WO2021245800A1 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
WO2021245800A1
WO2021245800A1 PCT/JP2020/021813 JP2020021813W WO2021245800A1 WO 2021245800 A1 WO2021245800 A1 WO 2021245800A1 JP 2020021813 W JP2020021813 W JP 2020021813W WO 2021245800 A1 WO2021245800 A1 WO 2021245800A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter circuit
electric vehicle
motor
control device
output
Prior art date
Application number
PCT/JP2020/021813
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 北中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/021813 priority Critical patent/WO2021245800A1/en
Priority to DE112020007275.4T priority patent/DE112020007275T5/en
Priority to JP2022529186A priority patent/JP7312322B2/en
Publication of WO2021245800A1 publication Critical patent/WO2021245800A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/34Control or regulation of multiple-unit electrically-propelled vehicles with human control of a setting device
    • B60L15/36Control or regulation of multiple-unit electrically-propelled vehicles with human control of a setting device with automatic control superimposed, e.g. to prevent excessive motor current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to an electric vehicle control device that drives and controls a plurality of electric motors mounted on an electric vehicle.
  • the electric vehicle is configured to run by the rotation of the wheels integrally configured with the axle.
  • the axle is driven and rotated by an electric motor mounted on the bogie.
  • an induction motor or a synchronous motor is generally used.
  • the electric vehicle is equipped with an electric vehicle control device including an inverter circuit for supplying electric power to the electric motor on the roof or under the floor.
  • the electric vehicle drive system including the electric vehicle control device and a plurality of electric motors is roughly classified into a “collective control system” and an “individual control system” depending on the connection form between the inverter circuit and the electric motor.
  • the collective control system is configured to connect a plurality of induction motors in parallel and collectively drive and control them with an inverter circuit.
  • the individual control system is configured to drive and control each induction motor or synchronous motor by providing a dedicated inverter circuit.
  • the semiconductor elements that make up the inverter circuit are mounted on the cooler and make up the power conversion unit.
  • the cooling method in the cooler is generally a configuration in which the semiconductor element is cooled by applying the running wind of an electric vehicle to the fins provided in the cooler.
  • a collective control system it is common to arrange one inverter circuit on one cooler.
  • one inverter circuit generally controls four motors for one car.
  • an individual control system there are cases where one inverter circuit is arranged on one cooler and cases where a plurality of inverter circuits are arranged on one cooler.
  • the configuration in which a plurality of inverter circuits are arranged on one cooler has an advantage that the power conversion unit can be miniaturized.
  • the outputs of each of the multiple motors are controlled to be the same during normal operation.
  • the output of each axle can be individually and optimally controlled. Therefore, for example, when slipping of a wheel occurs, it is possible to adjust the output of the motor to be transiently reduced from the set value according to the state of each wheel. Therefore, the individual control system enables finer control than the collective control system.
  • Patent Document 1 discloses an electric vehicle control device applied to an individual control system.
  • the rescue operation is an embodiment in which the electric vehicle of the own train is propelled from the rear in order to rescue the electric vehicle of another train that has failed in the front in the traveling direction, for example.
  • rescue driving it is necessary to increase the propulsive force of the electric vehicle compared to normal driving. In this case, there is a problem of which inverter circuit should be output.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain an electric vehicle control device suitable for special operation of an electric vehicle while suppressing an increase in manufacturing cost.
  • the electric vehicle control device is a first electric motor for driving a first wheel which is a wheel in front of the vehicle and a wheel in the rear of the vehicle. It is an electric vehicle control device mounted on an electric vehicle equipped with a trolley equipped with a second electric motor for driving a second wheel as a first trolley and a second trolley, respectively, in front of and behind the vehicle.
  • the electric vehicle control device includes a plurality of inverter circuits that individually control the first and second motors, and a control unit that controls at least one of the plurality of inverter circuits.
  • the plurality of inverter circuits are the first inverter circuit connected to the second motor of the first trolley, the second inverter circuit connected to the first motor of the first trolley, and the second trolley. It is composed of a third inverter circuit connected to the second motor of the second trolley and a fourth inverter circuit connected to the first motor of the second trolley.
  • the first and second inverter circuits are arranged in this order from the front to the rear of the vehicle.
  • the third and fourth inverter circuits are arranged in this order from the front to the rear of the vehicle.
  • the control unit is configured to be able to control the output of the second motor to a value larger than the output of the first motor.
  • the electric vehicle control device According to the electric vehicle control device according to the present disclosure, there is an effect that it is possible to appropriately cope with the special operation of the electric vehicle while suppressing the increase in the manufacturing cost.
  • connection without distinguishing between an electrical connection and a physical connection.
  • FIG. 1 is a diagram showing a configuration example of an electric vehicle drive system 500 including an electric vehicle control device 100 according to the first embodiment.
  • the electric vehicle drive system 500 is a configuration of an individual control system.
  • the electric vehicle drive system 500 includes a switch 10, a reactor 11, an electric vehicle control device 100, and electric motors 201 to 204.
  • the electric vehicle control device 100 has a positive terminal P and a negative terminal N.
  • the positive terminal P is connected to the reactor 11.
  • the negative terminal N is connected to the rail 6 via the wheel 2.
  • the electric vehicle control device 100 includes power conversion units 81 and 82 and a general control unit 30.
  • the power conversion units 81 and 82 receive DC power from the overhead wire 1 via the current collector 5, the switch 10, the reactor 11, and the positive terminal P.
  • the switch 10 and the reactor 11 may be built in the electric vehicle control device 100.
  • FIG. 1 illustrates a configuration example in which DC power is received from the overhead wire 1, it may be configured to receive AC power. In the case of a configuration for receiving AC power, an AC / DC conversion circuit is provided in front of the power conversion units 81 and 82.
  • the power conversion unit 81 includes a control unit 31 which is a first control unit and inverter circuits 61 and 62.
  • the power conversion unit 82 includes a control unit 32, which is a second control unit, and inverter circuits 63, 64.
  • the power conversion units 81 and 82 have the same configuration. Hereinafter, the power conversion unit 81 will be described.
  • the inverter circuit 61 is a power conversion circuit that supplies three-phase AC power to the motor 202.
  • the inverter circuit 61 has a capacitor 50 that holds a DC voltage.
  • the capacitor 50 operates as a voltage source.
  • the inverter circuit 61 converts the DC voltage of the capacitor 50 into a three-phase AC voltage of an arbitrary frequency having an arbitrary voltage value and applies it to the motor 202.
  • the capacitor 50 may be arranged outside the power conversion unit 81.
  • the inverter circuit 61 has six semiconductor elements 60U, 60V, 60W, 60X, 60Y, 60Z.
  • the semiconductor elements 60U, 60V, 60W, 60X, 60Y, and 60Z are bridge-connected to form a three-phase bridge circuit.
  • the semiconductor elements 60U, 60V, 60W are referred to as positive arm, and the semiconductor elements 60X, 60Y, 60Z are referred to as negative arm.
  • a pair of a positive arm and a negative arm connected in series is called a leg.
  • the semiconductor elements 60U and 60X form a U-phase leg
  • the semiconductor elements 60V and 60Y form a V-phase leg
  • the semiconductor elements 60W and 60Z form a W-phase leg.
  • an insulated gate bipolar transistor (IGBT) element having a built-in antiparallel diode is suitable.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide film semiconductor field effect transistor
  • the inverter circuit 61 is shown with a three-phase two-level circuit configuration, but is not limited to this configuration.
  • the inverter circuit 61 may have a three-phase, three-level circuit configuration.
  • a connecting conductor 91 for supplying the three-phase AC voltage generated by the inverter circuit 61 to the motor 202 is arranged after the inverter circuit 61.
  • As the connecting conductor 91 an electric wire such as a cable, an insulated conductor plate, or the like is used.
  • the connecting conductors 92 to 94 are similarly configured.
  • the power conversion unit 81 has an inverter circuit 62. Since the internal configuration of the inverter circuit 62 is the same as that of the inverter circuit 61, the description thereof is omitted here.
  • the three-phase AC voltage generated by the inverter circuit 62 is supplied to the motor 201 by the connecting conductor 92.
  • the connecting conductors 91 and 92 are collectively referred to as the first connecting conductor 95.
  • the control signal HA is input to the control unit 31 from the integrated control unit 30.
  • the control signal HA includes at least the first to third signals.
  • the first signal is a signal that serves as an output command for the inverter circuits 61 and 62.
  • the second signal is a signal related to the operating state of the electric vehicle such as "acceleration", “deceleration” and “coasting”.
  • the third signal is a signal that commands the magnitude and direction of the output or torque generated by the motors 201 and 202.
  • the control unit 31 Based on the input signal, the control unit 31 generates and outputs a signal for turning on / off the switching element of the inverter circuits 61 and 62 so that the output generated by the motors 201 and 202 becomes a desired value.
  • control unit 31 which is the first control unit, is configured to control both the inverter circuits 61 and 62, but is not limited thereto.
  • the control unit 31 may be divided into two control units that individually control the inverter circuits 61 and 62. The same applies to the control unit 32, which is the second control unit.
  • the power conversion unit 82 is also configured in the same manner as the power conversion unit 81.
  • the inverter circuit 63 applies a three-phase AC voltage to the motor 204 by the connecting conductor 93.
  • the inverter circuit 64 applies a three-phase AC voltage to the motor 203 by the connecting conductor 94.
  • the connecting conductors 93 and 94 are collectively referred to as the second connecting conductor 96.
  • a command signal CMD including an acceleration / deceleration command, an operation direction command, and a special operation command is input to the overall control unit 30 from a higher control unit (not shown).
  • the integrated control unit 30 controls the control units 31 and 32 based on the command signal CMD. Examples of the upper control unit are a driver's cab controller and a train control device.
  • the special operation is as described above.
  • the special operation command is a command for increasing the propulsive force of an electric vehicle during special operation as compared with the normal operation.
  • the overall control unit 30 gives a command to the control units 31 and 32 to increase the power running torque of the motors 201 to 204 by the set value from the normal time by the control signal HA. Is output.
  • FIG. 2 is a top view showing an example of mounting the electric vehicle control device 100 according to the first embodiment on a vehicle 4, which is an electric vehicle.
  • vehicle 4 is equipped with trolleys 3a and 3b and an electric vehicle control device 100.
  • the bogie 3a is arranged on the front side with respect to the traveling direction, that is, on the front side in the traveling direction. Further, the bogie 3b is arranged on the rear side with respect to the traveling direction, that is, on the rear side in the traveling direction.
  • the electric vehicle control device 100 is arranged in the central portion of the vehicle 4 so as to be sandwiched between the carriage 3a and the carriage 3b along the traveling direction.
  • the dolly 3a includes wheels 2a and 2b and motors 201 and 202.
  • the wheel 2a is a wheel located on the front side in the traveling direction
  • the wheel 2b is a wheel located on the rear side in the traveling direction.
  • the motor 201 drives the wheels 2a
  • the motor 202 drives the wheels 2b.
  • Three-phase AC power is supplied to the motor 201 via the connecting conductor 92
  • three-phase AC power is supplied to the motor 202 via the connecting conductor 91.
  • the bogie 3b includes the wheels 2c and 2d and the motors 203 and 204.
  • the wheel 2c is a wheel located on the front side in the traveling direction
  • the wheel 2d is a wheel located on the rear side in the traveling direction.
  • the motor 203 drives the wheels 2c
  • the motor 204 drives the wheels 2d.
  • Three-phase AC power is supplied to the motor 203 via the connecting conductor 94
  • three-phase AC power is supplied to the motor 204 via the connecting conductor 93.
  • the power conversion units 81 and 82 are mounted on the housing 101 of the electric vehicle control device 100.
  • the inverter circuits 61 and 62 are mounted on the cooler 71.
  • the cooler 71 is made of aluminum or copper and includes fins 73 thermally connected to the inverter circuits 61 and 62.
  • the fin 73 is arranged outside the housing 101.
  • the inverter circuits 61 and 62 are cooled by the traveling wind of the vehicle 4 hitting the fins 73.
  • the power conversion unit 82 has the same configuration, and the inverter circuits 63 and 64 are cooled by the traveling wind of the vehicle 4 hitting the fins 74 of the cooler 72.
  • the motor 201 on the front side in the traveling direction is connected to the inverter circuit 62.
  • the electric motor 203 on the front side in the traveling direction is connected to the inverter circuit 64.
  • the inverter circuit 62 is arranged on the rear side in the traveling direction in the power conversion unit 81.
  • the inverter circuit 64 is arranged on the rear side in the traveling direction in the power conversion unit 82. That is, the inverter circuits 62 and 64 are both arranged on the leeward side of the traveling wind.
  • the motor 202 on the rear side in the traveling direction is connected to the inverter circuit 61.
  • the electric motor 204 on the rear side in the traveling direction is connected to the inverter circuit 63.
  • the inverter circuit 61 is arranged on the front side in the traveling direction in the power conversion unit 81.
  • the inverter circuit 63 is arranged on the front side in the traveling direction in the power conversion unit 82. That is, the inverter circuits 61 and 63 are both arranged on the windward side of the traveling wind.
  • the relationship between the electric motor 201 and the electric motor 204, the electric motor 202 and the electric motor 203, the inverter circuit 61 and the inverter circuit 64, and the inverter circuit 62 and the inverter circuit 63 is the traveling direction in the central portion of the vehicle 4.
  • the inverter circuit that drives the motor on the front side in the traveling direction is located on the rear side in the traveling direction, that is, on the leeward side.
  • the inverter circuit for driving the motor on the rear side in the traveling direction is located on the front side in the traveling direction, that is, on the windward side.
  • the front wheel in the traveling direction is referred to as the "first wheel”
  • the rear wheel in the traveling direction is referred to as the "second wheel”.
  • the bogie on the front side in the traveling direction may be described as “first bogie”
  • the bogie on the rear side in the traveling direction may be described as “second bogie”.
  • the motor on the front side in the traveling direction may be described as “first motor”
  • the motor on the rear side in the traveling direction may be described as "second motor”.
  • the power conversion unit on the front side in the traveling direction may be described as “first power conversion unit”, and the power conversion unit on the rear side in the traveling direction may be described as “second power conversion unit”. .. Further, in each of the power conversion units 81 and 82, the inverter circuit on the front side in the traveling direction is described as “first inverter circuit”, and the inverter circuit on the rear side in the traveling direction is referred to as “second inverter circuit”. May be described.
  • the integrated control unit 30 is arranged between the power conversion unit 81 and the power conversion unit 82. By arranging in this way, it is possible to secure a distance of about 1 m between the power conversion unit 81 and the power conversion unit 82. As a result, it is possible to apply a practically sufficient cooling air for cooling the inverter circuits 63 and 64 to the cooler 72 with respect to the power conversion unit 82 on the rear side in the traveling direction.
