WO2021245791A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2021245791A1
WO2021245791A1 PCT/JP2020/021788 JP2020021788W WO2021245791A1 WO 2021245791 A1 WO2021245791 A1 WO 2021245791A1 JP 2020021788 W JP2020021788 W JP 2020021788W WO 2021245791 A1 WO2021245791 A1 WO 2021245791A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
water
control device
tank
Prior art date
Application number
PCT/JP2020/021788
Other languages
French (fr)
Japanese (ja)
Inventor
誠 江上
圭吾 岡島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/021788 priority Critical patent/WO2021245791A1/en
Priority to JP2022529178A priority patent/JP7399285B2/en
Publication of WO2021245791A1 publication Critical patent/WO2021245791A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • This disclosure relates to a cooling device.
  • Patent Document 1 discloses a cleaning device for cleaning the surface of a cooling coil through which a refrigerant of a unit cooler passes. According to the cleaning device of this unit cooler, the entire cleaning region on the surface of the cooling coil can be evenly cleaned by selectively and sequentially ejecting water from the water supply source for each of the plurality of divided regions.
  • the purpose of this disclosure is to disclose a cooling device in which the cleaning performance of the evaporator is improved by using hot water at an appropriate temperature without using a detergent.
  • the cooling device expands the refrigerant, the compressor that compresses the refrigerant, the heat exchanger that exchanges heat between the refrigerant discharged from the compressor and the heat medium, the condenser that condenses the refrigerant that has passed through the heat exchanger, and the refrigerant. It includes an inflator and an evaporator that evaporates the refrigerant that has passed through the inflator before returning it to the compressor.
  • the cooling device further includes a tank for storing the heat medium, a pump for circulating the heat medium between the tank and the heat exchanger, and a spraying device for spraying the heat medium stored in the tank on the outer surface of the evaporator.
  • the first temperature sensor is configured to detect the temperature of the refrigerant discharged from the compressor or the temperature of the medium that exchanges heat with the refrigerant in the condenser.
  • the control device is configured to adjust the amount of heat dissipated from the refrigerant in the condenser according to the output of the first temperature sensor.
  • the cooling device of the present disclosure can generate hot water, and the generated hot water can be sprayed on the outer surface of the evaporator. Therefore, high-temperature water having a high cleaning effect can be used as cleaning water to perform effective cleaning against oily stains. Further, since the high temperature water has a higher detergency than the normal temperature water, the washing time can be shortened and the amount of the washing water can be reduced as compared with the case where the normal temperature water is used.
  • FIG. It is a functional block diagram which shows the structure of the cooling apparatus of Embodiment 1.
  • FIG. It is a figure which shows the flow of water at the time of a cooling operation. It is a figure which shows the flow of water at the time of a washing operation. It is a flowchart for demonstrating the process of heating water of a tank. It is a flowchart for demonstrating control about water at the time of a washing operation and a cooling operation. It is a figure which shows the modification of the cooling device. It is a flowchart for demonstrating the process of heating water of a tank in the modification shown in FIG. It is a flowchart for demonstrating the control about water at the time of carrying out a defrosting operation and a washing operation. It is a flowchart which shows the detail of the process of step S30B in FIG. It is a figure for demonstrating an example of a schedule of a defrosting operation and a washing operation, and a hot water generation period.
  • FIG. 1 is a functional block diagram showing the configuration of the cooling device according to the first embodiment.
  • the cooling device 100 includes a compressor 1, an outdoor unit 2, an expansion device 3, a unit cooler 4 (heat exchange unit), a cleaning device 5, and a control device 50.
  • the outdoor unit includes a condenser 21 and a fan 24.
  • the compressor 1, the expansion device 3, and the temperature sensor 32 for measuring the outside air temperature may also be provided in the outdoor unit.
  • the cooling device 100 includes a refrigerant circuit C1 that circulates the refrigerant in the order of the compressor 1, the condenser 21, the expansion device 3, and the unit cooler 4.
  • a refrigerant circuit C1 that circulates the refrigerant in the order of the compressor 1, the condenser 21, the expansion device 3, and the unit cooler 4.
  • a Freon refrigerant R404A, R410A, etc.
  • a natural refrigerant CO 2 , NH 3, etc.
  • an electronic expansion valve can be used.
  • the unit cooler 4 includes an evaporator 41, a fan 44, and a drain pan (not shown).
  • the cleaning device 5 cleans the evaporator 41 using a heat medium.
  • the heat medium is not particularly limited as long as it is a liquid that can be used for cleaning the evaporator 41, but water can be used, for example.
  • water can be used, for example.
  • an example of using water as a heat medium will be described.
  • the cleaning device 5 includes a tank 6, a pump 7, solenoid valves 8 and 9, a heat exchanger 10, and a spraying device 11.
  • the heat exchanger 10 includes a flow path 10A for flowing a refrigerant and a flow path 10B for flowing water.
  • the heat exchanger 10 is configured to exchange heat between the refrigerant flowing in the flow path 10A and the water flowing in the flow path 10B.
  • the heat exchanger 10 is composed of, for example, a heat exchanger such as a plate heat exchanger, a double tube coil, and a shell & tube heat exchanger.
  • the flow path 10A is incorporated between the compressor 1 and the condenser 21 of the refrigerant circuit C1.
  • the cleaning device 5 includes a water circuit C2 in which a tank 6 for storing water, a pump 7, a solenoid valve 8, and a flow path 10B of a heat exchanger 10 are connected by a pipe to circulate water.
  • the spraying device 11 is formed with a water supply port to which washing water is supplied and a plurality of nozzles for injecting washing water.
  • the fan 44 forms an air flow that passes through the evaporator 41.
  • the drain pan receives water droplets from the evaporator 41. Water droplets that have fallen on the drain pan are drained from a water pipe (not shown).
  • the tank 6 is provided with a sensor 12 for detecting the water level Lw and a sensor 13 for detecting the water temperature Tw stored in the tank 6, and a water supply flow path for the tank 6 is provided in the upper part of the tank 6.
  • a solenoid valve 14 that opens and closes is provided.
  • the cooling device 100 further includes a compressor 1, fans 24, 44, an expansion device 3, a pump 7, temperature sensors 31, 32, and a control device 50 that controls the operation of the solenoid valves 8, 9, and 14. To prepare for.
  • the solenoid valve 8 is provided in the water circuit C2 through which water circulates.
  • the solenoid valve 9 is provided in a pipe that supplies water from the water circuit C2 to the spraying device 11.
  • the control device 50 uses the solenoid valve 8 and the solenoid valve 9 to switch between a flow path in which water circulates in the water circuit C2 and a flow path in which water reaches the spraying device 11.
  • a three-way valve may be provided as a switching device.
  • one of the three sides is connected to the flow path 10B of the heat exchanger 10
  • one of the three sides is connected to the pump 7, and one of the three sides is connected to the spraying device 11.
  • the spraying device 11 sprinkles water on the evaporator 41 to clean dirt and the like adhering to the evaporator 41.
  • the control device 50 includes a processing device 51, a memory 52, and an input / output unit (not shown).
  • the processing device 51 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 52.
  • the processing device 51 is a CPU, the function of the control device 50 is realized by software.
  • the software is written as a program and stored in the memory 52.
  • the processing device 51 reads out and executes the program stored in the memory 52.
  • the memory 52 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.
  • the CPU is a central processing device, a processing device, a computing device, and the like. , Microprocessor, microcontroller, processor, or DSP (Digital Signal Processor).
  • the control device 50 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
  • the control device 50 controls the opening degree of the expansion device 3 so that the degree of superheat of the refrigerant flowing out of the evaporator 41 is within a desired range.
  • the control device 50 controls the amount of air blown per unit time of the fan 44.
  • the control device 50 controls the solenoid valves 8, 9, and 14.
  • the control device 50 performs a defrosting operation when the defrosting conditions are satisfied.
  • the defrosting condition for example, a condition that a certain time has passed since the previous defrosting operation can be mentioned.
  • the defrosting method for example, an off-cycle defrost can be used in which the compressor 1 is stopped and the evaporator 41 is defrosted by blowing air from the fan 44.
  • the control device 50 performs a cleaning operation when the cleaning conditions are satisfied.
  • the cleaning condition for example, the condition that the current time coincides with the time such as the end of the food processing work of the day can be mentioned.
  • the control device 50 performs a cooling operation during times other than the defrosting operation and the cleaning operation. In order to generate the hot water required for the washing operation during the cooling operation, the control device 50 adjusts the amount of heat radiated from the refrigerant in the condenser 21 according to the output of the temperature sensor 31 or 32.
  • FIG. 2 is a diagram showing the flow of water during the cooling operation.
  • the control device 50 operates the compressor 1 to circulate the refrigerant in the refrigerant circuit C1, opens the solenoid valve 8, and closes the solenoid valve 9.
  • the control device 50 operates the pump 7 to circulate water in the water circuit C2.
  • the control device 50 stops the circulation of water in the water circuit C2 by stopping the pump 7.
  • the control device 50 operates the pump 7 to restart the circulation of water and raise the water temperature Tw.
  • FIG. 3 is a diagram showing the flow of water during the washing operation.
  • the control device 50 stops the compressor 1 to interrupt the circulation of the refrigerant in the refrigerant circuit C1, closes the solenoid valve 8, and opens the solenoid valve 9. .
  • the control device 50 operates the pump 7 for a set time to supply water to the spraying device 11. When hot water is stored in the tank 6, oil stains and the like can be removed by the hot water.
  • a sensor 12 for detecting the water level Lw is installed in the tank 6.
  • the control device 50 opens the solenoid valve 14 that supplies water to the tank 6.
  • the control device 50 keeps the solenoid valve 14 closed and does not supply water even if the water level Lw decreases.
  • FIG. 4 is a flowchart for explaining the process of heating the water in the tank.
  • the control device 50 raises the water temperature Tw to the target temperature Y ° C. by executing the process shown in FIG.
  • the control device 50 calls and executes the process of the flowchart shown in FIG. 4 from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
  • the target temperature T1 * of the discharged gas is set to Y + ⁇ . For example, when ⁇ is set to 10 ° C. and the target temperature Y ° C. of the hot water is 60 ° C., the target temperature T1 * of the discharged gas is set to 70 ° C.
  • step S1 the control device 50 determines whether or not the temperature T1 of the refrigerant discharged from the compressor 1 is equal to or lower than the target temperature T1 *. If T1> T1 * (NO in S1), the control device 50 returns the control to the main routine without performing the processes of steps S2 and S3.
  • control device 50 determines in step S2 whether or not the output of the fan 24 blowing to the condenser 21 is 0%.
  • control device 50 reduces the output of the fan 24 by x% in step S3.
  • the temperature T1 of the refrigerant can be secured as a heat source for adjusting the water to an appropriate temperature.
  • the rotation speed of the fan 24 is lowered more than usual, so that the amount of heat radiated from the refrigerant circuit C1 Can be reduced and the discharge gas temperature can be raised.
  • the amount of heat radiated may be adjusted according to the outside air temperature instead of the discharge gas temperature. For example, in winter, the amount of heat radiated from the condenser 21 to the outside air increases, so that the discharge temperature T1 becomes low, and it is conceivable that the temperature of the washing water cannot be maintained. In that case, the output of the fan 24 of the condenser 21 is reduced or stopped to the extent that the refrigerating cycle in which the refrigerant is circulated is not hindered, and the amount of heat dissipated in the condenser 21 is reduced.
  • the compressor discharge temperature is secured and hot water is generated.
  • the output of the pump that sends the cooling water to the condenser 21 instead of the fan 24 may be controlled in the same manner.
  • an operation pattern may be provided in which the compressor 1 operation output is temporarily increased by inverter control to generate hot water. ..
  • FIG. 5 is a flowchart for explaining control regarding water during the washing operation and the cooling operation.
  • the processing of the flowchart shown in FIG. 5 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
  • step S11 the control device 50 determines whether or not the current time is a predetermined start time of the washing operation.
  • the control device 50 stops the cooling operation in step S12. In this case, the operation of the compressor 1 and the blower (fans 24, 44) is stopped.
  • step S12 the control device 50 closes the solenoid valve 8 and opens the solenoid valve 9. In FIG. 5, OFF indicates a closed state of the solenoid valve, and ON indicates an open state.
  • step S13 the control device 50 operates the pump 7. As a result, water is supplied from the tank 6 to the spraying device 11 by the route indicated by the arrow in FIG. 3, and the outer surface of the evaporator 41 is washed.
  • step S14 the control device 50 determines whether or not the set time has elapsed since the cleaning operation was started. If the set time has not elapsed (NO in S14), the control device 50 continues the operation of the pump 7 in step S13. When the set time has elapsed (YES in S14), the control device 50 stops the operation of the pump 7 in step S15, closes the solenoid valve 9 in step S16, ends the cleaning operation, and makes the control the main routine. return.
  • step S17 the control device 50 starts the cooling operation in step S17.
  • the compressor 1 and the blower (fans 24, 44) are operated. Further, in step S17, the control device 50 closes the solenoid valve 9 and opens the solenoid valve 8.
  • step S18 the control device 50 determines whether or not the water level Lw in the tank 6 is equal to or higher than the target water level Lw * based on the output of the sensor 12.
  • the control device 50 opens the solenoid valve 14 for a certain period of time to supply water to the tank 6, and again compares the water level Lw with the target water level Lw * in step S18. do.
