WO2021244612A1 - 可穿戴设备 - Google Patents

可穿戴设备 Download PDF

Info

Publication number
WO2021244612A1
WO2021244612A1 PCT/CN2021/098164 CN2021098164W WO2021244612A1 WO 2021244612 A1 WO2021244612 A1 WO 2021244612A1 CN 2021098164 W CN2021098164 W CN 2021098164W WO 2021244612 A1 WO2021244612 A1 WO 2021244612A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal frame
wearable device
metal
antenna
frame
Prior art date
Application number
PCT/CN2021/098164
Other languages
English (en)
French (fr)
Inventor
赵安平
刘德华
Original Assignee
安徽华米信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021019018.3U external-priority patent/CN212412191U/zh
Priority claimed from CN202010506277.7A external-priority patent/CN111613872A/zh
Application filed by 安徽华米信息科技有限公司 filed Critical 安徽华米信息科技有限公司
Priority to EP21817560.2A priority Critical patent/EP4138214A4/en
Publication of WO2021244612A1 publication Critical patent/WO2021244612A1/zh
Priority to US17/990,461 priority patent/US11764460B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • G04R60/06Antennas attached to or integrated in clock or watch bodies
    • G04R60/10Antennas attached to or integrated in clock or watch bodies inside cases
    • G04R60/12Antennas attached to or integrated in clock or watch bodies inside cases inside metal cases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present disclosure relates to the technical field of electronic devices, and in particular to a wearable device.
  • smart wearable devices are welcomed by more and more users due to their diverse functions.
  • smart watches In addition to basic timing functions, smart watches generally integrate many functions such as exercise assistance, trajectory positioning, connection with smart terminals, and calls. These functions need to rely on the built-in antenna of the watch to achieve. Therefore, how to improve the antenna performance of wearable devices has always been one of the most important research directions.
  • a wearable device is provided in the embodiment of the present disclosure.
  • a wearable device including:
  • a metal frame is provided on the side of the wearable device, and the gap between the metal frame and the main board of the wearable device forms an antenna of the wearable device;
  • the metal face frame is arranged on the front edge of the wearable device.
  • the metal face frame and the metal frame are electrically connected by a plurality of connecting parts, and any two adjacent connecting parts are in the first side.
  • the upward distance is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna of the wearable device, and the first direction is the circumferential direction of the metal frame.
  • the metal frame and the metal face frame have a ring shape
  • the first direction is the circumferential direction of the metal frame
  • the distance between two adjacent connecting parts in the first direction is all The arc length corresponding to the two adjacent connecting parts.
  • the plurality of connecting parts are uniformly arranged in the first direction.
  • an insulating filling structure is filled between the metal frame and the metal surface frame.
  • the antenna of the wearable device includes at least one of the following:
  • Bluetooth antenna satellite positioning antenna, WiFi antenna, LTE antenna or 5G antenna.
  • an assembly step is provided on one side edge of the metal frame close to the metal frame, and the edge of the metal frame is formed with lugs protruding toward the metal frame, and the metal frame The lugs are sleeved on the assembling step of the metal frame.
  • the connecting portion is a metal elastic piece, one end of the metal elastic piece is fixed on the metal frame, and the other end of the metal elastic piece elastically abuts against the lug of the metal frame On the inner wall.
  • an assembling hole is opened on the metal frame, and the one end of the metal elastic piece is fixed in the assembling hole.
  • the one end of the metal shrapnel is welded to the metal frame.
  • the connecting portion is a buckle integrally formed on the assembling step, and the buckle faces one side of the lug of the metal frame, and is formed with the lug. Protrusions abutting on the inner side wall.
  • the wearable device is a smart watch or a smart bracelet.
  • the wearable device provided by the embodiments of the present disclosure includes a metal frame and a metal face frame.
  • the metal frame is arranged on the side of the device, and the gap between the metal frame and the main board of the wearable device forms the antenna of the wearable device, and the metal face frame It is set around the front edge of the device, and the metal frame and the metal frame are electrically connected through multiple connecting parts, so that the frame and the frame are electrically connected at a certain position, and the consistency of the antenna is improved, even if the frame and the frame are in During use, some additional electrical contacts with uncertain positions will not affect the antenna performance.
  • the distance between any two adjacent connecting portions in the first direction is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • the length of the slot for generating electromagnetic resonance is required to be at least 1/4 of the resonance wavelength, if the distance between any two adjacent connections is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna, it can be effectively avoided. Clutter interference greatly improves the antenna's radiation performance.
  • Figure 1 is a schematic diagram of the structure of a smart watch in the related art.
  • Fig. 2 is a schematic cross-sectional structure diagram of the smart watch of Fig. 1.
  • Fig. 3 is a schematic diagram of the structure of a reference antenna.
  • Figure 4 is the return loss curve of the reference antenna.
  • FIG. 5 is a schematic diagram of the structure of the reference antenna when there is an electrical connection point between the metal frame and the metal surface frame.
  • Fig. 6 is a graph of the return loss of the reference antenna in the case of Fig. 5.
  • Fig. 7 is a curve diagram of the return loss of the reference antenna when there are four electrical connection points between the metal frame and the metal face frame.
  • Fig. 8 is a graph showing the return loss of the reference antenna when there are six electrical connection points between the metal frame and the metal face frame.
  • FIGS 9A to 9B are schematic diagrams of the structure of the connecting portion according to some embodiments of the present disclosure.
  • 10A to 10B are schematic diagrams of the structure of the connecting portion according to other embodiments of the present disclosure.
  • FIG. 11A to 11B are schematic diagrams of the structure of the connecting portion according to still other embodiments of the present disclosure.
  • the wearable device provided by the embodiments of the present disclosure can be applied to any device type suitable for implementation, such as wrist-worn devices represented by smart watches and smart bracelets; and, for example, headsets represented by smart glasses and smart earphones Type equipment; another example is wearable equipment represented by smart clothing; etc.
  • a wearable device is taken as an example of a smart watch.
  • those skilled in the art should understand that the following embodiments are also applicable to other types of wearable devices, and the present disclosure does not limit this.
  • Figures 1 and 2 show the structure of a smart watch in the related art.
  • the exterior part of the smart watch includes a metal frame 100 and a metal face frame 200.
  • the metal frame 100 is a ring-shaped metal middle frame, which is set on the side of the watch.
  • the metal frame 100 is not only used as the housing structure of the watch, but also needs to cooperate with the main board of the device to form a slot antenna structure.