  • FIG. 3 is a diagram showing a control example in the electric vehicle control device 100 according to the first embodiment.
  • the horizontal axis of FIG. 3 represents time.
  • the vertical axis represents the magnitude of torque, which is the output of each motor 201 to 204.
  • FIG. 3 shows how the torque of the motors 201 to 204 changes when the normal operation is changed to the special operation.
  • each of the motors 201 to 204 is controlled to output 100% of the specified torque.
  • the specified torque is a value determined based on the acceleration / deceleration request instructed by the upper control unit.
  • the total torque of the electric motor 201 and the electric motor 202 and the electric motor 203 and the electric motor 204 are equal to each other. And the total torque is equal to.
  • the total torque of the motor 201 and the motor 202 is the total torque of the bogie 3a on the front side in the traveling direction.
  • the total torque of the motor 203 and the motor 204 is the total torque of the bogie 3b on the rear side in the traveling direction.
  • the center of gravity moves to the wheels 2b, 2d on the rear side in the traveling direction of the trolleys 3a, 3b. Therefore, the rear wheels 2b and 2d are more loaded than the front wheels 2a and 2c. In this case, the wheels 2a and 2c on the front side are likely to slip. Therefore, as in the control example of FIG. 3, the torque of the rear motors 202 and 204 is increased to increase the driving force of the rear wheels 2b and 2d. By doing so, it is possible to efficiently accelerate the electric vehicle while suppressing the idling of the wheels.
  • a control mode in which the overall torque of the carriage 3b is larger than the overall torque of the carriage 3a can be considered.
  • this control mode considering that the traveling directions are switched, it is necessary to change the control depending on the traveling direction, which has a demerit that the control becomes complicated.
  • the connecting conductors may intersect each other or the connecting conductor length may become long. This complicates the underfloor structure of the electric vehicle and causes an increase in the occupied space. Therefore, it is hard to say that it is an appropriate configuration to determine the connection configuration between the inverter circuits 61 to 64 and the motors 201 to 204 in consideration of the movement of the center of gravity of the entire vehicle 4.
  • the inverter circuits 61 and 63 are arranged on the front side in the traveling direction, that is, on the windward side. With such an arrangement, it is possible to improve the cooling performance as compared with the inverter circuits 62 and 64.
  • a first connection conductor 95 composed of connection conductors 91 and 92 and a second connection composed of connection conductors 93 and 94 are connected. It can be arranged in the vehicle 4 so that the conductors 96 do not intersect with each other. Supplementally, the diameter of the cross section required by the first connecting conductor 95 and the second connecting conductor 96 is about 20 cm, respectively. Therefore, if the first connecting conductor 95 and the second connecting conductor 96 are arranged so as to intersect each other, an excessive space is required under the floor of the vehicle 4, and the first connecting conductor 95 and the second connecting conductor 95 are connected. There is a demerit that the shape of the wiring duct for accommodating the conductor 96 becomes complicated, and it cannot be said that the configuration is appropriate.
  • the distance between the power conversion unit 81 and the power conversion unit 82 can be increased by about 1 m. Therefore, the power conversion unit 81 can be moved to the dolly 3a side as much as possible, and the power conversion unit 82 can be moved to the dolly 3b side as much as possible.
  • the lengths of the first connecting conductor 95 and the second connecting conductor 96 can be made shorter while optimizing the longitudinal dimension of the electric vehicle control device 100, that is, the length in the traveling direction. This makes it possible to reduce the weight of the cable. Further, since the laying of the cable under the floor of the vehicle 4 and the handling of the cable can be simplified, the workability and maintainability can be improved.
  • FIG. 4 is a top view showing an example of mounting the electric vehicle control device 100A according to the modified example of the first embodiment on the vehicle 4A.
  • the electric vehicle control device 100 is replaced with the electric vehicle control device 100A in the configuration of the mounting example on the vehicle 4 shown in FIG.
  • the power conversion unit 82 is replaced with the power conversion unit 82A.
  • the cooler 72 is attached so that the protruding direction of the fin 74 is opposite to that in FIG. 2 in the direction orthogonal to the traveling direction.
  • the other arrangements and connection relationships are the same as those in FIG. 2, and duplicate explanations are omitted.
  • control units 31 and 32 are not shown.
  • the control units 31 and 32 can be arranged by using the space above or below the power conversion units 81 and 82A.
  • the traveling wind to the fins 74 of the cooler 72 arranged on the leeward side is not blocked by the fins 73 of the cooler 71 arranged on the leeward side. Therefore, there is an advantage that the running wind can be taken in more efficiently than the configuration of FIG.
  • the power conversion unit 82A is arranged so as to be shifted to the rear side in the traveling direction with respect to the power conversion unit 81, but the present invention is not limited to this.
  • the power conversion unit 82A may be arranged side by side with the power conversion unit 81 without shifting to the rear side in the traveling direction.
  • the power conversion unit 81 and the power conversion unit 82A may be arranged so as to be displaced in the vertical direction. In any of these configurations, the effect of the electric vehicle control device 100 described above can be obtained.
  • the plurality of inverter circuits are the first inverter circuit connected to the second motor of the first trolley and the first trolley.
  • a second inverter circuit connected to the first motor of the second trolley, a third inverter circuit connected to the second motor of the second trolley, and a second inverter connected to the first motor of the second trolley. It consists of four inverter circuits.
  • the first and second inverter circuits are arranged in this order from the front to the rear of the vehicle, and the third and fourth inverter circuits are arranged in this order from the front to the rear of the vehicle.
  • the electric vehicle control device can control the output of the second electric motor to a value larger than the output of the first electric motor.
  • the electric vehicle can be efficiently accelerated while suppressing the idling of the wheels even during special driving in which operating conditions that require higher propulsion capacity than usual are imposed. That is, it becomes possible to suitably cope with the special operation of the electric vehicle.
  • the first inverter circuit and the third inverter circuit are always located on the windward side.
  • the first inverter circuit is an inverter circuit connected to a second motor whose torque or output is increased during special operation.
  • the third inverter circuit is an inverter circuit connected to a fourth electric motor whose torque or output is increased during special operation. That is, the first and third inverter circuits whose loss increases during special operation are always located on the windward side. Therefore, the cooling performance of the first and third inverter circuits is improved as compared with the second and fourth inverter circuits. Therefore, it is not necessary to increase the size or increase the performance of the cooler, so that it is possible to suppress an increase in manufacturing cost. This makes it possible to meet the demand for an increase in driving force during special operation while suppressing an increase in manufacturing cost.
  • the first connecting conductor referred to here is a connecting conductor connecting the first inverter circuit and the second motor of the first trolley, and the second inverter circuit and the first motor of the first trolley. It is a group of connecting conductors in which the connecting conductors to be connected are bundled.
  • the second connecting conductor referred to here is a connecting conductor connecting the third inverter circuit and the second motor of the second trolley, and the fourth inverter circuit and the first motor of the second trolley. It is a group of connecting conductors in which connecting conductors connecting with and are bundled.
  • the length of the first and second connecting conductors can be shortened, so that the weight of the cable including the first and second connecting conductors can be reduced. Further, since the laying of the cable under the floor of the vehicle and the handling of the cable can be simplified, the workability and maintainability can be improved.
  • FIG. 5 is a block diagram showing an example of a hardware configuration that realizes the function of the integrated control unit 30 in the first embodiment.
  • FIG. 6 is a block diagram showing another example of the hardware configuration that realizes the function of the integrated control unit 30 in the first embodiment.
  • the processor 300 that performs the calculation and the memory 302 in which the program read by the processor 300 is stored are stored.
  • an interface 304 for inputting / outputting signals can be configured.
  • the processor 300 may be an arithmetic means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Radom Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital York Disc).
  • the memory 302 stores a program that executes the function of the integrated control unit 30 in the first embodiment.
  • the processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-mentioned processing. It can be carried out.
  • the calculation result by the processor 300 can be stored in the memory 302.
  • the processing circuit 303 shown in FIG. 6 can also be used.
  • the processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 303 and the information output from the processing circuit 303 can be obtained via the interface 304.
  • processing in the integrated control unit 30 may be performed by the processing circuit 303, and processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
  • FIG. 7 is a diagram showing a configuration example of an electric vehicle drive system 500B including the electric vehicle control device 100B according to the second embodiment.
  • the electric vehicle control device 100 is replaced with the electric vehicle control device 100B in the configuration of the electric vehicle drive system 500 according to the first embodiment shown in FIG.
  • the control units 31 and 32 are replaced with the control units 31B and 32B, respectively.
  • Signals indicating the temperatures T1 and T2 of the inverter circuits 61 and 62 are input to the control unit 31B.
  • signals indicating the temperatures of the inverter circuits 63 and 64 are also input to the control unit 32B.
  • Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations are omitted.
  • the control unit 31B adjusts the output distribution of the inverter circuits 61 and 62, that is, the torque distribution of the motors 202 and 201, based on the temperature T1 of the inverter circuit 61 and the temperature T2 of the inverter circuit 62.
  • FIG. 8 is a flowchart showing a control operation in the electric vehicle control device 100B according to the second embodiment.
  • the control unit 31B compares the temperatures T1 and T2 (step S11).
  • the temperature T1 is the temperature of the inverter circuit 61 located on the windward side.
  • the temperature T2 is the temperature of the inverter circuit 62 located on the leeward side.
  • the control unit 31B determines the temperature difference condition (step S12). Specifically, when the temperature T2 is the temperature T1 or less, or the temperature difference T2-T1 is the preset specified value Tc or less (steps S12, No), the control unit 31B determines that the temperature difference condition is not satisfied. The torque distribution as usual is performed without changing the torque distribution (step S13). On the other hand, when the temperature T2 is larger than the temperature T1 and the temperature difference T2-T1 is larger than the specified value Tc (steps S12, Yes), the control unit 31B determines that the temperature difference condition is satisfied and changes the torque distribution (step). S14).
  • the traveling speed of the electric vehicle is slower than that during normal operation due to factors such as timetable disturbance, and the air volume of the traveling wind is reduced to reduce the air volume of the cooler. It is assumed that the cooling performance is insufficient.
  • control unit 31B has been described in the flowchart of FIG. 8, the control unit 32B also performs the same control. Since the contents are duplicated, the explanation here is omitted.
  • FIG. 9 is a diagram showing a control example in the electric vehicle control device 100B according to the second embodiment.
  • the horizontal axis of FIG. 9 represents time.
  • the vertical axis represents the magnitude of torque, which is the output of each motor 201 to 204.
  • FIG. 9 shows how the torques of the motors 201 to 204 change when the temperature difference condition is changed from unsatisfied to satisfied.
  • each of the motors 201 to 204 is controlled to output 100% of the specified torque.
  • the specified torque is a value determined based on the acceleration / deceleration request instructed by the upper control unit.
  • the torque of the motor 201 which is driven and controlled by the inverter circuit 62 having a high temperature, is continuously changed from 100% to 90%. Further, the torque of the motor 202, which is driven and controlled by the inverter circuit 61 having a low temperature, is continuously changed from 100% to 110%.
  • the loss of the inverter circuit 61 having a low temperature can be increased, and the loss of the inverter circuit 62 having a high temperature can be reduced. Since the total torque of the motor 201 and the motor 202 is unchanged, the operation of the electric vehicle is not hindered.
  • the temperature difference T2-T1 between the temperature T2 of the inverter circuit 62 and the temperature T1 of the inverter circuit 61 can be reduced to be within the specified value Tc.
  • the electric vehicle control device 100B can be configured in a small size, light weight, and at low cost.
  • the torque distribution of the motors 201 and 202 is changed based on the temperature difference T2-T1 between the temperature T2 of the inverter circuit 62 located on the leeward side and the temperature T1 of the inverter circuit 61 located on the leeward side.
  • the control operation has been described, but the present invention is not limited to this.
  • a control operation may be performed in which the torque distribution of the motors 201 and 202 is changed based on the temperature ratio T2 / T1 which is the ratio between the temperature T2 and the temperature T1.
  • the temperature T2 of the inverter circuit 62 located on the leeward side and the temperature T1 of the inverter circuit 61 located on the leeward side may be controlled in a uniform direction.
  • the torque or output of the motors 201, 202 may be controlled in any way as long as this control is achieved.
  • the torque distribution of the motors 201 and 202 has been described above, the torque distribution of the motors 203 and 204 can also be controlled by the same concept.
  • the torque of the electric motor 203 driven and controlled by the high temperature inverter circuit 64 is continuously changed from 100% to 90%, and the electric motor 204 driven and controlled by the low temperature inverter circuit 63.
  • An example is shown in which the torque is continuously changed from 100% to 110%. Since the contents are duplicated, the explanation here is omitted.
  • the first inverter circuit and the third inverter circuit are always located on the windward side.
  • the control unit can change the output of each of the plurality of first and second motors based on the temperature of the first to fourth inverter circuits, and the output of the first inverter circuit is the second. It can be controlled to be larger than the output of the inverter circuit, and the output of the third inverter circuit can be controlled to be larger than the output of the fourth inverter circuit.
  • the electric vehicle control device can be configured in a small size, light weight, and at low cost.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This electric vehicle control device (100) is mounted on a vehicle (4) comprising a truck (3a) including electric motors (201, 202) for driving wheels (2a, 2b), and a truck (3b) including electric motors (203, 204) for driving wheels (2c, 2d). The electric vehicle control device (100) comprises inverter circuits (61-64). The inverter circuits (61-64) are respectively connected, in order, to the electric motor (202) of the truck (3a), the electric motor (201) of the truck (3a), the electric motor (204) of the truck (3b), and the electric motor (203) of the truck (3b). The inverter circuits (61, 62) are arranged in this order from the front toward the rear of the vehicle (4), and the inverter circuits (63, 64) are arranged in this order from the front toward the rear of the vehicle (4). A controller (31, 32) is configured in a manner capable of controlling an output of the electric motors (202, 204) to a value greater than an output of the electric motors (201, 203).

