WO2021245359A1 - Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis - Google Patents

Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis Download PDF

Info

Publication number
WO2021245359A1
WO2021245359A1 PCT/FR2021/051007 FR2021051007W WO2021245359A1 WO 2021245359 A1 WO2021245359 A1 WO 2021245359A1 FR 2021051007 W FR2021051007 W FR 2021051007W WO 2021245359 A1 WO2021245359 A1 WO 2021245359A1
Authority
WO
WIPO (PCT)
Prior art keywords
grout
geopolymer
metakaolin
fly ash
sodium silicate
Prior art date
Application number
PCT/FR2021/051007
Other languages
English (en)
Inventor
Christian Tourneur
Julien Mercier
Ivica Zivanovic
Xavier HALLOPEAU
Original Assignee
Soletanche Freyssinet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet filed Critical Soletanche Freyssinet
Priority to US18/000,734 priority Critical patent/US20230212073A1/en
Priority to AU2021283736A priority patent/AU2021283736A1/en
Priority to CA3185982A priority patent/CA3185982A1/fr
Priority to EP21737703.5A priority patent/EP4161883A1/fr
Priority to JP2022574586A priority patent/JP2023529635A/ja
Priority to KR1020237000246A priority patent/KR20230021698A/ko
Priority to MX2022015389A priority patent/MX2022015389A/es
Publication of WO2021245359A1 publication Critical patent/WO2021245359A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B32/00Artificial stone not provided for in other groups of this subclass
    • C04B32/02Artificial stone not provided for in other groups of this subclass with reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • B28B23/046Post treatment to obtain pre-stressed articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/243Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/10Ducts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to the field of reinforcements for construction works. It relates more particularly to the grout injected into conduits of prestressing cables and to the method of manufacturing this grout as well as to the method of installing a structural cable comprising the installation of a conduit and the injection. of a grout in the duct.
  • Prestressing cables generally consist of a bundle of reinforcements, most often made of steel, the tensioning of which makes it possible to exert the prestress.
  • the reinforcements are arranged in a tubular conduit (generally formed in a sheath) filled with a protective material after tensioning.
  • the prestressing cables can be placed inside (embedded in the structure to be stressed) or outside the concrete (the cables are anchored to the structure only by their anchors at the ends).
  • the post-stress of the concrete is obtained in the first place by the concreting of a structure (for example a beam) comprising a conduit (for example a sheath) empty of reinforcements. Reinforcements are then threaded into this conduit and then tensioned.
  • a grout is injected into the sheath in order to ensure the durability of the cables on the one hand, in particular by protecting them from corrosion, in order to transmit the forces to the concrete of the structure, in the case of internal prestressing and adherent to concrete on the other hand.
  • a grout is generally composed of a mixture based on cement and water, the mixture being sufficiently fluid to fill the duct and coat the bundle of reinforcements without leaving a vacuum.
  • Cement is a hydraulic binder, ie capable of setting in water.
  • a classic cement comes under the form of a very fine powder which, when mixed in water, forms a paste which sets and gradually hardens over time.
  • An example of a well-known classic cement is Portland cement. The hardening of cement is due to the hydration of certain mineral compounds.
  • the basic composition of current cements is a mixture of silicates and calcium aluminates, resulting from the combination of lime (CaO) with silica (S1O2), alumina (AI2O3), and oxide iron (Fe203).
  • the necessary lime is supplied by limestone rocks, alumina, silica and iron oxide by clays. These materials are found in nature in the form of limestone, clay or marl and contain, in addition to the oxides already mentioned, other oxides and in particular Fe202, ferric oxide.
  • the water-cement suspension that is to say the mixture based on cement and water, is always added to improve fluidity and delay setting; this mixture is called a cement grout.
  • the prestressing cables 10 often have a path of sinuous shape comprising high points 12 and low points 13, the prestressing force exerted by the cable 10 being directed downwards. in the vicinity of high points and vice versa. At these high points 12, one can observe an absence of grout in contact with the reinforcements of the cable 10 and the presence of air and / or of aqueous solution or of particles less dense than the cement, which can promote corrosion. reinforcements.
  • the absence of grout results from a lack of stability of the grout or from infill imperfections in the injection operation.
  • the lack of stability of the grout results in a phenomenon of segregation of the grout in the duct, by sedimentation (solid deposit) or filtration (water rising along the reinforcements), which can consequently lead to a bleeding phenomenon.
  • the injection of the grout into the duct must be done without entraining or trapping air in the duct, particularly in the high points or behind the anchors.
  • the grout, once hardened must be chemically stable and protective vis-à-vis the steel constituting the cables during the service life of the structure.
  • the grout for its injection, the grout must be sufficiently fluid to be pumped and conveyed in the hoses, the conduits and must remain stable and homogeneous before and during the setting. It is therefore necessary to control bleeding.
  • the fluidity of the grout is a critical point that is difficult to control due to the inconstancy of the production of the cement, climatic variations during the injection operations, the application pressures exerted, the kinematics of progression of the grout in the duct, filtration through the fittings etc.
  • the fluid grout is a suspension of cement grains dispersed in a large quantity of water containing adjuvants, the roles of which are generally to thin and delay the setting of the mixture.
  • the cement sets by a phenomenon of hydration, in which water is the main reagent, which triggers a crystallization reaction. There is always excess water in the grout.
  • the grouts are dosed with a mass ratio of water relative to the cement which is of the order of 0.34 to 0.40 while the water content necessary for the hydration of the cement particles is only about 0.17. If the suspension is stable, the excess water turns into microporosities distributed, during setting, in the hardened material.
  • Another alternative is to replace the cement grout with a grout of alternative composition. It is for example known from document FR2623492A1 a cement slurry comprising a mineral filler such as for example sand.
  • a mineral material can also be considered.
  • This type of material is stable in liquid form and requires only a small amount of water compared to a cement grout intended for injection.
  • These are products of the poly (silico-oxo-aluminate) type, commonly called a “geopolymer”. Due to the absence of cement in a geopolymer grout, the hydration reaction of the mixture is not involved in the setting and hardening of the grout. This avoids the problems due to the massive presence of water in the grout.
  • This type of material is known for example from document FR2949227A1.
  • the geopolymer grout disclosed by this document offers the rheological performance and mechanical resistance defined by specifications in which, at 28 days depending on its manufacture, the compressive strength of the grout must be greater than 30 MPa.
  • this material does not meet the usual criteria of fluidity necessary for injection of the grout.
  • This fluidity is usually measured according to a standardized test described in European standard “NF EN 445” relating to the flow time through a Marsh cone with a 10 mm diameter nozzle, which must theoretically remain less than or equal to 25. seconds, 5 hours after mixing the grout (equivalent to a viscosity of 0.5 Pa.s).
  • the grout must be able to be injected into a conduit intended to contain tensioned reinforcements. It is known from document FR2713690A1 a method for the injection of a grout. However, this process is specifically developed for a cement grout and therefore cannot be used for a geopolymer grout.
  • the grout proposed by the invention therefore aims to solve the problems encountered in grouts known among those which set, whether it is cement grout or geopolymer grout.
  • the grout disclosed by the present invention aims in particular to solve the problems caused by both the presence of water in the cement grout, and the lack of fluidity of the existing geopolymer grouts.
  • the invention provides a geopolymer grout for the protection of prestressing reinforcements, the geopolymer grout comprising metakaolin, fly ash and an activator mixture, the activator mixture comprising sodium hydroxide and sodium silicate, in wherein the Na2O: SiO2 molar ratio of the sodium silicate is between 0.40 and 0.70. In particular, the Na 2 O: SiO 2 molar ratio of the sodium silicate is between 0.51 and 0.60.
  • the sodium silicate may also have a water content by weight of between 52.1% and 72.1% and the activator mixture have a water content by weight of less than 65%.
  • the activator mixture may also have a water content by mass of between 40% and 65%.
  • the mass water content is between 56% and 63%.
  • the metakaolin: fly ash: alkaline silicate solution: sodium hydroxide mass ratio can be 1: 1: 2-3: 0.15-0.35.
  • the metakaolin fly ash: alkaline silicate solution: sodium hydroxide mass ratio can further be 1: 1: 2.4-2.6: 0.19-0.23.
  • the geopolymer grout can also have a pH of between 13 and 14.
  • the geopolymer grout may also have a bleeding of the aqueous reaction solution of less than 0.5% of the total mass of the grout.
  • the BET specific surface (Brunauer, Emmett and Teller theory) of metakaolin alone or of a mixture comprising metakaolin and fly ash may be greater than or equal to 25 m 2 / g and preferably greater than or equal to 30m 2 / g.
  • the invention also provides a method of manufacturing a geopolymer grout, the geopolymer grout comprising metakaolin, fly ash and an activator mixture, the activator mixture comprising sodium hydroxide and sodium silicate, the Na2O: SiO2 molar ratio of the sodium silicate being between 0.40 and 0.70, wherein the manufacturing process comprises an activation step in which the metakaolin and the fly ash are activated by the activator mixture in order to 'obtain a polymerization of the whole.
  • the manufacturing process can further comprise a preliminary step of homogenizing the metakaolin and the fly ash.
  • the manufacturing process can further comprise a mixing step during which the activator mixture is mixed with the metakaolin and the fly ash.
  • water is added at the start of the mixing step, the amount of water added being between 1% and 4% by weight of the geopolymer slurry.
  • the added water is only useful to improve the fluidity of the grout. Water is in fact not necessary for the polymerization step, which reduces its use to a minimum. Compared to the quantities of metakaolin, fly ash and activator mixture required for the manufacture of the grout, the water thus represents a marginal quantity, thus avoiding the risks associated with the quality and stability during the setting of the grout.
  • the metakaolin alone or a mixture comprising the metakaolin and the fly ash is ground in order to obtain a BET specific surface area greater than or equal to 25 m 2 / g and preferably greater than or equal to 30 m 2 / g.
  • the invention also provides a method of installing a structural cable, comprising:
  • the injection of a geopolymer grout into the pipe and in which the geopolymer grout comprises metakaolin, fly ash and an activator mixture, the activator mixture comprising sodium hydroxide and sodium silicate, the molar ratio Na20: Si02 of the sodium silicate being between 0.40 and 0.70.
  • the installation method may further comprise, before the injection of the geopolymer grout into the duct, a mixing of the geopolymer grout for 2 to 5 minutes with an energy of about 9 kilojoules per liter, thus obtaining an equivalent fluidity to the Marsh cone with a 10 mm diameter nozzle between 25 seconds and 35 seconds.
  • the installation method may further comprise, during the injection of the geopolymer grout into the conduit, the use of a hose, the hose having an internal diameter greater than 25 mm and a length limited to 100 m.
  • the grout is pumped during the injection, the pumping rate of the grout being between 0.5 m 3 / h and 1.5 m 3 / h.
  • FIG. 1
  • FIG. 1 is a block diagram illustrating an example of a prestressing cable.
  • the geopolymer grout according to the invention is a mineral material in stable liquid form, the formulation of which does not contain or only very little free water. It is more precisely a product of the Poly "silico-oxo-aluminate" or (-Si-0-Al-0) n type (for which n is the degree of polymerization).
