WO2021244076A1 - 一种陶瓷介质滤波器 - Google Patents

一种陶瓷介质滤波器 Download PDF

Info

Publication number
WO2021244076A1
WO2021244076A1 PCT/CN2021/078048 CN2021078048W WO2021244076A1 WO 2021244076 A1 WO2021244076 A1 WO 2021244076A1 CN 2021078048 W CN2021078048 W CN 2021078048W WO 2021244076 A1 WO2021244076 A1 WO 2021244076A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
sub
area
board
Prior art date
Application number
PCT/CN2021/078048
Other languages
English (en)
French (fr)
Inventor
伍隽
闵祥会
李荣浩
潘彦龙
莫辉海
蒋匆聪
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Publication of WO2021244076A1 publication Critical patent/WO2021244076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability

Definitions

  • the utility model relates to the technical field of communication equipment, in particular to a ceramic dielectric filter.
  • the existing ceramic dielectric filter includes a filter body 1 and a PCB board 2.
  • the signal transmission surface 13 of the filter body is provided with an input terminal 11 and an output terminal for connecting signal input and output devices. 12;
  • the PCB board is used for welding the signal transmission surface and the communication system board and then grounded, and the PCB board is staggered with the input terminal and the output terminal.
  • the welding of the filter body and the PCB board is usually achieved by using tin.
  • the purpose of the invention is to provide a ceramic dielectric filter, which can help reduce the stress on the PCB board.
  • a ceramic dielectric filter includes a filter body and a PCB board; the signal transmission surface of the filter body is provided with an input terminal and an output terminal for connecting a signal input and output device; the PCB board is used for welding the signal The transmission surface and the communication system board are grounded behind, the PCB board is staggered from the input terminal and the output terminal, and the PCB board includes at least two sub-boards, and the sub-boards are arranged apart from each other.
  • the PCB board includes a first metal layer, a second metal layer, and a dielectric layer located between the first metal layer and the second metal layer; the first metal layer is used for welding the signal transmission On the other hand, the second metal layer is used for welding the communication system board.
  • the PCB board is provided with metal vias for conducting the first metal layer and the second metal layer.
  • a first notch and a second notch are provided on the first sub-board; the input terminal and the output terminal are respectively located in the first notch and the second notch.
  • the first notch and the second notch respectively have an arc-shaped structure.
  • the arc-shaped structure is a superior arc-shaped structure.
  • a first through hole corresponding to the input terminal and a second through hole corresponding to the output terminal are provided on the first sub-board; the input terminal and the output terminal are respectively located in the first through hole and In the second through hole.
  • the first sub-board is further provided with a first adjustment impedance area corresponding to the input end, and a second adjustment impedance area corresponding to the output end; the first through hole is located at the The first impedance adjustment zone forms a first annular impedance adjustment zone with the first impedance adjustment zone, and the second through hole is located in the second impedance adjustment zone and forms a second impedance adjustment zone with the second impedance adjustment zone.
  • the input end includes an input metal covering area and a ceramic input medium area provided on the filter body; the input metal covering area is located in the ceramic input medium area and in the ceramic input medium area
  • An annular input medium belt is formed; the input metal covering area is facing the first through hole, and the outer diameter of the input metal covering area matches the outer diameter of the first through hole; the first annular impedance
  • the bandwidth of the adjustment band matches the bandwidth of the annular input medium band;
  • the output end includes an output metal coverage area and a ceramic output medium area provided on the filter body; the output metal coverage area is located in the ceramic output medium
  • the diameter is matched; the bandwidth of the second loop impedance adjustment band matches the bandwidth of the loop output medium band.
  • the first impedance-adjusting area is formed by etching the first metal layer area on the first sub-board corresponding to the input terminal and then barely leaking the corresponding dielectric layer; the second The impedance-adjusting area is formed by etching the first metal layer area on the first sub-board corresponding to the position of the output terminal and then barely leaking the corresponding dielectric layer.
  • first through hole and the second through hole are both circular through holes, and the input metal coverage area and the output metal coverage area are both circular.
  • the first ring-shaped impedance adjustment belt and the ring-shaped input medium belt are both in a circular ring shape
  • the second ring-shaped impedance adjustment belt and the ring-shaped output medium belt are both in a circular ring shape.
  • the number of the sub-boards is two or three or four.
  • the PCB board is grounded after connecting the signal transmission surface and the communication system board through solder joints.
  • the adjacent sub-boards are not in contact with each other, so different sub-boards can be made.
  • the restrictions on the deformation of the sub-boards caused by the solder joints on the board cannot be transferred to each other, so that the stress on the sub-boards cannot be transferred to each other; moreover, because the sub-boards are separated from each other, the boundary of each sub-board is Free, so that the stress on each sub-board can be completely released, and the calculated stress value is close to zero.
  • the PCB board with more than two sub-boards used in the present invention greatly reduces the overall stress and effectively reduces The probability of ceramic cracking, solder joint cracking, and copper foil falling off on the PCB board of the dielectric filter is reduced.
  • the PCB board is divided into smaller sub-board structures, the overall material used for the PCB board is reduced, thereby improving the material utilization rate and effectively reducing the cost.
  • the PCB board is provided with metal through holes for conducting the first metal layer and the second metal layer. Through the metal through holes, the filter body and the communication system board can share the same ground. It helps to improve the overall grounding performance of the ceramic dielectric filter of the present invention.
  • the first sub-board is provided with a first notch corresponding to the input terminal and a second notch corresponding to the output terminal; the input terminal and the output terminal are respectively located at the first notch and the second notch Among them, the first notch and the second notch respectively have an arc-shaped structure, and the arc-shaped structure is a superior arc structure, so that the wire can be better fixed when the wire is connected to the input end and the output end, and the wire is prevented from shifting. This phenomenon ensures the electrical connection performance of the ceramic dielectric filter of the present invention.