Description

電気車制御装置Electric vehicle control device
 本開示は、電気車に搭載される複数台の電動機を駆動制御する電気車制御装置に関する。 The present disclosure relates to an electric vehicle control device that drives and controls a plurality of electric motors mounted on an electric vehicle.
 電気車は、車軸と一体に構成された車輪の回転によって走行するように構成される。車軸は、台車に搭載された電動機によって駆動されて回転する。電動機としては、一般的に誘導電動機又は同期電動機が用いられる。電動機を制御するため、電気車には、屋根上又は床下に、電動機に電力を供給するためのインバータ回路を含む電気車制御装置が搭載される。 The electric vehicle is configured to run by the rotation of the wheels integrally configured with the axle. The axle is driven and rotated by an electric motor mounted on the bogie. As the motor, an induction motor or a synchronous motor is generally used. In order to control the electric motor, the electric vehicle is equipped with an electric vehicle control device including an inverter circuit for supplying electric power to the electric motor on the roof or under the floor.
 電気車制御装置と複数の電動機とを含む電気車駆動システムは、インバータ回路と電動機との接続形態により、「一括制御システム」と「個別制御システム」とに大別される。一括制御システムは、複数台の誘導電動機を並列接続し、これらを一括してインバータ回路で駆動制御する構成である。一方、個別制御システムは、誘導電動機又は同期電動機一台に対して、それぞれ専用のインバータ回路を設けて駆動制御する構成である。一括制御システムが主流であるが、最近では個別制御システムも増えている。 The electric vehicle drive system including the electric vehicle control device and a plurality of electric motors is roughly classified into a "collective control system" and an "individual control system" depending on the connection form between the inverter circuit and the electric motor. The collective control system is configured to connect a plurality of induction motors in parallel and collectively drive and control them with an inverter circuit. On the other hand, the individual control system is configured to drive and control each induction motor or synchronous motor by providing a dedicated inverter circuit. Collective control systems are the mainstream, but recently individual control systems are also increasing.
 インバータ回路を構成する半導体素子は、冷却器に搭載され、電力変換ユニットを構成する。冷却器における冷却方式は、冷却器に設けられたフィンに電気車の走行風を当てることで半導体素子を冷却する構成が一般的である。一括制御システムの場合は、一つの冷却器上に一つのインバータ回路を配置する構成が一般的である。そして、この構成では、一つのインバータ回路が1両分の4台の電動機を制御する構成が一般的である。一方、個別制御システムの場合は、一つの冷却器上に一つのインバータ回路を配置する場合と、一つの冷却器上に複数のインバータ回路を配置する場合とがある。一つの冷却器上に複数のインバータ回路を配置する構成は、電力変換ユニットを小型化できるという利点がある。 The semiconductor elements that make up the inverter circuit are mounted on the cooler and make up the power conversion unit. The cooling method in the cooler is generally a configuration in which the semiconductor element is cooled by applying the running wind of an electric vehicle to the fins provided in the cooler. In the case of a collective control system, it is common to arrange one inverter circuit on one cooler. In this configuration, one inverter circuit generally controls four motors for one car. On the other hand, in the case of an individual control system, there are cases where one inverter circuit is arranged on one cooler and cases where a plurality of inverter circuits are arranged on one cooler. The configuration in which a plurality of inverter circuits are arranged on one cooler has an advantage that the power conversion unit can be miniaturized.
 一括制御システムであっても個別制御システムであっても、通常運転時においては、複数ある各電動機の出力は同一になるように制御される。一方、個別制御システムの場合、各車軸の出力を個別に最適に制御することができる。このため、例えば車輪に空転滑走が発生した場合には、各車輪の状態に合わせて過渡的に電動機の出力を設定値から引き下げる調整が可能となる。従って、個別制御システムは、一括制御システムよりも、きめ細かい制御が可能となる。 Regardless of whether it is a collective control system or an individual control system, the outputs of each of the multiple motors are controlled to be the same during normal operation. On the other hand, in the case of an individual control system, the output of each axle can be individually and optimally controlled. Therefore, for example, when slipping of a wheel occurs, it is possible to adjust the output of the motor to be transiently reduced from the set value according to the state of each wheel. Therefore, the individual control system enables finer control than the collective control system.
 また、一括制御システムでは、インバータ回路が故障すると、並列接続された複数台の電動機の運転が不可能となる。一方、個別制御システムの場合、インバータ回路が故障しても、当該インバータ回路が受け持つ電動機以外の電動機の運転は可能である。このため、個別制御システムは、一括制御システムよりも冗長性が高いシステムとすることが可能である。これらの利点が、個別制御システムが増えている理由でもある。下記特許文献1には、個別制御システムに適用される電気車制御装置が開示されている。 Also, in the batch control system, if the inverter circuit fails, it becomes impossible to operate multiple motors connected in parallel. On the other hand, in the case of an individual control system, even if the inverter circuit fails, it is possible to operate an electric motor other than the electric motor in charge of the inverter circuit. Therefore, the individual control system can be a system with higher redundancy than the collective control system. These advantages are also the reason for the increasing number of individual control systems. The following Patent Document 1 discloses an electric vehicle control device applied to an individual control system.
特開2004-201500号公報Japanese Unexamined Patent Publication No. 2004-2015
 しかしながら、個別制御システムを構成する場合にも幾つかの課題がある。例えば、小型化のために一つの冷却器上に複数のインバータ回路を配置する場合、複数のインバータ回路を効率よく冷却することが難しい。例えば冷却器の領域を走行風に対して風上と風下とに分けた場合、冷却器の風上の領域に配置したインバータ回路は、走行風が効率よく取り込まれることで冷却され易くなる。これに対し、冷却器の風下の領域に配置したインバータ回路は、走行風が取り込まれにくい上に、風上の領域に配置したインバータ回路の発熱のあおりを受けて温度が上がり気味となり、冷却条件が厳しくなる。 However, there are some problems when configuring an individual control system. For example, when a plurality of inverter circuits are arranged on one cooler for miniaturization, it is difficult to efficiently cool the plurality of inverter circuits. For example, when the region of the cooler is divided into an upwind region and a leeward region with respect to the traveling wind, the inverter circuit arranged in the windward region of the cooler is easily cooled by efficiently taking in the traveling wind. On the other hand, the inverter circuit arranged in the leeward area of the cooler is difficult to take in the running wind, and the temperature tends to rise due to the heat generated by the inverter circuit arranged in the leeward area. Becomes stricter.
 従って、風下側であっても十分に冷却が可能となるように、ヒートパイプを併用した高性能の冷却器又は大型の冷却器を適用することが必要となる。これにより、電気車制御装置が大型化し、製造コストが増加するといった課題が生じる。 Therefore, it is necessary to apply a high-performance cooler or a large-sized cooler that also uses a heat pipe so that sufficient cooling is possible even on the leeward side. This causes problems such as an increase in size of the electric vehicle control device and an increase in manufacturing cost.
 また、通常運転とは異なる運転の実施形態として特殊運転があり、特殊運転の一つに救援運転がある。救援運転は、例えば、進行方向の前方で故障した別列車の電気車を救援するため、自列車の電気車を後方から推進する実施形態である。救援運転を実施する場合、通常運転時と比べて電気車の推進力を増大させる必要がある。この場合に、どのインバータ回路の出力を上げるのが良いかという課題が存在する。 In addition, there is special driving as an embodiment of driving different from normal driving, and one of the special driving is rescue driving. The rescue operation is an embodiment in which the electric vehicle of the own train is propelled from the rear in order to rescue the electric vehicle of another train that has failed in the front in the traveling direction, for example. When carrying out rescue driving, it is necessary to increase the propulsive force of the electric vehicle compared to normal driving. In this case, there is a problem of which inverter circuit should be output.
 本開示は、上記に鑑みてなされたものであって、製造コストの増加を抑制しつつ、電気車の特殊運転に好適に対応可能な電気車制御装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain an electric vehicle control device suitable for special operation of an electric vehicle while suppressing an increase in manufacturing cost.
 上述した課題を解決し、目的を達成するため、本開示に係る電気車制御装置は、車両の前方の車輪である第一の車輪を駆動する第一の電動機と、車両の後方の車輪である第二の車輪を駆動する第二の電動機とを備えた台車を、車両の前方及び後方にそれぞれ第一の台車及び第二の台車として備えた電気車に搭載される電気車制御装置である。電気車制御装置は、第一及び第二の電動機を個別に制御する複数のインバータ回路と、複数のインバータ回路のうちの少なくとも一つを制御する制御部と、を備える。複数のインバータ回路は、第一の台車の第二の電動機に接続された第一のインバータ回路と、第一の台車の第一の電動機に接続された第二のインバータ回路と、第二の台車の第二の電動機に接続された第三のインバータ回路と、第二の台車の第一の電動機に接続された第四のインバータ回路と、から構成される。第一及び第二のインバータ回路は、車両の前方から後方に向かってこの順で配置される。第三及び第四のインバータ回路は、車両の前方から後方に向かってこの順で配置される。制御部は、第二の電動機の出力を、第一の電動機の出力よりも大きい値に制御することが可能に構成されている。 In order to solve the above-mentioned problems and achieve the object, the electric vehicle control device according to the present disclosure is a first electric motor for driving a first wheel which is a wheel in front of the vehicle and a wheel in the rear of the vehicle. It is an electric vehicle control device mounted on an electric vehicle equipped with a trolley equipped with a second electric motor for driving a second wheel as a first trolley and a second trolley, respectively, in front of and behind the vehicle. The electric vehicle control device includes a plurality of inverter circuits that individually control the first and second motors, and a control unit that controls at least one of the plurality of inverter circuits. The plurality of inverter circuits are the first inverter circuit connected to the second motor of the first trolley, the second inverter circuit connected to the first motor of the first trolley, and the second trolley. It is composed of a third inverter circuit connected to the second motor of the second trolley and a fourth inverter circuit connected to the first motor of the second trolley. The first and second inverter circuits are arranged in this order from the front to the rear of the vehicle. The third and fourth inverter circuits are arranged in this order from the front to the rear of the vehicle. The control unit is configured to be able to control the output of the second motor to a value larger than the output of the first motor.
 本開示に係る電気車制御装置によれば、製造コストの増加を抑制しつつ、電気車の特殊運転に好適に対応できるという効果を奏する。 According to the electric vehicle control device according to the present disclosure, there is an effect that it is possible to appropriately cope with the special operation of the electric vehicle while suppressing the increase in the manufacturing cost.
実施の形態1に係る電気車制御装置を含む電気車駆動システムの構成例を示す図The figure which shows the configuration example of the electric vehicle drive system including the electric vehicle control device which concerns on Embodiment 1. 実施の形態1に係る電気車制御装置の電気車である車両への搭載例を示す上面図Top view showing an example of mounting the electric vehicle control device according to the first embodiment on a vehicle which is an electric vehicle. 実施の形態1に係る電気車制御装置における制御例を示す図The figure which shows the control example in the electric vehicle control apparatus which concerns on Embodiment 1. 実施の形態1の変形例に係る電気車制御装置の車両への搭載例を示す上面図Top view showing an example of mounting an electric vehicle control device on a vehicle according to a modified example of the first embodiment. 実施の形態1における統括制御部の機能を実現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that realizes the function of the integrated control unit in the first embodiment. 実施の形態1における統括制御部の機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that realizes the function of the integrated control unit in the first embodiment. 実施の形態2に係る電気車制御装置を含む電気車駆動システムの構成例を示す図The figure which shows the configuration example of the electric vehicle drive system including the electric vehicle control device which concerns on Embodiment 2. 実施の形態2に係る電気車制御装置における制御動作を示すフローチャートA flowchart showing a control operation in the electric vehicle control device according to the second embodiment. 実施の形態2に係る電気車制御装置における制御例を示す図The figure which shows the control example in the electric vehicle control apparatus which concerns on Embodiment 2.
 以下に添付図面を参照し、本開示の実施の形態に係る電気車制御装置について詳細に説明する。なお、添付図面においては、各構成部及び各構成部間の縮尺が実際とは異なる場合がある。各図面間においても同様である。また、以下では、電気的な接続と物理的な接続とを区別せずに、単に「接続」と称して説明する。 The electric vehicle control device according to the embodiment of the present disclosure will be described in detail with reference to the attached drawings below. In the attached drawings, the scales of each component and each component may differ from the actual scale. The same applies between the drawings. Further, in the following, the description will be simply referred to as "connection" without distinguishing between an electrical connection and a physical connection.
実施の形態1.
 図1は、実施の形態1に係る電気車制御装置100を含む電気車駆動システム500の構成例を示す図である。電気車駆動システム500は、個別制御システムの構成である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an electric vehicle drive system 500 including an electric vehicle control device 100 according to the first embodiment. The electric vehicle drive system 500 is a configuration of an individual control system.
 電気車駆動システム500は、図1に示すように、スイッチ10と、リアクトル11と、電気車制御装置100と、電動機201~204とを備える。電気車制御装置100は、正側端子P及び負側端子Nを有する。正側端子Pは、リアクトル11に接続される。負側端子Nは、車輪2を介してレール6に接続される。電気車制御装置100は、電力変換ユニット81,82と、統括制御部30とを有する。電力変換ユニット81,82は、架線1からの直流電力を、集電装置5、スイッチ10、リアクトル11及び正側端子Pを介して受電する。なお、図1の構成において、スイッチ10及びリアクトル11は、電気車制御装置100に内蔵されていてもよい。また、図1では、架線1から直流電力を受電する場合の構成例を図示しているが、交流電力を受電する構成であってもよい。交流電力を受電する構成の場合、電力変換ユニット81,82の前段に交流直流変換回路が設けられる。 As shown in FIG. 1, the electric vehicle drive system 500 includes a switch 10, a reactor 11, an electric vehicle control device 100, and electric motors 201 to 204. The electric vehicle control device 100 has a positive terminal P and a negative terminal N. The positive terminal P is connected to the reactor 11. The negative terminal N is connected to the rail 6 via the wheel 2. The electric vehicle control device 100 includes power conversion units 81 and 82 and a general control unit 30. The power conversion units 81 and 82 receive DC power from the overhead wire 1 via the current collector 5, the switch 10, the reactor 11, and the positive terminal P. In the configuration of FIG. 1, the switch 10 and the reactor 11 may be built in the electric vehicle control device 100. Further, although FIG. 1 illustrates a configuration example in which DC power is received from the overhead wire 1, it may be configured to receive AC power. In the case of a configuration for receiving AC power, an AC / DC conversion circuit is provided in front of the power conversion units 81 and 82.
 電力変換ユニット81は、第一の制御部である制御部31と、インバータ回路61,62とを備える。電力変換ユニット82は、第二の制御部である制御部32と、インバータ回路63,64とを備える。電力変換ユニット81,82は、同一の構成である。以下、電力変換ユニット81で説明を行う。 The power conversion unit 81 includes a control unit 31 which is a first control unit and inverter circuits 61 and 62. The power conversion unit 82 includes a control unit 32, which is a second control unit, and inverter circuits 63, 64. The power conversion units 81 and 82 have the same configuration. Hereinafter, the power conversion unit 81 will be described.
 インバータ回路61は、電動機202に三相交流電力を供給する電力変換回路である。インバータ回路61は、直流電圧を保持するコンデンサ50を有する。インバータ回路61において、コンデンサ50は電圧源として動作する。インバータ回路61は、コンデンサ50の直流電圧を任意の電圧値を有する任意の周波数の三相交流電圧に変換して電動機202に印加する。なお、コンデンサ50は、電力変換ユニット81の外部に配置されていてもよい。 The inverter circuit 61 is a power conversion circuit that supplies three-phase AC power to the motor 202. The inverter circuit 61 has a capacitor 50 that holds a DC voltage. In the inverter circuit 61, the capacitor 50 operates as a voltage source. The inverter circuit 61 converts the DC voltage of the capacitor 50 into a three-phase AC voltage of an arbitrary frequency having an arbitrary voltage value and applies it to the motor 202. The capacitor 50 may be arranged outside the power conversion unit 81.
 インバータ回路61は、図1に示されるように、6つの半導体素子60U,60V,60W,60X,60Y,60Zを有する。半導体素子60U,60V,60W,60X,60Y,60Zは、ブリッジ接続されて三相ブリッジ回路を構成する。 As shown in FIG. 1, the inverter circuit 61 has six semiconductor elements 60U, 60V, 60W, 60X, 60Y, 60Z. The semiconductor elements 60U, 60V, 60W, 60X, 60Y, and 60Z are bridge-connected to form a three-phase bridge circuit.
