ41を長くして、ニードル部40とポンプ部30との間に他の部材、例えば駆動部20などが物理的に介在し、流路的には連結しているもののポンプ部30の駆動が伝達できない場合には、ニードル部40とポンプ部30が一体的に構成されているとは言えない。 The fact that the needle portion 40 and the pump portion 30 are integrally configured means that the pump portion 30 is directly installed at the other end of the needle portion 40 and is connected to the other end of the needle portion 40. It is also assumed that the pump portion 30 is installed in the extension tube 41 or the like. That is, when the drive of the pump unit 30 can be transmitted to the needle unit 40, in other words, when the needle unit 40 is interlocked with the pump unit 30, it can be said that the needle unit 40 and the pump unit 30 are integrally configured. The extension tube 41 is lengthened so that another member, for example, a drive unit 20 is physically interposed between the needle unit 40 and the pump unit 30, and the pump unit 30 is driven although the extension tube 41 is connected in terms of flow path. If the above cannot be transmitted, it cannot be said that the needle portion 40 and the pump portion 30 are integrally configured.
 ニードル部40は、両端が開放された管状部材で構成されており、「採取」側に位置する開放端部が先端となり、ポンプ部30に接続されている開放端部が他端となる。図1及び図2では、他端に延長チューブ41が接続されている場合を例に示している。ただし、図3に示すように、他端に直接的にポンプ部30を設置してもよい。また、ニードル部40は、図3(A)に示すように直線的に形成してもよく、図3(B)に示すように湾曲させて形成してもよく、これにより上部からの照明や観察を妨げない。 The needle portion 40 is composed of a tubular member with both ends open, the open end portion located on the "collecting" side is the tip end, and the open end portion connected to the pump portion 30 is the other end. 1 and 2 show an example in which the extension tube 41 is connected to the other end. However, as shown in FIG. 3, the pump unit 30 may be installed directly at the other end. Further, the needle portion 40 may be formed linearly as shown in FIG. 3 (A) or may be formed by being curved as shown in FIG. 3 (B), thereby illuminating from above. Does not interfere with observation.
 ニードル部40の先端は、駆動部20によって駆動されることで容器60に保持されているサンプルSにアクセス可能になっている。他端は、気密された状態で延長チューブ41を介してポンプ部30に接続されている。延長チューブ41を長くし接続してポンプ部30を間接的に接続してもよい。ニードル部40は、他端がポンプ部30と気密状態で接続されているので、ポンプ部30の駆動、つまり流体の吸引又は吐出に応じて、先端から容器60に保持されているサンプルSから1個ずつ細胞を拾い上げることができる。 The tip of the needle portion 40 is driven by the drive portion 20 so that the sample S held in the container 60 can be accessed. The other end is connected to the pump portion 30 via the extension tube 41 in an airtight state. The extension tube 41 may be lengthened and connected to indirectly connect the pump portion 30. Since the other end of the needle portion 40 is connected to the pump portion 30 in an airtight state, the sample S held in the container 60 from the tip in response to the drive of the pump portion 30, that is, the suction or discharge of the fluid, is 1 You can pick up cells one by one.
 ニードル部40の先端は、既存のガラスニードルや金属針よりも切れ味のよい刃が望ましい。具体的には、ニードル部40の先端内径を1μm以上~1000μm以下とすることが望ましい。また、ニードル部40の先端の肉薄の構造が、皮膚のような伸縮性や柔軟性があるものを裁断する場合には重要となり、ニードル先端の外径に対して内径が85%以上になることが望ましい。そこで、金属マイクロニードルでニードル部40を製作する場合を検討するが、このような金属マイクロニードルの場合、元の母管を前述のような肉薄構造、つまりニードル先端の外径に対して内径85%以上の物を用いることが望ましく、この材料を用いて塑性加工技術の一つである金属加熱フォーミングを採用し、微細なテーパー形状を製作することが出来る。金属マイクロニードルの材料は、チタンが好ましいが、SUS、真鍮でもよい。 