WO2021244302A1 - 一种服务质量管理方法和装置 - Google Patents

一种服务质量管理方法和装置 Download PDF

Info

Publication number
WO2021244302A1
WO2021244302A1 PCT/CN2021/094928 CN2021094928W WO2021244302A1 WO 2021244302 A1 WO2021244302 A1 WO 2021244302A1 CN 2021094928 W CN2021094928 W CN 2021094928W WO 2021244302 A1 WO2021244302 A1 WO 2021244302A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
qos parameter
qos
user
service
Prior art date
Application number
PCT/CN2021/094928
Other languages
English (en)
French (fr)
Inventor
曹龙雨
于益俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21818100.6A priority Critical patent/EP4152814A4/en
Publication of WO2021244302A1 publication Critical patent/WO2021244302A1/zh
Priority to US18/071,100 priority patent/US20230108693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This application relates to the field of communication technology, and in particular to a quality of service (QoS) management method and device.
  • QoS quality of service
  • wireless networks need to provide wireless networks that meet the requirements. Resources to ensure the user’s business experience.
  • the requirements of the business on the wireless network are reflected by QoS, and the wireless network can implement service access control, resource guarantee and scheduling based on the QoS requirements of the business.
  • 5G networks can provide users with multiple types of services, such as cloud virtual reality (cloud virtual reality, cloud VR), drones, and 8K video live broadcasts.
  • cloud virtual reality cloud virtual reality
  • drones drones
  • Different users have big differences in the QoS requirements of the service.
  • Even users who use the same service have different QoS requirements for the service.
  • the QoS requirements of very important person (VIP) users and ordinary users are different. The requirements are different.
  • the core network element can only determine the QoS parameters of the service based on the service type requested by the terminal device. Moreover, in order to meet the business needs of all users who use the same service, the same QoS parameters are currently configured for all users who use the same service, and resources are allocated based on this. However, this may cause excessive allocation of wireless resources, such as The wireless resources allocated to ordinary users are allocated according to the wireless resources of the VIP users, which wastes wireless resources, which in turn affects the subsequent service requests of other users to access, and is not conducive to the effective use of wireless resources.
  • the embodiments of the present application provide a QoS management method and device, which can adjust QoS parameters in real time according to the state of wireless network resources, thereby maximizing the effective utilization of wireless resources.
  • a QoS management method for quality of service including: a first network element receives a QoS parameter request sent by a second network element, the QoS parameter request is used to request QoS parameters; The wireless network resource of the second network element determines the first QoS parameter; the first network element sends the first QoS parameter to the second network element, so that the second network element allocates the wireless network resource according to the first QoS parameter.
  • the first network element may be a first radio access controller
  • the second network element may be an AN side network element.
  • the second network element when the second network element obtains the QoS parameter configuration of the core network, it does not immediately allocate wireless network resources according to the QoS parameters sent by the core network, but sends a QoS request to the first network element. Then determine the first QoS parameter according to the user's service requirement information and the wireless network resources of the second network element. In this way, the determination of the first QoS parameter is not only related to the service type (service requirement), but also to the currently available wireless network of the AN network element. Resources are related.
  • this application can dynamically manage the QoS of AN network elements through the first network element, that is, the first radio access controller, and implement QoS parameter configuration and resource allocation through the B interface, so as to realize a wireless network Effective use of resources and maximization of revenue.
  • the service requirement information includes at least one of the media type and bandwidth requirement of the service.
  • the first network element determines the first QoS parameter it may also be related to the user's attribute information, that is, the first network element determines the first QoS parameter according to the user's service requirement information, the user's attribute information, and the wireless network resources of the second network element .
  • the attribute information of the user includes at least one of the following information: the priority of the user, the subscriber file identification SPID, and an indication that the terminal device where the user is located is high-priority access.
  • this application can determine QoS parameters according to service requirement information, user attribute information, and available wireless network resource information, so that the determined QoS parameters can be adapted to the current network status. Effective use of wireless network resources.
  • the QoS parameter request includes the user's service requirement information and the wireless network resource of the second network element.
  • the QoS parameter request may also include user attribute information.
  • the second network element when the second network element, the AN network element, receives the QoS parameter request, it can send the QoS parameter request to the first network element to determine the QoS parameter, and does not directly allocate wireless network resources.
  • the QoS parameter request also includes the second QoS parameter configured by the core network according to the service type requested by the user; the first network element determines the second QoS parameter according to the user’s service requirement information and the wireless network resources of the second network element.
  • the method further includes: the first network element determines that the second QoS parameter does not match the wireless network resource of the second network element.
  • the second QoS parameter is configured by the core network, but when the second QoS parameter is issued to the second network element, that is, the AN-side network element, the AN-side network element does not directly perform wireless operations according to the second QoS parameter.
  • the second QoS parameter is sent to the first network element, that is, the first wireless access controller.
  • the first wireless access controller is based on the current user’s service requirements and the availability of the second network element.
  • the first QoS parameter is re-determined for the wireless network resources of the wireless network, so that the re-determined first QoS parameter conforms to the current network state of the AN network element.
  • the first network element determining that the second QoS parameter does not match the wireless network resources of the second network element includes: if the first network element determines to allocate resources according to the second QoS parameter, the second network cannot be enabled If the wireless network resources of the second network element are used to maximize the utilization, it is determined that the second QoS parameter does not match the wireless network resources of the second network element; or, if the first network element determines to allocate resources according to the second QoS parameter, it will cause the second network element If there are too many wireless network resources allocated, it is determined that the second QoS parameter does not match the wireless network resources of the second network element.
  • This way of determining the mismatch is only an illustrative example, and is not limited to this.
  • the method before the first network element receives the QoS parameter request sent by the second network element, the method further includes: the first network element receives QoS management policy information sent by the management network element OAM, and QoS management policy information Including the policy type and the application object of the policy; the policy type includes the corresponding relationship between wireless network resources and QoS parameters; the application object of the policy includes the service type applied by the QoS management policy information; the first network element determines the data to be requested according to the QoS management policy information Type and data reporting method, and send a data request message to the second network element.
  • the data request message includes the data type to be requested and the data reporting method.
  • the data type includes wireless network resources; the first network element receives the second network element and reports the data according to the data The status data of the wireless network resources obtained by the method.
  • the present application can implement the deployment and installation of QoS management policies through the enhanced functions of the first network element provided, and the first network element can dynamically obtain the status data of the wireless network resources.
  • the method before the first network element receives the QoS parameter request sent by the second network element, the method further includes: the first network element receives the service requirement information sent by the management network element OAM, and the service requirement information is OAM Obtained by requesting the application function AF network element.
  • This design is also a process in the QoS policy configuration and data request process.
  • the request for business requirement information can be obtained at one time through the management plane, that is, after the OAM receives the policy deployment request, it can initiate the acquisition of business requirements from the AF through the management interface
  • OAM can send the returned data to the second wireless access controller, and the second wireless access controller sends the data to the first network element, which can reduce space Signaling interaction on the surface saves the resources of the network interface.
  • a method for quality of service QoS management including: a second network element sends a QoS parameter request to a first network element, the QoS parameter request is used to request QoS parameters; and the second network element receives the first network element sent by the first network element.
  • the first QoS parameter is determined by the first network element according to the user's service requirement information and the wireless network resources of the second network element; the second network element allocates wireless network resources according to the first QoS parameter.
  • the second network element is an AN network element
  • the first network element is a first wireless access controller.
  • the AN network element obtains the configured QoS parameters from the core network, it does not directly allocate resources according to the configured QoS parameters, but instead requests the first radio access controller to reconfigure the first QoS parameters, so that the reconfigured second 1.
  • the QoS parameters conform to the current network status, and the effective utilization of network resources is improved.
  • the service requirement information includes at least one of the service media type and bandwidth requirement; optionally, the first QoS parameter may also be the first network element according to the user’s service requirement information and user attribute information.
  • the wireless network resource of the second network element is determined.
  • the attribute information of the user includes at least one of the following information: the priority of the user, the subscriber file identification SPID, and an indication that the terminal device where the user is located is high-priority access.
  • this application can determine QoS parameters according to service requirement information, user attribute information, and available wireless network resource information, so that the determined QoS parameters can be adapted to the current network status. Effective use of wireless network resources.
  • the QoS parameter request includes the user's service requirement information and the wireless network resource of the second network element. It may also be that the QoS parameter request includes the user's service requirement information, the user's attribute information, and the wireless network resource of the second network element. That is to say, when the second network element, the AN network element, receives the QoS parameter request, it can send the QoS parameter request to the first network element to determine the QoS parameter, and does not directly allocate wireless network resources.
  • the QoS parameter request also includes the second QoS parameter configured by the core network.
  • the method further includes: the second network element receives a first data request message sent by the first network element, the first data request message including the requested data type and data In the reporting mode, the data type includes wireless network resources; the second network element sends the status data of the wireless network resources to the first network element according to the data reporting mode.
  • the second QoS parameter is configured by the core network element, but when the second QoS parameter is issued to the second network element, that is, the AN side network element, the AN side network element does not directly follow the second QoS parameter
  • the allocation of wireless network resources is performed, but the first QoS parameter is re-determined according to the current user’s business demand information, user attribute information, and the available wireless network resources of the second network element, so that the re-determined first QoS parameter conforms to the AN The current network status of the network element.
  • the first data request message further includes the service identifier; before the second network element sends the QoS parameter request to the first network element, the method further includes: the second network element sends to the core network element The second data request message, the second data request message includes the identifier of the service, and the second data request message is used to request service requirement information corresponding to the identifier of the service from the core network element; the second network element receives the service sent by the core network element demand information.
  • the first network element obtains service requirement information from the core network element through the second network element, it has little impact on the establishment of the PDU session of the current network, which can reduce the interaction of control plane signaling and save network interface resources .
  • a first network element including: a transceiver unit, configured to receive a QoS parameter request sent by a second network element, the QoS parameter request is used to request QoS parameters; And the wireless network resource of the second network element determines the first QoS parameter; the transceiver unit is further configured to send the first QoS parameter to the second network element, so that the second network element allocates the wireless network resource according to the first QoS parameter.
  • the service requirement information includes at least one of the media type and bandwidth requirement of the service; the determination of the first QoS parameter may also be related to the attribute information of the user, where the attribute information of the user includes the following information At least one: the priority of the user, the subscriber profile identification SPID, and an indication that the terminal device where the user is located is high-priority access.
  • the QoS parameter request includes the user's service requirement information and the wireless network resource of the second network element.
  • the QoS parameter request includes the user's service requirement information, the user's attribute information, and the wireless network resource of the second network element.
  • the QoS parameter request further includes a second QoS parameter configured by the core network according to the service type requested by the user; the processing unit is further configured to: determine that the second QoS parameter does not match the wireless network resource of the second network element .
  • the transceiver unit is also used to: receive the QoS management policy information sent by the management network element OAM, the QoS management policy information includes the policy type and the application object of the policy; the policy type includes the correspondence between wireless network resources and QoS parameters Relationship; the application object of the policy includes the service type applied by the QoS management policy information; the data type to be requested and the data reporting method are determined according to the QoS management policy information, and the data request message is sent to the second network element, and the data request message includes the request The data type and the data reporting mode, the data type includes wireless network resources; receiving the status data of the wireless network resource obtained by the second network element according to the data reporting mode.
  • the transceiver unit is also used to: receive the service requirement information sent by the management network element OAM, and the service requirement information is obtained by the OAM requesting the application function AF network element.
  • a second network element including: a transceiver unit, configured to send a QoS parameter request to a first network element, the QoS parameter request being used to request QoS parameters; the transceiver unit, further configured to receive a transmission from the first network element
  • the first QoS parameter is determined by the first network element according to the user's service requirement information and the wireless network resources of the second network element; the processing unit is configured to allocate wireless network resources according to the first QoS parameter.
  • the service requirement information includes at least one of the service media type and bandwidth requirement
  • the first QoS parameter may also be determined by the first network element according to the service requirement information of the user, the attribute information of the user, and the wireless network resources of the second network element.
  • the attribute information of the user includes at least one of the following information: the priority of the user, the subscriber file identification SPID, and an indication that the terminal device where the user is located is high-priority access.
  • the QoS parameter request includes the user’s service requirement information and the wireless network resources of the second network element; or, the QoS parameter request includes the user’s service requirement information, the user’s attribute information, and the wireless network resource of the second network element.
  • the QoS parameter request also includes the second QoS parameter configured by the core network.
  • the transceiver unit is further configured to: receive a first data request message sent by the first network element, where the first data request message includes the requested data type and data reporting mode, and the data type includes wireless network resources; Send the wireless network resource status data to the first network element according to the data reporting mode.
  • the first data request message further includes an identifier of the service; the transceiver unit is further configured to: send a second data request message to the core network element, the second data request message includes the identifier of the service, and the second The data request message is used to request the service requirement information corresponding to the service identifier from the core network element; to receive the service requirement information sent by the core network element.
  • a computer-readable storage medium including computer instructions, which when the computer instructions run on an electronic device, cause the electronic device to execute the first aspect and any one of the possible designs described in the first aspect.
  • a computer-readable storage medium including computer instructions, which when the computer instructions run on an electronic device, cause the electronic device to execute the above-mentioned second aspect and any one of the possible designs of the second aspect Methods.
  • a computer program product which when the computer program product runs on a computer, causes an electronic device to execute the method described in the first aspect and any one of the possible designs of the first aspect.
  • a computer program product which when the computer program product runs on a computer, causes an electronic device to execute the second aspect and the method described in any one of the possible designs of the second aspect.
  • Figure 1 is an application scenario of QoS flow provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a data transmission process of a user service provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a network architecture for QoS parameter configuration provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a system architecture provided by an embodiment of the application.
  • Figure 5 is a signaling interaction diagram of a QoS management method provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of signaling interaction in the execution process of a QoS management policy provided by an embodiment of the application
  • Figure 7 is a signaling interaction diagram of a QoS management method provided by an embodiment of the application.
  • FIG. 8 is a signaling interaction diagram of a QoS management method provided by an embodiment of this application.
  • Figure 9 is a signaling interaction diagram of a QoS management method provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a QoS policy configuration and data request process provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a first network element provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present embodiment, unless otherwise specified, “plurality” means two or more.
  • the embodiments of the present application are used to adjust the QoS parameters of user services in wireless network technology, so that the AN-side network element can obtain appropriate QoS parameters according to the current network environment, so as to allocate and schedule resources according to the adjusted QoS parameters.
  • this application first exemplifies the application scenarios of QoS parameters.
  • a QoS model management mechanism is proposed in 5G, which is based on QoS flow to realize the quality of service guarantee for user services.
  • QoS flow is a logical concept describing service flow. Different QoS flows are configured according to different QoS parameters to support service data transmission with different requirements, as shown in Figure 1.
  • PDU session protocol data unit sessions
  • PDU session is used for transmission Different business data.
  • the PDU session can include two parts, one part is user equipment (UE) and next generation-radio access (NG-RAN) network elements (UE and Node B (NB) ) Radio bearer (RB), part of which is the next generation of users between the NG-RAN network element and the user plane function (UPF) network element of the 5G core network (5g core network, 5GC) Surface tunnel (Next Generation-User plane tunnel, NG-U tunnel).
  • UE user equipment
  • NG-RAN next generation-radio access
  • NB Node B
  • RB Radio bearer
  • each QoS flow corresponds to a QoS flow identifier (QFI).
  • QFI is a unique flow identifier in the PDU session
  • the QoS profile describes the attributes of the QoS parameters corresponding to the QoS flow.
  • a UE can support the establishment of multiple PDU sessions, and each PDU session can contain multiple QoS flows.
  • a wireless data bearer data radio bearer, DRB
  • DRB data radio bearer
  • SDAP service data adaptation protocol