 インバータ回路61において、半導体素子60U,60V,60Wは、正側アームと呼ばれ、半導体素子60X,60Y,60Zは、負側アームと呼ばれる。また、直列に接続される正側アームと負側アームとの組は、レグと呼ばれる。半導体素子60U,60XはU相レグを構成し、半導体素子60V,60YはV相レグを構成し、半導体素子60W,60ZはW相レグを構成する。 In the inverter circuit 61, the semiconductor elements 60U, 60V, 60W are referred to as positive arm, and the semiconductor elements 60X, 60Y, 60Z are referred to as negative arm. A pair of a positive arm and a negative arm connected in series is called a leg. The semiconductor elements 60U and 60X form a U-phase leg, the semiconductor elements 60V and 60Y form a V-phase leg, and the semiconductor elements 60W and 60Z form a W-phase leg.
 半導体素子60U,60V,60W,60X,60Y,60Zとしては、図示のように、逆並列ダイオードが内蔵された絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)素子が好適である。なお、IGBT素子に代えて、金属酸化膜半導体電界効果型トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)を用いてもよい。 As the semiconductor element 60U, 60V, 60W, 60X, 60Y, 60Z, as shown in the figure, an insulated gate bipolar transistor (IGBT) element having a built-in antiparallel diode is suitable. In addition, instead of the IGBT element, a metal oxide film semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effective Transistor: MOSFET) may be used.
 また、図1では、インバータ回路61は、三相2レベルの回路構成で示されているが、この構成に限定されない。インバータ回路61は、三相3レベルの回路構成でもよい。 Further, in FIG. 1, the inverter circuit 61 is shown with a three-phase two-level circuit configuration, but is not limited to this configuration. The inverter circuit 61 may have a three-phase, three-level circuit configuration.
 インバータ回路61の後段には、インバータ回路61で生成した三相交流電圧を電動機202に供給するための接続導体91が配置される。接続導体91は、ケーブルなどの電線、絶縁処置された導体板などが用いられる。接続導体92~94も同様に構成される。 A connecting conductor 91 for supplying the three-phase AC voltage generated by the inverter circuit 61 to the motor 202 is arranged after the inverter circuit 61. As the connecting conductor 91, an electric wire such as a cable, an insulated conductor plate, or the like is used. The connecting conductors 92 to 94 are similarly configured.
 前述したように、電力変換ユニット81は、インバータ回路62を有する。インバータ回路62の内部構成は、インバータ回路61と同一であるので、ここでの説明は省略する。インバータ回路62で生成された三相交流電圧は、接続導体92により電動機201に供給される。なお、図1では、接続導体91,92をまとめて、第一の接続導体95と記載している。 As described above, the power conversion unit 81 has an inverter circuit 62. Since the internal configuration of the inverter circuit 62 is the same as that of the inverter circuit 61, the description thereof is omitted here. The three-phase AC voltage generated by the inverter circuit 62 is supplied to the motor 201 by the connecting conductor 92. In FIG. 1, the connecting conductors 91 and 92 are collectively referred to as the first connecting conductor 95.
 制御部31には、統括制御部30から制御信号HAが入力される。制御信号HAには、少なくとも第1から第3の信号が含まれる。第1の信号は、インバータ回路61,62の出力指令となる信号である。第2の信号は、「加速」、「減速」及び「惰行」といった電気車の運転状態に関連する信号である。第3の信号は、電動機201,202が発生する出力又はトルクの大きさ及び方向の指令となる信号である。制御部31は、入力された信号に基づいて、電動機201,202が発生する出力が所望の値となるように、インバータ回路61,62のスイッチング素子をオンオフする信号を生成して出力する。 The control signal HA is input to the control unit 31 from the integrated control unit 30. The control signal HA includes at least the first to third signals. The first signal is a signal that serves as an output command for the inverter circuits 61 and 62. The second signal is a signal related to the operating state of the electric vehicle such as "acceleration", "deceleration" and "coasting". The third signal is a signal that commands the magnitude and direction of the output or torque generated by the motors 201 and 202. Based on the input signal, the control unit 31 generates and outputs a signal for turning on / off the switching element of the inverter circuits 61 and 62 so that the output generated by the motors 201 and 202 becomes a desired value.
 なお、図1において、第一の制御部である制御部31は、インバータ回路61,62の両方を制御するように構成されているが、これに限定されない。制御部31は、インバータ回路61,62を個別に制御する2つの制御部に区分されて構成されていてもよい。第二の制御部である制御部32についても同様である。 Note that, in FIG. 1, the control unit 31, which is the first control unit, is configured to control both the inverter circuits 61 and 62, but is not limited thereto. The control unit 31 may be divided into two control units that individually control the inverter circuits 61 and 62. The same applies to the control unit 32, which is the second control unit.
 前述したように、電力変換ユニット82も電力変換ユニット81と同様に構成される。電力変換ユニット82において、インバータ回路63は、接続導体93により電動機204に三相交流電圧を印加する。インバータ回路64は、接続導体94により電動機203に三相交流電圧を印加する。なお、図1では、接続導体93,94をまとめて、第二の接続導体96と記載している。 As described above, the power conversion unit 82 is also configured in the same manner as the power conversion unit 81. In the power conversion unit 82, the inverter circuit 63 applies a three-phase AC voltage to the motor 204 by the connecting conductor 93. The inverter circuit 64 applies a three-phase AC voltage to the motor 203 by the connecting conductor 94. In FIG. 1, the connecting conductors 93 and 94 are collectively referred to as the second connecting conductor 96.
 統括制御部30には、図示しない上位制御部から加速減速指令、運転方向指令及び特殊運転指令を含む指令信号CMDが入力される。統括制御部30は、指令信号CMDに基づいて制御部31,32を制御する。上位制御部の例は、運転台の制御器、列車制御装置である。特殊運転は、前述した通りである。特殊運転指令は、特殊運転時に、電気車の推進力を普段の通常運行時と比べて増大させるための指令である。 A command signal CMD including an acceleration / deceleration command, an operation direction command, and a special operation command is input to the overall control unit 30 from a higher control unit (not shown). The integrated control unit 30 controls the control units 31 and 32 based on the command signal CMD. Examples of the upper control unit are a driver's cab controller and a train control device. The special operation is as described above. The special operation command is a command for increasing the propulsive force of an electric vehicle during special operation as compared with the normal operation.
 統括制御部30は、上位制御部から特殊運転指令が入力された場合、制御部31,32に対して、制御信号HAにより、電動機201~204の力行トルクを通常時から設定値分増加させる指令を出力する。 When a special operation command is input from the upper control unit, the overall control unit 30 gives a command to the control units 31 and 32 to increase the power running torque of the motors 201 to 204 by the set value from the normal time by the control signal HA. Is output.
 図2は、実施の形態1に係る電気車制御装置100の電気車である車両4への搭載例を示す上面図である。車両4には、台車3a,3bと、電気車制御装置100と、が搭載されている。 FIG. 2 is a top view showing an example of mounting the electric vehicle control device 100 according to the first embodiment on a vehicle 4, which is an electric vehicle. The vehicle 4 is equipped with trolleys 3a and 3b and an electric vehicle control device 100.
 図2に示すように、台車3aは、進行方向に対してより前方側、即ち進行方向の前位側に配置されている。また、台車3bは、進行方向に対してより後方側、即ち進行方向の後位側に配置されている。電気車制御装置100は、進行方向に沿って、台車3aと台車3bとの間に挟まれるように車両4の中央部に配置されている。 As shown in FIG. 2, the bogie 3a is arranged on the front side with respect to the traveling direction, that is, on the front side in the traveling direction. Further, the bogie 3b is arranged on the rear side with respect to the traveling direction, that is, on the rear side in the traveling direction. The electric vehicle control device 100 is arranged in the central portion of the vehicle 4 so as to be sandwiched between the carriage 3a and the carriage 3b along the traveling direction.
 台車3aは、車輪2a,2bと、電動機201,202と、を含んでいる。台車3aにおいて、車輪2aは進行方向の前位側に位置する車輪であり、車輪2bは進行方向の後位側に位置する車輪である。電動機201は車輪2aを駆動し、電動機202は車輪2bを駆動する。電動機201には接続導体92を介して三相交流電力が供給され、電動機202には接続導体91を介して三相交流電力が供給される。 The dolly 3a includes wheels 2a and 2b and motors 201 and 202. In the carriage 3a, the wheel 2a is a wheel located on the front side in the traveling direction, and the wheel 2b is a wheel located on the rear side in the traveling direction. The motor 201 drives the wheels 2a, and the motor 202 drives the wheels 2b. Three-phase AC power is supplied to the motor 201 via the connecting conductor 92, and three-phase AC power is supplied to the motor 202 via the connecting conductor 91.
 同様に、台車3bは、車輪2c,2dと、電動機203,204と、を含んでいる。台車3bにおいて、車輪2cは進行方向の前位側に位置する車輪であり、車輪2dは進行方向の後位側に位置する車輪である。電動機203は車輪2cを駆動し、電動機204は車輪2dを駆動する。電動機203には接続導体94を介して三相交流電力が供給され、電動機204には接続導体93を介して三相交流電力が供給される。 Similarly, the bogie 3b includes the wheels 2c and 2d and the motors 203 and 204. In the carriage 3b, the wheel 2c is a wheel located on the front side in the traveling direction, and the wheel 2d is a wheel located on the rear side in the traveling direction. The motor 203 drives the wheels 2c, and the motor 204 drives the wheels 2d. Three-phase AC power is supplied to the motor 203 via the connecting conductor 94, and three-phase AC power is supplied to the motor 204 via the connecting conductor 93.
 電気車制御装置100の筐体101には、電力変換ユニット81,82が搭載される。電力変換ユニット81において、インバータ回路61,62は、冷却器71上に搭載される。冷却器71は、アルミ又は銅で構成され、インバータ回路61,62と熱的に接続されたフィン73を備える。フィン73は、筐体101の外部に配置される。インバータ回路61,62は、車両4の走行風がフィン73にあたることで冷却される。電力変換ユニット82も同様の構成であり、インバータ回路63,64は、車両4の走行風が冷却器72のフィン74にあたることで冷却される。 The power conversion units 81 and 82 are mounted on the housing 101 of the electric vehicle control device 100. In the power conversion unit 81, the inverter circuits 61 and 62 are mounted on the cooler 71. The cooler 71 is made of aluminum or copper and includes fins 73 thermally connected to the inverter circuits 61 and 62. The fin 73 is arranged outside the housing 101. The inverter circuits 61 and 62 are cooled by the traveling wind of the vehicle 4 hitting the fins 73. The power conversion unit 82 has the same configuration, and the inverter circuits 63 and 64 are cooled by the traveling wind of the vehicle 4 hitting the fins 74 of the cooler 72.
 次に、電動機201~204のそれぞれと、インバータ回路61~64のそれぞれとの間の搭載位置関係について説明する。 Next, the mounting positional relationship between each of the motors 201 to 204 and each of the inverter circuits 61 to 64 will be described.
 台車3aにおいて、進行方向の前位側にある電動機201は、インバータ回路62と接続されている。また、台車3bにおいて、進行方向の前位側にある電動機203は、インバータ回路64と接続されている。インバータ回路62は、電力変換ユニット81において、進行方向の後位側に配置されている。また、インバータ回路64は、電力変換ユニット82において、進行方向の後位側に配置されている。即ち、インバータ回路62,64は、何れも走行風の風下側に配置されている。 In the bogie 3a, the motor 201 on the front side in the traveling direction is connected to the inverter circuit 62. Further, in the bogie 3b, the electric motor 203 on the front side in the traveling direction is connected to the inverter circuit 64. The inverter circuit 62 is arranged on the rear side in the traveling direction in the power conversion unit 81. Further, the inverter circuit 64 is arranged on the rear side in the traveling direction in the power conversion unit 82. That is, the inverter circuits 62 and 64 are both arranged on the leeward side of the traveling wind.
 台車3aにおいて、進行方向の後位側にある電動機202は、インバータ回路61と接続されている。また、台車3bにおいて、進行方向の後位側にある電動機204は、インバータ回路63と接続されている。インバータ回路61は、電力変換ユニット81において、進行方向の前位側に配置されている。また、インバータ回路63は、電力変換ユニット82において、進行方向の前位側に配置されている。即ち、インバータ回路61,63は、何れも走行風の風上側に配置されている。 In the bogie 3a, the motor 202 on the rear side in the traveling direction is connected to the inverter circuit 61. Further, in the bogie 3b, the electric motor 204 on the rear side in the traveling direction is connected to the inverter circuit 63. The inverter circuit 61 is arranged on the front side in the traveling direction in the power conversion unit 81. Further, the inverter circuit 63 is arranged on the front side in the traveling direction in the power conversion unit 82. That is, the inverter circuits 61 and 63 are both arranged on the windward side of the traveling wind.
 なお、図2から明らかなように、電動機201と電動機204、電動機202と電動機203、インバータ回路61とインバータ回路64、及びインバータ回路62とインバータ回路63の関係は、車両4の中央部における進行方向に直交する方向の軸に対して線対称の関係にある。このため、進行方向が図示と逆となる場合であっても、進行方向の前位側の電動機を駆動するインバータ回路は、進行方向の後位側、即ち風下側に位置することになる。また、進行方向の後位側の電動機を駆動するインバータ回路は、進行方向の前位側、即ち風上側に位置することになる。 As is clear from FIG. 2, the relationship between the electric motor 201 and the electric motor 204, the electric motor 202 and the electric motor 203, the inverter circuit 61 and the inverter circuit 64, and the inverter circuit 62 and the inverter circuit 63 is the traveling direction in the central portion of the vehicle 4. There is a line symmetric relationship with respect to the axis in the direction orthogonal to. Therefore, even if the traveling direction is opposite to that shown in the drawing, the inverter circuit that drives the motor on the front side in the traveling direction is located on the rear side in the traveling direction, that is, on the leeward side. Further, the inverter circuit for driving the motor on the rear side in the traveling direction is located on the front side in the traveling direction, that is, on the windward side.
 電動機201~204は上記の関係にあることから、以下では、進行方向の前位側の車輪を「第一の車輪」と記載し、進行方向の後位側の車輪を「第二の車輪」と記載する場合がある。また、進行方向の前位側の台車を「第一の台車」と記載し、進行方向の後位側の台車を「第二の台車」と記載する場合がある。また、各台車3a,3bにおいて、進行方向の前位側の電動機を「第一の電動機」と記載し、進行方向の後位側の電動機を「第二の電動機」と記載する場合がある。また、進行方向の前位側の電力変換ユニットを「第一の電力変換ユニット」と記載し、進行方向の後位側の電力変換ユニットを「第二の電力変換ユニット」と記載する場合がある。また、各電力変換ユニット81,82において、進行方向の前位側のインバータ回路を「第一のインバータ回路」と記載し、進行方向の後位側のインバータ回路を「第二のインバータ回路」と記載する場合がある。 Since the motors 201 to 204 have the above relationship, in the following, the front wheel in the traveling direction is referred to as the "first wheel", and the rear wheel in the traveling direction is referred to as the "second wheel". May be described as. Further, the bogie on the front side in the traveling direction may be described as "first bogie", and the bogie on the rear side in the traveling direction may be described as "second bogie". Further, in each of the bogies 3a and 3b, the motor on the front side in the traveling direction may be described as "first motor", and the motor on the rear side in the traveling direction may be described as "second motor". Further, the power conversion unit on the front side in the traveling direction may be described as "first power conversion unit", and the power conversion unit on the rear side in the traveling direction may be described as "second power conversion unit". .. Further, in each of the power conversion units 81 and 82, the inverter circuit on the front side in the traveling direction is described as "first inverter circuit", and the inverter circuit on the rear side in the traveling direction is referred to as "second inverter circuit". May be described.
 また、統括制御部30は、電力変換ユニット81と電力変換ユニット82との間に配置される。このように配置することで、電力変換ユニット81と電力変換ユニット82との間隔を約1m確保できる。これにより、進行方向の後位側の電力変換ユニット82に対し、インバータ回路63,64を冷却するための実用上充分な冷却風を冷却器72に当てることができる。 Further, the integrated control unit 30 is arranged between the power conversion unit 81 and the power conversion unit 82. By arranging in this way, it is possible to secure a distance of about 1 m between the power conversion unit 81 and the power conversion unit 82. As a result, it is possible to apply a practically sufficient cooling air for cooling the inverter circuits 63 and 64 to the cooler 72 with respect to the power conversion unit 82 on the rear side in the traveling direction.
 なお、電動機201~204及び電動機201~204の搭載位置関係を上記のように配置することで得られる利点については、後述する。 The advantages obtained by arranging the mounting positional relationships of the motors 201 to 204 and the motors 201 to 204 as described above will be described later.
 図3は、実施の形態1に係る電気車制御装置100における制御例を示す図である。図3の横軸は時間を表している。縦軸には、各電動機201~204の出力であるトルクの大きさを表している。 FIG. 3 is a diagram showing a control example in the electric vehicle control device 100 according to the first embodiment. The horizontal axis of FIG. 3 represents time. The vertical axis represents the magnitude of torque, which is the output of each motor 201 to 204.
