WO2021244353A1 - 一种感知目标物体的方法及装置 - Google Patents

一种感知目标物体的方法及装置 Download PDF

Info

Publication number
WO2021244353A1
WO2021244353A1 PCT/CN2021/095803 CN2021095803W WO2021244353A1 WO 2021244353 A1 WO2021244353 A1 WO 2021244353A1 CN 2021095803 W CN2021095803 W CN 2021095803W WO 2021244353 A1 WO2021244353 A1 WO 2021244353A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
instruction
information
sensing
indication information
Prior art date
Application number
PCT/CN2021/095803
Other languages
English (en)
French (fr)
Inventor
杜瑞
田友丽
黄国刚
韩霄
刘辰辰
张美红
邓彩连
闫莉
陈凯彬
孙滢翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21818746.6A priority Critical patent/EP4156556A4/en
Publication of WO2021244353A1 publication Critical patent/WO2021244353A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of terminal technology, and in particular to a method and device for sensing target objects.
  • Wireless local area network (WLAN) sensing is a technology that uses WLAN signals for motion detection.
  • Physical equipment can use the radio's ability to measure and sample the surrounding environment to extract information about the surrounding environment.
  • the existing IEEE 802.11 series standards include mainstream low-frequency band (for example: 2.4GHz and 5GHz) related standards (for example: 802.11n, 802.11ac, 802.11ax, etc.) and high-frequency band (for example: 60GHz) related standards (for example: 802.11ad, 802.11ay).
  • Physical devices can use WLAN Sensing technology to perceive target objects based on these standards.
  • Existing WLAN Sensing is generally only performed at low frequency or high frequency, and the target object cannot be more finely sensed, and the sensing result is poor.
  • the embodiments of the present application provide a method and device for sensing a target object, so as to perform a finer perception of the target object and achieve a finer perception result.
  • a method for sensing a target object including the following process: a first device sends a first sensing result to a second device, and the first sensing result is within a first frequency band by the first device Obtained by sensing the target object; the first device receives the second sensing result fed back by the second device, and the second sensing result is sensed by the second device in the second frequency band based on the first sensing result
  • the target object obtains that the first frequency band range and the second frequency band range are different; the first device determines the state information of the target object according to the first sensing result and the second sensing result.
  • the first device can first perceive the target object in its first frequency range, and send the first perception result to the second device, and the second device can use the first perception result in its own Perceive the target object in the second frequency band range of, and obtain the sensing result.
  • the first frequency band range is different from the second frequency band range. Therefore, the first device can fuse the sensing results in at least two frequency bands, thereby Get a finer perception result.
  • the participant can also perform the fusion of multiple perception results, as long as the initiator negotiates with the participant before the perception process. That's it.
  • the first frequency band range is the low frequency range of the first device; the second frequency band range is the high frequency range of the second device.
  • the WLAN Sensing process can be based on high and low frequency cooperation.
  • the high frequency sensing can be performed on the basis of the low frequency sensing results, which saves the time of high frequency omnidirectional scanning and can effectively improve the high frequency.
  • the first device may also send first indication information to a third device, where the first indication information is used to mobilize or request the third device to perceive the target object;
  • a device may also receive a third perception result fed back by the third device, where the third perception result is obtained by the third device perceiving the target object in a third frequency band range, the third frequency band range and the The range of the first frequency band is different.
  • the second device and the third device can be regarded as participants in the perception process.
  • a device that supports perception if detected near the target object, it can be temporarily mobilized or requested to participate in the original perception process (that is, the perception process before joining the device), so as to obtain more accurate and refined Perceive the result.
  • devices involved in the perception can be added at any time during the perception process in this application to achieve different perception accuracy, so as to meet the requirements of different application requirements or different business requirements for perception accuracy without affecting the original perception process.
  • the third frequency band range is a high frequency range of the third device.
  • the first device may also send second indication information to the third device, and the second device The indication information is used to schedule the third device into an SP, where the SP is the SP where the second device is located, or the SP allocated to the third device.
  • the first device may directly schedule the third device to the same SP as the first device and the second device, or the first device The device may allocate a new SP to the third device.
  • the third device may actively apply for an extended SP from an associated AP, and the associated AP allocates a new SP to the third device.
  • the first device may also send third indication information to the second device and the third device, and the third indication information is used to indicate the second device and the third device.
  • the third device feeds back the perception result, or the third device indication information is used to instruct the second device and the third device to poll and feedback the perception result.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device , The moving speed of the target object or the signal strength of the target object received by the first device.
  • the first device when the first device sends the first perception result, the first device may send a first instruction, the first instruction carries the first perception result, and the first instruction uses To instruct the participant to perceive the target object based on the first perception result.
  • the first instruction may also carry the frequency range of the participant, which is used to instruct the participant to perceive the target object within the frequency range of the participant based on the first perception result.
  • the frequency band range of the participant may include the second frequency band range of the second device and/or the third frequency band range of the third device.
  • the first instruction may also carry feedback indication information, which is used to instruct the participant (including the second device and/or the third device) to feedback the perception result in the high-frequency range or the low-frequency range of the first device , That is, it is used to indicate in which frequency band range of the first device the participant feeds back the second perception result.
  • WLAN Indication frame a new frame structure WLAN Sensing Indication frame (WLAN Indication frame) is designed in this application, and the first instruction may be a WLAN Sensing Indication frame.
  • the first device when the first device sends the first instruction information to the third device, the first device sends a second instruction to the third device, and the second instruction carries the first instruction.
  • One instruction information when the first device sends the first instruction information to the third device, the first device sends a second instruction to the third device, and the second instruction carries the first instruction.
  • the second instruction may also include one or more of the following information: frequency band information, channel information, the first perception result, feedback indication information, the role of the first device, perception duration, perception interval time, or Perception mode.
  • a new frame structure WLAN Sensing request frame (Request frame) is designed in this application, and the second command may be a WLAN Sensing Request frame.
  • the first device when the first device receives the perception result fed back by the participant, the first device may receive a third instruction sent by the participant, and the third instruction carries the perception result of the participant.
  • the perception result of the participant may include the second perception result of the second device and/or the third perception result of the third device.
  • the third instruction may also include one or more of the following information: the distance between the target object and the participant (including the second device and/or the third device), and the distance between the target object and the participant The angle of the participant (including the second device and/or the third device), the moving speed of the target object, the sector where the target object is located, the frequency band bandwidth, or feedback indication information.
  • a new frame structure WLAN Sensing Feedback frame is designed in this application, and the third instruction may be a WLAN Sensing Feedback frame.
  • the first device when the first device sends the third instruction information to the participant, the first device may send a fourth instruction to the participant, and the fourth instruction carries the third instruction information
  • the fourth instruction is used to instruct the participant to poll and feedback the perception result.
  • the fourth instruction is used to instruct the second device and the third device to poll and feedback the perception result.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, and communication between the target object and the participant (including the second device and/or the third device)
  • the distance indication information is used to instruct the participant to feed back the distance between the target object and the participant
  • the angle indication information is used to instruct the participant to feed back the angle between the target object and the participant.
  • the moving speed indication information is used to instruct participants to feed back the moving speed of the target object
  • the sector indication information is used to instruct participants to feed back the sector where the target object is located
  • the frequency band bandwidth indication information is used to instruct participants The frequency range of the sensing.
  • a new frame structure WLAN Sensing Poll frame (Poll frame) is designed in this application, and the fourth instruction may be a WLAN Sensing Poll frame.
  • the first device when the first device sends the third instruction information to the participant, the first device may send a fifth instruction to the participant, and the fifth instruction carries the third instruction information
  • the fourth instruction is used to instruct the participant to feedback the perception result.
  • the fifth instruction is used to instruct the second device and the third device to feed back the sensing result.
  • the fifth instruction may also include one or more of the following information: distance indication information between the target object and the participant (including the second device and/or the third device), the target object Relative to the participant (including the second device and/or the third device) angle indication information, the movement speed indication information of the target object, the sector indication information or frequency band bandwidth indication information where the target object is located .
  • this application designs a new frame structure WLAN Sensing trigger frame (Trigger frame), and the fifth instruction may be WLAN Sensing Trigger frame.
  • the initiator (such as the first device) and the participant (such as the second device and/or the third device) use in-channel tunnel OCT technology to share information between high and low frequencies.
  • This enables WLAN Sensing to seamlessly switch between high and low frequencies, saving frequency band switching time and improving the success rate of switching.
  • OCT technology can also support broadcast or multicast, so that the first device can send the low-frequency sensing results to the high-frequency sensing of multiple devices at the same time, so that more dimensional information of the target object can be obtained, and the sensing result of the target object is even better. Accurate and finer.
  • a method for perceiving a target object including the following process: a second device receives a first perception result, the first perception result being obtained by the first device perceiving the target object within a first frequency band; The second device feeds back a second perception result to the first device, where the second perception result is obtained by the second device perceiving the target object in the second frequency band based on the first perception result, The first frequency band range and the second frequency band range are different.
  • the first frequency band range is the low frequency range of the first device; the second frequency band range is the high frequency range of the second device.
  • the second device may also receive third indication information from the first device, and the third indication Information is used to instruct participants to feedback perception results, or to instruct participants to poll and feedback perception results.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device , The moving speed of the target object or the signal strength of the target object received by the first device.
  • the second device when the second device receives the first perception result, the second device may receive a first instruction, where the first instruction carries the first perception result, and the first instruction carries the first instruction.
  • a perception result, and the first instruction is used to instruct the participant to perceive the target object based on the first perception result.
  • the first instruction may also carry the frequency range of the participant, which is used to instruct the participant to perceive the target object within the frequency range of the participant based on the first perception result.
  • the frequency band range of the participant may include the second frequency band range of the second device and/or the third frequency band range of the third device.
  • the first instruction may also carry feedback indication information, which is used to indicate whether the participant feedbacks the perception result in the high-frequency range or the low-frequency range of the first device, that is, it is used to indicate which frequency band of the first device the participant is in.
  • the range feeds back the second perception result.
  • the second device when the second device feeds back the second perception result to the first device, the second device may send a third instruction to the first device, and the third instruction carries the The second perception result.
  • the third instruction may also include one or more of the following information: the distance between the target object and the second device, the angle of the target object relative to the second device, and the distance between the target object and the second device.
  • the second device when the second device receives the third instruction information from the first device, the second device may receive a fourth instruction, and the fourth instruction carries the third instruction information, The fourth instruction is used to instruct the participant to poll and feedback the perception result.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the participant, and angle indication of the target object relative to the participant Information, indication information of the moving speed of the target object, indication information of the sector where the target object is located, or indication information of the frequency band bandwidth.
  • the second device when the second device receives the third instruction information from the first device, the second device may receive a fifth instruction, and the fifth instruction carries the third instruction information, The fifth instruction is used to instruct the participant to feedback the perception result.
  • the fifth instruction may further include one or more of the following information: indicating information about the distance between the target object and the participant, indicating information about the angle of the target object relative to the participant, and the moving speed of the target object.
  • a method for sensing a target object including the following process: a third device receives first indication information, where the first indication information is used to mobilize or request the third device to sense; the third device The device feeds back a third perception result to the first device, where the third perception result is obtained by the third device perceiving the target object in the third frequency band.
  • the third frequency band range is a high frequency range of the third device.
  • the third device may also receive second indication information from the first device, and the second indication information is used When scheduling the third device into the SP, the SP is the SP where the second device is located or the SP allocated to the third device.
  • the first device may directly schedule the third device to the same SP as the first device and the second device, or the first device The device may allocate a new SP to the third device.
  • the third device may also send first request information to the AP, and the first request information is used to request the AP Allocate an SP to the third device, and the AP is associated with the third device, that is, the AP is an associated AP of the third device.
  • the first device is an STA.
  • the third device may also receive third indication information from the first device, where the third indication information is used To instruct the second device and the third device to feed back the perception result, or the third device indication information is used to instruct the second device and the third device to poll and feedback the perception result.
  • the third device when the third device receives the third instruction information, the third device receives a fourth instruction, the fourth instruction carries the third instruction information, and the fourth instruction is used to instruct Participants poll the feedback perception results.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the participant, and angle indication of the target object relative to the participant Information, indication information of the moving speed of the target object, indication information of the sector where the target object is located, or indication information of the frequency band bandwidth.
  • the third device when the third device receives the third instruction information, the third device receives a fifth instruction, the fifth instruction carries the third instruction information, and the fifth instruction is used to instruct Participants feedback the perception results.
  • the fifth instruction is used to instruct the second device and the third device to feed back the sensing result.
  • the fifth instruction may also include one or more of the following information: distance indication information between the target object and the participant (including the second device and/or the third device), the target object Relative to the participant (including the second device and/or the third device) angle indication information, the movement speed indication information of the target object, the sector indication information or frequency band bandwidth indication information where the target object is located .
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device , The moving speed of the target object or the signal strength of the target object received by the first device.
  • a device for sensing a target object has the function of realizing the equipment in the above method, and it includes means for executing the steps or functions described in the above method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any of the various aspects of the device in the possible implementation manner. The method of completion.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the device in the foregoing method.
  • the device may further include one or more memories, where the memories are used for coupling with the processor and store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in the device or be a device.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any of the various aspects. Methods.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing a method in any one of the possible implementation manners of the various aspects.
  • a computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes any one of the possible implementations of the above aspects method.
  • a communication system in a seventh aspect, includes the first device and the second device described above.
  • the system may further include a third device.
  • the present application provides a chip system including a transceiver, which is used to implement the functions of the devices in the above-mentioned methods, for example, to receive or send the data and/or information involved in the above-mentioned methods .
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • Figure 1 is a schematic diagram of the communication process of an OCT technology
  • Figure 2 is a schematic diagram of the frame structure of an OCT primitive
  • FIG. 3 is an architecture diagram of a network system to which an embodiment of the application is applicable
  • Figure 4 is a schematic diagram of a perception result
  • Figure 5 is a schematic diagram of a perception result
  • Figure 6 is a schematic diagram of a perception result
  • FIG. 7 is a schematic diagram of a process of sensing a target object to which an embodiment of this application is applicable.
  • FIG. 8 is a schematic diagram of a frame structure of a sensing indication frame applicable to an embodiment of this application.
  • FIG. 9 is a schematic diagram of a frame structure of a perceptual polling feedback frame applicable to an embodiment of this application.
  • FIG. 10 is a schematic diagram of a frame structure of a sensing request frame applicable to an embodiment of this application.
  • FIG. 11 is a schematic diagram of a process of sensing a target object applicable to an embodiment of this application.
  • FIG. 12 is a schematic diagram of a frame structure of a perceptual feedback frame applicable to an embodiment of this application.
  • FIG. 13 is a schematic diagram of an OCT frame structure applicable to an embodiment of this application.
  • FIG. 14 is a schematic diagram of a process of sensing a target object to which an embodiment of this application is applicable;
  • FIG. 15 is a schematic diagram of a process of sensing a target object to which an embodiment of this application is applicable;
  • FIG. 16 is a schematic diagram of a process of sensing a target object to which an embodiment of this application is applicable;
  • FIG. 17 is a schematic diagram of a process of sensing a target object to which an embodiment of this application is applicable.
  • FIG. 18 is a structural diagram of a device for sensing a target object to which an embodiment of this application is applicable;
  • FIG. 19 is a structural diagram of a device for sensing a target object to which an embodiment of this application is applicable.
  • the term "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • WLAN Sensing technology is a technology that uses WLAN signals for motion detection.
  • WLAN Sensing is built on the existing WLAN standards, hardware, basic equipment and deployment, and is suitable for the perception of target objects in indoor environments.
  • a physical device (which can be referred to as a device for short) can use the radio's ability to measure and sample the surrounding environment to extract information about the surrounding environment.
  • a WLAN network is composed of multiple devices located within a given communication range. All transmitters (referring to multiple devices that send signals) can be used to form a multistatic radar system. Each device can detect movement and provide information. This information can be used to detect target objects.
  • the device that initiates the perception can be called the initiator, and the device that participates in the perception can be called the participant.
  • the participant can include the device that joined the perception process at the beginning, or it can include the device that has been temporarily mobilized to participate. Perceived device.
  • the IEEE 802.11 series of standards include mainstream low frequency bands (for example: 2.4GHz and 5GHz) related standards (for example: 802.11n, 802.11ac, 802.11ax, etc.) and high frequency bands (for example: 60GHz) related standards (for example: 802.11ad, 802.11ay) .
  • WLAN Sensing can be based on IEEE 802.11 series standards for sensing.
  • Low-frequency and high-frequency WLAN Sensing have their own advantages and disadvantages.
  • the low-frequency band has a large sensing range, limited bandwidth, and low detection accuracy
  • high-frequency band has a limited sensing range, extremely wide bandwidth, and high detection accuracy.
  • the future wireless local area network will be a complex and comprehensive network.
  • This application combines the advantages of low frequency and high frequency bands, and makes full use of the opportunities for high frequency and low frequency bands to cooperate with each other during WLAN Sensing, and the design is more reasonable and efficient
  • the high and low frequency cooperative WLAN Sensing mechanism provides a more robust and high-speed WLAN Sensing service.
  • the process of sensing the target object in the embodiment of the present application can also be understood as the process of measuring the target object.
  • the process of sensing the target object in this application includes at least two sub-processes: the Sensing phase and the Feedback phase.
  • Devices also called physical devices or wireless devices or nodes in the embodiments of this application, are devices used to assist users in selecting and controlling various smart home devices at home, including smart home devices (such as smart TVs, smart speakers, etc.)
  • the terminal used by the user can also include third-party devices such as routers that the household equipment accesses.
  • the role of the device in this application may also include an access point (access point, AP) and/or a station (station, STA).
  • Smart home equipment refers to various home equipment used in smart homes, such as smart anti-theft series products, smart anti-theft series products, mainly through various alarms and detectors that coordinate with each other to trigger alarm information in the deployment state. Play the role of security and anti-theft. It can also be a smart lighting product. Users can easily view and control the on-off status of lighting equipment at home directly through terminals such as mobile phones and tablet computers. It can also be a home appliance control product, a smart home appliance controller, which can associate infrared wireless signals and control any equipment that uses an infrared remote control through the terminal, such as TVs, air conditioners, electric curtains, etc. In addition, it can also be an air quality sensor.
  • the user can conveniently view the indoor temperature, humidity, and environmental conditions monitored by the air quality sensor on the terminal application (APP), and can link other electrical equipment in the home to improve the indoor environment to provide users with Eat it better.