  • antennas such as Bluetooth, satellite positioning, WiFi, and calls, all of which require a built-in antenna to radiate electromagnetic wave signals.
  • antennas such as Bluetooth, satellite positioning, WiFi, and calls, all of which require a built-in antenna to radiate electromagnetic wave signals.
  • the gap between the metal frame 100 and the main board of the watch is generally used to form an antenna structure.
  • a ground point is set on the metal middle frame and connected to the feed module on the main board to form a corresponding antenna structure. .
  • the metal face frame 200 has two main functions in the smart watch:
  • the screen 300 and the metal frame 100 need to be fixedly assembled through steps, and the part of the steps supporting the edge of the screen 300 cannot be used as a display area, and appears as a "black border” in the appearance of the watch.
  • "black borders” are undoubtedly unacceptable to users and manufacturers are committed to removing them.
  • the metal frame 200 By setting the metal frame 200 at the position of the "black border”, the appearance of the metal can be used to block the "black border” structure, which greatly improves the appearance texture and enhances the user experience.
  • the metal face frame 200 is used as an annular outer ring, and various functions can be set on the metal face frame 200, such as adding a time scale as a watch indicating scale; and for example, adding various scales as a scale Additional functions of the watch; for example, setting up various decorative structures and patterns as the appearance of the watch; etc.
  • the metal frame 200 and the metal frame 100 are filled with an adhesive to achieve a fixed connection.
  • the inventor of the present case found that the antenna consistency and performance of the smart watch with the metal face frame 200 is poor.
  • the gap is filled with adhesive and other dielectric materials to achieve electrical isolation, in the actual use of the watch, for example, when a part of the metal frame 200 is squeezed, the metal frame 200 and the metal frame 100 will be out of position.
  • Fixed single-point or multi-point electrical contacts, single-point electrical contacts and multi-point electrical contacts with larger spacing will destroy the original antenna performance, thereby affecting the function of the entire watch system.
  • the antenna structure in this example is called the "reference antenna".
  • the reference antenna can be a relatively wide-band antenna. Those skilled in the art can understand the structure and working principle of this antenna, and will not be repeated here.
  • FIG. 4 shows a graph of the return loss (S-parameter) of the reference antenna without the metal frame 200.
  • FIG. 6 shows a graph of the return loss of the reference antenna as the electrical contact point P1 of the metal frame 200 and the metal frame 100 rotates.
  • the main inventive idea of the present disclosure is that the metal frame 100 and the metal face frame 200 are realized by multiple connecting parts.
  • the electrical connection enables the face frame and the frame to be electrically connected at a certain position, and optimizes the number and position of electrical connection points to improve the consistency and performance of the antenna, even if the frame and the face frame produce some additional problems during use.
  • the location of the electrical contacts will not affect the antenna performance.
  • the wearable device still uses the smart watch shown in FIG. 1 as an example.
  • the smart watch includes a ring-shaped metal frame 100 and a ring-shaped metal frame 200.
  • the metal frame 100 is set on the side of the watch. 100 acts as a radiator of the antenna, and the gap between the metal frame 100 and the main board of the wearable device forms the antenna of the wearable device.
  • the metal face frame 200 is arranged around the front edge of the watch, and the metal face frame 200 and the metal frame 100 are electrically connected through a plurality of connecting parts.
  • the distance between any two adjacent connecting parts in the first direction is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna, and the first direction is the direction in which the metal frame 100 makes a circle, that is, The first direction is the circumferential direction of the metal frame 100.
  • the function of the connecting portion is to enable the metal frame 200 and the metal frame 100 to be electrically connected at the position of the connecting portion, for example, the connecting portion may be arranged in the gap between the two. Metal pieces.
  • the specific structure and implementation of the connecting portion will be described in detail in the following embodiments, and will not be shown here for the time being.
  • wavelength corresponding to the highest operating frequency of the antenna means that for watches, its antennas often include multiple antennas, such as Bluetooth antennas, satellite positioning antennas, etc.
  • the electromagnetic wave operating frequencies of these antennas are different, and the “highest operating frequency”
  • the “wavelength corresponding to frequency” refers to the antenna wavelength with the highest operating frequency among these antennas. This will be explained in detail below, and will not be listed here.
  • the “first direction” refers to the circumferential direction of the metal frame 100.
  • the “first direction” is the circumferential direction of the metal frame 100
  • the “distance in the first direction” is the arc length of the surface of the metal frame 100 on which the connecting portion is provided.
  • the wearable device realizes the electrical connection between the metal frame 200 and the metal frame 100 by providing multiple connection parts between the metal frame 200 and the metal frame 100, so that the metal frame The frame 200 and the metal frame 100 are electrically connected at a certain position to ensure the consistency of the antenna. Even if the metal frame 100 and the metal frame 200 produce some additional electrical contact points with uncertain positions during use, the antenna will not be affected. performance. In addition, the distance between any two adjacent connecting portions in the first direction is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • the length of the slot for generating electromagnetic resonance is required to be at least 1/4 of the resonant wavelength, when the distance between any two adjacent connections is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna, it can be effectively avoided. Clutter interference greatly improves the antenna's radiation performance.
  • the wearable device of the present disclosure mainly includes two design ideas: one is the number and position distribution of electrical connection points (ie, connection parts); the other is a specific structure for realizing electrical connections.
  • connection points ie, connection parts
  • connection parts ie, connection parts
  • connection parts ie, connection parts
  • the two points will be described in detail below in conjunction with a specific embodiment.
  • the slot length is at least 1/4 of the resonant wavelength, such as a slot antenna with an opening at one end of the 1/4 wavelength, 1/2 Wavelength slot antenna, etc.
  • C is the speed of light. It can be seen that the higher the operating frequency f, the smaller the wavelength ⁇ , and the smaller the required gap length. In other words, among the multiple antennas of the watch, as long as it is ensured that no clutter is generated at the highest operating frequency, it can satisfy the antennas of other operating frequencies.
  • the arc length of the slot formed by two adjacent connecting parts should be ensured to be less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • the largest arc length is less than that corresponding to the highest operating frequency of the antenna. 1/4 of the wavelength.