 図3では、通常運転から特殊運転に移行した場合に、電動機201~204のトルクが変化する様子が示されている。通常運転時は、各電動機201~204は、規定のトルクである100%のトルクを出力するよう制御されている。規定のトルクは、上位制御部から指示された加減速要求に基づいて決定された値である。 FIG. 3 shows how the torque of the motors 201 to 204 changes when the normal operation is changed to the special operation. During normal operation, each of the motors 201 to 204 is controlled to output 100% of the specified torque. The specified torque is a value determined based on the acceleration / deceleration request instructed by the upper control unit.
 特殊運転は、通常よりも高い推進能力が必要となる運転条件のときに上位制御部から指示される。図3の例では、特殊運転が指示されると、進行方向の後位側となる電動機202,204のトルクのみ、通常運転時のトルクより大きくなるように制御される。このように制御することで、電動機201~204の全体のトルクを増加させることができる。これにより、電気車全体の推進力を、通常運転時と比べて、増加させることができる。なお、ここで言うトルクは、出力と言い替えてもよい。 Special operation is instructed by the upper control unit under operating conditions that require higher propulsion capacity than usual. In the example of FIG. 3, when special operation is instructed, only the torque of the motors 202 and 204 on the rear side in the traveling direction is controlled to be larger than the torque during normal operation. By controlling in this way, the overall torque of the motors 201 to 204 can be increased. As a result, the propulsive force of the entire electric vehicle can be increased as compared with the normal operation. The torque referred to here may be rephrased as an output.
 図3の制御において、電動機202のトルクの増加量又は増加比と、電動機204のトルクの増加量又は増加比とを等しくすれば、電動機201と電動機202との合計トルクと、電動機203と電動機204との合計トルクとが等しくなる。電動機201と電動機202との合計トルクは、進行方向の前位側の台車3aの全体のトルクである。また、電動機203と電動機204との合計トルクは、進行方向の後位側の台車3bの全体のトルクである。 In the control of FIG. 3, if the increase amount or increase ratio of the torque of the electric motor 202 and the increase amount or increase ratio of the torque of the electric motor 204 are equalized, the total torque of the electric motor 201 and the electric motor 202 and the electric motor 203 and the electric motor 204 are equal to each other. And the total torque is equal to. The total torque of the motor 201 and the motor 202 is the total torque of the bogie 3a on the front side in the traveling direction. Further, the total torque of the motor 203 and the motor 204 is the total torque of the bogie 3b on the rear side in the traveling direction.
 電気車が加速している際には、台車3a,3bにおける進行方向の後位側の車輪2b,2dに重心が移動する。このため、後位側の車輪2b,2dは、前位側の車輪2a,2cよりも荷重が掛かることになる。この場合、前位側の車輪2a,2cに空転が発生し易くなる。従って、図3の制御の例のように、後位側の電動機202,204のトルクを増加させて、後位側の車輪2b,2dの駆動力を増加させる。このようにすれば、車輪の空転を抑制しつつ、電気車を効率よく加速させることができる。 When the electric vehicle is accelerating, the center of gravity moves to the wheels 2b, 2d on the rear side in the traveling direction of the trolleys 3a, 3b. Therefore, the rear wheels 2b and 2d are more loaded than the front wheels 2a and 2c. In this case, the wheels 2a and 2c on the front side are likely to slip. Therefore, as in the control example of FIG. 3, the torque of the rear motors 202 and 204 is increased to increase the driving force of the rear wheels 2b and 2d. By doing so, it is possible to efficiently accelerate the electric vehicle while suppressing the idling of the wheels.
 なお、車両4全体の重心移動を考慮して、台車3aの全体のトルクよりも台車3bの全体のトルクを大きくするという制御態様も考えられる。この制御態様の場合、進行方向が入れ替わることを考慮すると、進行方向によって制御を変える必要があり、制御が複雑化するというデメリットがある。また、進行方向によって制御を変えずに、インバータ回路61~64と電動機201~204との間の接続で実現する場合、接続導体同士が交差したり、接続導体長が長くなったりする。これにより、電気車の床下構造が複雑化し、占有スペースの増加を招く。このため、車両4全体の重心移動を考慮して、インバータ回路61~64と電動機201~204との間の接続構成を決めることは、適切な構成であるとは言い難い。 In consideration of the movement of the center of gravity of the entire vehicle 4, a control mode in which the overall torque of the carriage 3b is larger than the overall torque of the carriage 3a can be considered. In the case of this control mode, considering that the traveling directions are switched, it is necessary to change the control depending on the traveling direction, which has a demerit that the control becomes complicated. Further, when the control is realized by the connection between the inverter circuits 61 to 64 and the motors 201 to 204 without changing the control depending on the traveling direction, the connecting conductors may intersect each other or the connecting conductor length may become long. This complicates the underfloor structure of the electric vehicle and causes an increase in the occupied space. Therefore, it is hard to say that it is an appropriate configuration to determine the connection configuration between the inverter circuits 61 to 64 and the motors 201 to 204 in consideration of the movement of the center of gravity of the entire vehicle 4.
 なお、進行方向後位側の電動機202,204のトルクを増大させることは、インバータ回路61,63に流す電流を増加させることと等価である。このため、インバータ回路61,63の発生損失が通常運転時よりも増加することになる。そこで、実施の形態1に係る電気車制御装置100では、インバータ回路61,63を進行方向の前位側、即ち風上側に配置するようにしている。このように配置すれば、インバータ回路62,64よりも冷却性能を改善することが可能となる。また、このように構成することで、フィン73,74及び冷却器71,72を大型化したり、高性能化したりすることなく、特殊運転時における駆動力の増加要求に対応することができる。これにより、電気車制御装置100を小型軽量化し、且つ、安価に構成することが可能となる。 Increasing the torque of the motors 202 and 204 on the rear side in the traveling direction is equivalent to increasing the current flowing through the inverter circuits 61 and 63. Therefore, the loss generated by the inverter circuits 61 and 63 will increase as compared with the normal operation. Therefore, in the electric vehicle control device 100 according to the first embodiment, the inverter circuits 61 and 63 are arranged on the front side in the traveling direction, that is, on the windward side. With such an arrangement, it is possible to improve the cooling performance as compared with the inverter circuits 62 and 64. Further, with such a configuration, it is possible to meet the demand for an increase in the driving force during special operation without increasing the size of the fins 73, 74 and the coolers 71, 72 or improving the performance. This makes it possible to reduce the size and weight of the electric vehicle control device 100 and to configure it at low cost.
 また、実施の形態1に係る電気車制御装置100によれば、図2に示すように、接続導体91,92からなる第一の接続導体95と、接続導体93,94からなる第二の接続導体96とが互いに交差しないように車両4に配置することが可能となる。補足すると、第一の接続導体95と第二の接続導体96とが必要とする断面の直径は、それぞれ20cm程度である。このため、第一の接続導体95と第二の接続導体96とが互いに交差する配置とすると、車両4の床下に過剰なスペースを必要とする他、第一の接続導体95及び第二の接続導体96を収納する配線ダクトの形状が複雑化するデメリットがあり、適切な構成であるとは言い難い。 Further, according to the electric vehicle control device 100 according to the first embodiment, as shown in FIG. 2, as shown in FIG. 2, a first connection conductor 95 composed of connection conductors 91 and 92 and a second connection composed of connection conductors 93 and 94 are connected. It can be arranged in the vehicle 4 so that the conductors 96 do not intersect with each other. Supplementally, the diameter of the cross section required by the first connecting conductor 95 and the second connecting conductor 96 is about 20 cm, respectively. Therefore, if the first connecting conductor 95 and the second connecting conductor 96 are arranged so as to intersect each other, an excessive space is required under the floor of the vehicle 4, and the first connecting conductor 95 and the second connecting conductor 95 are connected. There is a demerit that the shape of the wiring duct for accommodating the conductor 96 becomes complicated, and it cannot be said that the configuration is appropriate.
 また、前述したように、実施の形態1に係る電気車制御装置100では、電力変換ユニット81と電力変換ユニット82との間隔を約1m開けることができる。このため、電力変換ユニット81を台車3a側に最大限寄せることができると共に、電力変換ユニット82を台車3b側に最大限寄せることができる。この配置により、電気車制御装置100の長手寸法、即ち進行方向の長さを適正化しつつ、第一の接続導体95及び第二の接続導体96の長さをより短くすることができる。これにより、ケーブルの重量を軽減することができる。また、車両4の床下におけるケーブルの敷設、及びケーブルの取り回しを簡素化できるので、工作性及びメンテナンス性を向上させることができる。 Further, as described above, in the electric vehicle control device 100 according to the first embodiment, the distance between the power conversion unit 81 and the power conversion unit 82 can be increased by about 1 m. Therefore, the power conversion unit 81 can be moved to the dolly 3a side as much as possible, and the power conversion unit 82 can be moved to the dolly 3b side as much as possible. With this arrangement, the lengths of the first connecting conductor 95 and the second connecting conductor 96 can be made shorter while optimizing the longitudinal dimension of the electric vehicle control device 100, that is, the length in the traveling direction. This makes it possible to reduce the weight of the cable. Further, since the laying of the cable under the floor of the vehicle 4 and the handling of the cable can be simplified, the workability and maintainability can be improved.
 図4は、実施の形態1の変形例に係る電気車制御装置100Aの車両4Aへの搭載例を示す上面図である。図4では、図2に示す車両4への搭載例の構成において、電気車制御装置100が電気車制御装置100Aに置き換えられている。また、電気車制御装置100Aでは、電力変換ユニット82が電力変換ユニット82Aに置き換えられている。 FIG. 4 is a top view showing an example of mounting the electric vehicle control device 100A according to the modified example of the first embodiment on the vehicle 4A. In FIG. 4, the electric vehicle control device 100 is replaced with the electric vehicle control device 100A in the configuration of the mounting example on the vehicle 4 shown in FIG. Further, in the electric vehicle control device 100A, the power conversion unit 82 is replaced with the power conversion unit 82A.
 電力変換ユニット82Aでは、冷却器72が、進行方向に直交する方向において、フィン74の突出方向が、図2とは逆になるように取り付けられている。なお、その他の配置及び接続関係は、図2と同一であり、重複する説明は割愛する。 In the power conversion unit 82A, the cooler 72 is attached so that the protruding direction of the fin 74 is opposite to that in FIG. 2 in the direction orthogonal to the traveling direction. The other arrangements and connection relationships are the same as those in FIG. 2, and duplicate explanations are omitted.
 図2及び図4では、制御部31,32の図示が省略されている。図4の構成の場合、制御部31,32は、電力変換ユニット81,82Aの上方又は下方の空間を利用して、配置することが可能である。図4の構成の場合、風下側に配置される冷却器72のフィン74への走行風は、風上側に配置される冷却器71のフィン73に遮られない。このため、図2の構成よりも、走行風を効率よく取り込むことができるという利点がある。 In FIGS. 2 and 4, the control units 31 and 32 are not shown. In the case of the configuration of FIG. 4, the control units 31 and 32 can be arranged by using the space above or below the power conversion units 81 and 82A. In the case of the configuration of FIG. 4, the traveling wind to the fins 74 of the cooler 72 arranged on the leeward side is not blocked by the fins 73 of the cooler 71 arranged on the leeward side. Therefore, there is an advantage that the running wind can be taken in more efficiently than the configuration of FIG.
 なお、図4では、電力変換ユニット82Aは、電力変換ユニット81に対して、進行方向の後位側にずらして配置されているが、これに限定されない。例えば、進行方向の後位側にずらさずに、電力変換ユニット81と横並びで、電力変換ユニット82Aが配置されていてもよい。この構成において、進行方向に直交する方向のスペースが確保できない場合には、電力変換ユニット81と電力変換ユニット82Aとを上下方向にずらして配置してもよい。これらの何れの構成においても、上述した電気車制御装置100の効果を得ることができる。 Note that, in FIG. 4, the power conversion unit 82A is arranged so as to be shifted to the rear side in the traveling direction with respect to the power conversion unit 81, but the present invention is not limited to this. For example, the power conversion unit 82A may be arranged side by side with the power conversion unit 81 without shifting to the rear side in the traveling direction. In this configuration, if the space in the direction orthogonal to the traveling direction cannot be secured, the power conversion unit 81 and the power conversion unit 82A may be arranged so as to be displaced in the vertical direction. In any of these configurations, the effect of the electric vehicle control device 100 described above can be obtained.
 以上説明したように、実施の形態1に係る電気車制御装置によれば、複数のインバータ回路は、第一の台車の第二の電動機に接続された第一のインバータ回路と、第一の台車の第一の電動機に接続された第二のインバータ回路と、第二の台車の第二の電動機に接続された第三のインバータ回路と、第二の台車の第一の電動機に接続された第四のインバータ回路と、から構成される。第一及び第二のインバータ回路は、車両の前方から後方に向かってこの順で配置され、第三及び第四のインバータ回路は、車両の前方から後方に向かってこの順で配置されている。電気車が加速している際には、第一及び第二の台車における進行方向の後位側の車輪に重心が移動するので、後位側の車輪は前位側の車輪よりも荷重が掛かることになる。この動作態様に対し、実施の形態1に係る電気車制御装置は、第二の電動機の出力を、第一の電動機の出力よりも大きい値に制御することが可能である。これにより、通常よりも高い推進能力が必要となる運転条件が課された特殊運転時であっても、車輪の空転を抑制しつつ、電気車を効率よく加速させることができる。即ち、電気車の特殊運転に好適に対応することが可能となる。 As described above, according to the electric vehicle control device according to the first embodiment, the plurality of inverter circuits are the first inverter circuit connected to the second motor of the first trolley and the first trolley. A second inverter circuit connected to the first motor of the second trolley, a third inverter circuit connected to the second motor of the second trolley, and a second inverter connected to the first motor of the second trolley. It consists of four inverter circuits. The first and second inverter circuits are arranged in this order from the front to the rear of the vehicle, and the third and fourth inverter circuits are arranged in this order from the front to the rear of the vehicle. When the electric vehicle is accelerating, the center of gravity moves to the rear wheel in the traveling direction of the first and second bogies, so that the rear wheel is more loaded than the front wheel. It will be. With respect to this operation mode, the electric vehicle control device according to the first embodiment can control the output of the second electric motor to a value larger than the output of the first electric motor. As a result, the electric vehicle can be efficiently accelerated while suppressing the idling of the wheels even during special driving in which operating conditions that require higher propulsion capacity than usual are imposed. That is, it becomes possible to suitably cope with the special operation of the electric vehicle.
 また、実施の形態1に係る電気車制御装置によれば、第一から第四のインバータ回路のうち、第一のインバータ回路及び第三のインバータ回路は、常に風上側に位置している。第一のインバータ回路は、特殊運転時においてトルク又は出力が増大される第二の電動機に接続されるインバータ回路である。また、第三のインバータ回路は、特殊運転時においてトルク又は出力が増大される第四の電動機に接続されるインバータ回路である。即ち、特殊運転時において損失が増加する第一及び第三のインバータ回路は、常に風上側に位置している。従って、第一及び第三のインバータ回路は、第二及び第四のインバータ回路よりも冷却性能が改善される。このため、冷却器を大型化したり、高性能化したりする必要が無くなるので、製造コストの増加を抑制することができる。これにより、製造コストの増加を抑制しつつ、特殊運転時における駆動力の増加要求に対応することが可能となる。 Further, according to the electric vehicle control device according to the first embodiment, among the first to fourth inverter circuits, the first inverter circuit and the third inverter circuit are always located on the windward side. The first inverter circuit is an inverter circuit connected to a second motor whose torque or output is increased during special operation. Further, the third inverter circuit is an inverter circuit connected to a fourth electric motor whose torque or output is increased during special operation. That is, the first and third inverter circuits whose loss increases during special operation are always located on the windward side. Therefore, the cooling performance of the first and third inverter circuits is improved as compared with the second and fourth inverter circuits. Therefore, it is not necessary to increase the size or increase the performance of the cooler, so that it is possible to suppress an increase in manufacturing cost. This makes it possible to meet the demand for an increase in driving force during special operation while suppressing an increase in manufacturing cost.