  • APP terminal application
  • It can also be a mobile phone smart door lock. The user only needs to take out a mobile phone, tablet computer and other terminals and enter the password to automatically unlock the lock. At the same time, users can also remotely unlock for family members or visitors.
  • Router also known as smart host, or home gateway. It is a hardware device used to connect two or more networks. It acts as a gateway between networks. It reads the address of each data packet and decides how to transmit it. Intelligent network equipment, the router can be easily controlled by mobile phones or tablets through the wireless connection with the host. General routers provide Wi-Fi hotspots. Smart home devices and terminals access the Wi-Fi network by accessing the Wi-Fi hotspot of the router. The routers connected to the smart home devices and terminals can be the same or different.
  • Terminal refers to a device installed with a smart home APP and used to control smart home devices, such as portable devices, such as mobile phones, tablets, artificial intelligence (AI) smart voice terminals, wearable devices, and augmented reality (augmented reality (AR)/virtual reality (VR) equipment, etc.
  • portable devices include but are not limited to carry Or portable devices with other operating systems. The user can control the smart home equipment at home through the smart home APP installed on the terminal.
  • the device involved in the embodiment of the present application can support (at least two) transceiver modules at the same time, and (at least two) of the two transceiver modules can work on different frequencies.
  • a transceiver module works in a low frequency band (such as 2.4GHz and 5GHz), and a transceiver module works in a high frequency band (such as 6GHz).
  • On-Channel Tunneling (OCT) technology can enable STAs of multi-band devices to send media access control management protocol data units (MMPDU) constructed by different STAs of the same device.
  • the station management entity (SME) of the multiband device may instruct its MAC sublayer management entity (MLME) to use the OCT service to communicate with the MLME of the peer multiband device.
  • the MLME of the STA that sends or receives OCT MMPDUs in the wireless medium is called TR-MLME.
  • TR-MLME MAC sublayer management entity
  • the MLME that constructs the OCT MMPDU and the MLME that is the destination of the OCT MMPDU are called NT-MLME.
  • the MMPDU is encapsulated in order to transmit the MMPDU to the MLME of the peer STA in the same multi-band device.
  • the OCT communication process can be seen in Figure 1.
  • the OCT process also involves primitive operations between frequency bands.
  • the SME of the first multi-band device (Multi-band capable device) sends the MLME-primitive request (primitive.req) information to the NT-MLME of the first multi-band device, and the NT-MLME of the first multi-band device encapsulates the original request as
  • the MLME-OCTunnel.request primitive is sent, and the MLME-OCTunnel.request primitive is used to request transmission of the On-channel Tunnel Request frame (referred to as the MLME-OCTunnel.req primitive).
  • the NT-MLME of the first multi-band device can also receive the MLME-OCTunnel.confirm primitive (referred to as the MLME-OCTunnel.cfm primitive).
  • the MLME-OCTunnel.confirm primitive is used to report the request transmission On-channel Tunnel Request frame
  • the result of the MLME-OCTunnel.confirm primitive is an enumerated type, and the result includes SUCCESS or FAILURE.
  • the TR-MLME of the first multi-band device sends an On-channel Tunnel Request frame, and the On-channel Tunnel Request frame is used to transmit management frames between peer MLME entities of the multi-band device.
  • the TR-MLME of the second multi-band device sends the MLME-OCTunnel.indication primitive (referred to as the MLME-OCTunnel.Ind primitive), and the MLME-OCTunnel.indication primitive is used to indicate that the On-channel Tunnel Request frame has been received.
  • the NT-MLME of the second multi-band device sends the MLME-primitive.ind to the SME of the second multi-band device.
  • the SME of the second multi-band device sends an MLME-primitive response (primitive.rsp).
  • the NT-MLME of the second multi-band device encapsulates the original response into the MLME-OCTunnel.request primitive and sends it.
  • the NT-MLME of the second multi-band device can also receive the MLME-OCTunnel.confirm primitive.
  • the TR-MLME of the second multi-band device sends an On-channel Tunnel Request frame.
  • the TR-MLME of the first multi-band device sends the MLME-OCTunnel.indication primitive, and the NT-MLME of the first multi-band device sends MLME-primitive confirmation (primitive.cfm) information to the SME of the first multi-band device.
  • the frame structure of the On-channel Tunnel Request frame is shown in Figure 2.
  • the On-channel Tunnel Request frame includes the MAC header field (occupies 16 bytes), the category field (occupies 1 byte), and OCT MMPDU Field (the number of occupied bytes is not fixed and variable), Multi-band field (the number of occupied bytes is not fixed and variable), Multi-band Source field (the number of occupied bytes variable (not fixed and variable)) and frame check sequence (FCS) (occupies 4 bytes).
  • the OCT MMPDU field includes the MMPDU length (Length) subfield (occupies 2 bytes), the MMPDU frame control (Frame Control) subfield (occupies 2 bytes), and the MMPDU frame body (Frame Body) (the number of bytes occupied is not fixed. Change).
  • the Multi-band field includes the Element ID subfield (occupies 1 byte), the Length subfield (occupies 1 byte), the Multi-band Control subfield (occupies 1 byte), and the Band ID subfield.
  • the Multi-band Source field includes the Timing Synchronization Function (TSF) offset (Offset) subfield (occupies 8 bytes), the Multi-band Connection Capability subfield (occupies 1 byte), FST Session Timeout subfield (occupies 1 byte), STA MAC Address subfield (occupies 0 bytes or 6 bytes), Pairwise Cipher Suite Count subfield (occupies 0 words) Section or 2 bytes) and Pairwise Cipher Suite List subfields (occupies 0 bytes or 4*m bytes), where m is a positive integer.
  • TSF Timing Synchronization Function
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the multiple mentioned in this application refers to two or more.
  • the indoor wireless local area network may include devices that only support low frequency (LF), devices that only support high frequency (HF), and devices that support high frequency (HF). Low-frequency cooperative equipment (or multi-band equipment).
  • LF low frequency
  • HF high frequency
  • HF high frequency
  • Low-frequency cooperative equipment or multi-band equipment
  • the perception process is completed by at least two nodes, one of which is used to "illuminate" the environment (also known as a lighting device or lighting node or initiator), as shown in Figure 3 for the first device (Device1), that is, transmitting The initial sensing signal, the sensing signal is reflected by the target object, and other nodes sample the sensing signal and the reflected sensing signal (also called sensing device, sensing node, or WLAN Sensing node or participant) , Such as the second device (Device 2) and the third device (Device 3) in FIG. 3 to complete the sensing of the target object (Target shown in FIG. 3). And FIG. 3 also shows the sensing range of LF (coverage) and the sensing range of HF. It can be seen that the sensing range of LF is larger than the sensing range of HF.
  • the three possible perception methods are briefly described below.
  • Method 1 As shown in Figure 4, the passive sensing process, the illuminator node sends a Wi-Fi data frame (Wi-Fi Data Frame), and the Wi-Fi data frame includes a data frame preamble for sampling Code (Preamble in Data Frame used to sample environment), the sensing node (Wi-Fi Sensing Node) responds to the received Wi-Fi data frame with a Wi-Fi Control ACK (Wi-Fi Control ACK). This process is repeated many times. The lighting node can perceive in the middle of the time when it receives Wi-Fi control responses multiple times. In the passive sensing process, the sensing node will not perform any operation, and it depends on the data transmission between the sensing node itself and the lighting node. In the process of passive sensing, the sensing node does not introduce any overhead, but the sensing node cannot control the rate and occurrence of the lighting node's sensing.
  • Method 2 As shown in Figure 5, the process of invoking perception, the perception node initiates the initiation process (Initiation), and the lighting node emits the perception signal. This process is repeated multiple times, and the perception node can perform perception during the time when the perception signal is received multiple times.
  • the perception node sends a medium access control (MAC) layer message to the lighting node, requesting the lighting node to respond and "illuminate" the environment (Wi-Fi illumination).
  • MAC medium access control
  • the process of scheduling awareness will bring some overhead to the sensing node, but it allows the sensing node to control the rate and occurrence of sensing.
  • Method 3 As shown in Figure 6 is the push sensing process, multiple nodes that have enabled WLAN Sensing can interact. In this process, broadcast or multicast messages are sent by nodes that have enabled WLAN Sensing, and can be enabled for others The WLAN Sensing node provides a "lighting" environment for detection and capture. Because the process of push sensing is a one-way transmission rather than a two-way interaction, the additional overhead is less than that of the second method, and the rate and occurrence of sensing are allowed to be controlled.
  • WLAN Sensing in the above-mentioned methods is generally only performed at low or high frequencies, and the target object cannot be finely sensed, and the sensing result is poor.
  • this application proposes a method and device for sensing the target object.
  • the method and the device are based on the same technical concept. Since the method and the device have similar principles for solving the problem, Therefore, the implementation of the device and the method can be referred to each other, and the repetitive parts will not be redundantly described.
  • the first device perceives the target object within its own first frequency range, and sends the obtained first perception result to the second device, and the second device is based on the first perception result, Perceive the target object within its own second frequency band, obtain a second perception result, and send the second perception result to the first device, and the first device determines according to the first perception result and the second perception result
  • the sensing results in at least two frequency bands are merged to achieve a finer sensing effect.
  • the first frequency band range is a low frequency range and the second frequency band range is a high frequency range
  • the WLAN Sensing process can be performed based on high and low frequency cooperation. Through the sharing of the sensing results between the high and low frequencies, the high frequency can sense the results in the low frequency. It saves the time of high-frequency omni-directional scanning, effectively improves the high-frequency sensing range, and improves the sensing accuracy.
  • the embodiment of the present application provides a method for sensing a target object, and the method can be applied to the sensing system as shown in FIG. 3.
  • the specific process of the method for sensing the target object will be described in detail below with reference to FIG. 7. As shown in Figure 7, the process includes:
  • S701 The first device sends the first perception result to the second device, and the second device receives the first perception result. Obtained by perceiving the target object in the frequency range.
  • the first device may include an LF module and an HF module.
  • the LF module of the first device can perceive the target object in the first frequency band range.
  • the first frequency band range is the low frequency range of the first device.
  • the first frequency band range may be located in the 2.4 gigahertz (GHz) or 5 GHz frequency band of 802.11b/g/n/ac,
  • the first frequency band range may include 2.4 GHz or 5 GHz.
  • the first device (or the LF module of the first device) can perceive the approximate area of the target object through omnidirectional scanning within the first frequency band, and the perceptual range is larger.
  • the HF module of the first device can perceive the target object in the fourth frequency range.
  • the fourth frequency band range is the high frequency range of the first device.
  • the fourth frequency band range may be located in the frequency range between 57 GHz and 66 GHz of 802.11ad, or may be located above 60 GHz of 802.11ad Within the frequency band range of, for example, the fourth frequency band range may include 60 GHz.
  • the sensing range of the first device (or the HF module of the first device) in the fourth frequency band is limited, but the sensing accuracy is higher.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device, and the movement of the target object Speed or the signal strength of the target object received by the first device.
  • the first device may send a first instruction to the second device, where the first instruction carries the first perception result, and the first instruction is used to instruct the second device Perceive the target object based on the first perception result.
  • the first instruction may also include a second frequency band range, the second frequency range may be the high frequency range of the second device, and the first instruction is specifically used to instruct the second device based on The first perception result perceives the target object in the second frequency band range.
  • the first frequency band range and the second frequency band range are different, and the value of the second frequency band range can be referred to Table 1 below.
  • the first instruction may be a WLAN Sensing Indication frame, and the frame structure of the WLAN Sensing Indication frame is a management frame structure newly designed for this application.
  • the WLAN Sensing Indication frame includes the following Fields: MAC header field (occupies 16 bytes), Category field (occupies 1 byte), WLAN Sensing indication field (Indication Action filed) (occupied bytes are not fixed and variable), Indication Multicast Address (Indication Multicast Address) ) Field (occupies 6 bytes), and FCS field (occupies 4 bytes).
  • WLAN Sensing Indication Action filed includes Control subfield (occupies 1 byte), distance (range) subfield (occupies 1 byte), angle subfield (occupies 1 byte), and movement speed (velocity) subfield ( 1 byte), Target received signal strength indication (RSSI) subfield (occupies 1 byte), channel bandwidth/band bandwidth (Bandwidth) subfield (occupies 4 bytes), and feedback Indication (Feedback Indication) subfield (occupies 1 byte).
  • RSSI Target received signal strength indication
  • Bandwidth Band bandwidth
  • Feedback Indication feedback Indication
  • the range subfield is used to indicate the distance between the target object and the first device
  • the angle subfield is used to indicate the angle of the target object relative to the first device
  • the velocity subfield is used to indicate the The moving speed of the target object
  • the Target RSSI subfield is used to indicate the signal strength of the target object received by the first device.
  • the value of the Bandwidth subfield can be seen in Table 1 below.
  • the Bandwidth subfield is used to indicate the frequency range of the participant during perception. When the Bandwidth subfield has a value of 0, it means that the indicated frequency range for high frequency perception is 20. Megahertz (MHz), when the Bandwidth subfield is set to 1, it means that the frequency range for the indicated high frequency is 40MHz, and when the Bandwidth subfield is set to 2, it means that the frequency range for the indicated high frequency for sensing is 80MHz, Bandwidth When the value of the subfield is 3, it means that the frequency range of the indicated high frequency sensing is 80+80MHz or 160MHz.
  • the initiator and participant of the sensing process can negotiate the device for fusion.
  • the device for fusion can be the initiator, or the device for fusion can be the participant, which is not limited in the embodiment of the present application.
  • the device for fusion is the initiator as an example.
  • the initiator may also indicate the information feedback fusion frequency band, and the information feedback fusion frequency band may be used to instruct participants to feed back the perception results to the initiator’s
  • the low-frequency range or the high-frequency range that is, on which frequency band range of the initiator (the first device) the participant (such as the second device) feeds back the high-frequency perception result.
  • the value of the Feedback Indication subfield can be seen in Table 2 below.
  • the Feedback Indication subfield is used to indicate the information feedback fusion frequency band. When the Feedback Indication subfield has a value of 0, it indicates that the information feedback fusion frequency band is LF, and the Feedback Indication subfield takes When the value is 1, it means the fusion frequency band of indication information feedback is HF, when the value of the Feedback Indication subfield is 2, it means the fusion frequency band of indication information feedback is LF or HF, and when the value of the Feedback Indication subfield is 3-7, it is a reserved bit. .
  • OCT technology can be used to achieve seamless switching between high and low frequencies in WLAN Sensing, save frequency band switching time, improve the success rate of switching, and realize information sharing between high and low frequencies, which can obtain more dimensions of target objects
  • the information, the sensing result of the target object is more accurate and refined, and it can also reduce the time occupied by air transmission, reduce transmission overhead, and improve network performance.
  • the Indication Multicast Address field can be used to indicate that the OCT operation supports multicast/broadcast.
  • the first device may instruct the participant (such as the second device) to perceive the target in the high frequency range of the participant (such as the second frequency range of the second device) object.
  • the LF module of the first device sends the OCT primitive of the first instruction (encapsulating the WLAN Sensing Indication frame as a primitive of the OCT technology, such as OCT.Indication) to the HF module of the first device,
  • the HF module of the first device sends the first instruction to the HF module of the second device.
  • the LF module of the first device sends the first instruction to the LF module of the second device
  • the LF module of the second device sends the OCT primitive of the first instruction to the The HF module of the second device.
  • the first device may perceive the target object in a high frequency range of the first device (that is, the fourth frequency band range).
  • the LF module of the first device sends the OCT primitive of the first instruction to the HF module of the first device.
  • S702 The second device feeds back a second perception result to the first device, the first device receives the second perception result fed back by the second device, and the second perception result is based on the second device
  • the first sensing result is obtained by sensing the target object in the second frequency band range.
  • the first frequency band range and the second frequency band range are different.
  • the second frequency band range is a high frequency range of the second device.
  • the second frequency band range may include 60 GHz, or the second frequency band range may refer to Table 1 above.
  • the second frequency band range may be instructed by the first device to the second device (such as carried in the first instruction), or the second frequency band range may be in the second device Pre-set.
  • the initiator of the perception process can negotiate with the participants of the perception process on which device to perform the fusion, for example, the result of the negotiation is that the fusion is performed on the initiator.
  • the initiator and the participant can also negotiate in which frequency band range to be fused.
  • the negotiation result is fusion on the LF or HF side of the initiator, and the participant in the sensing process feeds back the sensing result to all LF or HF of the initiator.
  • the second device may actively send the second sensing result to the first device after sensing the second sensing result.
  • the second device may passively feed back the second perception result according to an instruction of the first device.
  • the first device sends third indication information, where the third indication information is used to instruct the participant to feed back the perception result, and the participant feeds back the perception result to the first device according to the third indication information.
  • the third indication information is used to instruct the participant to poll and feedback the perception result, and the participant polls and feedback the perception result according to the third indication information.
  • the first device may send a fifth instruction to the participant, and the fifth instruction carries the third instruction information.
  • the fifth instruction also includes one or more of the following information: indication information of the distance between the target object and the participant (such as the second device), and the target object relative to the participant (such as the second device) angle indication information, the movement speed indication information of the target object, the sector indication information where the target object is located, or the frequency band bandwidth indication information.
  • the distance indication information between the target object and the participant is used to instruct the participant to feed back the distance between the target object and the participant;
  • the target object is relative to the participant Angle indication information, used to instruct the participant to feed back the target object’s angle equivalent to the participant;
  • the target object’s moving speed indication information used to instruct the participant to feed back the moving speed of the target object
  • the indication information of the sector where the target object is located is used to instruct the participant to feed back the sector where the target object is located;
  • the frequency band bandwidth indication information is used to instruct the participant to feed back the frequency band bandwidth for sensing .
  • the fifth command may be a WLAN Sensing Trigger frame
  • the WLAN Sensing Trigger frame may be a management frame structure newly designed for this application, for example, the value of the trigger type subfield in the WLAN Sensing Trigger frame (Trigger Type subfield).
  • Trigger Type subfield the value of the trigger type subfield in the WLAN Sensing Trigger frame
  • the relationship between value) and trigger frame variant (Trigger frame variant) can be found in Table 3 below.
  • the Trigger Type subfield When the Trigger Type subfield is set to 0, the trigger frame variable is Basic, and when the Trigger Type subfield is set to 1, the trigger frame variable is Beamforming Report Poll, and the Trigger Type subfield is When the value of the field is 2, the trigger frame variable is a multi-user block acknowledgment request (MU-BAR), and when the Trigger Type subfield is set to 3, the trigger frame variable is a multi-user request to send frame (multi-user request).