  • the control device 50 determines in step S20 whether the water temperature Tw in the tank 6 is lower than the target temperature Y ° C.
  • Tw ⁇ Y the control device 50 operates the pump 7 to circulate water between the tank 6 and the heat exchanger 10 to raise the water temperature Tw.
  • Tw ⁇ Y NO in S20
  • the control device 50 stops the pump 7 and stops the circulation of water between the tank 6 and the heat exchanger 10.
  • FIG. 6 is a diagram showing a modified example of the cooling device.
  • the cooling device 100A of the modified example shown in FIG. 6 is provided in a bypass flow path 110 for bypassing the refrigerant so as not to pass through the condenser 21 and a bypass flow path 110.
  • the flow control valve 111 provided. Since the configuration of FIG. 7 in other parts is the same as that in FIG. 1, the description will not be repeated.
  • the flow rate adjusting valve 111 is preferably an electromagnetic valve, although it is preferable that the flow rate can be adjusted in a plurality of stages by changing the opening degree.
  • the control device 50 passes through the flow control valve 111 when the temperature detected by the temperature sensor 31 or 32 is lower than the threshold value than when the temperature detected by the temperature sensor 31 or 32 is higher than the threshold value. Increase the flow rate of the refrigerant.
  • the amount of heat radiated from the refrigerant to the outside air in the condenser 21 is reduced.
  • the discharge temperature T1 can be raised, and the amount of heat radiated from the refrigerant to the water in the heat exchanger 10 can be secured.
  • such a configuration and control are effective when the outside air temperature is low, such as in winter.
  • FIG. 7 is a flowchart for explaining the process of heating the water in the tank in the modified example shown in FIG.
  • the control device 50 raises the water temperature Tw to the target temperature Y ° C. by executing the process shown in FIG. 7.
  • the processing of the flowchart shown in FIG. 7 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
  • step S4 The flowchart shown in FIG. 7 is obtained by adding the process of step S4 to the flowchart shown in FIG. Since the processes other than step S4 are the same as those in FIG. 4, the description will not be repeated.
  • step S4 the control device 50 opens the flow rate adjusting valve 111 and bypasses (bypasses) the condenser 21 to allow a part or all of the refrigerant to flow toward the expansion device 3.
  • Embodiment 2 Although the cleaning operation using the spraying device 11 has been described in the first embodiment, it is also possible to defrost the evaporator 41 by using the spraying device 11.
  • a cooling device that performs a defrosting operation and a cleaning operation by using the spraying device 11 will be described. Since the configuration of the cooling device according to the second embodiment is the same as that of the cooling device shown in FIG. 1 or FIG. 6, the description will not be repeated.
  • the control device 50 stops the compressor 1 and the fan 44, flows water along the path shown by the arrow in FIG. 3, and evaporates the water by the spraying device 11.
  • a defrosting operation is performed to spray on the outer surface of 41.
  • the defrosting condition for example, a condition that the time for starting the defrosting operation is predetermined in the daily operation schedule and the current time coincides with the start time can be mentioned.
  • the defrosting conditions are not limited to the above, and may be performed under other conditions.
  • FIG. 8 is a flowchart for explaining the control regarding water when the defrosting operation and the washing operation are performed.
  • the processing of the flowchart shown in FIG. 8 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
  • step S11B the control device 50 determines whether or not the current time is a predetermined start time of the defrosting operation or a start time of the washing operation.
  • the control device 50 stops the cooling operation in step S12.
  • the control device 50 closes the solenoid valve 8 and opens the solenoid valve 9.
  • OFF indicates a closed state of the solenoid valve
  • ON indicates an open state.
  • step S13 the control device 50 operates the pump 7. As a result, water is supplied from the tank 6 to the spraying device 11 by the route indicated by the arrow in FIG. 3, and is sprinkled on the outer surface of the evaporator 41.
  • step S14B the control device 50 determines whether or not the set time has elapsed since the defrosting operation or the cleaning operation was started. If the set time has not elapsed (NO in S14B), the control device 50 continues the operation of the pump 7 in step S13. When the set time has elapsed (YES in S14B), the control device 50 stops the operation of the pump 7 in step S15, closes the solenoid valve 9 in step S16, ends the cleaning operation, and makes the control the main routine. return.
  • step S17 the control device 50 starts the cooling operation in step S17.
  • the compressor 1 and the blower (fans 24, 44) are operated. Further, in step S17, the control device 50 closes the solenoid valve 9 and opens the solenoid valve 8.
  • step S18 the control device 50 determines whether or not the water level Lw in the tank 6 is equal to or higher than the target water level Lw * based on the output of the sensor 12.
  • the control device 50 opens the solenoid valve 14 for a certain period of time to supply water to the tank 6, and again compares the water level Lw with the target water level Lw * in step S18. do.
  • step S30B determines in step S30B whether or not the current time corresponds to the hot water generation period. Details of this process will be described later with reference to FIG.
  • the control device 50 determines in step S20 whether the water temperature Tw in the tank 6 is lower than the target temperature Y ° C. When Tw ⁇ Y (YES in S20), the control device 50 operates the pump 7 in step S21 to circulate water between the tank 6 and the heat exchanger 10 to raise the water temperature.
  • control device 50 stops the pump 7 in step S22 and stops the circulation of water between the tank 6 and the heat exchanger 10.
  • FIG. 9 is a flowchart showing the details of the process of step S30B in FIG.
  • an operation using hot water is performed. Whether or not to use hot water can be set in advance for each defrosting operation and washing operation in each schedule.
  • step S41 the control device 50 determines whether or not the use of hot water is set only for the washing operation.
  • the use of hot water is set only for the washing operation (YES in S41)
  • step S42 since the hot water is not used in the defrosting operation, it is determined in step S42 whether or not the washing operation is scheduled for the next watering schedule.
  • step S43 the control device 50 determines that the current time is during the hot water generation period. On the contrary, when the next schedule is not the washing operation (NO in S42), in step S43, the control device 50 determines that the current time is not in the hot water generation period. Further, in step S41, when the hot water is set to be used even during the defrosting operation (NO in S41), hot water is always generated, so that the control device 50 sets the current time in step S45 as the hot water generation period. Judge that it is inside.
  • FIG. 10 is a diagram for explaining an example of the schedule of the defrosting operation and the washing operation and the hot water generation period.
  • the defrosting start time is set to 6 o'clock, 12 o'clock, and 18 o'clock. Further, 22:00 is set as the cleaning start time.
  • the hot water is used only in the washing operation, and the water at room temperature is used in the defrosting operation.
  • the period from the end of the washing operation at 22:00 to the start time of the defrosting operation at 6:00 am is determined to be NO in step S42 of FIG. 9, and is not determined to be during the hot water generation period. ..
  • the period from the end of the defrosting operation at 6 o'clock to the start time of the defrosting operation at 12 o'clock, and the period from the end of the defrosting operation at 12 o'clock to the start time of the defrosting operation at 18:00 It is judged that it is not during the hot water generation period.
  • FIG. 10 shows an example of the defrosting start time, the cleaning start time, and the setting in which hot water is not used for the defrosting operation
  • the target temperature Y ° C. is separately set for each of the defrosting operation and the cleaning operation. May be configurable. Further, warm water may be used for the defrosting operation and normal temperature water may be used for the washing operation.
  • the cooling devices 100 and 100A shown in FIGS. 1 and 6 pass through a compressor 1 for compressing the refrigerant, a heat exchanger 10 for heat exchange between the refrigerant discharged from the compressor 1 and water, and the heat exchanger 10. It includes a condenser 21 for condensing the generated refrigerant, an expansion device 3 for expanding the refrigerant, and an evaporator 41 for evaporating the refrigerant that has passed through the expansion device 3 before returning it to the compressor 1.
  • the cooling devices 100 and 100A further include a tank 6 for storing water, a pump 7 for circulating water between the tank 6 and the heat exchanger 10, and an outer surface of the evaporator 41 for water stored in the tank 6.
  • a spraying device 11, a first temperature sensor (31, 32), and a control device 50 are provided.
  • the first temperature sensor (31, 32) is configured to detect the temperature T1 of the refrigerant discharged from the compressor 1 or the temperature T2 of the medium that exchanges heat with the refrigerant in the condenser 21.
  • the control device 50 is configured to adjust the amount of heat radiated from the refrigerant in the condenser 21 according to the output of the first temperature sensor.
  • the cooling devices 100 and 100A can generate hot water, and the generated hot water can be sprayed on the outer surface of the evaporator 41. Therefore, high-temperature water having a high cleaning effect can be used as cleaning water to perform effective cleaning against oily stains. Further, since the high temperature water has a higher detergency than the normal temperature water, the washing time can be shortened and the amount of the washing water can be reduced as compared with the case where the normal temperature water is used.
  • the cooling operation cannot be performed during the washing operation, the temperature inside the refrigerator may rise, causing a decrease in the freshness of the object to be cooled.
  • the cleaning time can be shortened as compared with the case of using normal temperature water, so that the time for interrupting the cooling operation can be shortened. Therefore, it is possible to suppress a decrease in the freshness of the object to be cooled.
  • the temperature rise in the refrigerator is small when the cooling operation is interrupted, the power consumption used for cooling after the cleaning operation can be reduced.
  • the temperature of the evaporator rises due to the hot water during the washing operation. Since the defrosting effect can also be obtained, the defrosting operation becomes unnecessary depending on the frequency of cleaning, and the time for stopping the cooling operation can be reduced.
  • the cooling devices 100 and 100A further include a fan 24 that supplies air that exchanges heat with the refrigerant to the condenser 21.
  • a fan 24 that supplies air that exchanges heat with the refrigerant to the condenser 21.
  • the control device 50 detects the temperature of the first temperature sensor.
  • the rotation speed of the fan 24 is lower than when T1 is higher than the threshold value T1 * (NO in S1).
  • the discharge gas temperature of the compressor 1 In order to set the hot water to the target temperature, it is important to secure the discharge gas temperature of the compressor 1. For example, when the target temperature of hot water is 60 ° C., the discharge gas temperature needs to be higher than 60 ° C.
  • the rotation speed of the fan 24 when the temperature of the refrigerant gas that exchanges heat with water in the heat exchanger 10 is lower than the threshold value, the rotation speed of the fan 24 is lowered more than usual, so that the amount of heat radiated from the refrigerant circuit C1 is reduced. It can be reduced and the discharge gas temperature can be raised. Since the amount of heat radiated from the refrigerant circuit C1 increases as the outside air temperature decreases, the amount of heat radiated may be adjusted according to the outside air temperature T2 instead of the discharge gas temperature T1.
  • the cooling device 100A further includes a bypass flow path 110 for bypassing the refrigerant so as not to pass through the condenser 21, and a flow rate adjusting valve 111 provided in the bypass flow path 110.
  • the control device 50 passes through the flow control valve 111 more than when the temperature detected by the first temperature sensor is higher than the threshold value. Increase the flow rate of.
  • the flow rate of the refrigerant passing through the flow rate adjusting valve 111 is increased, so that the refrigerant circuit C1
  • the amount of heat radiated from the air is reduced, and the temperature of the discharged gas can be raised.
  • the heat radiation amount may be adjusted according to the outside air temperature T2 instead of the discharge gas temperature T1.
  • the fan 24 of the condenser 21 (cooling water pump in the case of a water-cooled condenser) is stopped to exchange heat.
  • the refrigerant may be condensed using only the vessel 10.
  • the cooling devices 100 and 100A further include a sensor 13 for detecting the water temperature Tw of the water stored in the tank 6.
  • the control device 50 circulates water between the tank 6 and the heat exchanger 10 using the pump 7 so that the temperature detected by the sensor 13 reaches the target temperature Y ° C., and then evaporates the water by the spraying device 11. Spray on the outer surface of the vessel 41.
  • the temperature of the water stored in the tank 6 can be brought close to the target temperature even when the heat exchange amount of the heat exchanger 10 is small.
  • control device 50 has a cleaning operation in which the target temperature is set to the first temperature Y ° C. and then sprayed on the outer surface of the evaporator 41 by the spraying device 11.
  • a defrosting operation is performed in which water having a temperature lower than the temperature (normal temperature water) is sprayed on the outer surface of the evaporator 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A cooling device (100) comprises: a compressor (1); a heat exchanger (10) that exchanges heat between the refrigerant discharged from the compressor (1) and water; a condenser (21) that condenses the refrigerant that has passed through the heat exchanger (10); an expansion device (3); an evaporator (41) that evaporates the refrigerant that has passed through the expansion device (3) before returning the refrigerant to the compressor (1); a tank (6); a pump (7) that circulates water between the tank (6) and the heat exchanger (10); a spraying device (11) that sprays water on the outer surface of the evaporator (41); a first temperature sensor (31) that detects the temperature (T1) of the refrigerant discharged from the compressor (1); and a control device (50) that is configured so as to adjust the amount of heat dissipated from the refrigerant in the condenser (21) according to the output of the first temperature sensor (31).

Description

冷却装置Cooling system
 本開示は、冷却装置に関する。 This disclosure relates to a cooling device.
 従来、洗浄機能を有する冷却装置が知られている。たとえば、特許第5496555号公報(特許文献1)には、ユニットクーラの冷媒が通過する冷却用コイルの表面を洗浄する洗浄装置が開示されている。このユニットクーラの洗浄装置によれば、複数に分割した領域ごとに給水源からの水を選択的に順次噴出することにより、冷却用コイルの表面の洗浄領域全体を満遍なく洗浄することができる。 Conventionally, a cooling device having a cleaning function is known. For example, Japanese Patent No. 5496555 (Patent Document 1) discloses a cleaning device for cleaning the surface of a cooling coil through which a refrigerant of a unit cooler passes. According to the cleaning device of this unit cooler, the entire cleaning region on the surface of the cooling coil can be evenly cleaned by selectively and sequentially ejecting water from the water supply source for each of the plurality of divided regions.
特許第5496555号公報Japanese Patent No. 5496555
 常温の水を用いた自動洗浄は、ユニットクーラ内部の汚れに起因する性能低下などに効果がある。しかし、固着する油性汚れは、低温または常温の水では落ちにくく、洗浄効果がないか、または洗浄に時間がかかるなどの課題がある。洗剤を使用すれば洗浄力を上げることができるが、被冷却物への洗剤混入のおそれがある。温水を使用することも考えられるが、ヒータによって温水を生成するのでは、消費電力が増加してしまう。 Automatic cleaning using water at room temperature is effective in reducing performance due to dirt inside the unit cooler. However, the oily stains that stick to the surface are difficult to remove with water at low temperature or room temperature, and have problems such as no cleaning effect or a long cleaning time. Detergent can be used to increase the detergency, but there is a risk of detergent being mixed into the object to be cooled. It is conceivable to use hot water, but if hot water is generated by a heater, power consumption will increase.
 本開示は、洗剤を使用せずに適切な温度の温水を使用して蒸発器の洗浄性能を向上させた冷却装置について開示することを目的とする。 The purpose of this disclosure is to disclose a cooling device in which the cleaning performance of the evaporator is improved by using hot water at an appropriate temperature without using a detergent.
 本開示は、冷却装置に関する。冷却装置は、冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒と熱媒体とを熱交換させる熱交換器と、熱交換器を通過した冷媒を凝縮させる凝縮器と、冷媒を膨張させる膨張装置と、膨張装置を通過した冷媒を圧縮機に戻す前に蒸発させる蒸発器とを備える。冷却装置は、さらに、熱媒体を貯留するタンクと、タンクと熱交換器との間で熱媒体を循環させるポンプと、タンクに貯留された熱媒体を蒸発器の外表面に散布する散布装置と、第1温度センサと、制御装置とを備える。第1温度センサは、圧縮機から吐出される冷媒の温度または凝縮器において冷媒と熱交換する媒体の温度を検出するように構成される。制御装置は、第1温度センサの出力に応じて凝縮器における冷媒からの放熱量を調整するように構成される。 This disclosure relates to a cooling device. The cooling device expands the refrigerant, the compressor that compresses the refrigerant, the heat exchanger that exchanges heat between the refrigerant discharged from the compressor and the heat medium, the condenser that condenses the refrigerant that has passed through the heat exchanger, and the refrigerant. It includes an inflator and an evaporator that evaporates the refrigerant that has passed through the inflator before returning it to the compressor. The cooling device further includes a tank for storing the heat medium, a pump for circulating the heat medium between the tank and the heat exchanger, and a spraying device for spraying the heat medium stored in the tank on the outer surface of the evaporator. , A first temperature sensor and a control device. The first temperature sensor is configured to detect the temperature of the refrigerant discharged from the compressor or the temperature of the medium that exchanges heat with the refrigerant in the condenser. The control device is configured to adjust the amount of heat dissipated from the refrigerant in the condenser according to the output of the first temperature sensor.
 本開示の冷却装置は、温水を生成することが可能であり、生成した温水を蒸発器の外表面に散布することができる。このため、洗浄効果が高い高温水を洗浄水として使用し、油性汚れに対して有効な洗浄を行なうことができる。さらに、高温水は常温水より洗浄力が高いため、常温水を使用した場合より洗浄時間を短縮することができ、洗浄水量を削減できる。 The cooling device of the present disclosure can generate hot water, and the generated hot water can be sprayed on the outer surface of the evaporator. Therefore, high-temperature water having a high cleaning effect can be used as cleaning water to perform effective cleaning against oily stains. Further, since the high temperature water has a higher detergency than the normal temperature water, the washing time can be shortened and the amount of the washing water can be reduced as compared with the case where the normal temperature water is used.
実施の形態1の冷却装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cooling apparatus of Embodiment 1. FIG. 冷却運転時の水の流れを示す図である。It is a figure which shows the flow of water at the time of a cooling operation. 洗浄運転時の水の流れを示す図である。It is a figure which shows the flow of water at the time of a washing operation. タンクの水を加熱する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of heating water of a tank. 洗浄運転および冷却運転時の水に関する制御を説明するためのフローチャートである。It is a flowchart for demonstrating control about water at the time of a washing operation and a cooling operation. 冷却装置の変形例を示す図である。It is a figure which shows the modification of the cooling device. 図6に示した変形例におけるタンクの水を加熱する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of heating water of a tank in the modification shown in FIG. 除霜運転と洗浄運転とを実施する場合の水に関する制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control about water at the time of carrying out a defrosting operation and a washing operation. 図8におけるステップS30Bの処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process of step S30B in FIG. 除霜運転および洗浄運転のスケジュールと温水生成期間の一例を説明するための図である。It is a figure for demonstrating an example of a schedule of a defrosting operation and a washing operation, and a hot water generation period.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated. In the figure below, the relationship between the sizes of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1の冷却装置の構成を示す機能ブロック図である。図1に示されるように、冷却装置100は、圧縮機1と、室外ユニット2と、膨張装置3と、ユニットクーラ4(熱交換ユニット)と、洗浄装置5と、制御装置50とを備える。
Embodiment 1.
FIG. 1 is a functional block diagram showing the configuration of the cooling device according to the first embodiment. As shown in FIG. 1, the cooling device 100 includes a compressor 1, an outdoor unit 2, an expansion device 3, a unit cooler 4 (heat exchange unit), a cleaning device 5, and a control device 50.
 室外ユニットは、凝縮器21と、ファン24とを含む。なお、圧縮機1、膨張装置3および外気温を測定する温度センサ32も室外ユニットに設けられていても良い。 The outdoor unit includes a condenser 21 and a fan 24. The compressor 1, the expansion device 3, and the temperature sensor 32 for measuring the outside air temperature may also be provided in the outdoor unit.
 冷却装置100には、冷媒が封入されている。冷却装置100は、圧縮機1、凝縮器21、膨張装置3、およびユニットクーラ4の順に冷媒を循環させる冷媒回路C1を備える。冷媒回路C1を循環する冷媒としては、たとえば、フロン冷媒(R404A、R410Aなど)、自然冷媒(CO2、NH3など)を用いることができる。膨張装置3としては、たとえば、電子膨張弁を用いることができる。ユニットクーラ4は、蒸発器41と、ファン44と、図示しないドレンパンとを含む。 A refrigerant is sealed in the cooling device 100. The cooling device 100 includes a refrigerant circuit C1 that circulates the refrigerant in the order of the compressor 1, the condenser 21, the expansion device 3, and the unit cooler 4. As the refrigerant circulating in the refrigerant circuit C1, for example, a Freon refrigerant (R404A, R410A, etc.) or a natural refrigerant (CO 2 , NH 3, etc.) can be used. As the expansion device 3, for example, an electronic expansion valve can be used. The unit cooler 4 includes an evaporator 41, a fan 44, and a drain pan (not shown).
 洗浄装置5は、熱媒体を用いて蒸発器41の洗浄を行なう。熱媒体としては、蒸発器41の洗浄に使用できる液体であれば特に限定されないが、たとえば水を用いることができる。以下、熱媒体として水を使用する例を説明する。 The cleaning device 5 cleans the evaporator 41 using a heat medium. The heat medium is not particularly limited as long as it is a liquid that can be used for cleaning the evaporator 41, but water can be used, for example. Hereinafter, an example of using water as a heat medium will be described.
 洗浄装置5は、タンク6と、ポンプ7と、電磁弁8,9と、熱交換器10と、散布装置11とを含む。 The cleaning device 5 includes a tank 6, a pump 7, solenoid valves 8 and 9, a heat exchanger 10, and a spraying device 11.
 熱交換器10は、冷媒を流通させる流路10Aと水を流通させる流路10Bとを含む。熱交換器10は、流路10Aを流れる冷媒と流路10Bを流れる水との間で熱交換をさせるように構成される。熱交換器10は、たとえば、プレート熱交換器、二重管コイル、シェル&チューブ熱交換器などの熱交換器により構成される。流路10Aは、冷媒回路C1の圧縮機1と凝縮器21との間に組み込まれる。 The heat exchanger 10 includes a flow path 10A for flowing a refrigerant and a flow path 10B for flowing water. The heat exchanger 10 is configured to exchange heat between the refrigerant flowing in the flow path 10A and the water flowing in the flow path 10B. The heat exchanger 10 is composed of, for example, a heat exchanger such as a plate heat exchanger, a double tube coil, and a shell & tube heat exchanger. The flow path 10A is incorporated between the compressor 1 and the condenser 21 of the refrigerant circuit C1.
 洗浄装置5は、水を貯留するタンク6、ポンプ7、電磁弁8、および熱交換器10の流路10Bを配管で接続し、水を循環させる水回路C2を備える。 The cleaning device 5 includes a water circuit C2 in which a tank 6 for storing water, a pump 7, a solenoid valve 8, and a flow path 10B of a heat exchanger 10 are connected by a pipe to circulate water.
 散布装置11には、洗浄水が供給される給水口と、洗浄水を噴射する複数のノズルとが形成されている。ファン44は、蒸発器41を通過する気流を形成する。ドレンパンは、蒸発器41からの水滴を受ける。ドレンパンに落下した水滴は、図示しない配水管から排水される。 The spraying device 11 is formed with a water supply port to which washing water is supplied and a plurality of nozzles for injecting washing water. The fan 44 forms an air flow that passes through the evaporator 41. The drain pan receives water droplets from the evaporator 41. Water droplets that have fallen on the drain pan are drained from a water pipe (not shown).
 また、タンク6には、水位Lwを検出するセンサ12と、タンク6に貯留された水温Twを検出するセンサ13とが設けられ、タンク6の上部には、タンク6に対する水の供給流路を開閉する電磁弁14が設けられている。 Further, the tank 6 is provided with a sensor 12 for detecting the water level Lw and a sensor 13 for detecting the water temperature Tw stored in the tank 6, and a water supply flow path for the tank 6 is provided in the upper part of the tank 6. A solenoid valve 14 that opens and closes is provided.
 冷却装置100は、さらに、圧縮機1と、ファン24,44と、膨張装置3と、ポンプ7と、温度センサ31,32と、電磁弁8、9、14の動作を制御する制御装置50とを備える。 The cooling device 100 further includes a compressor 1, fans 24, 44, an expansion device 3, a pump 7, temperature sensors 31, 32, and a control device 50 that controls the operation of the solenoid valves 8, 9, and 14. To prepare for.
 電磁弁8は、水が循環する水回路C2に設けられる。電磁弁9は、水回路C2から散布装置11に水を供給する配管に設けられる。 The solenoid valve 8 is provided in the water circuit C2 through which water circulates. The solenoid valve 9 is provided in a pipe that supplies water from the water circuit C2 to the spraying device 11.
 制御装置50は、電磁弁8および電磁弁9を用いて、水が水回路C2を循環する流路と、水が散布装置11に至る流路とを切り替える。 The control device 50 uses the solenoid valve 8 and the solenoid valve 9 to switch between a flow path in which water circulates in the water circuit C2 and a flow path in which water reaches the spraying device 11.
 なお、電磁弁8、9に代えて、切替装置として三方弁を設けるようにしても良い。この場合、三方のうちの一つを熱交換器10の流路10Bに接続し、三方のうちの一つをポンプ7に接続し、三方のうちの一つを散布装置11に接続する。 In addition, instead of the solenoid valves 8 and 9, a three-way valve may be provided as a switching device. In this case, one of the three sides is connected to the flow path 10B of the heat exchanger 10, one of the three sides is connected to the pump 7, and one of the three sides is connected to the spraying device 11.
 散布装置11は、水を蒸発器41に散水し、蒸発器41に付着した汚れなどを洗浄するものである。 The spraying device 11 sprinkles water on the evaporator 41 to clean dirt and the like adhering to the evaporator 41.
 電磁弁9が開かれることにより、ポンプ7から水が散布装置11に供給され、ユニットクーラ4の内部の自動洗浄が開始される。電磁弁9が閉じられることにより、自動洗浄が終了する。 When the solenoid valve 9 is opened, water is supplied from the pump 7 to the spraying device 11, and automatic cleaning of the inside of the unit cooler 4 is started. When the solenoid valve 9 is closed, the automatic cleaning is completed.
 制御装置50は、処理装置51と、メモリ52と、図示しない入出力部とを含む。処理装置51は、専用のハードウェアであってもよいし、メモリ52に格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。処理装置51がCPUの場合、制御装置50の機能は、ソフトウェアにより実現される。ソフトウェアはプログラムとして記述され、メモリ52に格納される。処理装置51は、メモリ52に記憶されたプログラムを読み出して実行する。メモリ52には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が含まれる。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 The control device 50 includes a processing device 51, a memory 52, and an input / output unit (not shown). The processing device 51 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 52. When the processing device 51 is a CPU, the function of the control device 50 is realized by software. The software is written as a program and stored in the memory 52. The processing device 51 reads out and executes the program stored in the memory 52. The memory 52 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc. The CPU is a central processing device, a processing device, a computing device, and the like. , Microprocessor, microcontroller, processor, or DSP (Digital Signal Processor).
 制御装置50は、圧縮機1の駆動周波数を制御して、圧縮機1が単位時間当たりに吐出する冷媒量を制御する。制御装置50は、蒸発器41から流出する冷媒の過熱度が所望の範囲となるように、膨張装置3の開度を制御する。制御装置50は、ファン44の単位時間当たりの送風量を制御する。制御装置50は、電磁弁8,9,14を制御する。 The control device 50 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time. The control device 50 controls the opening degree of the expansion device 3 so that the degree of superheat of the refrigerant flowing out of the evaporator 41 is within a desired range. The control device 50 controls the amount of air blown per unit time of the fan 44. The control device 50 controls the solenoid valves 8, 9, and 14.
 制御装置50は、除霜条件が成立した場合、除霜運転を行なう。除霜条件としては、たとえば、前回の除霜運転から一定の時間が経過したという条件を挙げることができる。なお、除霜の方法については、たとえば、圧縮機1を停止して、ファン44の送風による蒸発器41の除霜を実行するオフサイクルデフロストを使用することができる。また、制御装置50は、洗浄条件が成立した場合、洗浄運転を行なう。洗浄条件としては、たとえば、一日の食品加工作業終了時などの時刻に現在時刻が一致したという条件を挙げることができる。除霜運転および洗浄運転以外の時間は、制御装置50は冷却運転を行なう。冷却運転中に洗浄運転に必要な温水を生成するために、制御装置50は、温度センサ31または32の出力に応じて凝縮器21における冷媒からの放熱量を調整する。 The control device 50 performs a defrosting operation when the defrosting conditions are satisfied. As the defrosting condition, for example, a condition that a certain time has passed since the previous defrosting operation can be mentioned. As for the defrosting method, for example, an off-cycle defrost can be used in which the compressor 1 is stopped and the evaporator 41 is defrosted by blowing air from the fan 44. Further, the control device 50 performs a cleaning operation when the cleaning conditions are satisfied. As the cleaning condition, for example, the condition that the current time coincides with the time such as the end of the food processing work of the day can be mentioned. The control device 50 performs a cooling operation during times other than the defrosting operation and the cleaning operation. In order to generate the hot water required for the washing operation during the cooling operation, the control device 50 adjusts the amount of heat radiated from the refrigerant in the condenser 21 according to the output of the temperature sensor 31 or 32.
 図2は、冷却運転時の水の流れを示す図である。冷却運転時には、制御装置50は、圧縮機1を運転して冷媒を冷媒回路C1に循環させるとともに、電磁弁8を開き、電磁弁9を閉じる。冷却運転中において、制御装置50はポンプ7を作動させて水を水回路C2に循環させる。センサ13により検知されたタンク内の水温Twが目標温度Y℃以上に上昇した場合、制御装置50は、ポンプ7を停止することによって水回路C2の水の循環を停止させる。タンク6内の水温Twが目標温度Y℃未満に低下した場合には、制御装置50は、ポンプ7を作動させて水の循環を再開させ、水温Twを上昇させる。 FIG. 2 is a diagram showing the flow of water during the cooling operation. During the cooling operation, the control device 50 operates the compressor 1 to circulate the refrigerant in the refrigerant circuit C1, opens the solenoid valve 8, and closes the solenoid valve 9. During the cooling operation, the control device 50 operates the pump 7 to circulate water in the water circuit C2. When the water temperature Tw in the tank detected by the sensor 13 rises above the target temperature Y ° C., the control device 50 stops the circulation of water in the water circuit C2 by stopping the pump 7. When the water temperature Tw in the tank 6 drops below the target temperature Y ° C., the control device 50 operates the pump 7 to restart the circulation of water and raise the water temperature Tw.
 図3は、洗浄運転時の水の流れを示す図である。蒸発器に付着したごみおよび汚れを洗浄する洗浄運転時には、制御装置50は、圧縮機1を停止して冷媒回路C1における冷媒の循環を中断させるとともに、電磁弁8を閉じ、電磁弁9を開く。洗浄運転中において、制御装置50は設定した時間だけポンプ7を作動させて水を散布装置11に供給する。タンク6に温水が貯留されている場合には、油汚れなどを温水によって落とすことができる。 FIG. 3 is a diagram showing the flow of water during the washing operation. During the cleaning operation for cleaning the dust and dirt adhering to the evaporator, the control device 50 stops the compressor 1 to interrupt the circulation of the refrigerant in the refrigerant circuit C1, closes the solenoid valve 8, and opens the solenoid valve 9. .. During the washing operation, the control device 50 operates the pump 7 for a set time to supply water to the spraying device 11. When hot water is stored in the tank 6, oil stains and the like can be removed by the hot water.
 なお、タンク6内には水位Lwを検出するセンサ12が設置される。制御装置50は、図2に示す冷却運転中に水位Lwが一定値以下に低下した場合、タンク6に水を供給する電磁弁14を開く。ただし、図3に示す洗浄運転中はタンク6内の水の温度低下を避けるため、制御装置50は、水位Lwが低下しても電磁弁14を閉止したままとし水の供給はしない。 A sensor 12 for detecting the water level Lw is installed in the tank 6. When the water level Lw drops below a certain value during the cooling operation shown in FIG. 2, the control device 50 opens the solenoid valve 14 that supplies water to the tank 6. However, in order to avoid a decrease in the temperature of the water in the tank 6 during the cleaning operation shown in FIG. 3, the control device 50 keeps the solenoid valve 14 closed and does not supply water even if the water level Lw decreases.
 図4は、タンクの水を加熱する処理を説明するためのフローチャートである。制御装置50は、図4に示す処理を実行することによって、水温Twを目標温度Y℃まで上昇させる。しかし、冷媒回路C1からの放熱量は、外気温度が低いほど多くなるため、外気温度が低いと、圧縮機1の吐出ガス温度が十分に上昇しない場合も考えられる。そこで、制御装置50は、図4に示すフローチャートの処理を、一定時間ごと、または判定条件が成立するごとに、冷却装置100を制御するメインルーチンから呼び出して実行する。 FIG. 4 is a flowchart for explaining the process of heating the water in the tank. The control device 50 raises the water temperature Tw to the target temperature Y ° C. by executing the process shown in FIG. However, since the amount of heat radiated from the refrigerant circuit C1 increases as the outside air temperature decreases, it is conceivable that the discharge gas temperature of the compressor 1 may not rise sufficiently if the outside air temperature is low. Therefore, the control device 50 calls and executes the process of the flowchart shown in FIG. 4 from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
 温水を目標温度Y℃にするためには、圧縮機1の吐出ガス温度を確保することが重要である。吐出ガスの温度T1は、温水の目標温度Y℃よりも高い必要がある。したがって、吐出ガスの目標温度T1*は、Y+αに設定される。たとえば、αを10℃に設定した場合、温水の目標温度Y℃が60℃のときには、吐出ガスの目標温度T1*は70℃に設定される。 In order to bring the hot water to the target temperature Y ° C, it is important to secure the discharge gas temperature of the compressor 1. The temperature T1 of the discharged gas needs to be higher than the target temperature Y ° C. of the hot water. Therefore, the target temperature T1 * of the discharged gas is set to Y + α. For example, when α is set to 10 ° C. and the target temperature Y ° C. of the hot water is 60 ° C., the target temperature T1 * of the discharged gas is set to 70 ° C.
 まず、ステップS1において、制御装置50は、圧縮機1の吐出する冷媒の温度T1が目標温度T1*以下であるか否かを判断する。T1>T1*であった場合には(S1でNO)、制御装置50は、ステップS2,S3の処理は行なわずに制御をメインルーチンに戻す。 First, in step S1, the control device 50 determines whether or not the temperature T1 of the refrigerant discharged from the compressor 1 is equal to or lower than the target temperature T1 *. If T1> T1 * (NO in S1), the control device 50 returns the control to the main routine without performing the processes of steps S2 and S3.
 一方、T1≦T1*であった場合には(S1でYES)、制御装置50は、ステップS2において、凝縮器21に送風するファン24の出力が0%であるか否かを判断する。 On the other hand, when T1 ≦ T1 * (YES in S1), the control device 50 determines in step S2 whether or not the output of the fan 24 blowing to the condenser 21 is 0%.
 ファン24の出力が0%であった場合(S2でYES)、これ以上ファン24の出力を低下させることはできないため、制御装置50は、ステップS3の処理は行なわずに制御をメインルーチンに戻す。 When the output of the fan 24 is 0% (YES in S2), the output of the fan 24 cannot be further reduced, so that the control device 50 returns the control to the main routine without performing the process of step S3. ..
 一方、ファン24の出力が0%でなかった場合(S2でNO)、制御装置50は、ステップS3において、ファン24の出力をx%ダウンさせる。 On the other hand, if the output of the fan 24 is not 0% (NO in S2), the control device 50 reduces the output of the fan 24 by x% in step S3.
 以上のような制御が繰返し実行されることによって、水を適温にするための熱源として冷媒の温度T1が確保できる。 By repeatedly executing the above control, the temperature T1 of the refrigerant can be secured as a heat source for adjusting the water to an appropriate temperature.
 本実施の形態では、熱交換器10において水と熱交換する冷媒ガスの温度が目標温度T1*よりも低い場合にファン24の回転速度を通常よりも低下させるので、冷媒回路C1からの放熱量が減少し、吐出ガス温度を上昇させることができる。 In the present embodiment, when the temperature of the refrigerant gas that exchanges heat with water in the heat exchanger 10 is lower than the target temperature T1 *, the rotation speed of the fan 24 is lowered more than usual, so that the amount of heat radiated from the refrigerant circuit C1 Can be reduced and the discharge gas temperature can be raised.
 なお、冷媒回路C1からの放熱量は、外気温度が低いほど多くなるため、吐出ガス温度に代えて外気温度に応じて放熱量を調整しても良い。たとえば、冬場は凝縮器21から外気への放熱量が多くなるため吐出温度T1が低くなり、洗浄水の温度を保てなくなることが考えられる。その場合、冷媒を循環させる冷凍サイクルに支障をきたさない程度に、凝縮器21のファン24の出力を低下または停止させ、凝縮器21における放熱量を少なくする。これにより、凝縮温度を高く保つことで圧縮機吐出温度を確保し温水生成を行なう。なお、凝縮器21が水冷式の場合には、ファン24に代えて冷却水を凝縮器21に送るポンプの出力を同様に制御すれば良い。 Since the amount of heat radiated from the refrigerant circuit C1 increases as the outside air temperature decreases, the amount of heat radiated may be adjusted according to the outside air temperature instead of the discharge gas temperature. For example, in winter, the amount of heat radiated from the condenser 21 to the outside air increases, so that the discharge temperature T1 becomes low, and it is conceivable that the temperature of the washing water cannot be maintained. In that case, the output of the fan 24 of the condenser 21 is reduced or stopped to the extent that the refrigerating cycle in which the refrigerant is circulated is not hindered, and the amount of heat dissipated in the condenser 21 is reduced. As a result, by keeping the condensation temperature high, the compressor discharge temperature is secured and hot water is generated. When the condenser 21 is a water-cooled type, the output of the pump that sends the cooling water to the condenser 21 instead of the fan 24 may be controlled in the same manner.
 それでも目標水温Y℃を確保できない場合は、たとえば図4のステップS2でYESに分岐した後に、インバータ制御で一時的に圧縮機1運転出力を増加させて温水生成を行なう運転パターンを設けてもよい。 If the target water temperature Y ° C. cannot be secured even after that, for example, after branching to YES in step S2 of FIG. 4, an operation pattern may be provided in which the compressor 1 operation output is temporarily increased by inverter control to generate hot water. ..
 図5は、洗浄運転および冷却運転時の水に関する制御を説明するためのフローチャートである。図5に示すフローチャートの処理は、一定時間ごと、または判定条件が成立するごとに、冷却装置100を制御するメインルーチンから呼び出されて実行される。 FIG. 5 is a flowchart for explaining control regarding water during the washing operation and the cooling operation. The processing of the flowchart shown in FIG. 5 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
 まず、ステップS11において制御装置50は、現在時刻が予め定められた洗浄運転の開始時刻であるか否かを判断する。洗浄運転の開始時刻である場合(S11でYES)、制御装置50は、ステップS12において冷却運転を停止する。この場合、圧縮機1および送風機(ファン24,44)の運転が停止される。またステップS12において、制御装置50は、電磁弁8を閉止し、電磁弁9を開く。図5においては、OFFが電磁弁の閉じた状態を示し、ONが開いた状態を示す。そしてステップS13において制御装置50はポンプ7を運転させる。これにより、図3の矢印で示した経路で水がタンク6から散布装置11に供給され、蒸発器41の外表面が洗浄される。 First, in step S11, the control device 50 determines whether or not the current time is a predetermined start time of the washing operation. When it is the start time of the washing operation (YES in S11), the control device 50 stops the cooling operation in step S12. In this case, the operation of the compressor 1 and the blower (fans 24, 44) is stopped. Further, in step S12, the control device 50 closes the solenoid valve 8 and opens the solenoid valve 9. In FIG. 5, OFF indicates a closed state of the solenoid valve, and ON indicates an open state. Then, in step S13, the control device 50 operates the pump 7. As a result, water is supplied from the tank 6 to the spraying device 11 by the route indicated by the arrow in FIG. 3, and the outer surface of the evaporator 41 is washed.
 そして、ステップS14において制御装置50は、洗浄運転を開始してから設定時間が経過したか否かを判断する。設定時間が経過していない場合(S14でNO)、制御装置50は、ステップS13のポンプ7の運転を継続する。設定時間が経過した場合(S14でYES)、制御装置50は、ステップS15において、ポンプ7の運転を停止し、ステップS16において電磁弁9を閉じて、洗浄運転を終了し、制御をメインルーチンに戻す。 Then, in step S14, the control device 50 determines whether or not the set time has elapsed since the cleaning operation was started. If the set time has not elapsed (NO in S14), the control device 50 continues the operation of the pump 7 in step S13. When the set time has elapsed (YES in S14), the control device 50 stops the operation of the pump 7 in step S15, closes the solenoid valve 9 in step S16, ends the cleaning operation, and makes the control the main routine. return.
 一方、洗浄運転の開始時刻でない場合(S11でNO)、制御装置50は、ステップS17において冷却運転を開始する。この場合、圧縮機1および送風機(ファン24,44)が運転される。またステップS17において、制御装置50は、電磁弁9を閉じ、電磁弁8を開く。 On the other hand, if it is not the start time of the cleaning operation (NO in S11), the control device 50 starts the cooling operation in step S17. In this case, the compressor 1 and the blower (fans 24, 44) are operated. Further, in step S17, the control device 50 closes the solenoid valve 9 and opens the solenoid valve 8.
 続いて、ステップS18において、制御装置50は、センサ12の出力に基づいて、タンク6内の水位Lwが目標水位Lw*以上であるか否かを判断する。水位Lwが目標水位Lw*以上でない場合(S18でNO)、制御装置50は、電磁弁14を一定時間だけ開いてタンク6に給水を行ない、再びステップS18において水位Lwを目標水位Lw*と比較する。 Subsequently, in step S18, the control device 50 determines whether or not the water level Lw in the tank 6 is equal to or higher than the target water level Lw * based on the output of the sensor 12. When the water level Lw is not equal to or higher than the target water level Lw * (NO in S18), the control device 50 opens the solenoid valve 14 for a certain period of time to supply water to the tank 6, and again compares the water level Lw with the target water level Lw * in step S18. do.
 水位Lwが目標水位Lw*以上である場合(S18でYES)、制御装置50は、ステップS20において、タンク6内の水温Twが目標温度Y℃より低いか否かを判断する。Tw<Yである場合(S20でYES)、制御装置50は、ポンプ7を運転させ、タンク6と熱交換器10との間で水を循環させ水温Twを上昇させる。一方、Tw<Yでない場合(S20でNO)、水温Twを上昇させる必要はない。したがって、制御装置50は、ポンプ7を停止させ、タンク6と熱交換器10との間の水の循環を中止させる。 When the water level Lw is equal to or higher than the target water level Lw * (YES in S18), the control device 50 determines in step S20 whether the water temperature Tw in the tank 6 is lower than the target temperature Y ° C. When Tw <Y (YES in S20), the control device 50 operates the pump 7 to circulate water between the tank 6 and the heat exchanger 10 to raise the water temperature Tw. On the other hand, when Tw <Y (NO in S20), it is not necessary to raise the water temperature Tw. Therefore, the control device 50 stops the pump 7 and stops the circulation of water between the tank 6 and the heat exchanger 10.
 図6は、冷却装置の変形例を示す図である。図6に示す変形例の冷却装置100Aは、図1に示した冷却装置100の構成に加えて、冷媒が凝縮器21に通過しないように迂回させるバイパス流路110と、バイパス流路110に設けられた流量調整弁111とをさらに備える。他の部分の図7の構成については、図1と同様であるので、説明は繰返さない。流量調整弁111は、開度を変更して複数段階に流量を調整できることが好ましいが、電磁弁であってもよい。 FIG. 6 is a diagram showing a modified example of the cooling device. In addition to the configuration of the cooling device 100 shown in FIG. 1, the cooling device 100A of the modified example shown in FIG. 6 is provided in a bypass flow path 110 for bypassing the refrigerant so as not to pass through the condenser 21 and a bypass flow path 110. Further provided with the flow control valve 111 provided. Since the configuration of FIG. 7 in other parts is the same as that in FIG. 1, the description will not be repeated. The flow rate adjusting valve 111 is preferably an electromagnetic valve, although it is preferable that the flow rate can be adjusted in a plurality of stages by changing the opening degree.
 制御装置50は、温度センサ31または32の検出する温度がしきい値よりも低い場合には、温度センサ31または32の検出する温度がしきい値よりも高い場合よりも流量調整弁111を通過する冷媒の流量を増加させる。 The control device 50 passes through the flow control valve 111 when the temperature detected by the temperature sensor 31 or 32 is lower than the threshold value than when the temperature detected by the temperature sensor 31 or 32 is higher than the threshold value. Increase the flow rate of the refrigerant.
 これにより、凝縮器21において冷媒から外気に放熱される熱量が減少する。その結果吐出温度T1を上昇させることができ、熱交換器10において冷媒から水へ放熱される熱量を確保することができる。たとえば、冬場など外気温度が低い場合にこのような構成および制御が有効である。 As a result, the amount of heat radiated from the refrigerant to the outside air in the condenser 21 is reduced. As a result, the discharge temperature T1 can be raised, and the amount of heat radiated from the refrigerant to the water in the heat exchanger 10 can be secured. For example, such a configuration and control are effective when the outside air temperature is low, such as in winter.
 図7は、図6に示した変形例におけるタンクの水を加熱する処理を説明するためのフローチャートである。制御装置50は、図7に示す処理を実行することによって、水温Twを目標温度Y℃まで上昇させる。図7に示すフローチャートの処理は、一定時間ごと、または判定条件が成立するごとに、冷却装置100を制御するメインルーチンから呼び出されて実行される。 FIG. 7 is a flowchart for explaining the process of heating the water in the tank in the modified example shown in FIG. The control device 50 raises the water temperature Tw to the target temperature Y ° C. by executing the process shown in FIG. 7. The processing of the flowchart shown in FIG. 7 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
 図7に示すフローチャートは、図4に示したフローチャートにステップS4の処理を追加したものである。ステップS4以外の処理については、図4と同じであるので、説明は繰返さない。 The flowchart shown in FIG. 7 is obtained by adding the process of step S4 to the flowchart shown in FIG. Since the processes other than step S4 are the same as those in FIG. 4, the description will not be repeated.
 図7において、ファン24の出力が0%である場合(S2でYES)、制御装置50はステップS4の処理を実行する。ステップS4では、制御装置50は、流量調整弁111を開き凝縮器21を迂回させて(バイパスさせて)冷媒の一部または全部を膨張装置3に向けて流す。 In FIG. 7, when the output of the fan 24 is 0% (YES in S2), the control device 50 executes the process of step S4. In step S4, the control device 50 opens the flow rate adjusting valve 111 and bypasses (bypasses) the condenser 21 to allow a part or all of the refrigerant to flow toward the expansion device 3.
 これにより、ファン24を停止している場合においても、凝縮器21において冷媒から外気に放熱される熱量をさらに減少させることができるので、圧縮機1の吐出温度T1を上昇させることができる。 As a result, even when the fan 24 is stopped, the amount of heat radiated from the refrigerant to the outside air in the condenser 21 can be further reduced, so that the discharge temperature T1 of the compressor 1 can be raised.
 実施の形態2.
 実施の形態1では、散布装置11を使用する洗浄運転について説明したが、散布装置11を使用して蒸発器41の除霜を行なうことも可能である。実施の形態2では、散布装置11を使用して除霜運転および洗浄運転を実行する冷却装置について説明する。なお、実施の形態2の冷却装置の構成については、図1または図6に示した冷却装置と同様であるので、説明は繰返さない。
Embodiment 2.
Although the cleaning operation using the spraying device 11 has been described in the first embodiment, it is also possible to defrost the evaporator 41 by using the spraying device 11. In the second embodiment, a cooling device that performs a defrosting operation and a cleaning operation by using the spraying device 11 will be described. Since the configuration of the cooling device according to the second embodiment is the same as that of the cooling device shown in FIG. 1 or FIG. 6, the description will not be repeated.
 実施の形態2では、制御装置50は、除霜条件が成立した場合、圧縮機1およびファン44を停止して、図3の矢印に示した経路で水を流し散布装置11によって水を蒸発器41の外表面に散布する除霜運転を行なう。除霜条件としては、たとえば、1日の運転スケジュールにおいて予め除霜運転を開始する時刻が決められており、現在時刻が開始時刻に一致するという条件を挙げることができる。なお、除霜条件については、上記に限定されず、他の条件で行なわれても良い。 In the second embodiment, when the defrosting condition is satisfied, the control device 50 stops the compressor 1 and the fan 44, flows water along the path shown by the arrow in FIG. 3, and evaporates the water by the spraying device 11. A defrosting operation is performed to spray on the outer surface of 41. As the defrosting condition, for example, a condition that the time for starting the defrosting operation is predetermined in the daily operation schedule and the current time coincides with the start time can be mentioned. The defrosting conditions are not limited to the above, and may be performed under other conditions.
 図8は、除霜運転と洗浄運転とを実施する場合の水に関する制御を説明するためのフローチャートである。図8に示すフローチャートの処理は、一定時間ごと、または判定条件が成立するごとに、冷却装置100を制御するメインルーチンから呼び出されて実行される。 FIG. 8 is a flowchart for explaining the control regarding water when the defrosting operation and the washing operation are performed. The processing of the flowchart shown in FIG. 8 is called and executed from the main routine that controls the cooling device 100 at regular time intervals or every time the determination condition is satisfied.
 まず、ステップS11Bにおいて制御装置50は、現在時刻が予め定められた除霜運転の開始時刻または洗浄運転の開始時刻であるか否かを判断する。除霜運転の開始時刻または洗浄運転の開始時刻である場合(S11BでYES)、制御装置50は、ステップS12において冷却運転を停止する。この場合、圧縮機1および送風機(ファン24,44)の運転が停止される。またステップS12において、制御装置50は、電磁弁8を閉止し、電磁弁9を開く。図8においては、OFFが電磁弁の閉じた状態を示し、ONが開いた状態を示す。そしてステップS13において制御装置50はポンプ7を運転させる。これにより、図3の矢印で示した経路で水がタンク6から散布装置11に供給され、蒸発器41の外表面に散水される。 First, in step S11B, the control device 50 determines whether or not the current time is a predetermined start time of the defrosting operation or a start time of the washing operation. When it is the start time of the defrosting operation or the start time of the washing operation (YES in S11B), the control device 50 stops the cooling operation in step S12. In this case, the operation of the compressor 1 and the blower (fans 24, 44) is stopped. Further, in step S12, the control device 50 closes the solenoid valve 8 and opens the solenoid valve 9. In FIG. 8, OFF indicates a closed state of the solenoid valve, and ON indicates an open state. Then, in step S13, the control device 50 operates the pump 7. As a result, water is supplied from the tank 6 to the spraying device 11 by the route indicated by the arrow in FIG. 3, and is sprinkled on the outer surface of the evaporator 41.
 そして、ステップS14Bにおいて制御装置50は、除霜運転または洗浄運転を開始してから設定時間が経過したか否かを判断する。設定時間が経過していない場合(S14BでNO)、制御装置50は、ステップS13のポンプ7の運転を継続する。設定時間が経過した場合(S14BでYES)、制御装置50は、ステップS15において、ポンプ7の運転を停止し、ステップS16において電磁弁9を閉じて、洗浄運転を終了し、制御をメインルーチンに戻す。 Then, in step S14B, the control device 50 determines whether or not the set time has elapsed since the defrosting operation or the cleaning operation was started. If the set time has not elapsed (NO in S14B), the control device 50 continues the operation of the pump 7 in step S13. When the set time has elapsed (YES in S14B), the control device 50 stops the operation of the pump 7 in step S15, closes the solenoid valve 9 in step S16, ends the cleaning operation, and makes the control the main routine. return.
 一方、除霜運転の開始時刻および洗浄運転の開始時刻のいずれでもない場合(S11BでNO)、制御装置50は、ステップS17において冷却運転を開始する。この場合、圧縮機1および送風機(ファン24,44)が運転される。またステップS17において、制御装置50は、電磁弁9を閉じ、電磁弁8を開く。 On the other hand, if neither the start time of the defrosting operation nor the start time of the washing operation (NO in S11B), the control device 50 starts the cooling operation in step S17. In this case, the compressor 1 and the blower (fans 24, 44) are operated. Further, in step S17, the control device 50 closes the solenoid valve 9 and opens the solenoid valve 8.
 続いて、ステップS18において、制御装置50は、センサ12の出力に基づいて、タンク6内の水位Lwが目標水位Lw*以上であるか否かを判断する。水位Lwが目標水位Lw*以上でない場合(S18でNO)、制御装置50は、電磁弁14を一定時間だけ開いてタンク6に給水を行ない、再びステップS18において水位Lwを目標水位Lw*と比較する。 Subsequently, in step S18, the control device 50 determines whether or not the water level Lw in the tank 6 is equal to or higher than the target water level Lw * based on the output of the sensor 12. When the water level Lw is not equal to or higher than the target water level Lw * (NO in S18), the control device 50 opens the solenoid valve 14 for a certain period of time to supply water to the tank 6, and again compares the water level Lw with the target water level Lw * in step S18. do.
 水位Lwが目標水位Lw*以上である場合(S18でYES)、制御装置50は、ステップS30Bにおいて、現在の時刻が温水生成期間中に該当するか否かを判断する。この処理の詳細については、図9を用いて後に説明する。 When the water level Lw is equal to or higher than the target water level Lw * (YES in S18), the control device 50 determines in step S30B whether or not the current time corresponds to the hot water generation period. Details of this process will be described later with reference to FIG.
 現在の時刻が温水生成期間中に該当する場合(S30BでYES)、制御装置50は、ステップS20において、タンク6内の水温Twが目標温度Y℃より低いか否かを判断する。Tw<Yである場合(S20でYES)、制御装置50は、ステップS21においてポンプ7を運転させ、タンク6と熱交換器10との間で水を循環させ水温を上昇させる。 When the current time corresponds to the hot water generation period (YES in S30B), the control device 50 determines in step S20 whether the water temperature Tw in the tank 6 is lower than the target temperature Y ° C. When Tw <Y (YES in S20), the control device 50 operates the pump 7 in step S21 to circulate water between the tank 6 and the heat exchanger 10 to raise the water temperature.
 一方、現在の時刻が温水生成期間中に該当しない場合(S30BでNO)、およびTw<Yでない場合(S20でNO)には、水温を上昇させる必要はない。したがって、制御装置50は、ステップS22においてポンプ7を停止させ、タンク6と熱交換器10との間の水の循環を中止させる。 On the other hand, if the current time does not correspond to the hot water generation period (NO in S30B) and if Tw <Y (NO in S20), it is not necessary to raise the water temperature. Therefore, the control device 50 stops the pump 7 in step S22 and stops the circulation of water between the tank 6 and the heat exchanger 10.
 図9は、図8におけるステップS30Bの処理の詳細を示すフローチャートである。ステップS30Bの処理においては、温水を使用する運転がされる。温水を使用するか否かは、各スケジュールにおける除霜運転、洗浄運転ごとに予め設定しておくことができる。 FIG. 9 is a flowchart showing the details of the process of step S30B in FIG. In the process of step S30B, an operation using hot water is performed. Whether or not to use hot water can be set in advance for each defrosting operation and washing operation in each schedule.
 まずステップS41において、制御装置50は、温水使用が洗浄運転のみに設定されているか否かを判断する。温水使用が洗浄運転のみに設定されている場合(S41でYES)、除霜運転では温水は使用されないので、ステップS42において、次の散水スケジュールに洗浄運転が予定されているか否かを判断する。 First, in step S41, the control device 50 determines whether or not the use of hot water is set only for the washing operation. When the use of hot water is set only for the washing operation (YES in S41), since the hot water is not used in the defrosting operation, it is determined in step S42 whether or not the washing operation is scheduled for the next watering schedule.
 次のスケジュールが洗浄運転であった場合(S42でYES)、ステップS43において、制御装置50は現在の時刻が温水生成期間中であると判断する。逆に、次のスケジュールが洗浄運転でない場合(S42でNO)、ステップS43において、制御装置50は現在の時刻が温水生成期間中でないと判断する。また、ステップS41において、除霜運転時にも温水を使用するように設定されていた場合(S41でNO)、常時温水が生成されるため、制御装置50はステップS45において現在の時刻が温水生成期間中であると判断する。 If the next schedule is a washing operation (YES in S42), in step S43, the control device 50 determines that the current time is during the hot water generation period. On the contrary, when the next schedule is not the washing operation (NO in S42), in step S43, the control device 50 determines that the current time is not in the hot water generation period. Further, in step S41, when the hot water is set to be used even during the defrosting operation (NO in S41), hot water is always generated, so that the control device 50 sets the current time in step S45 as the hot water generation period. Judge that it is inside.
 このように、現在の時刻が温水生成期間中であるか否かが判断された後、図8のステップS20~S22の処理が実行される。 In this way, after it is determined whether or not the current time is during the hot water generation period, the processes of steps S20 to S22 in FIG. 8 are executed.
 図10は、除霜運転および洗浄運転のスケジュールと温水生成期間の一例を説明するための図である。図10においては、除霜開始時間として6時、12時、18時が設定されている。また、洗浄開始時間として22時が設定されている。そして、温水使用は、洗浄運転のみであり、除霜運転では常温の水が使用される。 FIG. 10 is a diagram for explaining an example of the schedule of the defrosting operation and the washing operation and the hot water generation period. In FIG. 10, the defrosting start time is set to 6 o'clock, 12 o'clock, and 18 o'clock. Further, 22:00 is set as the cleaning start time. The hot water is used only in the washing operation, and the water at room temperature is used in the defrosting operation.
 図10において、夜22時の洗浄運転が終了してから朝6時の除霜運転開始時間までの期間は、図9のステップS42においてNOと判断され、温水生成期間中ではないと判断される。同様に、6時の除霜運転が終了してから12時の除霜運転開始時間までの期間、および12時の除霜運転が終了してから18時の除霜運転開始時間までの期間も、温水生成期間中ではないと判断される。 In FIG. 10, the period from the end of the washing operation at 22:00 to the start time of the defrosting operation at 6:00 am is determined to be NO in step S42 of FIG. 9, and is not determined to be during the hot water generation period. .. Similarly, the period from the end of the defrosting operation at 6 o'clock to the start time of the defrosting operation at 12 o'clock, and the period from the end of the defrosting operation at 12 o'clock to the start time of the defrosting operation at 18:00 , It is judged that it is not during the hot water generation period.
 一方、19時の除霜運転が終了してから22時の洗浄運転が開始されるまでの期間は、温水生成期間中であると判断される。 On the other hand, it is judged that the period from the end of the defrosting operation at 19:00 to the start of the washing operation at 22:00 is during the hot water generation period.
 このようなスケジュールが設定された結果、1日のうち、18時の除霜運転が終了してから22時の洗浄運転が開始されるまでの間にポンプ7および熱交換器10によって洗浄に必要な温水が生成される。そして、22時~18時の間は、ポンプ7を動かさなくても良いので、消費電力を低減させることができる。 As a result of setting such a schedule, it is necessary for cleaning by the pump 7 and the heat exchanger 10 during the day from the end of the defrosting operation at 18:00 to the start of the cleaning operation at 22:00. Hot water is produced. Since the pump 7 does not have to be operated between 22:00 and 18:00, the power consumption can be reduced.
 なお、図10では、除霜開始時刻、洗浄開始時刻と、除霜運転に温水を使用しないようにした設定の例が示されたが、除霜運転、洗浄運転ごとに別々に目標温度Y℃を設定可能としても良い。また、除霜運転に温水を使用し、洗浄運転に常温水を使用するようにしても良い。 Although FIG. 10 shows an example of the defrosting start time, the cleaning start time, and the setting in which hot water is not used for the defrosting operation, the target temperature Y ° C. is separately set for each of the defrosting operation and the cleaning operation. May be configurable. Further, warm water may be used for the defrosting operation and normal temperature water may be used for the washing operation.
 (まとめ)
 以下に、本実施の形態について、再び図面を参照して総括する。
(summary)
Hereinafter, the present embodiment will be summarized again with reference to the drawings.
 本開示は、冷却装置100,100Aに関する。図1および図6に示す冷却装置100,100Aは、冷媒を圧縮する圧縮機1と、圧縮機1から吐出された冷媒と水とを熱交換させる熱交換器10と、熱交換器10を通過した冷媒を凝縮させる凝縮器21と、冷媒を膨張させる膨張装置3と、膨張装置3を通過した冷媒を圧縮機1に戻す前に蒸発させる蒸発器41とを備える。冷却装置100,100Aは、さらに、水を貯留するタンク6と、タンク6と熱交換器10との間で水を循環させるポンプ7と、タンク6に貯留された水を蒸発器41の外表面に散布する散布装置11と、第1温度センサ(31,32)と、制御装置50とを備える。第1温度センサは(31,32)は、圧縮機1から吐出される冷媒の温度T1または凝縮器21において冷媒と熱交換する媒体の温度T2を検出するように構成される。制御装置50は、第1温度センサの出力に応じて凝縮器21における冷媒からの放熱量を調整するように構成される。 This disclosure relates to cooling devices 100, 100A. The cooling devices 100 and 100A shown in FIGS. 1 and 6 pass through a compressor 1 for compressing the refrigerant, a heat exchanger 10 for heat exchange between the refrigerant discharged from the compressor 1 and water, and the heat exchanger 10. It includes a condenser 21 for condensing the generated refrigerant, an expansion device 3 for expanding the refrigerant, and an evaporator 41 for evaporating the refrigerant that has passed through the expansion device 3 before returning it to the compressor 1. The cooling devices 100 and 100A further include a tank 6 for storing water, a pump 7 for circulating water between the tank 6 and the heat exchanger 10, and an outer surface of the evaporator 41 for water stored in the tank 6. A spraying device 11, a first temperature sensor (31, 32), and a control device 50 are provided. The first temperature sensor (31, 32) is configured to detect the temperature T1 of the refrigerant discharged from the compressor 1 or the temperature T2 of the medium that exchanges heat with the refrigerant in the condenser 21. The control device 50 is configured to adjust the amount of heat radiated from the refrigerant in the condenser 21 according to the output of the first temperature sensor.
 このように、冷却装置100,100Aは、温水を生成することが可能であり、生成した温水を蒸発器41の外表面に散布することができる。このため、洗浄効果が高い高温水を洗浄水として使用し、油性汚れに対して有効な洗浄を行なうことができる。さらに、高温水は常温水より洗浄力が高いため、常温水を使用した場合より洗浄時間を短縮することができ、洗浄水量を削減できる。 As described above, the cooling devices 100 and 100A can generate hot water, and the generated hot water can be sprayed on the outer surface of the evaporator 41. Therefore, high-temperature water having a high cleaning effect can be used as cleaning water to perform effective cleaning against oily stains. Further, since the high temperature water has a higher detergency than the normal temperature water, the washing time can be shortened and the amount of the washing water can be reduced as compared with the case where the normal temperature water is used.
 また、洗浄用の高温水生成には、冷凍サイクルから外気に放熱されていた排熱の一部を利用するため、電気ヒータまたは給湯器などの追加機器が不要である。また、電気ヒータ等で温水を生成する場合、温水生成のためのエネルギーが別途必要となるが、本発明では、追加電熱機器が不要であるため、消費電力を削減できる。 In addition, since part of the waste heat radiated from the refrigeration cycle to the outside air is used to generate high-temperature water for cleaning, no additional equipment such as an electric heater or water heater is required. Further, when hot water is generated by an electric heater or the like, energy for generating hot water is separately required, but in the present invention, since no additional electric heating device is required, power consumption can be reduced.
 また、洗浄運転中は冷却運転できないため、冷蔵庫内の温度が上昇し、被冷却物の鮮度低下を引き起こす可能性がある。本実施の形態では、常温水を用いた場合より、洗浄時間を短くできるため、冷却運転を中断する時間が短くて済む。このため、被冷却物の鮮度低下を抑制できる。また、冷却運転中断時の庫内温度上昇幅が少ないため、洗浄運転後の冷却に使用する消費電力を削減することができる。 In addition, since the cooling operation cannot be performed during the washing operation, the temperature inside the refrigerator may rise, causing a decrease in the freshness of the object to be cooled. In the present embodiment, the cleaning time can be shortened as compared with the case of using normal temperature water, so that the time for interrupting the cooling operation can be shortened. Therefore, it is possible to suppress a decrease in the freshness of the object to be cooled. In addition, since the temperature rise in the refrigerator is small when the cooling operation is interrupted, the power consumption used for cooling after the cleaning operation can be reduced.
 また、除霜運転として、冷媒の循環を止めてファンを回すだけのオフサイクル運転を行なっていたような場合、本実施の形態では、洗浄運転中は、温水によって蒸発器の温度が上昇するため除霜効果も得られるので、洗浄の頻度によっては除霜運転が不要となり冷却運転を停止する時間を少なくすることができる。 Further, in the case where the off-cycle operation in which the circulation of the refrigerant is stopped and the fan is turned is performed as the defrosting operation, in the present embodiment, the temperature of the evaporator rises due to the hot water during the washing operation. Since the defrosting effect can also be obtained, the defrosting operation becomes unnecessary depending on the frequency of cleaning, and the time for stopping the cooling operation can be reduced.
 好ましくは、冷却装置100,100Aは、凝縮器21に冷媒と熱交換する空気を供給するファン24をさらに備える。図4および図7に示すように、制御装置50は、第1温度センサの検出する温度T1がしきい値T1*よりも低い場合には(S1でYES)、第1温度センサの検出する温度T1がしきい値T1*よりも高い場合(S1でNO)よりもファン24の回転速度を低下させる。 Preferably, the cooling devices 100 and 100A further include a fan 24 that supplies air that exchanges heat with the refrigerant to the condenser 21. As shown in FIGS. 4 and 7, when the temperature T1 detected by the first temperature sensor is lower than the threshold value T1 * (YES in S1), the control device 50 detects the temperature of the first temperature sensor. The rotation speed of the fan 24 is lower than when T1 is higher than the threshold value T1 * (NO in S1).
 温水を目標温度にするためには、圧縮機1の吐出ガス温度を確保することが重要である。たとえば、温水の目標温度が60℃である場合、吐出ガス温度は60℃よりも高い必要がある。本実施の形態では、熱交換器10において水と熱交換する冷媒ガスの温度がしきい値よりも低い場合にファン24の回転速度を通常よりも低下させるので、冷媒回路C1からの放熱量が減少し、吐出ガス温度を上昇させることができる。なお、冷媒回路C1からの放熱量は、外気温度が低いほど多くなるため、吐出ガス温度T1に代えて外気温度T2に応じて放熱量を調整しても良い。 In order to set the hot water to the target temperature, it is important to secure the discharge gas temperature of the compressor 1. For example, when the target temperature of hot water is 60 ° C., the discharge gas temperature needs to be higher than 60 ° C. In the present embodiment, when the temperature of the refrigerant gas that exchanges heat with water in the heat exchanger 10 is lower than the threshold value, the rotation speed of the fan 24 is lowered more than usual, so that the amount of heat radiated from the refrigerant circuit C1 is reduced. It can be reduced and the discharge gas temperature can be raised. Since the amount of heat radiated from the refrigerant circuit C1 increases as the outside air temperature decreases, the amount of heat radiated may be adjusted according to the outside air temperature T2 instead of the discharge gas temperature T1.
 図6に示すように、好ましくは、冷却装置100Aは、冷媒が凝縮器21に通過しないように迂回させるバイパス流路110と、バイパス流路110に設けられた流量調整弁111とをさらに備える。制御装置50は、第1温度センサの検出する温度がしきい値よりも低い場合には、第1温度センサの検出する温度がしきい値よりも高い場合よりも流量調整弁111を通過する冷媒の流量を増加させる。 As shown in FIG. 6, preferably, the cooling device 100A further includes a bypass flow path 110 for bypassing the refrigerant so as not to pass through the condenser 21, and a flow rate adjusting valve 111 provided in the bypass flow path 110. When the temperature detected by the first temperature sensor is lower than the threshold value, the control device 50 passes through the flow control valve 111 more than when the temperature detected by the first temperature sensor is higher than the threshold value. Increase the flow rate of.
 図6に示す冷却装置100Aでは、熱交換器10において水と熱交換する冷媒ガスの温度がしきい値よりも低い場合に流量調整弁111を通過する冷媒の流量を増加させるので、冷媒回路C1からの放熱量が減少し、吐出ガス温度を上昇させることができる。この場合も、吐出ガス温度T1に代えて外気温度T2に応じて放熱量を調整しても良い。 In the cooling device 100A shown in FIG. 6, when the temperature of the refrigerant gas that exchanges heat with water in the heat exchanger 10 is lower than the threshold value, the flow rate of the refrigerant passing through the flow rate adjusting valve 111 is increased, so that the refrigerant circuit C1 The amount of heat radiated from the air is reduced, and the temperature of the discharged gas can be raised. Also in this case, the heat radiation amount may be adjusted according to the outside air temperature T2 instead of the discharge gas temperature T1.
 なお、冬場など熱交換器10の出口部分で冷媒が完全に液冷媒に凝縮される場合は、凝縮器21のファン24(水冷式凝縮器の場合は冷却水ポンプ)を停止させて、熱交換器10のみを用いて冷媒を凝縮してもよい。 If the refrigerant is completely condensed into the liquid refrigerant at the outlet of the heat exchanger 10 such as in winter, the fan 24 of the condenser 21 (cooling water pump in the case of a water-cooled condenser) is stopped to exchange heat. The refrigerant may be condensed using only the vessel 10.
 好ましくは、冷却装置100,100Aは、タンク6に貯留される水の水温Twを検出するセンサ13をさらに備える。制御装置50は、センサ13が検出する温度が目標温度Y℃に到達するようにポンプ7を用いてタンク6と熱交換器10との間で水を循環させた後に散布装置11によって水を蒸発器41の外表面に散布する。 Preferably, the cooling devices 100 and 100A further include a sensor 13 for detecting the water temperature Tw of the water stored in the tank 6. The control device 50 circulates water between the tank 6 and the heat exchanger 10 using the pump 7 so that the temperature detected by the sensor 13 reaches the target temperature Y ° C., and then evaporates the water by the spraying device 11. Spray on the outer surface of the vessel 41.
 このような構成で水を循環させることによって、熱交換器10の熱交換量が少ない場合でも、タンク6内に貯留される水の温度を目標温度に近づけることができる。 By circulating water in such a configuration, the temperature of the water stored in the tank 6 can be brought close to the target temperature even when the heat exchange amount of the heat exchanger 10 is small.
 より好ましくは、図8~図10に示すように、制御装置50は、目標温度を第1温度Y℃に設定した後に散布装置11によって蒸発器41の外表面に散布する洗浄運転と、第1温度よりも低い温度の水(常温水)を蒸発器41の外表面に散布する除霜運転とを実行する。 More preferably, as shown in FIGS. 8 to 10, the control device 50 has a cleaning operation in which the target temperature is set to the first temperature Y ° C. and then sprayed on the outer surface of the evaporator 41 by the spraying device 11. A defrosting operation is performed in which water having a temperature lower than the temperature (normal temperature water) is sprayed on the outer surface of the evaporator 41.
 このように制御することによって、除霜運転の準備期間におけるポンプ7の消費電力を低減させることができる。 By controlling in this way, the power consumption of the pump 7 during the preparation period for the defrosting operation can be reduced.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 1 圧縮機、2 室外ユニット、3 膨張装置、4 ユニットクーラ、5 洗浄装置、6 タンク、7 ポンプ、8,9,14 電磁弁、10 熱交換器、10A,10B 流路、11 散布装置、12,13 センサ、21 凝縮器、24,44 ファン、31,32 温度センサ、41 蒸発器、50 制御装置、51 処理装置、52 メモリ、100,100A 冷却装置、110 バイパス流路、111 流量調整弁、C1 冷媒回路、C2 水回路。 1 Compressor, 2 Outdoor unit, 3 Expansion device, 4 Unit cooler, 5 Cleaning device, 6 Tank, 7 Pump, 8, 9, 14 Electromagnetic valve, 10 Heat exchanger, 10A, 10B flow path, 11 Spreading device, 12 , 13 sensor, 21 condenser, 24,44 fan, 31,32 temperature sensor, 41 evaporator, 50 control device, 51 processing device, 52 memory, 100,100A cooling device, 110 bypass flow path, 111 flow control valve, C1 refrigerant circuit, C2 water circuit.

Claims (5)

  1.  冷媒を圧縮する圧縮機と、
     前記圧縮機から吐出された前記冷媒と熱媒体とを熱交換させる熱交換器と、
     前記熱交換器を通過した前記冷媒を凝縮させる凝縮器と、
     前記冷媒を膨張させる膨張装置と、
     前記膨張装置を通過した前記冷媒を前記圧縮機に戻す前に蒸発させる蒸発器と、
     前記熱媒体を貯留するタンクと、
     前記タンクと前記熱交換器との間で前記熱媒体を循環させるポンプと、
     前記タンクに貯留された前記熱媒体を前記蒸発器の外表面に散布する散布装置と、
     前記圧縮機から吐出される前記冷媒の温度または前記凝縮器において前記冷媒と熱交換する媒体の温度を検出する第1温度センサと、
     前記第1温度センサの出力に応じて前記凝縮器における前記冷媒からの放熱量を調整するように構成された制御装置とを備える、冷却装置。
    A compressor that compresses the refrigerant and
    A heat exchanger that exchanges heat between the refrigerant discharged from the compressor and a heat medium.
    A condenser that condenses the refrigerant that has passed through the heat exchanger,
    An expansion device that expands the refrigerant and
    An evaporator that evaporates the refrigerant that has passed through the expansion device before returning it to the compressor.
    The tank for storing the heat medium and
    A pump that circulates the heat medium between the tank and the heat exchanger,
    A spraying device that sprays the heat medium stored in the tank on the outer surface of the evaporator, and
    A first temperature sensor that detects the temperature of the refrigerant discharged from the compressor or the temperature of the medium that exchanges heat with the refrigerant in the condenser.
    A cooling device including a control device configured to adjust the amount of heat dissipated from the refrigerant in the condenser according to the output of the first temperature sensor.
  2.  前記凝縮器に前記冷媒と熱交換する空気を供給するファンをさらに備え、
     前記制御装置は、前記第1温度センサの検出する温度がしきい値よりも低い場合には、前記第1温度センサの検出する温度が前記しきい値よりも高い場合よりも前記ファンの回転速度を低下させるように構成される、請求項1に記載の冷却装置。
    The condenser is further provided with a fan that supplies air that exchanges heat with the refrigerant.
    In the control device, when the temperature detected by the first temperature sensor is lower than the threshold value, the rotation speed of the fan is higher than when the temperature detected by the first temperature sensor is higher than the threshold value. The cooling device according to claim 1, which is configured to reduce the temperature.
  3.  前記冷媒が前記凝縮器に通過しないように迂回させるバイパス流路と、
     前記バイパス流路に設けられた流量調整弁とをさらに備え、
     前記制御装置は、前記第1温度センサの検出する温度がしきい値よりも低い場合には、前記第1温度センサの検出する温度が前記しきい値よりも高い場合よりも前記流量調整弁を通過する前記冷媒の流量を増加させるように構成される、請求項1に記載の冷却装置。
    A bypass flow path that bypasses the refrigerant so that it does not pass through the condenser,
    Further provided with a flow rate adjusting valve provided in the bypass flow path,
    When the temperature detected by the first temperature sensor is lower than the threshold value, the control device provides the flow control valve more than when the temperature detected by the first temperature sensor is higher than the threshold value. The cooling device according to claim 1, wherein the cooling device is configured to increase the flow rate of the passing refrigerant.
  4.  前記タンクに貯留される前記熱媒体の温度を検出する第2温度センサをさらに備え、
     前記制御装置は、前記第2温度センサが検出する温度が目標温度に到達するように前記ポンプを用いて前記タンクと前記熱交換器との間で前記熱媒体を循環させた後に前記散布装置によって前記熱媒体を前記蒸発器の外表面に散布するように構成される、請求項1に記載の冷却装置。
    Further, a second temperature sensor for detecting the temperature of the heat medium stored in the tank is provided.
    The control device uses the pump to circulate the heat medium between the tank and the heat exchanger so that the temperature detected by the second temperature sensor reaches the target temperature, and then the spraying device. The cooling device according to claim 1, wherein the heat medium is configured to be sprayed on the outer surface of the evaporator.
  5.  前記制御装置は、前記目標温度を第1温度に設定した後に前記散布装置によって前記蒸発器の外表面に散布する洗浄運転と、前記第1温度よりも低い温度の前記熱媒体を前記蒸発器の外表面に散布する除霜運転とを実行するように構成される、請求項4に記載の冷却装置。 The control device has a cleaning operation of spraying the outer surface of the evaporator by the spraying device after setting the target temperature to the first temperature, and the heat medium having a temperature lower than the first temperature of the evaporator. The cooling device according to claim 4, wherein the cooling device is configured to perform a defrosting operation of spraying on the outer surface.
PCT/JP2020/021788 2020-06-02 2020-06-02 Cooling device WO2021245791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/021788 WO2021245791A1 (en) 2020-06-02 2020-06-02 Cooling device
JP2022529178A JP7399285B2 (en) 2020-06-02 2020-06-02 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021788 WO2021245791A1 (en) 2020-06-02 2020-06-02 Cooling device

Publications (1)

Publication Number Publication Date
WO2021245791A1 true WO2021245791A1 (en) 2021-12-09

Family

ID=78831004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021788 WO2021245791A1 (en) 2020-06-02 2020-06-02 Cooling device

Country Status (2)

Country Link
JP (1) JP7399285B2 (en)
WO (1) WO2021245791A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796283B1 (en) * 2007-09-28 2008-01-21 주식회사삼원기연 Energy saving style refrigeration equipment that use waste heat of discharge gas
JP2008089224A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Refrigerating device
JP2009293839A (en) * 2008-06-04 2009-12-17 Hitachi Appliances Inc Exhaust heat utilizing system of refrigerating device
CN201448953U (en) * 2009-08-20 2010-05-05 张华林 Air-cooled type small and medium-sized central air-conditioner water chiller-heater unit
CN201731677U (en) * 2010-03-15 2011-02-02 浙江地源能源环境有限公司 Air source heat pump for spray cooling and hot water defrosting
JP2011112316A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Cooling device
KR20120012239A (en) * 2010-07-30 2012-02-09 엘지전자 주식회사 Refrigerator
KR101270210B1 (en) * 2012-12-28 2013-05-31 주식회사 유한엔지니어링 Energy saving freezer and refrigerator
JP2015215117A (en) * 2014-05-09 2015-12-03 シャープ株式会社 Heat pump type air cooling device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
CN106016875A (en) * 2016-07-14 2016-10-12 天津商业大学 Compressor waste heat recycling type hot water defrosting refrigeration system
CN207132407U (en) * 2017-09-08 2018-03-23 张宝山 A kind of self-cleaning air energy oil fume purifier of automatic washing
CN108844265A (en) * 2018-08-27 2018-11-20 天津商业大学 A kind of energy-saving and water-saving type heat water-spraying removes defrosting system
CN110701731A (en) * 2019-11-14 2020-01-17 宁波奥克斯电气股份有限公司 Air conditioner defrosting system, air conditioner defrosting method and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730095U (en) * 1993-11-16 1995-06-06 高橋工業株式会社 Freezer with cleaning device
JP2963002B2 (en) * 1994-04-28 1999-10-12 三洋電機株式会社 Air conditioner
JP3192991U (en) 2014-06-30 2014-09-11 株式会社前川製作所 Humidified air production equipment

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089224A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Refrigerating device
KR100796283B1 (en) * 2007-09-28 2008-01-21 주식회사삼원기연 Energy saving style refrigeration equipment that use waste heat of discharge gas
JP2009293839A (en) * 2008-06-04 2009-12-17 Hitachi Appliances Inc Exhaust heat utilizing system of refrigerating device
CN201448953U (en) * 2009-08-20 2010-05-05 张华林 Air-cooled type small and medium-sized central air-conditioner water chiller-heater unit
JP2011112316A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Cooling device
CN201731677U (en) * 2010-03-15 2011-02-02 浙江地源能源环境有限公司 Air source heat pump for spray cooling and hot water defrosting
KR20120012239A (en) * 2010-07-30 2012-02-09 엘지전자 주식회사 Refrigerator
KR101270210B1 (en) * 2012-12-28 2013-05-31 주식회사 유한엔지니어링 Energy saving freezer and refrigerator
JP2015215117A (en) * 2014-05-09 2015-12-03 シャープ株式会社 Heat pump type air cooling device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
CN106016875A (en) * 2016-07-14 2016-10-12 天津商业大学 Compressor waste heat recycling type hot water defrosting refrigeration system
CN207132407U (en) * 2017-09-08 2018-03-23 张宝山 A kind of self-cleaning air energy oil fume purifier of automatic washing
CN108844265A (en) * 2018-08-27 2018-11-20 天津商业大学 A kind of energy-saving and water-saving type heat water-spraying removes defrosting system
CN110701731A (en) * 2019-11-14 2020-01-17 宁波奥克斯电气股份有限公司 Air conditioner defrosting system, air conditioner defrosting method and air conditioner

Also Published As

Publication number Publication date
JP7399285B2 (en) 2023-12-15
JPWO2021245791A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
KR100796283B1 (en) Energy saving style refrigeration equipment that use waste heat of discharge gas
RU2480684C2 (en) Method and device for defrosting with hot steam
JP4403193B2 (en) System and method for controlling an economizer circuit
KR102597558B1 (en) Air Conditioner with Evaporator Cleaning function
KR20050076080A (en) Controling method in the multi airconditioner
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
CN110470070B (en) Air conditioner self-cleaning control method
CN113175731A (en) Defrosting control method of air conditioner and air conditioner
US7225628B2 (en) Ice making machine
WO2021245791A1 (en) Cooling device
JP2004028563A (en) Operation control method for cooling system provided with two evaporators
KR101533644B1 (en) Hotgas defrosting refrigerating cycle device
KR100948584B1 (en) Energy saving style refrigeration equipment that use waste heat of discharge gas
JP5534789B2 (en) Cooling system
JPH11257718A (en) Method of controlling air conditioner
JPH09210515A (en) Refrigerating device
EP3604953B1 (en) Air conditioner
WO2021245792A1 (en) Cooling device
KR20090043991A (en) Hot-line apparatus of refrigerator
KR100234080B1 (en) Air conditioner and defrosting method in heating mode therefor
KR20060019433A (en) Cooling system
JPH05302780A (en) Refrigerating device
KR200405714Y1 (en) Heat-pump type heating apparatus
JPH08193745A (en) Method for controlling air conditioner
WO2020161804A1 (en) Freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939378

Country of ref document: EP

Kind code of ref document: A1