  • This geopolymer grout is particularly advantageous for the protection of prestressing cables in their conduit. Indeed, this geopolymer grout guarantees better filling of the duct and better coating of the reinforcements while having no harmful effect with regard to the prestressing reinforcement.
  • the geopolymer grout mainly comprises powders, referred to as a filler element, and a liquid activator mixture.
  • the charging elements are metakaolin and fly ash.
  • Metakaolin is also called calcined kaolin.
  • Metakaolin is a dehydroxylated alumina silicate of general composition Al203.2SÎ202.
  • Metakaolin is, for example, a powdered product marketed under the name Argical 1200®, the composition of which is detailed in the following table [Table 1]. [0036] [Table 1]
  • metakaolin with the trade name Argical 1200® [0037]
  • the metakaolin used is finely ground. More precisely, metakaolin has a BET specific surface area greater than 15 m 2 / g. Preferably, the BET specific surface is greater than 25 m 2 / g. For example, the BET specific surface of metakaolin is greater than 30 m 2 / g.
  • Metakaolin makes it possible in particular to obtain a smoother grout than with a conventional cement, by limiting the deposits of mineral salts on the surface of the cement (also called “efflorescence”).
  • metakaolin makes it possible to improve the mechanical compressive strengths and to reduce the viscosity of the geopolymer grout obtained.
  • an increase in the share of metakaolin relative to the share of fly ash leads to an increase in the mechanical strength and viscosity of the grout.
  • metakaolin is elongated and irregular in shape while fly ash is spherical in shape
  • grinding metakaolin improves its stacking properties with fly ash, resulting in an increase in the share of metakaolin among the charging elements.
  • metakaolin is a component that requires little energy for its extraction compared to ordinary cement, which makes the manufacture of geopolymer grout environmentally attractive.
  • metakaolin is obtained by calcining kaolinite (natural clay), which can be carried out at low temperature (between 600 ° C and 800 ° C) compared to the manufacture of a cement which requires a chemical combination of clay and limestone at very high temperature (around 1450 ° C).
  • kaolinite natural clay
  • Fly ash is class F fly ash. More specifically, the fly ash used comes from the combustion of pulverized coal in the boilers of thermoelectric power stations, by collection in electrostatic dust collectors. For example, the ashes flywheels used are marketed under the trade name “Silicoline ®”. Fly ash makes it possible in particular to improve the workability of the grout and the mechanical performance thereof in the long term.
  • the fly ash used can be finely ground.
  • the fly ash has a BET specific surface area greater than 15 m 2 / g.
  • the BET specific surface is greater than 25 m 2 / g.
  • the BET specific surface area of fly ash is greater than 30 m 2 / g.
  • the fineness of the fly ash grinding improves the mechanical compressive strengths of the geopolymer grout obtained.
  • the activator mixture comprises sodium hydroxide, sodium silicate and water.
  • the activator mixture makes it possible to initiate the chemical reactions by breaking chemical bonds of the elements of metakaolin and fly ash, in order to form an amorphous gel then to start the polymerization reaction and to polymerize the whole in order to obtain the geopolymer whose three-dimensional structure contains the Si-O-Al bond.
  • Sodium silicate is an alkaline silicate solution. More precisely, sodium silicate has an Na 2 O: SiO 2 molar ratio of between 0.40 and 0.70. For example, the molar ratio is preferably between 0.51 and 0.60. For example, the molar ratio is between 0.55 and 0.59. According to another example, the molar ratio is 0.57.
  • the sodium silicate has a water content by mass of between 52.1% and 72.1%. For example, sodium silicate comprises 62.1% of its weight in water.
  • Sodium hydroxide is in the initial form of sodium hydroxide tablets.
  • the sodium hydroxide tablets are incorporated into the sodium silicate solution, according to the sodium hydroxide: sodium silicate mass ratio of 8.53: 100.
  • 85.3g of soda are incorporated into 1000g of sodium silicate solution.
  • the basic nature of the soda increases the pH of the geopolymer grout, which helps protect the reinforcements against corrosion.
  • the grout has a pH of between 13 and 14.
  • the geopolymer grout has a pH of between 13.3 and 13.5.
  • the geopolymer grout has a pH close to 13.4.
  • the aqueous solution of the penetrant testing has a basic pH included in the ranges detailed above.
  • the penetrant water therefore does not cause corrosion of the reinforcements.
  • the grout may have an aqueous solution bleeding of less than 0.5% of the total mass of the grout.
  • Soda also makes it possible to obtain adequate Na / Si or Na / Al molar ratios, which makes it possible to obtain a geopolymer grout of chemical formulation meeting the desired criteria.
  • the activator mixture further comprises water.
  • Water is understood here to mean water which is added in addition to the water entering into the composition of the sodium silicate solution. Therefore, the water described here is not part of the water making up sodium silicate and is therefore excluded from the range of 52.1% to 72.1% by weight of sodium silicate water by weight discussed above.
  • the added water represents less than 4% by total mass of the geopolymer grout.
  • total mass of geopolymer grout is meant the mass of the grout comprising metakaolin, fly ash, sodium hydroxide, sodium silicate and added water. For example, the added water represents between 1% and 4% of the total mass of geopolymer grout.
  • the added water represents between 1 and 2% of the total mass of the geopolymer grout, and preferably 1.86%. According to yet another example, the added water represents between 3 and 4% of the total mass of the geopolymer grout, and preferably 3.64%. This quantity remains marginal compared to the total mass of the geopolymer grout.
  • the activator mixture has a water content by mass of less than 65%.
  • the mass water content takes into account the water contained in the sodium silicate as such and the water added to the sodium silicate and the sodium hydroxide. Therefore, the mass content here is a ratio of the mass of water contained in the sodium silicate and the water added to the total mass of the activator mixture (i.e. sodium silicate, hydroxide sodium and added water).
  • the activator mixture has a water content by mass of between 40% and 65%, and for example between 56% and 63%.
  • the activator mixture has a mass water content between 58% and 59% According to another example, the activator mixture has a water mass content of between 59% and 60%
  • the addition of water to the activator mixture makes it possible to improve the fluidity of the geopolymer grout while reducing only to a limited extent the mechanical resistance after setting and hardening, the latter always respecting the criterion according to which the resistance the compression of the grout must be greater than 30 MPa at 28 days.
  • the geopolymer grout of the invention has the advantage of causing very limited bleeding and better homogeneity of the grout given the small amount of water incorporated. In addition, this small amount of water results in the absence of filtration in the bundle of reinforcements constituting the cable. The small amount of water added also results in a porosity of the geopolymer grout much lower than a porosity of the cementitious grout of the prior art. For example, the porosity of the geopolymer grout detailed here has a porosity at least six times lower than the porosity of a cement grout. In addition, the kinetic progression of injection of the geopolymer grout into the duct is facilitated and the grout coats the reinforcements more easily than does a conventional cement grout, which prevents the appearance of air pockets (or bubbles). occluded.
  • the geopolymer grout is manufactured according to the process detailed below, comprising certain alternatives.
  • the metakaolin and the fly ash are homogenized in a mechanical mixer.
  • the metakaolin alone (that is to say without the fly ash) is ground in order to obtain a BET specific surface area greater than or equal to 25 m 2 / g and preferably greater than or equal to 30 m 2 / g.
  • metakaolin is ground using a grinder.
  • the mill used can be a ring mill or a ball mill.
  • the load elements (that is to say the metakaolin and the fly ash) are ground in order to obtain a BET specific surface area greater than or equal to 25 m 2 / g and preferably greater than or equal to 30 m 2 / g.
  • metakaolin In the case of a ball mill, for example a mass of 5 kg of metakaolin is introduced, which is ground for 12 hours at a speed of 39 revolutions per minute. Depending on the grinding time, different BET specific surfaces are obtained for metakaolin, some examples of which are grouped together in the following table [Table 2].
  • Table 2 illustrates the grinding of 5 kg of metakaolin by a ball mill at a speed of 39 revolutions per minute.
  • the sodium silicate solution in which the sodium hydroxide tablets are incorporated is then prepared. For example, a dose of 85.3 g of soda is incorporated per 1000 g of sodium silicate solution. The mixture is stirred until the soda tablets are completely dissolved. Then, in a kneading step, the activator mixture is kneaded with the metakaolin and the fly ash. This step allows to obtain a polymerization of the whole and therefore the geopolymer grout.
  • the mixture of metakaolin and fly ash is introduced into the activator solution.
  • the whole is then mixed enough to guarantee deflocculation of the mixture (homogeneous mixture without lumps)
  • the water is then added to the whole.
  • the addition of water makes it possible to thin the mixture so as to obtain a geopolymer grout having a fluidity at the cone of Marsh (with 10 mm diameter nozzle) between 25 seconds and 35 seconds, and for example 30 seconds.
  • water is added before mixing the whole.
  • water is added during mixing.
  • the instant during which water is added during the mixing step does not modify the rheological properties and the mechanical resistance of the geopolymer grout.
  • the added water does not participate in the polymerization of the whole. In other words, water is not a reactive component of the polymerization step. The addition of water to the mixture is therefore independent of the polymerization.
  • the assembly is then kept at rest for 90 seconds.
  • the geopolymer grout prepared has the characteristics grouped together in the following table [Table 3].
  • the geopolymer slurry has a metakaolin: fly ash: alkaline silicate solution: sodium hydroxide ratio. 1: 1: 2-3: 0.15-0.35.
  • the mass ratio is 1: 1: 2.4-2.6: 0.19-0.23.
  • the mass ratio is 1: 1: 2.489: 0.212.
  • the method of installing a structural cable mainly comprises the placement of a conduit containing at least one reinforcement as well as the tensioning of the reinforcement, then the injection of a geopolymer grout into the conduit.
  • the geopolymer grout is mixed in order to obtain sufficient fluidity, measured with a Marsh cone according to the NF EN 445 standard of between 25 seconds and 45 seconds.
  • the geopolymer grout is kneaded for 2 to 5 minutes (eg 4 minutes) with an energy of about 9 kilojoules per liter.
  • Mixing is carried out for example by a turbo-type mixer making it possible to disperse in the mixture an energy of approximately 9 kilojoules per liter.
  • This mixing is an important step of the injection process because it makes it possible to improve the fluidity in the same way, in other words to reduce the flow time measured with the Marsh cone.
  • the geopolymer mixture before turbo-mixing may have a flow time greater than 50 seconds, while the turbo-mixing described above makes it possible to reduce it to a value of between 25 and 45 seconds (viscosity values of between 0.5 and 0.9 Pa.s). These flow time values may remain greater than the usual criterion of standard NF EN 445 (time less than or equal to 25 seconds) without preventing the injection of the grout.
  • the geopolymer grout is injected into the conduit by a flexible.
  • the hose has, for example, an internal diameter greater than 25 mm.
  • the internal diameter of the hose is greater than 35 mm.
  • the hose has a length for example limited to 100 m.
  • the geopolymer grout is injected, for example, by means of a pump (nominal pressure 25 bar) with a pumping rate of between 0.5 m 3 / h and 1.5 m 3 / h.
  • the geopolymer grout remains stable (that is to say homogeneous by absence of segregation). Indeed, no bleeding is observed around and through the reinforcements constituting the cable. In comparison with a cement grout, any risk associated with a poor hydration reaction, and in particular the production of an unstable grout, is therefore avoided here.
  • After setting and hardening of the geopolymer grout one can find in cavities or bubbles a resurgence of aqueous solutions whose pH is between 13 and 13.5 and representing less than 0.5% by mass of grout.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