  • MU-BAR multi-user block acknowledgment request
  • the Trigger Type subfield when the Trigger Type subfield is set to 3 the trigger frame variable is a multi-user request to send frame (multi-user request).
  • the trigger frame variable is a multicast retransmission multi-user block confirmation request (groupcast with retries MU-BAR, GCR MU-BAR).
  • the trigger frame variable is the frequency band bandwidth query report polling frame (Bandwidth Query Report Poll), when the Trigger Type subfield is set to 7, the trigger frame variable is Neighbor Discovery Protocol (NDP) feedback report polling frame (Feedback Report Poll), when the Trigger Type subfield is set to 8,
  • NDP Neighbor Discovery Protocol
  • the trigger frame variable is a WLAN Sensing frame, and when the Trigger Type subfield is 9-15, it is a reserved bit.
  • Trigger Type subfield value Trigger frame variant 0 Basic 1 Beamforming Report Poll 2 MU-BAR
  • the WLAN Sensing Trigger frame can be defined in the reserved bits in Table 3 above, so that other devices (such as participants) feedback the sensing results instead of other information.
  • the first device may send a fourth instruction to the participant, and the fourth instruction carries the third instruction information.
  • the fourth instruction also includes one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the second device or the third device, and the target The angle indicating information of the object relative to the second device or the third device, the moving speed indicating information of the target object, the sector indicating information where the target object is located, or the frequency band bandwidth indicating information.
  • the fourth command may be a WLAN Sensing Poll frame.
  • the frame structure of the WLAN Sensing Poll frame is a management frame structure newly designed for this application.
  • the WLAN Sensing Poll frame includes the following fields, Frame Control field (occupies 2 bytes), perception duration (Duration) field (occupies 2 bytes), receiving station address (RA) field (occupies 6 bytes), transmission station address (TA) field (occupies 6 bytes) , Sensing Data Feedback field (occupies 1 byte), and FCS (occupies 4 bytes).
  • the Sensing Data Feedback field includes Sequence ID Control subfield (occupies 1 bit), Timestamp Control subfield (occupies 1 bit), range subfield (occupies 1 bit), angle subfield (occupies 1 bit) Bit), velocity subfield (occupies 1 bit), sector ID subfield (occupies 1 bit), Bandwidth subfield (occupies 1 bit), and Reserved field (occupies 1 bit).
  • the range subfield can be used to indicate the distance indication information between the target object and the participant;
  • the angle subfield can be used to indicate the angle indication information of the target object relative to the participant;
  • the velocity subfield can be used to indicate the distance between the target object and the participant.
  • the moving speed indication information of the target object; the sector number subfield may be used to indicate the sector indication information where the target object is located;
  • the Bandwidth subfield may be used to indicate frequency band bandwidth indication information.
  • the first device When the first device discovers other sensing devices, it can also temporarily schedule or request other sensing devices to join the original sensing process (that is, the sensing process that the first device and the second device currently participate in, or join other sensing devices).
  • the perception process before the perception device For example, if the first device detects that there is a third device that supports perception near the target object, the first device may send first indication information to the third device, and the first indication information is used for scheduling or requesting The third device perceives the target object, and the third device may receive the first indication information.
  • the third device perceives the target object in the range of the third frequency band, obtains a third perception result, and sends the third perception result to the first device, and the first device can receive the third Perceive the result.
  • the third frequency band range is the high frequency range of the third device.
  • the third frequency band range may include 60 GHz, or the third frequency band range may refer to Table 1 above.
  • the third frequency band range may be instructed by the first device to the third device, or the third frequency band range may be preset in the third device.
  • the sensing range of the third device (or the HF module of the third device) in the third frequency band is limited, but the sensing accuracy is higher.
  • the first device may send a second instruction to the third device, and the second instruction carries the first instruction information.
  • the second instruction also includes one or more of the following information: frequency band information, channel information, first perception result, feedback indication information, the role of the initiator (for example, including AP or STA), perception duration, perception interval time, or Perception mode.
  • the second command may be a WLAN Sensing Request frame.
  • the frame structure of the WLAN Sensing Request frame is a management frame structure newly designed for this application.
  • the WLAN Sensing Request frame includes the following fields: MAC header Fields (occupies 16 bytes), Category field (occupies 1 byte), WLAN Sensing Request Action field (occupied bytes are not fixed and variable) and FCS field (occupies 4 bytes).
  • the WLAN Sensing Request Action field field includes the Control subfield (occupies 1 byte), the Band ID subfield (occupies 1 byte), the Channel Number subfield (occupies 1 byte), and the target information ( Target Info) subfield (occupies 4 bytes), Feedback Indication subfield (occupies 1 byte), Sensing Info subfield (occupies 0 bytes or 5 bytes), STA Role subfield (occupies 4 words) Festival).
  • the Target Info subfield includes a range subfield (occupies 1 byte), an angle subfield (occupies 1 byte), a velocity subfield (occupies 1 byte), and a Target RSSI subfield (occupies 1 byte).
  • the Sensing Info subfield includes the Sensing Duration subfield (occupies 2 bytes), the Sensing Interval subfield (occupies 2 bytes), and the sensing mode (Sensing Mode) subfield (occupies 1 byte).
  • the temporary scheduling device (such as the third device) receives the WLAN Sensing Request frame, it joins the current sensing process according to the request information for sensing, and feeds the sensing results back to the initiator and other devices negotiated in advance. side.
  • the corresponding relationship between the value of the STA Role subfield and the role of the STA is shown in Table 4.
  • the role of the STA is AP.
  • the role of the STA is tunneled direct link setup (TDLS) STA.
  • the STA role is IDSS STA.
  • the STA Role subfield is 3, the STA role is a port hole control protocol (PCP) device.
  • PCP port hole control protocol
  • STA Role subfield value STA role 0 AP 1 TDLS STA 2 IBSS STA 3 PCP 4 Non-PCP and Non-AP STA 5-7 Reserved
  • the Sensing Mode subfield may be used to indicate the mode in which other temporarily scheduled devices participate in sensing, including a passive (Passive) mode and/or a spontaneous self-receiving (Monostatic) mode.
  • Passive passive
  • Monitoring spontaneous self-receiving
  • the third device when the third device is temporarily mobilized to participate in sensing, if the high frequency of the first device is busy, the position information of the target object detected by the low frequency of the first device cannot be sent to the third device, or the third device If the high frequency of the device is sleeping and cannot receive the signal, the first device can encapsulate the relevant information that requests the third device to perceive in the On-channel Tunnel Request frame (that is, through OCT technology or OCT.request primitive), through the first device The low frequency of is sent to the high frequency of the third device. After receiving the On-channel Tunnel Request frame, the third device joins the existing sensing process according to the request information.
  • the On-channel Tunnel Request frame that is, through OCT technology or OCT.request primitive
  • the first device can schedule the third device to join the current sensing process by allocating a service period (SP) to the third device without affecting the current sensing process.
  • SP refers to the non-contention access period.
  • the first device sends second indication information to a third device, and the second indication information is used to schedule the third device into a service period SP, where the SP is the SP where the second device is located , Or the SP assigned to the third device.
  • the first device If the first device is an AP, the first device actively sends a Poll frame (this Poll frame is different from the subsequent WLAN Sensing Poll frame), and directly schedules the third device to the first device and/or In the same SP of the second device, or the first device allocates a new SP to the third device. If the first device is an STA, the third device can actively send a service period request (SPR) frame to the associated AP to apply for an extended SP, and the third device sends the first request information to the associated AP, so The first request information is used to request the associated AP to allocate an SP for the third device.
  • SPR service period request
  • the participant feeds back the perception result to the first device, and the first device may receive the perception result fed back by the participant.
  • the perception result fed back by the participant may be carried in the third instruction.
  • the third instruction further includes one or more of the following information: the distance between the target object and the participant, the angle of the target object relative to the participant, the moving speed of the target object, The sector, frequency band bandwidth, or feedback indication information where the target object is located.
  • the third instruction may be WLAN Sensing Feedback frame.
  • the frame structure of the WLAN Sensing Feedback frame may be a management frame structure newly designed for this application, for example, as shown in FIG. 12, the WLAN Sensing Feedback frame includes the following fields: MAC header field (occupies 16 bytes), Category field (occupies 1 byte), WLAN Sensing Feedback Action field (occupied bytes are not fixed and variable) and FCS field (occupies 4 bytes).
  • WLAN Sensing Feedback Action field includes Control subfield (occupies 1 byte), range subfield (occupies 1 byte), angle subfield (occupies 1 byte), velocity subfield (occupies 1 byte), Sector ID subfield (occupies 1 byte), Bandwidth subfield (occupies 4 bytes) and Feedback Indication subfield (occupies 1 byte).
  • the third device participates in perception in a passive manner, no SP allocation is involved, and the third device only needs to monitor the channel at a specific time to obtain the perception result sent by the participant.
  • the first device determines the state information of the target object according to the first perception result and the second perception result.
  • the first device may determine the state information of the target object according to the perception result of the initiator and the perception result of all participants. If the third device is temporarily scheduled, in S703, the first device determines the state information of the target object according to the first perception result, the second perception result, and the third perception result.
  • the state information of the target object includes but is not limited to the following information: the position information of the target object, the moving speed of the target object, the signal strength information of the target object, and so on.
  • a newly designed WLAN Sensing Action frame structure can be provided in this application.
  • the management frame can be designed in the Action frame type, or it can be other types of management frames or newly designed
  • the Action frame is taken as an example for description in this application, but it is not limited to the Action frame.
  • a new operation type WLAN Sensing can be defined in the reserved bits of the Category subfield of the Action field of the Action frame in the management frame, and the value of the WLAN Sensing Action field can be added to indicate the frame type in the WLAN Sensing operation.
  • the WLAN Sensing Action frame is defined in the second reserved bit of the Category subfield, which includes the newly designed WLAN Sensing Indication frame, WLAN Sensing Request frame, WLAN Sensing Feedback frame, WLAN Sensing Trigger frame, and WLAN One or more of Sensing Poll frame, etc.
  • the WLAN Sensing Indication frame, WLAN Sensing Request frame, and WLAN Sensing Feedback frame are defined in the second reserved bit of the Category subfield, see Table 5 below.
  • the value of the WLAN Sensing Action field is 0, it means WLAN Sensing Indication frame, and the time priority does not need to be set.
  • the value of the WLAN Sensing Action field is 1, it means WLAN Sensing Request frame and does not need to be set. Time priority.
  • the value of the WLAN Sensing Action field is 2
  • it is expressed as a WLAN Sensing Feedback frame, and the time priority needs to be set (for example, the feedback priority of participants when they feedback the perception results).
  • the value of the WLAN Sensing Action field is When the value is 3-255, it is a reserved bit.
  • WLAN Sensing Action field value Meaning Time priority 0 WLAN Sensing Indication No 1 WLAN Sensing Request No 2 WLAN Sensing Feedback Yes 3-255 Reserved —
  • the above-mentioned newly designed frame can be directly transmitted in the air (that is, it can be directly transmitted through the air interface), or it can be encapsulated in an On-channel Tunnel Request frame for transmission.
  • an On-channel Tunnel Request frame includes the following fields: MAC header field (occupies 16 bytes), Category field (occupies 1 byte), FST Action field, OCT MMPDU field (occupied bytes are not fixed and variable), Multi-band field, Multi-band Source field, and FCS field (occupies 4 bytes).
  • the OCT MMPDU field includes the MMPDU Length subfield (occupies 2 bytes), the MMPDU Frame Control subfield (occupies 2 bytes), and the MMPDU Frame Body subfield (occupied bytes are not fixed and variable).
  • the MMPDU Frame Control subfield includes the MAC header subfield (occupies 16 bytes).
  • the MMPDU Frame Body subfield includes Category subfield (occupies 1 byte), WLAN Sensing Indication Action filed subfield (occupied bytes is not fixed and variable), Indication Multicast Address subfield (occupies 6 bytes).
  • WLAN Sensing Indication Action filed subfield includes Control subfield (occupies 1 byte), range subfield (occupies 1 byte), angle subfield (occupies 1 byte), velocity subfield (occupies 1 byte), Target RSSI Subfield (occupies 1 byte), Bandwidth subfield (occupies 4 bytes), and Feedback Indication subfield (occupies 1 byte).
  • Control subfield occupies 1 byte
  • range subfield occupies 1 byte
  • angle subfield occupies 1 byte
  • velocity subfield occupies 1 byte
  • Target RSSI Subfield occupies 1 byte
  • Bandwidth subfield occupies 4 bytes
  • Feedback Indication subfield occupies 1 byte
  • the first device as the initiator of the sensing process, can first perceive the target object within its first frequency band, and send the first sensing result to the second device.
  • the second device is based on the The first perception result is to perceive the target object within its own second frequency band range to obtain the perception result.
  • the first frequency band range is different from the second frequency band range.
  • the first device can combine at least two frequency band ranges.
  • the perceptual results within are fused to obtain a more refined perceptual result.
  • the first device can be based on high and low frequency cooperation. Through the sharing of the perception results between the high and low frequencies, the high frequencies can be performed on the basis of the low frequency perception results, saving the time of high frequency omnidirectional scanning and effectively improving the high frequency perception range , And improve the perception accuracy.
  • the above-mentioned process of sensing the target object is described in the following specific embodiments.
  • the following embodiments all include scenes in which other devices are temporarily mobilized to participate in the sensing.
  • the feedback information transmission method transmission on HF or LF
  • the information feedback fusion side fusion on the HF side or LF side of the initiator
  • the role of the initiator AP or STA
  • temporary transfer The device participation perception mode (Passive or Monostatic) is different.
  • Embodiment 1 Referring to Figure 14, in the sensing process of the embodiment of the present application, transmission is performed on the LF and fused on the LF side of the initiator.
  • the initiator is the AP, and the third device participates in the sensing in a Monostatic mode.
  • the sensing process includes the following steps:
  • the LF of the first device (as the initiator) first perceives the surrounding environment and obtains the first perception result (the first perception result includes the rough perception result or the low-frequency perception result of the target object),
  • the first sensing result (WLAN Sensing Indication frame) is sent to the HF of Device1 through the OCT primitive (shown by the dashed line, hereafter referred to as OCT.Indication), and the HF of Device1 transmits the frame over the air (shown by the solid line) to
  • the HF of the second device (Device2), the HF of Device1 and the HF of Device2 can all perform directional fine beam scanning based on the first perception result.
  • the initiator needs to temporarily mobilize a third device (Device3) to join the sensing process, if the HF of Device1 is busy (for example, the HF of Device1 is sensing or communicating), and the Device3 does not know the target location information at this time, or Device3 The HF of Device1 is sleeping and cannot receive the information sent by Device1.
  • a third device for example, the HF of Device1 is sensing or communicating
  • the HF of Device1 can send the relevant information (WLAN Sensing Request frame) to request sensing via the OCT primitive (hereinafter referred to as OCT.Request) to the LF of Device1, and the LF of Device1 to Device3's LF, Device3's LF is sent to Device3's HF through OCT.Request, and Device3 joins the sensing process according to the relevant information of the request sensing (as shown in the source of the box in the figure).
  • OCT.Request OCT primitive
  • Device3 participates in sensing in Monostatic mode, if Device1 is an AP, Device1 actively sends a Poll frame to directly dispatch Device3 to the same SP as Device1 and Device2, or assign a new SP to Device3. If Device1 is an STA, Device3 can actively send an SPR frame to the associated AP to apply for an extended SP. By scheduling Device3 to join the existing WLAN Sensing process, it does not affect the original communication/sensing process.
  • Device1 and Device2 negotiate the fusion of the sensing information on the LF/HF side of Device1 during sensing, and Device3 feeds back based on the negotiation result of Device1 and Device2, that is, Device3 feeds back the third sensing result to the LF/HF side of Device1.
  • the Device1 can send a WLAN Sensing Trigger frame to trigger the Device2 and Device3 to feedback, and the Device2 and Device3 instruct their LF through OCT.Indication to directly send the WLAN Sensing Feedback frame to the LF of Device1, that is, use Trigger A method combined with orthogonal frequency division multiple access (OFDMA)/uplink multi-user multiple-input multiple-output (UL MU-MIMO).
  • OFDMA orthogonal frequency division multiple access
  • UL MU-MIMO uplink multi-user multiple-input multiple-output
  • Device3 can also encapsulate the third sensing result in the OCT Request/OCT Response frame for direct feedback to Device1 , Able to feed back the perception results in a timely and efficient manner without modifying the standard protocol.
  • Embodiment 2 Referring to Figure 15, in the sensing process of the embodiment of the present application, transmission is performed on HF and fused on the HF side of the initiator.
  • the initiator is an AP, and the third device participates in the sensing in a Monostatic mode.
  • the sensing process includes the following steps:
  • the LF of Device1 (as the initiator) first perceives the surrounding environment and obtains the first perception result, and passes the first perception result (WLAN Sensing Indication frame) through the OCT primitive (as shown by the dotted line, hereinafter referred to as OCT) .Indication) sent to the HF of Device1, the HF of Device1 forwards the frame to the HF of Device2 through the air transmission (as shown by the solid line), and both the HF of Device1 and the HF of Device2 can be directional based on the first perception result Perform fine beam scanning.
  • OCT OCT
  • the initiator needs to temporarily mobilize Device3 to join the sensing process. If both Device1's HF and Device3's HF are idle, Device1's HF directly transmits the relevant information (WLAN Sensing Request frame) for sensing to Device3 through the air, and Device3 perceives the relevant information according to the request. The information is added to the existing perception process (as shown in the source of the box in the figure).
  • Device1 If Device1 is an AP, Device1 actively sends a Poll frame, directly scheduling Device3 to the same SP as Device1 and Device2, or assigning a new SP to Device3, and scheduling Device3 to join the existing WLAN Sensing process to make it different from the original Of the communication/sensing process.
  • Device1 and Device2 negotiate the fusion of sensing information on the LF/HF side of Device1 during sensing, and Device3 feeds back based on the negotiation result of Device1 and Device2.
  • the HF of Device1 can send a WLAN Sensing Poll frame to instruct the HF of Device 2 and the HF of Device 3 to send the WLAN Sensing Feedback frame directly to Device1 in turn.
  • HF HF.