  • the link for the UE to transmit the user's service data is established, and the UE can send or receive data through the link.
  • Figure 2 shows the data transmission process of the user service.
  • the UPF can map the data packet to the QoS flow according to the service data flow filtering template, and add a QFI tag to the data packet header, and send it to the access network (AN) (i.e., NG-RAN network element).
  • the AN can map the corresponding data packet to the corresponding DRB according to the QFI tag in the received data packet header and send it to the UE.
  • the UE can map the data packet to the corresponding QoS flow according to the QoS policy, and complete the mapping of the QoS flow to the DRB through the application layer of the UE.
  • the AN can determine the QFI tag of the uplink data based on the received DRB of the uplink data of the UE, and add the QFI tag to the data packet header and send it to the UPF.
  • the network architecture shown in Figure 3 can be applied.
  • the core network element session management function, session management function, SMF
  • the static policy and charging control Policy and charging control (PCC) determines QoS parameters, QFI allocation, etc., or determines QoS parameters, QFI allocation, etc. based on the dynamic PCC policy obtained through the interaction of service type and policy control function (PCF).
  • PCC policy and charging control
  • SMF uses the N4 interface Configure UPF resources and scheduling policies, and configure QoS profile (QoS profile) for AN through access and mobility management function (AMF) and N2 interface, and then AN based on the QoS profile and QFI sent by SMF Information such as allocation allocates wireless resources for the UE, configures wireless network related parameters and scheduling strategies.
  • QoS profile QoS profile
  • AMF access and mobility management function
  • 5G can provide users with more abundant service types, and different users have great differences in service QoS requirements.
  • VIP users a small number
  • ordinary users mostly.
  • VIP users need 100M bandwidth to guarantee service requirements
  • ordinary users need 20M bandwidth to guarantee service requirements.
  • QoS of the existing technology Parameter allocation plan because the service types are the same, when SMF allocates QoS parameters, VIP users and ordinary users are configured according to the same QoS parameters, so in order to ensure the service requirements of all users of this kind of service, it must be based on bandwidth The most demanding users are required to configure QoS parameters. Therefore, even ordinary users are allocated 100M bandwidth resources, but in fact, these ordinary users may only need 20M bandwidth, so the extra 80M allocated is wasted and is not conducive to Effective use of wireless network resources.
  • this application proposes a QoS management method, which can dynamically adjust the QoS parameters configured by the core network through the network elements on the AN side, so that the adjusted QoS parameters can effectively utilize wireless network resources.
  • the architecture includes AN-side network elements, core network-side network elements, a first wireless access controller, and management network elements (operations-administration-maintenance, OAM). It may also include a second wireless access controller.
  • OAM and the second wireless access controller are logically two different functional modules, and can also be used as independent network elements.
  • the second wireless access controller can be integrated into the OAM, and the second wireless access controller can be used as an internal functional component module of the OAM.
  • the second radio access controller and OAM can be understood as network elements or modules on the management plane.
  • OAM is a general term for management network elements, and its specific implementation can be implemented by management network elements such as open network automation platform (ONAP) or network management system (NMS).
  • ONAP open network automation platform
  • NMS network management system
  • the embodiment of this application describes the solution by using the second radio access controller as a module component of OAM, but the solution of this application is also applicable to deployment scenarios where the second radio access controller and OAM are independent of each other.
  • the first radio access controller can be an independently deployed network element, or it can be co-located with the centralized unit-control plane (CU-CP) of the AN. Subsequent embodiments of this application The description in the description refers to the first radio access controller as an independent network element. However, the scenario where the first radio access controller and the CU-CP are co-located is also applicable to the solution of this application, which belongs to this application. protected range.
  • CU-CP unit-control plane
  • the function of the second wireless access controller may be the control and optimization of the AN network elements and resources in FIG. 4, the execution of artificial intelligence workflow (including model training and updating), and the implementation of application/feature management based on policies.
  • the interface through which the second wireless access controller communicates with the first wireless access controller may be an A interface.
  • the function of the first wireless access controller may be to realize near real-time control and optimization of AN functional network elements (such as CU-CP, etc.) and resources based on data collection and operation instructions of the B interface.
  • the interface between the first wireless access controller and the OAM may be a C interface.
  • the centralized unit control plane of AN can implement radio resource control (radio resource control, RRC) protocol and packet data convergence protocol (packet data convergence protocol, PDCP) protocol control plane functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • CU-UP centralized unit-user plane
  • SDAP service data adaptation protocol
  • DU distributed unit
  • AN distributed unit used to implement functions such as radio link control (RLC)/medium access control (MAC) and some physical layer protocols .
  • RLC radio link control
  • MAC medium access control
  • OAM can provide operation and maintenance management of radio access network (RAN) functional modules.
  • RAN radio access network
  • the core network network elements may include AMF, SMF, PCF, and application function (AF) network elements.
  • AMF is mainly responsible for UE access control and mobility functions, including UE authentication and location area tracking.
  • SMF can be responsible for PDU session management, including creation, modification, and deletion.
  • PCF can be responsible for policy management functions such as QoS and charging.
  • AF can be responsible for functions such as application service demand strategy management.
  • the interface for communication between the AN side and the core network may be an N2 interface.
  • this application can enhance the function of the first wireless access controller to provide QoS management capabilities, that is, the first wireless access controller can be based on the status of wireless network resources and service demand information, while taking into account User attributes, QoS dynamic configuration, and flexible management of wireless resources through collaboration with AN's functional network elements, thereby providing a more refined wireless resource allocation scheme.
  • the solution of this application mainly includes: QoS management strategy configuration, QoS network data acquisition (including data request and data reporting), and QoS management strategy execution.
  • the second wireless access controller may generate a QoS management policy based on the deployment request of the QoS management policy, and send the QoS management policy to the first wireless access controller through the A interface;
  • the first wireless access controller can request the AN network element for the required network/user data (including the real-time status of wireless network resources and user attribute characteristics (such as user priority), etc.) based on the B interface, and the AN can follow the first wireless access Data request from the controller, collect and report corresponding network/user data;
  • the first wireless access controller determines the QoS parameter configuration according to the QoS management policy issued by the A interface, the real-time status of wireless network resources, and user attribute characteristics (such as user priority);
  • the first radio access controller instructs the CU/DU to perform QoS parameter configuration through the B interface, and allocates radio resources to the corresponding UE, so as to ensure the normal operation of the service of the priority user, meet the user's demand, and ensure the user experience.
  • this application enhances the function of the first wireless access controller to support QoS management functions, which is used to implement policy-based QoS management, including QoS management policy execution condition judgment and artificial intelligence-based QoS parameters decision making.
  • the enhanced QoS management function component can be used as the internal function component module of the first wireless access controller, or it can be deployed as a separate network element independent of the first wireless access controller.
  • the embodiments of the present application describe the interface messages for the communication between the QoS management function component and the other function component modules of the first wireless access controller.
  • the embodiment of the application creates a QoS management policy for the second wireless access controller on the first wireless access controller through the A interface, and the first wireless access controller requests the AN network element (such as DU) based on the policy information
  • the AN network element such as DU
  • first network element in the following description in the embodiment of the present application all refers to the first radio access controller
  • second network element all refers to the AN network element
  • FIG. 5 is a schematic diagram of the deployment process of QoS management functional components, the creation of QoS management policies, and the process of data request in a QoS management method.
  • the method includes:
  • the OAM sends a deployment request to the first network element through the management interface C, where the deployment request includes the deployment file and related configuration information of the QoS management functional component.
  • the internal function module of the first wireless access controller can perform function loading and parameter configuration of the QoS management function component.
  • the first wireless access controller may be composed of multiple functional component modules. In this application, all common functional component modules in the first wireless access controller are collectively referred to as wireless access controller platform functions for solution description.
  • the first network element executes the deployment of the QoS management functional component, and executes the registration process of the QoS management functional component.
  • the QoS management function component registers its characteristic information with the wireless access controller platform function, including the data type that needs to be consumed for its function execution.
  • the data type can be, for example, wireless network resource data (such as wireless available resource data), user attribute information, business demand information, etc., policy information based on the type of data to be consumed (such as QoS management strategy), and the data type of the QoS management strategy it generates (such as QoS parameters/QoS profile, etc.) )Wait.
  • the OAM receives a management request, where the management request includes a QoS management policy.
  • the OAM receives the management request, which may be executed by the management personnel of the operator on the OAM.
  • the management request may be understood as a deployment request of a QoS management policy
  • the QoS management policy may include information such as a policy type (type) and an application object (scope) of the policy.
  • the value of type may be QoS_Mgt, which means the matching relationship between wireless network resources and QoS parameters, etc.
  • the value of scope may be 5QI group, which is used to identify the service type used by the QoS management policy.
  • the service type may be, for example, a mobile broadband service (mobile broadband, MBB) service (text service, video service, etc. on a webpage), a super delay service, an Internet of Things service, etc.
  • the OAM creates a policy instance request, where the policy instance request includes the policy type and the application object of the policy.
  • OAM can notify the second radio access controller to create a policy instance request (policy instance) through the interface between OAM and the second radio access controller (for example, interface C), that is, request the second radio access controller to manage QoS
  • policy instance a policy instance request
  • the strategy type in the strategy and the application object of the strategy are created concretely.
  • the second radio access controller may model the QoS management policy according to the Policy policy model of the A interface, and send QoS management policy information to the first wireless access controller through the A interface.
  • the QoS management policy information may include the policy type and To whom the policy is applied.
  • the first network element receives the QoS management policy information sent by the OAM, where the QoS management policy information includes the policy type and the application object of the policy.
  • the radio access controller platform function in the first radio access controller receives the QoS management policy information sent by the second radio access controller in the OAM, and the QoS management policy information is used to report to the radio access controller
  • the platform function requests the creation of a QoS management policy instance.
  • the first network element sends a data request message to the second network element according to the QoS management policy information, where the data request message includes the requested data type and the data reporting mode, and the data type includes wireless network resources.
  • the wireless access controller platform function can notify the QoS management function component of the QoS management policy information received by the A interface through the internal interface .
  • the QoS management function component can determine the consumption data information it needs based on the QoS management policy information and its own functional logic, and send a data request message for the determined consumption data to the wireless access controller platform function.
  • the data request message includes the requested data.
  • Data type ie, wireless network resource status data (cell resource data) and data reporting method (report type), etc.
  • the data reporting mode indicated by the reportType may be, for example, reporting when the resource changes (ResChangeReport), reporting immediately after data collection is completed (reporting), periodic reporting (periodic reporting), and so on.
  • the radio access controller platform function determines all AN network elements under management, where the AN network element may specifically be a DU in the AN. After determining, the radio access controller platform function can send a data request message to the AN network element through the B interface, and the AN can start to collect the status data of the radio network resources, and report the data to the first radio access controller according to the indicated data reporting method Report status data of wireless network resources.
  • the first network element receives the state data of the wireless network resource obtained by the second network element according to a data reporting manner.
  • the AN network element can send the collected wireless network resource status data to the wireless access controller platform function according to the data reporting method, and the wireless access controller platform function can then send the wireless network resource status data to the QoS management functional component, QoS
  • the management function component receives and saves the state data of the wireless network resource.
  • the first network element realizes the collection of status data of the wireless network resources of the second network element.
  • steps 501-507 can be used after the AN network element has been deployed and goes online. After the new AN network element is deployed and online, to realize the data request for the newly online AN network element, this application can send the data request message of the QoS management functional component to the first radio access controller using the B interface management process AN network element, its implementation process may be (steps 508-510 are not shown in Figure 5):
  • the deployment and online of the second network element may be the deployment and online of the DU.
  • the interface connection establishment may be the DU sending a Bsetup message to the radio access controller platform function.
  • the first network element sends the data request message to the newly online second network element.
  • the radio access controller platform function When the radio access controller platform function responds to the B establishment request of the DU, the radio access controller platform function can send the data request message previously sent by the QoS management function component to the newly online DU network element, including the requested data type (That is, the status data of wireless network resources) and data reporting methods. At the same time, the radio access controller platform function can notify the QoS management functional component of the information of the newly online DU.
  • the DU information includes at least one of the DU identifier and the DU address.
  • the present application can implement the deployment and installation of QoS management policies through the enhanced functions of the first radio access controller provided, and the first radio access controller can dynamically obtain the status data of wireless network resources.
  • the first radio access controller can execute the QoS parameter decision based on the deployment and installation of the above-mentioned existing QoS management strategy and the status data of the radio resources played by the mobile phone, and instruct the CU/DU to execute QoS parameter configuration, allocation of wireless resources.
  • Figure 6 is a schematic diagram of the execution process of the QoS management policy. The process may include:
  • the AF and PCF perform the interaction of the business requirement information of the application.
  • the AF Before the 5G PDU session is established, the AF can send its application service requirement information to the PCF.
  • the service requirement information can include the media type and bandwidth requirements of the service, application id, and service Filter at least one of the templates.
  • the PCF receives the service requirement information of the application, it can reply to the AF corresponding information such as QoS that satisfies the application service.
  • the media type can be online video, text, etc.
  • the UE initiates a session establishment process and sends a first session establishment request to the second network element, where the first session establishment request includes information such as the identity of the UE and the requested service type.
  • the session establishment procedure may be a PDU session establishment procedure
  • the first session establishment request may be a PDU session establishment NAS (Non-access stratum, non-access stratum) request.
  • the second network element sends a second session establishment request to the SMF.
  • the second session establishment request is added with a service requirement (service requirement) information element, and the service requirement information element is used to request the SMF for service requirement information requested by the UE.
  • service requirement service requirement
  • the AN network element After the AN network element receives the first session establishment request sent by the UE, it can add the service requirement information element to the first session establishment request, and send the second session establishment request with the information element to the SMF through the N2 interface. .
  • the SMF sends a request message to the PCF, where the request message includes a service requirement information element to request the PCF for the service requirement information requested by the UE.
  • the PCF sends a response message to the SMF, where the response message includes the service requirement information requested by the UE.
  • the SMF sends a third session establishment request to the second network element through the AMF, where the third session establishment request includes the second QoS parameter, the attribute information of the user, and the service requirement information.
  • the third session establishment request may be an N2 PDU session request message.
  • the N2 PDU session request message includes the second QoS parameter sent by the SMF to the AN network element, user attribute information, service requirement information, and so on.
  • the attribute information of the user may include the user priority (user priority), and the user priority may be obtained by the AMF from the subscription data of the UE.
  • the service requirement information includes media type and bandwidth requirement, etc.
  • the second network element sends a QoS parameter request to the first network element, where the QoS parameter request is used to request QoS parameters.
  • the AN network element after the AN network element receives the N2 PDU session request message sent by the SMF, it does not directly allocate the wireless network element resources according to the second QoS parameter sent by the SMF, but triggers the first network element, that is, triggers the first radio access control QoS management function of the device.
  • the AN network element here may specifically be CU-CP. That is, the CU-CP sends a QoS parameter request to the first radio access controller.
  • the QoS parameter request may also include the user’s service requirement information and the wireless network resources of the second network element, or may also include The user's business requirement information, the user's attribute information, and the wireless network resources of the second network element.
  • the attribute information of the user at this time may include at least one of the following information: UE identity, QFI, user priority, subscriber profile identity (SPID), and indication that the terminal device where the user is located is high-priority access (highpriority access).
  • high priority access can be sent to the AN network element when the UE initially accesses the network
  • the SPID can be sent to the AN network element by the AMF of the core network when the UE is registered to the network to indicate the UE's priority RAT or frequency point information .
  • the first network element determines the first QoS parameter according to the service requirement information of the user and the wireless network resource of the second network element.
  • the first network element may determine the first QoS parameter according to the user's service requirement information, the user's attribute information, and the wireless network resources of the second network element.
  • the first wireless access controller may first evaluate whether the second QoS parameter configuration sent by the SMF conforms to the actual situation of the wireless network resources, for example, when the wireless network resources are allocated according to the second QoS parameter, whether the maximum available wireless network resources of the AN can be guaranteed Whether it will lead to excessive allocation of the available wireless network resources of AN, etc., if it will cause the above situation, the first wireless access controller can refer to User priority, SPID, Information such as HighpriorityAccess, Media Type, bandwidth requirements, and available wireless network resources are used to determine a new first QoS parameter, that is, an updated QoS profile (updated QoS profile), using artificial intelligence methods.