  • the multiple connecting parts are evenly distributed in the first direction, it is sufficient to ensure that the arc length of each slot is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • the most reasonable form of electrical connection distribution is uniform distribution. Therefore, in this embodiment, the plurality of connection portions are uniformly distributed in the first direction. Thus, according to the diameter or circumference of the watch, the number of connecting parts can be determined.
  • the number of connecting parts is 4, and they are evenly distributed in the circumferential direction.
  • Figure 7 shows the return loss curve of the antenna in this example.
  • the four connecting parts are still rotated in a clockwise direction at different angles (0°, 30°, 60°), so as to obtain a graph as shown in FIG. 7.
  • Fig. 7 can improve the consistency and performance of the antenna in the range where the operating frequency is lower than 2.3 GHz, it is not enough for the design of the smart watch.
  • a smart watch generally includes a Bluetooth antenna, a WiFi antenna, and a satellite positioning antenna.
  • the central operating frequency of the Bluetooth antenna and the WiFi antenna is 2.4 GHz
  • the general civilian central operating frequency of the satellite positioning antenna (GPS antenna) is 1.575 GHz.
  • the Bluetooth antenna with the highest operating frequency its wavelength in the air is about 125mm, and its quarter wavelength is about 30mm.
  • the four connecting parts are evenly distributed, and the arc length between two adjacent connecting parts is about 40mm. That is, the distance between two adjacent connecting parts is 40 mm, which is greater than 1/4 (30 mm) of the wavelength corresponding to the highest operating frequency. Therefore, for Bluetooth and WiFi antennas with a frequency of 2.4 GHz, clutter will still be generated.
  • the arc length between two adjacent connecting parts which is less than 1/4 of the wavelength corresponding to the highest operating frequency.
  • the arc length between two adjacent connecting parts is made less than 30mm, it can be ensured that the antenna has better consistency and performance in the frequency band below 2.4GHz. That is, at least 6 connecting parts are provided on the circumference of the metal frame 100. When the 6 connecting parts are evenly arranged, the arc length between two adjacent connecting parts is about 26mm, which can fully meet the requirements.
  • the metal frame 100 and the metal face frame 200 are electrically connected through the connecting portion.
  • the distance between two adjacent connecting parts has met the design requirements. Therefore, even if the metal frame 200 is pressed, the metal frame 200 and the metal frame 100 have more electrical connection points, which is equivalent to increasing the number of electrical connection points on the basis of this embodiment. It can be seen from the above principle that the same is not true. It will affect the performance of the antenna and still have the effect described in this embodiment.
  • the core inventive concept of the embodiments of the present disclosure is to set the distance between any two adjacent connecting portions in the first direction to be less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • wearable devices can also include 4G LTE antennas (0.7GHz ⁇ 2.69GHz), WiFi 5.8GHz antennas, 5G n77 (3.3GHz ⁇ 4.2GHz) antennas, etc.
  • 4G LTE antennas 0.7GHz ⁇ 2.69GHz
  • WiFi 5.8GHz antennas 5G n77 (3.3GHz ⁇ 4.2GHz) antennas, etc.
  • the metal frame 100 and the metal face frame 200 are buckled with the assembling boss.
  • the metal frame 100 is provided with a ring of assembly steps, and the edge of the metal frame 200 is formed with a ring of lugs, so that the cooperation of the lugs and the assembly steps can be used to realize the assembly of the metal frame 200 and the metal frame 100.
  • the assembly gap between the two needs to be filled with insulating adhesive to form a filling structure.
  • the filling structure can insulate the two, and on the other hand, it can realize the bonding and fixing between the two.
  • the connecting portion in the embodiment of the present disclosure may be arranged in the abutting gap between the metal frame 200 and the metal frame 100, and an electrical connection point is formed by the connecting portion, so that the two are electrically connected.
  • the connecting portion 500 is 6 metal shrapnel evenly arranged on the metal frame 100.
  • the metal frame 100 For example, six assembly holes are opened on the metal frame 100, and each metal elastic piece is installed in a corresponding assembly hole.
  • This electrical connection method is suitable for the metal frame 100 of titanium alloy and aluminum alloy which is not easy to be welded.
  • the connecting portion 500 is also 6 metal shrapnels uniformly arranged on the metal frame 100.
  • the difference between FIGS. 10A and 10B and FIGS. 9A and 9B is that one end of the metal elastic sheet is fixedly connected to the metal frame 100 by welding, and the other end is elastically abutted on the inner side wall of the lug of the metal frame 200.
  • This electrical connection method is suitable for a stainless steel metal frame 100 that is easy to be welded.
  • the direction of the elastic force exerted by the metal shrapnel on the metal face frame 200 is outward in the radial direction of the watch, so that after the metal face frame 200 is assembled with the metal frame 100, the metal shrapnel can also be applied radially outward.
  • the force makes the assembly of the metal frame 200 stronger, and at the same time makes the electrical connection between the metal frame 200 and the metal frame 100 more stable.
  • the structure of the connecting portion is shown in FIGS. 11A and 11B, and the connecting portion is a buckle 510 integrally formed on the assembling step of the metal frame 100, and the six buckles 510 are evenly distributed on the metal frame 100.
  • a protrusion 520 is formed on the side wall of the buckle 510 facing the lug of the metal frame 200, so that after the metal frame 200 is assembled with the metal frame 100, the protrusion 520 abuts against the lug of the metal frame 200 On the inner side wall, the electrical connection between the two is realized.
  • This electrical connection method is applicable to any metal frame 100 made of metal.
  • the wearable device is described by taking a smart watch as an example, but the wearable device of the present disclosure is not limited to a smart watch, and may also be any other wearable device suitable for implementation. This is not restricted.
  • the wearable device realizes the electrical connection between the metal frame 200 and the metal frame 100 by providing multiple connection parts between the metal frame 200 and the metal frame 100, so that the metal frame The frame 200 and the metal frame 100 are electrically connected at a certain position to ensure the consistency of the antenna. Even if the metal frame 100 and the metal frame 200 produce some additional electrical contact points with uncertain positions during use, the antenna will not be affected. performance. In addition, the distance between any two adjacent connecting portions in the first direction is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna.
  • the length of the slot for generating electromagnetic resonance is required to be at least 1/4 of the resonant wavelength, when the distance between any two adjacent connections is less than 1/4 of the wavelength corresponding to the highest operating frequency of the antenna, it can be Effectively avoid clutter interference and greatly improve the antenna's radiation performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Support Of Aerials (AREA)

Abstract

本公开提供了一种可穿戴设备,包括:金属边框,所述金属边框和可穿戴设备的主板之间的缝隙,形成可穿戴设备的天线;和金属面框,所述金属面框和所述金属边框之间通过多个连接部电性连接,任意相邻的两个所述连接部在第一方向上的距离,小于所述可穿戴设备的天线的最高工作频率对应的波长的1/4,所述第一方向为所述金属边框的周向方向。

Description

可穿戴设备 技术领域
本公开涉及电子设备技术领域,具体涉及一种可穿戴设备。
背景技术
随着电子设备的发展,智能可穿戴设备由于其功能多样受到越来越多用户的欢迎。以智能手表为例,智能手表除了基本的计时功能,一般还集成有运动辅助、轨迹定位、与智能终端连接以及通话等众多功能。这些功能都需要依靠手表内置的天线来实现。因此,如何提高可穿戴设备的天线性能一直是最为重要的研究方向之一。
发明内容
本公开实施方式中提供了一种可穿戴设备。
第一方面,本公开实施方式提供了一种可穿戴设备,包括:
金属边框,设于所述可穿戴设备的侧面,所述金属边框和所述可穿戴设备的主板之间的缝隙,形成所述可穿戴设备的天线;和
金属面框,设于所述可穿戴设备的正面边缘,所述金属面框和所述金属边框之间通过多个连接部电性连接,任意相邻的两个所述连接部在第一方向上的距离,小于所述可穿戴设备的天线的最高工作频率对应的波长的1/4,所述第一方向为所述金属边框的周向方向。
在一些实施方式中,所述金属边框和所述金属面框具有环形形状,所述第一方向为所述金属边框的圆周方向,相邻的两个连接部在第一方向上的距离为所述相邻的两个连接部之间所对应的弧长。
在一些实施方式中,所述多个连接部在所述第一方向上均匀设置。
在一些实施方式中,所述金属边框和所述金属面框之间填充有绝缘的填充结构。
在一些实施方式中,所述可穿戴设备的天线包括以下中至少之一:
蓝牙天线、卫星定位天线、WiFi天线、LTE天线或5G天线。
在一些实施方式中,所述金属边框靠近所述金属面框的一侧边缘设置有装配台阶, 所述金属面框的边缘成型有朝向所述金属边框凸出的凸耳,所述金属面框通过所述凸耳套设于所述金属边框的所述装配台阶上。
在一些实施方式中,所述连接部为金属弹片,所述金属弹片的一端固设于所述金属边框上,所述金属弹片的另一端弹性抵接在所述金属面框的所述凸耳的内侧壁上。
在一些实施方式中,所述金属边框上开设有装配孔,所述金属弹片的所述一端固设于所述装配孔中。
在一些实施方式中,所述金属弹片的所述一端焊接于所述金属边框上。
在一些实施方式中,所述连接部为一体成型于所述装配台阶上的卡扣,所述卡扣朝向所述金属面框的所述凸耳的一侧,成型有与所述凸耳的内侧壁抵接的凸起。
在一些实施方式中,所述可穿戴设备为智能手表或智能手环。
本公开实施方式提供的可穿戴设备,包括金属边框和金属面框,金属边框设于设备侧面一周,并且金属边框和可穿戴设备的主板之间的缝隙形成可穿戴设备的天线,而金属面框设于设备正面边缘一周,金属面框和金属边框之间通过多个连接部电性连接,使得面框和边框在确定的位置实现电性连接,提高天线的一致性,即使边框和面框在使用过程中产生一些额外的不确定位置的电接触点也不会影响天线性能。并且任意相邻的两个连接部在第一方向上的距离小于天线最高工作频率对应的波长的1/4。由于产生电磁波谐振的缝隙长度要求至少为谐振波长的1/4,因此如果任意相邻的两个连接部之间的距离都小于天线最高工作频率对应的波长的1/4,就可以有效避免产生杂波干扰,大大提高天线的辐射性能。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中智能手表的结构示意图。
图2是图1智能手表的剖面结构示意图。
图3是参考天线的结构示意图。
图4是参考天线的回波损耗曲线图。
图5是在金属边框和金属面框之间具有一个电连接点时参考天线的结构示意图。
图6是图5情况下参考天线的回波损耗曲线图。
图7是在金属边框和金属面框之间具有四个电连接点时参考天线的回波损耗曲线图。
图8是在金属边框和金属面框之间具有六个电连接点时参考天线的回波损耗曲线图。
图9A至9B是根据本公开一些实施方式中连接部的结构示意图。
图10A至10B是根据本公开另一些实施方式中连接部的结构示意图。
图11A至11B是根据本公开又一些实施方式中连接部的结构示意图。
具体实施方式
下面将结合附图对本公开的实施方式进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本公开保护的范围。此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本公开实施方式提供的可穿戴设备,可适用于任何适于实施的设备类型,例如以智能手表、智能手环为代表的腕戴式设备;又例如以智能眼镜、智能耳机为代表的头戴式设备;再例如以智能服饰为代表的穿戴式设备;等。
为便于说明,在下文中,可穿戴设备以智能手表为例。但是本领域技术人员应当理解,下述实施方式对于其他类型的可穿戴设备同样适用,本公开对此不作限制。
现如今,人们在选购智能手表时,除了考虑手表的功能,手表的外观也是重要的考虑因素,因此如何提高手表外观的质感和美观性,一直是厂商重点研究的方向之一。为了增加智能手表的质感,包括合金或不锈钢等金属材料已被广泛地应用到手表的外观设计中,比如大多智能手表都采用了金属中框的设计,同时这个金属中框还用于天线的辐射体。此外,从外观的设计角度看,如果在金属中框的顶部分离出一个金属面框的话,那么可以对该金属面框进行不同于金属中框的着色和不同刻度的处理,并对屏幕的黑边进行遮拦以达到美观炫酷的外观效果,提高设备档次。因此在智能手表中,外壳越来越多的增加金属材质。
图1、图2中示出了一种相关技术中的智能手表的结构。如图1所示,该智能手表的外观部分包括金属边框100和金属面框200,金属边框100为环形的金属中框,其设置在手表的侧面一周。在智能手表中,金属边框100不仅仅作为手表的外壳结构,其还需要配合设备的主板形成缝隙天线结构。
具体来说,对于智能手表而言,其众多功能都需要通过天线来实现,例如蓝牙、卫星定位、WiFi、通话等,其均需要内置的天线来辐射电磁波信号。而对于具有金属中框的智能手表,其一般利用金属边框100与手表主板之间的缝隙形成天线结构,金属中框上设置接地点并连接主板上的馈电模块,即可形成对应的天线结构。
而金属面框200作为智能手表正面的装配结构,其在智能手表中的作用主要包括两个:
1)如图2所示,屏幕300与金属边框100需要通过台阶来实现固定装配,而台阶支撑屏幕300边缘的部分无法作为显示区域,在手表外观上则呈现为“黑边”。在追求极致屏占比的今天,“黑边”无疑是用户无法接受、厂商致力于去除的。而在“黑边”的位置设置金属面框200,则可以利用金属的外观遮挡“黑边”结构,大大提高外观质感,提升用户体验。
2)对于手表而言,金属面框200作为环形外圈,可以实现在金属面框200上设置各种各样的功能,例如添加时间刻度作为手表指示刻度;又例如添加各种标尺类刻度作为手表附加功能;再例如设置各种装饰结构和图案作为手表外观;等。
基于此,越来越多的智能手表在正面设置金属面框200,金属面框200与金属边框100之间通过填充粘接剂实现固定连接。但是,在实际使用中,本案发明人发现这种带有金属面框200的智能手表的天线一致性和性能较差。发明人通过进一步研究发现,这是由于:对于天线结构而言,金属边框100和金属面框200是分件的两个金属个体,在装配后两个金属件之间必定存在一定尺寸的微小缝隙(一般在0.025mm~0.1mm之间)。虽然缝隙中通过填充粘接剂等介质材料实现电性隔离,但是在手表的实际使用过程中,例如金属面框200部分位置受到挤压时,金属面框200和金属边框100将会产生位置不固定的单点或多点的电接触,单点电接触和间距较大的多点电接触会破坏原有的天线性能,进而影响整个手表系统的功能。
为进一步解释该问题,下面结合一个示例下的试验结果进行详细的说明。为便于说明,本示例中的天线结构称为“参考天线”,参考天线可选用较为宽频的天线,其结构 参照图3示意,即通过金属边框100与手表内部主板之间的间距来实现,本领域技术人员对此天线结构和工作原理可以理解,在此不再赘述。
首先,图4给出了在不设置金属面框200的情况下,参考天线的回波损耗(S-参数)的曲线图。
其次,考虑到手表在实际使用过程中,金属面框200和金属边框100发生电接触的位置是不确定的,在此,如图5所示,假设金属面框200与金属边框100在“三点钟”位置产生电接触点P1,而为了不失一般性,我们将电接触点P1沿着顺时针方向旋转不同的角度(0°、90°、215°、315°)。图6中示出了随着金属面框200与金属边框100的电接触点P1的转动,参考天线的回波损耗的曲线图。
通过图6可以明显看到,参考天线的回波损耗随着P1位置的不同有很大的变化,并且在整个频段范围内的多处都会出现很多的杂波,并且杂波出现的位置还会随着电接触点P1的位置的变化而变化。通过试验结果可以明确得知,由于存在的电接触点的不确定性,导致天线的一致性和性能无法得到保证,这无疑将会大大影响手表天线系统的功能。
正是基于发明人上述研究发现相关技术中存在的缺陷,本公开实施方式中提供了一种可穿戴设备,本公开的主要发明构思在于:金属边框100和金属面框200通过多个连接部实现电性连接,使得面框和边框在确定的位置实现电性连接,并且优化电连接点的数量和位置,提高天线的一致性和性能,即使边框和面框在使用过程中产生一些额外的不确定位置的电接触点也不会影响天线性能。
在一些实施方式中,可穿戴设备仍以图1所示的智能手表为例,智能手表包括环形的金属边框100和环形的金属面框200,金属边框100设置在手表的侧面一周,且金属边框100作为天线的辐射体,在金属边框100和可穿戴设备的主板之间的缝隙形成可穿戴设备的天线。而金属面框200设置在手表的正面边缘一周,金属面框200与金属边框100之间通过多个连接部电性连接。并且在多个连接部中,任意两个相邻的连接部在第一方向上的距离小于天线最高工作频率对应的波长的1/4,第一方向为金属边框100环绕一周的方向,即,第一方向为金属边框100的周向方向。
值得说明的是,在这些实施方式中,连接部的作用是使得金属面框200和金属边框100可以在连接部的设置位置实现电性连接,例如连接部可以是设置在两者之间缝隙中的金属片。连接部的具体结构和实现方式在下述实施方式中会进行详细说明,在此暂且 不表。
而“天线最高工作频率对应的波长的1/4”是指,对于手表而言,其天线往往包括多个,例如蓝牙天线、卫星定位天线等,这些天线的电磁波工作频率不同,而“最高工作频率对应的波长”即指这些天线中工作频率最高的天线波长。下文中对此进行详细说明,在此暂且不表。
“第一方向”是指金属边框100的周向方向。例如图1所示,“第一方向”就是金属边框100的圆周方向,“第一方向上的距离”就是金属边框100的设有连接部的表面的弧长。当然,对于其他形状边框同理,例如矩形、菱形、三角形、或其他不规则形状,本领域技术人员对此可以理解。
通过上述可知,本公开实施方式提供的可穿戴设备,通过在金属面框200和金属边框100之间设置多个连接部实现金属面框200和金属边框100之间的电性连接,使得金属面框200和金属边框100在确定的位置实现电性连接,保证天线的一致性,即使金属边框100和金属面框200在使用过程中产生一些额外的不确定位置的电接触点也不会影响天线性能。并且任意相邻的两个连接部在第一方向上的距离小于天线最高工作频率对应的波长的1/4。由于产生电磁波谐振的缝隙长度要求至少为谐振波长的1/4,因此在任意相邻的两个连接部之间的距离都小于天线最高工作频率对应的波长的1/4时,可以有效避免产生杂波干扰,大大提高天线的辐射性能。
具体来说,本公开的可穿戴设备,为实现上述方案,设计思路主要包括两个:一是电连接点(即,连接部)的数量和位置分布;二是实现电连接的具体结构。下面结合一个具体实施方式对这两点进行具体说明。
基于缝隙天线的工作原理,对于缝隙天线而言,其所能产生工作谐振的基本要求是:缝隙长度至少为谐振波长的1/4,比如1/4波长的一端开口的缝隙天线、1/2波长缝隙天线等。本领域技术人员对此应当理解,在此无需赘述。
天线的工作频率f与波长λ之间存在如下关系:
Figure PCTCN2021098164-appb-000001
式中,C为光速。可以看到,工作频率f越高,其波长λ就越小,所要求的缝隙长度也就越小。换言之,在手表的多个天线中,只要保证最高工作频率下不会产生杂波,其就可以满足其他工作频率的天线。
基于上述说明,可以得知,应当保证相邻两个连接部形成的缝隙弧长,小于天线最 高工作频率对应的波长的1/4。
在一个示例中,若多个连接部在第一方向(圆周方向)上不均匀分布,则应当保证相邻两个连接部形成的缝隙弧长中,最大的弧长小于天线最高工作频率对应的波长的1/4。
在另一个示例中,若多个连接部在第一方向上均匀分布,则保证每一个缝隙弧长小于天线最高工作频率对应的波长的1/4即可。
对于天线性能而言,最合理的电连接分布形式是均匀分布。因此,在本实施方式中,多个连接部在第一方向上均匀分布。由此,根据手表的直径或周长,即可确定出连接部的数量。
在一个示例中,仍以图1实施方式中的智能手表为例,设置连接部的数量为4个,且在圆周方向上均匀分布。图7中给出了该示例下天线的回波损耗曲线图。为了不失一般性,仍然使四个连接部沿顺时针方向转动不同角度(0°、30°、60°),从而得到曲线图如图7所示。
参照图7所示可以看出,与图6中一个电连接点的情况相比,由于有效减少了相邻两个连接部之间的弧长,所以在有四个连接部的情况下,杂波仅在频率大于2.3GHz的范围内出现,而在频率低于2.3GHz的范围内,其具有较好的一致性和天线性能。
虽然图7示例可以在工作频率低于2.3GHz的范围内提高天线的一致性和性能,但是对于智能手表的设计来说是不够的。
举例来说,智能手表一般包括蓝牙天线、WiFi天线和卫星定位天线,蓝牙天线和WiFi天线的中心工作频率为2.4GHz,卫星定位天线(GPS天线)的一般民用中心工作频率为1.575GHz。以工作频率最高的蓝牙天线来说,其在空气中的波长大约为125mm,其四分之一波长大约为30mm。而对于直径最大50mm的手表来说,四个连接部均匀分布,相邻两个连接部之间的弧长大约为40mm。也即,相邻两个连接部之间的距离40mm,大于最高工作频率对应的波长的1/4(30mm),因此对于频率2.4GHz的蓝牙和WiFi天线来说,仍然会产生杂波。
因此,本公开实施方式中,需要满足相邻两个连接部之间的弧长,小于最高工作频率对应的波长的1/4。比如上述示例中,只要使得相邻两个连接部之间的弧长小于30mm,即可保证在频率低于2.4GHz的波段,天线具有更好的一致性和性能。也即,在金属边框100圆周上至少设置6个连接部,在均匀设置6个连接部的情况下,相邻两个连接部 之间的弧长大约为26mm,完全可以满足需求。
值得说明的是,连接部的个数过多,虽然也可以提高天线的一致性,但是过多的连接部也会增加结构的复杂性和辐射体阻抗,因此在一些优选的实施方式中,选择满足上述条件的最少个数的连接部即可。
下面对均匀分布6个连接部的实施方式进行验证,为了不失一般性,同样使连接部顺时针旋转不同的角度(0°、20°、40°),得到的回波损耗曲线如图8所示。
通过图8可以看出,与图7中四个连接部的实施方式相比,在6个连接部的情况下,杂波仅在频率大于3.2GHz的波段出现,而对于频率低于3.2GHz的波段,天线具有较好的一致性和性能。而对于智能手表而言,3.2GHz以下的性能保证,足以满足蓝牙天线2.4GHz的设计要求。
值得说明的是,通过上述可知,本实施方式中通过连接部对金属边框100和金属面框200电连接。在一般状态下,相邻两个连接部之间的距离已经满足设计要求。因此即使金属面框200受压,使得金属面框200与金属边框100具有更多的电连接点,相当于在本实施方式的基础上增加电连接点的个数,通过上述原理可知,同样不会影响天线性能,依旧具有本实施方式所述的效果。
当然,值得说明的是,本公开实施方式的核心发明构思在于:设置任意两个相邻的连接部在第一方向上的距离,小于天线最高工作频率对应的波长的1/4即可。换言之,无论设备包含多少种工作频率不同的天线,只要保证最高工作频率的天线满足设计要求,其余天线均可满足要求。
比如可穿戴设备中,还可以包括4G LTE天线(0.7GHz~2.69GHz)、WiFi 5.8GHz天线、5G n77(3.3GHz~4.2GHz)天线等,通过增加连接部的数量,使得任意两个相邻的连接部之间的距离小于最高工作频率对应的波长的1/4即可,而无需对天线的类型和工作频率进行限制。本领域技术人员对此应当理解,本公开不再赘述。
在上述对本公开实施方式的工作原理进行说明之后,下面对连接部的具体实施方式进行详细说明。
仍以图1所示的智能手表为例,如图2所示,金属边框100与金属面框200通过装配凸台扣合。举例来说,金属边框100上设置有一圈环形的装配台阶,而金属面框200边缘成型有一圈凸耳,从而利用凸耳与装配台阶的配合,实现金属面框200与金属边框100的装配。两者的装配缝隙中,需要填充绝缘的粘接剂,形成填充结构,填充结构一 方面可以使两者绝缘,另一方面可以实现两者之间的粘接固定。
在此基础上,本公开实施方式中的连接部可设于金属面框200和金属边框100的抵接缝隙中,通过连接部形成电连接点,使得两者电性连接。
在一个示例中,如图9A和图9B所示,连接部500为均匀设于金属边框100上的6个金属弹片。举例来说,在金属边框100上开设有6个装配孔,每一个金属弹片对应安装于一个装配孔内,金属弹片的一端固定设于装配孔中,另一端弹性抵接在金属面框200的凸耳的内侧壁上。该电连接方式适用于不易焊接的钛合金和铝合金金属边框100。
在另一个示例中,如图10A和图10B所示,连接部500同样为均匀设于金属边框100上的6个金属弹片。图10A和图10B与图9A和图9B的区别在于,金属弹片的一端通过焊接固定连接在金属边框100上,另一端弹性抵接在金属面框200的凸耳的内侧壁上。该电连接方式适用于易于焊接的如不锈钢金属边框100。
在本实施方式中,金属弹片对金属面框200施加的弹性力,方向是沿手表径向向外侧的,从而在金属面框200与金属边框100装配后,金属弹片也可以施加径向向外的力,使得金属面框200装配更加牢固,同时使得金属面框200与金属边框100之间的电连接更加稳定。
在另一些实施方式中,连接部的结构如图11A和图11B所示,连接部为一体成型在金属边框100的装配台阶上的卡扣510,6个卡扣510均匀分布在金属边框100的圆周上。卡扣510朝向金属面框200的凸耳的一侧壁上,成型有凸起520,从而在金属面框200与金属边框100装配后,凸起520抵接在金属面框200的凸耳的内侧壁上,实现两者的电连接。该电连接方式适用于任何金属材质的金属边框100。
当然,对于连接部的结构和设置方式,除了上述示例之外,还可以采用其他任何适于实施的形式,本领域技术人员对此可以理解,本公开不再枚举。
另外,在本公开实施方式中,可穿戴设备以智能手表为例进行说明,但是本公开的可穿戴设备并不局限于智能手表,还可以是其他任何适于实施的可穿戴设备,本公开对此不作限制。
通过上述可知,本公开实施方式提供的可穿戴设备,通过在金属面框200和金属边框100之间设置多个连接部实现金属面框200和金属边框100之间的电性连接,使得金属面框200和金属边框100在确定的位置实现电性连接,保证天线的一致性,即使金属边框100和金属面框200在使用过程中产生一些额外的不确定位置的电接触点也不会影 响天线性能。并且任意相邻的两个连接部在第一方向上的距离小于天线最高工作频率对应的波长的1/4。由于产生电磁波谐振的缝隙长度要求至少为谐振波长的1/4,因此在任意相邻的两个连接部之间的距离都小于天线最高工作频率对应的波长的1/4的情况下,就可以有效避免产生杂波干扰,大大提高天线的辐射性能。
显然,上述实施方式仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本公开的保护范围之中。