  • Embodiment 3 Referring to Fig. 16, in the sensing process of the embodiment of the present application, transmission is performed on the LF, fusion is performed on the HF side of the initiator, the initiator is STA, and the third device participates in the sensing in a Monostatic manner.
  • the sensing process includes the following steps:
  • the LF of Device1 first perceives the surrounding environment and obtains the first perception result, and sends the first perception result (WLAN Sensing Indication frame) to it through the OCT primitive (shown by the dotted line, hereinafter referred to as OCT.Indication) Device1's HF, Device1's HF forwards the frame to Device2's HF through the air transmission (as shown by the solid line). Both Device1's HF and Device2's HF can perform directional fine beam scanning based on the first perception result. .
  • the initiator needs to temporarily mobilize Device3 to join the sensing process. If the HF of Device1 is busy and Device3 does not know the target location information at this time, or the HF of Device3 is sleeping and cannot receive the information sent by Device1, the HF of Device1 can request sensing related information Information (WLAN Sensing Request frame) is sent to the LF of Device1 through the OCT primitive (hereinafter referred to as OCT.Request), the LF of Device1 is sent to the LF of Device3, the LF of Device3 is sent to the HF of Device3 through OCT.Request, and Device3 senses according to the request The relevant information is added to the existing perception process (as shown in the source of the box in the figure).
  • Device3 participates in sensing in Monostatic mode, if Device1 is an STA, Device3 can actively send an SPR frame to the associated AP to apply for an extended SP, and the associated AP allocates a new SP to Device3. By scheduling Device3 to join the existing WLAN Sensing process, it does not affect the original communication/sensing process.
  • Device1 and Device2 negotiate the fusion of the sensing information on the LF/HF side of Device1 during sensing, and Device3 feeds back based on the negotiation result of Device1 and Device2.
  • the HF of Device1 can send the WLAN Sensing Poll frame, and the HF of Device2 and the HF of Device3 encapsulate the sensing result WLAN Sensing Feedback frame in the On-channel Tunnel Request frame for feedback.
  • Embodiment 4 Referring to Figure 17, in the sensing process of the embodiment of the present application, transmission is performed on the LF and fused on the LF side of the initiator.
  • the initiator is the AP
  • the third device participates in the sensing in the Passive mode as an example to illustrate the sensing process. It includes the following steps:
  • the LF of Device1 first perceives the surrounding environment and obtains the first perception result, and sends the first perception result (WLAN Sensing Indication frame) to it through the OCT primitive (shown by the dotted line, hereinafter referred to as OCT.Indication) Device1's HF, Device1's HF forwards the frame to Device2's HF through the air transmission (as shown by the solid line). Both Device1's HF and Device2's HF can perform directional fine beam scanning based on the first perception result. .
  • the initiator needs to temporarily mobilize Device3 to join the sensing process. If the HF of Device1 is busy and Device3 does not know the target location information at this time, or the HF of Device3 is sleeping and cannot receive the information sent by Device1, the HF of Device1 can request sensing related information Information (WLAN Sensing Request frame) is sent to the LF of Device1 through the OCT primitive (hereinafter referred to as OCT.Request), the LF of Device1 is sent to the LF of Device3, the LF of Device3 is sent to the HF of Device3 through OCT.Request, and Device3 senses according to the request The relevant information is added to the existing perception process. When Device3 participates in sensing in Passive mode, Device3 only needs to monitor the channel at a specific time, and there is no need to allocate SP for Device3.
  • Device1 and Device2 negotiate the fusion of the sensing information on the LF/HF side of Device1 during sensing, and Device3 feeds back based on the negotiation result of Device1 and Device2.
  • the Feedback stage if Device1 is an AP, the feedback information is transmitted through the LF side and merged on the LF side of Device1.
  • the Device1 may send a WLAN Sensing Trigger frame to trigger the Device2 and Device3 to feedback, and the Device2 and Device3 instruct their LF through OCT.Indication to directly send the WLAN Sensing Feedback frame to the LF of Device1, that is, use Trigger
  • the method combined with OFDMA/UL MU-MIMO.
  • an embodiment of the present application also provides a device for sensing a target object, as shown in FIG. 18,
  • the device for sensing target objects includes a processing unit 1801 and a transceiving unit 1802, and the device 1800 can be used to implement the method described in the foregoing method embodiment applied to a device.
  • the apparatus 1800 is applied to a first device, where the first device is the initiator of the perception process.
  • the transceiver unit 1802 is configured to send a first perception result to a second device, where the first perception result is obtained by the first device perceiving a target object within a first frequency band; receiving feedback from the second device The second sensing result is obtained by the second device perceiving the target object in a second frequency range based on the first sensing result, the first frequency range and the second The frequency range is different;
  • the processing unit 1801 is configured to determine the state information of the target object according to the first perception result and the second perception result.
  • the first frequency band range is a low frequency range of the first device; the second frequency band range is a high frequency range of the second device.
  • the transceiving unit 1802 is further configured to send first indication information to a third device, and the first indication information is used to mobilize or request the third device to perceive the target object; and receive the A third sensing result fed back by the third device, where the third sensing result is obtained by the third device perceiving the target object in a third frequency band range, and the third frequency band range is different from the first frequency band range.
  • the third frequency band range is a high frequency range of the third device.
  • the transceiving unit 1802 is further configured to send second indication information to the third device before receiving the third perception result fed back by the third device, and the second indication information is used for The third device is scheduled into an SP, where the SP is the SP where the second device is located, or the SP allocated to the third device.
  • the transceiving unit 1802 is further configured to send third indication information to the second device and the third device, and the third indication information is used to indicate the second device and the third device.
  • the third device feeds back the perception result, or the third device indication information is used to instruct the second device and the third device to poll and feedback the perception result.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device, The moving speed of the target object or the signal strength of the target object received by the first device.
  • the transceiving unit 1802 is specifically configured to send a first instruction, the first instruction carrying the first perception result, and the first instruction is used to instruct the participant based on the first perception result Perceive the target object.
  • the first instruction may also carry the second frequency band range and/or the third frequency band range.
  • the transceiving unit 1802 is specifically configured to send a second instruction to the third device, and the second instruction carries the first instruction information.
  • the second instruction may also include one or more of the following information: frequency band information, channel information, the first perception result, feedback indication information, the role of the first device, perception duration, perception interval time, or Perception mode.
  • the transceiving unit 1802 is specifically configured to receive a third instruction sent by a second device and/or a third device, and the third instruction carries a second perception result of the second device and/or The third perception result of the third device.
  • the third instruction may also include one or more of the following information: the distance between the target object and the second device and/or the third device, and the target object relative to the second device and/or the third device.
  • the angle of the third device the moving speed of the target object, the sector where the target object is located, the frequency band bandwidth, or feedback indication information.
  • the transceiving unit 1802 is specifically configured to send a fourth instruction to the second device and/or the third device, the fourth instruction carries the third instruction information, and the fourth instruction uses To instruct the second device and the third device to poll and feedback the perception result.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the second device and/or the third device, The angle indication information of the target object relative to the second device and/or the third device, the moving speed indication information of the target object, the sector indication information or frequency band bandwidth indication information where the target object is located.
  • the transceiving unit 1802 is specifically configured to send a fifth instruction to the second device and/or the third device, the fifth instruction carries the third instruction information, and the fourth instruction The instruction is used to instruct the second device and/or the third device to feed back the sensing result.
  • the fifth instruction may also include one or more of the following information: indicating information about the distance between the target object and the second device and/or the third device, and the target object relative to the first device.
  • the angle indication information of the second device and/or the third device the moving speed indication information of the target object, the sector indication information where the target object is located, or the frequency band bandwidth indication information.
  • the apparatus 1800 is applied to a second device, and the second device is a participant in the perception process.
  • the processing unit 1801 is configured to receive a first perception result through the transceiver unit 1802, where the first perception result is obtained by the first device perceiving the target object within the first frequency band; and feed back the second perception result, the second perception result
  • the sensing result is obtained by the second device perceiving the target object in the second frequency band range based on the first sensing result, and the first frequency band range is different from the second frequency band range.
  • the first frequency band range is a low frequency range of the first device; the second frequency band range is a high frequency range of the second device.
  • the transceiving unit 1802 is further configured to receive third indication information from the first device before feeding back the second perception result to the first device, where the third indication information is used to indicate The second device feeds back the perception result, or is used to instruct the second device and the third device to poll and feedback the perception result.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device, The moving speed of the target object or the signal strength of the target object received by the first device.
  • the transceiving unit 1802 is specifically configured to receive a first instruction, the first instruction carrying the first perception result, the first instruction carrying the first perception result, and the first instruction The instruction is used to instruct the second device to perceive the target object based on the first sensing result.
  • the first instruction may also carry the frequency band range of the second device.
  • the transceiving unit 1802 is specifically configured to send a third instruction to the first device, and the third instruction carries the second sensing result.
  • the third instruction may also include one or more of the following information: the distance between the target object and the second device, the angle of the target object relative to the second device, and the distance between the target object and the second device.
  • the transceiving unit 1802 is specifically configured to receive a fourth instruction, the fourth instruction carries the third instruction information, and the fourth instruction is used to instruct the second device and the third device to poll Feedback perception results.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the second device, and the distance between the target object and the second device Angle indication information, movement speed indication information of the target object, sector indication information or frequency band bandwidth indication information where the target object is located.
  • the transceiving unit 1802 is specifically configured to receive a fifth instruction, the fifth instruction carrying the third instruction information, and the fifth instruction is used to instruct the second device to feed back the sensing result.
  • the fifth instruction may also include one or more of the following information: indicating information about the distance between the target object and the second device, indicating information about the angle of the target object relative to the second device, and indicating information about the target object's angle relative to the second device. Movement speed indication information, sector indication information or frequency band bandwidth indication information where the target object is located.
  • the apparatus 1800 is applied to a third device, and the second device is a participant temporarily scheduled to join the sensing process.
  • the processing unit 1801 is configured to receive first indication information through the transceiving unit 1802, where the first indication information is used to mobilize or request the third device to perform sensing; and to feed back the third sensing result to the first device, the The third sensing result is obtained by the third device perceiving the target object in the range of the third frequency band.
  • the third frequency band range is a high frequency range of the third device.
  • the transceiving unit 1802 is further configured to receive second indication information from the first device before feeding back the third perception result to the first device, and the second indication information is used to transfer the The third device is scheduled into the SP, and the SP is the SP where the second device is located, or the SP allocated to the third device.
  • the transceiving unit 1802 is further configured to send first request information to the AP before feeding back the third perception result to the first device, and the first request information is used to request the AP to be the first device.
  • the three devices allocate an SP, and the AP is associated with the third device, that is, the AP is an associated AP of the third device.
  • the transceiving unit 1802 is further configured to receive third indication information from the first device before feeding back the third perception result to the first device, where the third indication information is used to indicate the The third device feeds back the perception result, or the third device indication information is used to instruct the second device and the third device to poll and feedback the perception result.
  • the transceiving unit 1802 is specifically configured to receive a fourth instruction, the fourth instruction carries the third instruction information, and the fourth instruction is used to instruct the second device and the third device to poll Feedback perception results.
  • the fourth instruction may also include one or more of the following information: sequence control information, time stamp control information, distance indication information between the target object and the second device and/or the third device, and the target object The angle indication information relative to the second device and/or the third device, the movement speed indication information of the target object, the sector indication information where the target object is located, or the frequency band bandwidth indication information.
  • the transceiving unit 1802 is specifically configured to receive a fifth instruction, the fifth instruction carrying the third indication information, and the fifth instruction is used to instruct the third device to feed back the sensing result.
  • the fifth instruction may also include one or more of the following information: indicating information about the distance between the target object and the second device and/or the third device, and the target object relative to the first device.
  • the angle indication information of the second device and/or the third device the moving speed indication information of the target object, the sector indication information where the target object is located, or the frequency band bandwidth indication information.
  • the first perception result includes one or more of the following information: the distance between the target object and the first device, the angle of the target object relative to the first device, The moving speed of the target object or the signal strength of the target object received by the first device.
  • each functional unit in each embodiment of this application It can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a schematic structural diagram of a device 1900 for sensing a target object.
  • the apparatus 1900 may be used to implement the method described in the foregoing method embodiment applied to a device, and reference may be made to the description in the foregoing method embodiment.
  • the device 1900 includes one or more processors 1901.
  • the processor 1901 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1900 includes one or more processors 1901, and the one or more processors 1901 may implement the method of the device in the above-mentioned embodiment.
  • the processor 1901 may also implement other functions in addition to implementing the methods in the foregoing embodiments.
  • the processor 1901 may execute instructions to cause the apparatus 1900 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1903, or in the memory 1902 coupled to the processor, in the memory 1902, such as the instruction 1904, or through the instructions 1903 and 1904.
  • the device 1900 executes the method described in the foregoing method embodiment.
  • the communication device 1900 may also include a circuit, and the circuit may implement the functions in the foregoing method embodiments.
  • the device 1900 may include one or more memories 1902, on which instructions 1904 are stored, and the instructions may be executed on the processor, so that the device 1900 executes the foregoing method The method described in the examples.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1902 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the device 1900 may further include a transceiver 1905 and an antenna 1906.
  • the processor 1901 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiver 1905 may be called a transceiver, a transceiver circuit, or a transceiver unit, etc., and is used to implement the transceiver function of the device through the antenna 1906.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • An embodiment of the present application also provides a communication system, which includes the first device and the second device described above, and the first device and the second device are used to implement the sensing target object described in any of the method embodiments described above. Methods.
  • the system may further include a third device.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method for sensing a target object described in any of the foregoing method embodiments is implemented.