  • the first network element sends the first QoS parameter to the second network element.
  • the first radio access controller sends a QoS parameter response message to the AN network element, where the QoS parameter response message includes the first QoS parameter, and may also include the identity of the UE, QFI, and so on.
  • the second network element sends a QoS parameter update request to the SMF, where the QoS parameter update request includes the first QoS parameter.
  • the AN network element may send the first QoS parameter determined by the first radio access controller to the SMF through the N2 interface, and instruct the SMF to update the second QoS parameter to the first QoS parameter.
  • the SMF updates the local second QoS parameter to the first QoS parameter, and updates the QoS rule according to the latest first QoS parameter.
  • the SMF sends a session establishment request to the second network element through the AMF, where the session establishment request includes the first QoS parameter.
  • the session establishment request may be an N2 PDU session request message, which may include the first QoS parameter or QoS rule sent by the SMF to the UE, so that the UE can allocate wireless network resources according to the first QoS parameter.
  • the second network element allocates wireless network resources according to the first QoS parameter.
  • the AN network element After the AN network element receives the SMF session establishment request, it can initiate PDU session establishment on the CU-CP, and perform resource allocation and scheduling policy configuration on the CU-CP according to the first QoS parameter. In addition, the AN network element can initiate session establishment on the DU, and perform resource allocation and scheduling policy configuration on the DU according to the first QoS parameter.
  • the second network element sends a session response message to the AMF, indicating that the wireless network resource configuration is complete.
  • the AN network element may also transparently transmit the PDU session accept NAS message sent by the SMF to the UE to the UE, and the message may include the updated first QoS parameter or QoS rule, so that the UE can perform uplink communication according to the new QoS parameter.
  • the UE can also return a session establishment completion message to the AN network element.
  • the AN network element After the AN network element receives the session establishment completion message, it can reply to the SMF through the N2 interface with the routing information of the AN network element’s downlink data, and the SMF then sends the AN network element’s routing information to the SMF.
  • the routing information of the downlink data is sent to the UPF etc.
  • this step please refer to the relevant steps of the PDU session establishment process of the 5G network, which will not be repeated in this application.
  • this application has a certain degree of functional enhancement to the A interface, the B interface, the N2 interface, the AN network element and the SMF.
  • this application can dynamically manage the QoS of the AN network element through the first network element, that is, the first radio access controller, and implement the configuration of QoS parameters and resource allocation through the B interface, thereby achieving wireless network resource allocation. Effectively use and maximize revenue.
  • the AN network element can notify the SMF to adjust the QoS parameters. Then based on the solution idea of this application, for this scenario, when the resources of the AN network element cannot guarantee the service QoS requirements, the AN network element can also notify the first radio access controller through the B interface to perform QoS control management, including QoS parameters Update, resource reallocation, etc., and then instruct the CU/DU to perform related operations.
  • the process may be as shown in Figure 7.
  • the method may also include:
  • the second network element determines that the radio resources allocated to the UE cannot guarantee the QoS requirement, it requests a QoS update from the first network element.
  • the available resources of the second network element will change, which may cause the available wireless network resources to not match the original first QoS; on the other hand, the service requirements of the UE may also be Changes will occur, so QoS requirements may also change, and the corresponding first QoS parameters must also be adjusted.
  • the DU may send a QoS modification message to the CU-CP through the F1 interface, and the message may include information such as PDU session ID.
  • the CU-CP can trigger the QoS management function of the first radio access controller, that is, it can request the first radio access controller to update the QoS parameters through the B interface.
  • the CU-CP can request The first radio access controller sends a QoS parameter update request.
  • the QoS parameter update request may include information such as the UE’s identity, QFI, and the currently used QoS profile.
  • the QoS profile may include the first QoS parameters mentioned above, that is, for the first QoS The parameters are updated.
  • the first network element determines a third QoS parameter according to the service requirement information of the user and the wireless network resource of the second network element.
  • the first network element may determine the third QoS parameter according to the user's service requirement information, the user's attribute information, and the wireless network resources of the second network element.
  • the first wireless access controller may determine the new third QoS parameter by using AI/ML methods according to information such as user priority, SPID, high priority access, media type, bandwidth requirements, and available wireless network resource data. Or update the QoS profile.
  • the first network element sends the third QoS parameter to the second network element.
  • the first radio access controller may return the third QoS parameter to the AN network element (CU-CP), and at the same time may also return information such as the UE identification and QFI to the AN network element.
  • CU-CP AN network element
  • the difference is that the first QoS parameter is updated to the third QoS parameter.
  • the updated third QoS parameter also needs to be notified to the SMF, and the AN network element also needs to perform resource allocation according to the third QoS parameter.
  • the AN network element when the AN network element initiates a QoS parameter update request, the AN network element does not need to interact with the core network, and the first radio access controller can adjust the QoS parameters in time according to the network status. In this way, on the one hand, it can respond to the network status in a timely manner.
  • the change on the other hand, can also reduce the signaling interaction between the AN side and the core network.
  • the QoS management functional component can obtain this part of the information through a single process, and there is no need to establish a PDU session for all users of the same business.
  • Zhongdu transfers service demand information, which causes a large consumption of interface resources. Therefore, this application proposes a solution.
  • the QoS management function component can directly request the core network through the AN network element. The required service requirement information, this step does not depend on the PDU session establishment process of a specific UE.
  • the first network element determines a data request message according to the QoS management policy information.
  • the data request message includes the requested data type and a data reporting method.
  • the data type includes wireless network resources, and the data request message also includes a service identifier.
  • the data request message in step 802 also includes the identifier of the service, or the scope of the service, and its value may be the identifier of the service of 5QI.
  • the data type and data reporting method refer to the description in step 506.
  • the first network element requests service requirement information from the core network element, and the following two solutions are possible:
  • Solution 1 When the radio access controller platform function indirectly requests the SMF (or AMF) to obtain service requirement information through the AN network element (CU-CP), after step 802, it may also include:
  • the first network element sends a data request message to the second network element.
  • the AN network element can collect the status information of the wireless network resources according to the data type and the data reporting mode in the data request message.
  • the AN network element also needs to request the core network element for service requirement information. Therefore, it also includes:
  • the second network element sends a data request message requesting service requirement information to the AMF/SMF.
  • the data request message here includes the identifier of the service to obtain the service requirement information corresponding to the identifier of the service.
  • the AMF/SMF sends a data request message requesting service requirement information to the PCF.
  • the PCF sends a data request response message requesting service requirement information to the AMF/SMF.
  • the data request response message includes the requested business requirement information.
  • the AMF/SMF sends service requirement information to the second network element.
  • SMF can send service requirement information to CU-CP.
  • the second network element sends service requirement information to the first network element.
  • step 802 If there is an interface connection between the wireless access controller platform function and the core network element AMF, the wireless access controller platform function can directly request the core network element AMF/SMF for service requirement information, then step 802 It can also include:
  • the first network element sends a data request message to the SMF through the interface with the AMF/SMF.
  • the data request message is used to request service requirement information and status information of the wireless network resources of the AN network element.
  • the SMF/AMF requests the PCF for the service requirement information requested in the data request message.
  • the PCF sends a data request response message to the SMF/AMF, and the data request response message includes service requirement information.
  • the SMF/AMF sends service requirement information to the first network element.
  • SMF/AMF can report service requirement information to the radio access controller platform function through the interface with AMF.
  • the first radio access controller can not only collect the status information of the radio network resources of the AN network element, but also collect the service requirement information, which does not depend on the UE's PDU session establishment process, and reduces the resource consumption of the interface.
  • the PDU session establishment scheme is slightly different from the scheme in the second embodiment, which is mainly reflected in the fact that the AN network element does not need to request the corresponding service data when it forwards the UE’s PDU session establishment NAS request, and the AN network element
  • the interface with the core network AMF/SMF does not need to transmit service data information, and its implementation can be referred to the process description shown in Figure 9.
  • This process can include:
  • the UE sends a first session establishment request to the SMF/AMF through the second network element, where the first session establishment request includes information such as the identifier of the UE and the requested service type.
  • the first session establishment request may be a PDU session establishment NAS request.
  • the SMF sends a policy request message to the PCF to request the QoS management policy requested by the UE.
  • the PCF sends a policy response message to the SMF, where the policy response message includes the QoS management policy requested by the UE.
  • the SMF sends a third session establishment request to the second network element through the AMF, where the third session establishment request includes the second QoS parameter, the attribute information of the user, and the service requirement information.
  • the third session establishment request may be an N2 PDU session request message.
  • the N2 PDU session request message includes the second QoS parameter sent by the SMF to the AN network element and user attribute information. That is, the difference from the foregoing step 605 is that the N2 PDU session request message here does not carry service requirement information, and the foregoing steps 602-604 are also omitted.
  • the second network element sends a QoS parameter request to the first network element, where the QoS parameter request is used to request QoS parameters.
  • step 606 The difference from step 606 is that the QoS parameter request does not include service requirement information.
  • the first radio access controller indirectly obtains service requirement information from the core network through the AN network element and the N2 interface, which has little impact on the current 5G network PDU session establishment solution.
  • the solution in the fifth embodiment also describes the QoS policy configuration and data request process.
  • the request for service requirement information can be obtained at one time through the management plane, that is, after the OAM receives the policy deployment request, it can initiate a request to the AF through the management interface.
  • OAM can send the returned data to the second wireless access controller, and the second wireless access controller sends the data to the first wireless access controller through the A interface. Access to the controller, which can reduce the signaling interaction of the control plane and save the resources of the network interface.
  • Figure 10 is a schematic diagram of a QoS policy configuration and data request process, which includes:
  • the OAM sends a data collection request to the AF.
  • the data collection request includes the requested data type and service identification.
  • the data type here indicates the service requirement information corresponding to the service identifier (5QI group).
  • the AF sends a data collection response to the OAM, and the data collection response includes service requirement information corresponding to the service identifier.
  • the data collection response can include information such as 5QI group, media type, and bandwidth requirement.
  • the OAM sends the information in the data collection response to the second wireless access controller.
  • the second wireless access controller sends the information in the data collection response to the first network element.
  • the second wireless access controller may send the information in the data collection response to the first wireless access controller through the A interface, and the first wireless access controller sends the information in the data collection response to the QoS management function component.
  • the PDU session establishment solution is slightly different from that of the second embodiment.
  • the PDU session establishment process described in the fifth embodiment is the same as the PDU session of the fourth embodiment.
  • the scheme of establishing the process is the same, and the description will not be repeated in the fifth embodiment, and the description of the related steps in the fourth embodiment can be referred to.
  • OAM OAM of the core network
  • OAM of the core network can be used to request data through the OAM (OAM of the core network) corresponding to the core network, and then the OAM of the core network requests the corresponding data from the AF, and finally the business information is indirectly returned to the OAM of the AN through the OAM of the core network.
  • the fifth embodiment is mainly the service requirement information obtained by the AOM from the AF through the management interface, which can reduce the interaction of control plane signaling and save the resources of the network interface.
  • the communication method of the embodiment of the present application has been described in detail above with reference to FIGS. 1 to 10.
  • the following describes in detail the communication devices of the embodiments of the present application with reference to Figs. 11 to 13, such as the first network element, the first wireless access controller and the second network element AN network element, or the device used for the network element (such as the processor , Circuit or chip).
  • the network element includes hardware and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application in combination with the embodiments to implement the described functions, but such implementation should not be considered as going beyond the scope of the present application.
  • the network element can be divided into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic diagram of a possible composition of the first network element 1100 involved in the foregoing embodiment, and the first network element 1100 may be the first wireless access control As shown in FIG. 11, the first network element 1100 may include: a transceiver unit 1101 and a processing unit 1102.
  • the transceiver unit 1101 can be used to support the first network element 1100 to perform the above step 505, step 506, step 507, step 509, 606, 608, 703, 803a, 803b, and 806b, etc., and/or be used for the methods described herein Other processes of technology.
  • the processing unit 1102 may be used to support the first network element 1100 to perform the foregoing step 502, step 607, step 702, step 802, etc., and/or other processes used in the technology described herein.
  • the first network element 1100 may further include a storage unit 1103 configured to store codes corresponding to the method steps of the first network element 1100.
  • the first network element 1100 provided in this embodiment is used to execute a QoS management method, and therefore can achieve the same effect as the foregoing implementation method.
  • the first network element 1100 may include a processing module, a storage module, and a communication module.
  • the processing module may be used to control and manage the actions of the first network element 1100, for example, it may be used to support the first network element 1100 to perform the steps performed by the processing unit 1102 described above.
  • the storage module may be used to support the first network element 1100 to store program codes and data.
  • the communication module may be used to support communication between the first network element 1100 and other devices, for example, communication with the second network element AN.
  • the processing module can be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, and so on.
  • the storage module may be a memory.
  • the communication module may specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip, and other devices that interact with other electronic devices.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the base station may be applied to the system shown in one or more of FIG. 3 or FIG. 4 to perform the function of the second network element in the foregoing method embodiment.
  • the base station 120 may include one or more DU 1201 and one or more CU 1202.
  • CU1202 can communicate with NGcore (Next Generation Core Network, NC).
  • the DU 1201 may include at least one radio frequency unit 12012, at least one processor 12013, and at least one memory 12014.
  • the DU1201 may also include at least one antenna 12011.
  • the DU 1201 part is mainly used for the transmission and reception of radio frequency signals, the conversion between radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1202 may include at least one processor 12022 and at least one memory 12021.
  • CU1202 and DU1201 can communicate through interfaces, where the control plan interface can be F1-C, and the user plan interface can be F1-U.
  • the CU1202 part is mainly used for baseband processing, control of base stations, and so on.
  • the DU 1201 and the CU 1202 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1202 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete baseband processing functions.
  • the CU1202 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the media access control (MAC) layer are set in the DU.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), medium access Control (medium access control, MAC) and physical (physical, PHY) layer functions.
  • the base station 120 may include one or more antennas, one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor and at least one memory
  • at least one antenna and at least one radio frequency unit may be integrated in one antenna device
  • the CU may include at least one processor and at least one memory.
  • the CU1202 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 12021 and the processor 12022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1201 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can respectively support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 12014 and the processor 12013 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 13 shows a schematic diagram of the structure of a communication device 130.
  • the communication device 130 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 130 may be a chip, a network device (such as a base station), or a first wireless access controller.
  • the communication device 130 includes one or more processors 1301.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations or chips), execute software programs, and process data in the software programs.
  • the device may include a transceiving unit to realize signal input (reception) and output (transmission).
  • the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used in network equipment (such as a base station).
  • the device may be a network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 130 includes one or more of the processors 1301, and the one or more processors 1301 can implement the second network element or the first radio access controller in the embodiment shown in FIGS. 5 to 10 Methods.
  • the processor 1301 may also include an instruction 1303, and the instruction may be executed on the processor, so that the communication device 130 executes the method described in the foregoing method embodiment.
  • the communication device 130 may also include a circuit, and the circuit may implement the function of the network device or the first wireless access controller in the foregoing method embodiment.
  • the communication device 130 may include one or more memories 1302, on which instructions 1304 are stored, and the instructions may be executed on the processor, so that the communication device 130 can execute The method described in the above method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1302 may store the mobile effective area described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the communication device 130 may further include a transceiver unit 1305 and an antenna 1306, or include a communication interface.
  • the transceiving unit 1305 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1306.
  • the communication interface (not shown in the figure) may be used for communication between the core network device and the network device, or between the network device and the network device.
  • the communication interface may be a wired communication interface, such as an optical fiber communication interface.
  • the processor 1301 may be referred to as a processing unit, and controls a device (such as a first wireless access controller or a base station).
  • a device such as a first wireless access controller or a base station.
  • the sending or receiving performed by the transceiver unit 1305 described in the embodiment of the present application is under the control of the processing unit (processor 1301), the sending or receiving action may also be described as processing in the embodiment of the present application.
  • the execution by the unit (processor 1301) does not affect the understanding of the solution by those skilled in the art.
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供一种服务质量管理方法和装置,涉及通信技术领域能够根据无线网络资源状态实时调整QoS参数,从而最大化无线资源的有效利用率。具体方案为: 第一网元接收第二网元发送的 QoS 参数请求,QoS 参数请求用于请求 QoS 参数; 第一网元根据用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源中的至少一个确定第一 QoS 参数; 第一网元向第二网元发送第一 Qo S参数,使第二网元根据第一 QoS 参数分配无线网络资源。本申请实施例用于 QoS 参数的管理过程。