It is desirable that the tip of the needle portion 40 has a sharper blade than the existing glass needle or metal needle. Specifically, it is desirable that the inner diameter of the tip of the needle portion 40 is 1 μm or more and 1000 μm or less. Further, the thin structure at the tip of the needle portion 40 is important when cutting elastic and flexible materials such as skin, and the inner diameter is 85% or more with respect to the outer diameter of the needle tip. Is desirable. Therefore, a case where the needle portion 40 is manufactured from a metal microneedle will be considered. In the case of such a metal microneedle, the original mother tube has a thin structure as described above, that is, an inner diameter of 85 with respect to the outer diameter of the needle tip. It is desirable to use a material of% or more, and by using this material, metal heating forming, which is one of the plastic working techniques, can be adopted to produce a fine tapered shape. The material of the metal microneedles is preferably titanium, but SUS or brass may also be used.
 元々肉薄の金属パイプを金属加熱フォーミングによりある既定の力で引っ張ることにより、先端が肉薄構造のニードル部40を製作することが可能であり、また条件により先端内径を制御することも可能となる。ただし、ニードル部40の構成を特に限定するものではなく、肉薄構造の切れ味のよい先端が製作可能であれば、ガラスニードルでニードル部40を製作してもよい。
 また、ニードル部40の先端面に1μm以下の微細片を吸着させのこぎり様構造としてもよい。こうすることにより、より切れ味のよい刃となる。
By pulling the originally thin metal pipe with a certain predetermined force by metal heating forming, it is possible to manufacture the needle portion 40 having a thin tip structure, and it is also possible to control the inner diameter of the tip depending on the conditions. However, the configuration of the needle portion 40 is not particularly limited, and the needle portion 40 may be manufactured with a glass needle as long as a sharp tip having a thin structure can be manufactured.
Further, a saw-like structure may be formed in which fine pieces of 1 μm or less are adsorbed on the tip surface of the needle portion 40. By doing so, the blade becomes sharper.
 支持部50は、ニードル部40の先端部分を軸支するものである。つまり、支持部50にはニードル部40の先端部分を貫通して回転可能に支持する孔部が形成されており、支持部50は、支持部50の孔部に位置したニードル部40の先端部分をある程度固定しながら、ニードル部40の回転を規制しないように構成されている。孔部の径は、ニードル部40の先端よりも大きく、ニードル部40の胴部よりも小さい。 The support portion 50 pivotally supports the tip portion of the needle portion 40. That is, the support portion 50 is formed with a hole portion that penetrates the tip portion of the needle portion 40 and rotatably supports the support portion 50, and the support portion 50 is the tip portion of the needle portion 40 located in the hole portion of the support portion 50. Is configured so as not to restrict the rotation of the needle portion 40 while fixing the needle portion 40 to some extent. The diameter of the hole is larger than the tip of the needle 40 and smaller than the body of the needle 40.
 抜け止め部55は、ニードル部40の先端部分が支持部50の孔部から抜け出さないようにする機能を果たす。つまり、抜け止め部55は、ニードル部40のストッパーとしての役割を担っている。 The retaining portion 55 functions to prevent the tip portion of the needle portion 40 from coming out of the hole portion of the support portion 50. That is, the retaining portion 55 serves as a stopper for the needle portion 40.
 容器60は、例えばPDMS(ポリジメチルシロキサン=シリコーンゴム)などで構成されている。容器60には、サンプルSが保持可能な凹部61が複数形成されている。たとえば、図2では、凹部61が4個形成されている場合を例に示している。凹部61は、所定の深さを有しており、サンプルSが水平方向(容器60の底面に平行な方向)に滑ったり逃げたりしないようにする機能を果たす。したがって、凹部61に収容されたサンプルSは、凹部61によって保持されることになる。サンプルSについては、後段の実施例で説明するものとする。 The container 60 is made of, for example, PDMS (polydimethylsiloxane = silicone rubber). The container 60 is formed with a plurality of recesses 61 in which the sample S can be held. For example, FIG. 2 shows a case where four recesses 61 are formed as an example. The recess 61 has a predetermined depth and functions to prevent the sample S from slipping or escaping in the horizontal direction (direction parallel to the bottom surface of the container 60). Therefore, the sample S housed in the recess 61 is held by the recess 61. The sample S will be described in the subsequent examples.
 容器60の寸法は、たとえば次のようになっている。
 容器60の外寸である縦×横×高さは、20mm×20mm×5mmとなっている。
 上記寸法の容器60に対して凹部61を4個形成する場合、凹部61の縦×横×深さは、5mm×5mm×1mmとなる。
 上記寸法の容器60に対して凹部61を9個形成する場合、凹部61の縦×横×深さは、1mm×1mm×0.3mmとなる。