  • the embodiment of the present application also provides a computer program product, which, when executed by a computer, implements the method for sensing a target object described in any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method for sensing a target object described in any of the foregoing method embodiments.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data in the form of a structure
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy the data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请涉及终端技术领域,公开了一种感知目标物体的方法及装置,用以对目标物体进行更精细的感知,得到更精细的感知结果。第一设备将第一感知结果发送给第二设备,所述第一感知结果由所述第一设备在第一频段范围内感知目标物体得到;所述第一设备接收所述第二设备反馈的第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同;所述第一设备根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息,通过在不同频段上对目标物体进行感知,可以得到更精细的感知结果。

Description

一种感知目标物体的方法及装置
相关申请的交叉引用
本申请要求在2020年05月30日提交中国专利局、申请号为202010480870.9、申请名称为“一种感知目标物体的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及终端技术领域,尤其涉及一种感知目标物体的方法及装置。
背景技术
无线局域网(wireless local area network,WLAN)感知(Sensing)是一种利用WLAN信号进行运动检测的技术。物理设备可以利用无线电所具备的测量采样周围环境的能力,来提取周围环境的信息。
现有的IEEE 802.11系列标准有主流低频段(例如:2.4GHz和5GHz)相关标准(例如:802.11n,802.11ac,802.11ax等)与高频段(例如:60GHz)相关标准(例如:802.11ad,802.11ay)。物理设备可以利用WLAN Sensing技术,基于这些标准进行目标物体的感知。现有WLAN Sensing一般只在低频或高频上进行,对目标物体无法进行更精细的感知,感知结果差。
发明内容
本申请实施例提供了感知目标物体的方法及装置,从而对目标物体进行更精细的感知,达到更精细的感知结果。
第一方面,提供了一种感知目标物体的方法,包括如下过程:第一设备将第一感知结果发送给第二设备,所述第一感知结果由所述第一设备在第一频段范围内感知目标物体得到;所述第一设备接收所述第二设备反馈的第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同;所述第一设备根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息。
第一设备作为感知过程的发起者,可以先在自身的第一频段范围内对目标物体进行感知,将第一感知结果发送给第二设备,第二设备基于所述第一感知结果,在自身的第二频段范围内对目标物体进行感知,得到感知结果,所述第一频段范围和所述第二频段范围不同,因此第一设备可以将至少两个频段范围内的感知结果进行融合,从而得到更精细的感知结果。
值得注意的是,在本申请实施例中仅以发起者进行融合为例进行说明,实际感知过程中,参与者也可以进行多个感知结果的融合,只要感知过程之前发起者与参与者协商好即可。
在一个可能的设计中,所述第一频段范围为所述第一设备的低频范围;所述第二频段 范围为所述第二设备的高频范围。
在该设计中,WLAN Sensing过程可以基于高低频协作进行,通过高低频之间感知结果的共享,高频感知可以在低频感知结果的基础上进行,节省高频全向扫描的时间,可有效提高高频的感知范围,并提高探测精度。
在一个可能的设计中,所述第一设备还可以将第一指示信息发送给第三设备,所述第一指示信息用于调动或请求所述第三设备感知所述目标物体;所述第一设备还可以接收所述第三设备反馈的第三感知结果,所述第三感知结果由所述第三设备在第三频段范围内感知所述目标物体得到,所述第三频段范围和所述第一频段范围不同。
所述第二设备和所述第三设备可以看作是感知过程的参与者。
在该设计中,若探测到目标物体附近存在支持感知的设备,可临时调动或请求其参与到原有的感知过程(即加入设备之前的感知过程)中,进而可以获得更为准确和精细的感知结果。并且在本申请中感知过程中可以随时增加参与感知的设备,来实现不同的感知精度,以满足不同应用需求或不同业务需求对于感知精度的要求,且不会对原有的感知过程产生影响。
在一个可能的设计中,所述第三频段范围为所述第三设备的高频范围。
在一个可能的设计中,所述第一设备接收所述第三设备反馈的第三感知结果之前,所述第一设备还可以将第二指示信息发送给所述第三设备,所述第二指示信息用于将所述第三设备调度到SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。
可选的,若所述第一设备为AP,所述第一设备可以直接将所述第三设备调度到与所述第一设备和所述第二设备相同的SP中,或者所述第一设备可以为所述第三设备分配一段新的SP。
或者可选的,若所述第一设备为STA,所述第三设备可以主动向关联的AP申请扩展SP,由所述关联的AP为所述第三设备分配新的SP。
在一个可能的设计中,所述第一设备还可以将第三指示信息发送给所述第二设备和所述第三设备,所述第三指示信息用于指示所述第二设备和所述第三设备反馈感知结果,或者所述第三设备指示信息用于指示所述第二设备和所述第三设备轮询反馈感知结果。
在一个可能的设计中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
在一个可能的设计中,所述第一设备在发送第一感知结果时,所述第一设备可以发送第一指令,所述第一指令携带所述第一感知结果,所述第一指令用于指示参与者基于所述第一感知结果感知所述目标物体。
所述第一指令中还可以携带参与者的频段范围,用于指示参与者基于所述第一感知结果在所述参与者的频段范围内感知所述目标物体。例如,所述参与者的频段范围可以包括所述第二设备的第二频段范围和/或所述第三设备的第三频段范围。
所述第一指令中还可以携带反馈指示信息,用于指示参与者(包括所述第二设备和/或所述第三设备)在所述第一设备的高频范围还是低频范围反馈感知结果,即用于指示参与者在所述第一设备的哪个频段范围反馈所述第二感知结果。
可选的,本申请中设计了一种新的帧结构WLAN Sensing指示帧(Indication frame), 所述第一指令可以为WLAN Sensing Indication frame。
在一个可能的设计中,所述第一设备在将第一指示信息发送给第三设备时,所述第一设备向所述第三设备发送第二指令,所述第二指令携带所述第一指示信息。
所述第二指令中还可以包括以下一种或多种信息:频段信息、信道信息、所述第一感知结果、反馈指示信息、所述第一设备的角色、感知持续时间、感知间隔时间或感知模式。
可选的,本申请中设计了一种新的帧结构WLAN Sensing请求帧(Request frame),所述第二指令可以为WLAN Sensing Request frame。
在一个可能的设计中,所述第一设备在接收参与者反馈的感知结果时,所述第一设备可以接收参与者发送的第三指令,所述第三指令携带参与者的感知结果。例如所述参与者的感知结果可以包括所述第二设备的第二感知结果和/或所述第三设备的第三感知结果。
所述第三指令还可以包括以下一种或多种信息:所述目标物体与参与者(包括所述第二设备和/或所述第三设备)之间的距离、所述目标物体相对于参与者(包括所述第二设备和/或所述第三设备)的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
可选的,本申请中设计了一种新的帧结构WLAN Sensing反馈帧(Feedback frame),所述第三指令可以为WLAN Sensing Feedback frame。
在一个可能的设计中,所述第一设备将第三指示信息发送给参与者时,所述第一设备可以将第四指令发送给参与者,所述第四指令携带所述第三指示信息,所述第四指令用于指示参与者轮询反馈感知结果。例如,所述第四指令用于指示所述第二设备和所述第三设备轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与参与者(包括所述第二设备和/或所述第三设备)之间的距离指示信息、所述目标物体相对于参与者(包括所述第二设备和/或所述第三设备)的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。其中,所述距离指示信息用于指示参与者反馈所述目标物体与参与者之间的距离,所述角度指示信息用于指示参与者反馈所述目标物体与参与者之间的角度,所述移动速度指示信息用于指示参与者反馈所述目标物体的移动速度,所述扇区指示信息用于指示参与者反馈所述目标物体所在的扇区,所述频段带宽指示信息用于指示参与者进行感知时的频段范围。
可选的,本申请中设计了一种新的帧结构WLAN Sensing轮询帧(Poll frame),所述第四指令可以为WLAN Sensing Poll frame。
在一个可能的设计中,所述第一设备将第三指示信息发送给参与者时,所述第一设备可以将第五指令发送给参与者,所述第五指令携带所述第三指示信息,所述第四指令用于指示参与者反馈感知结果。例如,所述第五指令用于指示所述第二设备和所述第三设备反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与参与者(包括所述第二设备和/或所述第三设备)之间的距离指示信息、所述目标物体相对于参与者(包括所述第二设备和/或所述第三设备)的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
可选的,本申请设计了一种新的帧结构WLAN Sensing触发帧(Trigger frame),所述第五指令可以为WLAN Sensing Trigger frame。
在一个可能的设计中,发起者(如第一设备)和参与者(如第二设备和/或第三设备)之间使用通道内隧道OCT技术,在高频和低频之间进行信息共享,使得WLAN Sensing可以在高低频之间无缝切换,节省频段切换时间,提高切换成功率。
OCT技术还可以支持广播或组播,使得第一设备可以将低频感知结果同时发送给多个设备的高频进行高频感知,这样可以获得目标物体更多维度的信息,目标物体的感应结果更加准确更加精细。
并且,通过使用OCT技术,能够减少占用空中传输(即空中接口的传输)的时间,降低传输开销,避免网络性能的下降。
第二方面,提供了一种感知目标物体的方法,包括如下过程:第二设备接收第一感知结果,所述第一感知结果由第一设备在第一频段范围内感知目标物体得到;所述第二设备向所述第一设备反馈第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在所述第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同。
在一个可能的设计中,所述第一频段范围为所述第一设备的低频范围;所述第二频段范围为所述第二设备的高频范围。
在一个可能的设计中,所述第二设备向所述第一设备反馈第二感知结果之前,所述第二设备还可以接收来自所述第一设备的第三指示信息,所述第三指示信息用于指示参与者反馈感知结果,或者用于指示参与者轮询反馈感知结果。
在一个可能的设计中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
在一个可能的设计中,第二设备接收第一感知结果时,所述第二设备可以接收第一指令,所述第一指令携带所述第一感知结果,所述第一指令携带所述第一感知结果,所述第一指令用于指示参与者基于所述第一感知结果感知所述目标物体。
所述第一指令中还可以携带参与者的频段范围,用于指示参与者基于所述第一感知结果在所述参与者的频段范围内感知所述目标物体。例如,所述参与者的频段范围可以包括所述第二设备的第二频段范围和/或所述第三设备的第三频段范围。
所述第一指令中还可以携带反馈指示信息,用于指示参与者在所述第一设备的高频范围还是低频范围反馈感知结果,即用于指示参与者在所述第一设备的哪个频段范围反馈所述第二感知结果。
在一个可能的设计中,所述第二设备向所述第一设备反馈第二感知结果时,所述第二设备可以向所述第一设备发送第三指令,所述第三指令携带所述第二感知结果。
所述第三指令还可以包括以下一种或多种信息:所述目标物体与所述第二设备之间的距离、所述目标物体相对于所述第二设备的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
在一个可能的设计中,所述第二设备接收来自所述第一设备的第三指示信息时,所述第二设备可以接收第四指令,所述第四指令携带所述第三指示信息,所述第四指令用于指示参与者轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与参与者之间的距离指示信息、所述目标物体相对于参与者的角度指示信息、 所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个可能的设计中,所述第二设备接收来自所述第一设备的第三指示信息时,所述第二设备可以接收第五指令,所述第五指令携带所述第三指示信息,所述第五指令用于指示参与者反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与参与者之间的距离指示信息、所述目标物体相对于参与者的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
第三方面,提供了一种感知目标物体的方法,包括如下过程:第三设备接收第一指示信息,所述第一指示信息用于调动或请求所述第三设备进行感知;所述第三设备向第一设备反馈第三感知结果,所述第三感知结果由所述第三设备在第三频段范围内感知目标物体得到。
在一个可能的设计中,所述第三频段范围为所述第三设备的高频范围。
在一个可能的设计中,所述第三设备向第一设备反馈第三感知结果之前,所述第三设备还可以接收来自所述第一设备的第二指示信息,所述第二指示信息用于将所述第三设备调度到SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。
可选的,若所述第一设备为AP,所述第一设备可以直接将所述第三设备调度到与所述第一设备和所述第二设备相同的SP中,或者所述第一设备可以为所述第三设备分配一段新的SP。
在一个可能的设计中,所述第三设备向第一设备反馈第三感知结果之前,所述第三设备还可以向AP发送第一请求信息,所述第一请求信息用于请求所述AP为所述第三设备分配SP,所述AP与所述第三设备关联,即所述AP为所述第三设备的关联AP。
可选的,所述第一设备为STA。
在一个可能的设计中,所述第三设备向第一设备反馈第三感知结果之前,所述第三设备还可以接收来自所述第一设备的第三指示信息,所述第三指示信息用于指示所述第二设备和所述第三设备反馈感知结果,或者所述第三设备指示信息用于指示所述第二设备和所述第三设备轮询反馈感知结果。
在一个可能的设计中,所述第三设备接收第三指示信息时,所述第三设备接收第四指令,所述第四指令携带所述第三指示信息,所述第四指令用于指示参与者轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与参与者之间的距离指示信息、所述目标物体相对于参与者的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个可能的设计中,所述第三设备接收第三指示信息时,所述第三设备接收第五指令,所述第五指令携带所述第三指示信息,所述第五指令用于指示参与者反馈感知结果。例如,所述第五指令用于指示所述第二设备和所述第三设备反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与参与者(包括所述第二设备和/或所述第三设备)之间的距离指示信息、所述目标物体相对于参与者(包括所述第二设备和/或所述第三设备)的角度指示信息、所述目标物体的移动速度指示信息、所述 目标物体所在的扇区指示信息或频段带宽指示信息。
在一个可能的设计中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
第四方面,提供了一种感知目标物体的装置。本申请提供的装置具有实现上述方法方面设备的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行各个方面中任一种可能实现方式中设备完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以位于设备中,或为设备。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行各个方面中任一种可能实现方式中设备完成的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行各个方面中任一种可能实现方式中的方法的指令。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各个方面中任一种可能实现方式中的方法。
第七方面,提供了一种通信系统,该系统包括上述第一设备和第二设备。
可选的,所述系统还可以包括第三设备。
第八方面,本申请提供了一种芯片系统,该芯片系统包括收发器,用于实现上述各方面的方法中设备的功能,例如,例如接收或发送上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为一种OCT技术的通信过程示意图;
图2为一种OCT原语的帧结构示意图;
图3为本申请实施例适用的网络系统的架构图;
图4为一种感知结果示意图;
图5为一种感知结果示意图;
图6为一种感知结果示意图;
图7为本申请实施例适用的一种感知目标物体流程示意图;
图8为本申请实施例适用的一种感知指示帧的帧结构示意图;
图9为本申请实施例适用的一种感知轮询反馈帧的帧结构示意图;
图10为本申请实施例适用的一种感知请求帧的帧结构示意图;
图11为本申请实施例适用的感知目标物体的流程示意图;
图12为本申请实施例适用的一种感知反馈帧的帧结构示意图;
图13为本申请实施例适用的一种OCT帧结构示意图;
图14为本申请实施例适用的一种感知目标物体流程示意图;
图15为本申请实施例适用的一种感知目标物体流程示意图;
图16为本申请实施例适用的一种感知目标物体流程示意图;
图17为本申请实施例适用的一种感知目标物体流程示意图;
图18为本申请实施例适用的一种感知目标物体的装置结构图;
图19为本申请实施例适用的一种感知目标物体的装置结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)WLAN Sensing技术,是一种利用WLAN信号进行运动检测的技术。WLAN Sensing建立在现有的WLAN标准、硬件、基础设备和部署之上,适用于室内环境中目标物体的感知。物理设备(可简称为设备)可以利用无线电所具备的测量采样周围环境的能力,来提取周围环境的信息。WLAN网络由位于给定通信范围内的多个设备构成,可以利用所有的发射机(指发送信号的多个设备)形成一个多基地雷达系统,每个设备可以检测运动并提供信息。这些信息可以用于对目标物体进行检测。
在对目标物体的感知过程中,发起感知的设备可以称为发起者,参加感知的设备可以称为参与者,其中参与者可以包括一开始就加入感知过程的设备,也可以包括被临时调动参与感知的设备。
IEEE 802.11系列标准有主流低频段(例如:2.4GHz和5GHz)相关标准(例如:802.11n,802.11ac,802.11ax等)与高频段(例如:60GHz)相关标准(例如:802.11ad,802.11ay)。WLAN Sensing可以基于IEEE 802.11系列标准进行感知。低频段和高频段做WLAN Sensing各有优劣,例如低频段感知范围大,带宽有限,探测精度低;高频段感知范围有限,带宽极宽,探测精度高。未来的无线局域网络将会是复杂的、综合的网络,本申请中结合低频段和高频段的优势,充分利用高频段与低频段在进行WLAN Sensing时可以相互协作的机会,设计更加合理和高效的高低频协作WLAN Sensing机制,从而提供更加稳健更加高速的WLAN Sensing服务。
可以理解的是,在本申请实施例中对目标物体的感知过程,也可以理解为对目标物体的测量过程。在本申请中对目标物体的感知过程至少包括两个子过程:Sensing阶段和反馈(Feedback)阶段。
2)设备,在本申请实施例中也称物理设备或无线设备或节点,是用来辅助用户选择和控制家中各种智能家居设备的设备,包括智能家居设备(例如智能电视、智能音箱等)和用户使用的终端,还可以包括家居设备接入的路由器等第三方设备。在本申请中设备的角色还可以包括接入点(access point,AP)和/或站点(station,STA)。
智能家居设备:指应用在智能家居中的各种家居设备,比如可以为智能防盗系列产品,智能防盗系列产品,主要通过各种报警器、探测器相互协调,在布放状态下触发报警信息,起到安全防盗的作用。还可以为智能照明类产品,用户可直接通过手机、平板电脑等终端轻松查看和控制家中照明设备的开关状态。也可以为家电控制类产品,智能家电控制器,可以将红外无线信号关联起来,通过终端来控制任何使用红外遥控器的设备,例如电视、空调、电动窗帘等。另外还可以为空气质量传感器,用户可以在终端的应用程序(APP)上方便地查看空气质量传感器监控到的室内温湿度、环境情况,并可联动家中其他用电设备改善室内环境,为用户提供更好享受。还可以是手机智能门锁,用户只需拿出手机、平板电脑等终端,输入密码,即可实现自动开锁。同时,用户还可以为家人或访客远程开锁。
路由器:也被称为智能主机,或家庭网关,用于连接两个或多个网络的硬件设备,在网络间起到网关的作用,是读取每一个数据包的地址然后决定如何传送的专用智能性的网络设备,路由器通过与主机的无线连接,可以方便用户使用手机或平板电脑等终端轻松控制。一般路由器提供Wi-Fi热点,智能家居设备和终端通过接入路由器的Wi-Fi热点来接入Wi-Fi网络,智能家居设备和终端接入的路由器可以相同也可以不同。
终端:指安装有智能家居APP并用于对智能家居设备进行控制的设备,比如可以为便携式设备,诸如手机、平板电脑、人工智能(artificial intelligence,AI)智能语音终端、可穿戴设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备等。便携式设备包括但不限于搭载
Figure PCTCN2021095803-appb-000001
或者其它操作系统的便携式设备。用户可以通过终端上安装的智能家居APP对家中的智能家居设备进行控制。
可选的,为了实现高低频的协作,本申请实施例所涉及的设备可以同时支持(至少两个)收发模块,且(至少两个)两个收发模块中可以分别工作在不同的频率上,一个收发模块工作在低频段上(如2.4GHz和5GHz),一个收发模块工作在高频段上(如6GHz)。
可以理解的是,本申请中涉及的信令设计以及交互流程可以通过软件的方式来对支持高低频协作框架协议的设备进行功能增强。
通道内隧道(On-Channel Tunneling,OCT)技术,可以实现多频带设备的STA发送 由同一设备不同STA构建的媒体访问控制管理协议数据单元(medium access control management protocol data unit,MMPDU)。多频带设备的站点管理实体(station management entity,SME)可以指示其MAC子层管理实体(MAC sublayer management entity,MLME)使用OCT服务来与对等的多频带设备的MLME进行通信。在无线媒介中发送或接收OCT MMPDU的STA的MLME称为TR-MLME。不进行发送操作的STA的MLME中,构造OCT MMPDU的MLME和作为OCT MMPDU的目的MLME被称为NT-MLME。通过封装MMPDU以便将该MMPDU传输到同一多频带设备内的对等STA的MLME。