Description

一种服务质量管理方法和装置
本申请要求于2020年05月30日提交国家知识产权局、申请号为202010480754.7、申请名称为“一种服务质量管理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种服务质量(quality of service,QoS)管理方法和装置。
背景技术
随着无线网络技术的发展,越来越多的业务在无线网络上承载,且每种业务都有其独特的特性,以及对无线网络的业务保障要求,因此,无线网络需要提供满足要求的无线资源,以保障用户的业务体验。通常,业务对无线网络的要求通过QoS体现,无线网络可以基于业务的QoS要求实现业务的接入控制、资源保证和调度。
在5G网络中,5G网络可以为用户提供多种业务类型,如云虚拟现实(cloud virtual reality,cloud VR)、无人机以及8K视频直播等。不同的用户对于业务的QoS要求存在较大差异,即使是使用相同业务的用户,用户间对于业务的QoS要求也存在差异,如高级贵宾(very important person,VIP)用户和普通用户对业务的QoS要求是不同的。
目前,在QoS管理方案中,由于核心网网元无法感知接入网侧的无线资源状态,因此,核心网网元只能基于终端设备请求的业务类型确定业务的QoS参数。而且,为了满足使用相同业务的所有用户的业务需求,目前是对所有使用相同业务的用户配置相同的QoS参数,并基于此进行资源分配,但是,这可能会造成无线资源的过多分配,例如对于普通用户分配的无线资源按照VIP用户的无线资源分配,从而浪费了无线资源,进而会影响后续其他用户的业务请求接入,不利于无线资源的有效利用。
发明内容
本申请实施例提供一种QoS管理方法和装置,能够根据无线网络资源状态实时调整QoS参数,从而最大化无线资源的有效利用率。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种服务质量QoS管理方法,包括:第一网元接收第二网元发送的QoS参数请求,QoS参数请求用于请求QoS参数;第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定第一QoS参数;第一网元向第二网元发送第一QoS参数,使第二网元根据第一QoS参数分配无线网络资源。其中,第一网元可以为第一无线接入控制器,第二网元可以为AN侧网元。
也就是说,第二网元在得到核心网的QoS参数配置时,并不立即根据核心网发送的QoS参数进行无线网络资源的分配,而是向第一网元发送QoS请求,第一网元再根据用户的业务需求信息以及第二网元的无线网络资源确定第一QoS参数,这样第一QoS参数的确定并不只跟业务类型(业务需求)有关,也跟AN网元当前可用的无线 网络资源有关,因此,本申请可以通过第一网元,即第一无线接入控制器对AN网元的QoS进行动态管理,并通过B接口实现QoS参数的配置和资源分配,从而可以实现无线网络资源的有效利用和最大化收益。
在一种可能的设计中,业务需求信息包括业务的媒体类型和带宽需求中的至少一个。
第一网元确定第一QoS参数时,还可以与用户的属性信息有关,即第一网元根据用户的业务需求信息、用户的属性信息和第二网元的无线网络资源确定第一QoS参数。其中,用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及用户所在的终端设备为高优先级接入的指示。
相比现有技术根据业务类型确定QoS参数时,本申请可以根据业务需求信息、用户的属性信息和可用的无线网络资源的信息确定QoS参数,可以使得确定的QoS参数适应当前的网络状态,实现无线网络资源的有效利用。
在一种可能的设计中,QoS参数请求包括用户的业务需求信息以及第二网元的无线网络资源。可选的,QoS参数请求还可以包括用户的属性信息。
也就是说,第二网元,AN网元在得到QoS参数请求时,可以将QoS参数请求发送给第一网元去确定QoS参数,并不直接去分配无线网络资源。
在一种可能的设计中,QoS参数请求还包括核心网根据用户请求的业务类型配置的第二QoS参数;在第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定第一QoS参数之前,该方法还包括:第一网元确定第二QoS参数与第二网元的无线网络资源不匹配。
也就是说,第二QoS参数是核心网配置的,但是当第二QoS参数下发给第二网元,也就是AN侧网元时,AN侧网元并不直接按照第二QoS参数进行无线网络资源的分配,而是将第二QoS参数发送给第一网元,也就是第一无线接入控制器,第一无线接入控制器按照当前用户的业务需求信息以及第二网元的可用的无线网络资源重新确定第一QoS参数,以使得重新确定的第一QoS参数符合AN网元当前的网络状态。
在一种可能的设计中,第一网元确定第二QoS参数与第二网元的无线网络资源不匹配包括:若第一网元确定根据第二QoS参数分配资源时,不能使得第二网元的无线网络资源最大化利用,则确定第二QoS参数与第二网元的无线网络资源不匹配;或,若第一网元确定根据第二QoS参数分配资源时,会导致第二网元的无线网络资源分配过多,则确定第二QoS参数与第二网元的无线网络资源不匹配。这种确定不匹配的方式只是示例性的举例,并不局限于此。
在一种可能的设计中,在第一网元接收第二网元发送的QoS参数请求之前,该方法还包括:第一网元接收管理网元OAM发送的QoS管理策略信息,QoS管理策略信息包括策略类型和策略的应用对象;策略类型包括无线网络资源与QoS参数的对应关系;策略的应用对象包括QoS管理策略信息应用的业务类型;第一网元根据QoS管理策略信息确定待请求的数据类型和数据上报方式,并向第二网元发送数据请求消息,数据请求消息包括待请求的数据类型和数据上报方式,数据类型包括无线网络资源;第一网元接收第二网元根据数据上报方式获取的无线网络资源的状态数据。
由此,本申请可以通过提供的增强的第一网元的功能,实现QoS管理策略的部署 和安装,并实现了第一网元动态获取无线网络资源的状态数据。
在一种可能的设计中,在第一网元接收第二网元发送的QoS参数请求之前,该方法还包括:第一网元接收管理网元OAM发送的业务需求信息,业务需求信息是OAM向应用功能AF网元请求得到的。
该设计也是QoS策略配置和数据请求流程中的过程,该设计中,业务需求信息的请求可以通过管理面一次性获取,即OAM接收到策略部署请求后,可以通过管理接口发起向AF获取业务需求信息的请求,当收到AF的返回数据时,OAM可以将返回的数据发送给第二无线接入控制器,第二无线接入控制器再将数据发送给第一网元,这样可以减少空面的信令交互,节约网络接口的资源。
第二方面,提供一种服务质量QoS管理方法,包括:第二网元向第一网元发送QoS参数请求,QoS参数请求用于请求QoS参数;第二网元接收第一网元发送的第一QoS参数,第一QoS参数是第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定的;第二网元根据第一QoS参数分配无线网络资源。
其中,第二网元为AN网元,第一网元为第一无线接入控制器。当AN网元从核心网得到配置的QoS参数时,并不直接按照配置的QoS参数进行资源分配,而是向第一无线接入控制器请求重新配置第一QoS参数,以使得重新配置的第一QoS参数符合当前的网络状态,提升网络资源的有效利用率。
在一种可能的设计中,业务需求信息包括业务的媒体类型和带宽需求中的至少一个;可选的,第一QoS参数还可以是第一网元根据用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源确定的。其中,用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及用户所在的终端设备为高优先级接入的指示。
相比现有技术根据业务类型确定QoS参数时,本申请可以根据业务需求信息、用户的属性信息和可用的无线网络资源的信息确定QoS参数,可以使得确定的QoS参数适应当前的网络状态,实现无线网络资源的有效利用。
在一种可能的设计中,QoS参数请求包括用户的业务需求信息以及第二网元的无线网络资源。也可以是,QoS参数请求包括用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源。也就是说,第二网元,AN网元在得到QoS参数请求时,可以将QoS参数请求发送给第一网元去确定QoS参数,并不直接去分配无线网络资源。
在一种可能的设计中,QoS参数请求还包括核心网配置的第二QoS参数。在第二网元向第一网元发送QoS参数请求之前,该方法还包括:第二网元接收第一网元发送的第一数据请求消息,第一数据请求消息包括请求的数据类型和数据上报方式,数据类型包括无线网络资源;第二网元根据数据上报方式向第一网元发送无线网络资源的状态数据。
也就是说,第二QoS参数是核心网网元配置的,但是当第二QoS参数下发给第二网元,也就是AN侧网元时,AN侧网元并不直接按照第二QoS参数进行无线网络资源的分配,而是按照当前用户的业务需求信息、用户的属性信息以及第二网元的可用的无线网络资源重新确定第一QoS参数,以使得重新确定的第一QoS参数符合AN网元当前的网络状态。
在一种可能的设计中,第一数据请求消息还包括业务的标识;在第二网元向第一网元发送QoS参数请求之前,该方法还包括:第二网元向核心网网元发送第二数据请求消息,第二数据请求消息包括业务的标识,第二数据请求消息用于向核心网网元请求业务的标识对应的业务需求信息;第二网元接收核心网网元发送的业务需求信息。
由此,第一网元通过第二网元从核心网网元获取业务需求信息时,对于目前的网络的PDU会话建立的影响较小,可以减少控制面信令的交互,节省网络接口的资源。
第三方面,提供一种第一网元,包括:收发单元,用于接收第二网元发送的QoS参数请求,QoS参数请求用于请求QoS参数;处理单元,用于根据用户的业务需求信息以及第二网元的无线网络资源确定第一QoS参数;收发单元,还用于向第二网元发送第一QoS参数,使第二网元根据第一QoS参数分配无线网络资源。
在一种可能的设计中,业务需求信息包括业务的媒体类型和带宽需求中的至少一个;确定第一QoS参数时还可以跟用户的属性信息有关,其中,用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及用户所在的终端设备为高优先级接入的指示。
在一种可能的设计中,QoS参数请求包括用户的业务需求信息以及第二网元的无线网络资源。或者,QoS参数请求包括用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源。
在一种可能的设计中,QoS参数请求还包括核心网根据用户请求的业务类型配置的第二QoS参数;处理单元还用于:确定第二QoS参数与第二网元的无线网络资源不匹配。
在一种可能的设计中,收发单元还用于:接收管理网元OAM发送的QoS管理策略信息,QoS管理策略信息包括策略类型和策略的应用对象;策略类型包括无线网络资源与QoS参数的对应关系;策略的应用对象包括QoS管理策略信息应用的业务类型;根据QoS管理策略信息确定待请求的数据类型和数据上报方式,并向第二网元发送数据请求消息,数据请求消息包括待请求的数据类型和数据上报方式,数据类型包括无线网络资源;接收第二网元根据数据上报方式获取的无线网络资源的状态数据。
在一种可能的设计中,收发单元还用于:接收管理网元OAM发送的业务需求信息,业务需求信息是OAM向应用功能AF网元请求得到的。
第四方面,提供一种第二网元,包括:收发单元,用于向第一网元发送QoS参数请求,QoS参数请求用于请求QoS参数;收发单元,还用于接收第一网元发送的第一QoS参数,第一QoS参数是第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定的;处理单元,用于根据第一QoS参数分配无线网络资源。
在一种可能的设计中,业务需求信息包括业务的媒体类型和带宽需求中的至少一个;
第一QoS参数还可以是第一网元根据用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源确定的。其中,用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及用户所在的终端设备为高优先级接入的指示。
在一种可能的设计中,QoS参数请求包括用户的业务需求信息以及第二网元的无 线网络资源;或者,QoS参数请求包括用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源。QoS参数请求还包括核心网配置的第二QoS参数。
在一种可能的设计中,收发单元,还用于:接收第一网元发送的第一数据请求消息,第一数据请求消息包括请求的数据类型和数据上报方式,数据类型包括无线网络资源;根据数据上报方式向第一网元发送无线网络资源的状态数据。
在一种可能的设计中,第一数据请求消息还包括业务的标识;收发单元,还用于:向核心网网元发送第二数据请求消息,第二数据请求消息包括业务的标识,第二数据请求消息用于向核心网网元请求业务的标识对应的业务需求信息;接收核心网网元发送的业务需求信息。
第五方面,提供一种计算机可读存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述第一方面以及第一方面的中的任一种可能的设计所述的方法。
第六方面,提供一种计算机可读存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述第二方面以及第二方面的中的任一种可能的设计所述的方法。
第七方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得电子设备执行上述第一方面以及第一方面的中的任一种可能的设计所述的方法。
第八方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得电子设备执行上述第二方面以及第二方面的中的任一种可能的设计所述的方法。
附图说明
图1为本申请实施例提供的一种QoS flow的应用场景;
图2为本申请实施例提供的一种用户业务的数据传输过程示意图;
图3为本申请实施例提供的一种QoS参数配置的网络架构示意图;
图4为本申请实施例提供的一种系统架构示意图;
图5为本申请实施例提供的一种QoS管理方法的信令交互图;
图6为本申请实施例提供的一种QoS管理策略的执行过程的信令交互示意图;
图7为本申请实施例提供的一种QoS管理方法的信令交互图;
图8为本申请实施例提供的一种QoS管理方法的信令交互图;
图9为本申请实施例提供的一种QoS管理方法的信令交互图;
图10为本申请实施例提供的一种QoS策略配置和数据请求流程的示意图;
图11为本申请实施例提供的一种第一网元的结构示意图;
图12为本申请实施例提供的一种基站的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例用于对无线网络技术中用户业务的QoS参数的调整,使得AN侧网元可以按照当前的网络环境得到合适的QoS参数,以便按照调整的QoS参数进行资源的分配和调度。
基于此,本申请先对QoS参数的应用场景进行示例性说明。目前,在5G中提出一种QoS模型管理机制,即基于QoS流(flow)实现对用户业务的服务质量保障。QoS flow是描述业务流的逻辑概念,不同的QoS flow按照不同的QoS参数配置,以支持不同需求的业务数据传输,如图1所示。当用户发起业务请求时,网络侧可以针对UE的这种业务请求创建一个或多个协议数据单元会话(protocol data unit session,PDU session)(图1中简写为PDU会话),PDU session用于传输不同的业务数据。该PDU session可以包括两部分,一部分为用户设备(user equipment,UE)和下一代无线接入网(next generation-radio access aetwork,NG-RAN)网元(UE和节点B(Node B,NB))之间无线空口承载(radio bearer,RB),一部分为NG-RAN网元与5G核心网(5g core network,5GC)的用户面功能(user plane function,UPF)网元之间的下一代用户面通道(Next Generation-User plane tunnel,NG-U tunnel)。由于用户业务的不同业务流的需求不同,因此在PDU session中需按照多种QoS参数进行资源分配和调度,于是PDU session中会按照多种QoS flow(对应多种QoS参数)进行配置(包括对RB和NG-U tunnel)。
其中,每个QoS flow对应一个QoS流标识(QoS flow identifier,QFI),QFI是PDU session内唯一的一个流标识,并由QoS摘要(QoS profile)描述QoS flow对应的QoS参数的属性。且,一个UE可以支持建立多个PDU session,每个PDU session可以包含多个QoS flow。一个无线数据承载(data radio bearer,DRB)支持多种QoS flow的配置。因此,在RAN中引入新的用户面协议层(service data adaptation protocol,SDAP)执行QoS flow和DRB的适配映射。
当完成PDU session创建后,UE传输用户的业务数据的链路就建立完成,UE就可以通过该链路进行数据发送或接收。图2示出了用户业务的数据传输过程。对于下行数据,UPF可以根据业务数据流过滤模板将数据包映射到QoS flow,并在数据包头中增加QFI标签,发送给接入网(access network,AN)(即NG-RAN网元)。AN可以根据收到的数据包头中的QFI标签将相应数据包映射到对应的DRB上发送给UE。对于上行数据,UE可以根据QoS策略将数据包映射到相应的QoS flow,在通过UE的应用层完成QoS flow到DRB的映射。AN可以基于接收到的UE的上行数据的DRB,确定该上行数据的QFI标签,并在数据包头中增加QFI标签发送给UPF。
其中,对于QoS flow对应的QoS参数的配置,可以应用如图3所示的网络架构。基于图1所示的QoS模型,在PDU session建立过程中,核心网网元(session management function,会话管理功能,SMF)基于UE请求的业务类型和SMF本地配置的静态的策略与计费控制(policy and charging control,PCC)确定QoS参数、QFI分配等,或 基于业务类型与策略控制功能(policy control function,PCF)交互获得的动态PCC策略确定QoS参数、QFI分配等,同时,SMF通过N4接口配置UPF的资源和调度策略,同时通过接入和移动性管理功能(access and mobility management function,AMF)和N2接口对AN进行QoS参数(QoS profile)配置,进而AN基于SMF发送的QoS profile和QFI分配等信息为UE分配无线资源,配置无线网络相关参数和调度策略。
目前,在5G中,5G可以为用户提供更加丰富的业务类型,不同用户对于业务的QoS要求存在较大差异。例如使用8K视频直播业务的用户有VIP用户(少量)和普通用户(大部分)两种,VIP用户需要100M带宽保证业务需求,普通用户需要20M带宽就能保证业务需求,按照现有技术的QoS参数分配方案,由于业务类型相同,因此SMF在分配QoS参数时,VIP用户和普通用户都是按照相同的QoS参数进行配置的,那么为了保证这种业务的所有用户的业务需求,就必须按照带宽要求最高的用户的需求进行QoS参数配置,因此,即使是普通用户,也是分配了100M带宽资源,但实际上这部分普通用户可能只需要20M带宽,从而多分配的80M是被浪费的,不利于无线网络资源的有效利用。
可以理解,无线网络资源不能被有效利用的主要原因是由于AN侧不具备QoS控制能力,无法支持AN基于无线资源的状态对核心网下发的QoS参数进行适应性调整。因此,本申请提出一种QoS管理方法,该方法可以通过AN侧的网元对核心网配置的QoS参数进行动态调整,以使得调整后的QoS参数能使得无线网络资源得到有效利用。
基于此,本申请提出的方法可以应用于图4所示的系统架构中。该架构包括AN侧网元、核心网侧网元、第一无线接入控制器以及管理网元(operations-administration-maintenance,OAM)。还可以包括第二无线接入控制器。其中,OAM和第二无线接入控制器逻辑上是两个不同的功能模块,也可以分别作为独立的网元。通常,可以将第二无线接入控制器融合在OAM中,将第二无线接入控制器作为OAM的内部功能组件模块。第二无线接入控制器和OAM可以理解为管理面的网元或模块。
OAM是管理网元的通用称呼,其具体实现可以由开放网络自动化平台(open networking automation platform,ONAP)或网络管理系统(network management system,NMS)等管理网元实现。本申请的实施例是将第二无线接入控制器作为OAM的模块组件来进行方案描述的,但本申请的方案也适用第二无线接入控制器和OAM相互独立的部署场景。
图4中,第一无线接入控制器可以是独立部署的网元,也可以和AN的集中式单元的控制面(centralized unit-control plane,CU-CP)进行合设,本申请后续实施例中描述是将第一无线接入控制器作为独立网元进行相关描述的,但是,对于第一无线接入控制器和CU-CP合设的场景,也是本申请方案适用的,属于本申请的保护范围。
第二无线接入控制器,其功能可以是图4中AN网元及资源的控制和优化,执行人工智能工作流(包括模型训练和更新)以及基于策略实现对应用/特性管理。第二无线接入控制器与第一无线接入控制器通信的接口可以是A接口。
第一无线接入控制器,其功能可以是基于B接口的数据收集和操作指令实现对AN功能网元(如CU-CP等)以及资源的近实时控制和优化。第一无线接入控制器与OAM 之间的接口可以是C接口。
CU-CP,AN的集中式单元控制平面,可以实现无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)协议控制面功能。
集中式单元的用户面(centralized unit-user plane,CU-UP),AN的集中式单元用户平面,实现PDCP协议用户面和服务数据适配协议(service data adaptation protocol,SDAP)协议功能。
分布式单元(DU,distributed unit):AN的分布式单元,用于实现无线链路控制(radio link control,RLC)/介质接入控制(medium access control,MAC)和部分物理层的协议等功能。
OAM,可以提供对无线接入网络(radio access network,RAN)功能模块的运维管理。
核心网网元可以包括AMF、SMF、PCF和应用功能(application function,AF)网元等。其中,AMF,主要负责UE的接入控制、移动性功能,包括UE鉴权认证、位置区跟踪等。SMF,可以负责PDU会话管理,包括创建、修改和删除等。PCF,可以负责QoS、计费等策略管理功能。AF,可以负责应用服务需求策略管理等功能。AN侧与核心网通信的接口可以是N2接口。
应用图4的网络架构,本申请可以通过增强第一无线接入控制器的功能,以提供QoS管理能力,即第一无线接入控制器能够基于无线网络资源的状态和业务需求信息,同时兼顾用户属性,进行QoS动态配置,并通过与AN的功能网元进行协同实现无线资源的灵活管理,从而提供了一种更精细化的无线资源分配方案。
基于上述发明思想,本申请的方案主要包括:QoS管理策略配置、QoS网络数据的获取(包括数据请求和数据上报)以及QoS管理策略执行。简单来说:
第二无线接入控制器可以基于QoS管理策略的部署请求生成QoS管理策略,并通过A接口将QoS管理策略发送给第一无线接入控制器;
第一无线接入控制器可以基于B接口向AN网元请求所需网络/用户数据(包括无线网络资源实时状态以及用户属性特征(如用户优先级)等),AN可以按照第一无线接入控制器的数据请求,收集并上报相应网络/用户数据;
第一无线接入控制器根据A接口下发的QoS管理策略和无线网络资源实时状态以及用户属性特征(如用户优先级),确定QoS参数配置;
第一无线接入控制器通过B接口指示CU/DU执行QoS参数配置,以及为相应UE分配无线资源,从而保证优先级用户的业务正常进行,满足用户需求,保障用户体验。
为了支持本申请方案的实现,本申请对第一无线接入控制器功能进行增强以支持QoS管理功能,用于实现基于策略的QoS管理,包括QoS管理策略执行条件判决、基于人工智能的QoS参数决策。增强的QoS管理功能组件可以作为第一无线接入控制器的内部功能组件模块,也可以独立于第一无线接入控制器作为单独的网元来部署,在本申请的方案中,不受限上述两种方式,本申请的实施例中阐述了QoS管理功能组件与第一无线接入控制器的其他功能组件模块通信的接口消息。
首先,本申请实施例对第二无线接入控制器通过A接口在第一无线接入控制器上创建QoS管理策略,第一无线接入控制器基于策略信息向AN网元(如DU)请求相 关需要的网络数据进行说明,并阐述新增的QoS管理功能组件的部署流程。
需要说明的是,本申请实施例下述阐述中的第一网元均指第一无线接入控制器,第二网元均指AN网元。
实施例一
参见图5,图5为一种QoS管理方法中,QoS管理功能组件的部署流程、创建QoS管理策略以及数据请求等流程的示意图。该方法包括:
501、OAM通过管理接口C向第一网元发送部署请求,部署请求包括QoS管理功能组件的部署文件和相关配置信息。
当第一无线接入控制器收到部署请求后,第一无线接入控制器的内部功能模块可执行QoS管理功能组件的功能加载和参数配置等。其中,第一无线接入控制器可以由多个功能组件模块组成,本申请中,将第一无线接入控制器中所有公共的功能组件模块统称为无线接入控制器平台功能进行方案描述。
502、第一网元执行QoS管理功能组件的部署,并执行QoS管理功能组件的注册流程。
第一网元部署QoS管理功能组件并启动后,QoS管理功能组件向无线接入控制器平台功能注册其特性信息,包括其功能执行需要消费的数据类型,该数据类型可以如无线网络资源数据(如无线可用资源数据)、用户的属性信息、业务需求信息等、基于需要消费的数据类型的策略信息(如QoS管理策略)以及其产生的QoS管理策略的数据类型(如QoS参数/QoS profile等)等。
503、OAM接收管理请求,该管理请求包括QoS管理策略。
这里OAM接收管理请求,可以是运营商的管理人员在OAM上操作执行的。该管理请求可以理解为QoS管理策略的部署请求,该QoS管理策略可以包括策略类型(type)和策略的应用对象(scope)等信息。
本申请实施例中,type的取值可以是QoS_Mgt,其含义可以是无线网络资源与QoS参数的匹配关系等,scope的取值可以是5QI group,用于标识QoS管理策略使用的业务类型。该业务类型例如可以为移动宽带业务(mobile broadband,,MBB)业务(网页上的文字业务、视频业务等)、超级时延业务和物联网业务等。
504、OAM创建策略实例请求,该策略实例请求包括策略类型和策略的应用对象。
OAM可以通过OAM和第二无线接入控制器之间的接口(例如接口C)通知第二无线接入控制器创建策略实例请求(policy instance),即请求第二无线接入控制器对QoS管理策略中的策略类型和策略的应用对象进行具体化创建。第二无线接入控制器可以按照A接口的Policy策略模型对QoS管理策略进行建模,并通过A接口向第一无线接入控制器发送QoS管理策略信息,QoS管理策略信息可以包括策略类型和策略的应用对象。
505、第一网元接收OAM发送的QoS管理策略信息,QoS管理策略信息包括策略类型和策略的应用对象。
可以是第一无线接入控制器中的无线接入控制器平台功能接收到OAM中的第二无线接入控制器发送的QoS管理策略信息,该QoS管理策略信息用于向无线接入控制器平台功能请求创建QoS管理策略实例。
506、第一网元根据QoS管理策略信息向第二网元发送数据请求消息,数据请求消息包括请求的数据类型和数据上报方式,数据类型包括无线网络资源。
无线接入控制器平台功能收到第二无线接入控制器的QoS管理策略信息后,无线接入控制器平台功能可以通过内部接口将A接口收到的QoS管理策略信息通知给QoS管理功能组件。QoS管理功能组件可以基于QoS管理策略信息及其自身功能逻辑确定其需要的消费数据信息,并向无线接入控制器平台功能发送针对确定的消费数据的数据请求消息,数据请求消息中包括请求的数据类型(即无线网络资源状态数据(cell resource data)和数据上报方式(report type)等)。其中,reportType指示的数据上报的方式例如可以为资源变化时上报(ResChangeReport)、数据收集完成后立即上报(reporting)和周期性上报(periodic reporting)等。
无线接入控制器平台功能确定管理的所有AN网元,这里的AN网元具体可以为AN中的DU。确定后,无线接入控制器平台功能可以通过B接口向AN网元发送数据请求消息,AN便可以开始收集无线网络资源的状态数据,并按照指示的数据上报方式向第一无线接入控制器上报无线网络资源的状态数据。
507、第一网元接收第二网元根据数据上报方式获取的无线网络资源的状态数据。
AN网元可以按照数据上报方式向无线接入控制器平台功能发送收集到的无线网络资源的状态数据,无线接入控制器平台功能再将无线网络资源的状态数据发送给QoS管理功能组件,QoS管理功能组件接收并保存该无线网络资源的状态数据。
这样,第一网元就实现了对第二网元的无线网络资源的状态数据的收集。
需要说明的是,上述步骤501-507可以用于AN网元已经部署上线后。当新的AN网元部署上线后,要实现对新上线的AN网元的数据请求,本申请可以通过第一无线接入控制器利用B接口管理流程将QoS管理功能组件的数据请求消息发送给AN网元,其实现过程可以为(步骤508-510在图5中未示出):
508、第二网元部署上线后,向第一网元发起接口连接建立。
第二网元的部署上线可以是DU的部署上线。该接口连接建立可以是DU向无线接入控制器平台功能发送B setup消息。
509、第一网元将数据请求消息发送给新上线的第二网元。
无线接入控制器平台功能在响应DU的B建立请求时,无线接入控制器平台功能可以将QoS管理功能组件之前发送的数据请求消息发送给新上线的DU网元,包括请求的数据类型(即无线网络资源的状态数据)和数据上报方式等。同时,无线接入控制器平台功能可以将新上线DU的信息通知给QoS管理功能组件,DU的信息包括DU的标识和DU地址中的至少一种。
510、参见上述步骤507。
由此以来,本申请可以通过提供的增强的第一无线接入控制器的功能,实现QoS管理策略的部署和安装,并实现了第一无线接入控制器动态获取无线网络资源的状态数据。
实施例二
在QoS管理策略的创建和安装完成后,下面阐述QoS管理策略的执行过程。简单来说,在UE的业务流程中,第一无线接入控制器可以基于上述现QoS管理策略的部 署和安装以及手机玩的无线资源的状态数据,执行QoS参数决策,并指示CU/DU执行QoS参数配置,分配无线资源。参考图6,图6为QoS管理策略的执行过程的示意图,该过程可以包括:
600、AF和PCF执行应用的业务需求信息的交互。
在5G的PDU会话建立之前,AF可以将其应用业务需求信息发送给PCF,该业务需求信息可以包括业务的媒体类型(media type)和带宽需求(bandwidth requirements)、应用标识(application id)以及业务过滤模版中的至少一个。PCF接收到该应用的业务需求信息时,可以向AF回复相应的满足应用业务的QoS等信息。
其中,媒体类型可以为在线视频、文字等。
601、UE发起会话建立流程,向第二网元发送第一会话建立请求,该第一会话建立请求包括UE的标识和请求的业务类型等信息。
会话建立流程可以是PDU session establishment建立流程,第一会话建立请求可以是PDU session establishment NAS(Non-access stratum,非接入层)请求。
602、第二网元向SMF发送第二会话建立请求,该第二会话建立请求增加有业务需求(service requirement)信元,该业务需求信元用于向SMF请求UE请求的业务需求信息。
即AN网元在接收到UE发送的第一会话建立请求后,可以在该第一会话建立请求中添加service requirement信元,通过N2接口将添加有该信元的第二会话建立请求发送给SMF。
603、SMF向PCF发送请求消息,该请求消息包括业务需求信元,以向PCF请求UE请求的业务需求信息。
604、PCF向SMF发送响应消息,响应消息包括UE请求的业务需求信息。
605、SMF通过AMF向第二网元发送第三会话建立请求,第三会话建立请求包括第二QoS参数、用户的属性信息以及业务需求信息。
第三会话建立请求可以是N2 PDU session request消息,N2 PDU session request消息包括SMF发送给AN网元的第二QoS参数、用户的属性信息以及业务需求信息等。
用户的属性信息可以包括用户的优先级(user priority),该user priority可以是AMF从UE的签约数据中获取的。业务需求信息包括媒体类型和带宽需求等。
606、第二网元向第一网元发送QoS参数请求,QoS参数请求用于请求QoS参数。
即AN网元接收到SMF发送的N2 PDU session request消息后,不是直接按照SMF发送的第二QoS参数进行无线网元资源的分配,而是触发第一网元,即触发第一无线接入控制器的QoS管理功能。这里的AN网元具体可以是CU-CP。即CU-CP向第一无线接入控制器发送QoS参数请求,该QoS参数请求包括第二QoS参数以外,还可以包括用户的业务需求信息以及第二网元的无线网络资源,或者还可以包括用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源。此时的用户的属性信息可以包括以下信息中的至少一个:UE的标识、QFI、user priority、签约用户文件标识(subscriber profile identity,SPID)、用户所在的终端设备为高优先级接入的指示(highpriority access)。其中,highpriority access可以是UE初始接入网络时发送给AN网元的,SPID可以是UE在注册到网络时核心网的AMF发送给AN网元的,用于 指示UE优先的RAT或频点信息。
607、第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定第一QoS参数。
或者,第一网元可以根据用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源确定第一QoS参数。
第一无线接入控制器可以先评估SMF发送的第二QoS参数配置是否符合无线网络资源的实际情况,例如根据第二QoS参数分配无线网络资源时,是否能保证AN的可用无线网络资源的最大化利用,或者根据第二QoS参数分配无线网络资源时,是否会导致AN的可用无线网络资源过多分配等,若会导致上述情况,则第一无线接入控制器可以参考User priority、SPID、HighpriorityAccess、Media Type、bandwidth requirements以及可用的无线网络资源等信息,利用人工智能的方法确定新的第一QoS参数,即更新的QoS参数(updated QoS profile)。
608、第一网元向第二网元发送第一QoS参数。
第一无线接入控制器向AN网元发送QoS参数响应消息,该QoS参数响应消息包括第一QoS参数,还可以包括UE的标识和QFI等。
609、第二网元向SMF发送QoS参数更新请求,QoS参数更新请求包括第一QoS参数。
AN网元可以通过N2接口将第一无线接入控制器确定的第一QoS参数发送给SMF,并指示SMF将第二QoS参数更新为第一QoS参数。
610、SMF更新本地的第二QoS参数为第一QoS参数,并按照最新的第一QoS参数更新QoS rule。
611、SMF通过AMF向第二网元发送会话建立请求,该会话建立请求包括第一QoS参数。
会话建立请求可以是N2 PDU session request消息,该消息可以包括SMF发送给UE的第一QoS参数或QoS rule,这样,UE可以根据第一QoS参数分配无线网络资源。
612、第二网元根据第一QoS参数分配无线网络资源。
AN网元接收SMF的会话建立请求后,可以发起CU-CP上的PDU会话建立,并按照第一QoS参数进行CU-CP上的资源分配和调度策略配置。且,AN网元可以发起DU上的会话建立,并按照第一QoS参数进行DU上的资源分配和调度策略配置。
613、第二网元向AMF发送会话响应消息,指示无线网络资源配置完成。
此外,AN网元还可以将SMF发送给UE的PDU session accept NAS消息透传给UE,消息中可以包括更新后的第一QoS参数或QoS rule,以便UE可以根据新的QoS参数进行上行通信。UE还可以向AN网元返回会话建立完成消息,AN网元接收到该会话建立完成消息后,可以通过N2接口回复AN网元的下行数据的路由信息给给SMF,进而SMF将AN网元的下行数据的路由信息发送给UPF等,该步骤的具体实现可参考5G网络的PDU session establishment流程的相关步骤,本申请不再赘述。
可以理解,上述600-613步骤中,本申请对A接口、B接口、N2接口以及AN网元和SMF有一定程度的功能增强。
由此,本申请可以通过第一网元,即第一无线接入控制器对AN网元的QoS进行 动态管理,并通过B接口实现QoS参数的配置和资源分配,从而可以实现无线网络资源的有效利用和最大化收益。
实施例三
从以上过程可知,本申请对于5G的资源分配方法中,当AN网元的资源无法保证业务的QoS需求时,AN网元可以通知SMF进行QoS参数调整。那么基于本申请的方案思想,针对这种场景,当AN网元的资源无法保证业务QoS需求时,AN网元还可以通过B接口通知第一无线接入控制器进行QoS控制管理,包括QoS参数更新、资源重新分配等,进而指示CU/DU执行相关操作,其流程可以如图7所示,该方法还可以包括:
701、第二网元确定分配给UE的无线资源无法保证QoS需求时,向第一网元请求QoS更新。
一方面,由于随着网络状态的变化,第二网元的可用资源会发生变化,可能会导致可用的无线网络资源与当初的第一QoS不匹配;另一方面,UE的业务的需求也可能会发生变化,所以可能导致QoS需求也发生改变,相应的第一QoS参数也要得到调整。
示例性的,当DU检测到已分配的某个UE的无线网络资源无法保证UE的QoS需求时,DU可以通过F1接口向CU-CP发送QoS修改消息,该消息可以包括PDU session ID等信息。CU-CP接收到该消息后,CU-CP可以触发第一无线接入控制器的QoS管理功能,即可以通过B接口向第一无线接入控制器请求更新QoS参数,例如CU-CP可以向第一无线接入控制器发送QoS参数更新请求,该QoS参数更新请求可以包括UE的标识、QFI以及当前使用的QoS profile等信息,QoS profile中可以包括上述第一QoS参数,即对第一QoS参数进行更新。
702、第一网元根据用户的业务需求信息以及第二网元的无线网络资源确定第三QoS参数。
或者,第一网元可以根据用户的业务需求信息、用户的属性信息以及第二网元的无线网络资源确定第三QoS参数。
示例性的,第一无线接入控制器可以根据user priority、SPID、highpriority access、media type、bandwidth requirements以及可用的无线网络资源数据等信息,利用AI/ML的方法确定新的第三QoS参数,或者更新QoS profile。
703、第一网元将第三QoS参数发送给第二网元。
第一无线接入控制器可以将第三QoS参数返回给AN网元(CU-CP),同时还可以将UE的标识和QFI等信息返回给AN网元。
704、参见上述步骤609-613。
不同的是,将第一QoS参数更新为第三QoS参数。
与上述步骤609-613类似的,更新得到的第三QoS参数也需要通知给SMF,AN网元还需要根据第三QoS参数进行资源分配。
由此,当AN网元发起QoS参数更新请求时,AN网元无需和核心网进行交互,第一无线接入控制器可以根据网络状态及时调整QoS参数,这样,一方面可以及时响应网络状态的变化,另一方面,还可以减少AN侧和核心网的信令交互。
实施例四
由于用户的业务需求信息发生改变的可能性并不大,那么对于业务需求信息,QoS管理功能组件可以通过一次流程能够获得这部分信息即可,不需要在相同业务的所有用户的PDU session建立流程中都传递业务需求信息,从而造成接口资源的大量消耗,因此,本申请提出一种方案,该方案在QoS管理策略部署安装完成后,QoS管理功能组件可以通过AN网元直接向核心网请求所需的业务需求信息,该步骤不依赖于特定UE的PDU会话建立流程。
该方案与实施例一的区别主要在于业务需求信息的数据获取方式不同,且由于数据获取方式的变化,从而导致PDU session建立的方案与实施例二的方案稍有差异,可以参考图8示出的流程示意图。
801、参考实施例一中的步骤501-505。
802、第一网元根据QoS管理策略信息确定数据请求消息,数据请求消息包括请求的数据类型和数据上报方式,数据类型包括无线网络资源,数据请求消息还包括业务的标识。
与步骤506中的数据请求消息不同的是,步骤802中的数据请求消息还包括业务的标识,或者说业务的对象(scope),其取值可以是5QI的业务的标识。数据类型和数据上报方式可以参见步骤506中的说明。
第一网元向核心网网元请求业务需求信息,可以有以下两种方案:
方案一,无线接入控制器平台功能通过AN网元(CU-CP)间接向SMF(或AMF)请求获取业务需求信息时,步骤802之后还可以包括:
803a、第一网元向第二网元发送数据请求消息。
AN网元可以根据数据请求消息中的数据类型和数据上报方式收集无线网络资源的状态信息。但是对于业务需求信息AN网元还需要向核心网网元请求,因此,还包括:
804a、第二网元向AMF/SMF发送请求业务需求信息的数据请求消息。
这里的数据请求消息包括业务的标识,以得到业务的标识对应的业务需求信息。
805a、AMF/SMF向PCF发送请求业务需求信息的数据请求消息。
806a、PCF向AMF/SMF发送请求业务需求信息的数据请求响应消息。
数据请求响应消息中包括请求的业务需求信息。
807a、AMF/SMF向第二网元发送业务需求信息。
SMF可以向CU-CP发送业务需求信息。
808a、第二网元向第一网元发送业务需求信息。
809a、参见上述步骤507。
方案二,若无线接入控制器平台功能与核心网网元AMF之间有接口连接,则无线接入控制器平台功能可直接向核心网网元AMF/SMF请求获取业务需求信息,则步骤802之后还可以包括:
803b、第一网元通过与AMF/SMF之间的接口向SMF发送数据请求消息。
数据请求消息用于请求业务需求信息和AN网元的无线网络资源的状态信息。
804b、SMF/AMF向PCF请求数据请求消息中请求的业务需求信息。
805b、PCF向SMF/AMF发送数据请求响应消息,数据请求响应消息包括业务需求信息。
806b、SMF/AMF向第一网元发送业务需求信息。
SMF/AMF可以通过与AMF之间的接口上报业务需求信息给无线接入控制器平台功能。
807b、参见上述步骤507。
这样,第一无线接入控制器不仅可以收集到AN网元的无线网络资源的状态信息,还可以收集到业务需求信息,不依赖于UE的PDU会话建立流程,减少接口的资源的消耗。
由于数据请求方式的变化,从而导致PDU session建立的方案与实施例二的方案稍有差异,主要体现在AN网元转发UE的PDU session establishment NAS请求时无需请求相应的业务数据,且AN网元和核心网AMF/SMF之间的接口不需要传递业务数据信息,其实现方式可以参见图9示出的流程描述,该过程可以包括:
901、UE通过第二网元向SMF/AMF发送第一会话建立请求,第一会话建立请求包括UE的标识和请求的业务类型等信息。
第一会话建立请求可以是PDU session establishment NAS请求。
902、SMF向PCF发送策略请求消息,以请求UE请求的QoS管理策略。
903、PCF向SMF发送策略响应消息,策略响应消息包括UE请求的QoS管理策略。
904、SMF通过AMF向第二网元发送第三会话建立请求,第三会话建立请求包括第二QoS参数、用户的属性信息以及业务需求信息。
第三会话建立请求可以是N2 PDU session request消息,N2 PDU session request消息包括SMF发送给AN网元的第二QoS参数以及用户的属性信息等。即与上述步骤605不同的是,这里的N2 PDU session request消息不携带业务需求信息,也省略了上述步骤602-604。
905、第二网元向第一网元发送QoS参数请求,QoS参数请求用于请求QoS参数。
与步骤606不同的是,QoS参数请求不包括业务需求信息。
906、参见上述步骤607-613。
这样,通过实施例四,第一无线接入控制器通过AN网元和N2接口间接从核心网获取业务需求信息,这样对目前5G网络的PDU session establishment方案影响较小。
实施例五
实施例五的方案描述的也是QoS策略配置和数据请求流程,该实施例中,业务需求信息的请求可以通过管理面一次性获取,即OAM接收到策略部署请求后,可以通过管理接口发起向AF获取业务需求信息的请求,当收到AF的返回数据时,OAM可以将返回的数据发送给第二无线接入控制器,第二无线接入控制器再通过A接口将数据发送给第一无线接入控制器,这样可以减少控制面的信令交互,节约网络接口的资源。图10为一种QoS策略配置和数据请求流程的示意图,该流程包括:
101、参见步骤501-505。
102、OAM向AF发送数据收集请求,数据收集请求包括请求的数据类型和业务 的标识。
这里的数据类型指示业务的标识(5QI group)对应的业务需求信息。
103、AF向OAM发送数据收集响应,数据收集响应包括业务的标识对应的业务需求信息。
即数据收集响应中可以包括5QI group、媒体类型和带宽需求等信息。
104、OAM将数据收集响应中的信息发送给第二无线接入控制器。
105、第二无线接入控制器将数据收集响应中的信息发送给第一网元。
第二无线接入控制器可以通过A接口将数据收集响应中的信息发送给第一无线接入控制器,第一无线接入控制器再将数据收集响应中的信息发送给QoS管理功能组件。
106、参见步骤506-507。
通过实施例五的方案,由于数据获取方式的变化,从而导致PDU session建立的方案与实施例二的方案稍有差异,实施例五中的PDU Session建立流程描述的方案和实施例四的PDU session建立流程的方案相同,本实施例五就不做重复描述,可参考实施例四的相关步骤描述。
需要说明的是,若在运营商网络中,AN网络的OAM和核心网的OAM是各地独立的,那么实施例五的方案中,若OAM无法直接和核心网的AF进行交互,则OAM(AN的OAM)可通过先与核心网对应的OAM(核心网的OAM)进行数据请求,再由核心网的OAM向AF请求相应的数据,最后通过核心网的OAM间接将业务信息返回给AN的OAM。
由此,实施例五主要是AOM通过管理接口从AF获取的业务需求信息,进而可以减少控制面信令的交互,节省网络接口的资源。
以上结合图1-图10详细说明了本申请实施例的通信方法。以下结合图11至图13详细说明本申请实施例的通信装置,比如第一网元第一无线接入控制器和第二网元AN网元,或,用于网元的装置(比如处理器,电路或芯片)。
可以理解的是,为了实现上述功能,网元包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对网元进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中涉及的第一网元1100的一种可能的组成示意图,第一网元1100可以是第一无线接入控制器,如图11所示,该第一网元1100可以包括:收发单元1101和处理单元1102。
其中,收发单元1101可以用于支持第一网元1100执行上述步骤505、步骤506、步骤507、步骤509、606、608、703、803a、803b和806b等,和/或用于本文所描述 的技术的其他过程。
处理单元1102可以用于支持第一网元1100执行上述步骤502、步骤607、步骤702和步骤802等,和/或用于本文所描述的技术的其他过程。
第一网元1100还可以包括存储单元1103,用于存储执行第一网元1100的方法步骤对应的代码。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的第一网元1100,用于执行QoS管理方法,因此可以达到与上述实现方法相同的效果。