 また、実施の形態1に係る電気車制御装置によれば、第一の接続導体と、第二の接続導体とが互いに交差しないように車両に配置することが可能である。ここで言う第一の接続導体は、第一のインバータ回路と第一の台車の第二の電動機とを接続する接続導体と、第二のインバータ回路と第一の台車の第一の電動機とを接続する接続導体とが束ねられた接続導体群である。また、ここで言う第二の接続導体は、第三のインバータ回路と第二の台車の第二の電動機とを接続する接続導体と、第四のインバータ回路と第二の台車の第一の電動機とを接続する接続導体とが束ねられた接続導体群である。これにより、第一及び第二の接続導体の長さを短くできるので、第一及び第二の接続導体を含むケーブルの重量を軽減することができる。また、車両床下におけるケーブルの敷設、及びケーブルの取り回しを簡素化できるので、工作性及びメンテナンス性を向上させることが可能となる。 Further, according to the electric vehicle control device according to the first embodiment, it is possible to arrange the first connecting conductor and the second connecting conductor in the vehicle so as not to intersect each other. The first connecting conductor referred to here is a connecting conductor connecting the first inverter circuit and the second motor of the first trolley, and the second inverter circuit and the first motor of the first trolley. It is a group of connecting conductors in which the connecting conductors to be connected are bundled. Further, the second connecting conductor referred to here is a connecting conductor connecting the third inverter circuit and the second motor of the second trolley, and the fourth inverter circuit and the first motor of the second trolley. It is a group of connecting conductors in which connecting conductors connecting with and are bundled. As a result, the length of the first and second connecting conductors can be shortened, so that the weight of the cable including the first and second connecting conductors can be reduced. Further, since the laying of the cable under the floor of the vehicle and the handling of the cable can be simplified, the workability and maintainability can be improved.
 次に、実施の形態1における統括制御部30の機能を実現するためのハードウェア構成について、図5及び図6の図面を参照して説明する。図5は、実施の形態1における統括制御部30の機能を実現するハードウェア構成の一例を示すブロック図である。図6は、実施の形態1における統括制御部30の機能を実現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration for realizing the function of the integrated control unit 30 in the first embodiment will be described with reference to the drawings of FIGS. 5 and 6. FIG. 5 is a block diagram showing an example of a hardware configuration that realizes the function of the integrated control unit 30 in the first embodiment. FIG. 6 is a block diagram showing another example of the hardware configuration that realizes the function of the integrated control unit 30 in the first embodiment.
 実施の形態1における統括制御部30の機能の一部又は全部を実現する場合には、図5に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When a part or all of the functions of the integrated control unit 30 in the first embodiment are realized, as shown in FIG. 5, the processor 300 that performs the calculation and the memory 302 in which the program read by the processor 300 is stored are stored. , And an interface 304 for inputting / outputting signals can be configured.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Radom Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versailles Disc).
 メモリ302には、実施の形態1における統括制御部30の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the function of the integrated control unit 30 in the first embodiment. The processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-mentioned processing. It can be carried out. The calculation result by the processor 300 can be stored in the memory 302.
 また、実施の形態1における統括制御部30の機能の一部を実現する場合には、図6に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して入手することができる。 Further, when a part of the function of the integrated control unit 30 in the first embodiment is realized, the processing circuit 303 shown in FIG. 6 can also be used. The processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 303 and the information output from the processing circuit 303 can be obtained via the interface 304.
 なお、統括制御部30における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 Note that some processing in the integrated control unit 30 may be performed by the processing circuit 303, and processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
実施の形態2.
 図7は、実施の形態2に係る電気車制御装置100Bを含む電気車駆動システム500Bの構成例を示す図である。実施の形態2に係る電気車駆動システム500Bでは、図1に示す実施の形態1に係る電気車駆動システム500の構成において、電気車制御装置100が電気車制御装置100Bに置き換えられている。電気車制御装置100Bでは、制御部31,32がそれぞれ制御部31B,32Bに置き換えられている。制御部31Bにはインバータ回路61,62のそれぞれの温度T1,T2を示す信号が入力される。図示は省略しているが、制御部32Bにもインバータ回路63,64のそれぞれの温度を示す信号が入力される。その他の構成は図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付すと共に、重複する説明は割愛する。
Embodiment 2.
FIG. 7 is a diagram showing a configuration example of an electric vehicle drive system 500B including the electric vehicle control device 100B according to the second embodiment. In the electric vehicle drive system 500B according to the second embodiment, the electric vehicle control device 100 is replaced with the electric vehicle control device 100B in the configuration of the electric vehicle drive system 500 according to the first embodiment shown in FIG. In the electric vehicle control device 100B, the control units 31 and 32 are replaced with the control units 31B and 32B, respectively. Signals indicating the temperatures T1 and T2 of the inverter circuits 61 and 62 are input to the control unit 31B. Although not shown, signals indicating the temperatures of the inverter circuits 63 and 64 are also input to the control unit 32B. Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations are omitted.
 制御部31Bは、インバータ回路61の温度T1とインバータ回路62の温度T2とに基づいて、インバータ回路61,62の出力配分、即ち電動機202,201のトルク配分を調整する。 The control unit 31B adjusts the output distribution of the inverter circuits 61 and 62, that is, the torque distribution of the motors 202 and 201, based on the temperature T1 of the inverter circuit 61 and the temperature T2 of the inverter circuit 62.
 次に、実施の形態2に係る電気車制御装置100Bにおける要部の動作について説明する。図8は、実施の形態2に係る電気車制御装置100Bにおける制御動作を示すフローチャートである。 Next, the operation of the main part in the electric vehicle control device 100B according to the second embodiment will be described. FIG. 8 is a flowchart showing a control operation in the electric vehicle control device 100B according to the second embodiment.
 制御部31Bは、温度T1,T2を比較する(ステップS11)。温度T1は、風上側に位置するインバータ回路61の温度である。温度T2は、風下側に位置するインバータ回路62の温度である。 The control unit 31B compares the temperatures T1 and T2 (step S11). The temperature T1 is the temperature of the inverter circuit 61 located on the windward side. The temperature T2 is the temperature of the inverter circuit 62 located on the leeward side.
 制御部31Bは、温度差条件を判定する(ステップS12)。具体的に、温度T2が温度T1以下であり、又は温度差T2-T1が予め設定された規定値Tc以下の場合(ステップS12,No)、制御部31Bは温度差条件未成立と判定し、トルク配分を変更せずに通常通りのトルク配分を行う(ステップS13)。一方、温度T2が温度T1より大きく、且つ温度差T2-T1が規定値Tcより大きい場合(ステップS12,Yes)、制御部31Bは、温度差条件成立と判定し、トルク配分を変更する(ステップS14)。 The control unit 31B determines the temperature difference condition (step S12). Specifically, when the temperature T2 is the temperature T1 or less, or the temperature difference T2-T1 is the preset specified value Tc or less (steps S12, No), the control unit 31B determines that the temperature difference condition is not satisfied. The torque distribution as usual is performed without changing the torque distribution (step S13). On the other hand, when the temperature T2 is larger than the temperature T1 and the temperature difference T2-T1 is larger than the specified value Tc (steps S12, Yes), the control unit 31B determines that the temperature difference condition is satisfied and changes the torque distribution (step). S14).
 なお、温度差T2-T1が規定値Tcより大きくなる例としては、ダイヤ乱れなどの要因で、電気車の走行速度が通常運転時と比べて遅く、走行風の風量が減少して冷却器の冷却性能が不足する場合などが想定される。 As an example in which the temperature difference T2-T1 becomes larger than the specified value Tc, the traveling speed of the electric vehicle is slower than that during normal operation due to factors such as timetable disturbance, and the air volume of the traveling wind is reduced to reduce the air volume of the cooler. It is assumed that the cooling performance is insufficient.
 なお、図8のフローチャートでは、制御部31Bの制御動作について説明したが、制御部32Bも同様な制御を行う。内容が重複するので、ここでの説明は割愛する。 Although the control operation of the control unit 31B has been described in the flowchart of FIG. 8, the control unit 32B also performs the same control. Since the contents are duplicated, the explanation here is omitted.
 次に、より具体的な制御動作について図9を参照して説明する。図9は、実施の形態2に係る電気車制御装置100Bにおける制御例を示す図である。図9の横軸は時間を表している。縦軸には、各電動機201~204の出力であるトルクの大きさを表している。 Next, a more specific control operation will be described with reference to FIG. FIG. 9 is a diagram showing a control example in the electric vehicle control device 100B according to the second embodiment. The horizontal axis of FIG. 9 represents time. The vertical axis represents the magnitude of torque, which is the output of each motor 201 to 204.
 図9では、温度差条件が未成立から成立に移行した場合に、電動機201~204のトルクが変化する様子が示されている。温度差条件が未成立である場合、各電動機201~204は、規定のトルクである100%のトルクを出力するよう制御されている。規定のトルクは、上位制御部から指示された加減速要求に基づいて決定された値である。 FIG. 9 shows how the torques of the motors 201 to 204 change when the temperature difference condition is changed from unsatisfied to satisfied. When the temperature difference condition is not satisfied, each of the motors 201 to 204 is controlled to output 100% of the specified torque. The specified torque is a value determined based on the acceleration / deceleration request instructed by the upper control unit.
 図9の例では、温度差条件が成立した場合、温度が高いインバータ回路62によって駆動制御される電動機201のトルクが100%から90%に連続的に変更されている。また、温度が低いインバータ回路61によって駆動制御される電動機202のトルクが100%から110%に連続的に変更されている。このように制御することで、温度が低いインバータ回路61の損失を増加させ、温度の高いインバータ回路62の損失を減少させることができる。なお、電動機201と電動機202の合計トルクは不変であるので、電気車の運行に支障は来たさない。 In the example of FIG. 9, when the temperature difference condition is satisfied, the torque of the motor 201, which is driven and controlled by the inverter circuit 62 having a high temperature, is continuously changed from 100% to 90%. Further, the torque of the motor 202, which is driven and controlled by the inverter circuit 61 having a low temperature, is continuously changed from 100% to 110%. By controlling in this way, the loss of the inverter circuit 61 having a low temperature can be increased, and the loss of the inverter circuit 62 having a high temperature can be reduced. Since the total torque of the motor 201 and the motor 202 is unchanged, the operation of the electric vehicle is not hindered.
 上記の制御を行えば、インバータ回路62の温度T2とインバータ回路61の温度T1との間の温度差T2-T1を小さくして規定値Tc以内とすることができる。これにより、風上と風下との温度差を解消させるための性能を冷却器71又はフィン73に持たせる必要がなくなる。このため、冷却器71及びフィン73の性能を適正化することが可能となる。その結果、電気車制御装置100Bを小型軽量且つ安価に構成することができる。 By performing the above control, the temperature difference T2-T1 between the temperature T2 of the inverter circuit 62 and the temperature T1 of the inverter circuit 61 can be reduced to be within the specified value Tc. This eliminates the need for the cooler 71 or fins 73 to have the performance to eliminate the temperature difference between upwind and leeward. Therefore, it is possible to optimize the performance of the cooler 71 and the fin 73. As a result, the electric vehicle control device 100B can be configured in a small size, light weight, and at low cost.
 なお、上記では、風下側に位置するインバータ回路62の温度T2と風上側に位置するインバータ回路61の温度T1との間の温度差T2-T1に基づいて電動機201,202のトルク配分を変更する制御動作について説明したが、これに限定されない。温度T2と温度T1との比率である温度比T2/T1に基づいて電動機201,202のトルク配分を変更する制御動作でもよい。 In the above, the torque distribution of the motors 201 and 202 is changed based on the temperature difference T2-T1 between the temperature T2 of the inverter circuit 62 located on the leeward side and the temperature T1 of the inverter circuit 61 located on the leeward side. The control operation has been described, but the present invention is not limited to this. A control operation may be performed in which the torque distribution of the motors 201 and 202 is changed based on the temperature ratio T2 / T1 which is the ratio between the temperature T2 and the temperature T1.
 肝要な点は、風下側に位置するインバータ回路62の温度T2と風上側に位置するインバータ回路61の温度T1とが均一となる方向に制御されればよい。この制御が達成されるものであれば、電動機201,202のトルク又は出力がどのように制御されてもよい。 The important point is that the temperature T2 of the inverter circuit 62 located on the leeward side and the temperature T1 of the inverter circuit 61 located on the leeward side may be controlled in a uniform direction. The torque or output of the motors 201, 202 may be controlled in any way as long as this control is achieved.
 なお、上記では、電動機201,202のトルク配分について説明したが、電動機203,204のトルク配分についても同様な考え方で制御することができる。図9の下段部には、温度が高いインバータ回路64によって駆動制御される電動機203のトルクが100%から90%に連続的に変更され、温度が低いインバータ回路63によって駆動制御される電動機204のトルクが100%から110%に連続的に変更される例が示されている。内容が重複するので、ここでの説明は割愛する。 Although the torque distribution of the motors 201 and 202 has been described above, the torque distribution of the motors 203 and 204 can also be controlled by the same concept. In the lower part of FIG. 9, the torque of the electric motor 203 driven and controlled by the high temperature inverter circuit 64 is continuously changed from 100% to 90%, and the electric motor 204 driven and controlled by the low temperature inverter circuit 63. An example is shown in which the torque is continuously changed from 100% to 110%. Since the contents are duplicated, the explanation here is omitted.
 以上説明したように、実施の形態2に係る電気車制御装置によれば、第一から第四のインバータ回路のうち、第一のインバータ回路及び第三のインバータ回路は、常に風上側に位置している。制御部は、第一から第四のインバータ回路の温度に基づいて複数の第一及び第二の電動機の各出力を変更することができ、且つ、第一のインバータ回路の出力が、第二のインバータ回路の出力よりも大きくなるように制御でき、且つ、第三のインバータ回路の出力が、第四のインバータ回路の出力よりも大きくなるように制御することが可能である。これにより、風上と風下との温度差を解消させるための性能を冷却器又はフィンに持たせる必要がなくなるので、冷却器及びフィンの性能を適正化することが可能となる。その結果、電気車制御装置を小型軽量且つ安価に構成することができる。 As described above, according to the electric vehicle control device according to the second embodiment, among the first to fourth inverter circuits, the first inverter circuit and the third inverter circuit are always located on the windward side. ing. The control unit can change the output of each of the plurality of first and second motors based on the temperature of the first to fourth inverter circuits, and the output of the first inverter circuit is the second. It can be controlled to be larger than the output of the inverter circuit, and the output of the third inverter circuit can be controlled to be larger than the output of the fourth inverter circuit. This eliminates the need for the cooler or fins to have the performance to eliminate the temperature difference between the upwind and the leeward, so that the performance of the cooler and the fins can be optimized. As a result, the electric vehicle control device can be configured in a small size, light weight, and at low cost.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 更に、本明細書では、電気車制御装置への適用を考慮して発明内容の説明を実施しているが、適用分野はこれに限られるものではなく、種々の関連分野への応用が可能であることも言うまでもない。 Further, in the present specification, the content of the invention is described in consideration of application to an electric vehicle control device, but the application field is not limited to this, and application to various related fields is possible. Needless to say, there is.
 1 架線、2,2a~2d 車輪、3a,3b 台車、4,4A 車両、5 集電装置、6 レール、10 スイッチ、11 リアクトル、30 統括制御部、31,31B,32,32B 制御部、50 コンデンサ、60U,60V,60W,60X,60Y,60Z 半導体素子、61~64 インバータ回路、71,72 冷却器、73,74 フィン、81,82,82A 電力変換ユニット、91~94 接続導体、95 第一の接続導体、96 第二の接続導体、100,100A,100B 電気車制御装置、201~204 電動機、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース、500,500B 電気車駆動システム、N 負側端子、P 正側端子。 1 overhead wire, 2,2a-2d wheels, 3a, 3b trolleys, 4,4A vehicles, 5 current collectors, 6 rails, 10 switches, 11 reactors, 30 integrated control units, 31, 31B, 32, 32B control units, 50 Condenser, 60U, 60V, 60W, 60X, 60Y, 60Z semiconductor element, 61-64 inverter circuit, 71,72 cooler, 73,74 fins, 81,82,82A power conversion unit, 91-94 connection conductor, 95th One connecting conductor, 96 second connecting conductor, 100, 100A, 100B electric vehicle control device, 201-204 electric motor, 300 processor, 302 memory, 303 processing circuit, 304 interface, 500, 500B electric vehicle drive system, N negative Side terminal, P positive side terminal.