其中OCT的通信过程可以参见图1,OCT过程还涉及频段间的原语操作。第一多频带设备(Multi-band capable device)的SME向第一多频带设备的NT-MLME发送MLME-原始请求(primitive.req)信息,第一多频带设备的NT-MLME将原始请求封装为MLME-OCTunnel.request原语并发送,MLME-OCTunnel.request原语用于请求传输On-channel Tunnel Request帧(简称为MLME-OCTunnel.req原语)。第一多频带设备的NT-MLME还可以接收到MLME-OCTunnel.confirm原语(简称为MLME-OCTunnel.cfm原语),MLME-OCTunnel.confirm原语用于报告请求传输On-channel Tunnel Request帧的结果,MLME-OCTunnel.confirm原语为枚举类型,结果包括成功(SUCCESS)或者失败(FAILURE)。第一多频带设备的TR-MLME发送On-channel Tunnel Request帧,On-channel Tunnel Request帧用于在多频带设备的对等MLME实体之间传输管理帧。
第二多频带设备的TR-MLME发送MLME-OCTunnel.indication原语(简称为MLME-OCTunnel.Ind原语),MLME-OCTunnel.indication原语用于表示已接收到On-channel Tunnel Request帧。第二多频带设备的NT-MLME将MLME-原始指示(primitive.ind)发送给第二多频带设备的SME。第二多频带设备的SME发送MLME-原始响应(primitive.rsp)。第二多频带设备的NT-MLME将原始响应封装为MLME-OCTunnel.request原语并发送。第二多频带设备的NT-MLME还可以接收到MLME-OCTunnel.confirm原语。第二多频带设备的TR-MLME发送On-channel Tunnel Request帧。第一多频带设备的TR-MLME发送MLME-OCTunnel.indication原语,第一多频带设备的NT-MLME将MLME-原始确认(primitive.cfm)信息发送给第一多频带设备的SME。
On-channel Tunnel Request frame的帧结构如图2所示,On-channel Tunnel Request frame包括MAC头部(header)字段(占用16字节)、分类(Category)字段(占用1字节)、OCT MMPDU字段(占用的字节数不固定且可变)、多频带(Multi-band)字段(占用的字节数不固定可变)、多频带源(Multi-band Source)字段(占用的字节数variable(不固定可变))和帧校验序列(frame check sequence,FCS)(占用4字节)。OCT MMPDU字段包括MMPDU长度(Length)子字段(占用2字节)、MMPDU帧控制(Frame Control)子字段(占用2字节)和MMPDU帧主体(Frame Body)(占用的字节数不固定可变)。Multi-band字段包括元素标识(Element ID)子字段(占用1字节)、Length子字段(占用1字节)、Multi-band Control子字段(占用1字节)、频段标识(Band ID)子字段(占用1字节)、操作类别(Operating class)子字段(占用1字节)、通道数量(Channel Number)子字段(占用1字节)、基本服务集标识符(basic service set identifier,BSSID)子字段(占用1字节)和信标间隔时槽(Beacon Interval)子字段(占用2字节),其中BSSID一般可以用于表示AP的MAC地址。Multi-band Source字段包括定时同步功能(timing synchronization function, TSF)偏移(Offset)子字段(占用8字节)、多信道连接能力(Multi-band Connection Capability)子字段(占用1字节)、FST会话超时(Session Timeout)子字段(占用1字节)、STA MAC Address子字段(占用0字节或6字节)、成对密码锁集合计数(Pairwise Cipher Suite Count)子字段(占用0字节或2字节)和成对密码锁集合列表(Pairwise Cipher Suite List)子字段(占用0字节或4*m个字节),其中m为正整数。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
为了便于理解本申请实施例中,以图3所示的感知系统为例对本申请使用的应用场景进行说明。如图3所示,所述感知过程主要应用于室内无线局域网的场景,所述室内无线局域网的网络中可以包括仅支持低频(LF)的设备、仅支持高频(HF)的设备和支持高低频协作的设备(或多频段设备)。所述感知过程由至少两个节点完成,其中一个节点用于“照亮”环境(也可以称为照明设备或照明节点或发起方),如图3中的第一设备(Device1),即发射初始的感知信号,感知信号通过目标物体进行反射,其他节点对所述感知信号和反射后的所述感知信号进行采样(也可以称为感知设备、或感知节点、或WLAN Sensing节点或参与方),如图3中的第二设备(Device 2)和第三设备(Device 3),以完成目标物体(图3中所示的Target)的感知。并且图3中还示出了LF的感知范围(coverage)和HF的感知范围,可见LF的感知范围大于HF的感知范围。下面对可能的三种感知方式进行简单说明。
方式一:如图4所示为被动感知的过程,照明节点(illuminator Node)发送Wi-Fi数据帧(Wi-Fi Data Frame),所述Wi-Fi数据帧中包括用于采样的数据帧前导码(Preamble in Data Frame used to sample environment),感知节点(Wi-Fi Sensing Node)针对接收到的Wi-Fi数据帧回复Wi-Fi控制应答(Wi-Fi Control ACK),这个过程重复多次,照明节点可以在多次接收Wi-Fi控制应答的时间中间进行感知。在被动感知过程中,感知节点不会执行任何操作,依赖于所述感知节点自身与照明节点之间的数据传输。被动感知的过程中,感知节点不会引入任何开销,但是感知节点无法对照明节点感知的速率和发生进行控制。
方式二:如图5所示为调用感知的过程,感知节点发起调用流程(Initiation),照明节点发射感知信号,这个过程重复多次,感知节点可以多次接收到感知信号的时间中间进行感知。在调用感知过程中,感知节点将介质访问控制(medium access control,MAC)层消息发送到照明节点,请求照明节点响应并“照亮”环境(Wi-Fi illumination)。调度感知的过程会给感知节点带来一些开销,但是允许感知节点控制感知的速率和发生。
方式三:如图6所示为推送感知过程,多个启用了WLAN Sensing的节点之间可以进行交互,这个过程中广播或多播消息均是由启用了WLAN Sensing的节点发送,可以为其 他启用了WLAN Sensing的节点提供检测和捕获的“照明”环境,推送感知的过程由于是单向的传输而非双向的交互,因此增加的开销较方式二更少,并且允许控制感知的速率和发生。
但是上述几种方式中WLAN Sensing一般仅在低频或高频上进行,对目标物体无法进行精细的感知,感知结果差。
鉴于此,为了针对目标物体获取到更精细的感知结果,本申请提出一种感知目标物体的方法及装置,其中,方法、装置是基于同一技术构思的,由于方法和装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再冗余赘述。在该方法中,第一设备作为发起者,在自身的第一频段范围内对目标物体进行感知,将得到的第一感知结果发送给第二设备,第二设备基于所述第一感知结果,在自身的第二频段范围内对目标物体进行感知,得到第二感知结果,将第二感知结果发送给第一设备,所述第一设备根据所述第一感知结果和第二感知结果,确定所述目标物体的状态信息,由于所述第一频段范围和所述第二频段范围不同,因此将至少两个频段范围内的感知结果进行融合,可以达到更精细的感知效果。若所述第一频段范围为低频范围,所述第二频段范围为高频范围,则WLAN Sensing过程可以基于高低频协作进行,通过高低频之间感知结果的共享,高频可以在低频感知结果的基础上进行,节省高频全向扫描的时间,有效提高了高频的感知范围,并提高了感知精度。
本申请实施例提供一种感知目标物体的方法,该方法可以应用于如图3所示的感知系统中。下面参考图7,详细说明感知目标物体方法的具体过程。如图7所示,该过程包括:
S701:第一设备将第一感知结果发送给第二设备,所述第二设备接收所述第一感知结果,所述第一感知结果由所述第一设备在所述第一设备的第一频段范围内感知目标物体得到。
所述第一设备可以包括LF模块和HF模块。所述第一设备的LF模块可以在所述第一频段范围进行目标物体的感知。所述第一频段范围为所述第一设备的低频范围,可选的,所述第一频段范围可以位于802.11b/g/n/ac的2.4吉赫(GHz)或5GHz的频段范围内,例如所述第一频段范围可以包括2.4GHz或5GHz。所述第一设备(或所述第一设备的LF模块)在所述第一频段范围内通过全向扫描可以感知到目标物体的大致区域,感知范围更大。所述第一设备的HF模块可以在第四频段范围进行目标物体的感知。所述第四频段范围为所述第一设备的高频范围,可选的,所述第四频段范围可以位于802.11ad的57GHz至66GHz之间的频段范围内,或者可以位于802.11ad的60GHz以上的频段范围内,例如所述第四频段范围可以包括60GHz。所述第一设备(或所述第一设备的HF模块)在所述第四频段范围内的感知范围有限,但是感知精度更高。
所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
具体的在S701中,所述第一设备可以将第一指令发送给所述第二设备,所述第一指令携带所述第一感知结果,所述第一指令用于指示所述第二设备基于所述第一感知结果感知所述目标物体。可选的,所述第一指令还可以包括第二频段范围,所述第二频段范围可以为所述第二设备的高频范围,所述第一指令具体用于指示所述第二设备基于所述第一感知结果在所述第二频段范围内感知所述目标物体。所述第一频段范围和所述第二频段范围 不同,所述第二频段范围的取值可以参见下述表1。
所述第一指令可以为WLAN Sensing指示帧(Indication frame),所述WLAN Sensing Indication frame的帧结构为本申请新设计的一种管理帧结构,可以如图8所示,WLAN Sensing Indication frame包括以下字段:MAC header字段(占用16字节)、Category字段(占用1字节)、WLAN Sensing指示字段(Indication Action filed)(占用的字节数不固定可变)、指示多播地址(Indication Multicast Address)字段(占用6字节)、和FCS字段(占用4字节)。WLAN Sensing Indication Action filed包括Control子字段(占用1字节)、距离(range)子字段(占用1字节)、角度(angle)子字段(占用1字节)、移动速度(velocity)子字段(占用1字节)、目标(Target)接收信号强度指示(received signal strength indication,RSSI)子字段(占用1字节)、信道带宽/频段带宽(Bandwidth)子字段(占用4字节)、和反馈指示(Feedback Indication)子字段(占用1字节)。其中range子字段用于指示所述目标物体与所述第一设备之间的距离,angle子字段用于指示所述目标物体相对于所述第一设备的角度,velocity子字段用于指示所述目标物体的移动速度,Target RSSI子字段用于指示所述第一设备接收到的所述目标物体的信号强度。
Bandwidth子字段的取值可以参见下述表1,Bandwidth子字段用于指示参与者进行感知时的频段范围,其中Bandwidth子字段取值为0时,表示指示的高频进行感知的频段范围为20兆赫(MHz),Bandwidth子字段取值为1时,表示指示的高频进行感知的频段范围为40MHz,Bandwidth子字段取值为2时,表示指示的高频进行感知的频段范围为80MHz,Bandwidth子字段取值为3时,表示指示的高频进行感知的频段范围为80+80MHz或为160MHz。
表1
Bandwidth subfield value Description(说明)
0 20MHz
1 40MHz
2 80MHz
3 80+80MHz or 160MHz
感知过程的发起者和参与者之间可以协商进行融合的设备,例如进行融合的设备可以为发起者,或者进行融合的设备可以为参与者,在本申请实施例中不做限制。本申请实施例中以进行融合的设备为发起者为例进行说明,发起者还可以指示信息反馈融合频段,所述信息反馈融合频段可以用于指示参与者将感知结果反馈到所述发起者的低频范围还是高频范围,即参与者(如所述第二设备)在所述发起者(所述第一设备)的哪个频段范围上反馈高频感知结果。
Feedback Indication子字段的取值可以参见下述表2,Feedback Indication子字段用于指示信息反馈融合频段,Feedback Indication子字段取值为0时,表示指示信息反馈融合频段为LF,Feedback Indication子字段取值为1时,表示指示信息反馈融合频段为HF,Feedback Indication子字段取值为2时,表示指示信息反馈融合频段为LF或HF,Feedback Indication子字段取值为3-7时为预留位。
表2
Feedback Indication subfield value Meaning(意义)
0 LF
1 HF
2 LF/HF
3-7 Reserved
在本申请中可以使用OCT技术,实现WLAN Sensing在高低频之间无缝切换,节省频段切换时间,提高切换成功率,并实现高频和低频之间的信息共享,可以获取目标物体更多维度的信息,目标物体的感应结果更加准确和精细,还能够减少占用空中传输的时间,降低传输开销,提高网络性能。可选的,可以通过Indication Multicast Address字段指示OCT操作支持多播/广播。
在一个实现方式中,所述第一设备可以指示参与者(如所述第二设备)在所述参与者的高频范围(如所述第二设备的第二频段范围)内感知所述目标物体。
例如,所述第一设备的LF模块将所述第一指令的OCT原语(将WLAN Sensing Indication frame封装为OCT技术的原语,如OCT.Indication)发送给所述第一设备的HF模块,所述第一设备的HF模块将所述第一指令发送给所述第二设备的HF模块。
又如,所述第一设备的LF模块将所述第一指令发送给所述第二设备的LF模块,所述第二设备的LF模块将所述第一指令的OCT原语发送给所述第二设备的HF模块。
在另一个实现方式中,所述第一设备可以在所述第一设备的高频范围(即所述第四频段范围)内感知所述目标物体。
例如,所述第一设备的LF模块将所述第一指令的OCT原语发送给所述第一设备的HF模块。
在S701中步骤中涉及到的将指令封装为OCT技术的原语操作,该将指令封装为OCT原语的过程可以参见后续WLAN Sensing Indication帧的封装过程。
S702:所述第二设备向所述第一设备反馈第二感知结果,所述第一设备接收所述第二设备反馈的第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到。
所述第一频段范围和所述第二频段范围不同。所述第二频段范围为所述第二设备的高频范围。例如所述第二频段范围可以包括60GHz,或者所述第二频段范围可以参见上述表1。其中所述第二频段范围可以为所述第一设备指示给所述第二设备的(如携带在所述第一指令中),或者所述第二频段范围可以为在所述第二设备中预先设置的。
感知过程的发起者可以与感知过程的参与者协商在哪个设备进行融合,例如协商结果为在发起者进行融合。可选的,所述发起者和所述参与者还可以协商在哪个频段范围进行融合,例如协商结果为在发起者的LF或HF侧进行融合,则感知过程的参与者将感知结果反馈给所述发起者的LF或HF。
在一个实现方式中,所述第二设备可以在感知到所述第二感知结果后,将所述第二感 知结果主动发送给所述第一设备。
在另一个实现方式中,所述第二设备可以根据所述第一设备的指示,被动反馈所述第二感知结果。如在S702之前,所述第一设备发送第三指示信息,所述第三指示信息用于指示参与者反馈感知结果,参与者根据所述第三指示信息向所述第一设备反馈感知结果。或者所述第三指示信息用于指示参与者轮询反馈感知结果,参与者根据所述第三指示信息轮询反馈感知结果。
若所述第三指示信息用于指示参与者反馈感知结果,所述第一设备可以将第五指令发送给参与者,所述第五指令携带所述第三指示信息。
所述第五指令还包括以下一种或多种信息:所述目标物体与所述参与者(如所述第二设备)之间的距离指示信息、所述目标物体相对于所述参与者(如所述第二设备)的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。其中所述目标物体与所述参与者之间的距离指示信息,用于指示所述参与者反馈所述目标物体与所述参与者之间的距离;所述目标物体相对于所述参与者的角度指示信息,用于指示所述参与者反馈所述目标物体相当于所述参与者的角度;所述目标物体的移动速度指示信息,用于指示所述参与者反馈所述目标物体的移动速度;所述目标物体所在的扇区指示信息,用于指示所述参与者反馈所述目标物体所在的扇区;所述频段带宽指示信息,用于指示所述参与者反馈进行感知时的频段带宽。
所述第五指令可以为WLAN Sensing Trigger frame,所述WLAN Sensing Trigger frame可以为本申请新设计的一种管理帧结构,例如所述WLAN Sensing Trigger frame中触发类型子字段的取值(Trigger Type subfield value)和触发帧变量(Trigger frame variant)的关系可以参见下述表3。其中Trigger Type子字段取值为0时,触发帧变量为基本帧(Basic),Trigger Type子字段取值为1时,触发帧变量为波束成型报告轮询帧(Beamforming Report Poll),Trigger Type子字段取值为2时,触发帧变量为多用户块确认请求(multi-user block acknowledgment request,MU-BAR),Trigger Type子字段取值为3时,触发帧变量为多用户请求发送帧(multi-user request to send,MU-RTS),Trigger Type子字段取值为4时,触发帧变量为缓冲状态报告轮询帧(Buffer Status Report Poll,BSRP),Trigger Type子字段取值为5时,触发帧变量为组播重传多用户块确认请求(groupcast with retries MU-BAR,GCR MU-BAR),Trigger Type子字段取值为6时,触发帧变量为频段带宽查询报告轮询帧(Bandwidth Query Report Poll),Trigger Type子字段取值为7时,触发帧变量为邻居发现协议(neighbor discovery protocol,NDP)反馈报告轮询帧(Feedback Report Poll),Trigger Type子字段取值为8时,触发帧变量为WLAN Sensing帧,Trigger Type子字段取值为9-15时,为预留位。
表3
Trigger Type subfield value Trigger frame variant
0 Basic
1 Beamforming Report Poll
2 MU-BAR
3 MU-RTS
4 Buffer Status Report Poll
5 GCR MU-BAR
6 Bandwidth Query Report Poll
7 NDP Feedback Report Poll
8 WLAN Sensing
9-15 Reserved
在反馈(Feedback)阶段,可以在上述表3的预留位中,定义WLAN Sensing Trigger frame,使其他设备(如参与者)反馈感知结果而非反馈其他信息。
若所述第三指示信息用于指示参与者轮询反馈感知结果,所述第一设备可以将第四指令发送给参与者,所述第四指令携带所述第三指示信息。
所述第四指令还包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与所述第二设备或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
所述第四指令可以为WLAN Sensing Poll frame,所述WLAN Sensing Poll frame的帧结构为本申请新设计的一种管理帧结构,例如可以如图9所述,WLAN Sensing Poll frame包括以下字段,Frame Control字段(占用2字节)、感知持续时间(Duration)字段(占用2字节)、接收工作站地址(RA)字段(占用6字节)、传输工作站地址(TA)字段(占用6字节)、感知数据反馈(Sensing Data Feedback)字段(占用1字节)、和FCS(占用4字节)。Sensing Data Feedback字段包括序列控制(Sequence ID Control)子字段(占用1比特)、时间戳控制(Timestamp Control)子字段(占用1比特)、range子字段(占用1比特)、angle子字段(占用1比特)、velocity子字段(占用1比特)、扇区编号(Sector ID)子字段(占用1比特)、Bandwidth子字段(占用1比特)和Reserved字段(占用1比特)。其中range子字段可以用于表示所述目标物体与参与者之间的距离指示信息;angle子字段可以用于表示所述目标物体相对于参与者的角度指示信息;velocity子字段可以用于表示所述目标物体的移动速度指示信息;扇区编号子字段可以用于表示所述目标物体所在的扇区指示信息;Bandwidth子字段可以用于表示频段带宽指示信息。
所述第一设备在发现其他感知设备时,还可以临时调度或请求其他感知设备来加入原有的感知过程(即当前所述第一设备和所述第二设备参与的感知过程,或者加入其他感知设备之前的感知过程)。例如,所述第一设备探测到目标物体附近存在支持感知的第三设备,所述第一设备可以将第一指示信息发送给所述第三设备,所述第一指示信息用于调度或请求所述第三设备感知所述目标物体,所述第三设备可以接收到所述第一指示信息。所述第三设备在第三频段范围内感知所述目标物体,得到第三感知结果,将所述第三感知结果发送给所述第一设备,所述第一设备可以接收到所述第三感知结果。所述第三频段范围 为所述第三设备的高频范围,例如所述第三频段范围可以包括60GHz,或者所述第三频段范围可以参见上述表1。其中所述第三频段范围可以为所述第一设备指示给所述第三设备的,或者所述第三频段范围可以为在所述第三设备中预先设置的。所述第三设备(或所述第三设备的HF模块)在所述第三频段范围内的感知范围有限,但是感知精度更高。
具体的,所述第一设备可以将第二指令发送给所述第三设备,所述第二指令携带所述第一指示信息。所述第二指令还包括以下一种或多种信息:频段信息、信道信息、第一感知结果、反馈指示信息、发起者的角色(如包括AP或STA)、感知持续时间、感知间隔时间或感知模式。
所述第二指令可以为WLAN Sensing Request frame,所述WLAN Sensing Request frame的帧结构为本申请新设计的一种管理帧结构,例如可以如图10所示,WLAN Sensing Request frame包括以下字段MAC header字段(占用16字节)、Category字段(占用1字节)、WLAN Sensing Request Action field字段(占用字节数不固定可变)和FCS字段(占用4字节)。WLAN Sensing Request Action field字段包括Control子字段(占用1字节)、频段标识(Band ID)子字段(占用1字节)、信道数量(Channel Number)子字段(占用1字节)、目标信息(Target Info)子字段(占用4字节)、Feedback Indication子字段(占用1字节)、感知信息(Sensing Info)子字段(占用0字节或5字节)、STA Role子字段(占用4字节)。所述Target Info子字段包括range子字段(占用1字节)、angle子字段(占用1字节)、velocity子字段(占用1字节)和Target RSSI子字段(占用1字节)。Sensing Info子字段包括Sensing Duration子字段(占用2字节)、Sensing Interval子字段(占用2字节)和感知方式(Sensing Mode)子字段(占用1字节)。临时调度设备(如所述第三设备)收到所述WLAN Sensing Request frame后,按照请求信息加入当前的感知过程进行感知,并将感知结果反馈到发起者与其他设备提前协商好的信息反馈融合侧。
其中STA Role子字段的取值和STA角色的对应关系如表4所示。当STA Role子字段的取值为0时,STA角色为AP,当STA Role子字段的取值为1时,STA角色为隧道直连设置(tunneled direct link setup,TDLS)STA,当STA Role子字段的取值为2时,STA角色为IDSS STA,当STA Role子字段的取值为3时,STA角色为端口打洞控制协议(pinhole control protocol,PCP)设备,当STA Role子字段的取值为4时,STA角色非PCP且非AP,当STA Role子字段的取值为5-7为预留位。