在采用集成的单元的情况下,第一网元1100可以包括处理模块、存储模块和通信模块。其中,处理模块可以用于对第一网元1100的动作进行控制管理,例如,可以用于支持第一网元1100执行上述处理单元1102执行的步骤。存储模块可以用于支持第一网元1100存储程序代码和数据等。通信模块,可以用于支持第一网元1100与其他设备的通信,例如与第二网元AN的通信。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其他电子设备交互的设备。
图12是本申请实施例提供的一种网络设备的结构示意图,如可以为上述第二网元,AN网元的结构示意图,AN网元可以是基站。如图12所示,该基站可应用于如图3或图4的一项或多项所示的系统中,执行上述方法实施例中第二网元的功能。基站120可包括一个或多个DU 1201和一个或多个CU 1202。CU1202可以与NG core(下一代核心网,NC)通信。所述DU 1201可以包括至少一个射频单元12012,至少一个处理器12013和至少一个存储器12014。所述DU1201还可以包括至少一个天线12011。所述DU 1201部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1202可以包括至少一个处理器12022和至少一个存储器12021。CU1202和DU1201之间可以通过接口进行通信,其中,控制面(control plan)接口可以为F1-C,用户面(user plan)接口可以为F1-U。
所述CU1202部分主要用于进行基带处理,对基站进行控制等。所述DU 1201与CU 1202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU1202可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(media access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、介质 接入控制(medium access control,MAC)和物理(physical,PHY)层的功能。
此外,可选的(图中未示),基站120可以包括一个或多个天线,一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器和至少一个存储器,至少一个天线和至少一个射频单元可以集成在一个天线装置中,CU可以包括至少一个处理器和至少一个存储器。
在一个实例中,所述CU1202可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器12021和处理器12022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1201可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器12014和处理器12013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图13给出了一种通信装置130的结构示意图。通信装置130可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置130可以是芯片,网络设备(如基站),或,第一无线接入控制器。
所述通信装置130包括一个或多个处理器1301。所述处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于网络设备(比如基站)。又如,装置可以为或网络设备(比如基站),所述收发单元可以为收发器,射频芯片等。
所述通信装置130包括一个或多个所述处理器1301,所述一个或多个处理器1301可实现图5-图10所示的实施例中第二网元或者第一无线接入控制器的方法。
可选的,一种设计中,处理器1301也可以包括指令1303,所述指令可以在所述处理器上被运行,使得所述通信装置130执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置130也可以包括电路,所述电路可以实现前述方法实施例中网络设备或第一无线接入控制器的功能。
在又一种可能的设计中所述通信装置130中可以包括一个或多个存储器1302,其上存有指令1304,所述指令可在所述处理器上被运行,使得所述通信装置130执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1302可以存储上述实施例中所描述的移动有效区域,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置130还可以包括收发单元1305以及天线 1306,或者,包括通信接口。所述收发单元1305可以称为收发机、收发电路、或者收发器等,用于通过天线1306实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和网络设备,或是,网络设备和网络设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
所述处理器1301可以称为处理单元,对装置(比如第一无线接入控制器或者基站)进行控制。
此外,由于本申请实施例中所描述收发单元1305进行的发送或接收是在处理单元(处理器1301)的控制之下,因此,本申请实施例中也可以将发送或接收的动作描述为处理单元(处理器1301)执行的,并不影响本领域技术人员对方案的理解。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘 等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种服务质量QoS管理方法,其特征在于,包括:
    第一网元接收第二网元发送的QoS参数请求,所述QoS参数请求用于请求QoS参数;
    所述第一网元根据用户的业务需求信息以及所述第二网元的无线网络资源确定第一QoS参数;
    所述第一网元向所述第二网元发送所述第一QoS参数,使所述第二网元根据所述第一QoS参数分配无线网络资源。
  2. 根据权利要求1所述的方法,其特征在于,所述业务需求信息包括业务的媒体类型和带宽需求中的至少一个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述QoS参数请求包括所述用户的业务需求信息以及所述第二网元的无线网络资源;
    所述QoS参数请求还包括所述用户的属性信息,所述用户的属性信息包括以下信息中的至少一个:所述用户的优先级、签约用户文件标识SPID以及所述用户所在的终端设备为高优先级接入的指示;
    所述第一网元根据用户的业务需求信息以及所述第二网元的无线网络资源确定第一QoS参数包括:所述第一网元根据所述用户的业务需求信息、所述用户的属性信息以及所述第二网元的无线网络资源确定所述第一QoS参数。
  4. 根据权利要求1或2所述的方法,其特征在于,在所述第一网元接收所述第二网元发送的QoS参数请求之前,所述方法还包括:
    所述第一网元接收管理网元OAM发送的所述业务需求信息,所述业务需求信息是所述OAM向应用功能AF网元请求得到的。
  5. 根据权利要求3所述的方法,其特征在于,所述QoS参数请求还包括核心网根据用户请求的业务类型配置的第二QoS参数;
    在所述第一网元根据所述用户的业务需求信息以及所述第二网元的无线网络资源确定第一QoS参数之前,所述方法还包括:
    所述第一网元确定所述第二QoS参数与所述第二网元的无线网络资源不匹配。
  6. 根据权利要求1所述的方法,其特征在于,在所述第一网元接收所述第二网元发送的QoS参数请求之前,所述方法还包括:
    所述第一网元接收管理网元OAM发送的QoS管理策略信息,所述QoS管理策略信息包括策略类型和策略的应用对象;所述策略类型包括无线网络资源与QoS参数的对应关系;所述策略的应用对象包括QoS管理策略信息应用的业务类型;
    所述第一网元根据所述QoS管理策略信息确定待请求的数据类型和数据上报方式,并向所述第二网元发送数据请求消息,所述数据请求消息包括所述待请求的数据类型和所述数据上报方式,所述数据类型包括无线网络资源;
    所述第一网元接收所述第二网元根据所述数据上报方式获取的无线网络资源的状态数据。
  7. 一种服务质量QoS管理方法,其特征在于,包括:
    第二网元向第一网元发送QoS参数请求,所述QoS参数请求用于请求QoS参数;
    所述第二网元接收所述第一网元发送的第一QoS参数,所述第一QoS参数是所述第一网元根据用户的业务需求信息以及所述第二网元的无线网络资源确定的;
    所述第二网元根据所述第一QoS参数分配无线网络资源。
  8. 根据权利要求7所述的方法,其特征在于,所述业务需求信息包括业务的媒体类型和带宽需求中的至少一个。
  9. 根据权利要求7或8所述的方法,其特征在于,所述QoS参数请求包括所述用户的业务需求信息以及所述第二网元的无线网络资源;
    所述QoS参数请求还包括核心网配置的第二QoS参数和所述用户的属性信息,所述用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及所述用户所在的终端设备为高优先级接入的指示;
    所述第一QoS参数是所述第一网元根据用户的业务需求信息以及所述第二网元的无线网络资源确定的包括:所述第一QoS参数是所述第一网元根据所述用户的业务需求信息、所述用户的业务属性以及所述第二网元的无线网络资源确定的。
  10. 根据权利要求7所述的方法,其特征在于,在所述第二网元向第一网元发送QoS参数请求之前,所述方法还包括:
    所述第二网元接收所述第一网元发送的第一数据请求消息,所述第一数据请求消息包括请求的数据类型和数据上报方式,所述数据类型包括无线网络资源;
    所述第二网元根据所述数据上报方式向所述第一网元发送无线网络资源的状态数据。
  11. 根据权利要求10所述的方法,其特征在于,所述第一数据请求消息还包括业务的标识;
    在所述第二网元向第一网元发送QoS参数请求之前,所述方法还包括:
    所述第二网元向核心网网元发送第二数据请求消息,所述第二数据请求消息包括所述业务的标识,所述第二数据请求消息用于向所述核心网网元请求所述业务的标识对应的所述业务需求信息;
    所述第二网元接收所述核心网网元发送的所述业务需求信息。
  12. 一种第一网元,其特征在于,包括:
    收发单元,用于接收第二网元发送的QoS参数请求,所述QoS参数请求用于请求QoS参数;
    处理单元,用于根据用户的业务需求信息以及所述第二网元的无线网络资源确定第一QoS参数;
    所述收发单元,还用于向所述第二网元发送所述第一QoS参数,使所述第二网元根据所述第一QoS参数分配无线网络资源。
  13. 根据权利要求12所述的第一网元,其特征在于,所述业务需求信息包括业务的媒体类型和带宽需求中的至少一个;
    所述处理单元,用于根据用户的业务需求信息、所述用户的属性信息以及所述第二网元的无线网络资源确定第一QoS参数;所述用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及所述用户所在的终端设备为高优先级接入的指示。
  14. 根据权利要求12或13所述的第一网元,其特征在于,所述QoS参数请求包括所述用户的业务需求信息以及所述第二网元的无线网络资源;所述QoS参数请求还可以包括用户的属性信息;
    所述QoS参数请求还包括核心网根据用户请求的业务类型配置的第二QoS参数;
    在所述第一网元根据所述用户的业务需求信息以及所述第二网元的无线网络资源确定第一QoS参数之前,所述方法还包括:
    所述第一网元确定所述第二QoS参数与所述第二网元的无线网络资源不匹配。
  15. 根据权利要求12或13所述的第一网元,其特征在于,所述收发单元还用于:接收管理网元OAM发送的所述业务需求信息,所述业务需求信息是所述OAM向应用功能AF网元请求得到的。
  16. 根据权利要求12所述的第一网元,其特征在于,所述收发单元还用于:接收管理网元OAM发送的QoS管理策略信息,所述QoS管理策略信息包括策略类型和策略的应用对象;所述策略类型包括无线网络资源与QoS参数的对应关系;所述策略的应用对象包括QoS管理策略信息应用的业务类型;
    根据所述QoS管理策略信息确定待请求的数据类型和数据上报方式,并向所述第二网元发送数据请求消息,所述数据请求消息包括所述待请求的数据类型和所述数据上报方式,所述数据类型包括无线网络资源;
    接收所述第二网元根据所述数据上报方式获取的无线网络资源的状态数据。
  17. 一种第二网元,其特征在于,包括:
    收发单元,用于向第一网元发送QoS参数请求,所述QoS参数请求用于请求QoS参数;
    所述收发单元,还用于接收所述第一网元发送的第一QoS参数,所述第一QoS参数是所述第一网元根据所述用户的业务需求信息以及所述第二网元的无线网络资源确定的;
    处理单元,用于根据所述第一QoS参数分配无线网络资源。
  18. 根据权利要求17所述的第二网元,其特征在于,业务需求信息包括业务的媒体类型和带宽需求中的至少一个;
    所述第一QoS参数是所述第一网元根据所述用户的业务需求信息以及所述第二网元的无线网络资源确定的包括:所述第一QoS参数是所述第一网元根据所述用户的业务需求信息、所述用户的属性信息以及所述第二网元的无线网络资源确定的;
    所述用户的属性信息包括以下信息中的至少一个:用户的优先级、签约用户文件标识SPID以及所述用户所在的终端设备为高优先级接入的指示;
    所述QoS参数请求包括所述用户的业务需求信息以及所述第二网元的无线网络资源;所述所述QoS参数请求还包括所述用户的属性信息;
    所述QoS参数请求还包括核心网配置的第二QoS参数。
  19. 根据权利要求17所述的第二网元,其特征在于,所述收发单元,还用于:接收所述第一网元发送的第一数据请求消息,所述第一数据请求消息包括请求的数据类型和数据上报方式,所述数据类型包括无线网络资源;根据所述数据上报方式向所述第一网元发送无线网络资源的状态数据;
    所述第一数据请求消息还包括业务的标识;所述收发单元,还用于:向核心网网元发送第二数据请求消息,所述第二数据请求消息包括所述业务的标识,所述第二数据请求消息用于向所述核心网网元请求所述业务的标识对应的所述业务需求信息;接收所述核心网网元发送的所述业务需求信息。
  20. 一种计算机可读存储介质,其特征在于,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述权利要求1-11中的任一项所述的方法。
PCT/CN2021/094928 2020-05-30 2021-05-20 一种服务质量管理方法和装置 WO2021244302A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21818100.6A EP4152814A4 (en) 2020-05-30 2021-05-20 METHOD AND APPARATUS FOR MANAGING THE QUALITY OF SERVICES
US18/071,100 US20230108693A1 (en) 2020-05-30 2022-11-29 Quality of service management method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010480754.7 2020-05-30
CN202010480754.7A CN113747513A (zh) 2020-05-30 2020-05-30 一种服务质量管理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/071,100 Continuation US20230108693A1 (en) 2020-05-30 2022-11-29 Quality of service management method and apparatus