Claims (10)

  1. 一种可穿戴设备,包括:
    金属边框,设于所述可穿戴设备的侧面,且所述金属边框和所述可穿戴设备的主板之间的缝隙,形成所述可穿戴设备的天线;和
    金属面框,设于所述可穿戴设备的正面边缘;所述金属面框和所述金属边框之间通过多个连接部电性连接,任意相邻的两个所述连接部在第一方向上的距离,小于所述可穿戴设备的天线的最高工作频率对应的波长的1/4,所述第一方向为所述金属边框的周向方向。
  2. 根据权利要求1所述的可穿戴设备,其中,
    所述多个连接部在所述第一方向上均匀设置。
  3. 根据权利要求1所述的可穿戴设备,其中,
    所述金属边框和所述金属面框之间填充有绝缘的填充结构。
  4. 根据权利要求1所述的可穿戴设备,其中,所述可穿戴设备的天线包括以下中至少之一:
    蓝牙天线、卫星定位天线、WiFi天线、LTE天线或5G天线。
  5. 根据权利要求1所述的可穿戴设备,其中,
    所述金属边框靠近所述金属面框的一侧边缘设置有装配台阶,所述金属面框的边缘成型有朝向所述金属边框凸出的凸耳,所述金属面框通过所述凸耳套设于所述金属边框的所述装配台阶上。
  6. 根据权利要求5所述的可穿戴设备,其中,
    所述连接部为金属弹片,所述金属弹片的一端固设于所述金属边框上,所述金属弹片的另一端弹性抵接在所述金属面框的所述凸耳的内侧壁上。
  7. 根据权利要求6所述的可穿戴设备,其中,
    所述金属边框上开设有装配孔,所述金属弹片的所述一端固设于所述装配孔中。
  8. 根据权利要求6所述的可穿戴设备,其中,
    所述金属弹片的所述一端焊接于所述金属边框上。
  9. 根据权利要求5所述的可穿戴设备,其中,
    所述连接部为一体成型于所述装配台阶上的卡扣,所述卡扣朝向所述金属面框的所述凸耳的一侧,成型有与所述凸耳的内侧壁抵接的凸起。
  10. 根据权利要求1所述的可穿戴设备,其中,
    所述可穿戴设备为智能手表或智能手环。
PCT/CN2021/098164 2020-06-05 2021-06-03 可穿戴设备 WO2021244612A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21817560.2A EP4138214A4 (en) 2020-06-05 2021-06-03 WEARABLE DEVICE
US17/990,461 US11764460B2 (en) 2020-06-05 2022-11-18 Wearable devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010506277.7 2020-06-05
CN202021019018.3U CN212412191U (zh) 2020-06-05 2020-06-05 可穿戴设备
CN202021019018.3 2020-06-05
CN202010506277.7A CN111613872A (zh) 2020-06-05 2020-06-05 可穿戴设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/990,461 Continuation US11764460B2 (en) 2020-06-05 2022-11-18 Wearable devices

Publications (1)

Publication Number Publication Date
WO2021244612A1 true WO2021244612A1 (zh) 2021-12-09

Family

ID=78830128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098164 WO2021244612A1 (zh) 2020-06-05 2021-06-03 可穿戴设备

Country Status (3)

Country Link
US (1) US11764460B2 (zh)
EP (1) EP4138214A4 (zh)
WO (1) WO2021244612A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120120772A1 (en) * 2010-11-12 2012-05-17 Seiko Epson Corporation Electronic Timepiece with Internal Antenna
CN105785757A (zh) * 2016-04-28 2016-07-20 歌尔声学股份有限公司 手表天线装置及电子手表
CN105789844A (zh) * 2016-04-12 2016-07-20 深圳市中易腾达科技股份有限公司 一种一体化金属边框天线
WO2016119172A1 (zh) * 2015-01-29 2016-08-04 华为技术有限公司 一种可穿戴设备
CN106486737A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 一种手表天线和手表
CN107799883A (zh) * 2016-09-05 2018-03-13 三星电子株式会社 包括多频带天线的电子设备
CN209860131U (zh) * 2018-12-29 2019-12-27 Oppo广东移动通信有限公司 电子设备
CN111613872A (zh) * 2020-06-05 2020-09-01 安徽华米信息科技有限公司 可穿戴设备
CN212412191U (zh) * 2020-06-05 2021-01-26 安徽华米信息科技有限公司 可穿戴设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079079B2 (en) * 2004-06-30 2006-07-18 Skycross, Inc. Low profile compact multi-band meanderline loaded antenna
GB2570905B (en) * 2018-02-08 2021-10-20 Suunto Oy Slot mode antennas
US10693218B2 (en) * 2014-07-01 2020-06-23 Microsoft Technology Licensing, Llc Structural tank integrated into an electronic device case
KR102177285B1 (ko) * 2014-09-01 2020-11-10 삼성전자주식회사 안테나 장치 및 그것을 포함하는 전자 장치
KR20170089668A (ko) * 2016-01-27 2017-08-04 엘지전자 주식회사 안테나를 구비하는 와치 타입의 이동 단말기
KR102584972B1 (ko) * 2016-08-29 2023-10-05 삼성전자주식회사 다중 대역 안테나를 포함하는 웨어러블 전자 장치
KR102591805B1 (ko) * 2016-11-04 2023-10-23 삼성전자주식회사 웨어러블 전자 장치의 안테나
TWI623149B (zh) * 2016-11-10 2018-05-01 和碩聯合科技股份有限公司 穿戴式電子裝置及其天線系統
US10276934B2 (en) * 2017-03-02 2019-04-30 Wistron Neweb Corporation Antenna structure
TWI798344B (zh) * 2018-02-08 2023-04-11 芬蘭商順妥公司 槽孔模式天線

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120120772A1 (en) * 2010-11-12 2012-05-17 Seiko Epson Corporation Electronic Timepiece with Internal Antenna
WO2016119172A1 (zh) * 2015-01-29 2016-08-04 华为技术有限公司 一种可穿戴设备
CN106486737A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 一种手表天线和手表
CN105789844A (zh) * 2016-04-12 2016-07-20 深圳市中易腾达科技股份有限公司 一种一体化金属边框天线
CN105785757A (zh) * 2016-04-28 2016-07-20 歌尔声学股份有限公司 手表天线装置及电子手表
CN107799883A (zh) * 2016-09-05 2018-03-13 三星电子株式会社 包括多频带天线的电子设备
CN209860131U (zh) * 2018-12-29 2019-12-27 Oppo广东移动通信有限公司 电子设备
CN111613872A (zh) * 2020-06-05 2020-09-01 安徽华米信息科技有限公司 可穿戴设备
CN212412191U (zh) * 2020-06-05 2021-01-26 安徽华米信息科技有限公司 可穿戴设备

Also Published As

Publication number Publication date
EP4138214A4 (en) 2023-10-18
EP4138214A1 (en) 2023-02-22
US20230082798A1 (en) 2023-03-16
US11764460B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
TWI790344B (zh) 槽孔模式天線
JP4598939B2 (ja) アンテナを形成するとともに、特に小型携帯用ユニットの電子回路の全部または一部を収納可能なシールドハウジングを持つ構造
TWI587569B (zh) 行動裝置
US8922448B2 (en) Communication device and antennas with high isolation characteristics
WO2017197795A1 (zh) 终端壳体及终端
WO2016119172A1 (zh) 一种可穿戴设备
TWI616025B (zh) 穿戴式電子裝置
TW201526594A (zh) 穿戴式裝置
WO2019226288A1 (en) Tunable antenna system for smart watch
TWI578617B (zh) 天線組件及應用該天線組件的無線通訊裝置
TWI798344B (zh) 槽孔模式天線
CN112003006A (zh) 圆极化天线以及可穿戴设备
CN111916898A (zh) 圆极化天线结构及智能穿戴设备
CN212412191U (zh) 可穿戴设备
CN111916887A (zh) 可穿戴设备及其天线加工方法
CN111463552B (zh) 一种手表
CN111613872A (zh) 可穿戴设备
TW201507261A (zh) 穿戴式裝置
TWI575810B (zh) 具無線傳輸功能之手錶錶體及其天線結構
WO2021244612A1 (zh) 可穿戴设备
CN212783791U (zh) 圆极化天线结构及智能穿戴设备
CN212626049U (zh) 圆极化天线以及可穿戴设备
JP2011155531A (ja) アンテナ及び携帯無線端末
WO2018133201A1 (zh) 一种电子终端
WO2019178933A1 (zh) 可穿戴电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021817560

Country of ref document: EP

Effective date: 20221117

NENP Non-entry into the national phase

Ref country code: DE