WO2021241473A1 - Composition, method for producing three-dimensionally molded circuit component, three-dimensionally molded circuit component and antenna - Google Patents

Composition, method for producing three-dimensionally molded circuit component, three-dimensionally molded circuit component and antenna Download PDF

Info

Publication number
WO2021241473A1
WO2021241473A1 PCT/JP2021/019518 JP2021019518W WO2021241473A1 WO 2021241473 A1 WO2021241473 A1 WO 2021241473A1 JP 2021019518 W JP2021019518 W JP 2021019518W WO 2021241473 A1 WO2021241473 A1 WO 2021241473A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inorganic filler
polymer
circuit component
molded circuit
Prior art date
Application number
PCT/JP2021/019518
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
崇 佐藤
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022527012A priority Critical patent/JPWO2021241473A1/ja
Publication of WO2021241473A1 publication Critical patent/WO2021241473A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a three-dimensional molded circuit component having high adhesion between a substrate and a circuit, a method for manufacturing the same, an antenna provided with the three-dimensional molded circuit component, and a composition capable of forming the substrate.
  • a three-dimensional molded circuit component having a three-dimensional resin molded product (base) called MID (Mold Interconnect Device) and a circuit formed on the surface thereof is for high frequency from the viewpoint of space saving and reduction of the number of components. It is useful for applications such as boards and in-vehicle sensors.
  • MID Mold Interconnect Device
  • Patent Document 1 As a resin composition that can be used to form a resin molded product, a combination of a fluororesin having a polar functional group and a thermoplastic resin or a thermosetting resin has been proposed (see Patent Document 1). However, the adhesion of the catalyst and the plating layer to the surface of the resin molded product formed from the resin composition is not yet sufficient, and there is room for further improvement.
  • An object of the present invention is to provide a composition capable of forming a substrate having high adhesion to a circuit, a three-dimensional molded circuit component having high adhesion between a substrate and a circuit, a method for manufacturing the same, and an antenna provided with the same.
  • the present invention has the following aspects.
  • a composition used for forming a substrate for a three-dimensional molded circuit component which comprises a heat-meltable tetrafluoroethylene polymer and an inorganic filler having an average particle size of more than 0.1 ⁇ m, and is tetra.
  • ⁇ 3> The composition of ⁇ 1> or ⁇ 2>, wherein the inorganic filler is an inorganic filler surface-treated with a silane coupling agent.
  • ⁇ 4> The composition according to any one of ⁇ 1> to ⁇ 3>, wherein the average particle size of the inorganic filler is 0.5 to 20 ⁇ m.
  • ⁇ 5> The composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the inorganic filler is 5% by mass or more and less than 50% by mass.
  • the inorganic filler is an inorganic filler containing at least one selected from the group consisting of silica, talc, titania, alumina, tin oxide, an organic palladium complex, copper oxide and boron nitride, ⁇ 1> to ⁇ . 5> Any of the compositions.
  • ⁇ 7> The composition according to any one of ⁇ 1> to ⁇ 6> further containing non-heat-meltable polytetrafluoroethylene.
  • a substrate is formed using any of the compositions ⁇ 1> to ⁇ 7>, the surface of the substrate is roughened, a catalyst is applied, and the surface of the substrate is plated.
  • a substrate is formed using any of the compositions of ⁇ 1> to ⁇ 7>, the surface of the substrate is irradiated with a laser, and then a circuit is formed on the surface of the substrate by a plating treatment to form the substrate.
  • a method for manufacturing a three-dimensional molded circuit component which obtains a three-dimensional molded circuit component having the above-mentioned circuit.
  • An antenna provided with the three-dimensional molded circuit component of ⁇ 13> or ⁇ 14>.
  • a three-dimensional molded circuit component having high adhesion between the substrate and the circuit can be obtained.
  • the "heat-meltable polymer” means a polymer showing melt fluidity, and the melt flow rate is 0.1 to 1000 g / 10 at a temperature 20 ° C. or higher higher than the melt temperature of the polymer under the condition of a load of 49 N. It means a polymer in which a temperature of minutes is present.
  • Melting flow rate (MFR) means the melt mass flow rate of a polymer as defined in JIS K 7210: 1999 (ISO 1133: 1997).
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • the "glass transition point (Tg) of the polymer” is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
  • the "average particle size (D50)” is a volume-based cumulative 50% diameter of an object (grain or filler) determined by a laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles of the object as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve.
  • the diameter. “D10” and “D90” are volume-based cumulative 10% and 90% diameters of the object, respectively, measured in the same manner.
  • the "unit" in the polymer may be an atomic group formed directly from the monomer, or may be an atomic group in which a part of the structure is converted by treating the obtained polymer by a predetermined method.
  • the unit based on the monomer A contained in the polymer is also simply referred to as "monomer A unit".
  • the composition of the present invention (hereinafter, also referred to as “the present composition”) is used for forming a substrate of a three-dimensional molded circuit component.
  • the present composition contains a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) and an inorganic filler having an average particle size of more than 0.1 ⁇ m, and is a tetrafluoroethylene polymer. Content is over 50% by mass. That is, when the tetrafluoroethylene-based polymer in the present composition consists only of the F polymer, the content of the F polymer in the present composition is more than 50% by mass, and the tetrafluoroethylene-based polymer in the present composition is the F polymer and F.
  • the total content of the F polymer and the tetrafluoroethylene-based polymer other than the F polymer in this composition is 50. It is over% by mass.
  • this method a substrate is formed using the present composition, the surface of the substrate is roughened, and then a catalyst is used.
  • a method of forming a circuit on the surface of the substrate by a plating treatment to obtain a three-dimensional molded circuit component having the substrate and the circuit hereinafter, also referred to as “this method 1” or a substrate using the present composition.
  • this method 2 A method of forming, irradiating the surface of the substrate with a laser, and then forming a circuit on the surface of the substrate by a plating treatment to obtain a three-dimensional molded circuit component having the substrate and the circuit (hereinafter, also referred to as "this method 2"). Is.
  • the inorganic filler having a relatively large size is contained, it is difficult for the inorganic filler to be separated from the substrate when the surface of the formed substrate is roughened, laser-irradiated or plated.
  • the inorganic filler existing near the surface of the substrate is appropriately etched during the roughening treatment, and the surface is uneven. Is formed, so that the catalyst is easily supported on the unevenness.
  • the plating is directly formed on the inorganic filler existing on the surface of the substrate.
  • the circuit (plating layer) formed by the plating process causes the circuit (plating layer) formed by the plating process to be firmly fixed to the surface of the substrate via the inorganic filler.
  • the addition of the inorganic filler can impart low linear expansion property to the substrate, the difference in the linear expansion coefficient between the plating layer and the substrate becomes small, and from this viewpoint, high adhesion between the substrate and the circuit is also obtained. Is considered to have been obtained.
  • the substrate containing the F polymer and the inorganic filler is excellent in electrical characteristics, the transmission loss of the obtained three-dimensional molded circuit component can be sufficiently reduced. Further, an antenna having a high gain can be formed from such a three-dimensional molded circuit component.
  • the F polymer in the present invention is a heat-meltable polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • the melting temperature of the F polymer is preferably 260 to 320 ° C, more preferably 290 to 310 ° C.
  • the glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • the F polymer is preferably a polymer containing a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE unit) or a unit based on hexafluoropropylene (HFP) (HFP unit).
  • PAVE perfluoro (alkyl vinyl ether)
  • HFP hexafluoropropylene
  • the F polymer may contain both PAVE units and HFP units, or may contain only one of them.
  • the F polymer preferably has a polar functional group.
  • the polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter embodiment include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Be done.
  • the polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is more preferable from the viewpoint of excellent adhesion to the circuit (metal layer).
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, and preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • a group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 pieces are more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the F polymer a tetrafluoroethylene polymer containing PAVE units and containing 1.5 to 5.0 mol% of PAVE units with respect to all units is preferable, and a polymer containing PAVE units and having a polar functional group (1). Or, a polymer (2) having no polar functional group, which contains PAVE units and contains 2.0 to 5.0 mol% of PAVE units with respect to all units, is more preferable.
  • these F polymers excellent in handleability and blendability in their granules (pellets or powders), but they also tend to form microspherulites in the substrate formed from them, thereby enhancing the adhesion of the substrate to the circuit. ..
  • the polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units and 0.01 to 3 mol of units based on a monomer having a polar functional group with respect to all the units. %, It is preferable to contain each. Further, the monomer having a polar functional group is maleic anhydride, itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”). Is preferable. Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. preferable.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
  • the fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups possessed by the polymer is less than 500 per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. Means.
  • the number of the polar functional groups is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of polar functional groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is derived from an F polymer having a polar functional group (derived from the polymerization initiator).
  • An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer may be fluorinated to produce the polymer.
  • Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • the substrate in the present invention may be formed by either injection molding or press molding, and is preferably formed by injection molding. Since the F polymer in the present invention exhibits good thermal meltability and its melt viscosity converges within a predetermined range, it is likely to be filled and molded at high density in injection molding or press molding. As a result, bubbles (air layer) are less likely to be formed in the formed substrate, and deterioration of the physical properties (water resistance, etc.) of the substrate due to the presence of the bubbles is suppressed.
  • injection molding is preferable in that a substrate having a finer and more complicated shape can be formed. Further, according to press molding, it is easy to form a sheet-shaped substrate.
  • the injection molding method includes a general injection molding method, a high-speed injection molding method, a multicolor molding method, a coin injection molding method, an injection compression molding method, a gas-assisted injection molding method, a foam injection molding method (MUCELL), and rapid molding. Examples thereof include a heat-and-cool molding method using a heating mold, an insert molding method, and an in-mold decoration molding method.
  • the melt viscosity of the F polymer, 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 Pa ⁇ s is preferably at 380 ° C., and more preferably 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 Pa ⁇ s at 300 ° C.. In this case, it becomes easier to form a substrate by injection at a lower temperature.
  • the MFR of the F polymer is preferably 20 g / 10 minutes or less, and more preferably 10 g / 10 minutes or less. In this case, it becomes easy to form a substrate having a more complicated shape.
  • the melt viscosity of the present composition is preferably 50 to 1000 Pa ⁇ s, more preferably 75 to 750 Pa ⁇ s at a shear rate of 1000 / sec. In this case as well, it becomes easy to form a substrate having a more complicated shape.
  • the shape of the F polymer in the present composition is preferably granular, more preferably pelletized.
  • the shape of the F polymer in the present composition is preferably in the form of pellets having a maximum length of 3 to 5 mm. In this case, the injection moldability of the present composition is further improved, and it is easy to form a substrate highly filled with the F polymer.
  • the F polymer in the present composition is preferably granular, more preferably 0.1 to 10 ⁇ m for D10 and 0.3 to 50 ⁇ m for D50. preferable.
  • Examples of the inorganic filler in this composition include silica, titania, alumina, magnesia, zinc oxide, calcium oxide, iron oxide, tin oxide, antimony oxide, calcium carbonate, mica, diatomaceous earth, calcium hydroxide, magnesium hydroxide, and aluminum hydroxide.
  • the inorganic filler one kind may be used alone, or two or more kinds may be used in combination.
  • the inorganic filler is preferably an inorganic filler containing at least one selected from the group consisting of silica, talc, titania, alumina, tin oxide, organic palladium complex, copper oxide and boron nitride, preferably silica, copper oxide and tin oxide. And an inorganic filler containing boron nitride is more preferred.
  • These inorganic fillers, particularly inorganic fillers containing silica or boron nitride are preferable because they are easily etched by themselves by the roughening treatment and have a high ability to carry a catalyst.
  • inorganic filler has a relatively wide bandgap (for example, 5.5 to 9 eV) because it promotes carbonization of the F polymer existing around the inorganic filler due to heat generation due to absorption of ultraviolet rays and easily forms irregularities on the surface of the substrate.
  • Inorganic fillers are preferred.
  • Preferable specific examples of such an inorganic filler include an inorganic filler containing silica or boron nitride.
  • the content of silica or boron nitride in the inorganic filler is preferably 80% by mass or more, more preferably 90% by mass or more. The upper limit of the content is 100% by mass.
  • the inorganic filler When the inorganic filler is an inorganic filler containing silica, the inorganic filler may be hollow silica having a cavity (air) inside.
  • the three-dimensional molded circuit component formed from the composition containing such an inorganic filler tends to have a lower dielectric constant.
  • the inorganic filler is an inorganic filler having a laser activating action (laser direct structuring additive; hereinafter, also referred to as "LDS additive")
  • the substrate formed from the present composition containing such an inorganic filler may be used. It is more suitable for manufacturing three-dimensional molded circuit parts by the LDS (laser direct structuring) method (hereinafter, also referred to as "LDS method").
  • the LDS method starts with an activated LDS additive by irradiating the substrate with a laser to roughen the substrate and activate an inorganic filler which is an LDS additive contained in the substrate.
  • the LDS additive is preferably an inorganic filler containing copper oxide or tin oxide.
  • the copper oxide is preferably copper spinel, and the tin oxide is preferably doped tin dioxide. Since the substrate in the present invention contains a high proportion of F polymer having excellent electrical properties (dielectric constant, dielectric loss tangent, etc.) and heat resistance, the electrical properties are unlikely to deteriorate even when irradiated with a laser. Therefore, it is easy to form a three-dimensional molded circuit component having a low transmission loss from the substrate in the present invention.
  • the D50 of the inorganic filler is more than 0.1 ⁇ m, more preferably 0.2 ⁇ m or more, and further preferably 0.5 ⁇ m or more.
  • the D50 of the inorganic filler is preferably 10 ⁇ m or less.
  • the inorganic filler is dispersed densely and uniformly, and it is easy to obtain a substrate having excellent electrical characteristics and low linear expansion. Further, when the roughening treatment and the plating treatment are performed, the inorganic filler is less likely to be separated from the substrate.
  • the inorganic filler may be surface-treated with a surface-treating agent from the viewpoint of enhancing the dispersibility in the F polymer.
  • Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamine, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, aluminum, silicon, zirconium, tin, titanium, antimony and other oxides, their hydroxides, their hydrated oxides, their phosphoric acid Salt is mentioned.
  • polyhydric alcohols trimethylolethane, pentaeristol, propylene glycol, etc.
  • saturated fatty acids stearic acid, lauric acid, etc.
  • esters thereof alkanolamines, amines (trimethylamine, etc.).
  • Triethylamine etc. paraffin wax
  • silane coupling agent silicone
  • silicone polysiloxane
  • a silane coupling agent can also be used as the surface treatment agent.
  • the silane coupling agent include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-. Examples thereof include isocyanate propyltriethoxysilane.
  • Examples of the shape of the inorganic filler include granular, needle-like (fibrous), and plate-like, and specifically, spherical, scaly, layered, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, and leaf-like. , Mica-like, block-like, flat plate-like, wedge-like, rosette-like, mesh-like, and prismatic. Of these, spherical and scaly are preferable, and spherical is more preferable.
  • the inorganic filler examples include silica filler ("Admafine (registered trademark)” series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate (manufactured by Sakai Chemical Industry Co., Ltd.).
  • hydrophobic AEROSIL series RX200 ", Tarkufiller (manufactured by Nippon Tarku Co., Ltd.) Examples include “SG” series) and steatite filler ("BST” series manufactured by Nippon Tarku Co., Ltd.).
  • the content of the tetrafluoroethylene polymer in the present composition is preferably more than 50% by mass, preferably more than 50% by mass and 95% by mass or less, and more preferably 55% by mass or more and 90% by mass or less. .. In this case, the moldability (particularly, injection moldability) of the present composition becomes better. Further, the content of the inorganic filler in the present composition is preferably 5% by mass or more and less than 50% by mass. In this case, the above effect due to the inclusion of the inorganic filler is further improved. When the inorganic filler is silica, the content thereof is preferably 30% by mass or more and less than 50% by mass.
  • the inorganic filler is a compound other than silica (particularly boron nitride)
  • the content thereof is preferably 5% by mass or more and 30% by mass or less.
  • the surface of the obtained substrate is less likely to be roughened (missing filler, cracks, etc.).
  • the composition may further contain a polymer different from the F polymer.
  • the different polymers include aromatic polyesters, polyamideimides, polyimides, polyphenylene ethers, polyphenylene oxides and maleimides, with thermoplastic aromatic polyimides being preferred.
  • a non-heat-meltable tetrafluoroethylene-based polymer is preferable, and a non-heat-meltable polytetrafluoroethylene (PTFE) is more preferable.
  • PTFE non-heat-meltable polytetrafluoroethylene
  • the inorganic filler is entangled with the PTFE due to its fibril property, so that it is more difficult for the inorganic filler to fall off from the formed substrate, which is preferable.
  • the content of the non-heat-meltable PTFE in the present composition is preferably 1 to 60% by mass, more preferably 10 to 40% by mass.
  • the total content of F polymer and non-heat-meltable PTFE in the present composition is more than 50% by mass, which is non-heat-meltable with respect to the content of F polymer.
  • the mass ratio of the PTFE content is preferably 0.1 to 2.0, more preferably 0.5 to 1.5.
  • this composition contains a dehydrating agent, a plasticizer, a weather resistant agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, a coloring agent, and a conductive agent, as long as the effects of the present invention are not impaired. It may contain a mold release agent and a flame retardant.
  • the present composition may be produced by dry blending each component, or may be melt-kneaded to produce pellets.
  • the pellets are prepared by mixing each component in advance using various mixers such as a tumbler and a Henschel mixer, and then using a Banbury mixer, a roll, a brabender, a single-screw kneading extruder, a twin-screw kneading extruder, and a kneader. It can be manufactured by melt-kneading using or the like.
  • pellets can be produced without premixing each component or by premixing only some of the components and supplying the pellets to an extruder using a feeder for melt-kneading.
  • the kneaded product is used as a masterbatch, and the masterbatch and the remaining components are mixed and melt-kneaded. Can be manufactured.
  • the composition into a substrate by injection molding or press molding.
  • the shape of the substrate may be a sheet shape or a three-dimensional shape having a complicated shape.
  • the roughening treatment it is advisable to perform the roughening treatment to the extent that a part of the inorganic filler is exposed from the surface of the substrate.
  • the surface of the inorganic filler is also etched, and minute irregularities are formed on the surface as well.
  • a larger amount of catalyst is supported on the surface of the inorganic filler. Since the circuit comes into contact with the exposed inorganic filler, the anchor effect of the inorganic filler is exhibited, and the circuit is more reliably prevented from peeling from the substrate.
  • the roughening treatment may be carried out by any treatment such as physical treatment or chemical treatment. Above all, the roughening treatment is preferably carried out by irradiating the surface of the substrate with ultraviolet rays or by applying a solvent to the surface of the substrate. According to these methods, it is relatively easy to form irregularities on the surface of the substrate. It is preferable to form a mask having an opening corresponding to the region to be roughened on the surface of the substrate and roughen the surface through the mask. In this case, a circuit with a clear outline can be formed.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, and an excimer lamp can be used as the light source.
  • the illuminance of ultraviolet rays is preferably 5 to 150 mW / cm 2 at a wavelength of 254 nm.
  • the irradiation time of ultraviolet rays is preferably 0.1 to 50 minutes, more preferably 0.2 to 40 minutes, and even more preferably 0.3 to 30 minutes. Irradiation with ultraviolet rays under such conditions further improves the adhesion between the circuit and the substrate.
  • ozone water and an acid solution chromic acid anhydride solution, hydrofluoric acid solution, etc.
  • the surface of the substrate may be degreased by treatment with a surfactant.
  • the first surface adjustment may be performed by immersing the substrate in the first treatment liquid for the purpose of cleaning the surface of the substrate and / or imparting wettability to the surface.
  • a CP conditioner manufactured by Kizai Co., Ltd.
  • the treatment conditions are preferably a temperature of 30 to 60 ° C. and a soaking time of 1 to 5 minutes. If the treatment is carried out under such conditions, the plating layer is evenly deposited, and the adhesion of the circuit to the substrate is further improved.
  • the second surface adjustment may be performed by immersing the substrate in the second treatment liquid for the purpose of facilitating the precipitation of the catalyst on the surface of the substrate.
  • the first surface adjustment it is preferable that the second roughening treatment is performed after the first surface preparation.
  • a compound capable of adsorbing (binding) to both a functional group exposed on the surface of the substrate etched by irradiation with ultraviolet rays and a catalyst is preferable.
  • polyvalent amine is preferable, specifically, ethyleneamine, polyethyleneimine, polyethyleneamine or polyallylamine is more preferable, and polyethyleneimine or polyallylamine is further preferable. In this case, it is easy to improve the adhesion between the circuit and the substrate.
  • the concentration in the second treatment liquid is preferably 0.01 to 10 g / L, more preferably 0.1 to 1 g / L.
  • the temperature of the second treatment liquid is preferably 30 to 60 ° C, more preferably 35 to 50 ° C.
  • the treatment time is preferably 1 to 10 minutes, more preferably 1 to 5 minutes. If the surface of the substrate is treated under these conditions, a plating layer having less unevenness and higher adhesion can be realized.
  • a catalyst is applied to the surface of the substrate.
  • a circuit plating layer
  • the catalyst include metal fine particles such as palladium (Pd), nickel (Ni), platinum (Pt), and copper (Cu), metal complexes, and metal alkoxides, and compounds containing palladium having high catalytic activity are preferable.
  • the method of applying the catalyst to the surface of the substrate include a method of applying a catalyst solution in which the catalyst is dissolved or dispersed in a solvent to the surface of the substrate, and a method of immersing the substrate in the catalyst solution. From the viewpoint of productivity, a method of immersing the substrate in the catalyst solution is preferable.
  • the solvent used for the catalyst solution examples include water, alcohol (methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, etc.) and hydrocarbons (hexane, heptane, etc.).
  • the catalyst used in the catalyst solution is preferably a palladium complex because of its high catalytic activity.
  • Specific examples of the palladium complex include sodium tetrachloropalladium acid, potassium tetrachloropalladium acid, palladium acetate, palladium chloride, acetylacetonatopalladium (II), and hexafluoroacetylacetonatopalladium (II).
  • the content of the catalyst in the catalyst solution is preferably 0.01 to 5% by mass.
  • the treatment temperature is preferably 30 to 60 ° C., and the treatment (immersion) time is preferably 1 to 5 minutes.
  • sensitizer-activator method for example, the surface of the substrate is treated with a solution containing Sn 2+ (sensitizer treatment) so that the catalyst can be easily supported, and the substrate is immersed in a solution containing the catalyst (for example, Pd 2+). (Activator processing).
  • a substrate is immersed in a solution containing a catalyst (for example, a palladium colloidal solution obtained by mixing Sn 2+ and Pd 2+ ) (catalyzer treatment), and the substrate is immersed in a hydrochloric acid solution or the like to provide a catalyst (catalyst).
  • a catalyst for example, a palladium colloidal solution obtained by mixing Sn 2+ and Pd 2+
  • metal is deposited on the surface of the substrate (accelerator treatment).
  • the catalyst supported on the surface of the substrate is activated.
  • the substrate is treated with a solution containing a reducing agent.
  • a reducing agent hydrogen, sodium hypophosphite, sodium borohydride are preferable, and sodium hypophosphite is more preferable.
  • the content of the reducing agent in the solution is preferably 0.01 to 10% by mass.
  • the solution is preferably an aqueous solution.
  • the treatment temperature is preferably 30 to 60 ° C., and the treatment (immersion) time is preferably 1 to 5 minutes.
  • a plating layer (metal layer) is deposited on the surface of the substrate by a plating treatment to form a circuit.
  • a plating treatment it is preferable to perform an electroless plating treatment.
  • the electroless plating treatment copper plating, nickel plating, palladium plating, silver plating, gold plating, or alloy plating thereof can be used, which are selected according to the purpose.
  • an electrolytic plating treatment may be further performed.
  • the electrolytic plating treatment is performed using the electroless plating layer formed by the electroless plating treatment as an electrode.
  • the electrolytic plating process is performed for the purpose of adjusting the thickness (electrical resistance value) of the circuit, imparting corrosion resistance to the circuit, and the like.
  • a plating layer of tin, gold, silver or the like may be formed on the outermost surface of the circuit in order to improve the solder wettability of the circuit so as to cope with the solder reflow.
  • a three-dimensional molded circuit component is obtained from a substrate formed by using the present composition by the LDS method.
  • the LDS additive may be contained as an inorganic filler in the present composition, or may be contained as a component different from the inorganic filler. Further, it may be an inorganic filler coated with an LDS additive.
  • the LDS additive When the LDS additive is contained in the inorganic filler, the plating is formed starting from the inorganic filler, so that the plating is easily firmly fixed to the substrate.
  • the LDS additive include an organopalladium complex, copper spinel, and antimony-doped tin dioxide.
  • the content of the LDS additive in the present composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, still more preferably 1 to 10% by mass, based on the F polymer.
  • an electroless plating treatment is preferable.
  • the three-dimensional molded circuit component of the present invention (hereinafter, also referred to as “the present component”) contains an F polymer and an inorganic filler having an average particle diameter of more than 0.1 ⁇ m, and the content of the F polymer is more than 50% by mass. It has a substrate which is, and a circuit provided on the surface of the substrate.
  • the thickness of the circuit (wiring constituting the circuit) is preferably 0.5 to 30 ⁇ m, more preferably 2 to 10 ⁇ m. In this case, the electric resistance value of the circuit can be sufficiently reduced.
  • the inorganic filler is exposed from the surface of the substrate and the circuit is in contact with the exposed inorganic filler.
  • the anchor effect of the inorganic filler more reliably prevents the circuit from peeling from the substrate.
  • the definitions and scope of F-polymers and inorganic fillers in this component are similar to those in this composition, including preferred embodiments.
  • the configuration and scope of the circuit in this component are the same as those in this method, including preferred embodiments.
  • the parts are preferably parts manufactured by this method. An antenna with high gain can be formed from this component.
  • this component includes electrical equipment and electronic equipment (personal computers, wearable terminals, medical devices, various sensors, displays, OA equipment, mobile phones, mobile information terminals, facsimiles, video cameras, digital cameras, optical equipment, audio, etc. Air conditioners, lighting equipment, entertainment products, toy products, other home appliances, etc.), circuit parts such as automobiles, aircraft, railways, drones, antennas, sensors, connectors, semiconductor packages, etc. According to this component, space saving and weight reduction can be realized by reducing the amount of circuit boards and wire harnesses used in electrical equipment, electronic equipment, automobiles, aircraft, railways, drones and the like.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the composition, the three-dimensional molded circuit component, and the antenna of the present invention may be added to any other configuration in the configuration of the above embodiment, or may be replaced with any configuration that exhibits the same function. You may be.
  • the method for manufacturing a three-dimensional molded circuit component of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. ..
  • F polymer 1 A PFA polymer containing 98.0 mol%, 0.1 mol% and 1.9 mol% of TFE units, NAH units and PPVE units in this order and having a polar functional group (melting temperature: 300 ° C., Content of polar functional group: 1000 per 6 carbon atoms in the main chain)
  • F polymer 2 A PFA polymer containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having no polar functional group (melting temperature: 305 ° C.).
  • F Polymer 3 Non-heat-meltable PTFE
  • Pellet 1 Pellet made of F polymer 1 with a maximum length of 3.5 mm
  • Pellet 2 Pellet made of F polymer 2 with a maximum length of 3.5 mm
  • Pellet 3 Made of liquid crystal polyester 1 with a maximum length of 3 .5 mm pellet
  • Pellet 4 Pellet with a maximum length of 3.5 mm made of F polymer 3
  • Liquid crystal polyester 1 Units derived from p-hydroxybenzoic acid, units derived from 4,4'-dihydroxybiphenyl, ethylenedioxy units derived from polyethylene terephthalate, units derived from terephthalic acid, 66.7 mol%, 6.
  • Inorganic filler 1 Silane particles with D50 of 2 ⁇ m
  • Inorganic filler 2 Boron nitride particles with D50 of 4 ⁇ m
  • Inorganic filler 3 Boron nitride particles with D50 of 20 ⁇ m
  • Inorganic filler 4 Silane particles with D50 of 0.1 ⁇ m
  • Inorganic filler 5 D50 1 ⁇ m hollow silica particles
  • Inorganic filler 6 Silica particles with D50 of 2 ⁇ m LDS additive 1: Copper spinel particles containing copper chromium oxide
  • the inorganic filler 1 is a silane coupling agent (3-aminopropyltriethoxysilane). The surface is treated, and the inorganic filler 6 is not surface-treated with a silane coupling agent.
  • composition 60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 1 were dry-blended to obtain composition 1.
  • composition 2 90 parts by mass of pellet 1 and 10 parts by mass of inorganic filler 2 were dry-blended to obtain composition 2.
  • Example 3 90 parts by mass of the pellet 2 and 10 parts by mass of the inorganic filler 3 were dry-blended to obtain the composition 3.
  • Example 4 60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 4 were dry-blended to obtain composition 4.
  • Example 5 100 parts by mass of pellet 1 was used as the composition 5.
  • each composition 1 to 5 was press-molded with a melt heat press machine (manufactured by Tester Sangyo Co., Ltd.) to obtain sheets 1 to 5 (thickness: 2.8 mm) as a substrate.
  • the surface of the sheet was roughened by irradiating the surface of the sheet with ultraviolet rays for 3 minutes at an irradiation distance of 50 cm using KOV1-30H (manufactured by Koto Electric Co., Ltd.).
  • the mixture was immersed in an aqueous solution prepared by dissolving palladium chloride at 0.5 g / L, stannous chloride at 50 g / L and 35% hydrochloric acid at 500 mL / L at 30 ° C. for 6 minutes, and then immersed in 20% sulfuric acid for 30 minutes. After soaking at ° C. for 3 minutes, it was washed with water.
  • composition 8 58 parts by mass of pellet 1, 38 parts by mass of inorganic filler 1 and 4 parts by mass of LDS additive 1 were dry-blended to obtain composition 8.
  • each composition 6 to 8 was press-molded with a melt heat press machine (manufactured by Tester Sangyo Co., Ltd.) to obtain sheets 6 to 8 (thickness: 0.2 mm) as a substrate.
  • the surface of the obtained molded product was irradiated with a laser using a Panasonic LP-V10U FAYb laser device under the conditions of a wavelength of 1064 nm, a frequency of 50 Hz, a laser output of 5.0 W, and a scanning speed of 3000 mm / s.
  • the molded product was subjected to an electroless copper plating treatment having a thickness of 12 ⁇ m. Through the above steps, three-dimensional molded circuit parts 6 to 8 were obtained.
  • Antenna gain A patch antenna gain simulation was performed on the obtained three-dimensional molded circuit components 6 to 8.
  • the size of the patch antenna was designed according to the dielectric constant, and the three-dimensional molded circuit components 6 to 8 were made into squares having a side of 3.0 mm, 3.3 mm, and 2.6 mm in this order, respectively.
  • the gain of the antenna at a wavelength of 28 GHz was evaluated according to the following criteria. [Evaluation criteria] ⁇ : 6.5 dBi or more ⁇ : less than 6.5 dBi
  • composition 60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 6 were dry-blended to obtain composition 9.
  • composition 9 60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 6 were dry-blended to obtain composition 9.
  • Example 10 30 parts by mass of pellet 1, 30 parts by mass of pellet 4 and 40 parts by mass of inorganic filler 1 were dry-blended to obtain a composition 10.
  • Three-dimensional molded circuit parts 9 and 10 were obtained in the same manner as the three-dimensional molded circuit parts 1 except that the composition 1 was changed to the composition 9 and the composition 10. 10. Evaluation As a result of evaluating the plating adhesion and resistance by the heat cycle test of the three-dimensional molded circuit parts 9 and 10 by the methods described in 4-1 and 4-2, the results of the three-dimensional molded circuit parts 9 are " ⁇ " in order. The results of " ⁇ " and the three-dimensional molded circuit component 10 were " ⁇ " and " ⁇ ” in order. Compared to the three-dimensional molding circuit component 1, the three-dimensional molding circuit component 10 was further suppressed from powder dropping of the inorganic filler at its end portion and curved surface portion.
  • composition and the three-dimensional molded circuit component of the present invention include electrical equipment and electronic equipment (personal computer, wearable terminal, medical device, various sensors, displays, OA equipment, mobile phone, mobile information terminal, facsimile, video camera, digital camera, etc. It is useful in applications such as optical equipment, audio, air conditioners, lighting equipment, entertainment equipment, toy equipment, and other home appliances), circuit parts such as automobiles, aircraft, railways, and drones, antennas, sensors, connectors, and semiconductor packages.
  • electrical equipment and electronic equipment personal computer, wearable terminal, medical device, various sensors, displays, OA equipment, mobile phone, mobile information terminal, facsimile, video camera, digital camera, etc. It is useful in applications such as optical equipment, audio, air conditioners, lighting equipment, entertainment equipment, toy equipment, and other home appliances), circuit parts such as automobiles, aircraft, railways, and drones, antennas, sensors, connectors, and semiconductor packages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide: a composition which is capable of forming a base material that exhibits high adhesion to a circuit; a three-dimensionally molded circuit component which has high adhesion between a base material and a circuit; a method for producing this three-dimensionally molded circuit component; and an antenna which is provided with this three-dimensionally molded circuit component. [Solution] A composition according to the present invention is used for the purpose of forming a base material of a three-dimensionally molded circuit component; this composition contains a thermofusible tetrafluoroethylene polymer and an inorganic filler that has an average particle diameter of more than 0.1 μm; and the content of the tetrafluoroethylene polymer is more than 50% by mass.

Description

組成物、立体成形回路部品の製造方法、立体成形回路部品及びアンテナComposition, manufacturing method of three-dimensional molded circuit parts, three-dimensional molded circuit parts and antennas
 本発明は、基体と回路との密着性の高い立体成形回路部品及びその製造方法、上記立体成形回路部品を備えたアンテナ、並びに、上記基体を形成可能な組成物に関する。 The present invention relates to a three-dimensional molded circuit component having high adhesion between a substrate and a circuit, a method for manufacturing the same, an antenna provided with the three-dimensional molded circuit component, and a composition capable of forming the substrate.
 MID(Mold Interconnect Device)と呼ばれる、三次元形状の樹脂成形品(基体)と、その表面に形成された回路とを有する立体成形回路部品は、省スペース、部品点数の削減という観点から、高周波向け基板や車載センサーの用途で有用である。MIDの製造方法では、樹脂成形品(原成形品)の表面を粗化処理した後、その表面に触媒を付与し、無電解めっき処理が行われる。 A three-dimensional molded circuit component having a three-dimensional resin molded product (base) called MID (Mold Interconnect Device) and a circuit formed on the surface thereof is for high frequency from the viewpoint of space saving and reduction of the number of components. It is useful for applications such as boards and in-vehicle sensors. In the method for producing MID, after roughening the surface of a resin molded product (original molded product), a catalyst is applied to the surface and electroless plating treatment is performed.
 樹脂成形品を形成するのに使用可能な樹脂組成物として、極性官能基を有する含フッ素樹脂と、熱可塑性樹脂又は熱硬化樹脂との組み合せが提案されている(特許文献1参照)。しかし、かかる樹脂組成物から形成される樹脂成形品の表面に対する触媒及びめっき層の密着性は未だ充分でなく、更なる改善の余地がある。 As a resin composition that can be used to form a resin molded product, a combination of a fluororesin having a polar functional group and a thermoplastic resin or a thermosetting resin has been proposed (see Patent Document 1). However, the adhesion of the catalyst and the plating layer to the surface of the resin molded product formed from the resin composition is not yet sufficient, and there is room for further improvement.
特開2019-054034号公報Japanese Unexamined Patent Publication No. 2019-054034
 本発明者らは、上記問題点に鑑みて鋭意検討した結果、熱溶融性のテトラフルオロエチレン系ポリマーと所定の無機フィラーを併用した組成物を使用すれば、基体と回路との密着性の高い立体成形回路部品が得られる点を知見した。
 本発明の目的は、回路との密着性が高い基体を形成できる組成物、並びに、基体と回路との密着性の高い立体成形回路部品、その製造方法及びそれを備えたアンテナの提供である。
As a result of diligent studies in view of the above problems, the present inventors have found that if a composition in which a heat-meltable tetrafluoroethylene polymer and a predetermined inorganic filler are used in combination is used, the adhesion between the substrate and the circuit is high. It was found that a three-dimensional molded circuit component can be obtained.
An object of the present invention is to provide a composition capable of forming a substrate having high adhesion to a circuit, a three-dimensional molded circuit component having high adhesion between a substrate and a circuit, a method for manufacturing the same, and an antenna provided with the same.
 本発明は、下記の態様を有する。
 <1> 立体成形回路部品の基体を形成するのに用いられる組成物であって、熱溶融性のテトラフルオロエチレン系ポリマーと、平均粒子径が0.1μm超である無機フィラーとを含み、テトラフルオロエチレン系ポリマーの含有量が50質量%超である、組成物。
 <2> 前記テトラフルオロエチレン系ポリマーが、極性官能基を有するテトラフルオロエチレン系ポリマーである、<1>の組成物。
 <3> 前記無機フィラーが、シランカップリング剤で表面処理されている無機フィラーである、<1>又は<2>の組成物。
 <4> 前記無機フィラーの平均粒子径が、0.5~20μmである、<1>~<3>のいずれかの組成物。
 <5> 前記無機フィラーの含有量が、5質量%以上50質量%未満である、<1>~<4>のいずれかの組成物。
 <6> 前記無機フィラーが、シリカ、タルク、チタニア、アルミナ、酸化スズ、有機パラジウム錯体、酸化銅及び窒化ホウ素からなる群より選択される少なくとも1種を含む無機フィラーである、<1>~<5>のいずれかの組成物。
 <7> さらに、非熱溶融性のポリテトラフルオロエチレンを含む<1>~<6>のいずれかの組成物。
 <8> <1>~<7>のいずれかの組成物を用いて基体を形成し、前記基体の表面に粗化処理を行った後、触媒を付与し、めっき処理により前記基体の表面に回路を形成して、前記基体と前記回路とを有する立体成形回路部品を得る、立体成形回路部品の製造方法。
 <9> 前記無機フィラーの一部が粗化処理を行った後の前記基体の表面から露出しており、前記触媒の一部が露出する前記無機フィラーに担持される、<8>の製造方法。
 <10> 前記粗化処理を、前記基体の表面への紫外線の照射又は前記基体の表面への溶剤の付与により行う、<8>又は<9>の製造方法。
 <11> <1>~<7>のいずれかの組成物を用いて基体を形成し、前記基体の表面にレーザー照射した後、めっき処理により前記基体の表面に回路を形成して、前記基体と前記回路とを有する立体成形回路部品を得る、立体成形回路部品の製造方法。
 <12> 前記無機フィラーが、酸化銅又は酸化スズを含む無機フィラーである、<11>の製造方法。
 <13> 熱溶融性のテトラフルオロエチレン系ポリマーと、平均粒子径が0.1μm超である無機フィラーとを含み、テトラフルオロエチレン系ポリマーの含有量が50質量%超である基体と、前記基体の表面に設けられた回路とを有する、立体成形回路部品。
 <14> 前記無機フィラーの一部が前記基体の表面から露出しており、前記回路が露出する前記無機フィラーに接触している、<13>の立体成形回路部品。
 <15> <13>又は<14>の立体成形回路部品を備えたアンテナ。
The present invention has the following aspects.
<1> A composition used for forming a substrate for a three-dimensional molded circuit component, which comprises a heat-meltable tetrafluoroethylene polymer and an inorganic filler having an average particle size of more than 0.1 μm, and is tetra. A composition in which the content of the fluoroethylene-based polymer is more than 50% by mass.
<2> The composition of <1>, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a polar functional group.
<3> The composition of <1> or <2>, wherein the inorganic filler is an inorganic filler surface-treated with a silane coupling agent.
<4> The composition according to any one of <1> to <3>, wherein the average particle size of the inorganic filler is 0.5 to 20 μm.
<5> The composition according to any one of <1> to <4>, wherein the content of the inorganic filler is 5% by mass or more and less than 50% by mass.
<6> The inorganic filler is an inorganic filler containing at least one selected from the group consisting of silica, talc, titania, alumina, tin oxide, an organic palladium complex, copper oxide and boron nitride, <1> to <. 5> Any of the compositions.
<7> The composition according to any one of <1> to <6> further containing non-heat-meltable polytetrafluoroethylene.
<8> A substrate is formed using any of the compositions <1> to <7>, the surface of the substrate is roughened, a catalyst is applied, and the surface of the substrate is plated. A method for manufacturing a three-dimensional molded circuit component, wherein a circuit is formed to obtain a three-dimensional molded circuit component having the substrate and the circuit.
<9> The method for producing <8>, wherein a part of the inorganic filler is exposed from the surface of the substrate after the roughening treatment, and a part of the catalyst is supported on the exposed inorganic filler. ..
<10> The method for producing <8> or <9>, wherein the roughening treatment is performed by irradiating the surface of the substrate with ultraviolet rays or applying a solvent to the surface of the substrate.
<11> A substrate is formed using any of the compositions of <1> to <7>, the surface of the substrate is irradiated with a laser, and then a circuit is formed on the surface of the substrate by a plating treatment to form the substrate. A method for manufacturing a three-dimensional molded circuit component, which obtains a three-dimensional molded circuit component having the above-mentioned circuit.
<12> The method for producing <11>, wherein the inorganic filler is an inorganic filler containing copper oxide or tin oxide.
<13> A substrate containing a heat-meltable tetrafluoroethylene polymer and an inorganic filler having an average particle size of more than 0.1 μm and having a tetrafluoroethylene polymer content of more than 50% by mass, and the substrate. A three-dimensional molded circuit component having a circuit provided on the surface of the above.
<14> The three-dimensional molded circuit component of <13>, wherein a part of the inorganic filler is exposed from the surface of the substrate and the circuit is in contact with the exposed inorganic filler.
<15> An antenna provided with the three-dimensional molded circuit component of <13> or <14>.
 本発明によれば、基体と回路との密着性の高い立体成形回路部品が得られる。 According to the present invention, a three-dimensional molded circuit component having high adhesion between the substrate and the circuit can be obtained.
 以下の用語は、以下の意味を有する。
 「熱溶融性のポリマー」とは、溶融流動性を示すポリマーを意味し、荷重49Nの条件下、ポリマーの溶融温度よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在するポリマーを意味する。
 「溶融流れ速度(MFR)」とは、JIS K 7210:1999(ISO 1133:1997)に規定される、ポリマーのメルトマスフローレートを意味する。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「ポリマーのガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる対象物(粒又はフィラー)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって対象物の粒度分布を測定し、対象物の粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D10」及び「D90」は、それぞれ同様にして測定される、対象物の体積基準累積10%径及び90%径である。
 ポリマーにおける「単位」は、モノマーから直接形成された原子団であってもよく、得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。ポリマーに含まれる、モノマーAに基づく単位を、単に「モノマーA単位」とも記す。
The following terms have the following meanings.
The "heat-meltable polymer" means a polymer showing melt fluidity, and the melt flow rate is 0.1 to 1000 g / 10 at a temperature 20 ° C. or higher higher than the melt temperature of the polymer under the condition of a load of 49 N. It means a polymer in which a temperature of minutes is present.
"Melting flow rate (MFR)" means the melt mass flow rate of a polymer as defined in JIS K 7210: 1999 (ISO 1133: 1997).
The “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
The "glass transition point (Tg) of the polymer" is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
The "average particle size (D50)" is a volume-based cumulative 50% diameter of an object (grain or filler) determined by a laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles of the object as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve. The diameter.
“D10” and “D90” are volume-based cumulative 10% and 90% diameters of the object, respectively, measured in the same manner.
The "unit" in the polymer may be an atomic group formed directly from the monomer, or may be an atomic group in which a part of the structure is converted by treating the obtained polymer by a predetermined method. The unit based on the monomer A contained in the polymer is also simply referred to as "monomer A unit".
 本発明の組成物(以下、「本組成物」とも記す。)は、立体成形回路部品の基体を形成するのに用いられる。そして、本組成物は、熱溶融性のテトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)と、平均粒子径が0.1μm超である無機フィラーとを含み、テトラフルオロエチレン系ポリマーの含有量が50質量%超である。つまり、本組成物におけるテトラフルオロエチレン系ポリマーがFポリマーのみからなる場合は本組成物におけるFポリマーの含有量が50質量%超であり、本組成物におけるテトラフルオロエチレン系ポリマーがFポリマーとFポリマー以外のテトラフルオロエチレン系ポリマー(後述する非熱溶融性のポリテトラフルオロエチレン等)とからなる場合は本組成物におけるFポリマーとFポリマー以外のテトラフルオロエチレン系ポリマーとの総含有量が50質量%超である。 The composition of the present invention (hereinafter, also referred to as "the present composition") is used for forming a substrate of a three-dimensional molded circuit component. The present composition contains a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) and an inorganic filler having an average particle size of more than 0.1 μm, and is a tetrafluoroethylene polymer. Content is over 50% by mass. That is, when the tetrafluoroethylene-based polymer in the present composition consists only of the F polymer, the content of the F polymer in the present composition is more than 50% by mass, and the tetrafluoroethylene-based polymer in the present composition is the F polymer and F. When composed of a tetrafluoroethylene-based polymer other than the polymer (non-heat-meltable polytetrafluoroethylene, etc. described later), the total content of the F polymer and the tetrafluoroethylene-based polymer other than the F polymer in this composition is 50. It is over% by mass.
 また、本発明の立体成形回路部品の製造方法(以下、「本法」とも記す。)は、本組成物を用いて基体を形成し、基体の表面に粗化処理を行った後、触媒を付与し、めっき処理により基体の表面に回路を形成して、基体と回路とを有する立体成形回路部品を得る方法(以下、「本法1」とも記す。)又は本組成物を用いて基体を形成し、基体の表面にレーザー照射した後、めっき処理により基体の表面に回路を形成して、基体と回路とを有する立体成形回路部品を得る方法(以下、「本法2」とも記す。)である。 Further, in the method for manufacturing a three-dimensional molded circuit component of the present invention (hereinafter, also referred to as "this method"), a substrate is formed using the present composition, the surface of the substrate is roughened, and then a catalyst is used. A method of forming a circuit on the surface of the substrate by a plating treatment to obtain a three-dimensional molded circuit component having the substrate and the circuit (hereinafter, also referred to as “this method 1”) or a substrate using the present composition. A method of forming, irradiating the surface of the substrate with a laser, and then forming a circuit on the surface of the substrate by a plating treatment to obtain a three-dimensional molded circuit component having the substrate and the circuit (hereinafter, also referred to as "this method 2"). Is.
 本組成物によれば、比較的大きいサイズの無機フィラーを含むため、形成された基体の表面に粗化処理、レーザー照射やめっき処理を行った際に、基体から無機フィラーが離脱しにくい。加えて、粗化処理の後に基体の表面に触媒を担持してめっきを形成する場合は、粗化処理の際に、基体の表面付近に存在する無機フィラーが適度にエッチングされ、その表面に凹凸が形成されるので、この凹凸に触媒が担持されやすくなる。また、無機フィラーを、めっきを形成する起点とする場合は、基体の表面に存在する無機フィラーに直接めっきが形成される。これらが要因となって、めっき処理により形成される回路(めっき層)が、無機フィラーを介して、基体の表面に強固に固定されると考えられる。
 また、無機フィラーの添加により、基体に低線膨張性を付与できるため、めっき層と基体との間での線膨張係数の差が小さくなり、かかる観点からも、基体と回路との高い密着性が得られたと考えられる。
 さらに、Fポリマー及び無機フィラーを含む基体は、電気特性にも優れるため、得られる立体成形回路部品の伝送損失を充分に低減できる。また、かかる立体成形回路部品からは、利得の高いアンテナを形成できる。
According to this composition, since the inorganic filler having a relatively large size is contained, it is difficult for the inorganic filler to be separated from the substrate when the surface of the formed substrate is roughened, laser-irradiated or plated. In addition, when the catalyst is supported on the surface of the substrate after the roughening treatment to form plating, the inorganic filler existing near the surface of the substrate is appropriately etched during the roughening treatment, and the surface is uneven. Is formed, so that the catalyst is easily supported on the unevenness. When the inorganic filler is used as the starting point for forming the plating, the plating is directly formed on the inorganic filler existing on the surface of the substrate. It is considered that these factors cause the circuit (plating layer) formed by the plating process to be firmly fixed to the surface of the substrate via the inorganic filler.
Further, since the addition of the inorganic filler can impart low linear expansion property to the substrate, the difference in the linear expansion coefficient between the plating layer and the substrate becomes small, and from this viewpoint, high adhesion between the substrate and the circuit is also obtained. Is considered to have been obtained.
Further, since the substrate containing the F polymer and the inorganic filler is excellent in electrical characteristics, the transmission loss of the obtained three-dimensional molded circuit component can be sufficiently reduced. Further, an antenna having a high gain can be formed from such a three-dimensional molded circuit component.
 本発明におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含む、熱溶融性のポリマーである。
 Fポリマーの溶融温度は、260~320℃が好ましく、290~310℃がより好ましい。
 Fポリマーのガラス転移点は、75~125℃が好ましく、80~100℃がより好ましい。
The F polymer in the present invention is a heat-meltable polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
The melting temperature of the F polymer is preferably 260 to 320 ° C, more preferably 290 to 310 ° C.
The glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
 Fポリマーは、TFE単位と、ペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)又はヘキサフルオロプロピレン(HFP)に基づく単位(HFP単位)とを含むポリマーであるのが好ましい。この場合、Fポリマーがサイズの小さい球晶を形成するため、基体の表面平滑性が高まり、回路との密着性が高まりやすい。また、熱処理におけるFポリマーの変性をより高度に抑制しやすい。
 なお、Fポリマーは、PAVE単位とHFP単位との両方を含んでいてもよく、いずれか一方のみを含んでいてもよい。
 PAVEは、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)又はCF=CFOCF(CF)CFOCFCFCFが好ましく、PPVEがより好ましい。
The F polymer is preferably a polymer containing a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE unit) or a unit based on hexafluoropropylene (HFP) (HFP unit). In this case, since the F polymer forms spherulites having a small size, the surface smoothness of the substrate is improved and the adhesion to the circuit is likely to be improved. In addition, it is easy to suppress the modification of the F polymer in the heat treatment to a higher degree.
The F polymer may contain both PAVE units and HFP units, or may contain only one of them.
The PAVE is preferably CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) or CF 2 = CFOCF (CF 3 ) CF 2 OCF 2 CF 2 CF 3. Is more preferable.
 Fポリマーは、極性官能基を有するのが好ましい。この場合、熱処理におけるFポリマーの変性をより高度に抑制しつつ、得られた基体と回路との密着性がより高まりやすい。
 極性官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる極性官能基を有するFポリマーが挙げられる。
The F polymer preferably has a polar functional group. In this case, the adhesion between the obtained substrate and the circuit tends to be further enhanced while suppressing the modification of the F polymer in the heat treatment to a higher degree.
The polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter embodiment include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Be done.
 極性官能基は、水酸基含有基又はカルボニル基含有基が好ましく、回路(金属層)との密着性に優れる観点から、カルボニル基含有基がより好ましい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH又は-C(CFOHが好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)又はカーボネート基(-OC(O)O-)が好ましい。
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
The polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is more preferable from the viewpoint of excellent adhesion to the circuit (metal layer).
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, and preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred.
When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 × 10 6 carbon atoms in the main chain. ~ 1500 pieces are more preferable. The number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 Fポリマーとしては、PAVE単位を含み、全単位に対してPAVE単位を1.5~5.0モル%含むテトラフルオロエチレン系ポリマーが好ましく、PAVE単位を含み、極性官能基を有するポリマー(1)、又は、PAVE単位を含み、全単位に対してPAVE単位を2.0~5.0モル%含む、極性官能基を有さないポリマー(2)がより好ましい。これらのFポリマーは、その粒状物(ペレット又はパウダー)がハンドリング性及びブレンド性にも優れるだけでなく、それから形成される基体において微小球晶を形成して、基体の回路に対する密着性を高めやすい。 As the F polymer, a tetrafluoroethylene polymer containing PAVE units and containing 1.5 to 5.0 mol% of PAVE units with respect to all units is preferable, and a polymer containing PAVE units and having a polar functional group (1). Or, a polymer (2) having no polar functional group, which contains PAVE units and contains 2.0 to 5.0 mol% of PAVE units with respect to all units, is more preferable. Not only are these F polymers excellent in handleability and blendability in their granules (pellets or powders), but they also tend to form microspherulites in the substrate formed from them, thereby enhancing the adhesion of the substrate to the circuit. ..
 ポリマー(1)は、全単位に対して、TFE単位を90~98モル%、PAVE単位を1.5~9.97モル%及び極性官能基を有するモノマーに基づく単位を0.01~3モル%、それぞれ含有するのが好ましい。
 また、極性官能基を有するモノマーは、無水マレイン酸、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The polymer (1) has 90 to 98 mol% of TFE units, 1.5 to 9.97 mol% of PAVE units and 0.01 to 3 mol of units based on a monomer having a polar functional group with respect to all the units. %, It is preferable to contain each.
Further, the monomer having a polar functional group is maleic anhydride, itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”). Is preferable.
Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
 ポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するのが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたり、ポリマーが有する極性官能基の数が、500個未満であることを意味する。上記極性官能基の数は、100個以下が好ましく、50個未満がより好ましい。上記極性官能基の数の下限は、通常、0個である。
The polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. preferable.
The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
The fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups possessed by the polymer is less than 500 per 1 × 10 6 carbon atoms constituting the polymer main chain. Means. The number of the polar functional groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of polar functional groups is usually 0.
 ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等参照)が挙げられる。 The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is derived from an F polymer having a polar functional group (derived from the polymerization initiator). An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer) may be fluorinated to produce the polymer. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 本発明における基体は、射出成形又はプレス成形のいずれにより形成してもよく、射出成形により形成するのが好ましい。本発明におけるFポリマーは、良好な熱溶融性を示し、その溶融粘度が所定の範囲に収束するため、射出成形又はプレス成形において、高密度に充填成形されやすい。その結果、形成される基体中に気泡(空気層)が形成されにくく、気泡の存在による基体の物性(耐水性等)の低下が抑制される。特に、射出成形によれば、より微細かつ複雑な形状の基体を形成できる点で好ましい。また、プレス成形によれば、シート状の基体を形成しやすい。
 なお、射出成形法としては、一般的な射出成形法、高速射出成形法、多色成形法、コインジェクション成形法、射出圧縮成形法、ガスアシスト射出成形法、発泡射出成形法(MUCELL)、急速加熱金型を用いたヒートアンドクール成形法、インサート成形法、インモールドデコレーション成形法が挙げられる。
The substrate in the present invention may be formed by either injection molding or press molding, and is preferably formed by injection molding. Since the F polymer in the present invention exhibits good thermal meltability and its melt viscosity converges within a predetermined range, it is likely to be filled and molded at high density in injection molding or press molding. As a result, bubbles (air layer) are less likely to be formed in the formed substrate, and deterioration of the physical properties (water resistance, etc.) of the substrate due to the presence of the bubbles is suppressed. In particular, injection molding is preferable in that a substrate having a finer and more complicated shape can be formed. Further, according to press molding, it is easy to form a sheet-shaped substrate.
The injection molding method includes a general injection molding method, a high-speed injection molding method, a multicolor molding method, a coin injection molding method, an injection compression molding method, a gas-assisted injection molding method, a foam injection molding method (MUCELL), and rapid molding. Examples thereof include a heat-and-cool molding method using a heating mold, an insert molding method, and an in-mold decoration molding method.
 Fポリマーの溶融粘度は、380℃において1×10~1×10Pa・sが好ましく、300℃において1×10~1×10Pa・sがより好ましい。この場合、より低温で基体を射出形成しやすくなる。
 FポリマーのMFRは、20g/10分以下が好ましく、10g/10分以下がより好ましい。この場合、より複雑な形状の基体を形成しやすくなる。
 本組成物の溶融粘度は、剪断速度1000/秒において50~1000Pa・sが好ましく、75~750Pa・sがより好ましい。この場合も、より複雑な形状の基体を形成しやすくなる。
The melt viscosity of the F polymer, 1 × 10 2 ~ 1 × 10 6 Pa · s is preferably at 380 ° C., and more preferably 1 × 10 2 ~ 1 × 10 6 Pa · s at 300 ° C.. In this case, it becomes easier to form a substrate by injection at a lower temperature.
The MFR of the F polymer is preferably 20 g / 10 minutes or less, and more preferably 10 g / 10 minutes or less. In this case, it becomes easy to form a substrate having a more complicated shape.
The melt viscosity of the present composition is preferably 50 to 1000 Pa · s, more preferably 75 to 750 Pa · s at a shear rate of 1000 / sec. In this case as well, it becomes easy to form a substrate having a more complicated shape.
 本組成物におけるFポリマーの形状は、粒状であるのが好ましく、ペレット状であるのがより好ましい。
 基体を射出成形により形成するために使用する場合、本組成物におけるFポリマーの形状は、最大長さが3~5mmのペレット状であるのが好ましい。この場合、本組成物の射出成形性がより向上し、Fポリマーが高度に充填された基体を形成しやすい。
 基体をプレス成形により形成するために使用する場合、本組成物におけるFポリマーは、粒状であるのが好ましく、D10が0.1~10μmかつD50が0.3~50μmの粒状であるのがより好ましい。
The shape of the F polymer in the present composition is preferably granular, more preferably pelletized.
When used to form a substrate by injection molding, the shape of the F polymer in the present composition is preferably in the form of pellets having a maximum length of 3 to 5 mm. In this case, the injection moldability of the present composition is further improved, and it is easy to form a substrate highly filled with the F polymer.
When used for forming a substrate by press molding, the F polymer in the present composition is preferably granular, more preferably 0.1 to 10 μm for D10 and 0.3 to 50 μm for D50. preferable.
 本組成物における無機フィラーとしては、シリカ、チタニア、アルミナ、マグネシア、酸化亜鉛、酸化カルシウム、酸化鉄、酸化スズ、酸化アンチモン、炭酸カルシウム、マイカ、珪藻土、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、クレー、タルク、ドーソナイト、ハイドロタルサイト、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカバルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、ホウ酸亜鉛、窒化ホウ素、酸化銅を含む無機フィラーが挙げられる。無機フィラーは、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the inorganic filler in this composition include silica, titania, alumina, magnesia, zinc oxide, calcium oxide, iron oxide, tin oxide, antimony oxide, calcium carbonate, mica, diatomaceous earth, calcium hydroxide, magnesium hydroxide, and aluminum hydroxide. , Basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium silicate, clay, talc, dosonite, hydrotalcite, montmorillonite, bentonite, active white clay, sepiolite, imogolite, sericite, glass fiber , Glass beads, silica balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, zinc borate, boron nitride, inorganic fillers including copper oxide. As the inorganic filler, one kind may be used alone, or two or more kinds may be used in combination.
 中でも、無機フィラーは、シリカ、タルク、チタニア、アルミナ、酸化スズ、有機パラジウム錯体、酸化銅及び窒化ホウ素からなる群より選択される少なくとも1種を含む無機フィラーが好ましく、シリカ、酸化銅、酸化スズ及び窒化ホウ素を含む無機フィラーがより好ましい。これらの無機フィラー、特に、シリカ又は窒化ホウ素を含む無機フィラーは、粗化処理により、それ自体がエッチングされやすく、触媒の担持能が高いことから好ましい。
 また、紫外線の吸収による発熱により、無機フィラーの周囲に存在するFポリマーの炭化を促し、基体の表面にも凹凸を形成しやすいため、比較的広いバンドギャップ(例えば5.5~9eV)を有する無機フィラーが好ましい。かかる無機フィラーの好適な具体例としては、シリカ又は窒化ホウ素を含む無機フィラーが挙げられる。
 無機フィラーがシリカ又は窒化ホウ素を含む無機フィラーである場合、無機フィラーにおけるシリカ又は窒化ホウ素の含有量は80質量%以上が好ましく、90質量%以上がより好ましい。含有量の上限は100質量%である。
Among them, the inorganic filler is preferably an inorganic filler containing at least one selected from the group consisting of silica, talc, titania, alumina, tin oxide, organic palladium complex, copper oxide and boron nitride, preferably silica, copper oxide and tin oxide. And an inorganic filler containing boron nitride is more preferred. These inorganic fillers, particularly inorganic fillers containing silica or boron nitride, are preferable because they are easily etched by themselves by the roughening treatment and have a high ability to carry a catalyst.
In addition, it has a relatively wide bandgap (for example, 5.5 to 9 eV) because it promotes carbonization of the F polymer existing around the inorganic filler due to heat generation due to absorption of ultraviolet rays and easily forms irregularities on the surface of the substrate. Inorganic fillers are preferred. Preferable specific examples of such an inorganic filler include an inorganic filler containing silica or boron nitride.
When the inorganic filler is an inorganic filler containing silica or boron nitride, the content of silica or boron nitride in the inorganic filler is preferably 80% by mass or more, more preferably 90% by mass or more. The upper limit of the content is 100% by mass.
 無機フィラーが、シリカを含む無機フィラーである場合、無機フィラーは、内部に空洞(空気)を有する、中空シリカであってもよい。かかる無機フィラーを含む組成物から形成される立体成形回路部品は、誘電率がより低下しやすい。
 無機フィラーが、レーザー活性化作用を有する無機フィラー(レーザーダイレクトストラクチャリング添加剤;以下、「LDS添加剤」とも記す。)である場合、かかる無機フィラーを含む本組成物から形成される基体は、LDS(レーザーダイレクトストラクチャリング)法(以下、「LDS法」とも記す。)による立体成形回路部品の製造に、より適する。
When the inorganic filler is an inorganic filler containing silica, the inorganic filler may be hollow silica having a cavity (air) inside. The three-dimensional molded circuit component formed from the composition containing such an inorganic filler tends to have a lower dielectric constant.
When the inorganic filler is an inorganic filler having a laser activating action (laser direct structuring additive; hereinafter, also referred to as "LDS additive"), the substrate formed from the present composition containing such an inorganic filler may be used. It is more suitable for manufacturing three-dimensional molded circuit parts by the LDS (laser direct structuring) method (hereinafter, also referred to as "LDS method").
 なお、LDS法とは、基体にレーザーを照射して、基体の粗化処理と、基体に含まれるLDS添加剤である無機フィラーの活性化処理とを行って、活性化したLDS添加剤を起点として、基体にめっきを形成して立体成形回路部品を形成する方法である。
 LDS添加剤は、酸化銅又は酸化スズを含む無機フィラーであるのが好ましい。酸化銅としては銅スピネルであるのが、酸化スズとしてはドープされた二酸化スズであるのが、それぞれ好ましい。
 本発明における基体は、電気特性(誘電率、誘電正接等)と耐熱性とに優れたFポリマーを高い割合で含むため、レーザー照射しても電気特性を低下しにくい。そのため、本発明における基体からは、伝送損失の低い立体成形回路部品を形成しやすい。
The LDS method starts with an activated LDS additive by irradiating the substrate with a laser to roughen the substrate and activate an inorganic filler which is an LDS additive contained in the substrate. This is a method of forming a plating on a substrate to form a three-dimensional molded circuit component.
The LDS additive is preferably an inorganic filler containing copper oxide or tin oxide. The copper oxide is preferably copper spinel, and the tin oxide is preferably doped tin dioxide.
Since the substrate in the present invention contains a high proportion of F polymer having excellent electrical properties (dielectric constant, dielectric loss tangent, etc.) and heat resistance, the electrical properties are unlikely to deteriorate even when irradiated with a laser. Therefore, it is easy to form a three-dimensional molded circuit component having a low transmission loss from the substrate in the present invention.
 無機フィラーのD50は、0.1μm超であり、0.2μm以上であるのがより好ましく、0.5μm以上であるのがさらに好ましい。無機フィラーのD50は、10μm以下であるのが好ましい。この場合、緻密かつ均一に無機フィラーが分散し、電気特性及び低線膨張性に優れた基体が得られやすい。また、粗化処理及びめっき処理を行った際に、基体から無機フィラーがより離脱しにくくなる。
 無機フィラーは、Fポリマーへの分散性を高める観点から、表面処理剤による表面処理が施されていてもよい。
 かかる表面処理に用いられる表面処理剤としては、多価アルコール(トリメチロールエタン、ペンタエリストール、プロピレングリコール等)、飽和脂肪酸(ステアリン酸、ラウリン酸等)、そのエステル、アルカノールアミン、アミン(トリメチルアミン、トリエチルアミン等)、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサン、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の酸化物、それらの水酸化物、それらの水和酸化物、それらのリン酸塩が挙げられる。
The D50 of the inorganic filler is more than 0.1 μm, more preferably 0.2 μm or more, and further preferably 0.5 μm or more. The D50 of the inorganic filler is preferably 10 μm or less. In this case, the inorganic filler is dispersed densely and uniformly, and it is easy to obtain a substrate having excellent electrical characteristics and low linear expansion. Further, when the roughening treatment and the plating treatment are performed, the inorganic filler is less likely to be separated from the substrate.
The inorganic filler may be surface-treated with a surface-treating agent from the viewpoint of enhancing the dispersibility in the F polymer.
Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamine, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, aluminum, silicon, zirconium, tin, titanium, antimony and other oxides, their hydroxides, their hydrated oxides, their phosphoric acid Salt is mentioned.
 また、表面処理剤には、シランカップリング剤も使用できる。
 シランカップリング剤としては、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
 無機フィラーがシランカップリング剤(特に、官能基を有するシランカップリング剤)で表面処理されていると、Fポリマーと均一に混合しやすく、形成された基体から粉落ちしにくくなるため好ましい。
 したがって、無機フィラーとしては、シランカップリング剤で表面処理されたシリカがより好適である。
Further, a silane coupling agent can also be used as the surface treatment agent.
Examples of the silane coupling agent include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-. Examples thereof include isocyanate propyltriethoxysilane.
When the inorganic filler is surface-treated with a silane coupling agent (particularly, a silane coupling agent having a functional group), it is preferable because it is easy to mix uniformly with the F polymer and it is difficult for powder to fall off from the formed substrate.
Therefore, as the inorganic filler, silica surface-treated with a silane coupling agent is more suitable.
 無機フィラーの形状としては、粒状、針状(繊維状)、板状が挙げられ、具体的には球状、鱗片状、層状、葉片状、杏仁状、柱状、鶏冠状、等軸状、葉状、雲母状、ブロック状、平板状、楔状、ロゼット状、網目状、角柱状が挙げられる。中でも球状及び鱗片状が好ましく、球状がより好ましい。
 無機フィラーの具体例としては、シリカフィラー(アドマテックス社製の「アドマファイン(登録商標)」シリーズ等)、ジカプリン酸プロピレングリコール等のエステルで表面処理された酸化亜鉛(堺化学工業株式会社製の「FINEX(登録商標)」シリーズ等)、球状溶融シリカ(デンカ社製の「SFP(登録商標)」シリーズ等)、多価アルコール及び無機物で被覆処理されたルチル型酸化チタン(石原産業社製の「タイペーク(登録商標)」シリーズ等)、アルキルシランで表面処理されたルチル型酸化チタン(テイカ社製の「JMT(登録商標)」シリーズ等)、中空状シリカフィラー(太平洋セメント社製の「E-SPHERES」シリーズ、日鉄鉱業社製の「シリナックス」シリーズ、エマーソン・アンド・カミング社製「エココスフイヤー」シリーズ、日本アエロジル社製の疎水性AEROSILシリーズ「RX200」、タルクフィラー(日本タルク社製の「SG」シリーズ等)、ステアタイトフィラー(日本タルク社製の「BST」シリーズ等)が挙げられる。
Examples of the shape of the inorganic filler include granular, needle-like (fibrous), and plate-like, and specifically, spherical, scaly, layered, leaf-like, apricot kernel-like, columnar, chicken crown-like, equiaxed, and leaf-like. , Mica-like, block-like, flat plate-like, wedge-like, rosette-like, mesh-like, and prismatic. Of these, spherical and scaly are preferable, and spherical is more preferable.
Specific examples of the inorganic filler include silica filler ("Admafine (registered trademark)" series manufactured by Admatex Co., Ltd.) and zinc oxide surface-treated with an ester such as propylene glycol dicaprate (manufactured by Sakai Chemical Industry Co., Ltd.). "FINEX (registered trademark)" series, etc.), spherical fused silica ("SFP (registered trademark)" series manufactured by Denka Co., Ltd., etc.), rutile-type titanium oxide coated with polyhydric alcohol and inorganic substances (manufactured by Ishihara Sangyo Co., Ltd.) "Typake (registered trademark)" series, etc.), rutile-type titanium oxide surface-treated with alkylsilane ("JMT (registered trademark)" series manufactured by Teika, etc.), hollow silica filler ("E" manufactured by Pacific Cement Co., Ltd.) -SPHERES "series, Nittetsu Mining Co., Ltd." Sirinax "series, Emerson & Cumming Co., Ltd." Ecocos Fire "series, Nippon Aerosil Co., Ltd. hydrophobic AEROSIL series" RX200 ", Tarkufiller (manufactured by Nippon Tarku Co., Ltd.) Examples include "SG" series) and steatite filler ("BST" series manufactured by Nippon Tarku Co., Ltd.).
 本組成物中におけるテトラフルオロエチレン系ポリマーの含有量は、50質量%超であり、50質量%超95質量%以下であるのが好ましく、55質量%以上90質量%以下であるのがより好ましい。この場合、本組成物の成形性(特に、射出成形性)がより良好となる。
 また、本組成物中における無機フィラーの含有量は、5質量%以上50質量%未満であるのが好ましい。この場合、無機フィラーの含有による上記効果がより向上する。なお、無機フィラーがシリカの場合、その含有量は、30質量%以上50質量%未満であるのが好ましい。また、無機フィラーがシリカ以外の化合物(特に、窒化ホウ素)の場合、その含有量は、5質量%以上30質量%以下であるのが好ましい。この場合、上記効果に加えて、得られる基体の表面に荒れ(フィラーの欠落、亀裂等)が生じにくい。
The content of the tetrafluoroethylene polymer in the present composition is preferably more than 50% by mass, preferably more than 50% by mass and 95% by mass or less, and more preferably 55% by mass or more and 90% by mass or less. .. In this case, the moldability (particularly, injection moldability) of the present composition becomes better.
Further, the content of the inorganic filler in the present composition is preferably 5% by mass or more and less than 50% by mass. In this case, the above effect due to the inclusion of the inorganic filler is further improved. When the inorganic filler is silica, the content thereof is preferably 30% by mass or more and less than 50% by mass. When the inorganic filler is a compound other than silica (particularly boron nitride), the content thereof is preferably 5% by mass or more and 30% by mass or less. In this case, in addition to the above effects, the surface of the obtained substrate is less likely to be roughened (missing filler, cracks, etc.).
 本組成物は、さらに、Fポリマーとは異なるポリマーを含んでいてもよい。異なるポリマーとしては、芳香族ポリエステル、ポリアミドイミド、ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、マレイミドが挙げられ、熱可塑性の芳香族ポリイミドが好ましい。
 また、Fポリマーとは異なるポリマーとしては、非熱溶融性のテトラフルオロエチレン系ポリマーが好ましく、非熱溶融性のポリテトラフルオロエチレン(PTFE)がより好ましい。かかるPTFEを含む場合、そのフィブリル性により無機フィラーがPTFEに絡み付くので、形成された基体から、無機フィラーがより粉落ちしにくくなるため好ましい。この場合、本組成物中における非熱溶融性のPTFEの含有量は、1~60質量%であるのが好ましく、10~40質量%であるのがより好ましい。本組成物が非熱溶融性のPTFEを含む場合、本組成物におけるFポリマーと非熱溶融性のPTFEの総含有量が50質量%超であり、Fポリマーの含有量に対する非熱溶融性のPTFEの含有量の質量比は、0.1~2.0であるのが好ましく、0.5~1.5であるのがより好ましい。
 なお、本組成物は、本発明の効果を損なわない範囲で、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、難燃剤を含んでいてもよい。
The composition may further contain a polymer different from the F polymer. Examples of the different polymers include aromatic polyesters, polyamideimides, polyimides, polyphenylene ethers, polyphenylene oxides and maleimides, with thermoplastic aromatic polyimides being preferred.
Further, as the polymer different from the F polymer, a non-heat-meltable tetrafluoroethylene-based polymer is preferable, and a non-heat-meltable polytetrafluoroethylene (PTFE) is more preferable. When such PTFE is contained, the inorganic filler is entangled with the PTFE due to its fibril property, so that it is more difficult for the inorganic filler to fall off from the formed substrate, which is preferable. In this case, the content of the non-heat-meltable PTFE in the present composition is preferably 1 to 60% by mass, more preferably 10 to 40% by mass. When the present composition contains non-heat-meltable PTFE, the total content of F polymer and non-heat-meltable PTFE in the present composition is more than 50% by mass, which is non-heat-meltable with respect to the content of F polymer. The mass ratio of the PTFE content is preferably 0.1 to 2.0, more preferably 0.5 to 1.5.
In addition, this composition contains a dehydrating agent, a plasticizer, a weather resistant agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, a coloring agent, and a conductive agent, as long as the effects of the present invention are not impaired. It may contain a mold release agent and a flame retardant.
 本組成物は、各成分をドライブレンドして製造してもよく、溶融混練してペレットとして製造してもよい。
 ペレットは、具体的には、各成分を、タンブラー、ヘンシェルミキサー等の各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等を用いて溶融混練して製造できる。
 その他、ペレットは、各成分を予め混合せずに又は一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して製造できる。
 また、ペレットは、一部の成分を予め混合し、押出機に供給して溶融混練して得られた混練物をマスターバッチとし、マスターバッチと残りの成分とを混合し、溶融混練しても製造できる。
The present composition may be produced by dry blending each component, or may be melt-kneaded to produce pellets.
Specifically, the pellets are prepared by mixing each component in advance using various mixers such as a tumbler and a Henschel mixer, and then using a Banbury mixer, a roll, a brabender, a single-screw kneading extruder, a twin-screw kneading extruder, and a kneader. It can be manufactured by melt-kneading using or the like.
In addition, pellets can be produced without premixing each component or by premixing only some of the components and supplying the pellets to an extruder using a feeder for melt-kneading.
Further, in the pellet, even if some components are mixed in advance and supplied to an extruder to be melt-kneaded, the kneaded product is used as a masterbatch, and the masterbatch and the remaining components are mixed and melt-kneaded. Can be manufactured.
 本法では、本組成物を射出成形又はプレス成形により基体に加工するのが好ましい。基体の形状は、シート状であってもよく、複雑な形状を有する三次元形状であってもよい。 上述の作用機構により、本組成物からは、複雑な形状であっても、無機フィラーが欠落しにくい基体を形成できる。
 本法1では、形成された基体の表面に粗化処理を行うのが好ましい。これにより、基体の表面がエッチングされて、微小な凹凸が形成される。その結果、基体の表面に触媒が担持されやすくなり、形成される回路の基体に対する密着性が向上する。
 特に、無機フィラーの一部が基体の表面から露出する程度にまで、粗化処理を行うとよい。この場合、無機フィラーの表面もエッチングされて、その表面にも微小な凹凸が形成される。その結果、無機フィラーの表面に、より多量の触媒が担持される。露出する無機フィラーに回路が接触するために、無機フィラーによるアンカー効果が発現して、回路の基体からの剥離がより確実に防止される。
In this method, it is preferable to process the composition into a substrate by injection molding or press molding. The shape of the substrate may be a sheet shape or a three-dimensional shape having a complicated shape. By the above-mentioned mechanism of action, it is possible to form a substrate from the present composition in which the inorganic filler is less likely to be removed even if the shape is complicated.
In this method 1, it is preferable to perform a roughening treatment on the surface of the formed substrate. As a result, the surface of the substrate is etched to form minute irregularities. As a result, the catalyst is easily supported on the surface of the substrate, and the adhesion of the formed circuit to the substrate is improved.
In particular, it is advisable to perform the roughening treatment to the extent that a part of the inorganic filler is exposed from the surface of the substrate. In this case, the surface of the inorganic filler is also etched, and minute irregularities are formed on the surface as well. As a result, a larger amount of catalyst is supported on the surface of the inorganic filler. Since the circuit comes into contact with the exposed inorganic filler, the anchor effect of the inorganic filler is exhibited, and the circuit is more reliably prevented from peeling from the substrate.
 粗化処理は、物理的処理又は化学的処理の如何なる処理により行ってもよい。中でも、粗化処理は、基体の表面への紫外線の照射又は基体の表面への溶剤の付与により行うのが好ましい。これらの方法によれば、基体の表面に比較的容易に凹凸を形成しやすい。
 なお、粗化処理すべき領域に対応する開口を有するマスクを、基体の表面に形成しておき、このマスクを介して粗化処理するのが好ましい。この場合、輪郭が鮮明な回路を形成できる。
The roughening treatment may be carried out by any treatment such as physical treatment or chemical treatment. Above all, the roughening treatment is preferably carried out by irradiating the surface of the substrate with ultraviolet rays or by applying a solvent to the surface of the substrate. According to these methods, it is relatively easy to form irregularities on the surface of the substrate.
It is preferable to form a mask having an opening corresponding to the region to be roughened on the surface of the substrate and roughen the surface through the mask. In this case, a circuit with a clear outline can be formed.
 紫外線の照射を行う場合、光源には、低圧水銀ランプ、高圧水銀ランプ、エキシマランプを使用できる。紫外線の照度は、波長254nmにおいて5~150mW/cmであるのが好ましい。また、紫外線の照射時間は、0.1~50分間であるのが好ましく、0.2~40分間であるのがより好ましく、0.3~30分間であるのがさらに好ましい。かかる条件で紫外線を照射すれば、回路と基体との密着性がより向上する。
 一方、溶剤には、オゾン水、酸溶解液(無水クロム酸溶液、フッ酸溶液等)を使用できる。
 なお、粗化処理に先立って、基体の表面は、界面活性剤での処理により脱脂しておいてもよい。
When irradiating with ultraviolet rays, a low-pressure mercury lamp, a high-pressure mercury lamp, and an excimer lamp can be used as the light source. The illuminance of ultraviolet rays is preferably 5 to 150 mW / cm 2 at a wavelength of 254 nm. The irradiation time of ultraviolet rays is preferably 0.1 to 50 minutes, more preferably 0.2 to 40 minutes, and even more preferably 0.3 to 30 minutes. Irradiation with ultraviolet rays under such conditions further improves the adhesion between the circuit and the substrate.
On the other hand, ozone water and an acid solution (chromic acid anhydride solution, hydrofluoric acid solution, etc.) can be used as the solvent.
Prior to the roughening treatment, the surface of the substrate may be degreased by treatment with a surfactant.
 粗化処理後、基体の表面を洗浄する目的及び/又は表面に濡れ性を付与する目的等で、基体を第1の処理液に浸漬させる第1の表面調整を行ってもよい。
 第1の処理液としては、CPコンディショナー(キザイ株式会社製)が挙げられる。このCPコンディショナーを使用する場合、処理条件は、温度30~60℃、浸漬時間1~5分間とするのが好ましい。かかる条件で処理すれば、めっき層がムラなく析出し、回路の基体に対する密着性がより向上する。
After the roughening treatment, the first surface adjustment may be performed by immersing the substrate in the first treatment liquid for the purpose of cleaning the surface of the substrate and / or imparting wettability to the surface.
As the first treatment liquid, a CP conditioner (manufactured by Kizai Co., Ltd.) can be mentioned. When this CP conditioner is used, the treatment conditions are preferably a temperature of 30 to 60 ° C. and a soaking time of 1 to 5 minutes. If the treatment is carried out under such conditions, the plating layer is evenly deposited, and the adhesion of the circuit to the substrate is further improved.
 粗化処理後、基体の表面に触媒を析出させやすくする目的等で、基体を第2の処理液に浸漬させる第2の表面調整を行ってもよい。なお、第1の表面調整を行う場合、第2の粗化処理は、第1の表面調製後に行うのが好ましい。
 第2の処理液に含まれる処理剤としては、紫外線の照射によってエッチングされた基体の表面に露出する官能基及び触媒の両方に吸着(結合)可能な化合物が好ましい。かかる化合物としては、多価アミンが好ましく、具体的には、エチレンアミン、ポリエチレンイミン、ポリエチレンアミン又はポリアリルアミンがより好ましく、ポリエチレンイミン又はポリアリルアミンがさらに好ましい。この場合、回路と基体との密着性をより高めやすい。
After the roughening treatment, the second surface adjustment may be performed by immersing the substrate in the second treatment liquid for the purpose of facilitating the precipitation of the catalyst on the surface of the substrate. When the first surface adjustment is performed, it is preferable that the second roughening treatment is performed after the first surface preparation.
As the treatment agent contained in the second treatment liquid, a compound capable of adsorbing (binding) to both a functional group exposed on the surface of the substrate etched by irradiation with ultraviolet rays and a catalyst is preferable. As such a compound, polyvalent amine is preferable, specifically, ethyleneamine, polyethyleneimine, polyethyleneamine or polyallylamine is more preferable, and polyethyleneimine or polyallylamine is further preferable. In this case, it is easy to improve the adhesion between the circuit and the substrate.
 処理剤としてポリアリルアミンを使用する場合、その第2の処理液中における濃度は、0.01~10g/Lであるのが好ましく、0.1~1g/Lであるのがより好ましい。
 第2の処理液の温度は、30~60℃であるのが好ましく、35~50℃であるのがより好ましい。
 処理時間は、1~10分間であるのが好ましく、1~5分間であるのがより好ましい。
 これらの条件で、基体の表面を処理すれば、ムラが少なく、より密着性の高いめっき層を実現できる。
When polyallylamine is used as the treatment agent, the concentration in the second treatment liquid is preferably 0.01 to 10 g / L, more preferably 0.1 to 1 g / L.
The temperature of the second treatment liquid is preferably 30 to 60 ° C, more preferably 35 to 50 ° C.
The treatment time is preferably 1 to 10 minutes, more preferably 1 to 5 minutes.
If the surface of the substrate is treated under these conditions, a plating layer having less unevenness and higher adhesion can be realized.
 その後、本法1では、基体の表面に触媒を付与する。その結果、基体の表面に付与(担持)された触媒を起点として、基体の表面に回路(めっき層)を形成できる。
 触媒としては、パラジウム(Pd)、ニッケル(Ni)、白金(Pt)、銅(Cu)等の金属微粒子、金属錯体、金属アルコキシドが挙げられ、触媒活性が高いパラジウムを含む化合物が好ましい。
 触媒を基体の表面に付与する方法としては、触媒を溶媒に溶解又は分散させた触媒液を基体の表面に塗布する方法、触媒液に基体を浸漬する方法が挙げられる。生産性の観点から、触媒液に基体を浸漬する方法が好ましい。
Then, in the present method 1, a catalyst is applied to the surface of the substrate. As a result, a circuit (plating layer) can be formed on the surface of the substrate, starting from the catalyst applied (supported) on the surface of the substrate.
Examples of the catalyst include metal fine particles such as palladium (Pd), nickel (Ni), platinum (Pt), and copper (Cu), metal complexes, and metal alkoxides, and compounds containing palladium having high catalytic activity are preferable.
Examples of the method of applying the catalyst to the surface of the substrate include a method of applying a catalyst solution in which the catalyst is dissolved or dispersed in a solvent to the surface of the substrate, and a method of immersing the substrate in the catalyst solution. From the viewpoint of productivity, a method of immersing the substrate in the catalyst solution is preferable.
 触媒液に用いられる溶媒としては、水、アルコール(メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール等)、炭化水素(ヘキサン、ヘプタン等)が挙げられる。
 触媒液に用いる触媒としては、触媒活性が高い点から、パラジウム錯体であるのが好ましい。パラジウム錯体の具体例としては、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸カリウム、酢酸パラジウム、塩化パラジウム、アセチルアセトナトパラジウム(II)、ヘキサフルオロアセチルアセトナトパラジウム(II)が挙げられる。
 触媒液中の触媒の含有量は、0.01~5質量%であるのが好ましい。
 処理温度は、30~60℃であるのが好ましく、処理(浸漬)時間は、1~5分間であるのが好ましい。
Examples of the solvent used for the catalyst solution include water, alcohol (methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, etc.) and hydrocarbons (hexane, heptane, etc.).
The catalyst used in the catalyst solution is preferably a palladium complex because of its high catalytic activity. Specific examples of the palladium complex include sodium tetrachloropalladium acid, potassium tetrachloropalladium acid, palladium acetate, palladium chloride, acetylacetonatopalladium (II), and hexafluoroacetylacetonatopalladium (II).
The content of the catalyst in the catalyst solution is preferably 0.01 to 5% by mass.
The treatment temperature is preferably 30 to 60 ° C., and the treatment (immersion) time is preferably 1 to 5 minutes.
 触媒を基体の表面に付与する他の方法としては、センシタイザー・アクチベータ法又はキャタライザー・アクセラレータ法が挙げられる。
 センシタイザー・アクチベータ法では、触媒が担持されやすくなるように、例えば、Sn2+を含む溶液で基体の表面を処理(センシタイザー処理)し、触媒(例えば、Pd2+)を含む溶液に基体を浸漬(アクチベータ処理)する。
 キャタライザー・アクセラレータ法では、触媒を含む溶液(例えば、Sn2+とPd2+との混合によって得られるパラジウムコロイド溶液)に基体を浸漬(キャタライザー処理)し、基体を塩酸溶液等に浸漬して触媒(触媒金属)を基体の表面に析出(アクセラレータ処理)させる。
Other methods of applying the catalyst to the surface of the substrate include a sensitizer-activator method or a catalyzer-accelerator method.
In the sensitizer-activator method, for example, the surface of the substrate is treated with a solution containing Sn 2+ (sensitizer treatment) so that the catalyst can be easily supported, and the substrate is immersed in a solution containing the catalyst (for example, Pd 2+). (Activator processing).
In the catalyzer-accelerator method, a substrate is immersed in a solution containing a catalyst (for example, a palladium colloidal solution obtained by mixing Sn 2+ and Pd 2+ ) (catalyzer treatment), and the substrate is immersed in a hydrochloric acid solution or the like to provide a catalyst (catalyst). Metal) is deposited on the surface of the substrate (accelerator treatment).
 その後、必要に応じて、基体の表面に担持された触媒を活性化させる。
 触媒を活性化させる際には、還元剤を含む溶液で基体を処理する。還元剤としては、水素、次亜リン酸ナトリウム、水素化ホウ素ナトリウムが好ましく、次亜リン酸ナトリウムがより好ましい。溶液中の還元剤の含有量は、0.01~10質量%であるのが好ましい。
 溶液は、水溶液であるのが好ましい。
 処理温度は、30~60℃であるのが好ましく、処理(浸漬)時間は、1~5分間であるのが好ましい。
Then, if necessary, the catalyst supported on the surface of the substrate is activated.