Publications (1)

Publication Number Publication Date
WO2021244302A1 true WO2021244302A1 (zh) 2021-12-09

Family

ID=78727757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094928 WO2021244302A1 (zh) 2020-05-30 2021-05-20 一种服务质量管理方法和装置

Country Status (4)

Country Link
US (1) US20230108693A1 (zh)
EP (1) EP4152814A4 (zh)
CN (1) CN113747513A (zh)
WO (1) WO2021244302A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423029B (zh) * 2022-02-08 2023-12-19 深圳艾灵网络有限公司 服务质量参数调整方法、设备及存储介质
CN116744373A (zh) * 2022-03-03 2023-09-12 维沃移动通信有限公司 感知QoS的实现方法、装置及第一设备
CN115086940B (zh) * 2022-05-13 2023-06-06 广州爱浦路网络技术有限公司 基于5G的QoS调整方法、系统、装置及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547610A (zh) * 2010-12-31 2012-07-04 华为技术有限公司 消息处理方法、设备及系统
CN102711192A (zh) * 2012-04-25 2012-10-03 中国联合网络通信集团有限公司 网络服务质量处理方法、装置和通信系统
US20130326061A1 (en) * 2011-02-14 2013-12-05 Alcatel Lucent Method and apparatus of determining policy and charging rules based on network resource utilization information
CN104507126A (zh) * 2014-11-21 2015-04-08 中兴通讯股份有限公司 一种实现无线网络QoS管理的方法及装置
CN105493564A (zh) * 2014-01-14 2016-04-13 华为技术有限公司 一种服务质量的协商方法、设备及系统
CN106792923A (zh) * 2017-02-09 2017-05-31 华为软件技术有限公司 一种配置QoS策略的方法及装置
CN109526029A (zh) * 2017-09-20 2019-03-26 中国移动通信有限公司研究院 一种业务优化方法、介质、相关装置和设备
CN110661837A (zh) * 2018-06-30 2020-01-07 华为技术有限公司 服务质量的控制方法和装置
US20200068446A1 (en) * 2018-08-21 2020-02-27 T-Mobile Usa, Inc. Dynamic Quality of Service in Wireless Networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI109072B (fi) * 1999-06-16 2002-05-15 Nokia Corp Menetelmä ja järjestely kanavakoodaus- ja lomitusmenettelyn valitsemiseksi eräissä pakettidatayhteyksissä
CN110167068A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种处理服务质量QoS参数的方法、网元、系统及存储介质
CN110166377A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种资源分配方法和装置
CN109451534B (zh) * 2018-12-17 2021-10-29 东南大学 一种用于5G系统会话管理中QoS流的动态控制方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547610A (zh) * 2010-12-31 2012-07-04 华为技术有限公司 消息处理方法、设备及系统
US20130326061A1 (en) * 2011-02-14 2013-12-05 Alcatel Lucent Method and apparatus of determining policy and charging rules based on network resource utilization information
CN102711192A (zh) * 2012-04-25 2012-10-03 中国联合网络通信集团有限公司 网络服务质量处理方法、装置和通信系统
CN105493564A (zh) * 2014-01-14 2016-04-13 华为技术有限公司 一种服务质量的协商方法、设备及系统
CN104507126A (zh) * 2014-11-21 2015-04-08 中兴通讯股份有限公司 一种实现无线网络QoS管理的方法及装置
CN106792923A (zh) * 2017-02-09 2017-05-31 华为软件技术有限公司 一种配置QoS策略的方法及装置
CN109526029A (zh) * 2017-09-20 2019-03-26 中国移动通信有限公司研究院 一种业务优化方法、介质、相关装置和设备
CN110661837A (zh) * 2018-06-30 2020-01-07 华为技术有限公司 服务质量的控制方法和装置
US20200068446A1 (en) * 2018-08-21 2020-02-27 T-Mobile Usa, Inc. Dynamic Quality of Service in Wireless Networks

Also Published As

Publication number Publication date
EP4152814A4 (en) 2023-11-01
CN113747513A (zh) 2021-12-03
US20230108693A1 (en) 2023-04-06
EP4152814A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021244302A1 (zh) 一种服务质量管理方法和装置
US10986540B2 (en) Network slice provisioning and operation
US11606839B2 (en) Method, apparatus, system, and device for managing a session corresponding to multiple session management function network elements
CN107889169B (zh) 网络切片的建立方法和装置
US20210274418A1 (en) Information Transmission Method and Apparatus
US20220201539A1 (en) Method for obtaining data radio bearer identifier and base station
KR20190120345A (ko) 서비스 품질 제어 방법 및 그 장치, smf, upf, ue, pcf 및 an
US11792678B2 (en) Quality of service QOS parameter processing method and network element, system, and storage medium
WO2020155940A1 (zh) 一种通信方法及通信装置
KR20200009132A (ko) 무선 통신 시스템에서 연결 관리를 위한 장치 및 방법
CN113873478B (zh) 通信方法及装置
CN107027151B (zh) 确保服务质量的方法及装置
CN113556785A (zh) 一种业务质量流的控制方法及相关设备
US20230300210A1 (en) Computing aware-session management method and communication apparatus
WO2018233451A1 (zh) 通信方法、装置和系统
WO2023104085A1 (zh) 资源调整方法、通信节点、通信装置、通信系统和服务器
CN114731723A (zh) 一种通信方法及装置
WO2015113285A1 (zh) 通信网络中的控制方法、集中控制器及无线通信网络系统
WO2022033393A1 (zh) 业务流量分流的方法和装置
WO2020191684A1 (zh) QoS规则的优先级处理方法、设备及存储介质
US11265931B2 (en) Method and device for establishing connection
CN100579070C (zh) 一种实现网络接入的方法及系统
WO2019076301A1 (zh) 多集中单元融合方法、设备及系统
WO2017080515A1 (zh) 应用驱动网络的通信系统、组网方法及控制器
WO2023030328A1 (zh) 无线网络服务的配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818100

Country of ref document: EP

Effective date: 20221213

NENP Non-entry into the national phase

Ref country code: DE