 上記寸法の容器60に対して凹部61を16個形成する場合、凹部61の縦×横×深さは、0.5mm×0.5mm×0.2mmとなる。
The dimensions of the container 60 are as follows, for example.
The outer dimensions of the container 60, that is, length x width x height, are 20 mm x 20 mm x 5 mm.
When four recesses 61 are formed with respect to the container 60 having the above dimensions, the length × width × depth of the recesses 61 is 5 mm × 5 mm × 1 mm.
When nine recesses 61 are formed in a container 60 having the above dimensions, the length × width × depth of the recesses 61 is 1 mm × 1 mm × 0.3 mm.
When 16 recesses 61 are formed with respect to the container 60 having the above dimensions, the length × width × depth of the recesses 61 is 0.5 mm × 0.5 mm × 0.2 mm.
 容器60は、大型NCフライスを用いた切削加工により、アルミ型やアクリル型を製作し、研磨を施した後、それを用いて成形できる。容器60の寸法によっては、フォトマスクを作り、レジスト型を製作し、それを用いて成形するとよい。 The container 60 can be molded by making an aluminum mold or an acrylic mold by cutting using a large NC milling cutter, polishing it, and then using it. Depending on the dimensions of the container 60, a photomask may be made, a resist mold may be made, and molding may be performed using the photomask.
 蓋70は、例えばPDMSなどで構成されており、容器60の上部に載置され、容器60の凹部61を覆うようになっている。つまり、蓋70は、容器60の上部に載置されることで、容器60の凹部61に保持されたサンプルSの上方向への移動を規制する機能を果たす。ただし、ニードル部40がサンプルSにアクセス可能なように、蓋70には複数の貫通部71が貫通形成されている。貫通部71の開口形状は、円形や多角形状、スリット状であればよい。図2では、容器60の1つの凹部61に対して開口形状が四角形状の8個の貫通部71が蓋70に形成されている場合を例に示している。 The lid 70 is made of, for example, PDMS or the like, is placed on the upper part of the container 60, and covers the recess 61 of the container 60. That is, the lid 70 functions to restrict the upward movement of the sample S held in the recess 61 of the container 60 by being placed on the upper part of the container 60. However, a plurality of penetrating portions 71 are formed through the lid 70 so that the needle portion 40 can access the sample S. The opening shape of the penetrating portion 71 may be circular, polygonal, or slit-shaped. FIG. 2 shows an example in which eight penetrating portions 71 having a square opening shape are formed in the lid 70 with respect to one recess 61 of the container 60.
 蓋70の寸法は、たとえば次のようになっている。
 蓋70の外寸である縦×横×高さは、20mm×20mm×0.5mmとなっている。
 上記寸法の蓋70に対して貫通部71を100個形成する場合はたとえば以下の2通りの寸法が考えられる。
 (1)貫通部71の縦×横×深さを、1mm×1mm×0.5mmとする。
 (2)貫通部71の縦×横×深さを、0.3mm×0.3mm×0.5mmとする。
 蓋70の高さを0.2mmとし、貫通部71を100個形成する場合、貫通部71の縦×横×深さは、0.2mm×0.2mm×0.2mmとなる。
The dimensions of the lid 70 are as follows, for example.
The outer dimensions of the lid 70, that is, length x width x height, are 20 mm x 20 mm x 0.5 mm.
When forming 100 penetrating portions 71 with respect to the lid 70 having the above dimensions, for example, the following two dimensions can be considered.
(1) The length × width × depth of the penetrating portion 71 is 1 mm × 1 mm × 0.5 mm.
(2) The length × width × depth of the penetrating portion 71 is set to 0.3 mm × 0.3 mm × 0.5 mm.
When the height of the lid 70 is 0.2 mm and 100 penetration portions 71 are formed, the length × width × depth of the penetration portions 71 is 0.2 mm × 0.2 mm × 0.2 mm.
 顕微鏡80は、容器60に保持されているサンプルSを観察するものである。顕微鏡80で観察されたサンプルSは画像データとして制御部10に送られる。顕微鏡80は、細胞の詳細な観察および解析に好適な性能(スペック)を有するものが好ましい。また、顕微鏡80をディスプレイなどに接続することで、拡大した画面で観察するようにしてもよい。 The microscope 80 observes the sample S held in the container 60. The sample S observed by the microscope 80 is sent to the control unit 10 as image data. The microscope 80 preferably has performance (specs) suitable for detailed observation and analysis of cells. Further, by connecting the microscope 80 to a display or the like, observation may be performed on a magnified screen.
 図4は、システム100の動作を説明するための説明図である。図4に基づいて、システム100の動作について説明する。システム100は、使用者からの指示に基づいて、制御部10が各部材の動作を統括制御するようになっている。使用者は、タッチパネルやジョイスティックなどの操作部を用いて、システム100に指示を与える。 FIG. 4 is an explanatory diagram for explaining the operation of the system 100. The operation of the system 100 will be described with reference to FIG. In the system 100, the control unit 10 controls the operation of each member in an integrated manner based on an instruction from the user. The user gives an instruction to the system 100 by using an operation unit such as a touch panel or a joystick.
 指示が与えられたシステム100は、図4(1)に示すように、制御部10が支持部50を動かし、ニードル部40のサンプルSへの位置合わせを行う。具体的には、上述したように、支持部50をX方向、Y方向、Z方向に移動させ、加えて支持部50を回転させて、ニードル部40の位置を決定する。同時に、制御部10は、駆動部20を介して、ポンプ部30及びニードル部40の全体的な位置決めも行う。 In the system 100 to which the instruction is given, as shown in FIG. 4 (1), the control unit 10 moves the support unit 50 to align the needle unit 40 with the sample S. Specifically, as described above, the support portion 50 is moved in the X direction, the Y direction, and the Z direction, and the support portion 50 is rotated to determine the position of the needle portion 40. At the same time, the control unit 10 also performs overall positioning of the pump unit 30 and the needle unit 40 via the drive unit 20.
 次に、システム100は、制御部10がポンプ部30を回転させる。つまり、図4(2)に示すように、制御部10はポンプ部30を介してニードル部40を回転させる。ニードル部40は支持部50によって軸支され、抜け止め部55によって抜け止めされているので、位置決めされた状態で回転することになる。ポンプ部30の設置位置によっては、ポンプ部30の回転がニードル部40に伝達されないことがある。この場合、制御部10は、ニードル部40を単独で回転駆動させる。 Next, in the system 100, the control unit 10 rotates the pump unit 30. That is, as shown in FIG. 4 (2), the control unit 10 rotates the needle unit 40 via the pump unit 30. Since the needle portion 40 is pivotally supported by the support portion 50 and is prevented from coming off by the retaining portion 55, the needle portion 40 rotates in a positioned state. Depending on the installation position of the pump unit 30, the rotation of the pump unit 30 may not be transmitted to the needle unit 40. In this case, the control unit 10 rotates and drives the needle unit 40 independently.
 制御部10は、高速往復回転設定(たとえば、左右180度以上の回転を高速(5往復/分以上~6000往復/分以下)で繰り返すという設定)、回転移動距離設定、回転速度設定、加速度設定などに基づいて、ポンプ部30の回転を制御する。これらの設定は、あらかじめ制御部10に保存しておいてもよく、後から追加してもよい。また、設定内容は変更可能になっている。なお、ポンプ部30の回転距離設定は、0度~720度とする。 The control unit 10 has a high-speed reciprocating rotation setting (for example, a setting of repeating a rotation of 180 degrees or more to the left and right at a high speed (5 reciprocations / minute or more to 6000 reciprocations / minute or less)), a rotation movement distance setting, a rotation speed setting, and an acceleration setting. The rotation of the pump unit 30 is controlled based on the above. These settings may be saved in the control unit 10 in advance, or may be added later. In addition, the settings can be changed. The rotation distance of the pump unit 30 is set to 0 to 720 degrees.
 次に、システム100は、制御部10がニードル部40を前後方向に5往復/分以上~6000往復/分以下で動かして、サンプルSに実際にアクセスする(図4に示す(3))。つまり、ニードル部40は、回転された状態で、前後方向に移動することになる。その結果、サンプルSがニードル部40の先端でほじられることになる。ニードル部40を押し込んだり引いたりすることで、ニードル部40の先端を三次元的に複雑な動きとすることができる。刃として機能するニードル部40の先端の動きを複雑化することで、最適な切断を実現できる。なお、ポンプ部30の前後移動は、最大ストローク15mm以下とする。 Next, in the system 100, the control unit 10 actually moves the needle unit 40 in the front-rear direction at a rate of 5 reciprocations / minute or more to 6000 reciprocations / minute or less to actually access the sample S ((3) shown in FIG. 4). That is, the needle portion 40 moves in the front-rear direction in a rotated state. As a result, the sample S is picked up at the tip of the needle portion 40. By pushing or pulling the needle portion 40, the tip of the needle portion 40 can be made into a three-dimensionally complicated movement. Optimal cutting can be realized by complicating the movement of the tip of the needle portion 40 that functions as a blade. The front-back movement of the pump unit 30 has a maximum stroke of 15 mm or less.
<実施例>
 図5は、システム100の実施例を説明するための説明図である。図6は、サンプルSの一部を拡大して概略的に示す概略図である。図5及び図6に基づいて、システム100の実施例について説明する。この実施例は、サンプルSに魚卵の皮(たらこの皮)を用いて、魚卵の皮に穴(ホールH)を開けることができるかどうかを実験した例を示している。
<Example>
FIG. 5 is an explanatory diagram for explaining an embodiment of the system 100. FIG. 6 is a schematic diagram schematically showing an enlarged part of the sample S. An embodiment of the system 100 will be described with reference to FIGS. 5 and 6. This example shows an example in which a hole (hole H) can be made in a fish egg skin by using a fish egg skin (tarako skin) as a sample S.
 ニードル部40を魚卵に押し付けただけでは、魚卵の皮にホールHを形成することができないということがわかった。また、ニードル部40を回転させたとしても回転角度が小さい(たとえば90度前後)状況を繰り返しただけでは、やはり魚卵の皮にホールHを形成することができないということがわかった。
 そこで、上述したように、ニードル部40を所定の回転角度以上で回転させながらサンプルSである魚卵に押し付けることで、魚卵の皮の一部にホールHを形成することができ、そこから内部の魚卵を採取することが出来た。
It was found that the hole H could not be formed on the skin of the roe simply by pressing the needle portion 40 against the roe. Further, it was found that even if the needle portion 40 is rotated, the hole H cannot be formed in the skin of the roe just by repeating the situation where the rotation angle is small (for example, around 90 degrees).
Therefore, as described above, by pressing the needle portion 40 against the fish egg, which is the sample S, while rotating the needle portion 40 at a predetermined rotation angle or more, a hole H can be formed in a part of the skin of the fish egg, and from there. I was able to collect the fish eggs inside.
 なお、システム100の制御部10が実行する制御内容は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェア(プログラム)によって実現してもよい。
 例えば、ソフトウェアによって制御内容を実行する場合には、制御部10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータ(1つ以上のプロセッサ、プログラムを記憶したメモリを備えたコンピュータ)を備えている。
The control content executed by the control unit 10 of the system 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software (program). ..
For example, when the control content is executed by software, the control unit 10 is a computer (one or more processors, a computer having a memory for storing the program) that executes an instruction of a program that is software that realizes each function. It is equipped with.
 プロセッサとしては、例えば、CPU(Central Processing Unit)を用いることができる。メモリとしては、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。 As the processor, for example, a CPU (Central Processing Unit) can be used. As the memory, for example, in addition to a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
 本発明は、上述した実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。示した数値についても特に限定するものではなく、請求項に示した範囲で種々の変更が可能である。
 本発明は、種々の細胞分析で広く利用することができる。たとえば、赤脾髄中に点在する白脾髄の採取、肺から肺胞のみの採取、ストローマ細胞の部位特異的な採取、脳からの部位特異的な採取、胚から蛍光標識した1細胞の採取、などに適用することができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the present invention can be obtained by appropriately combining the technical means disclosed in the different embodiments. The form is also included in the technical scope of the present invention. The numerical values shown are not particularly limited, and various changes can be made within the range shown in the claims.
The present invention can be widely used in various cell analyzes. For example, collection of white pulp scattered in the red pulp, collection of only alveoli from the lungs, site-specific collection of stromal cells, site-specific collection from the brain, fluorescence-labeled single cells from embryos. It can be applied to collection, etc.
10:制御部
20:駆動部
30:ポンプ部
40:ニードル部
41:延長チューブ
50:支持部
55:抜け止め部
60:容器
61:凹部
70:蓋
71:貫通部
80:顕微鏡
100:マイクロスクリューポンチシステム
S :サンプル
H :ホール
 
 
10: Control unit 20: Drive unit 30: Pump unit 40: Needle unit 41: Extension tube 50: Support unit 55: Retaining unit 60: Container 61: Recessed 70: Lid 71: Penetration unit 80: Microscope 100: Microscrew punch System S: Sample H: Hall

Claims (8)

  1.  ニードル部と、
     前記ニードル部を駆動させる駆動部と、
     前記駆動部を制御する制御部と、を備え、
     前記ニードル部は、
     前記制御部により、前記駆動部を介して回転された状態で前後方向に移動される
     マイクロスクリューポンチシステム。
    Needle part and
    The drive unit that drives the needle unit and
    A control unit that controls the drive unit is provided.
    The needle part is
    A microscrew punch system that is moved in the front-rear direction by the control unit while being rotated via the drive unit.
  2.  ニードル部と、
     前記ニードル部を介して流体を吸引するポンプ部と、
     前記ニードル部、及び、前記ポンプ部を駆動させる駆動部と、
     前記駆動部、及び、前記ポンプ部を制御する制御部と、を備え、
     前記ニードル部は、
     前記制御部により、前記駆動部を介して駆動される前記ポンプ部に連動して駆動される
     マイクロスクリューポンチシステム。
    Needle part and
    A pump unit that sucks fluid through the needle unit and
    The needle part, the drive part that drives the pump part, and
    The drive unit and the control unit that controls the pump unit are provided.
    The needle part is
    A microscrew punch system driven by the control unit in conjunction with the pump unit driven via the drive unit.
  3.  前記ポンプ部は、
     回転及び前後方向に移動可能に構成されており、
     前記ニードル部は、
     前記ポンプ部に連動して回転された状態で前後方向に移動される
     請求項2に記載のマイクロスクリューポンチシステム。
    The pump unit
    It is configured to be rotatable and movable in the front-back direction.
    The needle part is
    The microscrew punch system according to claim 2, wherein the microscrew punch system is moved in the front-rear direction while being rotated in conjunction with the pump unit.
  4.  前記ニードル部の先端部分を軸支する支持部を設け、
     前記制御部は、前記駆動部を介して前記支持部を駆動させ、前記ニードル部の位置合わせを行う
     請求項1~3のいずれか一項に記載のマイクロスクリューポンチシステム。
    A support portion that pivotally supports the tip portion of the needle portion is provided.
    The microscrew punch system according to any one of claims 1 to 3, wherein the control unit drives the support unit via the drive unit to align the needle unit.
  5.  前記ニードル部の先端内径を5μm以上~1000μm以下とした
     請求項1~4のいずれか一項に記載のマイクロスクリューポンチシステム。
    The microscrew punch system according to any one of claims 1 to 4, wherein the inner diameter of the tip of the needle portion is 5 μm or more and 1000 μm or less.
  6.  前記ニードル部の先端面に1μm以下の微細片を吸着させのこぎり様構造とした
     請求項1~5のいずれか一項に記載のマイクロスクリューポンチシステム。
    The microscrew punch system according to any one of claims 1 to 5, which has a saw-like structure in which fine pieces of 1 μm or less are adsorbed on the tip surface of the needle portion.
  7.  前記制御部は、
     前記駆動部を介して前記ニードル部を左右180度以上かつ5往復/分以上~6000往復/分以下で回転させるともに前後方向に1μm~1000μmの距離を5往復/分以上~6000往復/分で移動させることが可能な
     請求項1~6のいずれか一項に記載のマイクロスクリューポンチシステム。
    The control unit
    The needle unit is rotated 180 degrees or more left and right and 5 reciprocations / minute to 6000 reciprocations / minute or less via the drive unit, and at a distance of 1 μm to 1000 μm in the front-rear direction at 5 reciprocations / minute to 6000 reciprocations / minute. The microscrew punch system according to any one of claims 1 to 6, which can be moved.
  8.  凹部が形成され、前記ニードル部がアクセスするサンプルが前記凹部に保持される容器と、
     貫通部が形成され、前記容器の上部に載置される蓋と、を備え、
     前記サンプルは、
     前記凹部と前記蓋によって動きが規制される
     請求項1~7のいずれか一項に記載のマイクロスクリューポンチシステム。
     
    A container in which a recess is formed and a sample accessed by the needle portion is held in the recess.
    With a lid on which a penetration is formed and placed on top of the container,
    The sample is
    The microscrew punch system according to any one of claims 1 to 7, wherein the movement is restricted by the recess and the lid.
PCT/JP2020/022448 2020-06-05 2020-06-05 Micro screw punch system WO2021245952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022448 WO2021245952A1 (en) 2020-06-05 2020-06-05 Micro screw punch system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022448 WO2021245952A1 (en) 2020-06-05 2020-06-05 Micro screw punch system

Publications (1)

Publication Number Publication Date
WO2021245952A1 true WO2021245952A1 (en) 2021-12-09

Family

ID=78830756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022448 WO2021245952A1 (en) 2020-06-05 2020-06-05 Micro screw punch system

Country Status (1)

Country Link
WO (1) WO2021245952A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514270A (en) * 2004-09-27 2008-05-08 ビブラテック・アクチボラゲット Mechanism for harvesting cells
US20160324530A1 (en) * 2015-05-08 2016-11-10 Fortus Medical, Inc. Bone fragment and tissue harvesting system
WO2017061387A1 (en) * 2015-10-07 2017-04-13 学校法人早稲田大学 Sample collection system
JP2019528807A (en) * 2016-07-01 2019-10-17 スワン サイトロジックス インコーポレイテッド Methods and apparatus for extraction and delivery of entities
CN209611202U (en) * 2018-08-24 2019-11-12 中国人民解放军第四军医大学 Portable hair follicle extractor
JP2020068682A (en) * 2018-10-30 2020-05-07 国立研究開発法人理化学研究所 Cell-conveying system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514270A (en) * 2004-09-27 2008-05-08 ビブラテック・アクチボラゲット Mechanism for harvesting cells
US20160324530A1 (en) * 2015-05-08 2016-11-10 Fortus Medical, Inc. Bone fragment and tissue harvesting system
WO2017061387A1 (en) * 2015-10-07 2017-04-13 学校法人早稲田大学 Sample collection system
JP2019528807A (en) * 2016-07-01 2019-10-17 スワン サイトロジックス インコーポレイテッド Methods and apparatus for extraction and delivery of entities
CN209611202U (en) * 2018-08-24 2019-11-12 中国人民解放军第四军医大学 Portable hair follicle extractor
JP2020068682A (en) * 2018-10-30 2020-05-07 国立研究開発法人理化学研究所 Cell-conveying system

Similar Documents

Publication Publication Date Title
WO2017061387A1 (en) Sample collection system
JP6585577B2 (en) Apparatus, system and method for extracting material from material sample
Pillarisetti et al. Evaluating the effect of force feedback in cell injection
EP3212332B1 (en) Centrifuge tube comprising a floating buoy, and methods for using the same
JPH03119989A (en) Micro-injector and method for controlling injection thereof
Shakoor et al. Advanced tools and methods for single-cell surgery
US9519002B2 (en) Device, system, and method for selecting a target analyte
WO2009048524A2 (en) System and methods for thick specimen imaging using a microscope-based tissue sectioning device
JP7183286B2 (en) Digital pathology scanning interface and workflow
Li et al. A review of microrobot’s system: Towards system integration for autonomous actuation in vivo
Frey et al. Microfluidics for understanding model organisms
WO2021245952A1 (en) Micro screw punch system
Guo et al. A Review of Single‐Cell Pose Adjustment and Puncture
US10416046B2 (en) Device, system, and method for selecting a target analyte
CN1875893A (en) Microdissection device based on piezoelectric ultrasonic vibration
Maia et al. Microneedles in advanced microfluidic systems: A systematic review throughout lab and organ-on-a-chip applications
Hedde et al. SPIM-Flow: an integrated light sheet and microfluidics platform for hydrodynamic studies of Hydra
US20170219463A1 (en) Device, system, and method for selecting a target analyte or fluid
CN106423322A (en) Pipette tip and pipette system
WO2016018726A1 (en) Methods and systems for separating components of a biological sample with gravity sedimentation
JP6528911B2 (en) Manipulation system
CN107001026A (en) Microfluid sensing system
KR102252029B1 (en) Apparatus for micro particle treatment
Krüger et al. The fantastic voyage of the trypanosome: a protean micromachine perfected during 500 million years of engineering
Hetzel et al. Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.03.2023)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20938529

Country of ref document: EP

Kind code of ref document: A1