表4
STA Role subfield value STA role
0 AP
1 TDLS STA
2 IBSS STA
3 PCP
4 Non-PCP and Non-AP STA
5-7 Reserved
Sensing Mode子字段可以用于指示临时调度的其他设备参与感知的方式,包括被动 (Passive)方式和/或自发自收(Monostatic)方式。
如图11所示,当临时调动第三设备参与感知时,若第一设备的高频在忙,无法将第一设备的低频检测的目标物体的方位信息发送给第三设备,或者第三设备的高频正在睡眠,无法接收信号,则第一设备可以将请求第三设备感知的相关信息封装在On-channel Tunnel Request帧中(即通过OCT技术或OCT.request原语),通过第一设备的低频发送给所述第三设备的高频,所述第三设备接收到On-channel Tunnel Request帧后,根据请求信息加入已有的感知过程。
若第三设备以Monostatic的方式参与感知,所述第一设备可以通过为所述第三设备分配服务周期(service period,SP),来调度所述第三设备加入当前感知流程,而不影响当前的通信/感知流程,其中SP指非竞争的接入周期。例如所述第一设备将第二指示信息发送给第三设备,所述第二指示信息用于将所述第三设备调度到服务周期SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。若所述第一设备为AP,所述第一设备主动发送Poll帧(该Poll帧与后续的WLAN Sensing Poll frame不同),直接将所述第三设备调度到与所述第一设备和/或所述第二设备相同的SP里,或者所述第一设备为所述第三设备分配新的SP。若所述第一设备为STA,所述第三设备可以主动向关联AP发送服务周期请求(service period request,SPR)帧申请扩展SP,所述第三设备向关联AP发送第一请求信息,所述第一请求信息用于请求所述关联AP为所述第三设备分配SP。
可选的,参与者将感知结果反馈给所述第一设备,所述第一设备可以接收到所述参与者反馈的感知结果。所述参与者反馈的感知结果可以携带在第三指令中。所述第三指令还包括以下一种或多种信息:所述目标物体与所述参与者之间的距离、所述目标物体相对于所述参与者的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
所述第三指令可以为WLAN Sensing Feedback frame。所述WLAN Sensing Feedback frame的帧结构可以为本申请新设计的一种管理帧结构,例如可以如图12所示,所述WLAN Sensing Feedback frame包括以下字段:MAC header字段(占用16字节)、Category字段(占用1字节)、WLAN Sensing Feedback Action field字段(占用的字节数不固定可变)和FCS字段(占用4字节)。WLAN Sensing Feedback Action field字段包括Control子字段(占用1字节)、range子字段((占用1字节)、angle子字段((占用1字节)、velocity子字段((占用1字节)、Sector ID子字段((占用1字节)、Bandwidth子字段((占用4字节)和Feedback Indication子字段((占用1字节)。
若第三设备以Passive的方式参与感知,不涉及SP的分配,所述第三设备只需要在特定时间去监听信道即可,以获取参与者发送的感知结果。
S703:所述第一设备根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息。
具体的,在S703中,所述第一设备可以根据发起者的感知结果和所有参与者的感知结果,确定所述目标物体的状态信息。若临时调度了所述第三设备,在S703中,所述第一设备根据所述第一感知结果、所述第二感知结果和所述第三感知结果,确定所述目标物体的状态信息。
其中所述目标物体的状态信息包括但不限于以下信息:所述目标物体的位置信息、所述目标物体的移动速度和所述目标物体的信号强度信息等。
可见,本申请中,在管理帧类型下,本申请中可以提供新设计的WLAN Sensing Action帧结构,管理帧可以采用行为(Action)帧类型设计,也可以是其他类型的管理帧或新设计的管理帧,在本申请中Action帧为例进行说明,但并不局限于Action帧。可以在管理帧中Action帧的Action字段的Category子字段的预留位中定义一个新的操作类型WLAN Sensing,增加WLAN Sensing Action字段取值,用于指示WLAN Sensing操作中的帧类型。
示例性的,在Category子字段的第2个预留位中定义了WLAN Sensing Action帧,其包含了新设计的WLAN Sensing Indication frame、WLAN Sensing Request frame、WLAN Sensing Feedback frame、WLAN Sensing Trigger frame和WLAN Sensing Poll frame等中的一种或多种。例如在Category子字段的第2个预留位中定义了WLAN Sensing Indication frame、WLAN Sensing Request frame和WLAN Sensing Feedback frame,参见下述表5。当WLAN Sensing Action字段的取值为0时,表示为WLAN Sensing Indication frame,且不需要设置时间优先级,当WLAN Sensing Action字段的取值为1时,表示为WLAN Sensing Request frame,且不需要设置时间优先级,当WLAN Sensing Action字段的取值为2时,表示为WLAN Sensing Feedback frame,且需要设置时间优先级(例如参与者在反馈感知结果时的反馈优先级),当WLAN Sensing Action字段的取值为3-255时,为预留位。
表5
WLAN Sensing Action field value Meaning Time priority
0 WLAN Sensing Indication No
1 WLAN Sensing Request No
2 WLAN Sensing Feedback Yes
3-255 Reserved
上述新设计的帧可以直接在空中传输(即可以直接采用空中接口传输),也可以封装在On-channel Tunnel Request帧中传输。如图13所示,为本申请提供的一种可能的WLAN Sensing Indication frame的封装过程,封装后的On-channel Tunnel Request帧包括以下字段:MAC header字段(占用16字节)、Category字段(占用1字节)、FST Action字段、OCT MMPDU字段(占用的字节数不固定可变)、Multi-band字段、Multi-band Source字段、和FCS字段(占用4字节)。OCT MMPDU字段包括MMPDU Length子字段(占用2字节)、MMPDU Frame Control子字段(占用2字节)、MMPDU Frame Body子字段(占用的字节数不固定可变)。MMPDU Frame Control子字段包括MAC header子字段(占用16字节)。MMPDU Frame Body子字段包括Category子字段(占用1字节)、WLAN Sensing Indication Action filed子字段(占用的字节数不固定可变)、Indication Multicast Address子字段(占用6字节)。WLAN Sensing Indication Action filed子字段包括Control子字段(占用1字节)、range子字段(占用1字节)、angle子字段(占用1字节)、velocity子字段(占用1字节)、Target RSSI子字段(占用1字节)、Bandwidth子字段(占用4字节)、和Feedback Indication子字段(占用1字节)。对于其他帧的封装过程可以参见WLAN Sensing Indication frame的封装过程,在此不进行赘述。
在本申请实施例中,第一设备作为感知过程的发起者,可以先在自身的第一频段范围内对目标物体进行感知,将第一感知结果发送给第二设备,第二设备基于所述第一感知结果,在自身的第二频段范围内对目标物体进行感知,得到感知结果,所述第一频段范围和所述第二频段范围不同,这样,第一设备可以将至少两个频段范围内的感知结果进行融合,从而得到更精细的感知结果。并且所述第一设备可以基于高低频协作进行,通过高低频之间感知结果的共享,高频可以在低频感知结果的基础上进行,节省高频全向扫描的时间,有效提高了高频的感知范围,并提高了感知精度。
以下述具体的实施例对上述感知目标物体的过程进行说明,下述实施例中均包含临时调动其他设备参与感知的场景。其中下述各实施例中,反馈信息传输方式(在HF或LF上传输)、信息反馈融合侧(在发起者的HF侧或LF侧融合)、发起者的角色(AP或STA)和临时调动设备参与感知模式(Passive或Monostatic)存在不同。
实施例一:参见图14,本申请实施例的感知过程中,在LF上传输,在发起者的LF侧融合,发起者为AP,第三设备以Monostatic方式参与感知,感知过程包括以下步骤:
在Sensing阶段,第一设备(Device1)(作为发起者)的LF先对周围的环境进行感知,得到第一感知结果(所述第一感知结果包括目标物体的粗略感知结果或低频感知结果),将第一感知结果(WLAN Sensing Indication frame)通过OCT原语(如虚线所示,以下称OCT.Indication)发送给Device1的HF,Device1的HF将该帧通过空中传输(如实线所示)转发给第二设备(Device2)的HF,Device1的HF和Device2的HF均可以在第一感知结果的基础上有方向性的进行精细波束扫描。
假设发起者需要临时调动第三设备(Device3)加入感知过程,若Device1的HF在忙(例如Device1的HF在进行感知或正在进行通信),且所述Device3此时不知道目标方位信息,或者Device3的HF正在休眠,无法接收Device1发送的信息,Device1的HF可以将请求感知的相关信息(WLAN Sensing Request frame)通过OCT原语(以下称OCT.Request)发送给Device1的LF,Device1的LF发送给Device3的LF,Device3的LF通过OCT.Request发送给Device3的HF,Device3根据请求感知的相关信息加入感知过程(如图中框出处所示)。
在Device3以Monostatic方式参与感知的情况下,若Device1为AP,则Device1主动发Poll帧,直接将Device3调度到与Device1和Device2相同的SP里,或者给Device3分配一段新的SP。若Device1为STA,则Device3可以主动向关联AP发送SPR帧申请扩展SP。通过调度Device3加入已有的WLAN Sensing过程,使其不对原来的通信/感知过程产生影响。
假设Device1和Device2在进行感知时协商好感知信息在Device1的LF/HF侧融合,Device3基于所述Device1和Device2的协商结果进行反馈,即Device3将第三感知结果反馈到Device1的LF/HF侧。
在Feedback阶段,若通过LF侧传输反馈信息,且在Device1的LF侧融合。所述Device1可以发送WLAN Sensing Trigger frame,触发所述Device2和所述Device3进行反馈,所述Device2和所述Device3通过OCT.Indication指示其LF直接将WLAN Sensing Feedback frame发送给Device1的LF,即采用Trigger与正交频分多址(orthogonal frequency division multiple access,OFDMA)/上行多用户-多输入多输出(uplink multi-user multiple-input  multiple-output,UL MU-MIMO)相结合的方式。
针对临时调动设备Device3,若在Sensing阶段,OCT Request帧间间隔大于或等于Device3感知过程所需的时间,则Device3还可以将第三感知结果封装在OCT Request/OCT Response帧中进行直接反馈给Device1,能够在不修改标准协议的情况下及时高效地反馈感知结果。
实施例二:参见图15,本申请实施例的感知过程中,在HF上传输,在发起者的HF侧融合,发起者为AP,第三设备以Monostatic方式参与感知,感知过程包括以下步骤:
在Sensing阶段,Device1(作为发起者)的LF先对周围的环境进行感知,得到第一感知结果,将第一感知结果(WLAN Sensing Indication frame)通过OCT原语(如虚线所示,以下称OCT.Indication)发送给Device1的HF,Device1的HF将该帧通过空中传输(如实线所示)转发给Device2的HF,Device1的HF和Device2的HF均可以在第一感知结果的基础上有方向性的进行精细波束扫描。
假设发起者需要临时调动Device3加入感知过程,若Device1的HF和Device3的HF均空闲,Device1的HF直接将请求感知的相关信息(WLAN Sensing Request frame)通过空中传输给Device3,Device3根据请求感知的相关信息加入已有的感知过程(如图中框出处所示)。
若Device1为AP,则Device1主动发Poll帧,直接将Device3调度到与Device1和Device2相同的SP里,或者给Device3分配一段新的SP,通过调度Device3加入已有的WLAN Sensing过程,使其不对原来的通信/感知过程产生影响。
假设Device1和Device2在进行感知时协商好感知信息在Device 1的LF/HF侧融合,Device3基于所述Device1和Device2的协商结果进行反馈。
在Feedback阶段,若通过HF传输反馈信息,且在Device1的HF侧融合,Device1的HF可以发送WLAN Sensing Poll frame,来指示Device 2的HF和Device 3的HF轮流将WLAN Sensing Feedback frame直接发送给Device1的HF。
实施例三:参见图16,本申请实施例的感知过程中,在LF上传输,在发起者的HF侧融合、发起者为STA、第三设备以Monostatic方式参与感知,感知过程包括以下步骤:
在Sensing阶段,Device1的LF先对周围的环境进行感知,得到第一感知结果,将第一感知结果(WLAN Sensing Indication frame)通过OCT原语(如虚线所示,以下称OCT.Indication)发送给Device1的HF,Device1的HF将该帧通过空中传输(如实线所示)转发给Device2的HF,Device1的HF和Device2的HF均可以在第一感知结果的基础上有方向性的进行精细波束扫描。
假设发起者需要临时调动Device3加入感知过程,若Device1的HF在忙,Device3此时不知道目标方位信息,或者Device3的HF正在休眠,无法接收Device1发送的信息,Device1的HF可以将请求感知的相关信息(WLAN Sensing Request frame)通过OCT原语(以下称OCT.Request)发送给Device1的LF,Device1的LF发送给Device3的LF,Device3的LF通过OCT.Request发送给Device3的HF,Device3根据请求感知的相关信息加入已有的感知过程(如图中框出处所示)。
在Device3以Monostatic方式参与感知的情况下,若Device1为STA,则Device3可以主动向关联AP发SPR帧申请扩展SP,关联AP为Device3分配新的SP。通过调度Device3加入已有的WLAN Sensing过程,使其不对原来的通信/感知过程产生影响。
假设Device1和Device2在进行感知时协商好感知信息在Device1的LF/HF侧融合,Device3基于所述Device1和Device2的协商结果进行反馈。
在Feedback阶段,若通过LF侧传输反馈信息,且在Device1的HF侧融合。Device1的HF可以发送WLAN Sensing Poll frame,Device2的HF和Device3的HF将感知结果WLAN Sensing Feedback frame封装在On-channel Tunnel Request帧中进行反馈。
实施例四:参见图17,本申请实施例的感知过程中,在LF上传输,在发起者的LF侧融合,发起者为AP,第三设备以Passive方式参与感知为例进行说明,感知过程包括以下步骤:
在Sensing阶段,Device1的LF先对周围的环境进行感知,得到第一感知结果,将第一感知结果(WLAN Sensing Indication frame)通过OCT原语(如虚线所示,以下称OCT.Indication)发送给Device1的HF,Device1的HF将该帧通过空中传输(如实线所示)转发给Device2的HF,Device1的HF和Device2的HF均可以在第一感知结果的基础上有方向性的进行精细波束扫描。
假设发起者需要临时调动Device3加入感知过程,若Device1的HF在忙,Device3此时不知道目标方位信息,或者Device3的HF正在休眠,无法接收Device1发送的信息,Device1的HF可以将请求感知的相关信息(WLAN Sensing Request frame)通过OCT原语(以下称OCT.Request)发送给Device1的LF,Device1的LF发送给Device3的LF,Device3的LF通过OCT.Request发送给Device3的HF,Device3根据请求感知的相关信息加入已有的感知过程。Device3以Passive方式参与感知的情况下,Device3只需要在特定时间去监听信道即可,无需为Device3进行SP的分配。
假设Device1和Device2在进行感知时协商好感知信息在Device1的LF/HF侧融合,Device3基于所述Device1和Device2的协商结果进行反馈。
在Feedback阶段,若Device1为AP,通过LF侧传输反馈信息,且在Device1的LF侧融合。所述Device1可以发送WLAN Sensing Trigger frame,触发所述Device2和所述Device3进行反馈,所述Device2和所述Device3通过OCT.Indication指示其LF直接将WLAN Sensing Feedback frame发送给Device1的LF,即采用Trigger与OFDMA/UL MU-MIMO相结合的方式。
以上详细说明了本申请实施例的感知目标物体的方法,基于与上述感知目标物体的方法的同一发明构思,本申请实施例还提供了一种感知目标物体装置,如图18所示,所述感知目标物体装置中包含处理单元1801和收发单元1802,装置1800可用于实现上述应用于设备的方法实施例中描述的方法。
在一个实施例中,装置1800应用于第一设备,其中所述第一设备为感知过程的发起者。
具体的,收发单元1802,用于将第一感知结果发送给第二设备,所述第一感知结果由所述第一设备在第一频段范围内感知目标物体得到;接收所述第二设备反馈的第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同;
所述处理单元1801,用于根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息。
在一个实现方式中,所述第一频段范围为所述第一设备的低频范围;所述第二频段范围为所述第二设备的高频范围。
在一个实现方式中,所述收发单元1802,还用于第一指示信息发送给第三设备,所述第一指示信息用于调动或请求所述第三设备感知所述目标物体;接收所述第三设备反馈的第三感知结果,所述第三感知结果由所述第三设备在第三频段范围内感知所述目标物体得到,所述第三频段范围和所述第一频段范围不同。
在一个实现方式中,所述第三频段范围为所述第三设备的高频范围。
在一个实现方式中,所述收发单元1802,还用于接收所述第三设备反馈的第三感知结果之前,将第二指示信息发送给所述第三设备,所述第二指示信息用于将所述第三设备调度到SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。
在一个实现方式中,所述收发单元1802,还用于将第三指示信息发送给所述第二设备和所述第三设备,所述第三指示信息用于指示所述第二设备和所述第三设备反馈感知结果,或者所述第三设备指示信息用于指示所述第二设备和所述第三设备轮询反馈感知结果。
在一个实现方式中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
在一个实现方式中,所述收发单元1802,具体用于发送第一指令,所述第一指令携带所述第一感知结果,所述第一指令用于指示参与者基于所述第一感知结果感知所述目标物体。
所述第一指令中还可以携带所述第二频段范围和/或第三频段范围。
在一个实现方式中,所述收发单元1802,具体用于向所述第三设备发送第二指令,所述第二指令携带所述第一指示信息。
所述第二指令中还可以包括以下一种或多种信息:频段信息、信道信息、所述第一感知结果、反馈指示信息、所述第一设备的角色、感知持续时间、感知间隔时间或感知模式。
在一个实现方式中,所述收发单元1802,具体用于接收第二设备和/或第三设备发送的第三指令,所述第三指令携带所述第二设备的第二感知结果和/或所述第三设备的第三感知结果。
所述第三指令还可以包括以下一种或多种信息:所述目标物体与第二设备和/或所述第三设备之间的距离、所述目标物体相对于第二设备和/或所述第三设备的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
在一个实现方式中,所述收发单元1802,具体用于将第四指令发送给第二设备和/或第三设备,所述第四指令携带所述第三指示信息,所述第四指令用于指示所述第二设备和所述第三设备轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与所述第二设备和/或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备和/或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个实现方式中,所述收发单元1802,具体用于将第五指令发送给第二设备和/或所述第三设备,所述第五指令携带所述第三指示信息,所述第四指令用于指示第二设备和/或所述第三设备反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与所述第二设备和/或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备和/或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在另一个实施例中,装置1800应用于第二设备,所述第二设备为感知过程的参与者。
具体的,处理单元1801,用于通过收发单元1802接收第一感知结果,所述第一感知结果由第一设备在第一频段范围内感知目标物体得到;反馈第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在所述第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同。
在一个实现方式中,所述第一频段范围为所述第一设备的低频范围;所述第二频段范围为所述第二设备的高频范围。
在一个实现方式中,所述收发单元1802,还用于向所述第一设备反馈第二感知结果之前,接收来自所述第一设备的第三指示信息,所述第三指示信息用于指示第二设备反馈感知结果,或者用于指示第二设备和第三设备轮询反馈感知结果。
在一个实现方式中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
在一个实现方式中,所述收发单元1802,具体用于接收第一指令,所述第一指令携带所述第一感知结果,所述第一指令携带所述第一感知结果,所述第一指令用于指示第二设备基于所述第一感知结果感知所述目标物体。
所述第一指令还可以携带第二设备的频段范围。
在一个实现方式中,所述收发单元1802,具体用于向所述第一设备发送第三指令,所述第三指令携带所述第二感知结果。
所述第三指令还可以包括以下一种或多种信息:所述目标物体与所述第二设备之间的距离、所述目标物体相对于所述第二设备的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