L'invention concerne un coulis géopolymère pour la protection des armatures de précontrainte, le coulis géopolymère comprenant du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de Γ hydroxyde de sodium et du silicate de sodium, dans lequel le rapport molaire Na2O:SiO2 du silicate de sodium est compris entre 0,40 et 0,70.

Description

Description
Titre : COULIS POUR L’INJECTION DE CABLES DE PRECONTRAINTE ET PROCEDE D’INSTALLATION D’UN CABLE COMPRENANT UN TEL COULIS Domaine technique
[0001] La présente invention concerne le domaine des armatures pour ouvrages de construction. Elle se rapporte plus particulièrement au coulis injecté dans des conduits de câbles de précontrainte et au procédé de fabrication de ce coulis ainsi qu’au procédé d’installation d’un câble de structure comprenant la mise en place d’un conduit et l’injection d’un coulis dans le conduit.
Technique antérieure
[0002] Les câbles de précontrainte sont généralement composés d’un faisceau d’armatures, le plus souvent en acier, dont la mise en tension permet d’exercer la précontrainte. Les armatures sont disposées dans un conduit tubulaire (généralement ménagé dans une gaine) rempli d’un matériau de protection après mise en tension. Les câbles de précontrainte peuvent être placés à l’intérieur (noyés dans la structure à contraindre) ou à l’extérieur du béton (les câbles sont ancrés à la structure par leurs seuls ancrages aux extrémités). Dans tous les cas, la post-contrainte du béton est obtenue en premier lieu par le bétonnage d’une structure (par exemple une poutre) comprenant un conduit (par exemple une gaine) vide d’armatures. Des armatures sont ensuite enfilées dans ce conduit puis mises en tension. Une fois la mise en tension des armatures effectuée, un coulis est injecté dans la gaine afin d’assurer la pérennité des câbles d’une part, notamment en les protégeant de la corrosion, afin de transmettre les efforts au béton de la structure, dans le cas d’une précontrainte intérieure et adhérente au béton d’autre part.
[0003] Un coulis est généralement composé d’un mélange à base de ciment et d’eau, le mélange étant suffisamment fluide pour remplir le conduit et enrober le faisceau d’armatures sans laisser de vide. Le ciment est un liant hydraulique, c’est à dire capable de faire prise dans l’eau. Un ciment classique se présente sous la forme d’une poudre très fine qui, mélangée dans l’eau, forme une pâte faisant prise et durcissant progressivement dans le temps. Un exemple de ciment classique bien connu est le ciment Portland. Le durcissement du ciment est dû à l’hydratation de certains composés minéraux. La composition de base des ciments actuels est un mélange de silicates et d’aluminates de calcium, résultant de la combinaison de la chaux (CaO) avec de la silice (S1O2), de l’alumine (AI2O3), et de l’oxyde de fer (Fe203). La chaux nécessaire est fournie par des roches calcaires, l’alumine, la silice et l’oxyde de fer par des argiles. Ces matériaux se trouvent dans la nature sous forme de calcaire, argile ou marne et contiennent, en plus des oxydes déjà mentionnés, d’autres oxydes et en particulier Fe202, l’oxyde ferrique. La suspension eau-ciment, c’est-à-dire le mélange à base de ciment et d’eau, est toujours adjuvantée pour améliorer la fluidité et retarder la prise ; ce mélange est appelé coulis de ciment.
[0004] Les observations faites sur les ouvrages montrent que la corrosion des câbles de post-tension peut se produire (éventuellement de façon précoce) aux endroits où le coulis ferait défaut (en raison de la présence de poches ou de bulles remplies d’air et/ou de solution aqueuse), la localisation de ces défauts dépendant notamment du tracé des câbles de précontrainte. Par exemple, comme ceci est illustré à la figure 1, les câbles de précontrainte 10 ont souvent un trajet de forme sinueuse comportant des points hauts 12 et des points bas 13, l’effort de précontrainte exercé par le câble 10 étant dirigé vers le bas au voisinage des points hauts et vice versa. Au niveau de ces points hauts 12, on peut observer une absence de coulis au contact des armatures du câble 10 et la présence d’air et/ou de solution aqueuse ou encore de particules moins denses que le ciment, ce qui peut favoriser la corrosion des armatures. Pour les coulis de ciment, l’absence de coulis provient d’un manque de stabilité du coulis ou d’imperfections de remplissage dans l’opération d’injection. Le manque de stabilité du coulis se traduit par un phénomène de ségrégation du coulis dans le conduit, par sédimentation (dépôt solide) ou filtration (remontée d’eau le long des armatures), qui peut entraîner en conséquence un phénomène de ressuage. Afin d’éviter ce phénomène, l’injection du coulis dans le conduit doit se faire sans entraîner ni emprisonner d’air dans le conduit, particulièrement dans les points hauts ou derrière les ancrages. En outre, le coulis, une fois durci, doit être chimiquement stable et protecteur vis-à-vis de l’acier constitutif des câbles pendant la durée de service de l’ouvrage. Par ailleurs, pour son injection, le coulis doit être suffisamment fluide pour être pompé et acheminé dans les flexibles, les conduits et doit rester stable et homogène avant et pendant la prise. Il est donc nécessaire de maîtriser le ressuage.
[0005] La fluidité du coulis est un point critique difficilement maîtrisable en raison de l’inconstance de la production du ciment, des variations climatiques durant les opérations d’injection, des pressions de mise en œuvre exercées, de la cinématique de progression du coulis dans le conduit, de la filtration au travers des armatures etc.
[0006] Plus précisément, le coulis fluide est une suspension de grains de ciment dispersés dans une grande quantité d’eau contenant des adjuvants dont les rôles sont en général de fluidifier et de retarder la prise du mélange. Le ciment fait sa prise par un phénomène d’hydratation, dont l’eau est le réactif principal, qui déclenche une réaction de cristallisation. L’eau du coulis est toujours excédentaire. En général les coulis sont dosés avec un rapport massique d’eau par rapport au ciment qui est de l’ordre de 0,34 à 0,40 alors que la teneur en eau nécessaire à l’hydratation des particules de ciment n’est que d’environ 0,17. Si la suspension est stable, l’excédent d’eau se transforme en microporosités réparties, lors de la prise, dans le matériau durci. Dans le cas contraire il se produit des effets de ségrégation par filtration et/ou par sédimentation qui provoquent des remontées d’eau dans les points hauts avant la prise, et quelquefois des remontées de particules de matières moins denses que le ciment. Lorsque cela se produit, ces particules forment dans les points hauts du tracé des câbles une accumulation de « pâte blanche » qui ne durcit pas et dont les propriétés chimiques sont différentes de celles du coulis durci. Cet effet peut être cumulé avec la présence de poches d’air et d’eau dans les points hauts si l’injection n’est pas correctement maîtrisée. C’est précisément dans ces zones de défaut d’injection que l’on peut potentiellement observer des ruptures prématurées des câbles par effet de corrosion de l’acier des armatures. En effet, l’eau en quantité relative importante, bien que nécessaire à la réaction chimique d’hydratation, présente des inconvénients tels que le ressuage ou l’accumulation de pâte blanche.
[0007] Il est par exemple connu selon le brevet EP0875636A1 une solution visant à pallier les problèmes de mauvaise injection en ajoutant des évents aux points hauts du câble, permettant à l’air et à l’eau, qui pourraient se trouver au contact des armatures, de s’échapper du conduit. Cette solution n’est toutefois pas satisfaisante car l’évacuation par l’évent nécessite plusieurs étapes ultérieures de réinjection de coulis dans le conduit. Cette solution est donc longue et difficile à mettre en œuvre. [0008] D’autres solutions connues consistent à remplacer le coulis de ciment par un substitut à ce coulis, tel que par exemple les gels inhibiteurs, les cires pétrolières ou les résines organiques. Ces substituts présentent de nombreux inconvénients comme par exemple un défaut d’adhérence entre le produit injecté et les armatures de précontrainte ou encore pour les cires la mise en œuvre à température élevée, notamment pour être dans une plage de température située au-dessus du point de fusion du substitut utilisé, et obtenir ainsi un fluide de faible viscosité et donc injectable. Cette mise en œuvre à chaud provoque en outre une contraction (ou retrait) au refroidissement du produit.
