WO2021243591A1 - Network registration using a combined acquisition database - Google Patents

Network registration using a combined acquisition database Download PDF

Info

Publication number
WO2021243591A1
WO2021243591A1 PCT/CN2020/094076 CN2020094076W WO2021243591A1 WO 2021243591 A1 WO2021243591 A1 WO 2021243591A1 CN 2020094076 W CN2020094076 W CN 2020094076W WO 2021243591 A1 WO2021243591 A1 WO 2021243591A1
Authority
WO
WIPO (PCT)
Prior art keywords
acquisition database
network
information
sim
subscription
Prior art date
Application number
PCT/CN2020/094076
Other languages
French (fr)
Inventor
Yi Liu
Jinglin Zhang
Haojun WANG
Zhenqing CUI
Jingming CHANG
Jian Li
Hao Zhang
Fojian ZHANG
Hong Wei
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/094076 priority Critical patent/WO2021243591A1/en
Publication of WO2021243591A1 publication Critical patent/WO2021243591A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for network registration using a combined acquisition database.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and performing a network registration procedure using the combined acquisition database.
  • UE user equipment
  • a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and perform a network registration procedure using the combined acquisition database.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and perform a network registration procedure using the combined acquisition database.
  • an apparatus for wireless communication may include means for combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and means for performing a network registration procedure using the combined acquisition database.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of a multiple subscriber identity module (SIM) UE, in accordance with various aspects of the present disclosure.
  • SIM subscriber identity module
  • Fig. 4 is a diagram illustrating an example associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technologies (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technologies
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4 and 5.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4 and 5.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with network registration using a combined acquisition database, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database, means for performing a network registration procedure using the combined acquisition database, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a multiple subscriber identity module (SIM) UE, in accordance with various aspects of the present disclosure.
  • a UE 120 may be a multiple SIM (multi-SIM) UE that includes multiple SIMs (two or more SIMs) , shown as a first SIM 305a and a second SIM 305b.
  • the first SIM 305a may be associated with a first subscription (shown as SUB 1)
  • the second SIM 305b may be associated with a second subscription (shown as SUB 2) .
  • a subscription may include a subscription with a network operator (for example, a mobile network operator (MNO) ) that enables the UE 120 to access a wireless network (for example, a radio access network (RAN) ) associated with the network operator.
  • MNO mobile network operator
  • RAN radio access network
  • a SIM 305 may be a removable SIM (for example, a SIM card) or an embedded SIM.
  • a SIM 305 may include an integrated circuit that securely stores an international mobile subscriber identity (IMSI) and a security key, which are used to identify and authenticate a corresponding subscription associated with the SIM 305.
  • IMSI international mobile subscriber identity
  • a SIM 305 may store a list of services that the UE 120 has permission to access using a subscription associated with the SIM 305, such as a data service or a voice service, among other examples.
  • the UE 120 may communicate (for example, in a connected mode, an idle mode, or an inactive mode) with a first base station 310a via a first cell 315a (shown as Cell 1) using the first SIM 305a.
  • a first subscription (SUB 1) of the UE 120 may be used to access the first cell 315a (for example, using a first IMSI for UE identification, using a first security key for UE authentication, using a first list of services that the UE 120 is permitted to access using the first subscription, or by counting data or voice usage on the first cell against the first subscription, among other examples) .
  • the UE 120 may communicate (for example, in a connected mode, an idle mode, or an inactive mode) with a second base station 310b via a second cell 315b (shown as Cell 2) using the second SIM 305b.
  • a second subscription (SUB 2) of the UE 120 may be used to access the second cell 315b (for example, using a second IMSI for UE identification, using a second security key for UE authentication, using a second list of services that the UE 120 is permitted to access using the second subscription, or by counting data or voice usage on the second cell against the second subscription, among other examples) .
  • the first base station 310a and/or the second base station 310b may include one or more of the base stations 110 described above in connection with Figure 1. Although the first cell 315a and the second cell 315b are shown as being provided by different base stations, in some aspects, the first cell 315 and the second cell 315b may be provided by the same base station. Thus, in some aspects, the first base station 310a and the second base station 310b may be integrated into a single base station.
  • the UE 120 may be a single receiver (SR) (sometimes also referred to as single radio) multi-SIM UE, such as an SR multi-SIM multiple standby (SR-MSMS) UE or a single receiver dual SIM dual standby (SR-DSDS) UE, among other examples.
  • SR-MSMS SR multi-SIM multiple standby
  • SR-DSDS single receiver dual SIM dual standby
  • the UE 120 may be a dual SIM dual active (DSDA) UE (e.g., a multiple receiver multi-SIM UE) .
  • DSDA dual SIM dual active
  • a multi-SIM UE may be capable of switching between two separate mobile network services, may include hardware for maintaining multiple connections (for example, one connection per SIM) in a standby state, or may include hardware (for example, multiple transceivers) for maintaining multiple network connections at the same time, among other examples.
  • an SR-DSDS UE or an SR-MSMS UE may only be capable of receiving data on one connection at a time, because radio frequency resources are shared between the multiple subscriptions.
  • an SR-DSDS UE or an SR-MSMS UE may be associated with multiple subscriptions but may include only a single transceiver shared by the multiple subscriptions, a single transmit chain shared by the multiple subscriptions, or a single receive chain shared by the multiple subscriptions, among other examples.
  • a DSDA UE may be capable of receiving data on multiple connections at the same time.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a UE may attempt to acquire a cell in a 5G/NR standalone (SA) network by scanning frequencies in an acquisition database (ACQ DB) . If the scan of the frequencies in the acquisition database does not result in successful cell acquisition, the UE may perform a full band scan. Accordingly, registration with a 5G/NR SA network may be slow, as the UE may need to scan many frequencies during the full band scan. Moreover, performance of a full band scan consumes significant network resources, processing resources of the UE, battery resources of the UE, and/or the like.
  • the combined acquisition database may include frequencies from multiple acquisition databases that are associated with different network subscriptions of a UE for the same network operator.
  • the likelihood that a UE will successfully acquire a cell is improved for a scan that uses the combined acquisition database.
  • the UE may improve network registration speed, may consume less power resources, may consume less network resources, and/or the like.
  • Fig. 4 is a diagram illustrating an example 400 associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure.
  • example 400 includes a UE 120.
  • the UE 120 includes multiple (e.g., two) SIMs.
  • the UE 120 may be a DSDS UE or a DSDA UE (e.g., a 5G+5G UE) .
  • a first SIM of the UE 120 may be associated with a first subscription (SUB 1) of the UE 120
  • a second SIM of the UE 120 may be associated with a second subscription (SUB 2) of the UE 120.
  • the UE 120 may initiate a network registration procedure.
  • the network registration procedure may be for connection to an SA system of a RAT.
  • the network registration procedure may be for connection to a 5G/NR SA system.
  • the network registration procedure may be for other types of systems (e.g., networks) , such as another SA system (e.g., an LTE SA system) , a non-standalone system, and/or the like.
  • the UE 120 may initiate the network registration procedure in connection with the first subscription (SUB 1) of the UE 120.
  • the UE 120 may determine whether the first subscription (SUB 1) and the second subscription (SUB 2) are associated with the same network operator. As shown by reference number 415, if the first subscription and the second subscription are not associated with the same network operator, the UE 120 may perform a scan of an acquisition database associated with only the first subscription. If the UE 120 does not acquire a cell using the acquisition database, the UE 120 may perform a full band scan to register with the network.
  • the UE 120 may combine information (e.g., a list of frequencies, such as a list of 5G/NR frequencies) in a first acquisition database associated with the first subscription and information in a second acquisition database associated with the second subscription.
  • the result obtained by combining the first acquisition database and the second acquisition database may be referred to as a combined acquisition database.
  • the UE 120 may discard duplicate information. For example, if the first acquisition database includes frequencies A, B, C, and D, and the second acquisition database includes frequencies A, B, E, and F, then the combined acquisition database may include frequencies A, B, C, D, E, and F.
  • An acquisition database may refer to a data structure (e.g., a database, a table, a list, and/or the like) that identifies one or more frequencies (e.g., frequencies that have been recently scanned) that are to be used for cell acquisition.
  • the first acquisition database and the second acquisition database may be stored in the UE 120 or the multiple SIMs.
  • the first acquisition database may be stored in a first SIM of the UE 120
  • the second acquisition database may be stored in a second SIM of the UE 120.
  • the UE 120 may perform the network registration procedure using the combined acquisition database. For example, the UE 120 may perform a scan for cell acquisition using the combined acquisition database (e.g., the combined list of frequencies) .
  • the combined acquisition database e.g., the combined list of frequencies
  • the UE 120 may determine whether network registration (e.g., to a 5G/NR cell) , using the combined acquisition database, was successful. For example, the UE 120 may determine whether a cell (e.g., a 5G/NR cell) was acquired as a result of the scan using the combined acquisition database. As shown by reference number 430, if the network registration is not successful (e.g., the UE 120 did not acquire a cell using the combined acquisition database) , then the UE 120 may perform a full band scan as part of the network registration procedure.
  • network registration e.g., to a 5G/NR cell
  • the UE 120 may perform a full band scan as part of the network registration procedure.
  • the network registration (e.g., to the 5G/NR SA network) is successful. That is, the network registration using the first subscription of the UE 120 is successful.
  • the combined acquisition database which identifies more frequencies relative to a single acquisition database, increases the likelihood that the network registration procedure will succeed without performance of a full band scan. In this way, the UE 120 may perform network registration with greater speed, the UE 120 may conserve power resources, and/or the like. While the combined acquisition database is described above as a combination of two acquisition databases, in some aspects, the combined acquisition database may be a combination of three or more acquisition databases associated with subscriptions for the same network operator.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with network registration using a combined acquisition database.
  • the UE e.g., UE 120 and/or the like
  • process 500 may include combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database (block 510) .
  • the UE e.g., using controller/processor 280 and/or the like
  • process 500 may include performing a network registration procedure using the combined acquisition database (block 520) .
  • the UE e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
  • the network registration procedure is performed for a standalone system of a radio access technology.
  • the UE includes multiple SIMs.
  • the UE is a DSDS UE or a DSDA UE.
  • the first network subscription is associated with a first SIM of the UE
  • the second network subscription is associated with a second SIM of the UE.
  • process 500 includes performing a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
  • the information in the first acquisition database is a first list of frequencies
  • the information in the second acquisition database is a second list of frequencies
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database. The UE may perform a network registration procedure using the combined acquisition database. Numerous other aspects are provided.

Description

NETWORK REGISTRATION USING A COMBINED ACQUISITION DATABASE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for network registration using a combined acquisition database.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and performing a network registration procedure using the combined acquisition database.
In some aspects, a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and perform a network registration procedure using the combined acquisition database.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and perform a network registration procedure using the combined acquisition database.
In some aspects, an apparatus for wireless communication may include means for combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and means for performing a network registration procedure using the combined acquisition database.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of a multiple subscriber identity module (SIM) UE, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may  be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technologies (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects,  the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a  global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain  received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4 and 5.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink  communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4 and 5.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with network registration using a combined acquisition database, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database, means for performing a network registration procedure using the combined acquisition database, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware,  software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a multiple subscriber identity module (SIM) UE, in accordance with various aspects of the present disclosure. As shown in Fig. 3, a UE 120 may be a multiple SIM (multi-SIM) UE that includes multiple SIMs (two or more SIMs) , shown as a first SIM 305a and a second SIM 305b. The first SIM 305a may be associated with a first subscription (shown as SUB 1) , and the second SIM 305b may be associated with a second subscription (shown as SUB 2) . A subscription may include a subscription with a network operator (for example, a mobile network operator (MNO) ) that enables the UE 120 to access a wireless network (for example, a radio access network (RAN) ) associated with the network operator.
A SIM 305 may be a removable SIM (for example, a SIM card) or an embedded SIM. A SIM 305 may include an integrated circuit that securely stores an international mobile subscriber identity (IMSI) and a security key, which are used to identify and authenticate a corresponding subscription associated with the SIM 305. In some cases, a SIM 305 may store a list of services that the UE 120 has permission to access using a subscription associated with the SIM 305, such as a data service or a voice service, among other examples.
As further shown in Fig. 3, the UE 120 may communicate (for example, in a connected mode, an idle mode, or an inactive mode) with a first base station 310a via a first cell 315a (shown as Cell 1) using the first SIM 305a. In this case, a first subscription (SUB 1) of the UE 120 may be used to access the first cell 315a (for example, using a first IMSI for UE identification, using a first security key for UE authentication, using a first list of services that the UE 120 is permitted to access using the first subscription, or by counting data or voice usage on the first cell against the first subscription, among other examples) . Similarly, the UE 120 may communicate (for example, in a connected mode, an idle mode, or an inactive mode) with a second base station 310b via a second cell 315b (shown as Cell 2) using the second SIM 305b. In this case, a second subscription (SUB 2) of the UE 120 may be used to access the second cell 315b (for example, using a second IMSI for UE identification, using a  second security key for UE authentication, using a second list of services that the UE 120 is permitted to access using the second subscription, or by counting data or voice usage on the second cell against the second subscription, among other examples) .
The first base station 310a and/or the second base station 310b may include one or more of the base stations 110 described above in connection with Figure 1. Although the first cell 315a and the second cell 315b are shown as being provided by different base stations, in some aspects, the first cell 315 and the second cell 315b may be provided by the same base station. Thus, in some aspects, the first base station 310a and the second base station 310b may be integrated into a single base station.
In some cases, the UE 120 may be a single receiver (SR) (sometimes also referred to as single radio) multi-SIM UE, such as an SR multi-SIM multiple standby (SR-MSMS) UE or a single receiver dual SIM dual standby (SR-DSDS) UE, among other examples. In some cases, the UE 120 may be a dual SIM dual active (DSDA) UE (e.g., a multiple receiver multi-SIM UE) .
A multi-SIM UE may be capable of switching between two separate mobile network services, may include hardware for maintaining multiple connections (for example, one connection per SIM) in a standby state, or may include hardware (for example, multiple transceivers) for maintaining multiple network connections at the same time, among other examples. However, an SR-DSDS UE or an SR-MSMS UE may only be capable of receiving data on one connection at a time, because radio frequency resources are shared between the multiple subscriptions. For example, an SR-DSDS UE or an SR-MSMS UE may be associated with multiple subscriptions but may include only a single transceiver shared by the multiple subscriptions, a single transmit chain shared by the multiple subscriptions, or a single receive chain shared by the multiple subscriptions, among other examples. In contrast, a DSDA UE may be capable of receiving data on multiple connections at the same time.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
A UE may attempt to acquire a cell in a 5G/NR standalone (SA) network by scanning frequencies in an acquisition database (ACQ DB) . If the scan of the frequencies in the acquisition database does not result in successful cell acquisition, the UE may perform a full band scan. Accordingly, registration with a 5G/NR SA network may be slow, as the UE may need to scan many frequencies during the full band scan.  Moreover, performance of a full band scan consumes significant network resources, processing resources of the UE, battery resources of the UE, and/or the like.
Some techniques and apparatuses described herein provide a combined acquisition database for use in a cell acquisition procedure or network registration procedure. For example, the combined acquisition database may include frequencies from multiple acquisition databases that are associated with different network subscriptions of a UE for the same network operator. Thus, the likelihood that a UE will successfully acquire a cell (e.g., a 5G/NR cell) is improved for a scan that uses the combined acquisition database. In this way, the UE may improve network registration speed, may consume less power resources, may consume less network resources, and/or the like.
Fig. 4 is a diagram illustrating an example 400 associated with network registration using a combined acquisition database, in accordance with various aspects of the present disclosure. As shown in Fig. 4, example 400 includes a UE 120. In some aspects, the UE 120 includes multiple (e.g., two) SIMs. For example, the UE 120 may be a DSDS UE or a DSDA UE (e.g., a 5G+5G UE) . In some aspects, a first SIM of the UE 120 may be associated with a first subscription (SUB 1) of the UE 120, and a second SIM of the UE 120 may be associated with a second subscription (SUB 2) of the UE 120.
As shown by reference number 405, the UE 120 may initiate a network registration procedure. In some aspects, the network registration procedure may be for connection to an SA system of a RAT. For example, the network registration procedure may be for connection to a 5G/NR SA system. However, the network registration procedure may be for other types of systems (e.g., networks) , such as another SA system (e.g., an LTE SA system) , a non-standalone system, and/or the like. The UE 120 may initiate the network registration procedure in connection with the first subscription (SUB 1) of the UE 120.
As shown by reference number 410, the UE 120 may determine whether the first subscription (SUB 1) and the second subscription (SUB 2) are associated with the same network operator. As shown by reference number 415, if the first subscription and the second subscription are not associated with the same network operator, the UE 120 may perform a scan of an acquisition database associated with only the first subscription. If the UE 120 does not acquire a cell using the acquisition database, the UE 120 may perform a full band scan to register with the network.
As shown by reference number 420, if the first subscription and the second subscription are associated with the same network operator, the UE 120 may combine information (e.g., a list of frequencies, such as a list of 5G/NR frequencies) in a first acquisition database associated with the first subscription and information in a second acquisition database associated with the second subscription. The result obtained by combining the first acquisition database and the second acquisition database may be referred to as a combined acquisition database. In some aspects, when combining the information, the UE 120 may discard duplicate information. For example, if the first acquisition database includes frequencies A, B, C, and D, and the second acquisition database includes frequencies A, B, E, and F, then the combined acquisition database may include frequencies A, B, C, D, E, and F.
An acquisition database may refer to a data structure (e.g., a database, a table, a list, and/or the like) that identifies one or more frequencies (e.g., frequencies that have been recently scanned) that are to be used for cell acquisition. In some aspects, the first acquisition database and the second acquisition database may be stored in the UE 120 or the multiple SIMs. For example, the first acquisition database may be stored in a first SIM of the UE 120, and the second acquisition database may be stored in a second SIM of the UE 120.
As further shown by reference number 420, the UE 120 may perform the network registration procedure using the combined acquisition database. For example, the UE 120 may perform a scan for cell acquisition using the combined acquisition database (e.g., the combined list of frequencies) .
As shown by reference number 425, the UE 120 may determine whether network registration (e.g., to a 5G/NR cell) , using the combined acquisition database, was successful. For example, the UE 120 may determine whether a cell (e.g., a 5G/NR cell) was acquired as a result of the scan using the combined acquisition database. As shown by reference number 430, if the network registration is not successful (e.g., the UE 120 did not acquire a cell using the combined acquisition database) , then the UE 120 may perform a full band scan as part of the network registration procedure.
As shown by reference number 435, if the UE 120 is able to acquire a cell using the scan of the combined acquisition database or the full band scan (e.g., if the scan of the combined acquisition database is not successful) , then the network registration (e.g., to the 5G/NR SA network) is successful. That is, the network registration using the first subscription of the UE 120 is successful.
The combined acquisition database, which identifies more frequencies relative to a single acquisition database, increases the likelihood that the network registration procedure will succeed without performance of a full band scan. In this way, the UE 120 may perform network registration with greater speed, the UE 120 may conserve power resources, and/or the like. While the combined acquisition database is described above as a combination of two acquisition databases, in some aspects, the combined acquisition database may be a combination of three or more acquisition databases associated with subscriptions for the same network operator.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 500 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with network registration using a combined acquisition database.
As shown in Fig. 5, in some aspects, process 500 may include combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database (block 510) . For example, the UE (e.g., using controller/processor 280 and/or the like) may combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include performing a network registration procedure using the combined acquisition database (block 520) . For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, and/or the like) may perform a network registration procedure using the combined acquisition database, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
In a second aspect, alone or in combination with the first aspect, the network registration procedure is performed for a standalone system of a radio access technology.
In a third aspect, alone or in combination with one or more of the first and second aspects, the UE includes multiple SIMs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the UE is a DSDS UE or a DSDA UE.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the first network subscription is associated with a first SIM of the UE, and the second network subscription is associated with a second SIM of the UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 500 includes performing a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the information in the first acquisition database is a first list of frequencies, and the information in the second acquisition database is a second list of frequencies.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be  implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated  otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and
    performing a network registration procedure using the combined acquisition database.
  2. The method of claim 1, wherein combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
  3. The method of claim 1, wherein the network registration procedure is performed for a standalone system of a radio access technology.
  4. The method of claim 1, wherein the UE includes multiple subscriber identity modules (SIMs) .
  5. The method of claim 4, wherein the UE is a dual SIM-dual standby UE, or a dual SIM-dual active UE.
  6. The method of claim 1, wherein the first network subscription is associated with a first subscriber identity module (SIM) of the UE, and the second network subscription is associated with a second SIM of the UE.
  7. The method of claim 1, further comprising:
    performing a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
  8. The method of claim 1, wherein the information in the first acquisition database is a first list of frequencies, and the information in the second acquisition database is a second list of frequencies.
  9. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and
    perform a network registration procedure using the combined acquisition database.
  10. The UE of claim 9, wherein combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
  11. The UE of claim 9, wherein the network registration procedure is performed for a standalone system of a radio access technology.
  12. The UE of claim 9, wherein the UE includes multiple subscriber identity modules (SIMs) .
  13. The UE of claim 12, wherein the UE is a dual SIM-dual standby UE, or a dual SIM-dual active UE.
  14. The UE of claim 9, wherein the first network subscription is associated with a first subscriber identity module (SIM) of the UE, and the second network subscription is associated with a second SIM of the UE.
  15. The UE of claim 9, wherein the one or more processors are further configured to:
    perform a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
  16. The UE of claim 9, wherein the information in the first acquisition database is a first list of frequencies, and the information in the second acquisition database is a second list of frequencies.
  17. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    combine information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and
    perform a network registration procedure using the combined acquisition database.
  18. The non-transitory computer-readable medium of claim 17, wherein combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
  19. The non-transitory computer-readable medium of claim 17, wherein the network registration procedure is performed for a standalone system of a radio access technology.
  20. The non-transitory computer-readable medium of claim 17, wherein the UE includes multiple subscriber identity modules (SIMs) .
  21. The non-transitory computer-readable medium of claim 20, wherein the UE is a dual SIM-dual standby UE, or a dual SIM-dual active UE.
  22. The non-transitory computer-readable medium of claim 17, wherein the first network subscription is associated with a first subscriber identity module (SIM) of the UE, and the second network subscription is associated with a second SIM of the UE.
  23. The non-transitory computer-readable medium of claim 17, wherein the one or more instructions further cause the one or more processors to:
    perform a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
  24. An apparatus for wireless communication, comprising:
    means for combining information in a first acquisition database, associated with a first network subscription, and information in a second acquisition database, associated with a second network subscription, to obtain a combined acquisition database; and
    means for performing a network registration procedure using the combined acquisition database.
  25. The apparatus of claim 24, wherein combining the information in the first acquisition database and the information in the second acquisition database is based at least in part on a determination that the first network subscription and the second network subscription are associated with a same network operator.
  26. The apparatus of claim 24, wherein the network registration procedure is performed for a standalone system of a radio access technology.
  27. The apparatus of claim 24, wherein the apparatus includes multiple subscriber identity modules (SIMs) .
  28. The apparatus of claim 27, wherein the apparatus is a dual SIM-dual standby apparatus, or a dual SIM-dual active apparatus.
  29. The apparatus of claim 24, wherein the first network subscription is associated with a first subscriber identity module (SIM) of the apparatus, and the second network subscription is associated with a second SIM of the apparatus.
  30. The apparatus of claim 24, wherein the apparatus further comprises:
    means for performing a full band scan procedure based at least in part on a determination that the network registration procedure using the combined acquisition database is not successful.
PCT/CN2020/094076 2020-06-03 2020-06-03 Network registration using a combined acquisition database WO2021243591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094076 WO2021243591A1 (en) 2020-06-03 2020-06-03 Network registration using a combined acquisition database

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094076 WO2021243591A1 (en) 2020-06-03 2020-06-03 Network registration using a combined acquisition database

Publications (1)

Publication Number Publication Date
WO2021243591A1 true WO2021243591A1 (en) 2021-12-09

Family

ID=78831644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094076 WO2021243591A1 (en) 2020-06-03 2020-06-03 Network registration using a combined acquisition database

Country Status (1)

Country Link
WO (1) WO2021243591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196487A (en) * 2011-06-03 2011-09-21 展讯通信(上海)有限公司 Third-generation (3G) system neighbor cell measurement method for multi-card multi-mode mobile terminal
US20150126187A1 (en) * 2013-11-07 2015-05-07 Qualcomm Incorporated System and Methods for Cooperative Network Acquisition on a Multi-SIM Wireless Device
WO2015180129A1 (en) * 2014-05-30 2015-12-03 Apple Inc. Methods and apparatus to manage data connections for multiple subscriber identities in a wireless communication device
CN106332227A (en) * 2015-06-16 2017-01-11 联芯科技有限公司 Network search method and network search device
CN109068404A (en) * 2018-09-30 2018-12-21 Oppo广东移动通信有限公司 Dual-card dual-standby terminal network selecting method, device, terminal device and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196487A (en) * 2011-06-03 2011-09-21 展讯通信(上海)有限公司 Third-generation (3G) system neighbor cell measurement method for multi-card multi-mode mobile terminal
US20150126187A1 (en) * 2013-11-07 2015-05-07 Qualcomm Incorporated System and Methods for Cooperative Network Acquisition on a Multi-SIM Wireless Device
WO2015180129A1 (en) * 2014-05-30 2015-12-03 Apple Inc. Methods and apparatus to manage data connections for multiple subscriber identities in a wireless communication device
CN106332227A (en) * 2015-06-16 2017-01-11 联芯科技有限公司 Network search method and network search device
CN109068404A (en) * 2018-09-30 2018-12-21 Oppo广东移动通信有限公司 Dual-card dual-standby terminal network selecting method, device, terminal device and storage medium

Similar Documents

Publication Publication Date Title
EP3718344B1 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
EP3753174B1 (en) Phase-tracking reference signal mapping
CN114667775B (en) Paging collision avoidance for 5G NR single receiver multi-subscriber identity module devices
US20200389786A1 (en) Waveform capability indication
WO2021016909A1 (en) Techniques for using a first subscription of a user equipment to perform idle mode operations for a second subscription of the user equipment
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
US11737010B2 (en) Techniques for exposure-based suspensions of communication attempts
WO2022077159A1 (en) Techniques for adding new radio cell for multi-subscription user equipment
US11736990B2 (en) Techniques for uplink performance optimization in dual carrier operation
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
WO2021253262A1 (en) Processing of two-stage downlink control information
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021212398A1 (en) Mobile terminated (mt) paging procedure for ip multimedia subsystem (ims) calls
WO2021243591A1 (en) Network registration using a combined acquisition database
US11463922B2 (en) Multi-subscription measurement reporting
US11240825B1 (en) Bandwidth part selection for multi-subscriber user equipment
WO2021212299A1 (en) Data service with dual subscriber identity modules
WO2022041239A1 (en) Techniques for selecting cells using network slice selection assistance information
US20230118310A1 (en) Detecting high priority paging messages for a user equipment with multiple subscriptions
WO2022067467A1 (en) Preprocessing operations for sensor data
WO2021223202A1 (en) Restoration of data service with dual subscriber identity modules
WO2022056701A1 (en) Optimized protocol data unit session establishment procedure
WO2021237685A1 (en) Resolution of new radio registration failure
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
US20230370916A1 (en) Techniques for measuring neighbor cells using prioritization of the neighbor cells that is based at least in part on associations of the neighbor cells with network operators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938742

Country of ref document: EP

Kind code of ref document: A1