  • the present utility model is provided with a first through hole corresponding to the input end and a second through hole corresponding to the output end on the first sub-board, which can facilitate the input end and output end of the filter body to pass through the first through hole
  • One through hole and the second through hole are used to connect the wires to ensure the electrical performance of the ceramic dielectric filter of the present invention.
  • the first through hole and the first impedance adjustment zone are used to form a first annular impedance adjustment zone, and the second through hole and the second impedance adjustment zone are used to form a second annular impedance adjustment zone, the bandwidths of which correspond to the matched filter body respectively.
  • the bandwidth of both the annular input medium belt and the annular output medium belt on the upper side thereby forming a capacitance between the first annular impedance adjustment belt and the annular input medium belt, and between the second annular impedance adjustment belt and the annular output medium belt;
  • FIG. 1 is a schematic diagram of the structure of a conventional ceramic dielectric filter.
  • Figure 2 is a schematic diagram of the structure of the first embodiment of the ceramic dielectric filter of the present invention.
  • Fig. 3 is a schematic structural diagram of a second embodiment of the ceramic dielectric filter of the present invention.
  • Fig. 4 is a schematic structural diagram of a third embodiment of the ceramic dielectric filter of the present invention.
  • Fig. 5 is a schematic structural diagram of a fifth embodiment of a ceramic dielectric filter of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the filter body of FIG. 5.
  • Filter body 11, input end; 111, input metal coverage area; 112, circular input medium belt; 12, output end; 121, output metal coverage area; 122, circular output medium belt; 13, signal transmission surface; 2. PCB board; 21, the first sub-board; 211, the first notch; 212, the second notch; 22, the second sub-board; 23, the third sub-board; 24, the fourth sub-board; 25, the metal guide 31, the first through hole; 32, the second through hole; 41, the first annular impedance adjustment band; 42, the second annular impedance adjustment band.
  • Figure 2 is the first specific implementation of the ceramic dielectric filter of the utility model, which includes a filter body 1 and a PCB board 2; the signal transmission surface 13 of the filter body is provided with an input for connecting a signal input and output device Terminal 11 and output terminal 12; the PCB board is used for welding the signal transmission surface and the communication system board (not shown) and then grounded, the PCB board and the input terminal and output terminal are staggered, the PCB board 2 includes two sub-boards, and the sub-boards are spaced apart from each other.
  • the solder joints on different sub-boards can limit the deformation of the sub-boards Can not be transferred to each other, so that the stress on the sub-boards cannot be transferred to each other; Moreover, because the sub-boards are arranged apart from each other, the boundary of each sub-board is free, so that the stress on each sub-board It can be completely released, and the calculated stress value is close to 0.
  • the PCB board with more than two sub-boards used in the present invention greatly reduces the overall stress and effectively reduces The probability of ceramic cracking, solder joint cracking, and copper foil falling off on the PCB board of the dielectric filter is reduced.
  • the PCB board is divided into smaller sub-board structures, the overall material consumption of the PCB board is reduced, which can improve the material utilization rate and effectively reduce the cost.
  • the PCB board is grounded after connecting the signal transmission surface and the communication system board through solder joints.
  • the PCB board includes a first metal layer, a second metal layer, and a dielectric layer located between the first metal layer and the second metal layer; the first metal layer is used for welding the signal transmission
  • the second metal layer is used for welding the communication system board.
  • the PCB board is provided with a metal through hole 25 for conducting the first metal layer and the second metal layer, which can make the filter body and the communication system board share the same ground, which is helpful to improve the ceramic medium of the present invention.
  • the overall grounding performance of the filter due to the existence of the metal vias, the stress on the PCB board when it is connected to the filter body can also be further reduced.
  • a first notch 211 corresponding to the input terminal and a second notch 212 corresponding to the output terminal are provided on the first sub-board 21;
  • the terminal and the output terminal are respectively located in the first gap and the second gap.
  • the input end and the output end are respectively connected to wires through the first notch and the second notch and lead the wires to the signal input and output device.
  • the first notch and the second notch respectively have an arc-shaped structure, so as to better match the shapes of the input end and the output end.
  • the arc structure is a superior arc structure, so that the wires can be better fixed when the input end and the output end are connected to the wires, prevent the wires from shifting, and ensure the electrical connection performance of the ceramic dielectric filter of the present invention.
  • the second sub-board 22 in this embodiment, has a strip-shaped structure, of course, it can also be a structure of other shapes, and the user can set the specific shape of the sub-board according to actual needs.
  • FIG. 3 is a second specific embodiment of the ceramic dielectric filter of the present invention.
  • the PCB board 2 has three sub-boards.
  • the structure of the first sub-board 21 is the same as the structure of the first sub-board 21 in the first specific embodiment.
  • the second sub-board 22 and the third sub-board 23 have a square structure in this embodiment.
  • the PCB board of the ceramic dielectric filter in this embodiment uses 3 There are three sub-boards, and the centers of the three sub-boards are connected to form a triangle, thereby improving the installation stability of the filter body on the communication system board.
  • FIG. 4 is a third specific implementation manner of the ceramic dielectric filter of this embodiment.
  • the PCB board has 4 sub-boards.
  • the structure of the first sub-board 21 is the same as the structure of the first sub-board 21 in the first specific embodiment.
  • the second sub-board 22, the third sub-board 23, and the fourth sub-board 24 have a square structure in this embodiment.
  • the centers of the first, second, and third sub-boards are connected to form a triangle, and the center of the fourth sub-board is located on the line connecting the centers of the second sub-board and the third sub-board, so relative to the front