[0009] Une autre alternative consiste à remplacer le coulis de ciment par un coulis de composition alternative. Il est par exemple connu du document FR2623492A1 un coulis de ciment comprenant une charge minérale telle que par exemple du sable.
[0010] Un matériau minéral peut également être envisagé. Ce type de matériau est stable sous forme liquide et ne nécessite qu’une faible quantité d’eau en comparaison avec un coulis de ciment destiné à l’injection. Il s’agit de produits de type poly(silico-oxo-aluminate), communément appelé « géopolymère ». En raison de l’absence de ciment dans un coulis géopolymère, la réaction d’hydratation du mélange n’intervient pas dans la prise et le durcissement du coulis. On évite ainsi les problèmes dus à la présence massive d’eau dans le coulis. Ce type de matériau est connu par exemple du document FR2949227A1. Le coulis de géopolymère divulgué par ce document offre les performances rhéologiques et de résistance mécanique définie par un cahier des charges dans lequel, à 28 jours suivant sa fabrication, la résistance à la compression du coulis doit être supérieure à 30 MPa. En revanche, ce matériau, ne répond pas aux critères usuels de fluidité nécessaire pour injection du coulis. Cette fluidité est usuellement mesurée suivant un test normalisé décrit dans la norme européenne « NF EN 445 » portant sur le temps d’écoulement à travers un cône de Marsh d’un ajutage de diamètre 10 mm, qui doit rester théoriquement inférieur ou égal à 25 secondes, 5 heures après le malaxage du coulis (équivalent à une viscosité de 0,5 Pa.s).
[0011] En outre, le coulis doit pouvoir être injecté dans un conduit destiné à contenir des armatures tendues. Il est connu du document FR2713690A1 un procédé pour l’injection d’un coulis. Toutefois, ce procédé est spécifiquement élaboré pour un coulis de ciment et ne peut donc pas être utilisé pour un coulis géopolymère.
[0012] Le coulis proposé par l’invention vise donc à résoudre les problèmes rencontrés dans les coulis connus parmi ceux faisant prise, qu’il s’agisse de coulis de ciment ou de coulis géopolymère. Ainsi le coulis divulgué par la présente invention vise notamment à résoudre les problèmes qu’entraînent à la fois la présence d’eau dans le coulis de ciment, et le manque de fluidité des coulis géopolymère existants.
Résumé de l’invention
[0013] L’invention propose un coulis géopolymère pour la protection des armatures de précontrainte, le coulis géopolymère comprenant du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, dans lequel le rapport molaire Na20:Si02 du silicate de sodium est compris entre 0,40 et 0,70. En particulier, le rapport molaire Na20:Si02 du silicate de sodium est compris entre 0,51 et 0,60.
[0014] Dans le coulis géopolymère, le silicate de sodium peut en outre présenter une teneur massique en eau comprise entre 52,1% et 72,1% et le mélange activateur présenter une teneur massique en eau inférieure à 65%.
[0015] Dans le coulis géopolymère, le mélange activateur peut en outre présenter une teneur massique en eau comprise entre 40% et 65%. En particulier la teneur massique en eau est comprise entre 56% et 63%. [0016] Dans le coulis géopolymère, le rapport massique métakaolin:cendres volantes:solution alcaline de silicate:hydroxyde de sodium peut être 1:1:2-3:0,15- 0,35.
[0017] Dans le coulis géopolymère, le rapport massique métakaolin:cendres volantes:solution alcaline de silicate:hydroxyde de sodium peut en outre être 1:1:2,4-2,6:0,19-0,23.
[0018] Le coulis géopolymère peut en outre présenter un pH compris entre 13 et 14.
[0019] Le coulis géopolymère peut en outre présenter un ressuage de solution aqueuse de réaction inférieur à 0,5% de la masse totale du coulis.
[0020] Dans le coulis géopolymère, la surface spécifique BET (théorie Brunauer, Emmett et Teller) du métakaolin seul ou d’un mélange comprenant le métakaolin et les cendres volantes peut être supérieure ou égale à 25m2/g et de préférence supérieure ou égale à 30m2/g. [0021] L’invention propose aussi un procédé de fabrication d’un coulis géopolymère, le coulis géopolymère comprenant du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, le rapport molaire Na20:Si02 du silicate de sodium étant compris entre 0,40 et 0,70, dans lequel le procédé de fabrication comprend une étape d’activation au cours de laquelle le métakaolin et les cendres volantes sont activés par le mélange activateur afin d’obtenir une polymérisation de l’ensemble.
[0022] Le procédé de fabrication peut en outre comprendre une étape préalable d’homogénéisation du métakaolin et des cendres volantes. [0023] Le procédé de fabrication peut en outre comprendre une étape de malaxage au cours de laquelle le mélange activateur est malaxé avec le métakaolin et les cendres volantes.
[0024] Dans une réalisation du procédé de fabrication, on ajoute de l’eau au début de l’étape de malaxage, la quantité d’eau ajoutée étant comprise entre 1% et 4% de poids du coulis de géopolymère. L’eau ajoutée n’est utile que pour améliorer la fluidité du coulis. L’eau n’est en effet pas nécessaire à l’étape de polymérisation, ce qui réduit son utilisation à minima. Par rapport aux quantités de métakaolin, de cendres volantes et de mélange activateur requises pour la fabrication du coulis, l’eau représente ainsi une quantité marginale, évitant ainsi les risques liés à la qualité et à la stabilité lors de la prise du coulis.
[0025] Dans une réalisation du procédé de fabrication, dans une étape préalable de broyage, le métakaolin seul ou un mélange comprenant le métakaolin et les cendres volantes est broyé afin d’obtenir une surface spécifique BET supérieure ou égale à 25 m2/g et de préférence supérieure ou égale à 30 m2/g. [0026] L’invention propose aussi un procédé d’installation d’un câble de structure, comprenant :
- la mise en place d’un conduit contenant au moins une armature,
- la mise en tension de l’armature,
- l’injection d’un coulis géopolymère dans le conduit, et dans lequel le coulis géopolymère comprend du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, le rapport molaire Na20:Si02 du silicate de sodium étant compris entre 0,40 et 0,70.
[0027] Le procédé d’installation peut comprendre en outre, avant l’injection du coulis géopolymère dans le conduit, un malaxage du coulis géopolymère pendant 2 à 5 minutes avec une énergie d’environ 9 kilojoules par litre, obtenant ainsi une fluidité équivalente au cône de Marsh avec un ajutage de diamètre 10 mm comprise entre 25 secondes et 35 secondes.
[0028] Le procédé d’installation peut comprendre en outre, au cours de l’injection du coulis géopolymère dans le conduit, le recours à un flexible, le flexible ayant un diamètre interne supérieur à 25 mm et une longueur limitée à 100m.
[0029] Dans une réalisation du procédé d’installation, on pompe le coulis au cours de l’injection, le débit de pompage du coulis étant compris entre 0,5 m3/h et 1,5m3/h. [0030] Il faut remarquer que ni le procédé de fabrication du coulis géopolymère, ni le procédé d’installation ne nécessite une étape de chauffage des composants du coulis géopolymère ou du coulis en lui-même. Ces procédés peuvent être mis en œuvre à température ambiante, par opposition par exemple à l’injection de cire pétrolière qui nécessite le chauffage de la cire au-dessus de son point de fusion. De ce fait, le phénomène de retrait du coulis géopolymère après son injection est insignifiant voire inexistant.
Brève description des dessins
[0031] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : Fig. 1
[0032] [Fig. 1] est un schéma de principe illustrant un exemple de câble de précontrainte.
Description des modes de réalisation
[0033] Le coulis géopolymère selon l’invention est un matériau minéral sous forme liquide stable dont la formulation ne comprend pas ou que très peu d’eau libre. Il s’agit plus précisément d’un produit de type Poly « silico-oxo-aluminate » ou (-Si- 0-AI-0)n (pour lequel n est le degré de polymérisation). Ce coulis géopolymère est particulièrement avantageux pour la protection des câbles de précontrainte dans leur conduit. En effet, ce coulis géopolymère garantit un meilleur remplissage du conduit et un meilleur enrobage des armatures tout en n’ayant pas d’effet nocif eu égard à l’armature de précontrainte.