Claims (5)

  1.  車両の前方の車輪である第一の車輪を駆動する第一の電動機と、前記車両の後方の車輪である第二の車輪を駆動する第二の電動機とを備えた台車を、前記車両の前方及び後方に、それぞれ第一の台車及び第二の台車として備えた電気車に搭載される電気車制御装置であって、
     前記第一及び第二の電動機を個別に制御する複数のインバータ回路と、
     複数の前記インバータ回路のうちの少なくとも一つを制御する制御部と、
     を備え、
     複数の前記インバータ回路は、
     前記第一の台車の前記第二の電動機に接続された第一のインバータ回路と、
     前記第一の台車の前記第一の電動機に接続された第二のインバータ回路と、
     前記第二の台車の前記第二の電動機に接続された第三のインバータ回路と、
     前記第二の台車の前記第一の電動機に接続された第四のインバータ回路と、
     から構成され、
     前記第一及び第二のインバータ回路は、前記車両の前方から後方に向かってこの順で配置され、
     前記第三及び第四のインバータ回路は、前記車両の前方から後方に向かってこの順で配置され、
     前記制御部は、前記第二の電動機の出力を、前記第一の電動機の出力よりも大きい値に制御可能に構成されている
     ことを特徴とする電気車制御装置。
    A bogie with a first electric motor for driving a first wheel, which is a wheel in front of the vehicle, and a second electric motor for driving a second wheel, which is a wheel behind the vehicle, is mounted in front of the vehicle. And behind, it is an electric vehicle control device mounted on an electric vehicle provided as a first bogie and a second bogie, respectively.
    A plurality of inverter circuits that individually control the first and second motors, and
    A control unit that controls at least one of the plurality of inverter circuits,
    Equipped with
    The plurality of the inverter circuits are
    The first inverter circuit connected to the second motor of the first trolley, and
    A second inverter circuit connected to the first motor of the first trolley, and
    A third inverter circuit connected to the second motor of the second carriage, and
    A fourth inverter circuit connected to the first motor of the second carriage, and
    Consists of
    The first and second inverter circuits are arranged in this order from the front to the rear of the vehicle.
    The third and fourth inverter circuits are arranged in this order from the front to the rear of the vehicle.
    The control unit is an electric vehicle control device characterized in that the output of the second electric motor can be controlled to a value larger than the output of the first electric motor.
  2.  前記第一及び第二のインバータ回路を冷却する第一の冷却器を備え、前記第一及び第二のインバータ回路と、前記第一の冷却器とを搭載してなる第一の電力変換ユニットと、
     前記第三及び第四のインバータ回路を冷却する第二の冷却器を備え、前記第三及び第四のインバータ回路と、前記第二の冷却器とを搭載してなる第二の電力変換ユニットと、
     指令信号に基づいて前記制御部を制御する統括制御部を備え、
     前記第一及び第二のインバータ回路は、前記車両の前方から後方に向かってこの順で前記第一の冷却器に搭載され、
     前記第三及び第四のインバータ回路は、前記車両の前方から後方に向かってこの順で前記第二の冷却器に搭載され、
     前記第一の電力変換ユニット、前記統括制御部及び前記第二の電力変換ユニットは、前記車両の前方から後方に向かってこの順で筐体に配置され、前記筐体は前記電気車の床下に配置される
     ことを特徴とする請求項1に記載の電気車制御装置。
    A first power conversion unit including a first cooler for cooling the first and second inverter circuits, and equipped with the first and second inverter circuits and the first cooler. ,
    A second power conversion unit including a second cooler for cooling the third and fourth inverter circuits, and equipped with the third and fourth inverter circuits and the second cooler. ,
    It is equipped with a general control unit that controls the control unit based on a command signal.
    The first and second inverter circuits are mounted on the first cooler in this order from the front to the rear of the vehicle.
    The third and fourth inverter circuits are mounted on the second cooler in this order from the front to the rear of the vehicle.
    The first power conversion unit, the general control unit, and the second power conversion unit are arranged in a housing in this order from the front to the rear of the vehicle, and the housing is under the floor of the electric vehicle. The electric vehicle control device according to claim 1, wherein the electric vehicle is arranged.
  3.  前記制御部は、通常よりも高い推進能力が必要となる運転条件のときに、複数の前記第一及び第二の電動機の全体の出力を増加させることができ、且つ、前記第一のインバータ回路の出力が前記第二のインバータ回路の出力よりも大きくなるように制御でき、又は前記第三のインバータ回路の出力が前記第四のインバータ回路の出力よりも大きくなるように制御可能に構成されている
     ことを特徴とする請求項1又は2に記載の電気車制御装置。
    The control unit can increase the overall output of the plurality of first and second motors under operating conditions that require higher propulsion capacity than usual, and the first inverter circuit. The output of the third inverter circuit can be controlled to be larger than the output of the second inverter circuit, or the output of the third inverter circuit can be controlled to be larger than the output of the fourth inverter circuit. The electric vehicle control device according to claim 1 or 2, wherein the electric vehicle control device is provided.
  4.  前記制御部は、前記第一から第四のインバータ回路の温度に基づいて複数の前記第一及び第二の電動機の各出力を変更することができ、且つ、前記第一のインバータ回路の出力が、前記第二のインバータ回路の出力よりも大きくなるように制御でき、且つ、前記第三のインバータ回路の出力が、前記第四のインバータ回路の出力よりも大きくなるように制御可能に構成されている
     ことを特徴とする請求項1又は2に記載の電気車制御装置。
    The control unit can change the output of each of the plurality of first and second motors based on the temperature of the first to fourth inverter circuits, and the output of the first inverter circuit can be changed. The output of the third inverter circuit can be controlled to be larger than the output of the second inverter circuit, and the output of the third inverter circuit can be controlled to be larger than the output of the fourth inverter circuit. The electric vehicle control device according to claim 1 or 2, wherein the electric vehicle control device is provided.
  5.  前記第一のインバータ回路と前記第一の台車の前記第二の電動機とを接続する接続導体と、前記第二のインバータ回路と前記第一の台車の前記第一の電動機とを接続する接続導体とを含む第一の接続導体と、
     前記第三のインバータ回路と前記第二の台車の前記第二の電動機とを接続する接続導体と、前記第四のインバータ回路と前記第二の台車の前記第一の電動機とを接続する接続導体とを含む第二の接続導体とが、
     互いに交差しないように前記車両に配置可能である
     ことを特徴とする請求項1から4の何れか1項に記載の電気車制御装置。
    A connecting conductor that connects the first inverter circuit and the second motor of the first trolley, and a connecting conductor that connects the second inverter circuit and the first motor of the first trolley. And the first connecting conductor, including
    A connecting conductor that connects the third inverter circuit and the second motor of the second carriage, and a connecting conductor that connects the fourth inverter circuit and the first motor of the second carriage. The second connecting conductor, including
    The electric vehicle control device according to any one of claims 1 to 4, wherein the electric vehicle can be arranged in the vehicle so as not to intersect with each other.
PCT/JP2020/021813 2020-06-02 2020-06-02 Electric vehicle control device WO2021245800A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/021813 WO2021245800A1 (en) 2020-06-02 2020-06-02 Electric vehicle control device
DE112020007275.4T DE112020007275T5 (en) 2020-06-02 2020-06-02 ELECTRIC VEHICLE CONTROL DEVICE
JP2022529186A JP7312322B2 (en) 2020-06-02 2020-06-02 electric car controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021813 WO2021245800A1 (en) 2020-06-02 2020-06-02 Electric vehicle control device