  • FIGS 5 and 6 show the fourth specific embodiment of the ceramic dielectric filter of the present invention.
  • the difference from the first specific embodiment is:
  • the first sub-board is provided with a first through hole 31 and a first adjusting impedance area corresponding to the input terminal, and a second through hole 32 and a second adjusting impedance area corresponding to the output terminal are provided;
  • the first through hole is located in the first impedance-adjusting area and forms a first annular impedance adjustment band 41 with the first impedance-adjusting area, and the second through-hole is located in the second impedance-adjusting area and is connected to the
  • the second impedance adjustment zone forms a second annular impedance adjustment band 42;
  • the input end includes an input metal coverage area 111 and a ceramic input medium area provided on the filter body; the input metal coverage area is located in the ceramic input medium area
  • An annular input medium belt 112 is formed inside and in the ceramic input medium area; the input metal covering area faces the first through hole, and the outer diameter of the input metal covering area is the same as the outer diameter of the first through hole.
  • the bandwidth of the first annular impedance adjustment band matches the bandwidth of the annular input medium band
  • the output end includes an output metal covering area 121 and a ceramic output medium area provided on the filter body;
  • the output metal covering area is located in the ceramic output medium area and forms an annular output medium belt 122 with the ceramic output medium area;
  • the output metal covering area faces the second through hole, and the output metal covering area
  • the outer diameter of is matched with the outer diameter of the second through hole; the bandwidth of the second annular impedance adjustment band is matched with the bandwidth of the annular output medium belt.
  • the utility model uses a first through hole and a first impedance adjustment zone to form a first annular impedance adjustment band on a first sub-board, and uses a second through hole and a second impedance adjustment zone to form a second annular impedance adjustment band.
  • the bandwidths of the two correspond to the bandwidths of the ring-shaped input medium band and the ring-shaped output medium band on the body of the matched filter, respectively, so that between the first ring-shaped impedance adjustment band and the ring-shaped input medium band, and between the second ring-shaped impedance adjustment band and the Capacitors are formed between the ring-shaped output medium bands; by adjusting the bandwidth of the first ring-shaped impedance adjustment band and the ring-shaped input medium band, the impedance between the first sub-board and the input end of the filter body can be changed, and by adjusting the second The size of the bandwidth of the loop impedance adjustment belt and the loop output medium belt realizes the change of the impedance between the first sub-board and the output end of the filter body.
  • the specific impedance change principle is as follows:
  • the impedance formula between the first sub-board and the input terminal of the filter body, or the impedance formula between the first sub-board and the output terminal of the filter body is as follows:
  • ⁇ 0 is the vacuum dielectric constant, with a value of 8.854187817 ⁇ 10 -12 F/m
  • ⁇ r is the relative dielectric constant of dry air without carbon dioxide under standard atmospheric pressure, with a value of 1.00053.
  • d refers to the outer diameter of the input metal coverage area or the outer diameter of the first through hole
  • D refers to the first adjustable impedance area or ceramic input medium
  • the outer diameter of the zone, and Dd refers to the bandwidth of the first annular impedance adjustment zone or the bandwidth of the annular input medium zone.
  • d takes a fixed value, that is to say, when the outer diameter of the input metal coverage area and the outer diameter of the first through hole are the same constant, the size of D is changed, so that the outer diameter of the first adjustment impedance zone changes with The outer diameter of the ceramic input medium area changes synchronously (that is, the bandwidth of the first annular impedance adjustment band and the bandwidth of the annular input medium band are synchronously changed), so that the impedance between the first sub-board and the input end of the filter body Changes.
  • D takes a fixed value, that is, when the outer diameters of the first adjusting impedance zone and the ceramic input medium area are the same constant, change the size of d, so that the outer diameter of the first adjusting impedance zone changes with The outer diameter of the ceramic input medium area changes synchronously (that is, the bandwidth of the first annular impedance adjustment band and the bandwidth of the annular input medium band are synchronously changed), so that the impedance between the first sub-board and the input end of the filter body Changes.
  • d refers to the outer diameter of the output metal coverage area or the outer diameter of the second through hole
  • D refers to the second adjusted impedance area or The outer diameter of the ceramic output medium zone
  • Dd refers to the bandwidth of the second annular impedance adjustment zone or the bandwidth of the annular output medium zone.
  • d takes a fixed value, that is to say, when the outer diameter of the output metal coverage area and the outer diameter of the second through hole are the same constant, the size of D is changed, so that the outer diameter of the second adjusting impedance zone changes with The outer diameter of the ceramic output medium area changes synchronously (that is, the bandwidth of the second loop impedance adjustment band and the bandwidth of the loop output medium band are changed synchronously), so that the impedance between the first sub-board and the output terminal of the filter body Changes.
  • D takes a fixed value, that is, when the outer diameters of the second adjusting impedance zone and the ceramic output medium area are the same constant, change the size of d so that the outer diameter of the second adjusting impedance zone changes with The outer diameter of the ceramic output medium area changes synchronously (that is, the bandwidth of the second loop impedance adjustment band and the bandwidth of the loop output medium band are changed synchronously), so that the impedance between the first sub-board and the output terminal of the filter body Changes.
  • the first adjustment impedance zone is formed by etching the first metal layer area on the first sub-board corresponding to the input terminal and then barely leaking the corresponding dielectric layer;
  • the second adjustment The impedance area is formed by etching the first metal layer area on the first sub-board corresponding to the output terminal and then barely leaking the corresponding dielectric layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本实用新型公开了一种陶瓷介质滤波器,包括滤波器本体和PCB板;滤波器本体的信号传输面上设有用于连接信号输入输出装置的输入端和输出端;PCB板用于焊接信号传输面和通信系统板后接地,PCB板与输入端和输出端错开设置,PCB板包括至少两个子板,所述子板相互隔开设置,从而使子板之间所受到的应力作用无法进行相互传递,相对于现有的连接一整块PCB板结构的陶瓷介质滤波器,本实用新型所使用的PCB板所受的应力大幅度地减小了,从而有效地降低了介质滤波器的陶瓷开裂、焊点拉裂、以及PCB板上的铜箔脱落的几率。

Description

一种陶瓷介质滤波器 技术领域
本实用新型涉及通信设备技术领域,尤其涉及一种陶瓷介质滤波器。
背景技术
如图1所示,现有的陶瓷介质滤波器,包括滤波器本体1和PCB板2;所述滤波器本体的信号传输面13上设有用于连接信号输入输出装置的输入端11和输出端12;所述PCB板用于焊接所述信号传输面和通信系统板后接地,所述PCB板与所述输入端和输出端错开设置。其中,滤波器本体与PCB板的焊接通常是采用锡来实现焊接。但当与滤波器本体焊接的PCB板是一个整体结构时,在高低温情况下,整体结构的PCB板发生了形变,因为焊点的存在限制了整体结构的PCB板的形变从而使整体结构的PCB板产生极大的应力作用,导致出现介质滤波器的陶瓷开裂、焊点拉裂、PCB板上的铜箔脱落等不良现象,产品很容易一次导致性能劣化或失去性能,极大地缩短了产品的使用寿命。
在温差190℃,125℃,以及65℃下,现有整体结构的PCB板所受到的应力作用如下表所示:
温度范围(℃) 温差(℃) 应力(N)
-40~150 190 1932
25~150 125 1080
-40~25 65 495
实用新型内容
为了克服现有技术的不足,本实用新型的发明目的在于提供一种陶瓷介质滤波器,其能够有助于减少PCB板所受到的应力作用。
为了实现上述目的,本实用新型所采用的技术方案内容具体如下:
一种陶瓷介质滤波器,包括滤波器本体和PCB板;所述滤波器本体的信号传输面上设有用于连接信号输入输出装置的输入端和输出端;所述PCB板用于 焊接所述信号传输面和通信系统板后接地,所述PCB板与所述输入端和输出端错开设置,所述PCB板包括至少两个子板,所述子板相互隔开设置。
进一步地,所述PCB板包括第一金属层,第二金属层,以及位于所述第一金属层与第二金属层之间的介质层;所述第一金属层用于焊接所述信号传输面,所述第二金属层用于焊接通信系统板。
优选地,所述PCB板上设有用于导通所述第一金属层和第二金属层的金属导通孔。
进一步地,在第一个子板上设有第一缺口和第二缺口;所述输入端和输出端分别对应位于所述第一缺口和第二缺口之中。
优选地,所述第一缺口和第二缺口分别呈弧形结构。
更优选地,所述弧形结构为优弧状结构。
或者,在第一个子板上设有对应于所述输入端的第一通孔和对应于所述输出端的第二通孔;所述输入端和输出端分别对应位于所述第一通孔和第二通孔之中。
优选地,在所述第一个子板上还设有对应于所述输入端的第一调节阻抗区,以及设有对应于所述输出端的第二调节阻抗区;所述第一通孔位于所述第一调节阻抗区中并与所述第一调节阻抗区形成第一环形阻抗调节带,所述第二通孔位于所述第二调节阻抗区中并与所述第二调节阻抗区形成第二环形阻抗调节带;所述输入端包括设于滤波器本体上的输入金属覆盖区和陶瓷输入介质区;所述输入金属覆盖区位于所述陶瓷输入介质区内并于所述陶瓷输入介质区形成环形输入介质带;所述输入金属覆盖区正对所述第一通孔,并且所述输入金属覆盖区的外径与所述第一通孔的外径相匹配;所述第一环形阻抗调节带的带宽与所述环形输入介质带的带宽相匹配;所述输出端包括设于滤波器本体上的输出金属覆盖区和陶瓷输出介质区;所述输出金属覆盖区位于所述陶瓷输出介质区内并与所述陶瓷输出介质区形成环形输出介质带;所述输出金属覆盖区正对所述第二通孔,并且所述输出金属覆盖区的外径与所述第二通孔的外径相匹配;所述第二环形阻抗调节带的带宽与所述环形输出介质带的带宽相匹配。
更优选地,所述第一调节阻抗区是通过蚀刻所述第一个子板上对应所述输入端位置上的第一金属层区域后裸漏出对应的介质层而形成的;所述第二调节阻抗区是通过蚀刻所述第一个子板上对应所述输出端位置上的第一金属层区域后裸漏出对应的介质层而形成的。
更优选地,所述第一通孔和第二通孔均为圆形通孔,所述输入金属覆盖区与输出金属覆盖区均呈圆形。
更优选地,所述第一环形阻抗调节带与环形输入介质带均呈圆环形,所述第二环形阻抗调节带与环形输出介质带均呈圆环形。
进一步地,所述子板的数量为2个或3个或4个。
进一步地,所述PCB板通过焊点连接所述信号传输面和通信系统板后接地。
与现有技术相比,本实用新型的有益效果在于:
1.本实用新型的陶瓷介质滤波器,由于其PCB板的子板数量在两个以上,并且所述子板相互隔开设置,相邻的子板之间相互不接触,所以可以使不同子板上的焊点对子板形变所产生的限制不能相互传递,从而使子板之间所受到的应力作用无法进行相互传递;而且,由于子板相互隔开设置,每个子板的边界都是自由的,从而使每个子板受到的应力作用可以完全释放,经测算应力数值趋近于0。相对于现有的连接一整块PCB板结构的陶瓷介质滤波器,本实用新型所使用的具有两个以上子板的PCB板,其总体所受的应力大幅度地减小了,有效地降低了介质滤波器的陶瓷开裂、焊点拉裂、以及PCB板上的铜箔脱落的几率。同时,PCB板被分成较小的子板结构时,减小了PCB板的总体用料,从而能够提高物料利用率,有效地降低了成本。
2.所述PCB板上设有用于导通所述第一金属层和第二金属层的金属导通孔,通过所述金属导通孔,可以使滤波器本体与通信系统板共地,有助于改善本实用新型的陶瓷介质滤波器的整体接地性能。
3.在第一个子板上设有对应于所述输入端的第一缺口和对应于所述输出端的第二缺口;所述输入端和输出端分别对应位于所述第一缺口和第二缺口之中,所述第一缺口和第二缺口分别呈弧形结构,所述弧形结构为优弧状结构,从而在输入端和输出端连接导线时能够更好地固定导线,防止导线出现移位现象,确保了本实用新型陶瓷介质滤波器的电学连接性能。
4.本实用新型在第一个子板上设有对应于所述输入端的第一通孔和对应于所述输出端的第二通孔,可以方便滤波器本体的输入端和输出端透过第一通孔和第二通孔去连接导线,确保本实用新型陶瓷介质滤波器的电学性能。而利用第一通孔和第一调节阻抗区形成第一环形阻抗调节带,以及利用第二通孔和第二调节阻抗区形成第二环形阻抗调节带,其两者带宽分别对应匹配滤波器本体上的环形输入介质带和环形输出介质带两者的带宽,从而在第一环形阻抗调节 带与环形输入介质带之间,以及在第二环形阻抗调节带与环形输出介质带之间形成电容;通过调节第一环形阻抗调节带与环形输入介质带两者带宽的大小,实现改变第一子板与滤波器本体的输入端之间阻抗,而通过调节第二环形阻抗调节带与环形输出介质带两者带宽的大小,实现改变第一子板与滤波器本体的输出端之间阻抗。
上述说明仅是本实用新型技术方案的概述,为了能够更清楚了解本实用新型的技术手段,而可依照说明书的内容予以实施,并且为了让本实用新型的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为现有的陶瓷介质滤波器的结构示意图。
图2为本实用新型陶瓷介质滤波器第一种实施例的结构示意图。
图3为本实用新型陶瓷介质滤波器第二种实施例的结构示意图。
图4为本实用新型陶瓷介质滤波器第三种实施例的结构示意图。
图5为本实用新型陶瓷介质滤波器第五种实施例的结构示意图。
图6为图5的滤波器本体的结构示意图。
其中,各附图标记为:
1、滤波器本体;11、输入端;111、输入金属覆盖区;112、环形输入介质带;12、输出端;121、输出金属覆盖区;122、环形输出介质带;13、信号传输面;2、PCB板;21、第一个子板;211、第一缺口;212、第二缺口;22、第二个子板;23、第三个子板;24、第四个子板;25、金属导通孔;31、第一通孔;32、第二通孔;41、第一环形阻抗调节带;42、第二环形阻抗调节带。
具体实施方式
为更进一步阐述本实用新型为达成预定实用新型目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本实用新型的具体实施方式、结构、特征及其功效,详细说明如下:
实施例一
图2为本实用新型的陶瓷介质滤波器第一种具体实施方式,其包括滤波器 本体1和PCB板2;所述滤波器本体的信号传输面13上设有用于连接信号输入输出装置的输入端11和输出端12;所述PCB板用于焊接所述信号传输面和通信系统板(图未示)后接地,所述PCB板与所述输入端和输出端错开设置,所述PCB板2包括两个子板,所述子板相互隔开设置。
本实用新型的陶瓷介质滤波器,由于其PCB板的子板数量在两个以上,并且所述子板相互隔开设置,所以可以使不同子板上的焊点对子板形变所产生的限制不能相互传递,从而使子板之间所受到的应力作用无法进行相互传递;而且,由于子板相互隔开设置,所以每个子板的边界都是自由的,从而使每个子板受到的应力作用可以完全释放,经测算应力数值趋近于0。相对于现有的连接一整块PCB板结构的陶瓷介质滤波器,本实用新型所使用的具有两个以上子板的PCB板,其总体所受的应力大幅度地减小了,有效地降低了介质滤波器的陶瓷开裂、焊点拉裂、以及PCB板上的铜箔脱落的几率。同时,PCB板被分成较小的子板结构时,PCB板的总体用料就减小了,从而能够提高物料利用率,有效地降低了成本。
具体地,所述PCB板通过焊点连接所述信号传输面和通信系统板后接地。
具体地,所述PCB板包括第一金属层,第二金属层,以及位于所述第一金属层与第二金属层之间的介质层;所述第一金属层用于焊接所述信号传输面,所述第二金属层用于焊接通信系统板。所述PCB板上设有用于导通所述第一金属层和第二金属层的金属导通孔25,可以使滤波器本体与通信系统板共地,有助于改善本实用新型的陶瓷介质滤波器的整体接地性能。而且,由于金属导通孔的存在,同样可以进一步减少PCB板在与滤波器本体连接时所受到的应力作用。
为了便于输入端和输出端通过导线连接信号输入输出装置,在第一个子板上21设有对应于所述输入端的第一缺口211和对应于所述输出端的第二缺口212;所述输入端和输出端分别对应位于所述第一缺口和第二缺口之中。具体为,所述输入端和输出端分别对应通过所述第一缺口和第二缺口连接导线并将所述导线引至信号输入输出装置上。
作为本实施例的进一步改进,所述第一缺口和第二缺口分别呈弧形结构,从而与输入端和输出端的形状更加匹配。更优选所述弧形结构为优弧状结构,从而在输入端和输出端连接导线时能够更好地固定导线,防止导线出现移位现象,确保了本实用新型陶瓷介质滤波器的电学连接性能。
第二个子板22,在本实施例中是呈条状结构,当然还可以为其他形状的结构,使用者可以根据实际的使用需要设置所述子板的具体形状。
实施例二
图3为本实用新型的陶瓷介质滤波器第二种具体实施方式,其与图2所示的第一种具体实施方式的不同点在于:所述PCB板2具有3个子板。并且其第一个子板21的结构与第一种具体实施方式的第一个子板21结构相同。第二个子板22与第三个子板23在本实施例中是呈正方形结构,相对于图2所示的第一种具体实施方式,本实施例的陶瓷介质滤波器的PCB板由于采用了3个子板,并且3个子板的中心连接成一个三角形,从而提高了滤波器本体在通信系统板上的安装稳定性。
实施例三
图4为本实施例的陶瓷介质滤波器第三种具体实施方式,其与图2所示的第一种具体实施方式的不同点在于:所述PCB板具有4个子板。并且其第一个子板21的结构与第一种具体实施方式的第一个子板21结构相同。第二个子板22、第三个子板23、第四个子板24在本实施例中是呈正方形结构。并且,第一个子板、第二个子板以及第三个子板的中心连接成一个三角形,第四个子板的中心位于第二个子板与第三个子板的中心连线上,所以相对于前面第一种和第二种具体实施方式,
实施例四
图5和图6是本实用新型的陶瓷介质滤波器第四种具体实施方式,其与第一种具体实施方式的不同点在于:
在第一个子板上设有对应于所述输入端的第一通孔31和第一调节阻抗区,以及设有对应于所述输出端的第二通孔32和第二调节阻抗区;所述第一通孔位于所述第一调节阻抗区中并与所述第一调节阻抗区形成第一环形阻抗调节带41,所述第二通孔位于所述第二调节阻抗区中并与所述第二调节阻抗区形成第二环形阻抗调节带42;所述输入端包括设于滤波器本体上的输入金属覆盖区111和陶瓷输入介质区;所述输入金属覆盖区位于所述陶瓷输入介质区内并于所述陶瓷输入介质区形成环形输入介质带112;所述输入金属覆盖区正对所述第一通孔,并且所述输入金属覆盖区的外径与所述第一通孔的外径相匹配;所述第一环形阻抗调节带的带宽与所述环形输入介质带的带宽相匹配;所述输出端包括设于滤波器本体上的输出金属覆盖区121和陶瓷输出介质区;所述输出金属覆盖区 位于所述陶瓷输出介质区内并与所述陶瓷输出介质区形成环形输出介质带122;所述输出金属覆盖区正对所述第二通孔,并且所述输出金属覆盖区的外径与所述第二通孔的外径相匹配;所述第二环形阻抗调节带的带宽与所述环形输出介质带的带宽相匹配。
本实用新型在第一个子板上利用第一通孔和第一调节阻抗区形成第一环形阻抗调节带,以及利用第二通孔和第二调节阻抗区形成第二环形阻抗调节带,其两者带宽分别对应匹配滤波器本体上的环形输入介质带和环形输出介质带两者的带宽,从而在第一环形阻抗调节带与环形输入介质带之间,以及在第二环形阻抗调节带与环形输出介质带之间形成电容;通过调节第一环形阻抗调节带与环形输入介质带两者带宽的大小,实现改变第一子板与滤波器本体的输入端之间阻抗,而通过调节第二环形阻抗调节带与环形输出介质带两者带宽的大小,实现改变第一子板与滤波器本体的输出端之间阻抗。
具体阻抗改变原理如下:
第一子板与滤波器本体的输入端之间阻抗公式,或者,第一子板与滤波器本体的输出端之间阻抗公式如下:
Figure PCTCN2021078048-appb-000001
常用简化形式如下:
Figure PCTCN2021078048-appb-000002
其中,ε 0为真空介电常数,数值为8.854187817×10 -12F/m,ε r为在标准大气压下,不含二氧化碳的干燥空气的相对介电常数,数值是1.00053。
对于第一子板与滤波器本体的输入端之间阻抗来说,d是指输入金属覆盖区的外径或第一通孔的外径,而D是指第一调节阻抗区或陶瓷输入介质区的外径,而D-d是指第一环形阻抗调节带的带宽或环形输入介质带的带宽。当d取固定值不变时候,也就是说输入金属覆盖区的外径与第一通孔的外径为同一常数时,改变D的大小,从而使第一调节阻抗区的外径大小变化与陶瓷输入介质区的外径大小变化同步(即同步改变第一环形阻抗调节带的带宽和环形输入介质带的带宽的数值),从而使第一子板与滤波器本体的输入端之间阻抗大小发生变化。
或者,当D取固定值不变时候,也就是说第一调节阻抗区与陶瓷输入介质区的外径为同一常数时,改变d的大小,从而使第一调节阻抗区的外径大小变 化与陶瓷输入介质区的外径大小变化同步(即同步改变第一环形阻抗调节带的带宽和环形输入介质带的带宽的数值),从而使第一子板与滤波器本体的输入端之间阻抗大小发生变化。
同理,对于第一子板与滤波器本体的输出端之间阻抗来说,d是指输出金属覆盖区的外径或第二通孔的外径,而D是指第二调节阻抗区或陶瓷输出介质区的外径,而D-d是指第二环形阻抗调节带的带宽或环形输出介质带的带宽。当d取固定值不变时候,也就是说输出金属覆盖区的外径与第二通孔的外径为同一常数时,改变D的大小,从而使第二调节阻抗区的外径大小变化与陶瓷输出介质区的外径大小变化同步(即同步改变第二环形阻抗调节带的带宽和环形输出介质带的带宽的数值),从而使第一子板与滤波器本体的输出端之间阻抗大小发生变化。
或者,当D取固定值不变时候,也就是说第二调节阻抗区与陶瓷输出介质区的外径为同一常数时,改变d的大小,从而使第二调节阻抗区的外径大小变化与陶瓷输出介质区的外径大小变化同步(即同步改变第二环形阻抗调节带的带宽和环形输出介质带的带宽的数值),从而使第一子板与滤波器本体的输出端之间阻抗大小发生变化。
具体地,所述第一调节阻抗区是通过蚀刻所述第一个子板上对应所述输入端位置上的第一金属层区域后裸漏出对应的介质层而形成的;所述第二调节阻抗区是通过蚀刻所述第一个子板上对应所述输出端位置上的第一金属层区域后裸漏出对应的介质层而形成的。
上述实施方式仅为本实用新型的优选实施方式,不能以此来限定本实用新型保护的范围,本领域的技术人员在本实用新型的基础上所做的任何非实质性的变化及替换均属于本实用新型所要求保护的范围。

Claims (14)

  1. 一种陶瓷介质滤波器,包括滤波器本体和PCB板;所述滤波器本体的信号传输面上设有用于连接信号输入输出装置的输入端和输出端;所述PCB板用于焊接所述信号传输面和通信系统板后接地,所述PCB板与所述输入端和输出端错开设置,其特征在于:所述PCB板包括至少两个子板,所述子板相互隔开设置。
  2. 根据权利要求1所述的陶瓷介质滤波器,其特征在于:所述PCB板包括第一金属层,第二金属层,以及位于所述第一金属层与第二金属层之间的介质层;所述第一金属层用于焊接所述信号传输面,所述第二金属层用于焊接通信系统板。
  3. 根据权利要求2所述的陶瓷介质滤波器,其特征在于:所述PCB板上设有用于导通所述第一金属层和第二金属层的金属导通孔。
  4. 根据权利要求2所述的陶瓷介质滤波器,其特征在于:所述第一金属层和第二金属层均为铜箔。
  5. 根据权利要求2所述的陶瓷介质滤波器,其特征在于:在第一个子板上设有对应于所述输入端的第一缺口和对应于所述输出端的第二缺口;所述输入端和输出端分别对应位于所述第一缺口和第二缺口之中。
  6. 根据权利要求5所述的陶瓷介质滤波器,其特征在于:所述第一缺口和第二缺口分别呈弧形结构。
  7. 根据权利要求6所述的陶瓷介质滤波器,其特征在于:所述弧形结构为优弧状结构。
  8. 根据权利要求2所述的陶瓷介质滤波器,其特征在于:在第一个子板上设有对应于所述输入端的第一通孔和对应于所述输出端的第二通孔;所述输入端和输出端分别对应位于所述第一通孔和第二通孔之中。
  9. 根据权利要求8所述的陶瓷介质滤波器,其特征在于:在所述第一个子板上还设有对应于所述输入端的第一调节阻抗区,以及设有对应于所述输出端的第二调节阻抗区;所述第一通孔位于所述第一调节阻抗区中并与所述第一调节阻抗区形成第一环形阻抗调节带,所述第二通孔位于所述第二调节阻抗区中并与所述第二调节阻抗区形成第二环形阻抗调节带;所 述输入端包括设于滤波器本体上的输入金属覆盖区和陶瓷输入介质区;所述输入金属覆盖区位于所述陶瓷输入介质区内并于所述陶瓷输入介质区形成环形输入介质带;所述输入金属覆盖区正对所述第一通孔,并且所述输入金属覆盖区的外径与所述第一通孔的外径相匹配;所述第一环形阻抗调节带的带宽与所述环形输入介质带的带宽相匹配;所述输出端包括设于滤波器本体上的输出金属覆盖区和陶瓷输出介质区;所述输出金属覆盖区位于所述陶瓷输出介质区内并与所述陶瓷输出介质区形成环形输出介质带;所述输出金属覆盖区正对所述第二通孔,并且所述输出金属覆盖区的外径与所述第二通孔的外径相匹配;所述第二环形阻抗调节带的带宽与所述环形输出介质带的带宽相匹配。
  10. 根据权利要求9所述的陶瓷介质滤波器,其特征在于:所述第一调节阻抗区是通过蚀刻所述第一个子板上对应所述输入端位置上的第一金属层区域后裸漏出对应的介质层而形成的;所述第二调节阻抗区是通过蚀刻所述第一个子板上对应所述输出端位置上的第一金属层区域后裸漏出对应的介质层而形成的。
  11. 根据权利要求9所述的陶瓷介质滤波器,其特征在于:所述第一通孔和第二通孔均为圆形通孔,所述输入金属覆盖区与输出金属覆盖区均呈圆形。
  12. 根据权利要求11所述的陶瓷介质滤波器,其特征在于:所述第一环形阻抗调节带与环形输入介质带均呈圆环形,所述第二环形阻抗调节带与环形输出介质带均呈圆环形。
  13. 根据权利要求1-12任何一项所述的陶瓷介质滤波器,其特征在于:所述子板的数量为2个或3个或4个。
  14. 根据权利要求1-12任何一项所述的陶瓷介质滤波器,其特征在于:所述PCB板通过焊点连接所述信号传输面和通信系统板后接地。
PCT/CN2021/078048 2020-06-04 2021-02-26 一种陶瓷介质滤波器 WO2021244076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021004020.3U CN211829141U (zh) 2020-06-04 2020-06-04 一种陶瓷介质滤波器
CN202021004020.3 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021244076A1 true WO2021244076A1 (zh) 2021-12-09

Family

ID=73025883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078048 WO2021244076A1 (zh) 2020-06-04 2021-02-26 一种陶瓷介质滤波器

Country Status (2)

Country Link
CN (1) CN211829141U (zh)
WO (1) WO2021244076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211829141U (zh) * 2020-06-04 2020-10-30 深圳顺络电子股份有限公司 一种陶瓷介质滤波器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573809B1 (en) * 1999-09-14 2003-06-03 Murata Manufacturing Co., Ltd. Dielectric resonator device, dielectric duplexer, and communication apparatus incorporating same
CN104247578A (zh) * 2012-03-02 2014-12-24 诺瓦利亚公司 电路板组件
CN206272960U (zh) * 2016-10-26 2017-06-20 华为技术有限公司 一种电路板载电子器件的安装结构
CN206541910U (zh) * 2017-01-12 2017-10-03 苏州捷频电子科技有限公司 陶瓷介质滤波器
CN208622909U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种带pcb板的陶瓷介质滤波器的结构
CN210130003U (zh) * 2019-06-17 2020-03-06 深圳国人科技股份有限公司 一种端口隔离结构
CN111211385A (zh) * 2020-02-25 2020-05-29 重庆思睿创瓷电科技有限公司 一种便于组装的滤波器
CN111509340A (zh) * 2020-06-04 2020-08-07 深圳顺络电子股份有限公司 一种陶瓷介质滤波器
CN211829141U (zh) * 2020-06-04 2020-10-30 深圳顺络电子股份有限公司 一种陶瓷介质滤波器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573809B1 (en) * 1999-09-14 2003-06-03 Murata Manufacturing Co., Ltd. Dielectric resonator device, dielectric duplexer, and communication apparatus incorporating same
CN104247578A (zh) * 2012-03-02 2014-12-24 诺瓦利亚公司 电路板组件
CN206272960U (zh) * 2016-10-26 2017-06-20 华为技术有限公司 一种电路板载电子器件的安装结构
CN206541910U (zh) * 2017-01-12 2017-10-03 苏州捷频电子科技有限公司 陶瓷介质滤波器
CN208622909U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种带pcb板的陶瓷介质滤波器的结构
CN210130003U (zh) * 2019-06-17 2020-03-06 深圳国人科技股份有限公司 一种端口隔离结构
CN111211385A (zh) * 2020-02-25 2020-05-29 重庆思睿创瓷电科技有限公司 一种便于组装的滤波器
CN111509340A (zh) * 2020-06-04 2020-08-07 深圳顺络电子股份有限公司 一种陶瓷介质滤波器
CN211829141U (zh) * 2020-06-04 2020-10-30 深圳顺络电子股份有限公司 一种陶瓷介质滤波器

Also Published As

Publication number Publication date
CN211829141U (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
US8491337B2 (en) Electrical connector with shielded recessed portions
US4633359A (en) Surge arrester for RF transmission line
WO2021244076A1 (zh) 一种陶瓷介质滤波器
US9125304B2 (en) Circuit board having via and manufacturing method thereof
JP2008524845A5 (zh)
WO2021012447A1 (zh) 一种介质波导滤波器
CN101438470A (zh) 包括夹持斜面的同轴连接器以及相关方法
US20190020111A1 (en) Antenna structure
CN102811549A (zh) 电路板
CN203377376U (zh) 一种小型宽频带螺旋天线
CN204011731U (zh) 复合介质微带天线
CN110380203A (zh) 天线单元和天线阵列
US2175253A (en) Short wave antenna
CN111509340A (zh) 一种陶瓷介质滤波器
US2218741A (en) Antenna for broad frequency bands
US2181870A (en) Wide band, short wave antenna and transmission line system
CN102820506B (zh) 一种大功率同轴固定衰减器
CN209823048U (zh) 新型驻波可调的耦合连接器
CN102629703A (zh) 一种缺陷微带线结构的微带低通滤波器
CN208797173U (zh) 一种5g通信用1/4波长超宽带避雷器
CN203734083U (zh) 可自翻边的同轴电缆连接器
CN113540733A (zh) 一种垂直转接结构
CN108683340B (zh) 一种多频段射频整流电路
CN206727223U (zh) 一种x波段的圆极化天线阵列
US1959407A (en) Transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21817642

Country of ref document: EP

Kind code of ref document: A1