[0034] Le coulis géopolymère comprend principalement des poudres, qualifiées d’élément de charge, et un mélange activateur liquide. Les éléments de charge sont un métakaolin et des cendres volantes. [0035] Le métakaolin est également appelé kaolin calciné. Le métakaolin est un silicate d’alumine déshydroxylé de composition générale Al203,2SÎ202. Le métakaolin est par exemple un produit en poudre commercialisé sous la dénomination Argical 1200 ®, dont la composition est détaillée dans le tableau [Tableau 1] suivant. [0036] [Tableau 1]
Figure imgf000010_0001
Le tableau [Tableau 1] ci-dessus détaille la composition chimique du métakaolin de dénomination commerciale Argical 1200® [0037] Le métakaolin utilisé est broyé finement. Plus précisément, le métakaolin présente une surface spécifique BET supérieure à 15m2/g. Préférentiellement, la surface spécifique BET est supérieure à 25m2/g. Par exemple, la surface spécifique BET du métakaolin est supérieure à 30m2/g. Le métakaolin permet notamment d’obtenir un coulis plus lisse qu’avec un ciment classique, en limitant les dépôts de sels minéraux en surface du ciment (appelés également « efflorescences »). Par ailleurs, la finesse de broyage du métakaolin permet d’améliorer les résistances mécaniques en compression et de diminuer la viscosité du coulis géopolymère obtenu. En effet, parmi les éléments de charge, une augmentation de la part du métakaolin par rapport à la part des cendres volantes entraîne une augmentation de la résistance mécanique et de la viscosité du coulis. Le métakaolin étant de forme allongée et irrégulière tandis que les cendres volantes étant de forme sphérique, le broyage du métakaolin améliore ses propriétés d’empilement avec les cendres volantes, ce qui entraîne une augmentation de la part de métakaolin parmi les éléments de charge. En outre, le métakaolin est un composant qui nécessite peu d’énergie pour son extraction par rapport à un ciment ordinaire, ce qui rend la fabrication du coulis géopolymère écologiquement intéressante. En effet, la fabrication du métakaolin est obtenue par calcination de kaolinite (argile naturelle), qui peut être effectuée à basse température (entre 600°C et 800°C) par rapport à la fabrication d’un ciment qui nécessite une combinaison chimique d’argile et de calcaire à très haute température (de l’ordre de 1450°C).
[0038] Les cendres volantes sont des cendres volantes de classe F. Plus précisément, les cendres volantes utilisées sont issues de la combustion de charbon pulvérisé dans les chaudières des centrales thermoélectriques, par captation dans des dépoussiéreurs électrostatiques. Par exemple, les cendres volantes utilisées sont commercialisées sous la dénomination commerciale « Silicoline ® ». Les cendres volantes permettent notamment d’améliorer la maniabilité du coulis et les performances mécaniques de celui-ci à long terme.
[0039] Les cendres volantes utilisées peuvent être broyée finement. Dans ce cas, les cendres volantes présentent une surface spécifique BET supérieure à 15m2/g. Préférentiellement, la surface spécifique BET est supérieure à 25m2/g. Par exemple, la surface spécifique BET des cendres volantes est supérieure à 30m2/g. La finesse de broyage des cendres volantes permet d’améliorer les résistances mécaniques en compression du coulis géopolymère obtenu. [0040] Le mélange activateur comprend de l’hydroxyde de sodium, du silicate de sodium et de l’eau. Le mélange activateur permet d’amorcer les réactions chimiques en cassant des liaisons chimiques des éléments de métakaolin et de cendres volantes, afin de former un gel amorphe puis d’enclencher la réaction de polymérisation et de polymériser l’ensemble afin d’obtenir le géopolymère dont la structure tridimensionnelle contient la liaison Si-O-AI.
[0041] Le silicate de sodium est une solution alcaline de silicate. Plus précisément, le silicate de sodium présente un rapport molaire Na20:Si02 compris entre 0,40 et 0,70. Par exemple, le rapport molaire est compris de préférence entre 0,51 et 0,60. Par exemple, le rapport molaire est compris entre 0,55 et 0,59. Selon un autre exemple, le rapport molaire est 0,57. En outre, le silicate de sodium présente une teneur massique en eau comprise entre 52,1% et 72,1%. Par exemple, le silicate de sodium comprend 62,1% de son poids en eau.
[0042] L’hydroxyde de sodium se présente sous la forme initiale de pastilles de soude. Les pastilles de soude sont incorporées dans la solution de silicate de sodium, selon le rapport massique hydroxyde de sodium:silicate de sodium de 8,53:100. Par exemple, 85,3g de soude sont incorporés dans 1000g de solution de silicate de sodium. Le caractère basique de la soude permet d’augmenter le pH du coulis géopolymère, ce qui favorise la protection des armatures vis-à-vis de la corrosion. Par exemple, le coulis possède un pH compris entre 13 et 14. Selon un autre exemple, le coulis géopolymère présente un pH compris entre 13,3 et 13,5. Selon un exemple préférentiel, le coulis géopolymère présente un pH voisin de 13,4. Par conséquent, si le coulis doit présenter un phénomène de ressuage, qui ne sera que très limité en raison de la quantité marginale d’eau ajoutée, la solution aqueuse du ressuage présente un pH basique compris dans les gammes détaillées ci-avant. L’eau du ressuage ne provoque donc pas la corrosion des armatures. En particulier, le coulis peut présenter un ressuage de solution aqueuse inférieur à 0,5% de la masse totale du coulis.
[0043] La soude permet en outre d’obtenir des rapports molaires Na/Si ou Na/Al adéquats, ce qui permet l’obtention d’un coulis géopolymère de formulation chimique répondant aux critères recherchés.
[0044] Le mélange activateur comprend en outre de l’eau. On entend ici par eau, de l’eau qui est ajoutée en plus de l’eau entrant dans la composition de la solution de silicate de sodium. Par conséquent, l’eau décrite ici ne fait pas partie de l’eau composant le silicate de sodium et est donc exclue de la gamme 52,1% à 72,1% de teneur massique en eau du silicate de sodium exposée précédemment. L’eau ajoutée représente moins de 4% en masse totale du coulis géopolymère. Par « masse totale du coulis géopolymère », on entend la masse du coulis comprenant le métakaolin, les cendres volantes, l’hydroxyde de sodium, le silicate de sodium et l’eau ajoutée. Par exemple, l’eau ajoutée représente entre 1% et 4% de la masse totale de coulis géopolymère. Selon un autre exemple, l’eau ajoutée représente entre 1 et 2% de la masse totale du coulis géopolymère, et préférentiellement 1,86%. Selon encore un autre exemple, l’eau ajoutée représente entre 3 et 4% de la masse totale du coulis géopolymère, et préférentiellement 3,64%. Cette quantité reste marginale par rapport à la masse totale du coulis géopolymère.
[0045] Autrement dit, le mélange activateur présente une teneur massique en eau inférieure à 65%. Ici, la teneur massique en eau prend en compte l’eau contenue dans le silicate de sodium en tant que tel et l’eau ajoutée au silicate de sodium et à l’hydroxyde de sodium. Par conséquent, la teneur massique est ici un rapport entre la masse d’eau contenue dans le silicate de sodium et l’eau ajoutée sur la masse totale du mélange activateur (c’est-à-dire le silicate de sodium, l’hydroxyde de sodium et l’eau ajoutée). Par exemple, le mélange activateur présente une teneur massique en eau comprise entre 40% et 65%, et par exemple entre 56% et 63%. Par exemple, le mélange activateur présente une teneur massique en eau comprise entre 58% et 59% Selon un autre exemple, le mélange activateur présente une teneur massique en eau comprise entre 59% et 60%
[0046] Avantageusement, l’ajout d’eau au mélange activateur permet d’améliorer la fluidité du coulis géopolymère tout en ne réduisant que de façon limitée la résistance mécanique après prise et durcissement, celle-ci respectant toujours le critère selon lequel la résistance à la compression du coulis doit être supérieure à 30 MPa à 28 jours.