在一个实现方式中,所述收发单元1802,具体用于接收第四指令,所述第四指令携带所述第三指示信息,所述第四指令用于指示第二设备和第三设备轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与第二设备之间的距离指示信息、所述目标物体相对于第二设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个实现方式中,所述收发单元1802,具体用于接收第五指令,所述第五指令携带所述第三指示信息,所述第五指令用于指示第二设备反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与第二设备之间的距离指示信息、所述目标物体相对于第二设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在又一个实施例中,装置1800应用于第三设备,所述第二设备为临时调度加入感知过程的参与者。
具体的,处理单元1801,用于通过收发单元1802接收第一指示信息,所述第一指示 信息用于调动或请求所述第三设备进行感知;向第一设备反馈第三感知结果,所述第三感知结果由所述第三设备在第三频段范围内感知目标物体得到。
在一个实现方式中,所述第三频段范围为所述第三设备的高频范围。
在一个实现方式中,所述收发单元1802,还用于向第一设备反馈第三感知结果之前,接收来自所述第一设备的第二指示信息,所述第二指示信息用于将所述第三设备调度到SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。
在一个实现方式中,所述收发单元1802,还用于向第一设备反馈第三感知结果之前,向AP发送第一请求信息,所述第一请求信息用于请求所述AP为所述第三设备分配SP,所述AP与所述第三设备关联,即所述AP为所述第三设备的关联AP。
在一个实现方式中,所述收发单元1802,还用于向第一设备反馈第三感知结果之前,接收来自所述第一设备的第三指示信息,所述第三指示信息用于指示所述第三设备反馈感知结果,或者所述第三设备指示信息用于指示所述第二设备和所述第三设备轮询反馈感知结果。
在一个实现方式中,所述收发单元1802,具体用于接收第四指令,所述第四指令携带所述第三指示信息,所述第四指令用于指示第二设备和第三设备轮询反馈感知结果。
所述第四指令还可以包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与第二设备和/或第三设备之间的距离指示信息、所述目标物体相对于第二设备和/或第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个实现方式中,所述收发单元1802,具体用于接收第五指令,所述第五指令携带所述第三指示信息,所述第五指令用于指示第三设备反馈感知结果。
所述第五指令还可以包括以下一种或多种信息:所述目标物体与所述第二设备和/或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备和/或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
在一个实现方式中,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述感知目标物体方法相同的构思,如图19所示,本申请实施例还提供了一种感知目标物体装置1900的结构示意图。装置1900可用于实现上述应用于设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明。
所述装置1900包括一个或多个处理器1901。所述处理器1901可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1900包括一个或多个所述处理器1901,所述一个或多个处理器1901可实现上述所示的实施例中设备的方法。
可选的,处理器1901除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1901可以执行指令,使得所述装置1900执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1903,也可以全部或部分存储在与所述处理器耦合的存储器1902中,如指令1904,也可以通过指令1903和1904共同使得装置1900执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1900也可以包括电路,所述电路可以实现前述方法实施例中的功能。
在又一种可能的设计中所述装置1900中可以包括一个或多个存储器1902,其上存有指令1904,所述指令可在所述处理器上被运行,使得所述装置1900执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1902可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1900还可以包括收发器1905以及天线1906。所述处理器1901可以称为处理单元,对装置(终端或者基站)进行控制。所述收发器1905可以称为收发机、收发电路、或者收发单元等,用于通过天线1906实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种通信系统,该系统包括上述第一设备和第二设备,所述第一设备和所述第二设备用于实现上述任一方法实施例所述的感知目标物体的方法。
可选的,所述系统还可以包括第三设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例所述的感知目标物体的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例所述的感知目标物体的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的感知目标物体的方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改 存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种感知目标物体的方法,其特征在于,包括:
    第一设备将第一感知结果发送给第二设备,所述第一感知结果由所述第一设备在第一频段范围内感知目标物体得到;
    所述第一设备接收所述第二设备反馈的第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同;
    所述第一设备根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一频段范围为所述第一设备的低频范围;所述第二频段范围为所述第二设备的高频范围。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述第一设备将第一指示信息发送给第三设备,所述第一指示信息用于调动或请求所述第三设备感知所述目标物体;
    所述第一设备接收所述第三设备反馈的第三感知结果,所述第三感知结果由所述第三设备在第三频段范围内感知所述目标物体得到,所述第三频段范围和所述第一频段范围不同;
    所述第一设备根据所述第一感知结果和所述第二感知结果,确定所述目标物体的状态信息,包括:
    所述第一设备根据所述第一感知结果、所述第二感知结果和所述第三感知结果,确定所述目标物体的状态信息。
  4. 如权利要求3所述的方法,其特征在于,所述第三频段范围为所述第三设备的高频范围。
  5. 如权利要求3或4所述的方法,其特征在于,所述第一设备接收所述第三设备反馈的第三感知结果之前,还包括:
    所述第一设备将第二指示信息发送给所述第三设备,所述第二指示信息用于将所述第三设备调度到服务周期SP内,所述SP为所述第二设备所在的SP,或者为所述第三设备被分配的SP。
  6. 如权利要求3-5任一项所述的方法,其特征在于,还包括:
    所述第一设备将第三指示信息发送给所述第二设备和所述第三设备,所述第三指示信息用于指示所述第二设备和所述第三设备反馈感知结果。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一设备将第一感知结果发送给第二设备,包括:
    所述第一设备将第一指令发送给所述第二设备,所述第一指令携带所述第一感知结果和所述第二频段范围,所述第一指令用于指示所述第二设备基于所述第一感知结果在所述第二频段范围内感知所述目标物体。
  9. 如权利要求8所述的方法,其特征在于,所述第一指令还包括反馈指示信息,所述反馈指示信息用于指示所述第二设备在所述第一设备的高频范围还是低频范围反馈所述第二感知结果。
  10. 如权利要求3-6任一项所述的方法,其特征在于,所述第一设备将第一指示信息发送给第三设备,包括:
    所述第一设备向所述第三设备发送第二指令,所述第二指令携带所述第一指示信息;
    所述第二指令还包括以下一种或多种信息:频段信息、信道信息、所述第一感知结果、反馈指示信息、所述第一设备的角色、感知持续时间、感知间隔时间或感知模式。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述第一设备接收所述第二设备反馈的第二感知结果,包括:
    所述第一设备接收所述第二设备发送的第三指令,所述第三指令携带所述第二感知结果;
    所述第三指令还包括以下一种或多种信息:所述目标物体与所述第二设备之间的距离、所述目标物体相对于所述第二设备的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
  12. 如权利要求6-10任一项所述的方法,其特征在于,所述第一设备将第三指示信息发送给所述第二设备和所述第三设备,包括:
    所述第一设备将第四指令发送给所述第二设备和所述第三设备,所述第四指令携带所述第三指示信息,所述第四指令用于指示所述第三设备和所述第二设备轮询反馈感知结果;
    所述第四指令还包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与所述第二设备或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
  13. 如权利要求6-10任一项所述的方法,其特征在于,所述第一设备将第三指示信息发送给所述第二设备和所述第三设备,包括:
    所述第一设备将第五指令发送给所述第二设备和所述第三设备,第五指令携带所述第三指示信息,所述第五指令用于指示所述第二设备和所述第三设备反馈感知结果;
    所述第五指令还包括以下一种或多种信息:所述目标物体与所述第二设备或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
  14. 一种感知目标物体的方法,其特征在于,包括:
    第二设备接收第一感知结果,所述第一感知结果由第一设备在第一频段范围内感知目标物体得到;
    所述第二设备向所述第一设备反馈第二感知结果,所述第二感知结果由所述第二设备基于所述第一感知结果,在第二频段范围内感知所述目标物体得到,所述第一频段范围和所述第二频段范围不同。
  15. 如权利要求14所述的方法,其特征在于,所述第一频段范围为所述第一设备的低频范围;所述第二频段范围为所述第二设备的高频范围。
  16. 如权利要求14或15所述的方法,其特征在于,所述第二设备向所述第一设备反馈 第二感知结果之前,还包括:
    所述第二设备接收来自所述第一设备的第三指示信息,所述第三指示信息用于指示所述第二设备反馈感知结果。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述第一感知结果包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度或所述第一设备接收到的所述目标物体的信号强度。
  18. 如权利要求14-17任一项所述的方法,其特征在于,第二设备接收第一感知结果,包括:
    第二设备接收第一指令,所述第一指令携带所述第一感知结果和所述第二频段范围,所述第一指令用于指示所述第二设备基于所述第一感知结果在所述第二频段范围内感知所述目标物体。
  19. 如权利要求18所述的方法,其特征在于,所述第一指令还包括反馈指示信息,所述反馈指示信息用于指示所述第二设备在所述第一设备的高频范围还是低频范围反馈所述第二感知结果。
  20. 如权利要求14-19任一项所述的方法,其特征在于,所述第二设备向所述第一设备反馈第二感知结果,包括:
    所述第二设备向所述第一设备发送第三指令,所述第三指令携带所述第二感知结果;
    所述第三指令还包括以下一种或多种信息:所述目标物体与所述第一设备之间的距离、所述目标物体相对于所述第一设备的角度、所述目标物体的移动速度、所述目标物体所在的扇区、频段带宽或反馈指示信息。
  21. 如权利要求16-20任一项所述的方法,其特征在于,所述第二设备接收来自所述第一设备的第三指示信息,包括:
    所述第二设备接收来自所述第一设备的第四指令,所述第四指令携带所述第三指示信息,所述第四指令用于指示所述第二设备和第三设备轮询反馈感知结果;
    所述第四指令还包括以下一种或多种信息:序列控制信息、时间戳控制信息、所述目标物体与所述第二设备或所述第三设备之间的距离指示信息、所述目标物体相对于所述第二设备或所述第三设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区或频段带宽指示信息。
  22. 如权利要求16-20任一项所述的方法,其特征在于,所述第二设备接收来自所述第一设备的第三指示信息,包括:
    所述第二设备接收来自所述第一设备的第五指令,所述第五指令携带所述第三指示信息,所述第五指令用于指示所述第二设备反馈感知结果;
    所述第三指令还包括以下一种或多种信息:所述目标物体与所述第二设备之间的距离指示信息、所述目标物体相对于所述第二设备的角度指示信息、所述目标物体的移动速度指示信息、所述目标物体所在的扇区指示信息或频段带宽指示信息。
  23. 一种感知目标物体的装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器,存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-13中任一项所述的方法,或执行如权利要求14-22中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-13中任一项所述的方法或权利要求14-22中任一项所述的方法被执行。
  25. 一种处理装置,其特征在于,包括处理器和接口;所述处理器,用于执行如权利要求1-13中任一项所述的方法或权利要求14-22中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,如权利要求1-13中任一项所述的方法或权利要求14-22中任一项所述的方法被执行。
  27. 一种装置,其特征在于,所述装置用于执行权利要求1-13中任一项所述的方法或权利要求14-22中任一项所述的方法。
PCT/CN2021/095803 2020-05-30 2021-05-25 一种感知目标物体的方法及装置 WO2021244353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21818746.6A EP4156556A4 (en) 2020-05-30 2021-05-25 TARGET OBJECT DETECTION METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010480870.9A CN113747461A (zh) 2020-05-30 2020-05-30 一种感知目标物体的方法及装置
CN202010480870.9 2020-05-30

Publications (1)

Publication Number Publication Date
WO2021244353A1 true WO2021244353A1 (zh) 2021-12-09

Family

ID=78727784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095803 WO2021244353A1 (zh) 2020-05-30 2021-05-25 一种感知目标物体的方法及装置

Country Status (3)

Country Link
EP (1) EP4156556A4 (zh)
CN (1) CN113747461A (zh)
WO (1) WO2021244353A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164936A1 (zh) * 2022-03-04 2023-09-07 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
WO2023216563A1 (zh) * 2022-05-13 2023-11-16 中国联合网络通信集团有限公司 一种波束选择方法、接入网设备和存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130388A1 (zh) * 2022-01-07 2023-07-13 Oppo广东移动通信有限公司 无线通信的方法及设备
WO2023130404A1 (zh) * 2022-01-09 2023-07-13 Oppo广东移动通信有限公司 通信方法和设备
WO2023137594A1 (zh) * 2022-01-18 2023-07-27 北京小米移动软件有限公司 用于无线局域网感知测量反馈的通信方法和通信装置
CN116830647A (zh) * 2022-01-26 2023-09-29 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
CN116828520A (zh) * 2022-03-21 2023-09-29 华为技术有限公司 自发自收感知方法及相关产品
CN116930896A (zh) * 2022-04-08 2023-10-24 维沃移动通信有限公司 感知模糊化处理方法、装置、设备及存储介质
WO2023206110A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备及存储介质
WO2023206111A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 感知结果的上报方法、装置、设备及存储介质
WO2023240422A1 (zh) * 2022-06-13 2023-12-21 Oppo广东移动通信有限公司 感知测量方法、装置、设备及存储介质
CN117295167A (zh) * 2022-06-24 2023-12-26 华为技术有限公司 一种感知方法和装置
CN117377106A (zh) * 2022-06-27 2024-01-09 中兴通讯股份有限公司 无线感知方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990231A (zh) * 2009-07-31 2011-03-23 华为技术有限公司 确定空闲频段的方法和系统、中心节点和感知节点
WO2014035676A1 (en) * 2012-08-28 2014-03-06 Spectrum Bridge, Inc. Assessing radio sensing data system and method
CN106445088A (zh) * 2015-08-04 2017-02-22 上海宜维计算机科技有限公司 现实增强的方法及系统
CN108900267A (zh) * 2018-07-17 2018-11-27 浙江万胜智能科技股份有限公司 基于特征值的单边右尾拟合优度检验频谱感知方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480716B2 (ja) * 2003-05-09 2010-06-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線ネットワークにおける媒体活動パターンの測定及び該活動パターンからの情報の導出
EP2237588B1 (en) * 2007-12-28 2019-08-21 NEC Corporation Wireless communication system, wireless communication method, and wireless device
CN110276972A (zh) * 2019-07-16 2019-09-24 启迪云控(北京)科技有限公司 一种基于车联网的目标物感知方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990231A (zh) * 2009-07-31 2011-03-23 华为技术有限公司 确定空闲频段的方法和系统、中心节点和感知节点
WO2014035676A1 (en) * 2012-08-28 2014-03-06 Spectrum Bridge, Inc. Assessing radio sensing data system and method
CN106445088A (zh) * 2015-08-04 2017-02-22 上海宜维计算机科技有限公司 现实增强的方法及系统
CN108900267A (zh) * 2018-07-17 2018-11-27 浙江万胜智能科技股份有限公司 基于特征值的单边右尾拟合优度检验频谱感知方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164936A1 (zh) * 2022-03-04 2023-09-07 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
WO2023216563A1 (zh) * 2022-05-13 2023-11-16 中国联合网络通信集团有限公司 一种波束选择方法、接入网设备和存储介质

Also Published As

Publication number Publication date
EP4156556A1 (en) 2023-03-29
EP4156556A4 (en) 2023-11-08
CN113747461A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2021244353A1 (zh) 一种感知目标物体的方法及装置
US8509159B2 (en) Method and system for wireless communication using out-of-band channels
JP7312813B2 (ja) non-APマルチバンド通信装置、通信方法及び集積回路
US10334407B2 (en) Device, system and method of wireless communication
TWI364962B (en) Method and system for establishing a channel for a wireless video area network
EP2057786B1 (en) Channel assessment and channel assessment control in a wireless network
US20230362628A1 (en) Discovery frames and group addressed frames transmission
US11350390B2 (en) Simultaneous data transmission between an access point and a plurality of stations
WO2022193304A1 (zh) 无线通信的方法和设备
WO2021078214A1 (zh) 通信方法及装置
JP6992138B2 (ja) フラグメンテーションを利用する無線通信方法及びそれを使用する無線通信端末
US11558081B1 (en) Data transfer protocol for ultra-wideband (UWB)
EP4304155A1 (en) Bluetooth message transmission method and apparatus, and bluetooth network
CN117278652A (zh) 多链路通信方法及装置
JP2022539490A (ja) 拡張ダイレクトリンク通信のための通信装置、および通信方法
Arco Miras MAC layer implementation of the IEEE 802.15. 3c standard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818746

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE