WO2021241542A1 - Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element - Google Patents

Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element Download PDF

Info

Publication number
WO2021241542A1
WO2021241542A1 PCT/JP2021/019717 JP2021019717W WO2021241542A1 WO 2021241542 A1 WO2021241542 A1 WO 2021241542A1 JP 2021019717 W JP2021019717 W JP 2021019717W WO 2021241542 A1 WO2021241542 A1 WO 2021241542A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
core
conversion element
light
Prior art date
Application number
PCT/JP2021/019717
Other languages
French (fr)
Japanese (ja)
Inventor
あゆみ 二瓶
力 宮坂
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to EP21812084.8A priority Critical patent/EP4160710A1/en
Priority to CN202180028191.0A priority patent/CN115428183A/en
Priority to JP2022526560A priority patent/JP7475732B2/en
Priority to US17/922,802 priority patent/US20230171974A1/en
Publication of WO2021241542A1 publication Critical patent/WO2021241542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to core-shell particles, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element.
  • the present application claims priority based on Japanese Patent Application No. 2020-093726 filed in Japan on May 28, 2020, the contents of which are incorporated herein by reference.
  • Photoelectric conversion elements such as solar cells and photodiodes are widely used in various fields.
  • the conventional photoelectric conversion element has a problem that the detection sensitivity is weaker than the light in the visible light region with respect to the light in the near infrared region. If the detection sensitivity of light in the near-infrared region can be increased in the same manner as visible light, for example, in a solar cell, the photoelectric conversion efficiency can be improved.
  • Patent Document 1 discloses a technique using up-conversion nanoparticles as an inorganic porous material for supporting an organic-inorganic composite perovskite-type compound which is a power generation layer.
  • the up-conversion nanoparticles refer to particles having a particle size on the order of nm, which has a function of converting long-wavelength light such as infrared rays into short-wavelength light such as visible light and ultraviolet rays.
  • This technology converts long-wavelength light such as near-infrared light absorbed by inorganic core-shell particles into short-wavelength light such as visible light and ultraviolet light, and reabsorbs this into organic-inorganic composite perovskite crystals. It excites energy and generates electromotive force.
  • a technique utilizing the particle up-conversion function is disclosed. In this technique, visible light generated by near-infrared light excitation by inorganic nanoparticles is reabsorbed by inorganic perovskite quantum dots and emitted.
  • the concentration of ions responsible for light emission needs to be about 1 to 5%, and when the concentration of ions responsible for light emission is increased, the light emission is extinguished. This is because under high concentration conditions, cross-relaxation occurs between the luminescent species, and the energy is deactivated by the thermal vibration of the chain-like organic molecules coated on the surface of the nanoparticles. Therefore, the amount of light absorption is very small, and up-conversion does not occur unless the light is strong.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to make it possible to obtain high visible light sensitizing characteristics by using weak light having a long wavelength.
  • the present invention provides core-shell particles, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element.
  • the present invention employs the following means.
  • the core-shell particles according to one aspect of the present invention include inorganic nanoparticles having a wavelength conversion ability of light and a coating layer formed on the surface of the inorganic nanoparticles and made of an inorganic perovskite-type substance. Has a structure.
  • the inorganic nanoparticles contain a rare earth element.
  • the complex according to one aspect of the present invention is an aggregate or a thin film containing a perovskite structure as a main component and further containing the core-shell particles according to any one of (1) and (2) above.
  • the light receiving member for a photoelectric conversion element is a coagulation containing a layer composed of the composite according to (3) above and an organic or inorganic semiconductor (including a metal complex) as a main component. It is made by laminating a layer composed of an aggregate or a thin film.
  • the photoelectric conversion element according to one aspect of the present invention includes the light receiving member for the photoelectric conversion element according to (4) above between the hole transport layer and the electron transport layer.
  • the photoelectric conversion element according to one aspect of the present invention is formed on the surface of a first layer composed of a plurality of particles containing an inorganic semiconductor as a main component, an aggregate thereof, or a thin film, and the surface of the first layer.
  • the energy level of the second layer is higher than the energy level of the first layer
  • the energy level of the third layer is higher than the energy level of the second layer. ..
  • the third layer contains an organometallic complex as a main component, and the energy level of the second layer in the valence band is the energy level of the third layer. It may be higher than the rank.
  • the dopant concentration of a luminescent species which was conventionally several%, can be increased to 100% by forming a perovskite coating layer on the surface.
  • high visible light sensitization characteristics can be obtained by using weak light with a long wavelength.
  • a core shell particle, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element capable of obtaining high visible light sensitizing characteristics by using weak light having a long wavelength. Can be done.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of core-shell particles 10 according to an embodiment of the present invention.
  • the core-shell particles 10 mainly include inorganic nanoparticles 11 and a coating layer 12 thereof, and have a core-shell structure.
  • the inorganic nanoparticles 11 are particles having a particle size (diameter) 11a of about 10 nm to 100 nm and have a wavelength conversion ability of light.
  • the wavelength conversion ability of light here means the ability to convert the wavelength of incident light and emit light having a wavelength different from that of incident light.
  • the incident near-infrared light is emitted as visible light after its wavelength is converted will be described by way of an example.
  • the main materials of the inorganic nanoparticles 11 include, for example, erbium (Er), thulium (Tm), ytterbium (Yb), neodymium (Nd), formium (Ho), placeodium (Pr), gadrinium (Gd), and europium ( Examples thereof include rare earth elements such as Eu), terbium (Tb), thulium (Sm), and cerium (Ce), or those containing at least one of these compounds.
  • the coating layer 12 is formed on the surface of the inorganic nanoparticles 11 and is made of an inorganic perovskite type substance. Since the surface of the up-conversion nanoparticles of a general rare earth element is coated with a plurality of chain-like organic molecules (oleylamine, oleic acid, etc.), the emission of light emission occurs through the thermal vibration of the chain-like organic molecules. .. On the other hand, in the core-shell particles 10 of the present disclosure, since the coating layer 12 covers the surface of the inorganic nanoparticles 11, there is no thermal vibration of chain organic substances (Organic liquid) unlike general up-conversion nanoparticles. Dissipation of light emission via thermal vibration can be suppressed. The coverage of the coating layer 12 on the surface of the inorganic nanoparticles 11 may be approximately 50% or more, preferably 100%.
  • the thickness 12a of the coating layer 12 may be 5% or more of the particle size 11a of the inorganic nanoparticles, and is preferably substantially uniform over the surface of the inorganic nanoparticles. The thicker the thickness 12a of the coating layer 12, the higher the photoelectric conversion efficiency.
  • X contains at least one of the halogen ions.
  • CsPbBr 3 or CsPbI 3 when ErYF 4 or Er, Yb-doped NaYF 4 (NaYF4: Er, Yb) is used as the inorganic nanoparticles 11, it is preferable to use CsPbBr 3 or CsPbI 3 because the photoelectric conversion efficiency is improved.
  • Tm Yb-doped NaYF 4 (NaYF4: Tm, Yb) is used, it is preferable to use CsPbCl 3 because the photoelectric conversion efficiency is improved.
  • FIG. 1 (b) shows a modified example of the core-shell particle 10 shown in FIG. 1 (a).
  • the covering layer 12 may be formed by stacking two layers, or may be formed by forming three or more layers.
  • FIG. 2A is a cross-sectional view of the photoelectric conversion element 100 provided with the core-shell particles 10.
  • the photoelectric conversion element 100 is mainly composed of a positive electrode layer (positive electrode member) 101, a negative electrode layer (negative electrode member) 102, and a photoelectric conversion layer 103 sandwiched between them.
  • E cb is used as the energy level of the conduction band, and between E c2 and E c3 as the energy level of the conduction band between the negative electrode layer 102 and the photoelectric conversion layer 103.
  • the buffer layer 107 having (that is, E c2 ⁇ E cb ⁇ E c3 ) may be sandwiched between the two.
  • the constituent material of the buffer layer 107 include europium oxide (Eu 2 O 3 ), titanium oxide, tin oxide and the like.
  • the negative electrode layer 102 is made of a light-transmitting material such as antimony-doped indium oxide (ATO), indium tin oxide (ITO), zinc oxide, tin oxide, and fluorine-doped indium oxide (ATO). It is preferable that it is composed of FTO) or the like. Since it is necessary to perform heat treatment in the manufacturing process of the photoelectric conversion layer 103 of the present embodiment, ATO having heat resistance is preferable as the material of the negative electrode layer 102.
  • ATO antimony-doped indium oxide
  • ITO indium tin oxide
  • ATO fluorine-doped indium oxide
  • the positive electrode layer 101 does not have to be transparent, and a metal, a conductive polymer, or the like can be used as the electrode material of the electrode.
  • the electrode material include metals such as gold (Au), silver (Ag), aluminum (Al), and zinc (Zn), and two or more alloys thereof, graphite, graphite interlayer compounds, polyaniline and the like. Examples include derivatives, polythiophene and derivatives thereof.
  • the material of the transparent positive electrode layer 101 include ITO.
  • the photoelectric conversion layer 103 is mainly composed of a plurality of particles (hereinafter, also referred to as “particles of an inorganic semiconductor”) 20 containing an inorganic semiconductor as a main component.
  • a second layer 105 having a first layer 104a, formed on the surface of the first layer 104a, containing a perovskite structure as a main component, and further composed of an aggregate or a thin film (complex) containing core-shell particles 10.
  • a third layer 106 composed of a plurality of particles containing an organic or inorganic semiconductor (including a metal complex) as a main component, an aggregate thereof, or a thin film may be laminated.
  • the photoelectric conversion element 100 is arranged in the order of the positive electrode layer 101, the third layer 106, the second layer 105, the first layer 104, and the negative electrode layer 102, and at least a current path from the positive electrode layer 101 to the negative electrode layer 102 is formed.
  • containing an inorganic semiconductor as a main component means that the inorganic semiconductor contains an amount capable of exhibiting the function of the present invention in the particles 20 of the inorganic semiconductor, and specifically, for example, an inorganic. It means that the content of the semiconductor is more than 50% by volume. It is preferably more than 90% by volume, and more preferably substantially composed of an inorganic semiconductor.
  • Constant a perovskite structure as a main component
  • the perovskite structure contains an amount capable of exerting the function in the present invention with respect to the total mass of the second layer 105, specifically, for example.
  • the content of the perovskite structure is more than 50% by volume. It is preferably 70% by volume or more.
  • containing an organic or inorganic semiconductor (including a metal complex) as a main component means that an aggregate or a thin film (composite) containing the core-shell particles 10 has a function in the present invention with respect to the total mass of the third layer 106. It means that the content of the aggregate or the thin film (complex) containing the core-shell particles 10 is more than 50% by mass.
  • the "layer” in the present embodiment means a film formed by one or a plurality of film forming processes, and is not limited to a flat film and may not be integrated. It shall be.
  • the energy level of the conduction band (LUMO, excited state) is increased in the order of the first layer 104, the second layer 105, and the third layer 106. It is determined.
  • the energy level of the valence band can be -8 eV or more, and the energy level of the conduction band can be -4 eV or less.
  • the energy level of the valence band can be set to ⁇ 6.0 eV or more, and the energy level of the conduction band can be set to -3 eV or less.
  • the energy level of the conduction band is preferably -2 eV or less.
  • the first layer 104a is an aggregate of a plurality of inorganic semiconductor particles 20 formed on the negative electrode layer 102, and is a porous film having a plurality of voids between the particles 20 of the inorganic semiconductor.
  • the particles 20 of the inorganic semiconductor in contact with the second layer 105 are in direct contact with the negative electrode layer 102 or indirectly via the particles 20 of another inorganic semiconductor so as to be electrically connected to the negative electrode layer 102. ing.
  • the inorganic semiconductor contained in the particles 20 of the inorganic semiconductor preferably has an absorption wavelength in the ultraviolet light region, and examples thereof include titanium oxide and zinc oxide.
  • the thickness of the first layer 104 is preferably about 10 nm or more and 1000 nm or less, and more preferably about 50 nm or more and 500 nm or less.
  • the second layer 105 is a thin film that covers an exposed portion of the surface of the inorganic semiconductor particles 20 at the manufacturing stage, that is, a portion that is not in contact with either the negative electrode layer 102 or the inorganic semiconductor particles 20.
  • the second layer 105 does not need to cover the entire exposed portion, but must cover at least the positive electrode layer 101 side in order to form the current path.
  • the size and shape of the bandgap can be changed depending on the number of ions selected from each of the metal cation, the halide anion, and the organic cation.
  • the bandgap is narrowed and the responsiveness to long wavelength light such as near infrared light can be improved, but it is easily oxidized in the atmosphere and the characteristics are deteriorated.
  • the halogenated anion is arranged at the apex of the octahedron centered on the metal ion, and the organic cation is located near the cube containing the metal ion centered on the metal ion. It is arranged.
  • a regular octahedron formed of metal ions and halogenated anions forms a three-dimensional lattice, and the structure is such that organic cations enter the gaps.
  • the boundary between the coating layer 12 and the perovskite structure in the core-shell particles 10 disappears. Therefore, the light converted into visible light by the core-shell particles 10 is efficiently absorbed by the perovskite structure including the coating layer 12. This makes it possible to improve the detection sensitivity of light in the near infrared region of the photoelectric conversion element 100.
  • the core-shell particles 10 in the second layer 105 are 5 wt% or more, the sensitivity of light in the near infrared region is improved, which is preferable. If the core-shell particles 10 in the second layer 105 are more than 30 wt%, it becomes difficult to form a perovskite structure, so 30 wt% or less is preferable.
  • the energy level of the valence band of the second layer 105 is lower than the energy level of the valence band of the third layer 106 and is intermittently connected to the same energy rank.
  • the halide anions those having different composition ratios of I and Cl or Br can be mentioned.
  • the third layer 106 may be a thin film that covers the surface (exposed surface) of the perovskite structure contained in the second layer among the photoelectric conversion element precursors composed of the first layer 104 and the second layer 105. ..
  • the third layer 106 is formed of any of a p-type organic semiconductor, an inorganic semiconductor, and an organometallic complex.
  • FIG. 2A shows an example of an organometallic complex, where 106A in FIG. 2A represents an inorganic transition metal ion of the third layer 106 and 106B represents an organic ligand of the third layer 106. ..
  • the thickness of the third layer 106 is preferably, for example, 1 nm or more and 100 nm or less.
  • Examples of the p-type organic semiconductor constituting the third layer include bathocuproine (BCP), 2,2', 7,7'-tetrakis (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro).
  • BCP bathocuproine
  • N, N'-di-p-methoxyphenyllamine -9,9'-spirobifluorene
  • -OMeTAD poly (3,4-ethylendioxythyophene): poly (styrenesulfonate) (PEDOT: PSS), N, N, N', N'-tetracis (4-methoxyphenyl) -benzidine (TPD) and the like.
  • Examples of the p-type inorganic semiconductor constituting the third layer include CuI and CuSCN.
  • the photoelectric conversion element 100 of the present embodiment is applied to an optical sensor or a photovoltaic element (solar cell)
  • the photoelectric conversion element 100 is mounted on a semiconductor substrate such as silicon or a glass substrate.
  • a semiconductor substrate such as silicon or a glass substrate.
  • the following device configurations can be mentioned.
  • the transparent positive electrode layer 101 is formed on the uppermost layer farthest from the semiconductor substrate (that is, from the uppermost layer on the light receiving side, the (transparent) positive electrode layer 101 / third layer 106 /.
  • (Energy band structure) 3 (a) to 3 (c) show the structure of the energy band of each layer during the operation of the photoelectric conversion element 100 according to the present embodiment.
  • the energy level of the conduction band of the third layer 106 is higher on the positive electrode layer 101 side than the Fermi level of the positive electrode layer 101, as shown in FIG. 3 (a). , The current from the positive electrode layer 101 to the negative electrode layer 102 is blocked.
  • the core (inorganic nanoparticles 11) of the core-shell particles 10 constituting the second layer 105 absorbs the light and converts the wavelength into visible light. ..
  • the perovskite structure absorbs the wavelength-converted light (FIG. 3 (b)).
  • the broken line arrow and the solid line arrow of the core-shell particle 10 in FIG. 3B indicate energies of the same magnitude.
  • the perovskite structure By absorbing light, the perovskite structure generates electrons e and holes h, the electrons e move to the conduction band E c1 , and the holes h move to the valence band E v3 (FIG. 3 (c)).
  • the first layer 104a is a porous film has been described as an example, but the first layer is formed in a uniform film shape as in the first layer 104b of FIG. 2 (b). You may.
  • FIG. 4A is a cross-sectional view of the photoelectric conversion element 100b provided with the core-shell particles 10.
  • the photoelectric conversion element 100b is mainly composed of a positive electrode layer (positive electrode member) 101, a negative electrode layer (negative electrode member) 102, and a photoelectric conversion layer 103b sandwiched between them.
  • FIG. 4A is a cross-sectional view showing a detailed structure, but in some cases, it may be simply described as shown in FIG. 4B.
  • the second layer 105c and the third layer 106c are shown as layers facing the negative electrode layer 102 (and the buffer layer 107) and the positive electrode layer 101c. There is.
  • a simple description of the photoelectric conversion layer 103b of FIG. 4A is the photoelectric conversion layer 103c of FIG. 4B.
  • the first layer 104a of FIG. 4A corresponds to 104c of FIG. 4B
  • the second layer 105 of FIG. 4A corresponds to 105c of FIG. 4B.
  • the third layer 106b in FIG. 4A corresponds to the third layer 106c in FIG. 4B.
  • the photoelectric conversion layer 103b is mainly composed of a plurality of particles (that is, particles of the inorganic semiconductor) 20 containing an inorganic semiconductor as a main component or an aggregate or a thin film thereof.
  • the third layer 106b composed of a plurality of particles containing a metal complex as a main component or an aggregate thereof or a thin film is laminated.
  • containing an organometallic complex as a main component means that the content of the organometallic complex is more than 50% by volume in the particles, their aggregates, or the thin film. It is preferably more than 90% by volume, and more preferably substantially composed of an inorganic semiconductor. That is, the photoelectric conversion layer 103b is arranged in the order of the positive electrode layer 101, the third layer 106b, the second layer 105, the first layer 104, and the negative electrode layer 102, and at least a current path from the positive electrode layer 101 to the negative electrode layer 102 is formed. It should be configured so as to. The larger the number of current paths formed, the more preferable, but the adjacent current paths may or may not be electrically connected to each other.
  • the energy levels of the conduction bands are higher in the order of the first layer 104, the second layer 105, and the third layer 106b, and the second layer.
  • the energy level of the valence band (HOMO, ground state) of the layer is determined to be higher than the energy level of the valence band of the third layer 106b.
  • the energy level of the second layer 105 is higher than the energy level of the first layer 104
  • the energy level of the third layer 106b is higher than the energy level of the second layer 105.
  • the energy level of the valence band can be -8 eV or more, and the energy level of the conduction band can be -4 eV or less.
  • the energy level of the valence band can be set to ⁇ 5.5 eV or more, and the energy level of the conduction band can be set to -3 eV or less.
  • the energy level of the valence band is ⁇ 6 eV or more and the energy level of the conduction band is ⁇ 2 eV or less.
  • the third layer 106b is a thin film that covers the surface (exposed surface) of the molecules of the perovskite structure contained in the second layer among the photoelectric conversion element precursors composed of the first layer 104 and the second layer 105. It is good.
  • the molecule of the organic metal complex constituting the third layer 106b is obtained by coordinate-bonding an inorganic transition metal and an organic ligand.
  • 106A represents the inorganic transition metal ion of the third layer 106b
  • 106B represents the organic ligand of the third layer 106b.
  • the inorganic transition metal ion is preferably localized on the second layer side in a film form so as to be directly bonded to the perovskite structure of the second layer 105.
  • the organic ligand is preferably localized on the opposite side (positive electrode side) of the second layer in a film form.
  • the molecules of the organic metal complex are arranged in the order of the organic ligand and the inorganic transition metal ion in the current path from the positive electrode layer 101 side to the second layer 105 side.
  • the molecule of the perovskite structure is bound to the molecule. That is, it is divided into a layer composed of inorganic transition metal ions and a layer composed of organic ligand ions. The boundary between the two layers can be confirmed by using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Examples of the inorganic transition metal ion here include Eu 3+ and Cr 3+ having a reduction level of LUMO, and Ru 2+ , Fe 2+ , Mn 2+ , and Co 2+ having an oxidation level of HOMO.
  • a ligand of a general metal complex for example, (i) a carboxyl group, a nitro group, a sulfo group, a phosphate group, a hydroxy group, an oxo group, an amino group and the like can be used.
  • Organic compounds possessed; (ii) ethylenediamine derivatives; (iii) ring heteroatom-containing organic ligands such as terpyridine derivatives, phenanthroline derivatives, bipyridine derivatives; (iv) catechol derivatives, quinone derivatives, naphthoic acid derivatives, acetylacetonate derivatives (iv) Specifically, for example, an acetylacetonate-based organic ligand such as acetylacetone (here, the "acetylacetonate-based organic ligand" is a large number of transition metal ions via two oxygen atoms (for example,). It means an organic ligand capable of coordination bond (while forming a six-membered ring)) and the like.
  • the terpyridine derivative has a composition represented by the following formula (1).
  • the thickness of the third layer 106b is preferably, for example, about 1 nm or more and 10 nm or less. If the third layer 106b is thicker than 10 nm, the energy barrier becomes too thick to obtain a sufficient tunnel probability, and the amplification of the photocurrent in the photoelectric conversion layer 103b is hindered. Further, if the third layer 106b is thinner than 1 nm, the light is not irradiated and the tunnel current flows even when the band is not bent, so that the photodetection function of the photoelectric conversion layer 103b becomes meaningless.
  • the light receiving member can be used as a photoelectric conversion element by being provided between the hole transport layer and the electron transport layer.
  • (Energy band structure) 5 (a) to 5 (d) show the structure of the energy band of each layer during the operation of the photoelectric conversion element 100 according to the present embodiment.
  • 106A represents the inorganic transition metal ion of the third layer 106b
  • 106B represents the organic ligand of the third layer 106b.
  • the energy level of the conduction band of the third layer 106b is higher on the positive electrode layer 101 side than the Fermi level of the positive electrode layer 101, as shown in FIG. 5 (a). , The current from the positive electrode layer 101 to the negative electrode layer 102 is blocked.
  • the core of the core-shell particles 10 constituting the second layer 105 absorbs the light, the wavelength in the visible light Convert.
  • the perovskite structure absorbs the wavelength-converted light to generate electrons e and holes h, the electrons e move to the conduction band E c2 , and the holes h move to the valence band E v2 (FIG. 5 (b). )).
  • the second layer 105, and the third layer 106b are in the relationship of E c3 > E c2 > E c1 , the second layer.
  • the electrons e generated in the layer 105 and transferred to the conduction band of the same layer are transferred to the conduction band E c1 of the first layer 104a, which is in a lower energy state.
  • the energy levels E v1 , E v2 , and E v3 of the valence band of the first layer 104a, the second layer 105, and the third layer 106b are E v2 > E v1 layer and E v2 > E v3 . Therefore, as shown in FIG. 5 (c), the holes generated in the second layer and transferred to the valence band are relatively high (low for holes) as compared with the first and third layers. It is trapped in the valence band of the second layer, which is in the energy state.
  • the potential energy of electrons decreases in the vicinity of the valence band of the second layer, and the energy level of the conduction band decreases. .. Since the energy level of the conduction band decreases as it is closer to the second layer in which holes are trapped, the energy level of the conduction band of the third layer is lower on the second layer side and on the positive electrode layer side. It has a sharp shape. Therefore, for the electrons existing in the positive electrode layer 101, the energy barrier of the third layer becomes thin, and as shown in FIG. 5D, it becomes possible to tunnel to the negative electrode layer side.
  • the photoelectric conversion element of this modification can realize a large amplification of the current directly generated by the irradiated light.
  • the method for producing the core-shell particles 10 of the present disclosure includes an inorganic nanoparticle synthesis step and a coating layer forming step.
  • the inorganic nanoparticles 11 are synthesized.
  • the method for synthesizing the inorganic nanoparticles 11 is not particularly limited, and examples thereof include a precipitation method and a hydrothermal synthesis method.
  • Ln (lanthanoid) oxides e.g., Er 2 O 3, Tm 2 O 3, Ho 2 O 3, Yb 2 O 3 or Ln halide, for example, ErCl 3, ErF 3 , TmCl 3 , TmF 3 , HoCl 3 , HoF 3, etc. are used to synthesize trifluoroacetate.
  • Inorganic nanoparticles 11 are obtained by cooling the solution after the reaction, adding an organic solvent such as ethanol if necessary, and then centrifuging to separate the inorganic nanoparticles 11.
  • the coating layer 12 is formed on the inorganic nanoparticles 11 obtained in the inorganic nanoparticles synthesis step.
  • the method for forming the coating layer 12 is not particularly limited, and examples thereof include a precipitation method and a hydrothermal synthesis method.
  • the inorganic nanoparticles 11 are reacted with a solution containing cesium oleate synthesized from cesium carbonate and lead halide (PbX 2).
  • the temperature is 120 to 200 ° C. and the atmosphere is nitrogen.
  • the solution after the reaction is cooled and the fine particles are separated by centrifugation.
  • Core-shell particles can be obtained by firing the separated fine particles (for example, 200 ° C. to 300 ° C.).
  • (Manufacturing method of photoelectric conversion element) 6 (a) to 6 (e) are cross-sectional views of the object to be processed in the manufacturing process of the photoelectric conversion element 100.
  • the photoelectric conversion element 100 can be manufactured mainly by the following procedure.
  • a base material provided with the negative electrode layer 102 for forming the photoelectric conversion layer 103 is prepared.
  • an electrode member that functions as a negative electrode layer and has transparent conductivity is used.
  • the buffer layer 107 functions as an electron transport layer or a hole blocking layer.
  • the buffer layer 107 can be formed by applying a solution of a material to the negative electrode layer 102 by using a spin coating method or the like, and heating (drying) the solution. This heating may be performed, for example, at about 120 to 450 ° C. for about 10 to 60 minutes.
  • the material coating conditions (coating time, etc.) may be adjusted so that the thickness of the buffer layer 107 is, for example, about 1 to 100 nm.
  • the first layer 104a can also be formed by applying a solution of the material and heating it, similarly to the buffer layer 107. This heating may also be performed, for example, at about 120 to 450 ° C. for about 10 to 60 minutes.
  • the material coating conditions (coating time, etc.) may be adjusted so that the thickness of the first layer 104a is, for example, about 10 to 1000 nm, preferably about 50 to 500 nm.
  • the surface of the particles 20 of the inorganic semiconductor contains the raw material of the perovskite structure as the main component and the core-shell particles 10 by using a spin coating method, a dip method, or the like.
  • the second layer 105 may be formed by applying a solution to be coated and heating it. This heating may be performed, for example, at about 40 to 100 ° C. for about 5 to 10 minutes.
  • the thickness of the second layer 105 is adjusted according to the material coating conditions (coating time, etc.). By using a material in a liquid state, a thin film can be formed under conditions having a smaller environmental load than in the case of using an inorganic semi-material in a solid state such as silicon.
  • the third layer 106 may be formed on the second layer 105. More specifically, by using a spin coating method, a dip method, or the like, a material containing a p-type organic semiconductor or an inorganic semiconductor as a main component is vapor-deposited or a solution of the material is applied onto the second layer 105. It is preferable to form the three layers 106. In reality, when the second layer 105 is formed, the gaps between the particles 20 of the inorganic semiconductors of the first layer 104a are almost filled. Therefore, the third layer 106 can be formed in a film shape mainly on the exposed portion of the surface of the second layer 105 on the positive electrode layer 101 side (opposite to the negative electrode layer 102).
  • the application and heating of the solution may be performed in two steps. That is, in the first step, a solution of an inorganic transition metal such as europium may be applied and heated, and then in the second step, a solution of an organic ligand such as terpyridine may be applied and heated.
  • the third layer 106b is composed of a layer 106A made of an inorganic transition metal and a layer made of an organic ligand in order from the second layer 105 side. It has a structure in which 106B, is laminated.
  • the photoelectric conversion element 100 of the present embodiment is formed by forming an electrode member (positive electrode layer) 101 that functions as a positive electrode and has conductivity on the third layer 106. Can be obtained.
  • the layered first layer 104b can also be manufactured by the same method as above.
  • the first layer 104b can be formed by a known method such as thin film deposition.
  • the long-wavelength light such as near-infrared light absorbed by the core inorganic nanoparticles 11 is converted into short-wavelength light such as visible light and ultraviolet light.
  • the converted light is reabsorbed by the inorganic perovskite-type material of the coating layer 12 serving as a shell and converted into electric power. Therefore, according to the core-shell particles 10 of the present embodiment, it is possible to generate photoelectric conversion or electromotive force from light having a long wavelength, which was difficult in the past.
  • the core-shell particles 10 of the present embodiment have a core-shell structure, so that energy transfer between close inorganic nanoparticles and an inorganic perovskite-type substance can be reliably and efficiently performed, and energy loss can be reduced. Therefore, even if the light absorbed by the core is weak light, excellent photosensitization characteristics can be realized.
  • core-shell particles were produced under the following conditions.
  • Inorganic nanoparticles which are the core of core-shell particles, were synthesized by the precipitation method. Specifically, 1 mmol of Er oxide (Er 2 O 3 ) was dissolved in 5 mL of trifluoroacetic acid and 5 mL of water, and the mixture was heated and stirred at 80 ° C. under reduced pressure. 2.5 mmol of sodium trifluoroacetate (NaCOOCF 3 ) was added to the powder obtained by evaporation to dryness, and the mixture was dissolved in 15 mL of oleylamine. After stirring at 100 ° C. for 30 minutes under reduced pressure, nitrogen was introduced into the system, and the mixture was stirred at 330 ° C. for 1 hour. After cooling to 80 ° C., ethanol 20mL was added to separate the NaErF 4 nanoparticles by centrifugation.
  • Er 2 O 3 Er oxide
  • NaCOOCF 3 sodium trifluoroacetate
  • CsCO 3 cesium carbonate
  • Formation of the coating layer to NaErF 4 nanoparticles synthesized above was carried out by precipitation. Specifically, 0.4 mmol of PbBr 2 and NaErF 4 nanoparticles were dispersed in 10 mL of octadecene, and the mixture was stirred at 120 ° C. for 1 hour under a nitrogen atmosphere. Further, 1 mL of oleic acid and oleylamine were added. After raising the temperature to 180-190 ° C., 0.85 mL of cesium oleate was added and the mixture was stirred for 1 hour. After cooling, the nanoparticles were separated by centrifugation and calcined at 200 ° C. for 30 minutes to obtain one layer of core-shell particles (particle size 25 nm). The particle size of the core-shell particles was obtained from the SEM image obtained from the SEM observation.
  • Nanoparticle 1 Inorganic nanoparticles were synthesized by the precipitation method. Specifically, 1 mmol of Er oxide (Er 2 O 3 ) was dissolved in 5 mL of trifluoroacetic acid and 5 mL of water, and the mixture was heated and stirred at 80 ° C. under reduced pressure. 2.5 mmol of sodium trifluoroacetate (NaCOOCF 3 ) was added to the powder obtained by evaporation to dryness, and the mixture was dissolved in 15 mL of oleylamine. After stirring at 100 ° C. for 30 minutes under reduced pressure, nitrogen was introduced into the system, and the mixture was stirred at 330 ° C. for 1 hour. After cooling to 80 ° C., ethanol 20mL was added to separate the NaErF 4 nanoparticles (particle size 20 nm) by centrifugation.
  • Er 2 O 3 Er oxide
  • NaCOOCF 3 sodium trifluoroacetate
  • the photoelectric conversion element was manufactured under the following conditions in accordance with the above-mentioned manufacturing method of the photoelectric conversion element.
  • Example 1 As a member provided on the substrate and used as a negative electrode layer, a member substantially made of antimony-doped indim (ATO) was prepared. To one surface of the member, ethanol (C 2 H 5 OH) solution 200 ⁇ l containing 10mM concentration of europium chloride hydrate (EuCl 3 ⁇ 6H 2 O) , was spin coated at a rotational speed of 3000 rpm. Subsequently, the spin-coated mixed solution was heated at 120 ° C. for 10 minutes and then at 450 ° C. for 1 hour in order to form a buffer layer substantially composed of europium oxide (Eu 2 O 3).
  • ethanol (C 2 H 5 OH) solution 200 ⁇ l containing 10mM concentration of europium chloride hydrate (EuCl 3 ⁇ 6H 2 O) was spin coated at a rotational speed of 3000 rpm. Subsequently, the spin-coated mixed solution was heated at 120 ° C. for 10 minutes and then at 450
  • lead iodide (PbI 2 ) was 1M
  • cesium iodide (CsI) was 1M
  • core-shell particles 1 were 8% by weight (w%) at a concentration of 0.5M or less.
  • 100 ⁇ l of a mixed solution of dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) was spin-coated at a rotation speed of 5000 rpm.
  • the spin-coated mixed solution was heated at 185 ° C. for 15 minutes to form a second layer containing the core-shell particles of the present invention.
  • IPA isopropyl alcohol
  • EuCl 3 europium chloride
  • IPA isopropyl alcohol
  • the positive electrode layer (Ag) is formed (deposited) on the opposite side of the negative electrode layer and in contact with the third layer with the laminate composed of the first layer, the second layer, and the third layer sandwiched between them.
  • the photoelectric conversion element of Example 1 was manufactured.
  • Example 2 A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that the core-shell particles 2 were used instead of the core-shell particles 1.
  • Example 3 A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that a layer made of BCP (thickness: 30 nm) was formed as the third layer by a vacuum vapor deposition method.
  • Example 4 A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that a layer (thickness 100 nm) substantially composed of Spiro-OMeTAD was formed as the third layer.
  • the light absorption spectrum of the core-shell particles 2 was measured with an absolute PL quantum yield measuring device manufactured by Hamamatsu Photonics.
  • SEM observation A cross section of the photoelectric conversion element of Example 2 was observed at a magnification of 150,000 times using a scanning electron microscope manufactured by Hitachi High-Technologies Corporation, and an SEM image was obtained.
  • the optical response characteristics were measured with respect to Example 2.
  • the voltage applied between the positive electrode layer and the negative electrode layer of the photoelectric conversion element was set to ⁇ 0.5 V.
  • the wavelength and irradiance of the light irradiating the photoelectric conversion element were set to 808 nm and 10 mW / cm 2 , respectively.
  • FIG. 7 is a graph showing the spectrum of the light wavelength-converted by irradiating the photoelectric conversion elements of the core-shell particles 1 and 2 with near-infrared light having a wavelength of 980 nm.
  • the horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s). Since the peaks are shown at three wavelengths (around 550 nm, about 650 nm, and about 800 nm), it can be seen that the irradiated near-infrared light is converted into these three wavelengths.
  • the broken line shows the spectrum when the coating layer CsPbBr 3 is two layers (core-shell particles 2), and the dotted line shows the spectrum when the coating layer CsPbBr 3 is one layer (core-shell particles 1).
  • the spectrum of only NaErF4 (solid line) of the nanoparticles 1 is also shown.
  • the emission intensity is remarkably increased by the coating layer CsPbBr 3 , and further increased by increasing the thickness of the layer. This is a result showing that the coating layer CsPbBr 3 suppresses the deactivation, whereas the light emission is deactivated by the thermal vibration of the chain organic molecule in the case of only the inorganic nanoparticles.
  • the position of the peak can be adjusted by changing the material, shape, size, etc. of the core-shell particles.
  • FIG. 8 is a graph showing the change in absorption rate due to the difference in the structure of the core-shell particles in the second layer.
  • the horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s).
  • the solid line shows the result of the core-shell particle 2.
  • the absorption rate (dashed line) of the nanoparticles of NaYF 4 containing 2% of Er ions is also shown. Since the core-shell particles 2 contain 100% of Er ions, the intensity of the irradiated near-infrared light is about one-seventh lower than that of general up-conversion nanoparticles (using 2% of Er). It has become. It is considered that the near-infrared light corresponding to the lowered intensity is absorbed by the core (inorganic nanoparticles) of the core-shell particles.
  • FIG. 9 is an SEM image of a cross section of the photoelectric conversion element manufactured as an example. It can be seen that a structure in which layers consisting of a first layer, a second layer, and a third layer are laminated in order is formed, and a current path connecting the Ag and ATO electrodes is formed.
  • FIG. 10 is a graph showing the spectrum of the light wavelength-converted by irradiating the second layer of the photoelectric conversion element of Example 2 with near-infrared light having a wavelength of 980 nm.
  • the horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s).
  • the perovskite layer here, CsPbI 3
  • the light of 980 nm is shown in FIG. 7 by containing the core-shell particles 2. It can be converted to visible light. Since light emission derived from CsPbI 3 was observed near 700 nm, it is shown that CsPbI 3 absorbed the visible light wavelength-converted by the core-shell particles 2.
  • FIG. 11 is a graph showing the response speed of the photocurrent obtained by irradiating the photoelectric conversion element of Example 2 with light at a predetermined timing.
  • the horizontal axis of the graph shows the elapsed time (s), and the vertical axis of the graph shows the photocurrent (A / cm 2 ).
  • the photocurrent shows an instantaneous rise and fall according to the on / off of the voltage, and it can be seen that a sufficient response speed can be realized.
  • the photoelectric conversion efficiency was 75% and the sensitivity was 0.49 A / W.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

A core-shell particle (10) has a core-shell structure comprising an inorganic nanoparticle (11) having a light wavelength conversion ability and a coating layer (12) formed on the surface of the inorganic nanoparticle (11) and composed of an inorganic perovskite-type substance.

Description

コアシェル粒子、複合体、光電変換素子用受光部材、および光電変換素子Core-shell particles, complexes, light-receiving members for photoelectric conversion elements, and photoelectric conversion elements
 本発明は、コアシェル粒子、複合体、光電変換素子用受光部材、および光電変換素子に関する。本願は、2020年5月28日に、日本に出願された特願2020-093726号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to core-shell particles, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element. The present application claims priority based on Japanese Patent Application No. 2020-093726 filed in Japan on May 28, 2020, the contents of which are incorporated herein by reference.
 太陽電池やフォトダイオードといった光電変換素子は、各種分野において広く用いられている。しかしながら、従来の光電変換素子は、近赤外領域の光に対して、可視光領域の光よりも検出感度が弱いという問題がある。近赤外領域の光についても可視光と同様に検出感度を上げることができれば、例えば、太陽電池においては、光電変換効率を向上することが可能となる。 Photoelectric conversion elements such as solar cells and photodiodes are widely used in various fields. However, the conventional photoelectric conversion element has a problem that the detection sensitivity is weaker than the light in the visible light region with respect to the light in the near infrared region. If the detection sensitivity of light in the near-infrared region can be increased in the same manner as visible light, for example, in a solar cell, the photoelectric conversion efficiency can be improved.
 特許文献1では、発電層である有機無機複合ペロブスカイト型化合物を担持させるための無機多孔質としてアップコンバージョンナノ粒子を用いた技術が開示されている。ここで、アップコンバージョンナノ粒子とは、赤外線等の長波長の光を可視光や紫外線などの短波長の光へ変換する機能を有する、粒径がnmオーダーの粒子をいう。この技術は、無機コアシェル粒子が吸収した近赤外光等の長波長の光を、可視光・紫外線等の短波長の光に変換し、これを有機無機複合ペロブスカイト結晶に再吸収させることにより、エネルギー励起し、起電力を生じさせるものである。 Patent Document 1 discloses a technique using up-conversion nanoparticles as an inorganic porous material for supporting an organic-inorganic composite perovskite-type compound which is a power generation layer. Here, the up-conversion nanoparticles refer to particles having a particle size on the order of nm, which has a function of converting long-wavelength light such as infrared rays into short-wavelength light such as visible light and ultraviolet rays. This technology converts long-wavelength light such as near-infrared light absorbed by inorganic core-shell particles into short-wavelength light such as visible light and ultraviolet light, and reabsorbs this into organic-inorganic composite perovskite crystals. It excites energy and generates electromotive force.
 非特許文献1では、無機ナノ粒子(Lanthanide-doped NPS)と、無機ペロブスカイト量子ドット(CaPbX(X=Cl,Br,I)PeQDs)とを、互いに離間して混在させた状態で、無機ナノ粒子のアップコンバージョン機能を利用した技術が開示されている。この技術は、無機ナノ粒子が近赤外光励起により発生させた可視光を、無機ペロブスカイト量子ドットで再吸収させ発光させるというものである。 In Non-Patent Document 1, inorganic nanoparticles (Lantande-dropped NPS) and inorganic perovskite quantum dots (CaPbX 3 (X = Cl, Br, I) PeQDs) are mixed in a state of being separated from each other, and the inorganic nanoparticles are nano-sized. A technique utilizing the particle up-conversion function is disclosed. In this technique, visible light generated by near-infrared light excitation by inorganic nanoparticles is reabsorbed by inorganic perovskite quantum dots and emitted.
日本国特開2015-92563号公報Japanese Patent Application Laid-Open No. 2015-92563
 上記文献で開示されている構成では、波長変換後の光をペロブスカイトに再吸収させる際のエネルギーロスが避けられないため、吸収させる光が弱い場合には、十分な起電力や発光を発生させることは難しい。 In the configuration disclosed in the above document, energy loss is unavoidable when the light after wavelength conversion is reabsorbed by the perovskite. Therefore, when the light to be absorbed is weak, sufficient electromotive force or light emission is generated. Is difficult.
 従来の希土類イオンを含むアップコンバージョンナノ粒子では、発光を担うイオンの濃度は1から5%程度にする必要があり、発光を担うイオンの濃度を高濃度にすると発光が消光する。これは、高濃度条件では発光種間で交差緩和が生じ、ナノ粒子表面に被覆された鎖状有機分子の熱振動によりエネルギーが失活するためである。そのため、光吸収量が非常に小さく、強い光でないとアップコンバージョンは生じない。 In conventional up-conversion nanoparticles containing rare earth ions, the concentration of ions responsible for light emission needs to be about 1 to 5%, and when the concentration of ions responsible for light emission is increased, the light emission is extinguished. This is because under high concentration conditions, cross-relaxation occurs between the luminescent species, and the energy is deactivated by the thermal vibration of the chain-like organic molecules coated on the surface of the nanoparticles. Therefore, the amount of light absorption is very small, and up-conversion does not occur unless the light is strong.
 本発明は上記事情に鑑みてなされたものであり、長波長の弱い光を用いて高い可視光増感特性を得ることを可能とすることが本発明の課題である。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to make it possible to obtain high visible light sensitizing characteristics by using weak light having a long wavelength.
 上記課題を解決するため、本発明は、コアシェル粒子、複合体、光電変換素子用受光部材、および光電変換素子を提供する。そして本発明は以下の手段を採用している。 In order to solve the above problems, the present invention provides core-shell particles, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element. The present invention employs the following means.
(1)本発明の一態様に係るコアシェル粒子は、光の波長変換能力を有する無機ナノ粒子と、前記無機ナノ粒子の表面に形成され、無機ペロブスカイト型物質からなる被覆層と、を備え、コアシェル構造を有する。 (1) The core-shell particles according to one aspect of the present invention include inorganic nanoparticles having a wavelength conversion ability of light and a coating layer formed on the surface of the inorganic nanoparticles and made of an inorganic perovskite-type substance. Has a structure.
(2)前記(1)に記載のコアシェル粒子において、前記無機ナノ粒子が、希土類元素を含むことが好ましい。 (2) In the core-shell particles according to (1), it is preferable that the inorganic nanoparticles contain a rare earth element.
(3)本発明の一態様に係る複合体は、ペロブスカイト構造体を主成分として含み、さらに前記(1)または(2)のいずれかに記載のコアシェル粒子を含む凝集体または薄膜である。 (3) The complex according to one aspect of the present invention is an aggregate or a thin film containing a perovskite structure as a main component and further containing the core-shell particles according to any one of (1) and (2) above.
(4)本発明の一態様に係る光電変換素子用受光部材は、前記(3)に記載の複合体によって構成される層と、有機あるいは無機半導体(金属錯体を含む)を主成分として含む凝集体または薄膜によって構成される層と、を積層してなる。 (4) The light receiving member for a photoelectric conversion element according to one aspect of the present invention is a coagulation containing a layer composed of the composite according to (3) above and an organic or inorganic semiconductor (including a metal complex) as a main component. It is made by laminating a layer composed of an aggregate or a thin film.
(5)本発明の一態様に係る光電変換素子は、前記(4)の光電変換素子用受光部材を、ホール輸送層と電子輸送層との間に備えてなる。 (5) The photoelectric conversion element according to one aspect of the present invention includes the light receiving member for the photoelectric conversion element according to (4) above between the hole transport layer and the electron transport layer.
(6)本発明の一態様に係る光電変換素子は、無機半導体を主成分として含む複数の粒子またはその凝集体あるいは薄膜によって構成される第一層と、前記第一層の表面に形成され、請求項3記載の複合体によって構成される第二層と、有機あるいは無機半導体(金属錯体を含む)を主成分として含む複数の粒子またはその凝集体あるいは薄膜によって構成される第三層と、を順に積層してなり、伝導帯において、前記第二層のエネルギー準位が前記第一層のエネルギー準位より高く、かつ前記第三層のエネルギー準位が前記第二層のエネルギー準位より高い。 (6) The photoelectric conversion element according to one aspect of the present invention is formed on the surface of a first layer composed of a plurality of particles containing an inorganic semiconductor as a main component, an aggregate thereof, or a thin film, and the surface of the first layer. A second layer composed of the composite according to claim 3 and a third layer composed of a plurality of particles containing an organic or inorganic semiconductor (including a metal complex) as a main component or an aggregate or a thin film thereof. In the conduction band, the energy level of the second layer is higher than the energy level of the first layer, and the energy level of the third layer is higher than the energy level of the second layer. ..
(7)前記(6)に記載の光電変換素子は、前記第三層が有機金属錯体を主成分として含み、価電子帯における前記第二層のエネルギー準位が、前記第三層のエネルギー準位より高くてもよい。 (7) In the photoelectric conversion element according to (6), the third layer contains an organometallic complex as a main component, and the energy level of the second layer in the valence band is the energy level of the third layer. It may be higher than the rank.
 本発明によれば、従来、数%であった発光種のドーパント濃度を、表面でペロブスカイト被覆層を形成することで、100%まで増加させることができる。これにより、長波長の弱い光を用いて高い可視光増感特性を得ることができる。 According to the present invention, the dopant concentration of a luminescent species, which was conventionally several%, can be increased to 100% by forming a perovskite coating layer on the surface. As a result, high visible light sensitization characteristics can be obtained by using weak light with a long wavelength.
 本発明によれば、長波長の弱い光を用いて、高い可視光増感特性を得ることを可能とする、コアシェル粒子、複合体、光電変換素子用受光部材、および光電変換素子を提供することができる。 According to the present invention, there are provided a core shell particle, a composite, a light receiving member for a photoelectric conversion element, and a photoelectric conversion element capable of obtaining high visible light sensitizing characteristics by using weak light having a long wavelength. Can be done.
本発明の一実施形態に係るコアシェル粒子の断面図である。It is sectional drawing of the core shell particle which concerns on one Embodiment of this invention. 図1のコアシェル粒子を備えた光電変換素子の断面図である。It is sectional drawing of the photoelectric conversion element provided with the core-shell particles of FIG. 図2の光電変換素子の動作中における、各層のエネルギーバンドの構造を示している。The structure of the energy band of each layer during the operation of the photoelectric conversion element of FIG. 2 is shown. 図1のコアシェル粒子を備えた光電変換素子の変形例の断面図である。It is sectional drawing of the modification of the photoelectric conversion element provided with the core-shell particles of FIG. 図4の光電変換素子の動作中における、各層のエネルギーバンドの構造を示している。The structure of the energy band of each layer during the operation of the photoelectric conversion element of FIG. 4 is shown. 図2の光電変換素子の製造過程における被処理体の断面図である。It is sectional drawing of the object to be processed in the manufacturing process of the photoelectric conversion element of FIG. コアシェル粒子1、2およびナノ粒子1の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of a core- shell particle 1, 2 and a nanoparticle 1. 第二層のコアシェル粒子の構造の違いによる吸収率の変化を示すグラフである。It is a graph which shows the change of the absorption rate by the difference in the structure of the core-shell particles of the second layer. 実施例2として製造した光電変換素子の断面のSEM画像である。It is an SEM image of the cross section of the photoelectric conversion element manufactured as Example 2. 実施例2の光電変換素子の第二層で波長変換された光を吸収後生じた発光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the light emission generated after absorbing the wavelength-converted light in the second layer of the photoelectric conversion element of Example 2. FIG. 光電変換素子において得られる光電流の応答速度を示すグラフである。It is a graph which shows the response speed of the photocurrent obtained in the photoelectric conversion element.
 以下、本発明を適用した実施形態に係るコアシェル粒子、複合体、光電変換素子用受光部材、および光電変換素子について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the core-shell particles, the composite, the light receiving member for the photoelectric conversion element, and the photoelectric conversion element according to the embodiment to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following explanation, in order to make the features easy to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. No. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
(コアシェル粒子)
 図1は、本発明の一実施形態に係るコアシェル粒子10の構成を、模式的に示す断面図である。コアシェル粒子10は、主に、無機ナノ粒子11と、その被覆層12とを備え、コアシェル構造を有する。
(Core shell particles)
FIG. 1 is a cross-sectional view schematically showing the configuration of core-shell particles 10 according to an embodiment of the present invention. The core-shell particles 10 mainly include inorganic nanoparticles 11 and a coating layer 12 thereof, and have a core-shell structure.
 無機ナノ粒子11は、粒径(直径)11aが10nm~100nm程度の粒子であって、光の波長変換能力を有する。ここでの光の波長変換能力は、入射光の波長を変換して、入射光と異なる波長の光を出射する能力を意味する。本実施形態では、入射した近赤外光が、その波長が変換されて可視光になって出射される場合について、例に挙げて説明する。 The inorganic nanoparticles 11 are particles having a particle size (diameter) 11a of about 10 nm to 100 nm and have a wavelength conversion ability of light. The wavelength conversion ability of light here means the ability to convert the wavelength of incident light and emit light having a wavelength different from that of incident light. In the present embodiment, a case where the incident near-infrared light is emitted as visible light after its wavelength is converted will be described by way of an example.
 無機ナノ粒子11の主な材料としては、例えば、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ネオジウム(Nd)、ホルミウム(Ho)、プラセオジウム(Pr)、ガドリニウム(Gd)、ユウロピウム(Eu)、テルビウム(Tb)、サマリウム(Sm)、セリウム(Ce)等の希土類元素、あるいはそれらの化合物のうち、少なくとも一つを含むものが挙げられる。 The main materials of the inorganic nanoparticles 11 include, for example, erbium (Er), thulium (Tm), ytterbium (Yb), neodymium (Nd), formium (Ho), placeodium (Pr), gadrinium (Gd), and europium ( Examples thereof include rare earth elements such as Eu), terbium (Tb), thulium (Sm), and cerium (Ce), or those containing at least one of these compounds.
 被覆層12は、無機ナノ粒子11の表面に形成され、無機ペロブスカイト型物質からなる。一般的な希土類元素のアップコンバージョンナノ粒子の表面には、複数の鎖状有機分子(オレイルアミン、オレイン酸など)で被覆されているので、鎖状有機分子の熱振動を介した発光の散逸が起こる。一方、本開示のコアシェル粒子10は、被覆層12が無機ナノ粒子11の表面を被覆しているので、一般的なアップコンバージョンナノ粒子のように鎖状有機物(Organic ligand)の熱振動が無く、熱振動を介した発光の散逸を抑えることができる。無機ナノ粒子11の表面に対する被覆層12の被覆率は、概ね50%以上であればよく、100%であれば好ましい。 The coating layer 12 is formed on the surface of the inorganic nanoparticles 11 and is made of an inorganic perovskite type substance. Since the surface of the up-conversion nanoparticles of a general rare earth element is coated with a plurality of chain-like organic molecules (oleylamine, oleic acid, etc.), the emission of light emission occurs through the thermal vibration of the chain-like organic molecules. .. On the other hand, in the core-shell particles 10 of the present disclosure, since the coating layer 12 covers the surface of the inorganic nanoparticles 11, there is no thermal vibration of chain organic substances (Organic liquid) unlike general up-conversion nanoparticles. Dissipation of light emission via thermal vibration can be suppressed. The coverage of the coating layer 12 on the surface of the inorganic nanoparticles 11 may be approximately 50% or more, preferably 100%.
 被覆層12の厚み12aは、無機ナノ粒子の粒径11aの5%以上であればよく、無機ナノ粒子の表面にわたってほぼ一様であることが好ましい。被覆層12の厚み12aが厚いほうが、光電変換効率が向上する。 The thickness 12a of the coating layer 12 may be 5% or more of the particle size 11a of the inorganic nanoparticles, and is preferably substantially uniform over the surface of the inorganic nanoparticles. The thicker the thickness 12a of the coating layer 12, the higher the photoelectric conversion efficiency.
 被覆層12を構成する無機ペロブスカイト型物質の材料としては、三種類の無機元素からなる複合体、例えば、CsPbX等(X=Cl、Br、I)が挙げられる。Xはハロゲンイオンのうち少なくとも一つを含む。例えば、無機ナノ粒子11として、ErYFやEr、YbドープNaYF(NaYF4:Er,Yb)を用いる場合、CsPbBrあるいはCsPbIを用いると、光電変換効率が向上するので好ましい。Tm、YbドープNaYF(NaYF4:Tm,Yb)を用いる場合、CsPbClを用いると、光電変換効率が向上するので好ましい。 Examples of the material of the inorganic perovskite-type substance constituting the coating layer 12 include a composite composed of three kinds of inorganic elements, for example, CsPbX 3 and the like (X = Cl , Br , I ). X contains at least one of the halogen ions. For example, when ErYF 4 or Er, Yb-doped NaYF 4 (NaYF4: Er, Yb) is used as the inorganic nanoparticles 11, it is preferable to use CsPbBr 3 or CsPbI 3 because the photoelectric conversion efficiency is improved. When Tm, Yb-doped NaYF 4 (NaYF4: Tm, Yb) is used, it is preferable to use CsPbCl 3 because the photoelectric conversion efficiency is improved.
 図1(b)は、図1(a)に示すコアシェル粒子10の変形例を示している。被覆層12は、図1(b)に示すように二層を重ねて形成してもよく、三層以上形成してもよい。 FIG. 1 (b) shows a modified example of the core-shell particle 10 shown in FIG. 1 (a). As shown in FIG. 1B, the covering layer 12 may be formed by stacking two layers, or may be formed by forming three or more layers.
(光電変換素子)
 図2(a)は、コアシェル粒子10を備えた光電変換素子100の断面図である。光電変換素子100は、主に、正極層(正極部材)101、と、負極層(負極部材)102と、それらの間に挟まれた光電変換層103と、で構成されている。
(Photoelectric conversion element)
FIG. 2A is a cross-sectional view of the photoelectric conversion element 100 provided with the core-shell particles 10. The photoelectric conversion element 100 is mainly composed of a positive electrode layer (positive electrode member) 101, a negative electrode layer (negative electrode member) 102, and a photoelectric conversion layer 103 sandwiched between them.
 負極層102と光電変換層103との間には、伝導帯のエネルギー準位としてEcbが、負極層102と光電変換層103との伝導帯のエネルギー準位としてEc2とEc3との間に有する(すなわちEc2<Ecb<Ec3となる)バッファ層107が挟まれていてもよい。バッファ層107の構成材料としては、例えば、酸化ユーロピウム(Eu)、酸化チタン、酸化スズ等が挙げられる。 Between the negative electrode layer 102 and the photoelectric conversion layer 103, E cb is used as the energy level of the conduction band, and between E c2 and E c3 as the energy level of the conduction band between the negative electrode layer 102 and the photoelectric conversion layer 103. The buffer layer 107 having (that is, E c2 <E cb <E c3 ) may be sandwiched between the two. Examples of the constituent material of the buffer layer 107 include europium oxide (Eu 2 O 3 ), titanium oxide, tin oxide and the like.
 光電変換層103に光を取り込むため、負極層102は、光透過性を有する材料、例えば、アンチモンドープ酸化インジム(ATO)、酸化インジウムスズ(ITO)、酸化亜鉛、酸化スズ、フッ素ドープ酸化インジウム(FTO)等で構成されているものがよい。本実施形態の光電変換層103の製造過程においては、熱処理を行う必要があるため、負極層102の材料としては、これらの材料の中でも耐熱性を有するATOが好ましい。 In order to take light into the photoelectric conversion layer 103, the negative electrode layer 102 is made of a light-transmitting material such as antimony-doped indium oxide (ATO), indium tin oxide (ITO), zinc oxide, tin oxide, and fluorine-doped indium oxide (ATO). It is preferable that it is composed of FTO) or the like. Since it is necessary to perform heat treatment in the manufacturing process of the photoelectric conversion layer 103 of the present embodiment, ATO having heat resistance is preferable as the material of the negative electrode layer 102.
 正極層101は、透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、金(Au)、銀(Ag)、アルミニウム(Al)、亜鉛(Zn)等の金属、及びそれらのうち2つ以上の合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。透明な正極層101の材料としては、ITOが挙げられる。 The positive electrode layer 101 does not have to be transparent, and a metal, a conductive polymer, or the like can be used as the electrode material of the electrode. Specific examples of the electrode material include metals such as gold (Au), silver (Ag), aluminum (Al), and zinc (Zn), and two or more alloys thereof, graphite, graphite interlayer compounds, polyaniline and the like. Examples include derivatives, polythiophene and derivatives thereof. Examples of the material of the transparent positive electrode layer 101 include ITO.
 図2(a)に示すように、光電変換層103は、主に、無機半導体を主成分として含む複数の粒子(以下、「無機半導体の粒子」と記すこともある。)20によって構成される第一層104aを有し、第一層104aの表面に形成され、ペロブスカイト構造体を主成分として含み、さらにコアシェル粒子10を含む凝集体または薄膜(複合体)によって構成される第二層105と、有機あるいは無機半導体(金属錯体を含む)を主成分として含む複数の粒子またはその凝集体あるいは薄膜によって構成される第三層106と、を積層してなるとよい。つまり、光電変換素子100は、正極層101、第三層106、第二層105、第一層104、負極層102の順に並び、少なくとも、正極層101から負極層102への電流パスが形成されるように構成されているとよい。ここで、「無機半導体を主成分として含む」とは、無機半導体の粒子20中において、無機半導体が本発明での機能を発揮可能な量を含むことを意味し、具体的には例えば、無機半導体の含有量が50体積%超であることをいう。好ましくは、90体積%超であり、より好ましくは、実質的に無機半導体からなることがよい。「ペロブスカイト構造体を主成分として含む」とは、第二層105の全質量に対して、ペロブスカイト構造体が本発明での機能を発揮可能な量を含むことを意味し、具体的には例えば、ペロブスカイト構造体の含有量が、50体積%超であることをいう。好ましくは、70体積%以上である。さらに「有機あるいは無機半導体(金属錯体を含む)を主成分として含む」とは、第三層106の全質量に対し、コアシェル粒子10を含む凝集体または薄膜(複合体)が本発明での機能を発揮可能な量を含むことを意味し、具体的には例えば、コアシェル粒子10を含む凝集体または薄膜(複合体)の含有量が50質量%超であることをいう。好ましくは、90体積%超であり、より好ましくは、実質的に有機あるいは無機半導体(金属錯体を含む)からなることがよい。形成される電流パスの数は多いほど好ましいが、隣接する電流パス同士は、電気的に、互いに接続されていてもよいし、接続されていなくてもよい。なお、本実施形態における「層」は、一回または複数回の成膜プロセスで形成される膜を意味しており、平坦なものに限定されることはなく、また、一体でなくてもよいものとする。 As shown in FIG. 2A, the photoelectric conversion layer 103 is mainly composed of a plurality of particles (hereinafter, also referred to as “particles of an inorganic semiconductor”) 20 containing an inorganic semiconductor as a main component. A second layer 105 having a first layer 104a, formed on the surface of the first layer 104a, containing a perovskite structure as a main component, and further composed of an aggregate or a thin film (complex) containing core-shell particles 10. , A third layer 106 composed of a plurality of particles containing an organic or inorganic semiconductor (including a metal complex) as a main component, an aggregate thereof, or a thin film may be laminated. That is, the photoelectric conversion element 100 is arranged in the order of the positive electrode layer 101, the third layer 106, the second layer 105, the first layer 104, and the negative electrode layer 102, and at least a current path from the positive electrode layer 101 to the negative electrode layer 102 is formed. It should be configured so as to. Here, "containing an inorganic semiconductor as a main component" means that the inorganic semiconductor contains an amount capable of exhibiting the function of the present invention in the particles 20 of the inorganic semiconductor, and specifically, for example, an inorganic. It means that the content of the semiconductor is more than 50% by volume. It is preferably more than 90% by volume, and more preferably substantially composed of an inorganic semiconductor. "Containing a perovskite structure as a main component" means that the perovskite structure contains an amount capable of exerting the function in the present invention with respect to the total mass of the second layer 105, specifically, for example. , The content of the perovskite structure is more than 50% by volume. It is preferably 70% by volume or more. Further, "containing an organic or inorganic semiconductor (including a metal complex) as a main component" means that an aggregate or a thin film (composite) containing the core-shell particles 10 has a function in the present invention with respect to the total mass of the third layer 106. It means that the content of the aggregate or the thin film (complex) containing the core-shell particles 10 is more than 50% by mass. It is preferably more than 90% by volume, and more preferably substantially composed of an organic or inorganic semiconductor (including a metal complex). The larger the number of current paths formed, the more preferable, but the adjacent current paths may or may not be electrically connected to each other. The "layer" in the present embodiment means a film formed by one or a plurality of film forming processes, and is not limited to a flat film and may not be integrated. It shall be.
 さらに、三つの層104~106の材料・組成については、伝導帯(LUMO、励起状態)のエネルギー準位が、第一層104、第二層105、第三層106の順で高くなるように決定される。例えば、第一層104については、価電子帯のエネルギー準位を-8eV以上とし、伝導帯のエネルギー準位を-4eV以下とすることができる。このとき、第二層105については、価電子帯のエネルギー準位を-6.0eV以上とし、伝導帯のエネルギー準位を-3eV以下とすることができる。また、第三層106については、伝導帯のエネルギー準位を-2eV以下とするのが好ましい。 Further, regarding the materials and compositions of the three layers 104 to 106, the energy level of the conduction band (LUMO, excited state) is increased in the order of the first layer 104, the second layer 105, and the third layer 106. It is determined. For example, for the first layer 104, the energy level of the valence band can be -8 eV or more, and the energy level of the conduction band can be -4 eV or less. At this time, for the second layer 105, the energy level of the valence band can be set to −6.0 eV or more, and the energy level of the conduction band can be set to -3 eV or less. Further, for the third layer 106, the energy level of the conduction band is preferably -2 eV or less.
 第一層104aは、負極層102上に形成された複数の無機半導体の粒子20の集合体であり、無機半導体の粒子20間の空隙を複数有する多孔膜である。第二層105に接する無機半導体の粒子20は、負極層102と電気的に接続されるように、負極層102に対し、直接、または他の無機半導体の粒子20を介して間接的に接触している。 The first layer 104a is an aggregate of a plurality of inorganic semiconductor particles 20 formed on the negative electrode layer 102, and is a porous film having a plurality of voids between the particles 20 of the inorganic semiconductor. The particles 20 of the inorganic semiconductor in contact with the second layer 105 are in direct contact with the negative electrode layer 102 or indirectly via the particles 20 of another inorganic semiconductor so as to be electrically connected to the negative electrode layer 102. ing.
 無機半導体の粒子20に含まれる無機半導体としては、吸収波長が、紫外光域に含まれるものであることが好ましく、例えば、酸化チタン、酸化亜鉛等が挙げられる。第一層104の厚みは、約10nm以上1000nm以下であることが好ましく、さらに約50nm以上500nm以下であることがより好ましい。 The inorganic semiconductor contained in the particles 20 of the inorganic semiconductor preferably has an absorption wavelength in the ultraviolet light region, and examples thereof include titanium oxide and zinc oxide. The thickness of the first layer 104 is preferably about 10 nm or more and 1000 nm or less, and more preferably about 50 nm or more and 500 nm or less.
 第二層105は、その製造段階において、無機半導体の粒子20の表面のうち露出している部分、すなわち、負極層102、無機半導体の粒子20のいずれとも接していない部分を覆う薄膜である。第二層105は、この露出している部分の全体を覆う必要はないが、上記電流パスを形成するために、少なくとも正極層101側を覆っていなければならない。 The second layer 105 is a thin film that covers an exposed portion of the surface of the inorganic semiconductor particles 20 at the manufacturing stage, that is, a portion that is not in contact with either the negative electrode layer 102 or the inorganic semiconductor particles 20. The second layer 105 does not need to cover the entire exposed portion, but must cover at least the positive electrode layer 101 side in order to form the current path.
 第二層105を構成するペロブスカイト構造体は、Pb2+、Sn2+等の金属カチオン、I、Cl、Br-等のハロゲン化アニオン、CHNH (MA)、NH=CHNH (FA)、C 等の有機カチオン、からなる複数の分子によって構成されるものである。金属カチオン、ハロゲン化物アニオン、有機カチオンのそれぞれから選択するイオンの数によって、バンドギャップの大きさ・形を変えることができる。ペロブスカイト構造体にスズを添加すると、バンドギャップが狭められ、近赤外光等の長波長の光に対する応答性を向上させることができるが大気下において容易に酸化されてしまい、特性は劣化する。ペロブスカイト構造体を構成するそれぞれの分子において、ハロゲン化アニオンは、金属イオンを中心とする正八面体の頂点に配され、有機カチオンは、金属イオンを中心とし、正八面体を内在させた立方体の近傍に配されている。具体的には、金属イオンとハロゲン化アニオンで形成された正八面体が三次元の格子を形成し、その隙間に有機カチオンが入り込んだような構造となる。 Perovskite structure constituting the second layer 105, Pb 2+, Sn 2+, etc. of the metal cation, I -, Cl -, halide anions such as Br-, CH 3 NH 3 + ( MA), NH = CHNH 2 + It is composed of a plurality of molecules composed of organic cations such as (FA) and C s +. The size and shape of the bandgap can be changed depending on the number of ions selected from each of the metal cation, the halide anion, and the organic cation. When tin is added to the perovskite structure, the bandgap is narrowed and the responsiveness to long wavelength light such as near infrared light can be improved, but it is easily oxidized in the atmosphere and the characteristics are deteriorated. In each molecule constituting the perovskite structure, the halogenated anion is arranged at the apex of the octahedron centered on the metal ion, and the organic cation is located near the cube containing the metal ion centered on the metal ion. It is arranged. Specifically, a regular octahedron formed of metal ions and halogenated anions forms a three-dimensional lattice, and the structure is such that organic cations enter the gaps.
 コアシェル粒子10は、ペロブスカイト構造体と接しながら第二層105を形成する際に、コアシェル粒子10中の被覆層12とペロブスカイト構造体との境界が無くなる。そのため、コアシェル粒子10で可視光に変換された光は、被覆層12を含むペロブスカイト構造体に効率よく吸収される。これによって、光電変換素子100の近赤外領域の光の検出感度を向上することができる。 When the core-shell particles 10 form the second layer 105 while being in contact with the perovskite structure, the boundary between the coating layer 12 and the perovskite structure in the core-shell particles 10 disappears. Therefore, the light converted into visible light by the core-shell particles 10 is efficiently absorbed by the perovskite structure including the coating layer 12. This makes it possible to improve the detection sensitivity of light in the near infrared region of the photoelectric conversion element 100.
 第二層105中のコアシェル粒子10が、5wt%以上であれば、近赤外領域の光の感度が向上するので、好ましい。第二層105中のコアシェル粒子10が30wt%超であると、ペロブスカイト構造体が形成しにくくなるので、30wt%以下が好ましい。 When the core-shell particles 10 in the second layer 105 are 5 wt% or more, the sensitivity of light in the near infrared region is improved, which is preferable. If the core-shell particles 10 in the second layer 105 are more than 30 wt%, it becomes difficult to form a perovskite structure, so 30 wt% or less is preferable.
 また、第二層105の価電子帯のエネルギー準位は、第三層106の価電子帯のエネルギー準位よりも低く、かつ同エネルギー順位と断続的に接続されていることが好ましい。これらの条件を満たす第二層105(ペロブスカイト構造体)の組成としては、例えば、CHNHPbl、NH=CHNHPbI、CsPbI等が挙げられる。この他に、ハロゲン化物アニオンのうち、IとClあるいはBrの組成比を変えたものも挙げられる。 Further, it is preferable that the energy level of the valence band of the second layer 105 is lower than the energy level of the valence band of the third layer 106 and is intermittently connected to the same energy rank. Examples of the composition of the second layer 105 (perovskite structure) satisfying these conditions include CH 3 NH 3 Pbl 3 , NH = CHNH 2 PbI 3 , and CsPbI 3 . In addition to this, among the halide anions, those having different composition ratios of I and Cl or Br can be mentioned.
 第三層106は、第一層104、第二層105によって構成される光電変換素子前駆体のうち、第二層に含まれる、ペロブスカイト構造体の表面(露出面)を覆う薄膜であるとよい。第三層106は、p型の有機半導体、無機半導体、有機金属錯体のいずれかによって形成される。図2(a)では、有機金属錯体の例を示し、図2(a)中の106Aは、第三層106の無機遷移金属イオンを示し、106Bは第三層106の有機配位子を示す。第三層106の厚さは、例えば、1nm以上100nm以下であることが好ましい。 The third layer 106 may be a thin film that covers the surface (exposed surface) of the perovskite structure contained in the second layer among the photoelectric conversion element precursors composed of the first layer 104 and the second layer 105. .. The third layer 106 is formed of any of a p-type organic semiconductor, an inorganic semiconductor, and an organometallic complex. FIG. 2A shows an example of an organometallic complex, where 106A in FIG. 2A represents an inorganic transition metal ion of the third layer 106 and 106B represents an organic ligand of the third layer 106. .. The thickness of the third layer 106 is preferably, for example, 1 nm or more and 100 nm or less.
 第三層を構成するp型有機半導体としては、バソクプロイン(BCP)、2,2’,7,7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro―OMeTAD)、poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)、N,N,N’,N’-tetrakis(4-methoxyphenyl)-benzidine(TPD)などが挙げられる。 Examples of the p-type organic semiconductor constituting the third layer include bathocuproine (BCP), 2,2', 7,7'-tetrakis (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro). -OMeTAD), poly (3,4-ethylendioxythyophene): poly (styrenesulfonate) (PEDOT: PSS), N, N, N', N'-tetracis (4-methoxyphenyl) -benzidine (TPD) and the like.
 第三層を構成するp型無機半導体としては、CuI、CuSCNなどが挙げられる。 Examples of the p-type inorganic semiconductor constituting the third layer include CuI and CuSCN.
 なお、本実施形態の光電変換素子100を光センサーあるいは光発電素子(太陽電池)に適用する場合、光電変換素子100は、シリコン等の半導体基板やガラス基板に搭載されることになる。この場合、例えば、以下のようなデバイス構成を挙げることができる。(1)透明性を有する正極層101が、前記半導体基板から最も離れた最上層に形成されている形態(即ち、入光側の最上層から、(透明)正極層101/第三層106/第二層105/第一層104/負極層102/(Si)基板の順に積層された構成)
(2)透明性を有する負極層102が、前記ガラス基板に隣接するように形成されている形態(即ち、入光側の最上層から、(ガラス)基板/負極層102/第一層104/第二層105/第三層106/正極層101の順に積層された構成)
(3)透明性を有する負極層102が、前記半導体基板から最も離れた最上層に形成されている形態(即ち、入光側の最上層から、(透明)負極層102/第一層104/第二層105/第三層106/正極層101/(Si)基板の順に積層された構成)
When the photoelectric conversion element 100 of the present embodiment is applied to an optical sensor or a photovoltaic element (solar cell), the photoelectric conversion element 100 is mounted on a semiconductor substrate such as silicon or a glass substrate. In this case, for example, the following device configurations can be mentioned. (1) The transparent positive electrode layer 101 is formed on the uppermost layer farthest from the semiconductor substrate (that is, from the uppermost layer on the light receiving side, the (transparent) positive electrode layer 101 / third layer 106 /. Second layer 105 / first layer 104 / negative electrode layer 102 / (Si) substrate in that order)
(2) The transparent negative electrode layer 102 is formed so as to be adjacent to the glass substrate (that is, from the uppermost layer on the light receiving side, the (glass) substrate / negative electrode layer 102 / first layer 104 /. (Structure in which the second layer 105 / third layer 106 / positive electrode layer 101 are laminated in this order)
(3) The transparent negative electrode layer 102 is formed on the uppermost layer farthest from the semiconductor substrate (that is, from the uppermost layer on the light receiving side, the (transparent) negative electrode layer 102 / first layer 104 /. Second layer 105 / third layer 106 / positive electrode layer 101 / (Si) substrate in that order)
(エネルギーバンド構造)
 図3(a)~(c)は、本実施形態に係る光電変換素子100の動作中における、各層のエネルギーバンドの構造を示している。
(Energy band structure)
3 (a) to 3 (c) show the structure of the energy band of each layer during the operation of the photoelectric conversion element 100 according to the present embodiment.
 光を照射していない状態では、第三層106の伝導帯のエネルギー準位が、正極層101側で、正極層101のフェルミ準位より高くなっており、図3(a)に示すように、正極層101から負極層102に向かう電流はブロックされている。 In the non-irradiated state, the energy level of the conduction band of the third layer 106 is higher on the positive electrode layer 101 side than the Fermi level of the positive electrode layer 101, as shown in FIG. 3 (a). , The current from the positive electrode layer 101 to the negative electrode layer 102 is blocked.
 光電変換素子に800nm以上の波長をもつ光が照射されると、第二層105を構成するコアシェル粒子10のコア(無機ナノ粒子11)が、その光を吸収し、波長を可視光に変換する。ペロブスカイト構造体が、波長変換された光を吸収する(図3(b))。なお、図3(b)中のコアシェル粒子10の破線矢印と、実線の矢印は同じ大きさのエネルギーを示す。光を吸収することでペロブスカイト構造体は電子eと正孔hを発生させ、電子eは伝導帯Ec1に移り、正孔hは価電子帯Ev3に移る(図3(c))。 When the photoelectric conversion element is irradiated with light having a wavelength of 800 nm or more, the core (inorganic nanoparticles 11) of the core-shell particles 10 constituting the second layer 105 absorbs the light and converts the wavelength into visible light. .. The perovskite structure absorbs the wavelength-converted light (FIG. 3 (b)). The broken line arrow and the solid line arrow of the core-shell particle 10 in FIG. 3B indicate energies of the same magnitude. By absorbing light, the perovskite structure generates electrons e and holes h, the electrons e move to the conduction band E c1 , and the holes h move to the valence band E v3 (FIG. 3 (c)).
 上記の例では、第一層104aが多孔質膜の場合を例に挙げて説明したが、図2(b)の第一層104bのように、均一な膜状に第一層が形成されていてもよい。 In the above example, the case where the first layer 104a is a porous film has been described as an example, but the first layer is formed in a uniform film shape as in the first layer 104b of FIG. 2 (b). You may.
 (光電変換素子の変形例)
 次に、光電変換素子の変形例について説明する。以下、類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する。ただし、同一の構成要素については、その説明を省略する。また、類似する構成要素のうち、説明を行った構成要素と実質的に同一の機能構成を有する場合は、その構成要素についての説明を省略する。
(Modification example of photoelectric conversion element)
Next, a modification of the photoelectric conversion element will be described. Hereinafter, similar components are distinguished by adding different alphabets after the same code. However, the description of the same component will be omitted. Further, among similar components, when they have substantially the same functional configuration as the components described, the description of the components will be omitted.
 図4(a)は、コアシェル粒子10を備えた光電変換素子100bの断面図である。光電変換素子100bは、主に、正極層(正極部材)101、と、負極層(負極部材)102と、それらの間に挟まれた光電変換層103bと、で構成されている。尚、図4(a)は、詳細な構造を示す断面図であるが、場合によっては、図4(b)のように簡便に記載することもある。因みに、図4(b)では、光電変換層103cの構成のうち、第二層105cおよび第三層106cを負極層102(およびバッファ層107)ならびに正極層101cに対向する形の層として示している。図4(a)の光電変換層103bを簡便に記載したものが図4(b)の光電変換層103cとなる。この場合、図4(a)の第一層104aは、図4(b)の104cに対応し、図4(a)の第二層105が図4(b)の105cに対応する。図4(a)の第三層106bは、図4(b)の第三層106cに対応する。 FIG. 4A is a cross-sectional view of the photoelectric conversion element 100b provided with the core-shell particles 10. The photoelectric conversion element 100b is mainly composed of a positive electrode layer (positive electrode member) 101, a negative electrode layer (negative electrode member) 102, and a photoelectric conversion layer 103b sandwiched between them. Note that FIG. 4A is a cross-sectional view showing a detailed structure, but in some cases, it may be simply described as shown in FIG. 4B. Incidentally, in FIG. 4B, among the configurations of the photoelectric conversion layer 103c, the second layer 105c and the third layer 106c are shown as layers facing the negative electrode layer 102 (and the buffer layer 107) and the positive electrode layer 101c. There is. A simple description of the photoelectric conversion layer 103b of FIG. 4A is the photoelectric conversion layer 103c of FIG. 4B. In this case, the first layer 104a of FIG. 4A corresponds to 104c of FIG. 4B, and the second layer 105 of FIG. 4A corresponds to 105c of FIG. 4B. The third layer 106b in FIG. 4A corresponds to the third layer 106c in FIG. 4B.
(光電変換層)
 図4(a)に示すように、光電変換層103bは、主に、無機半導体を主成分として含む複数の粒子(即ち、無機半導体の粒子)20またはその凝集体あるいは薄膜によって構成される第一層104aを有し、第一層104aの表面に形成され、ペロブスカイト構造体を主成分として含み、さらにコアシェル粒子10を含む凝集体または薄膜(複合体)によって構成される第二層105と、有機金属錯体を主成分として含む複数の粒子またはその凝集体あるいは薄膜によって構成される第三層106bと、を積層してなるとよい。ここで、「有機金属錯体を主成分として含む」とは、粒子またはその凝集体、あるいは薄膜において、有機金属錯体の含有量が50体積%超であることをいう。好ましくは、90体積%超であり、より好ましくは、実質的に無機半導体からなることがよい。つまり、光電変換層103bは、正極層101、第三層106b、第二層105、第一層104、負極層102の順に並び、少なくとも、正極層101から負極層102への電流パスが形成されるように構成されているとよい。形成される電流パスの数は多いほど好ましいが、隣接する電流パス同士は、電気的に、互いに接続されていてもよいし、接続されていなくてもよい。
(Photoelectric conversion layer)
As shown in FIG. 4A, the photoelectric conversion layer 103b is mainly composed of a plurality of particles (that is, particles of the inorganic semiconductor) 20 containing an inorganic semiconductor as a main component or an aggregate or a thin film thereof. A second layer 105 having a layer 104a, formed on the surface of the first layer 104a, containing a perovskite structure as a main component, and further composed of an aggregate or a thin film (complex) containing the core-shell particles 10, and an organic substance. It is preferable that the third layer 106b composed of a plurality of particles containing a metal complex as a main component or an aggregate thereof or a thin film is laminated. Here, "containing an organometallic complex as a main component" means that the content of the organometallic complex is more than 50% by volume in the particles, their aggregates, or the thin film. It is preferably more than 90% by volume, and more preferably substantially composed of an inorganic semiconductor. That is, the photoelectric conversion layer 103b is arranged in the order of the positive electrode layer 101, the third layer 106b, the second layer 105, the first layer 104, and the negative electrode layer 102, and at least a current path from the positive electrode layer 101 to the negative electrode layer 102 is formed. It should be configured so as to. The larger the number of current paths formed, the more preferable, but the adjacent current paths may or may not be electrically connected to each other.
 さらに、三つの層104~106bの材料・組成については、伝導帯(LUMO、励起状態)のエネルギー準位が、第一層104、第二層105、第三層106bの順で高く、第二層の価電子帯(HOMO、基底状態)のエネルギー準位が、第三層106bの価電子帯のエネルギー準位より高くなるように決定される。伝導帯において、第二層105のエネルギー準位が第一層104のエネルギー準位より高く、かつ第三層106bのエネルギー準位が第二層105のエネルギー準位より高い。例えば、第一層104については、価電子帯のエネルギー準位を-8eV以上とし、伝導帯のエネルギー準位を-4eV以下とすることができる。このとき、第二層105については、価電子帯のエネルギー準位を-5.5eV以上とし、伝導帯のエネルギー準位を-3eV以下とすることができる。また、第三層106bについては、価電子帯のエネルギー準位を-6eV以上とし、伝導帯のエネルギー準位を-2eV以下とするのが好ましい。 Further, regarding the materials and compositions of the three layers 104 to 106b, the energy levels of the conduction bands (LUMO, excited state) are higher in the order of the first layer 104, the second layer 105, and the third layer 106b, and the second layer. The energy level of the valence band (HOMO, ground state) of the layer is determined to be higher than the energy level of the valence band of the third layer 106b. In the conduction band, the energy level of the second layer 105 is higher than the energy level of the first layer 104, and the energy level of the third layer 106b is higher than the energy level of the second layer 105. For example, for the first layer 104, the energy level of the valence band can be -8 eV or more, and the energy level of the conduction band can be -4 eV or less. At this time, for the second layer 105, the energy level of the valence band can be set to −5.5 eV or more, and the energy level of the conduction band can be set to -3 eV or less. Further, for the third layer 106b, it is preferable that the energy level of the valence band is −6 eV or more and the energy level of the conduction band is −2 eV or less.
 第三層106bは、第一層104、第二層105によって構成される光電変換素子前駆体のうち、第二層に含まれる、ペロブスカイト構造体の分子の表面(露出面)を覆う薄膜であるとよい。第三層106bを構成する有機金属錯体の分子は、無機遷移金属と、有機配位子と、を配位結合させることによって得られる。ここで、106Aは、第三層106bの無機遷移金属イオンを示し、106Bは第三層106bの有機配位子を示す。 The third layer 106b is a thin film that covers the surface (exposed surface) of the molecules of the perovskite structure contained in the second layer among the photoelectric conversion element precursors composed of the first layer 104 and the second layer 105. It is good. The molecule of the organic metal complex constituting the third layer 106b is obtained by coordinate-bonding an inorganic transition metal and an organic ligand. Here, 106A represents the inorganic transition metal ion of the third layer 106b, and 106B represents the organic ligand of the third layer 106b.
 有機金属錯体において、無機遷移金属イオンは、第二層105のペロブスカイト構造体と直接結合するように、第二層側に膜状に局在しているとよい。一方、有機配位子は、第二層と反対側(正極側)に膜状に局在しているとよい。そして、後述する光電流の増幅を実現するために、有機金属錯体の分子は、正極層101側から第二層105側に向かう電流パスにおいて、有機配位子、無機遷移金属イオンの順で並ぶように、ペロブスカイト構造体の分子に結合されているとよい。つまり、無機遷移金属イオンからなる層と有機配位子イオンからなる層とに分けられる。なお、二つの層の境界については、例えば透過電子顕微鏡(TEM)等を用いて確認できる。 In the organometallic complex, the inorganic transition metal ion is preferably localized on the second layer side in a film form so as to be directly bonded to the perovskite structure of the second layer 105. On the other hand, the organic ligand is preferably localized on the opposite side (positive electrode side) of the second layer in a film form. Then, in order to realize the amplification of the photocurrent described later, the molecules of the organic metal complex are arranged in the order of the organic ligand and the inorganic transition metal ion in the current path from the positive electrode layer 101 side to the second layer 105 side. As described above, it is preferable that the molecule of the perovskite structure is bound to the molecule. That is, it is divided into a layer composed of inorganic transition metal ions and a layer composed of organic ligand ions. The boundary between the two layers can be confirmed by using, for example, a transmission electron microscope (TEM).
 ここでの無機遷移金属イオンとしては、例えば、還元準位がLUMOとなるEu3+、Cr3+等、酸化準位がHOMOとなるRu2+、Fe2+、Mn2+、Co2+等が挙げられる。また、ここでの有機配位子としては、一般的な金属錯体の配位子、例えば、(i)カルボキシル基、ニトロ基、スルホ基、リン酸基、ヒドロキシ基、オキソ基、アミノ基等を有する有機化合物;(ii)エチレンジアミン誘導体;(iii)ターピリジン誘導体、フェナントロリン誘導体、ビピリジン誘導体等の環ヘテロ原子含有有機配位子;(iv)カテコール誘導体、キノン誘導体、ナフトエ酸誘導体、アセチルアセトナート誘導体(具体的には例えば、アセチルアセトン)等のアセチルアセトナート系有機配位子(ここで、「アセチルアセトナート系有機配位子」とは、2つの酸素原子を介して多くの遷移金属イオンと(例えば六員環を形成しながら)配位結合可能な有機配位子を意味するものである。)等が挙げられる。なお、ターピリジン誘導体は、下記(1)式で表される組成を有するものである。 Examples of the inorganic transition metal ion here include Eu 3+ and Cr 3+ having a reduction level of LUMO, and Ru 2+ , Fe 2+ , Mn 2+ , and Co 2+ having an oxidation level of HOMO. Further, as the organic ligand here, a ligand of a general metal complex, for example, (i) a carboxyl group, a nitro group, a sulfo group, a phosphate group, a hydroxy group, an oxo group, an amino group and the like can be used. Organic compounds possessed; (ii) ethylenediamine derivatives; (iii) ring heteroatom-containing organic ligands such as terpyridine derivatives, phenanthroline derivatives, bipyridine derivatives; (iv) catechol derivatives, quinone derivatives, naphthoic acid derivatives, acetylacetonate derivatives (iv) Specifically, for example, an acetylacetonate-based organic ligand such as acetylacetone (here, the "acetylacetonate-based organic ligand" is a large number of transition metal ions via two oxygen atoms (for example,). It means an organic ligand capable of coordination bond (while forming a six-membered ring)) and the like. The terpyridine derivative has a composition represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 第三層106bの厚さは、例えば、約1nm以上10nm以下であることが好ましい。第三層106bが10nmより厚いと、エネルギー障壁が厚くなり過ぎて十分なトンネル確率が得られなくなり、光電変換層103bにおける光電流の増幅が妨げられてしまう。また、第三層106bが1nmより薄いと、光が照射されず、バンドが曲がっていないときにもトンネル電流が流れることになり、光電変換層103bの光検出機能が意味をなさなくなってしまう。 The thickness of the third layer 106b is preferably, for example, about 1 nm or more and 10 nm or less. If the third layer 106b is thicker than 10 nm, the energy barrier becomes too thick to obtain a sufficient tunnel probability, and the amplification of the photocurrent in the photoelectric conversion layer 103b is hindered. Further, if the third layer 106b is thinner than 1 nm, the light is not irradiated and the tunnel current flows even when the band is not bent, so that the photodetection function of the photoelectric conversion layer 103b becomes meaningless.
 なお、コアシェル粒子10およびペロブスカイト構造体の複合体によって構成される第二層105と、有機金属錯体を主成分として含む凝集体または薄膜によって構成される第三層106bを積層してなる光電変換素子用受光部材は、ホール輸送層と電子輸送層との間に備えることにより、光電変換素子として活用することができる。 A photoelectric conversion element formed by laminating a second layer 105 composed of a composite of core-shell particles 10 and a perovskite structure and a third layer 106b composed of an aggregate or a thin film containing an organometallic complex as a main component. The light receiving member can be used as a photoelectric conversion element by being provided between the hole transport layer and the electron transport layer.
(エネルギーバンド構造)
 図5(a)~(d)は、本実施形態に係る光電変換素子100の動作中における、各層のエネルギーバンドの構造を示している。ここで、106Aは、第三層106bの無機遷移金属イオンを示し、106Bは第三層106bの有機配位子を示す。
(Energy band structure)
5 (a) to 5 (d) show the structure of the energy band of each layer during the operation of the photoelectric conversion element 100 according to the present embodiment. Here, 106A represents the inorganic transition metal ion of the third layer 106b, and 106B represents the organic ligand of the third layer 106b.
 光を照射していない状態では、第三層106bの伝導帯のエネルギー準位が、正極層101側で、正極層101のフェルミ準位より高くなっており、図5(a)に示すように、正極層101から負極層102に向かう電流はブロックされている。 In the non-irradiated state, the energy level of the conduction band of the third layer 106b is higher on the positive electrode layer 101 side than the Fermi level of the positive electrode layer 101, as shown in FIG. 5 (a). , The current from the positive electrode layer 101 to the negative electrode layer 102 is blocked.
 光電変換素子に800nm以上の波長をもつ光Lが照射されると、第二層105を構成するコアシェル粒子10のコア(無機ナノ粒子11)が、その光を吸収し、波長を可視光に変換する。ペロブスカイト構造体が、波長変換された光を吸収して電子eと正孔hを発生させ、電子eは伝導帯Ec2に移り、正孔hは価電子帯Ev2に移る(図5(b))。 When light L 1 to the photoelectric conversion element having a wavelength of more than 800nm is irradiated, the core of the core-shell particles 10 constituting the second layer 105 (inorganic nanoparticles 11), absorbs the light, the wavelength in the visible light Convert. The perovskite structure absorbs the wavelength-converted light to generate electrons e and holes h, the electrons e move to the conduction band E c2 , and the holes h move to the valence band E v2 (FIG. 5 (b). )).
 このとき、第一層104a、第二層105、第三層106bの伝導帯のエネルギー準位Ec1、Ec2、Ec3が、Ec3>Ec2>Ec1の関係にあるため、第二層105で発生して同層の伝導帯に移った電子eは、より低いエネルギー状態となる第一層104aの伝導帯Ec1に移る。
 一方、第一層104a、第二層105、第三層106bの価電子帯のエネルギー準位Ev1、Ev2、Ev3が、Ev2>Ev1層、Ev2>Ev3となっているため、図5(c)に示すように、第二層で発生して価電子帯に移った正孔は、第一層、第三層と比べて相対的に高い(正孔にとっては低い)エネルギー状態となる第二層の価電子帯にトラップされる。
At this time, since the energy levels E c1 , E c2 , and E c3 in the conduction bands of the first layer 104a, the second layer 105, and the third layer 106b are in the relationship of E c3 > E c2 > E c1 , the second layer. The electrons e generated in the layer 105 and transferred to the conduction band of the same layer are transferred to the conduction band E c1 of the first layer 104a, which is in a lower energy state.
On the other hand, the energy levels E v1 , E v2 , and E v3 of the valence band of the first layer 104a, the second layer 105, and the third layer 106b are E v2 > E v1 layer and E v2 > E v3 . Therefore, as shown in FIG. 5 (c), the holes generated in the second layer and transferred to the valence band are relatively high (low for holes) as compared with the first and third layers. It is trapped in the valence band of the second layer, which is in the energy state.
 トラップされて集中して分布している正孔の影響(正の電位)により、第二層の価電子帯の近傍においては、電子のポテンシャルエネルギーが低下し、伝導帯のエネルギー準位が低下する。伝導帯のエネルギー準位は、正孔がトラップされている第二層に近いほど大きく低下するため、第三層の伝導帯のエネルギー準位は、第二層側でより低くなり、正極層側が尖った形状となる。したがって、正極層101に存在する電子にとって、第三層のエネルギー障壁が薄くなり、図5(d)に示すように負極層側へトンネルすることが可能となる。つまり、第三層のエネルギー障壁にブロックされていた正極側の多数の電子(光を照射していない状態における電子)を、光電変換素子に光が照射されると、薄くなったエネルギー障壁をトンネル(透過)させ、これらを負極側に流れ込ませることができる。よって、本変形例の光電変換素子は、照射した光によって直接発生する電流の大幅な増幅を実現することができる。 Due to the influence of holes that are trapped and concentrated and distributed (positive potential), the potential energy of electrons decreases in the vicinity of the valence band of the second layer, and the energy level of the conduction band decreases. .. Since the energy level of the conduction band decreases as it is closer to the second layer in which holes are trapped, the energy level of the conduction band of the third layer is lower on the second layer side and on the positive electrode layer side. It has a sharp shape. Therefore, for the electrons existing in the positive electrode layer 101, the energy barrier of the third layer becomes thin, and as shown in FIG. 5D, it becomes possible to tunnel to the negative electrode layer side. That is, when the photoelectric conversion element is irradiated with light, a large number of electrons on the positive electrode side (electrons in a state where the light is not irradiated) blocked by the energy barrier of the third layer are tunneled through the thinned energy barrier. It can be (permeated) and flow into the negative electrode side. Therefore, the photoelectric conversion element of this modification can realize a large amplification of the current directly generated by the irradiated light.
(コアシェル粒子の製造方法)
 次に、本開示のコアシェル粒子10の製造方法について説明する。本開示のコアシェル粒子10の製造方法は、無機ナノ粒子合成工程および被覆層形成工程を備える。
(Manufacturing method of core-shell particles)
Next, a method for producing the core-shell particles 10 of the present disclosure will be described. The method for producing the core-shell particles 10 of the present disclosure includes an inorganic nanoparticle synthesis step and a coating layer forming step.
「無機ナノ粒子合成工程」
 無機ナノ粒子合成工程において、無機ナノ粒子11は合成される。無機ナノ粒子11の合成方法は特に限定されないが、たとえば沈殿法や水熱合成法などが挙げられる。具体的には、主原料として、Ln(ランタノイド)酸化物、例えば、Er、Tm、Ho、Yb、またはLnハロゲン化物、例えば、ErCl、ErF、TmCl、TmF、HoCl、HoF等を用い、トリフルオロ酢酸塩を合成する。さらに、トリフルオロ酢酸ナトリウムおよび鎖状有機分子を用い、NまたはAr雰囲気下高温条件(100~400℃)で反応させる。反応後の溶液を冷却し、必要に応じてエタノールなどの有機溶剤を加えた後遠心分離で、無機ナノ粒子11を分離することで、無機ナノ粒子11が得られる。
"Inorganic nanoparticle synthesis process"
In the inorganic nanoparticle synthesis step, the inorganic nanoparticles 11 are synthesized. The method for synthesizing the inorganic nanoparticles 11 is not particularly limited, and examples thereof include a precipitation method and a hydrothermal synthesis method. Specifically, as the main raw material, Ln (lanthanoid) oxides, e.g., Er 2 O 3, Tm 2 O 3, Ho 2 O 3, Yb 2 O 3 or Ln halide, for example, ErCl 3, ErF 3 , TmCl 3 , TmF 3 , HoCl 3 , HoF 3, etc. are used to synthesize trifluoroacetate. Further, sodium trifluoroacetate and a chain organic molecule are used, and the reaction is carried out under high temperature conditions (100 to 400 ° C.) under an N 2 or Ar atmosphere. Inorganic nanoparticles 11 are obtained by cooling the solution after the reaction, adding an organic solvent such as ethanol if necessary, and then centrifuging to separate the inorganic nanoparticles 11.
「被覆層形成工程」
 次に、被覆層形成工程で、無機ナノ粒子合成工程で得られた無機ナノ粒子11に被覆層12を形成する。被覆層12の形成方法は特に限定されないが、例えば、沈殿法や水熱合成法などが挙げられる。具体的には例えば、無機ナノ粒子11を、炭酸セシウムから合成したオレイン酸セシウムおよびハロゲン化鉛(PbX)を含む溶液と反応させる。温度120~200℃、窒素雰囲気下とする。反応後の溶液を冷却し、遠心分離で、微粒子を分離する。分離後の微粒子を焼成(例えば、200℃~300℃)することで、コアシェル粒子が得られる。
"Coating layer forming process"
Next, in the coating layer forming step, the coating layer 12 is formed on the inorganic nanoparticles 11 obtained in the inorganic nanoparticles synthesis step. The method for forming the coating layer 12 is not particularly limited, and examples thereof include a precipitation method and a hydrothermal synthesis method. Specifically, for example, the inorganic nanoparticles 11 are reacted with a solution containing cesium oleate synthesized from cesium carbonate and lead halide (PbX 2). The temperature is 120 to 200 ° C. and the atmosphere is nitrogen. The solution after the reaction is cooled and the fine particles are separated by centrifugation. Core-shell particles can be obtained by firing the separated fine particles (for example, 200 ° C. to 300 ° C.).
(光電変換素子の製造方法)
 図6(a)~(e)は、光電変換素子100の製造過程における被処理体の断面図である。光電変換素子100は、主に次の手順を経て製造することができる。
(Manufacturing method of photoelectric conversion element)
6 (a) to 6 (e) are cross-sectional views of the object to be processed in the manufacturing process of the photoelectric conversion element 100. The photoelectric conversion element 100 can be manufactured mainly by the following procedure.
 まず、図6(a)に示すように、光電変換層103を形成するための、負極層102を設けた基材を準備する。基材上の負極層102としては、負極層として機能し、透明導電性を有する電極部材を用いる。ここでは、負極層102の一面にバッファ層107を形成する場合について、例示しているが、このバッファ層107は形成しなくてもよい。なお、バッファ層107は、電子輸送層あるいはホールブロッキング層として機能する。バッファ層107は、スピンコーティング法等を用いて、負極層102に材料の溶液を塗布し、それを加熱する(乾燥させる)ことによって形成することができる。この加熱は、例えば、約120~450℃で、10~60分程度行うとよい。バッファ層107の厚みが、例えば、1~100nm程度となるように、材料塗布の条件(塗布時間等)を調整するとよい。 First, as shown in FIG. 6A, a base material provided with the negative electrode layer 102 for forming the photoelectric conversion layer 103 is prepared. As the negative electrode layer 102 on the base material, an electrode member that functions as a negative electrode layer and has transparent conductivity is used. Here, the case where the buffer layer 107 is formed on one surface of the negative electrode layer 102 is illustrated, but the buffer layer 107 may not be formed. The buffer layer 107 functions as an electron transport layer or a hole blocking layer. The buffer layer 107 can be formed by applying a solution of a material to the negative electrode layer 102 by using a spin coating method or the like, and heating (drying) the solution. This heating may be performed, for example, at about 120 to 450 ° C. for about 10 to 60 minutes. The material coating conditions (coating time, etc.) may be adjusted so that the thickness of the buffer layer 107 is, for example, about 1 to 100 nm.
 次に、図6(b)に示すように、負極層102の一面側に(バッファ層107がある場合にはそれを挟んで)、無機半導体を主成分として含む複数の粒子(即ち、無機半導体の粒子)20によって構成される、第一層104aを形成する。第一層104aも、バッファ層107と同様に、その材料の溶液を塗布して加熱することによって形成することができる。この加熱も、例えば、約120~450℃で、10~60分程度行うとよい。第一層104aの厚みが、例えば、約10~1000nm程度、好ましくは約50~500nm程度となるように、材料塗布の条件(塗布時間等)を調整するとよい。 Next, as shown in FIG. 6B, a plurality of particles containing an inorganic semiconductor as a main component (that is, an inorganic semiconductor) on one surface side of the negative electrode layer 102 (sandwiching the buffer layer 107 if it is present). Particles) 20 to form the first layer 104a. The first layer 104a can also be formed by applying a solution of the material and heating it, similarly to the buffer layer 107. This heating may also be performed, for example, at about 120 to 450 ° C. for about 10 to 60 minutes. The material coating conditions (coating time, etc.) may be adjusted so that the thickness of the first layer 104a is, for example, about 10 to 1000 nm, preferably about 50 to 500 nm.
 次に、図6(c)に示すように、スピンコーティング法、ディップ法等を用いて、無機半導体の粒子20の表面に対し、主成分となるペロブスカイト構造体の原料、およびコアシェル粒子10を含有する溶液を塗布し、それを加熱することによって第二層105を形成するとよい。この加熱は、例えば、約40~100℃で、5~10分程度行うとよい。第二層105の厚みは、材料塗布の条件(塗布時間等)で調整する。液体状態の材料を用いることにより、シリコン等の固体状態の無機半材料を用いる場合に比べて、環境負荷の少ない条件で薄膜を形成することができる。 Next, as shown in FIG. 6C, the surface of the particles 20 of the inorganic semiconductor contains the raw material of the perovskite structure as the main component and the core-shell particles 10 by using a spin coating method, a dip method, or the like. The second layer 105 may be formed by applying a solution to be coated and heating it. This heating may be performed, for example, at about 40 to 100 ° C. for about 5 to 10 minutes. The thickness of the second layer 105 is adjusted according to the material coating conditions (coating time, etc.). By using a material in a liquid state, a thin film can be formed under conditions having a smaller environmental load than in the case of using an inorganic semi-material in a solid state such as silicon.
 次に、図6(d)に示すように、第二層105の上に第三層106を形成するとよい。より詳細には、スピンコーティング法、ディップ法等を用いて、第二層105の上に、p型有機半導体あるいは無機半導体を主成分として含む材料を蒸着またはその材料の溶液を塗布することで第三層106を形成するとよい。実際には、第二層105形成時に、第一層104aの無機半導体の粒子20同士の隙間がほぼ埋まった状態になる。そのため、第三層106は、第二層105の表面のうち主に正極層101側(負極層102と反対側)の露出部分に、膜状に形成されることになることができる。 Next, as shown in FIG. 6 (d), the third layer 106 may be formed on the second layer 105. More specifically, by using a spin coating method, a dip method, or the like, a material containing a p-type organic semiconductor or an inorganic semiconductor as a main component is vapor-deposited or a solution of the material is applied onto the second layer 105. It is preferable to form the three layers 106. In reality, when the second layer 105 is formed, the gaps between the particles 20 of the inorganic semiconductors of the first layer 104a are almost filled. Therefore, the third layer 106 can be formed in a film shape mainly on the exposed portion of the surface of the second layer 105 on the positive electrode layer 101 side (opposite to the negative electrode layer 102).
 第三層として有機金属錯体を形成する場合(すなわち第三層106bを形成する場合)は、ここでの溶液の塗布および加熱は、二段階に分けて行うとよい。すなわち、一段階目として、ユーロピウム等の無機遷移金属の溶液を塗布して加熱し、続いて二段階目として、ターピリジン等の有機配位子の溶液を塗布して加熱するとよい。このように、第三層106bの形成を二段回に分けて行う結果として、第三層106bは、第二層105側から順に、無機遷移金属からなる層106A、有機配位子からなる層106B、を積層した構造になる。 When forming an organometallic complex as the third layer (that is, when forming the third layer 106b), the application and heating of the solution here may be performed in two steps. That is, in the first step, a solution of an inorganic transition metal such as europium may be applied and heated, and then in the second step, a solution of an organic ligand such as terpyridine may be applied and heated. As a result of forming the third layer 106b in two stages in this way, the third layer 106b is composed of a layer 106A made of an inorganic transition metal and a layer made of an organic ligand in order from the second layer 105 side. It has a structure in which 106B, is laminated.
 最後に、図6(e)に示すように、第三層106上に、正極として機能し、導電性を有する電極部材(正極層)101を形成させることにより、本実施形態の光電変換素子100を得ることができる。 Finally, as shown in FIG. 6E, the photoelectric conversion element 100 of the present embodiment is formed by forming an electrode member (positive electrode layer) 101 that functions as a positive electrode and has conductivity on the third layer 106. Can be obtained.
 上記の光電変換素子の製造方法では、多孔質の第一層104aを用いた場合について説明したが、層状の第一層104bについても上記と同様の方法で製造することができる。第一層104bは、蒸着などの公知の方法で形成することができる。 In the above-mentioned method for manufacturing the photoelectric conversion element, the case where the porous first layer 104a is used has been described, but the layered first layer 104b can also be manufactured by the same method as above. The first layer 104b can be formed by a known method such as thin film deposition.
 以上のように、本実施形態のコアシェル粒子10は、コアとなる無機ナノ粒子11が、吸収した近赤外光等の長波長の光を可視光・紫外光等の短波長の光に変換し、変換された光を、シェルとなる被覆層12の無機ペロブスカイト型物質が再吸収し、電力に変換するように、構成されている。したがって、本実施形態のコアシェル粒子10によれば、従来は難しかった長波長の光から光電変換あるいは起電力を生じさせることが可能となる。 As described above, in the core-shell particles 10 of the present embodiment, the long-wavelength light such as near-infrared light absorbed by the core inorganic nanoparticles 11 is converted into short-wavelength light such as visible light and ultraviolet light. The converted light is reabsorbed by the inorganic perovskite-type material of the coating layer 12 serving as a shell and converted into electric power. Therefore, according to the core-shell particles 10 of the present embodiment, it is possible to generate photoelectric conversion or electromotive force from light having a long wavelength, which was difficult in the past.
 また、本実施形態のコアシェル粒子10は、コアシェル構造とすることにより、密接した無機ナノ粒子と無機ペロブスカイト型物質の間でのエネルギー転移を確実かつ効率的に行い、エネルギーロスを低減させることできる。そのため、コアに吸収させる光が弱い光であっても、優れた光増感特性を実現することができる。 Further, the core-shell particles 10 of the present embodiment have a core-shell structure, so that energy transfer between close inorganic nanoparticles and an inorganic perovskite-type substance can be reliably and efficiently performed, and energy loss can be reduced. Therefore, even if the light absorbed by the core is weak light, excellent photosensitization characteristics can be realized.
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by the examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.
(コアシェル粒子の製造)
 上述したコアシェル粒子の製造方法に沿って、具体的には次の条件で、コアシェル粒子を製造した。
(Manufacturing of core shell particles)
In line with the above-mentioned method for producing core-shell particles, specifically, core-shell particles were produced under the following conditions.
(コアシェル粒子1)
 コアシェル粒子のコアとなる無機ナノ粒子は沈殿法によって合成した。具体的には、Er酸化物(Er)1mmolを、トリフルオロ酢酸5mLおよび水5mLに溶解し、減圧しながら80℃で加熱撹拌した。蒸発乾固して得られた粉末にトリフルオロ酢酸ナトリウム(NaCOOCF)2.5mmolを加え、オレイルアミン15mLに溶解させた。減圧下100℃で30分撹拌した後、窒素を系内に導入し、330℃で1時間撹拌した。80℃まで冷却した後、エタノール20mLを加え、遠心法によりNaErFナノ粒子を分離した。
(Core shell particle 1)
Inorganic nanoparticles, which are the core of core-shell particles, were synthesized by the precipitation method. Specifically, 1 mmol of Er oxide (Er 2 O 3 ) was dissolved in 5 mL of trifluoroacetic acid and 5 mL of water, and the mixture was heated and stirred at 80 ° C. under reduced pressure. 2.5 mmol of sodium trifluoroacetate (NaCOOCF 3 ) was added to the powder obtained by evaporation to dryness, and the mixture was dissolved in 15 mL of oleylamine. After stirring at 100 ° C. for 30 minutes under reduced pressure, nitrogen was introduced into the system, and the mixture was stirred at 330 ° C. for 1 hour. After cooling to 80 ° C., ethanol 20mL was added to separate the NaErF 4 nanoparticles by centrifugation.
 炭酸セシウム(CsCO)0.81gをオレイン酸2.5mLおよびオクタデセン40mLに溶解し、窒素雰囲気下120℃で1時間撹拌した。さらに160℃で30分撹拌することでオレイン酸セシウムを得た。 0.81 g of cesium carbonate ( CsCO 3 ) was dissolved in 2.5 mL of oleic acid and 40 mL of octadecene, and the mixture was stirred at 120 ° C. for 1 hour under a nitrogen atmosphere. Further, the mixture was stirred at 160 ° C. for 30 minutes to obtain cesium oleate.
 上記で合成したNaErFナノ粒子に対する被覆層の形成は、沈殿法によって行った。具体的には、PbBr0.4mmolとNaErFナノ粒子をオクタデセン10mLに分散させ、窒素雰囲気下120℃で1時間撹拌した。さらにオレイン酸およびオレイルアミン1mLを加えた。温度を180~190℃に上げた後、オレイン酸セシウム0.85mLを加え1時間撹拌した。冷却後、遠心法によりナノ粒子を分離し、200℃で30分焼成することで、1層のコアシェル粒子(粒径25nm)が得られた。コアシェル粒子の粒径はSEM観察から得られたSEM像から得た。 Formation of the coating layer to NaErF 4 nanoparticles synthesized above was carried out by precipitation. Specifically, 0.4 mmol of PbBr 2 and NaErF 4 nanoparticles were dispersed in 10 mL of octadecene, and the mixture was stirred at 120 ° C. for 1 hour under a nitrogen atmosphere. Further, 1 mL of oleic acid and oleylamine were added. After raising the temperature to 180-190 ° C., 0.85 mL of cesium oleate was added and the mixture was stirred for 1 hour. After cooling, the nanoparticles were separated by centrifugation and calcined at 200 ° C. for 30 minutes to obtain one layer of core-shell particles (particle size 25 nm). The particle size of the core-shell particles was obtained from the SEM image obtained from the SEM observation.
(コアシェル粒子2)
 PbBr0.4mmolと上記で得られた1層のコアシェル粒子をオクタデセン10mLに分散させ、窒素雰囲気下120℃で1時間撹拌した。さらにオレイン酸およびオレイルアミン1mLを加えた。温度を180~190℃に上げた後、オレイン酸セシウム0.85mLを加え1時間撹拌した。冷却後、遠心法によりナノ粒子を分離し、200℃で30分焼成することで、2層のコアシェル粒子(粒径30nm)が得られた。
(Core shell particles 2)
PbBr 2 0.4 mmol and the one-layer core-shell particles obtained above were dispersed in 10 mL of octadecene, and the mixture was stirred at 120 ° C. for 1 hour under a nitrogen atmosphere. Further, 1 mL of oleic acid and oleylamine were added. After raising the temperature to 180-190 ° C., 0.85 mL of cesium oleate was added and the mixture was stirred for 1 hour. After cooling, the nanoparticles were separated by centrifugation and calcined at 200 ° C. for 30 minutes to obtain two layers of core-shell particles (particle size 30 nm).
(ナノ粒子1)
 無機ナノ粒子は沈殿法によって合成した。具体的には、Er酸化物(Er)1mmolを、トリフルオロ酢酸5mLおよび水5mLに溶解し、減圧しながら80℃で加熱撹拌した。蒸発乾固して得られた粉末にトリフルオロ酢酸ナトリウム(NaCOOCF)2.5mmolを加え、オレイルアミン15mLに溶解させた。減圧下100℃で30分撹拌した後、窒素を系内に導入し、330℃で1時間撹拌した。80℃まで冷却した後、エタノール20mLを加え、遠心法によりNaErFナノ粒子(粒径20nm)を分離した。
(Nanoparticle 1)
Inorganic nanoparticles were synthesized by the precipitation method. Specifically, 1 mmol of Er oxide (Er 2 O 3 ) was dissolved in 5 mL of trifluoroacetic acid and 5 mL of water, and the mixture was heated and stirred at 80 ° C. under reduced pressure. 2.5 mmol of sodium trifluoroacetate (NaCOOCF 3 ) was added to the powder obtained by evaporation to dryness, and the mixture was dissolved in 15 mL of oleylamine. After stirring at 100 ° C. for 30 minutes under reduced pressure, nitrogen was introduced into the system, and the mixture was stirred at 330 ° C. for 1 hour. After cooling to 80 ° C., ethanol 20mL was added to separate the NaErF 4 nanoparticles (particle size 20 nm) by centrifugation.
 上述した光電変換素子の製造方法に沿って、具体的には次の条件で、光電変換素子を製造した。 Specifically, the photoelectric conversion element was manufactured under the following conditions in accordance with the above-mentioned manufacturing method of the photoelectric conversion element.
(実施例1)
 基材上に設けられて負極層となる部材として、実質的にアンチモンドープ酸化インジム(ATO)からなる部材を準備した。この部材の一面に対し、10mM濃度で塩化ユーロピウム水和物(EuCl・6HO)を含むエタノール(COH)液200μlを、3000rpmの回転数でスピンコーティングした。続いて、スピンコーティングされた混合液に対し、120℃で10分間の加熱、450℃で1時間の加熱を順に行い、実質的に酸化ユーロピウム(Eu)からなるバッファ層を形成した。
(Example 1)
As a member provided on the substrate and used as a negative electrode layer, a member substantially made of antimony-doped indim (ATO) was prepared. To one surface of the member, ethanol (C 2 H 5 OH) solution 200μl containing 10mM concentration of europium chloride hydrate (EuCl 3 · 6H 2 O) , was spin coated at a rotational speed of 3000 rpm. Subsequently, the spin-coated mixed solution was heated at 120 ° C. for 10 minutes and then at 450 ° C. for 1 hour in order to form a buffer layer substantially composed of europium oxide (Eu 2 O 3).
 次に、バッファ層に対し、酸化チタン(TiO)ペースト(PST18NR、日揮触媒化成株式会社製)とエタノールとを1:3.5の重量比で含む混合液120μlを、6000rpmの回転数でスピンコーティングした。続いて、スピンコーティングされた混合液に対し、120℃で10分間の加熱、450℃で1時間の加熱を順に行い、実質的に酸化チタンからなる複数の粒子からなる第一層(多孔膜)を形成した。 Next, 120 μl of a mixed solution containing titanium oxide (TiO 2 ) paste (PST18NR, manufactured by JGC Catalysts and Chemicals Co., Ltd.) and ethanol at a weight ratio of 1: 3.5 was spun on the buffer layer at a rotation speed of 6000 rpm. Coated. Subsequently, the spin-coated mixed solution was heated at 120 ° C. for 10 minutes and then at 450 ° C. for 1 hour in order to obtain a first layer (porous film) composed of a plurality of particles substantially made of titanium oxide. Formed.
 次に、第一層の多孔膜に対し、0.5M以下の濃度で、ヨウ化鉛(PbI)を1M、ヨウ化セシウム(CsI)を1M、コアシェル粒子1を8重量パーセント濃度(w%)で含む、ジメチルホルムアミド(DMF)およびジメチルスルホキシド(DMSO)の混合溶液100μlを、5000rpmの回転数でスピンコーティングした。続いて、スピンコーティングされた混合液に対し、185℃で15分間の加熱を行い、本発明のコアシェル粒子を含む第二層を形成した。 Next, with respect to the porous film of the first layer, lead iodide (PbI 2 ) was 1M, cesium iodide (CsI) was 1M, and core-shell particles 1 were 8% by weight (w%) at a concentration of 0.5M or less. ), 100 μl of a mixed solution of dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) was spin-coated at a rotation speed of 5000 rpm. Subsequently, the spin-coated mixed solution was heated at 185 ° C. for 15 minutes to form a second layer containing the core-shell particles of the present invention.
 次に、第二層に対し、5mM濃度で塩化ユーロピウム(EuCl)を含むイソプロピルアルコール(IPA)液100μlを、5000rpmの回転数でスピンコーティングした。続いて、スピンコーティングされた混合液に対し、100℃で15分間の加熱を行い、実質的にユーロピウムからなる層を形成した。 Next, 100 μl of an isopropyl alcohol (IPA) solution containing europium chloride (EuCl 3) at a concentration of 5 mM was spin-coated on the second layer at a rotation speed of 5000 rpm. Subsequently, the spin-coated mixed solution was heated at 100 ° C. for 15 minutes to form a layer substantially composed of europium.
 次に、このユーロピウムを主成分とする層に対し、20mM濃度でターピリジン(2,2’:6’,2”-terpyridine)を含むイソプロピルアルコール(IPA)液200μlを30秒保持した後、3000rpmの回転数でスピンコーティングした。続いて、スピンコーティングされた混合液に対し、100℃で15分間の加熱を行い、実質的にターピリジンからなる層を形成した。 Next, 200 μl of an isopropyl alcohol (IPA) solution containing terpyridine (2,2': 6', 2 "-terpyridine) at a concentration of 20 mM was held for 30 seconds with respect to this layer containing europium as a main component, and then at 3000 rpm. Spin-coated at rotation speed. Subsequently, the spin-coated mixture was heated at 100 ° C. for 15 minutes to form a layer substantially composed of terpyridine.
 最後に、第一層、第二層、第三層からなる積層体を挟んで負極層と反対側に、かつ第三層に接するように、正極層(Ag)を形成する(蒸着する)ことにより、実施例1の光電変換素子を製造した。 Finally, the positive electrode layer (Ag) is formed (deposited) on the opposite side of the negative electrode layer and in contact with the third layer with the laminate composed of the first layer, the second layer, and the third layer sandwiched between them. The photoelectric conversion element of Example 1 was manufactured.
(実施例2)
 コアシェル粒子1の代わりにコアシェル粒子2を用いた以外は、実施例1と同じ条件で、光電変換素子を製造した。
(Example 2)
A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that the core-shell particles 2 were used instead of the core-shell particles 1.
(実施例3)
 第三層として、真空蒸着法でBCPからなる層(膜厚30nm)を形成した以外は、実施例1と同じ条件で、光電変換素子を製造した。
(Example 3)
A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that a layer made of BCP (thickness: 30 nm) was formed as the third layer by a vacuum vapor deposition method.
(実施例4)
 第三層として実質的にSpiro―OMeTADからなる層(膜厚100nm)を形成した以外の条件は、実施例1と同じ条件で、光電変換素子を製造した。
(Example 4)
A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that a layer (thickness 100 nm) substantially composed of Spiro-OMeTAD was formed as the third layer.
(比較例1)
 コアシェル粒子1の代わりにナノ粒子1を用いた以外は、実施例1と同じ条件で、光電変換素子を製造した。
(Comparative Example 1)
A photoelectric conversion element was manufactured under the same conditions as in Example 1 except that nanoparticles 1 were used instead of core-shell particles 1.
(コアシェル粒子の発光スペクトル)
 コアシェル粒子1~2およびナノ粒子1の各粒子に対し、波長980nmの近赤外光を照射した際のスペクトルを浜松ホトニクス社製絶対PL量子収率測定装置で測定した。
(Emission spectrum of core-shell particles)
The spectra of the core- shell particles 1 and 2 and the nanoparticles 1 when irradiated with near-infrared light having a wavelength of 980 nm were measured with an absolute PL quantum yield measuring device manufactured by Hamamatsu Photonics.
(コアシェル粒子の光吸収スペクトル)
 コアシェル粒子2の光吸収スペクトルを浜松ホトニクス社製絶対PL量子収率測定装置で測定した。
(Light absorption spectrum of core-shell particles)
The light absorption spectrum of the core-shell particles 2 was measured with an absolute PL quantum yield measuring device manufactured by Hamamatsu Photonics.
(SEM観察)
 日立ハイテクノロジーズ社製走査型電子顕微鏡を用い倍率150,000倍で、実施例2の光電変換素子の断面を観察し、SEM像を得た。
(SEM observation)
A cross section of the photoelectric conversion element of Example 2 was observed at a magnification of 150,000 times using a scanning electron microscope manufactured by Hitachi High-Technologies Corporation, and an SEM image was obtained.
(光電流の応答特性)
 実施例2に対し、光応答特性を測定した。光電変換素子の正極層と負極層との間に印加する電圧を、-0.5Vとした。光電変換素子に照射する光の波長、放射照度を、それぞれ808nm、10mW/cmとした。
(Response characteristics of photocurrent)
The optical response characteristics were measured with respect to Example 2. The voltage applied between the positive electrode layer and the negative electrode layer of the photoelectric conversion element was set to −0.5 V. The wavelength and irradiance of the light irradiating the photoelectric conversion element were set to 808 nm and 10 mW / cm 2 , respectively.
 図7は、コアシェル粒子1および2の光電変換素子に対して波長980nmの近赤外光を照射し、そこで波長変換された光のスペクトルを示すグラフである。グラフの横軸が波長(nm)を示し、グラフの縦軸が強度(Counts/s)を示している。三つの波長(約550nm付近、約650nm付近、約800nm付近)でピークを示していることから、照射した近赤外光が、これら三つの光に変換されたことが分かる。破線は、被覆層CsPbBrが2層の場合(コアシェル粒子2)、点線は、被覆層CsPbBrが1層の場合(コアシェル粒子1)のスペクトルを示す。なお、比較として、ナノ粒子1のNaErF4(実線)のみのスペクトルも示す。その発光強度は、被覆層CsPbBrにより著しく強くなり、層の厚さが増すことでさらに強くなる。無機ナノ粒子のみの場合は鎖状有機分子の熱振動により発光が失活するのに対し、被覆層CsPbBrが失活を抑制していることを示した結果である。なお、ピークの位置は、コアシェル粒子の材料、形状、大きさ等を変えることによって調整することができる。 FIG. 7 is a graph showing the spectrum of the light wavelength-converted by irradiating the photoelectric conversion elements of the core- shell particles 1 and 2 with near-infrared light having a wavelength of 980 nm. The horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s). Since the peaks are shown at three wavelengths (around 550 nm, about 650 nm, and about 800 nm), it can be seen that the irradiated near-infrared light is converted into these three wavelengths. The broken line shows the spectrum when the coating layer CsPbBr 3 is two layers (core-shell particles 2), and the dotted line shows the spectrum when the coating layer CsPbBr 3 is one layer (core-shell particles 1). For comparison, the spectrum of only NaErF4 (solid line) of the nanoparticles 1 is also shown. The emission intensity is remarkably increased by the coating layer CsPbBr 3 , and further increased by increasing the thickness of the layer. This is a result showing that the coating layer CsPbBr 3 suppresses the deactivation, whereas the light emission is deactivated by the thermal vibration of the chain organic molecule in the case of only the inorganic nanoparticles. The position of the peak can be adjusted by changing the material, shape, size, etc. of the core-shell particles.
 図8は、第二層のコアシェル粒子の構造の違いによる吸収率の変化を示すグラフである。グラフの横軸が波長(nm)を示し、グラフの縦軸が強度(Counts/s)を示している。実線は、コアシェル粒子2の結果を示す。比較として、Erイオンを2%含むNaYFのナノ粒子の吸収率(破線)も示す。コアシェル粒子2は、Erイオンの量が100%であるため、一般的なアップコンバージョンナノ粒子(Erを2%使用)に比べ、照射された近赤外光の強度が7分の1程度に低くなっている。低くなった強度に相当する近赤外光は、コアシェル粒子のコア(無機ナノ粒子)に吸収されたものと考えられる。 FIG. 8 is a graph showing the change in absorption rate due to the difference in the structure of the core-shell particles in the second layer. The horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s). The solid line shows the result of the core-shell particle 2. For comparison, the absorption rate (dashed line) of the nanoparticles of NaYF 4 containing 2% of Er ions is also shown. Since the core-shell particles 2 contain 100% of Er ions, the intensity of the irradiated near-infrared light is about one-seventh lower than that of general up-conversion nanoparticles (using 2% of Er). It has become. It is considered that the near-infrared light corresponding to the lowered intensity is absorbed by the core (inorganic nanoparticles) of the core-shell particles.
 図9は、実施例として製造した光電変換素子の断面のSEM画像である。第一層、第二層、第三層からなる層が順に積層された構造体を形成し、Ag-ATO電極間を連結する電流パスを形成していることが分かる。 FIG. 9 is an SEM image of a cross section of the photoelectric conversion element manufactured as an example. It can be seen that a structure in which layers consisting of a first layer, a second layer, and a third layer are laminated in order is formed, and a current path connecting the Ag and ATO electrodes is formed.
 図10は、実施例2の光電変換素子の第二層に対して、波長980nmの近赤外光を照射し、そこで波長変換された光のスペクトルを示すグラフである。グラフの横軸が波長(nm)を示し、グラフの縦軸が強度(Counts/s)を示している。本来、ペロブスカイト層(ここでは、CsPbI)は、800nm以上の光を吸収することができないが、実施例2の第二層では、コアシェル粒子2を含むことにより、980nmの光を図7に示す可視光に変換することができる。700nm付近に、CsPbI3に由来する発光が観測されたことから、コアシェル粒子2で波長変換された可視光をCsPbIが吸収したことを示す。 FIG. 10 is a graph showing the spectrum of the light wavelength-converted by irradiating the second layer of the photoelectric conversion element of Example 2 with near-infrared light having a wavelength of 980 nm. The horizontal axis of the graph indicates the wavelength (nm), and the vertical axis of the graph indicates the intensity (Counts / s). Originally, the perovskite layer (here, CsPbI 3 ) cannot absorb light of 800 nm or more, but in the second layer of Example 2, the light of 980 nm is shown in FIG. 7 by containing the core-shell particles 2. It can be converted to visible light. Since light emission derived from CsPbI 3 was observed near 700 nm, it is shown that CsPbI 3 absorbed the visible light wavelength-converted by the core-shell particles 2.
 図11は、実施例2の光電変換素子に対して所定のタイミングで光照射を行うことにより、得られた光電流の応答速度を示すグラフである。グラフの横軸は経過時間(s)を示し、グラフの縦軸は光電流(A/cm)を示している。光電流は、電圧のオンオフに合わせた瞬時の立ち上がり、立ち下がりを示しており、十分な応答速度を実現できることが分かる。光電変換効率は75%、感度は0.49A/Wであった。 FIG. 11 is a graph showing the response speed of the photocurrent obtained by irradiating the photoelectric conversion element of Example 2 with light at a predetermined timing. The horizontal axis of the graph shows the elapsed time (s), and the vertical axis of the graph shows the photocurrent (A / cm 2 ). The photocurrent shows an instantaneous rise and fall according to the on / off of the voltage, and it can be seen that a sufficient response speed can be realized. The photoelectric conversion efficiency was 75% and the sensitivity was 0.49 A / W.
10・・・コアシェル粒子
11・・・無機ナノ粒子
11a・・・無機ナノ粒子の粒径
12・・・被覆層
12a・・・被覆層の厚み
100・・・光電変換素子
101・・・正極層
102・・・負極層
103・・・光電変換層
104・・・第一層
105・・・第二層
106・・・第三層
107・・・バッファ層
10 ... Core-shell particles 11 ... Inorganic nanoparticles 11a ... Particle size of inorganic nanoparticles 12 ... Coating layer 12a ... Coating layer thickness 100 ... Photoelectric conversion element 101 ... Positive electrode layer 102 ... Negative electrode layer 103 ... Photoelectric conversion layer 104 ... First layer 105 ... Second layer 106 ... Third layer 107 ... Buffer layer

Claims (7)

  1.  光の波長変換能力を有する無機ナノ粒子と、
     前記無機ナノ粒子の表面に形成され、無機ペロブスカイト型物質からなる被覆層と、を備え、コアシェル構造を有することを特徴とするコアシェル粒子。
    Inorganic nanoparticles with wavelength conversion capability of light,
    A core-shell particle having a core-shell structure, comprising a coating layer formed on the surface of the inorganic nanoparticles and made of an inorganic perovskite-type substance.
  2.  前記無機ナノ粒子が、希土類元素を含むことを特徴とする請求項1に記載のコアシェル粒子。 The core-shell particle according to claim 1, wherein the inorganic nanoparticles contain a rare earth element.
  3.  ペロブスカイト構造体を主成分として含み、さらに請求項1または2のいずれかに記載のコアシェル粒子を含む凝集体または薄膜であることを特徴とする複合体。 A complex characterized by being an aggregate or a thin film containing a perovskite structure as a main component and further containing the core-shell particles according to any one of claims 1 or 2.
  4.  請求項3に記載の複合体によって構成される層と、
     有機あるいは無機半導体(金属錯体を含む)を主成分として含む凝集体または薄膜によって構成される層と、を積層してなることを特徴とする光電変換素子用受光部材。
    The layer composed of the complex according to claim 3 and
    A light receiving member for a photoelectric conversion element, which is formed by laminating a layer composed of an aggregate or a thin film containing an organic or inorganic semiconductor (including a metal complex) as a main component.
  5.  請求項4に記載の光電変換素子用受光部材を、ホール輸送層と電子輸送層との間に備えてなる光電変換素子。 A photoelectric conversion element provided with the light receiving member for the photoelectric conversion element according to claim 4 between the hole transport layer and the electron transport layer.
  6.  無機半導体を主成分として含む複数の粒子またはその凝集体あるいは薄膜によって構成される第一層と、
     前記第一層の表面に形成され、請求項3記載の複合体によって構成される第二層と、
     有機あるいは無機半導体(金属錯体を含む)を主成分として含む複数の粒子またはその凝集体、あるいは薄膜によって構成される第三層と、
    を順に積層してなり、
     伝導帯において、前記第二層のエネルギー準位が前記第一層のエネルギー準位より高く、かつ前記第三層のエネルギー準位が前記第二層のエネルギー準位より高い、
    ことを特徴とする光電変換素子。
    A first layer composed of a plurality of particles containing an inorganic semiconductor as a main component or an aggregate or a thin film thereof,
    A second layer formed on the surface of the first layer and composed of the complex according to claim 3,
    A third layer composed of a plurality of particles or aggregates thereof containing an organic or inorganic semiconductor (including a metal complex) as a main component, or a thin film.
    Are stacked in order,
    In the conduction band, the energy level of the second layer is higher than the energy level of the first layer, and the energy level of the third layer is higher than the energy level of the second layer.
    A photoelectric conversion element characterized by this.
  7.  前記第三層が有機金属錯体を主成分として含み、価電子帯における前記第二層のエネルギー準位が、前記第三層のエネルギー準位より高いことを特徴とする請求項6に記載の光電変換素子。 The photoelectric of claim 6, wherein the third layer contains an organic metal complex as a main component, and the energy level of the second layer in the valence band is higher than the energy level of the third layer. Conversion element.
PCT/JP2021/019717 2020-05-28 2021-05-25 Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element WO2021241542A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21812084.8A EP4160710A1 (en) 2020-05-28 2021-05-25 Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element
CN202180028191.0A CN115428183A (en) 2020-05-28 2021-05-25 Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element
JP2022526560A JP7475732B2 (en) 2020-05-28 2021-05-25 Composite, light receiving member for photoelectric conversion element, and photoelectric conversion element
US17/922,802 US20230171974A1 (en) 2020-05-28 2021-05-25 Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093726 2020-05-28
JP2020-093726 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241542A1 true WO2021241542A1 (en) 2021-12-02

Family

ID=78744931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019717 WO2021241542A1 (en) 2020-05-28 2021-05-25 Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element

Country Status (5)

Country Link
US (1) US20230171974A1 (en)
EP (1) EP4160710A1 (en)
JP (1) JP7475732B2 (en)
CN (1) CN115428183A (en)
WO (1) WO2021241542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038754A1 (en) * 2022-08-19 2024-02-22 国立研究開発法人科学技術振興機構 Photoelectric conversion element, photoelectric conversion device, light detection method, and method for producing photoelectric conversion element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854655A (en) * 1994-08-10 1996-02-27 Tdk Corp Nonlinear optical thin film and its production
JP2009054936A (en) * 2007-08-29 2009-03-12 Kyoto Univ Photoelectric conversion device, manufacturing method therefor, and solar battery
WO2011037041A1 (en) * 2009-09-28 2011-03-31 株式会社 村田製作所 Nanoparticle material and photoelectric conversion device
JP2012099592A (en) * 2010-11-01 2012-05-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell and method for manufacturing the same
JP2015092563A (en) 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell
JP2015517736A (en) * 2012-05-18 2015-06-22 イシス イノベイション リミテッド Optoelectronic devices having organometallic perovskites with mixed anions
JP2016027587A (en) * 2013-07-31 2016-02-18 富士フイルム株式会社 Photoelectric conversion device and solar battery
JP2016132685A (en) * 2015-01-15 2016-07-25 株式会社デンソー Wavelength conversion material, light reception system and distance measuring system
JP2017066096A (en) * 2015-09-30 2017-04-06 アイシン精機株式会社 Hole transport bed material and solar cell using hole transport bed material
US20180002354A1 (en) * 2016-06-29 2018-01-04 Nanyang Technological University Perovskite core-shell nanocrystals
JP2020093726A (en) 2018-12-14 2020-06-18 トヨタ自動車株式会社 Vehicle control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089007B2 (en) * 2013-07-31 2017-03-01 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and solar cell
JP2019016772A (en) * 2017-03-23 2019-01-31 国立大学法人電気通信大学 Quantum dot, optical device using the same, and method of producing quantum dot

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854655A (en) * 1994-08-10 1996-02-27 Tdk Corp Nonlinear optical thin film and its production
JP2009054936A (en) * 2007-08-29 2009-03-12 Kyoto Univ Photoelectric conversion device, manufacturing method therefor, and solar battery
WO2011037041A1 (en) * 2009-09-28 2011-03-31 株式会社 村田製作所 Nanoparticle material and photoelectric conversion device
JP2012099592A (en) * 2010-11-01 2012-05-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell and method for manufacturing the same
JP2015517736A (en) * 2012-05-18 2015-06-22 イシス イノベイション リミテッド Optoelectronic devices having organometallic perovskites with mixed anions
JP2016027587A (en) * 2013-07-31 2016-02-18 富士フイルム株式会社 Photoelectric conversion device and solar battery
JP2015092563A (en) 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell
JP2016132685A (en) * 2015-01-15 2016-07-25 株式会社デンソー Wavelength conversion material, light reception system and distance measuring system
JP2017066096A (en) * 2015-09-30 2017-04-06 アイシン精機株式会社 Hole transport bed material and solar cell using hole transport bed material
US20180002354A1 (en) * 2016-06-29 2018-01-04 Nanyang Technological University Perovskite core-shell nanocrystals
JP2020093726A (en) 2018-12-14 2020-06-18 トヨタ自動車株式会社 Vehicle control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI ZHENG ET AL., NATURE COMMUNICATIONS, vol. 9, 2018, pages 3462

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038754A1 (en) * 2022-08-19 2024-02-22 国立研究開発法人科学技術振興機構 Photoelectric conversion element, photoelectric conversion device, light detection method, and method for producing photoelectric conversion element

Also Published As

Publication number Publication date
CN115428183A (en) 2022-12-02
US20230171974A1 (en) 2023-06-01
JPWO2021241542A1 (en) 2021-12-02
JP7475732B2 (en) 2024-04-30
EP4160710A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
Lu et al. Doping and ion substitution in colloidal metal halide perovskite nanocrystals
Zhang et al. Core/shell metal halide perovskite nanocrystals for optoelectronic applications
Chiba et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment
Zhou et al. All-inorganic perovskite quantum dot/mesoporous TiO 2 composite-based photodetectors with enhanced performance
Zhou et al. Insight into the effect of ligand-exchange on colloidal CsPbBr 3 perovskite quantum dot/mesoporous-TiO 2 composite-based photodetectors: much faster electron injection
Le et al. Halide perovskite quantum dots for light‐emitting diodes: properties, synthesis, applications, and outlooks
Roh et al. Hexagonal β-NaYF4: Yb3+, Er3+ nanoprism-incorporated upconverting layer in perovskite solar cells for near-infrared sunlight harvesting
Lee et al. Lead-free all-inorganic halide perovskite quantum dots: review and outlook
Ji et al. 1, 2-Ethanedithiol treatment for AgIn5S8/ZnS quantum dot light-emitting diodes with high brightness
Yoon et al. Systematic and extensive emission tuning of highly efficient Cu–In–S-based quantum dots from visible to near infrared
Hui et al. Photophysics in Cs 3 Cu 2 I 5 and CsCu 2 I 3
Chen et al. An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices
Wang et al. Exploration of nontoxic Cs3CeBr6 for violet light-emitting diodes
Thambidurai et al. Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer
Sun et al. Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices
EP3820964B1 (en) Stabilised a/m/x materials
Li et al. Ultraviolet light-induced degradation of luminescence in Mn-doped CsPbCl3 nanocrystals
Shah et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells
Zhao et al. Inorganic halide perovskites for lighting and visible light communication
Datt et al. Downconversion materials for perovskite solar cells
Wieghold et al. Halide Perovskites: A Progress Report on Photon Interconversion
Yu et al. Alkalis-doping of mixed tin-lead perovskites for efficient near-infrared light-emitting diodes
Cheng et al. Two-step crystallization for low-oxidation tin-based perovskite light-emitting diodes
Akhil et al. Post-synthesis treatment with lead bromide for obtaining near-unity photoluminescence quantum yield and ultra-stable amine-free CsPbBr3 perovskite nanocrystals
WO2021241542A1 (en) Core-shell particle, composite, light-receiving member for photoelectric conversion element, and photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812084

Country of ref document: EP

Effective date: 20230102