[0047] Le coulis de géopolymère de l’invention présente l’avantage de n’entrainer un ressuage que très limité et une meilleure homogénéité du coulis étant donné la faible quantité d’eau incorporée. Par ailleurs, cette faible quantité d’eau entraîne l’absence de filtration dans le faisceau d’armatures constitutif du câble. Il résulte également de la faible quantité d’eau ajoutée une porosité du coulis géopolymère très inférieure à une porosité du coulis cimentaire de l’art antérieur. Par exemple, la porosité du coulis géopolymère détaillé ici présente une porosité au moins six fois inférieure à la porosité d’un coulis de ciment. De plus, la progression cinétique d’injection du coulis géopolymère dans le conduit est facilitée et le coulis enrobe plus facilement les armatures que ne le fait un coulis de ciment classique, ce qui prévient l’apparition de poches (ou bulles) d’air occlus.
[0048] Le coulis géopolymère est fabriqué selon le procédé détaillé ci-après, comprenant certaines alternatives.
[0049] Dans une étape initiale, le métakaolin et les cendres volantes sont homogénéisés dans un mélangeur mécanique.
[0050] Alternativement, au préalable, le métakaolin seul (c’est-à-dire sans les cendres volantes) est broyé afin d’obtenir une surface spécifique BET supérieure ou égale à 25 m2/g et de préférence supérieure ou égale à 30 m2/g. Par exemple, le métakaolin est broyé à l’aide d’un broyeur. Le broyeur utilisé peut être un broyeur à anneaux ou un broyeur à boulets. Selon une autre alternative, les éléments de charge (c’est-à-dire le métakaolin et les cendres volantes) sont broyés afin d’obtenir une surface spécifique BET supérieure ou égale à 25 m2/g et de préférence supérieure ou égale à 30 m2/g. [0051] Dans le cas d’un broyeur à boulets, on introduit par exemple une masse de 5 kg de métakaolin, que l’on broie pendant 12h à une vitesse de 39 tours par minute. En fonction du temps de broyage, on obtient différentes surfaces spécifique BET pour le métakaolin, dont certains exemples sont regroupés dans le tableau [Tableau 2] suivant.
[0052] [Tableau 2]
Figure imgf000014_0001
Le tableau [Tableau 2] ci-dessus illustre le broyage de 5kg de métakaolin par un broyeur à boulets à une vitesse de 39 tours par minute
[0053] On prépare ensuite la solution de silicate de sodium dans laquelle les pastilles de soude sont incorporées. Par exemple, une dose de 85,3g de soude est incorporée pour 1000g de solution de silicate de sodium. Le mélange est agité jusqu’à la dissolution complète des pastilles de soude. [0054] Ensuite, dans une étape de malaxage, le mélange activateur est malaxé avec le métakaolin et les cendres volantes. Cette étape permet d’obtenir une polymérisation de l’ensemble et par conséquent le coulis géopolymère.
[0055] Plus précisément, le mélange de métakaolin et de cendres volantes est introduit dans la solution d’activateur. L’ensemble est ensuite malaxé suffisamment pour garantir une défloculation du mélange (mélange homogène sans grumeaux)
[0056] L’eau est ensuite ajoutée à l’ensemble. L’ajout d’eau permet de fluidifier le mélange de sorte à obtenir un coulis géopolymère ayant une fluidité au cône de Marsh (avec ajutage de diamètre 10 mm) comprise entre 25 secondes et 35 secondes, et par exemple 30 secondes.
[0057] Alternativement, l’eau est ajoutée avant mixage de l’ensemble. Selon une autre alternative, l’eau est ajoutée pendant le mixage. En effet, l’instant durant lequel l’eau est ajoutée au cours de l’étape de mixage ne modifie pas les propriétés rhéologiques et la résistance mécanique du coulis géopolymère. En particulier, il faut comprendre que l’eau ajoutée ne participe pas à la polymérisation de l’ensemble. En d’autres termes, l’eau n’est pas un constituant réactif de l’étape de polymérisation. L’ajout d’eau au mélange est donc indépendant de la polymérisation.
[0058] Alternativement l’ensemble est ensuite maintenu au repos pendant 90 secondes.
[0059] Puis l’ensemble est mixé pendant 60 secondes à une vitesse par exemple de 630 tours par minute. [0060] A titre d’exemple, le coulis géopolymère préparé présente les caractéristiques regroupées dans le tableau [Tableau 3] suivant.
[0061] [Tableau 3]
Figure imgf000015_0001
Le tableau [Tableau 3] ci-dessus regroupe des exemples de formulation de coulis géopolymère
[0062] Par conséquent, le coulis géopolymère présente un rapport métakaolin:cendres volantes:solution alcaline de silicate:hydroxyde de sodium de 1:1:2-3:0,15-0,35. Par exemple le rapport massique est 1:1:2,4-2,6:0,19-0,23. Préférentiellement, comme illustré dans les exemples de formulation du tableau [Tableau 3], le rapport massique est 1:1:2,489:0,212.
[0063] Des mesures rhéologiques et des tests de résistance mécanique ont été effectués sur le coulis géopolymère obtenu, selon les méthodes d’essais de la norme NF EN 445. Les résultats sont regroupés dans le tableau [Tableau 4] suivant.
[0064] [Tableau 4]
Figure imgf000016_0001
Le tableau [Tableau 4] ci-dessus regroupe des résultats de résistance à la compression et mesure de viscosité
[0065] Le procédé d’installation d’un câble de structure est à présent décrit. Le procédé d’installation comprend principalement la mise en place d’un conduit contenant au moins une armature ainsi que la mise en tension de l’armature, puis l’injection d’un coulis géopolymère dans le conduit.
[0066] Une fois le coulis géopolymère préparé selon le procédé de fabrication décrit plus haut, le coulis géopolymère est malaxé afin d’obtenir une fluidité suffisante, mesurée au cône de Marsh selon la norme NF EN 445 comprise entre 25 secondes et 45 secondes. Par exemple, le coulis géopolymère est malaxé pendant 2 à 5 minutes (par exemple 4 minutes) avec une énergie d’environ 9 kilojoules par litre. Le malaxage est réalisé par exemple par un malaxeur de type turbo permettant de disperser dans le mélange une énergie d’environ 9 kilojoules par litre. Ce malaxage est une étape importante du procédé d’injection car elle permet d’améliorer la fluidité au même titre, autrement dit de réduire le temps d’écoulement mesuré au cône de Marsh. En effet, le mélange géopolymère avant turbo-malaxage peut présenter un temps d’écoulement supérieur à 50 secondes, tandis que le turbo-malaxage décrit ci-dessus permet de l’abaisser à une valeur comprise entre 25 et 45 secondes (valeurs de viscosité comprises entre 0,5 et 0,9 Pa.s). Ces valeurs de temps d’écoulement peuvent rester supérieures au critère usuel de la norme NF EN 445 (temps inférieur ou égal à 25 secondes) sans empêcher l’injection du coulis.
[0067] Par la suite, le coulis géopolymère est injecté dans le conduit par un flexible. Le flexible possède par exemple un diamètre interne supérieur à 25 mm. De préférence, le diamètre interne du flexible est supérieur à 35 mm. En outre, le flexible présente une longueur par exemple limitée à 100m. L’injection du coulis géopolymère se fait par exemple au moyen d’une pompe (de pression nominale 25 bar) avec un débit de pompage compris entre 0,5 m3/h et 1,5m3/h.
[0068] Grâce à ce procédé d’installation, le coulis géopolymère reste stable (c’est- à-dire homogène par absence de ségrégation). En effet, aucun ressuage n’est observé autour et au travers des armatures constitutives du câble. En comparaison avec un coulis de ciment, tout risque lié à une mauvaise réaction d’hydratation, et notamment l’obtention d’un coulis instable, est donc ici évité. Après prise et durcissement du coulis géopolymère, on peut retrouver dans des cavités ou bulles une résurgence de solutions aqueuses dont le pH est compris entre 13 et 13.5 et représentant moins de 0.5% en masse de coulis. On retrouve dans la composition de ces solutions les principaux éléments chimiques issus des différents composants (ions sodium Na+, sulfates SO42', silicate H2SÏ042 , et aluminates AI(OH)4 )> ceux-ci ne présentant pas de risque vis-à-vis de la protection contre la corrosion des armatures. Par ailleurs, le volume d’air résiduel dans le conduit est six fois inférieur à celui d’un coulis de ciment classique. Il a également été observé que lorsque le conduit dans lequel est injecté le coulis géopolymère est incliné, le coulis géopolymère progresse avec un front peu décalé entre les parties supérieure et inférieure du conduit.

Claims

Revendications
[Revendication 1] Coulis géopolymère pour la protection des armatures de précontrainte, le coulis géopolymère comprenant du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, dans lequel le rapport molaire Na20:Si02 du silicate de sodium est compris entre 0,40 et 0,70.
[Revendication 2] Coulis géopolymère selon la revendication 1 , le silicate de sodium ayant une teneur massique en eau comprise entre 52,1% et 72,1% et le mélange activateur ayant une teneur massique en eau inférieure à 65%.
[Revendication 3] Coulis géopolymère selon la revendication 2, dans lequel le mélange activateur a une teneur massique en eau comprise entre 40% et 65%.
[Revendication 4] Coulis géopolymère selon l’une quelconque des revendications précédentes dans lequel le rapport massique métakaolin:cendres volantes:solution alcaline de silicate:hydroxyde de sodium est 1:1:2-3:0,15-0,35. [Revendication 5] Coulis géopolymère selon l’une quelconque des revendications précédentes dans lequel le coulis présente un ressuage de solution aqueuse inférieur à 0,
5% de la masse totale du coulis.
[Revendication 6] Coulis géopolymère selon l’une quelconque des revendications précédentes dans lequel le coulis présente un pH compris entre 13 et 14.
[Revendication 7] Coulis géopolymère selon l’une quelconque des revendications précédentes dans lequel la surface spécifique BET du métakaolin seul ou d’un mélange comprenant le métakaolin et les cendres volantes est supérieure ou égale à 25m2/g et de préférence supérieure ou égale à 30m2/g.
[Revendication 8] Procédé de fabrication d’un coulis géopolymère, le coulis géopolymère comprenant du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, le rapport molaire Na20:Si02 du silicate de sodium étant compris entre 0,40 et 0,70, dans lequel le procédé de fabrication comprend une étape d’activation au cours de laquelle le métakaolin et les cendres volantes sont activés par le mélange activateur afin d’obtenir une polymérisation de l’ensemble.
[Revendication 9] Procédé de fabrication selon la revendication 8 comprenant en outre une étape préalable d’homogénéisation du métakaolin et des cendres volantes.
[Revendication 10] Procédé de fabrication selon la revendication 8 ou 9 comprenant en outre une étape de malaxage au cours de laquelle le mélange activateur est malaxé avec le métakaolin et les cendres volantes.
[Revendication 11] Procédé de fabrication selon la revendication 10 dans lequel on ajoute de l’eau au début de l’étape de malaxage, la quantité d’eau ajoutée étant comprise entre 1 % et 4% de poids du coulis de géopolymère.
[Revendication 12] Procédé de fabrication selon l’une quelconque des revendications 8 à 11, dans lequel, dans une étape préalable de broyage, le métakaolin seul ou un mélange comprenant le métakaolin et les cendres volantes est broyé afin d’obtenir une surface spécifique BET supérieure ou égale à 25 m2/g et de préférence supérieure ou égale à 30 m2/g.
[Revendication 13] Procédé d’installation d’un câble de structure, comprenant :
- la mise en place d’un conduit contenant au moins une armature,
- la mise en tension de l’armature,
- l’injection d’un coulis géopolymère dans le conduit, et dans lequel le coulis géopolymère comprend du métakaolin, des cendres volantes et un mélange activateur, le mélange activateur comprenant de l’hydroxyde de sodium et du silicate de sodium, le rapport molaire Na20:Si02 du silicate de sodium étant compris entre 0,40 et 0,70.
[Revendication 14] Procédé d’installation selon la revendication 13, comprenant, avant l’injection du coulis géopolymère dans le conduit, un malaxage du coulis géopolymère pendant 2 à 5 minutes avec une énergie d’environ 9 kilojoules par litre, obtenant ainsi une fluidité au cône de Marsh avec un ajutage de diamètre 10 mm comprise entre 25 secondes et 35 secondes.
[Revendication 15] Procédé d’installation selon l’une quelconque des revendications 13 ou 14 dans lequel, au cours de l’injection, on injecte le coulis géopolymère dans le conduit par un flexible, le flexible ayant un diamètre interne supérieur à 25 mm et une longueur limitée à 100m. [Revendication 16] Procédé selon la revendication 15 dans lequel on pompe le coulis au cours de l’injection, le débit de pompage du coulis étant compris entre 0,5 m3/h et 1,5m3/h.
PCT/FR2021/051007 2020-06-05 2021-06-03 Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis WO2021245359A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US18/000,734 US20230212073A1 (en) 2020-06-05 2021-06-03 Grout for the injection of prestressing cables and method for installing a cable comprising such a grout
AU2021283736A AU2021283736A1 (en) 2020-06-05 2021-06-03 Grout for the injection of prestressing cables and method for installing a cable comprising such a grout
CA3185982A CA3185982A1 (fr) 2020-06-05 2021-06-03 Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis
EP21737703.5A EP4161883A1 (fr) 2020-06-05 2021-06-03 Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis
JP2022574586A JP2023529635A (ja) 2020-06-05 2021-06-03 プレストレスケーブルの注入用グラウト及びそのようなグラウトを含むケーブルの設置方法
KR1020237000246A KR20230021698A (ko) 2020-06-05 2021-06-03 프리스트레싱 케이블 주입용 그라우트 및 이러한 그라우트를 포함하는 케이블 설치 방법
MX2022015389A MX2022015389A (es) 2020-06-05 2021-06-03 Lechada para la inyeccion de cables de pre-tension y metodo para instalar un cable que comprende dicha lechada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005925 2020-06-05
FR2005925A FR3111134B1 (fr) 2020-06-05 2020-06-05 Coulis pour l’injection de cables de precontrainte et procede d’installation d’un cable comprenant un tel coulis

Publications (1)

Publication Number Publication Date
WO2021245359A1 true WO2021245359A1 (fr) 2021-12-09

Family

ID=73401577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051007 WO2021245359A1 (fr) 2020-06-05 2021-06-03 Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis

Country Status (9)

Country Link
US (1) US20230212073A1 (fr)
EP (1) EP4161883A1 (fr)
JP (1) JP2023529635A (fr)
KR (1) KR20230021698A (fr)
AU (1) AU2021283736A1 (fr)
CA (1) CA3185982A1 (fr)
FR (1) FR3111134B1 (fr)
MX (1) MX2022015389A (fr)
WO (1) WO2021245359A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710011A1 (de) * 1977-03-08 1978-09-14 Schaefer Horst Verfahren zur herstellung von spannbetonkonstruktionen mit nachtraeglichem verbund
FR2623492A1 (fr) 1987-11-23 1989-05-26 Electricite De France Perfectionnements aux mortiers injectables
FR2713690A1 (fr) 1993-12-10 1995-06-16 Freyssinet Int Stup Perfectionnements aux procédés et dispositifs de mise en Óoeuvre des coulis de ciment à injecter dans des gaines de précontrainte.
EP0673897A1 (fr) * 1994-03-21 1995-09-27 Rhone-Poulenc Chimie Coulis d'injection pour enrober une armature, notamment une armature de précontrainte
EP0875636A1 (fr) 1997-05-02 1998-11-04 Freyssinet International (Stup) Câble de précontrainte, et élément de gaine pour un tel câble
DE202004007409U1 (de) * 2004-05-08 2005-09-15 Dywidag Systems Int Gmbh Korrosionsgeschütztes Zugglied, insbesondere Spannglied für Spannbeton ohne Verbund
WO2011020975A2 (fr) * 2009-08-21 2011-02-24 Laboratoire Central Des Ponts Et Chaussees Ciment geopolymerique et son utilisation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710011A1 (de) * 1977-03-08 1978-09-14 Schaefer Horst Verfahren zur herstellung von spannbetonkonstruktionen mit nachtraeglichem verbund
FR2623492A1 (fr) 1987-11-23 1989-05-26 Electricite De France Perfectionnements aux mortiers injectables
FR2713690A1 (fr) 1993-12-10 1995-06-16 Freyssinet Int Stup Perfectionnements aux procédés et dispositifs de mise en Óoeuvre des coulis de ciment à injecter dans des gaines de précontrainte.
EP0673897A1 (fr) * 1994-03-21 1995-09-27 Rhone-Poulenc Chimie Coulis d'injection pour enrober une armature, notamment une armature de précontrainte
EP0875636A1 (fr) 1997-05-02 1998-11-04 Freyssinet International (Stup) Câble de précontrainte, et élément de gaine pour un tel câble
DE202004007409U1 (de) * 2004-05-08 2005-09-15 Dywidag Systems Int Gmbh Korrosionsgeschütztes Zugglied, insbesondere Spannglied für Spannbeton ohne Verbund
WO2011020975A2 (fr) * 2009-08-21 2011-02-24 Laboratoire Central Des Ponts Et Chaussees Ciment geopolymerique et son utilisation
FR2949227A1 (fr) 2009-08-21 2011-02-25 France Etat Ponts Chaussees Ciment geopolymetrique et son utilisation

Also Published As

Publication number Publication date
AU2021283736A1 (en) 2023-01-19
JP2023529635A (ja) 2023-07-11
CA3185982A1 (fr) 2021-12-09
FR3111134B1 (fr) 2023-06-30
KR20230021698A (ko) 2023-02-14
US20230212073A1 (en) 2023-07-06
FR3111134A1 (fr) 2021-12-10
EP4161883A1 (fr) 2023-04-12
MX2022015389A (es) 2023-03-15

Similar Documents

Publication Publication Date Title
EP2467349B1 (fr) Ciment geopolymerique et son utilisation
EP2162410B1 (fr) Systeme bicomposant a base de ciment alumineux retarde a declenchement instantane
EP0934915B1 (fr) Béton très haute performance, autonivelant, son procédé de preparation et son utilisation
FR2881424A1 (fr) Beton arme de fibres et procede de fabrication d'un element en beton arme de fibres
CA2276714C (fr) Laitier de cimentation d'un puits, notamment d'un puits petrolier
FR3097859A1 (fr) Composition de liant pour matériau de construction
CA2634225C (fr) Melange refractaire autocoulable
CA2743556C (fr) Utilisation d'au moins un ether de cellulose pour reduire le retrait et/ou la fissuration plastique dans le beton
EP0886628B1 (fr) Suspensions aqueuses de silice et leurs applications dans les compositions a base de liant mineral
FR2975096A1 (fr) Procede de cure d'un beton permeable
WO2021245359A1 (fr) Coulis pour l'injection de cables de precontrainte et procede d'installation d'un cable comprenant un tel coulis
CA3115397A1 (fr) Projection de bfuhp a des fins de renforcement et de regeneration de structures preexistantes
CN115259791A (zh) 一种火山灰基耐酸混凝土及其制备方法
EP3596025A1 (fr) Agent de cure pour formulation cimentaire
FR2785604A1 (fr) Composition de beton pret a l'emploi resistant a une temperature de 1 000°c
WO2023105071A1 (fr) Procede de fabrication d'un mortier
FR3055133A1 (fr) Composition de liant pour un beton de faible densite, tel qu'un beton de chanvre, et beton correspondant
FR2805533A1 (fr) Composition prete a l'emploi d'un beton resistant a une temperature de 1000°c
FR3130269A1 (fr) Béton à faible dosage en ciment
EP4118057A1 (fr) Fabrication d'un mur par projection par voie seche d'une composition comprenant de la terre crue
EP0818426A1 (fr) Procédé de prolongation de l'effet protecteur à long terme, d'une composition à base de ciment, vis-à-vis de la corrosion d'aciers inclus et produit permettant cette prolongation
FR2746096A1 (fr) Utilisation de suspensions aqueuses de silice ou de silicoaluminate dans des compositions de beton
FR2740445A1 (fr) Additif pour controler la sedimentation des conglomerats
FR2904972A1 (fr) Composition a prise hydraulique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21737703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574586

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3185982

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237000246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021737703

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021737703

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022134231

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2021283736

Country of ref document: AU

Date of ref document: 20210603

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 522441604

Country of ref document: SA