Publications (1)

Publication Number Publication Date
WO2021245800A1 true WO2021245800A1 (en) 2021-12-09

Family

ID=78831034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021813 WO2021245800A1 (en) 2020-06-02 2020-06-02 Electric vehicle control device

Country Status (3)

Country Link
JP (1) JP7312322B2 (en)
DE (1) DE112020007275T5 (en)
WO (1) WO2021245800A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301454A (en) * 1988-05-27 1989-12-05 Toshiba Corp Cooler for automobile motor
JP2004201500A (en) * 2004-03-15 2004-07-15 Toshiba Transport Eng Inc Power conversion apparatus
JP2011019305A (en) * 2009-07-07 2011-01-27 Toshiba Corp Inverter device for driving rolling stock motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647767B2 (en) * 2001-04-25 2005-05-18 株式会社日立製作所 Train operation control system
JP2006271029A (en) * 2005-03-22 2006-10-05 Toshiba Corp Electric vehicle drive unit
JP5331493B2 (en) * 2009-01-13 2013-10-30 日立ビークルエナジー株式会社 Battery control device
JP2010284033A (en) * 2009-06-05 2010-12-16 Toshiba Corp Power supply device for railroad vehicle
JP5868750B2 (en) * 2012-03-23 2016-02-24 株式会社東芝 Vehicle drive system, electric vehicle control device, electric vehicle having vehicle drive system, and electric vehicle having electric vehicle control device
JP2014089839A (en) * 2012-10-29 2014-05-15 Sanyo Electric Co Ltd Power supply device and vehicle having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301454A (en) * 1988-05-27 1989-12-05 Toshiba Corp Cooler for automobile motor
JP2004201500A (en) * 2004-03-15 2004-07-15 Toshiba Transport Eng Inc Power conversion apparatus
JP2011019305A (en) * 2009-07-07 2011-01-27 Toshiba Corp Inverter device for driving rolling stock motor

Also Published As

Publication number Publication date
JP7312322B2 (en) 2023-07-20
JPWO2021245800A1 (en) 2021-12-09
DE112020007275T5 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP4987495B2 (en) Motor drive system for rail car drive
EP2157685B1 (en) Power conversion device
JP3563038B2 (en) Power converter
US8847521B2 (en) Electric-vehicle control apparatus
CN102639354B (en) propulsion control device
JP2015089244A (en) Inverter device for motor
JP6827477B2 (en) Electric motor power system and electric vehicle
WO2021245800A1 (en) Electric vehicle control device
JP6902121B2 (en) Electric railroad vehicle equipped with a power converter and a power converter
JP2006149199A (en) Power conversion apparatus for rail vehicle
JP5491784B2 (en) Railway vehicle motor drive inverter device
JP3822612B2 (en) Railway vehicle power converter
JP5058545B2 (en) Electric vehicle control device
JP2013201800A (en) Vehicle drive system, electric vehicle control device, electric vehicle including vehicle drive system, and electric vehicle including electric vehicle control device
WO2024028948A1 (en) Electric vehicle drive system
JP3799352B2 (en) Power converter
Tajima et al. SiC hybrid module based VVVF inverter for electric railway
WO2023021646A1 (en) Power conversion device for railway vehicles
KR101859443B1 (en) 1c2m propulsion control system for electric multiple unit and electric multiple unit including the same
US11742785B2 (en) Method and apparatus for operating an electric drive unit
JP4119779B2 (en) Control device for on-vehicle electric air compressor
RU2411626C1 (en) Device of power conversion
JPH01301454A (en) Cooler for automobile motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529186

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20939409

Country of ref document: EP

Kind code of ref document: A1