When activating the catalyst, the substrate is treated with a solution containing a reducing agent. As the reducing agent, hydrogen, sodium hypophosphite, sodium borohydride are preferable, and sodium hypophosphite is more preferable. The content of the reducing agent in the solution is preferably 0.01 to 10% by mass.
The solution is preferably an aqueous solution.
The treatment temperature is preferably 30 to 60 ° C., and the treatment (immersion) time is preferably 1 to 5 minutes.
 その後、本法1では、めっき処理により基体の表面にめっき層(金属層)を析出させて、回路を形成する。
 めっき処理として、無電解めっき処理を行うのが好ましい。無電解めっき処理には、目的に応じて選択され、銅めっき、ニッケルめっき、パラジウムめっき、銀めっき、金めっき、これらの合金めっきを使用できる。
 めっき処理では、さらに、電解めっき処理を行ってもよい。電解めっき処理は、無電解めっき処理により形成された無電解めっき層を電極として使用して行われる。電解めっき処理は、回路の厚さ(電気抵抗値)の調整、回路への耐腐性の付与等を目的として行われる。
 また、ハンダリフローに対応できるように、回路のハンダ濡れ性を向上させるべく、錫、金、銀等のめっき層を回路の最表面に形成してもよい。
 以上の工程を経て、基体と回路とを有する立体成形回路部品が得られる。
After that, in the present method 1, a plating layer (metal layer) is deposited on the surface of the substrate by a plating treatment to form a circuit.
As the plating treatment, it is preferable to perform an electroless plating treatment. For the electroless plating treatment, copper plating, nickel plating, palladium plating, silver plating, gold plating, or alloy plating thereof can be used, which are selected according to the purpose.
In the plating treatment, an electrolytic plating treatment may be further performed. The electrolytic plating treatment is performed using the electroless plating layer formed by the electroless plating treatment as an electrode. The electrolytic plating process is performed for the purpose of adjusting the thickness (electrical resistance value) of the circuit, imparting corrosion resistance to the circuit, and the like.
Further, a plating layer of tin, gold, silver or the like may be formed on the outermost surface of the circuit in order to improve the solder wettability of the circuit so as to cope with the solder reflow.
Through the above steps, a three-dimensional molded circuit component having a substrate and a circuit can be obtained.
 本法2では、本組成物を用いて形成された基体から、LDS法により、立体成形回路部品を得る。この場合、LDS添加剤は、本組成物中の無機フィラーとして含まれていてもよく、無機フィラーとは別の成分として含まれていてもよい。また、LDS添加剤がコーティングされた無機フィラーであってもよい。
 LDS添加剤が無機フィラーに含まれる場合、無機フィラーを起点にしてめっきが形成されるため、めっきが基体に強固に固定されやすい。
 LDS添加剤としては、有機パラジウム錯体、銅スピネル、アンチモンドープ二酸化スズが挙げられる。
 本組成物におけるLDS添加剤の含有量は、Fポリマーに対して、0.1~30質量%が好ましく、0.5~15質量%がより好ましく、1~10質量%がさらに好ましい。
 LDS法におけるめっき処理としては、無電解めっき処理が好ましい。
In the present method 2, a three-dimensional molded circuit component is obtained from a substrate formed by using the present composition by the LDS method. In this case, the LDS additive may be contained as an inorganic filler in the present composition, or may be contained as a component different from the inorganic filler. Further, it may be an inorganic filler coated with an LDS additive.
When the LDS additive is contained in the inorganic filler, the plating is formed starting from the inorganic filler, so that the plating is easily firmly fixed to the substrate.
Examples of the LDS additive include an organopalladium complex, copper spinel, and antimony-doped tin dioxide.
The content of the LDS additive in the present composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, still more preferably 1 to 10% by mass, based on the F polymer.
As the plating treatment in the LDS method, an electroless plating treatment is preferable.
 本発明の立体成形回路部品(以下、「本部品」とも記す。)は、Fポリマーと、平均粒子径が0.1μm超である無機フィラーとを含み、Fポリマーの含有量が50質量%超である基体と、この基体の表面に設けられた回路とを有する。
 回路(これを構成する配線)の厚さは、0.5~30μmであるのが好ましく、2~10μmであるのがより好ましい。この場合、回路の電気抵抗値を充分に低減できる。
The three-dimensional molded circuit component of the present invention (hereinafter, also referred to as “the present component”) contains an F polymer and an inorganic filler having an average particle diameter of more than 0.1 μm, and the content of the F polymer is more than 50% by mass. It has a substrate which is, and a circuit provided on the surface of the substrate.
The thickness of the circuit (wiring constituting the circuit) is preferably 0.5 to 30 μm, more preferably 2 to 10 μm. In this case, the electric resistance value of the circuit can be sufficiently reduced.
 また、無機フィラーの一部が基体の表面から露出しており、回路が露出する無機フィラーに接触しているのが好ましい。この場合、無機フィラーによるアンカー効果により、回路の基体からの剥離がより確実に防止される。
 本部品におけるFポリマー及び無機フィラーの定義及び範囲は、好適な態様も含めて、本組成物におけるそれらと同様である。また、本部品における回路の構成及び範囲は、好適な態様も含めて、本法におけるそれらと同様である。
 なお、本部品は、本法によって製造された部品であるのが好ましい。
 本部品からは、利得の高いアンテナが形成できる。
Further, it is preferable that a part of the inorganic filler is exposed from the surface of the substrate and the circuit is in contact with the exposed inorganic filler. In this case, the anchor effect of the inorganic filler more reliably prevents the circuit from peeling from the substrate.
The definitions and scope of F-polymers and inorganic fillers in this component are similar to those in this composition, including preferred embodiments. In addition, the configuration and scope of the circuit in this component are the same as those in this method, including preferred embodiments.
The parts are preferably parts manufactured by this method.
An antenna with high gain can be formed from this component.
 本部品の用途としては、電気機器及び電子機器(パソコン、ウェアラブル端末、医療用デバイス、各種センサー、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、ビデオカメラ、デジタルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他の家電製品等)、自動車、航空機、鉄道、ドローン等の回路部品、アンテナ、センサー、コネクター、半導体パッケージが挙げられる。
 本部品によれば、電気機器、電子機器、自動車、航空機、鉄道、ドローン等において回路基板、ワイヤーハーネスの使用量を削減することによって、省スペース、軽量化を実現できる。
Applications of this component include electrical equipment and electronic equipment (personal computers, wearable terminals, medical devices, various sensors, displays, OA equipment, mobile phones, mobile information terminals, facsimiles, video cameras, digital cameras, optical equipment, audio, etc. Air conditioners, lighting equipment, entertainment products, toy products, other home appliances, etc.), circuit parts such as automobiles, aircraft, railways, drones, antennas, sensors, connectors, semiconductor packages, etc.
According to this component, space saving and weight reduction can be realized by reducing the amount of circuit boards and wire harnesses used in electrical equipment, electronic equipment, automobiles, aircraft, railways, drones and the like.
 以上、本発明の組成物、立体成形回路部品の製造方法、立体成形回路部品及びアンテナについて説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明の組成物、立体成形回路部品及びアンテナは、それぞれ、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
 また、本発明の立体成形回路部品の製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
Although the composition of the present invention, the method for manufacturing the three-dimensional molded circuit component, the three-dimensional molded circuit component, and the antenna have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the composition, the three-dimensional molded circuit component, and the antenna of the present invention may be added to any other configuration in the configuration of the above embodiment, or may be replaced with any configuration that exhibits the same function. You may be.
Further, the method for manufacturing a three-dimensional molded circuit component of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. ..
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 1.各成分の準備
 [Fポリマー]
 Fポリマー1:TFE単位、NAH単位及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含み、極性官能基を有するPFA系ポリマー(溶融温度:300℃、極性官能基の含有量:主鎖の炭素数1×10個あたり1000個)
 Fポリマー2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含み、極性官能基を有さないPFA系ポリマー(溶融温度:305℃)
 Fポリマー3:非熱溶融性のPTFE
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following description.
1. 1. Preparation of each component [F polymer]
F polymer 1: A PFA polymer containing 98.0 mol%, 0.1 mol% and 1.9 mol% of TFE units, NAH units and PPVE units in this order and having a polar functional group (melting temperature: 300 ° C., Content of polar functional group: 1000 per 6 carbon atoms in the main chain)
F polymer 2: A PFA polymer containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order and having no polar functional group (melting temperature: 305 ° C.).
F Polymer 3: Non-heat-meltable PTFE
 [ペレット]
 ペレット1:Fポリマー1からなる、最大長さが3.5mmのペレット
 ペレット2:Fポリマー2からなる、最大長さが3.5mmのペレット
 ペレット3:液晶ポリエステル1からなる、最大長さが3.5mmのペレット
 ペレット4:Fポリマー3からなる、最大長さが3.5mmのペレット
 [液晶ポリエステル]
 液晶ポリエステル1:p-ヒドロキシ安息香酸由来の単位、4,4’-ジヒドロキシビフェニル由来の単位、ポリエチレンテレフタレート由来のエチレンジオキシ単位、テレフタル酸由来の単位を、この順に66.7モル%、6.3モル%、10.4モル%、16.7モル%含む液晶ポリエステル(溶融温度:313℃)
[pellet]
Pellet 1: Pellet made of F polymer 1 with a maximum length of 3.5 mm Pellet 2: Pellet made of F polymer 2 with a maximum length of 3.5 mm Pellet 3: Made of liquid crystal polyester 1 with a maximum length of 3 .5 mm pellet Pellet 4: Pellet with a maximum length of 3.5 mm made of F polymer 3 [Liquid crystal polyester]
Liquid crystal polyester 1: Units derived from p-hydroxybenzoic acid, units derived from 4,4'-dihydroxybiphenyl, ethylenedioxy units derived from polyethylene terephthalate, units derived from terephthalic acid, 66.7 mol%, 6. Liquid crystal polyester containing 3 mol%, 10.4 mol%, 16.7 mol% (melting temperature: 313 ° C)
 [無機フィラー]
 無機フィラー1:D50が2μmのシリカ粒子
 無機フィラー2:D50が4μmの窒化ホウ素粒子
 無機フィラー3:D50が20μmの窒化ホウ素粒子
 無機フィラー4:D50が0.1μmのシリカ粒子
 無機フィラー5:D50が1μmの中空シリカ粒子
 無機フィラー6:D50が2μmのシリカ粒子
 LDS添加剤1:銅クロム酸化物を含む銅スピネル粒子
 なお、無機フィラー1は、シランカップリング剤(3-アミノプロピルトリエトキシシラン)で表面処理されており、無機フィラー6は、シランカップリング剤で表面処理されていない。
[Inorganic filler]
Inorganic filler 1: Silane particles with D50 of 2 μm Inorganic filler 2: Boron nitride particles with D50 of 4 μm Inorganic filler 3: Boron nitride particles with D50 of 20 μm Inorganic filler 4: Silane particles with D50 of 0.1 μm Inorganic filler 5: D50 1 μm hollow silica particles Inorganic filler 6: Silica particles with D50 of 2 μm LDS additive 1: Copper spinel particles containing copper chromium oxide The inorganic filler 1 is a silane coupling agent (3-aminopropyltriethoxysilane). The surface is treated, and the inorganic filler 6 is not surface-treated with a silane coupling agent.
 2.組成物の調製
 [例1]
 60質量部のペレット1と40質量部の無機フィラー1とをドライブレンドして、組成物1を得た。
 [例2]
 90質量部のペレット1と10質量部の無機フィラー2とをドライブレンドして、組成物2を得た。
2. 2. Preparation of composition [Example 1]
60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 1 were dry-blended to obtain composition 1.
[Example 2]
90 parts by mass of pellet 1 and 10 parts by mass of inorganic filler 2 were dry-blended to obtain composition 2.
 [例3]
 90質量部のペレット2と10質量部の無機フィラー3とをドライブレンドして、組成物3を得た。
 [例4]
 60質量部のペレット1と40質量部の無機フィラー4とをドライブレンドして、組成物4を得た。
 [例5]
 100質量部のペレット1を組成物5とした。
[Example 3]
90 parts by mass of the pellet 2 and 10 parts by mass of the inorganic filler 3 were dry-blended to obtain the composition 3.
[Example 4]
60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 4 were dry-blended to obtain composition 4.
[Example 5]
100 parts by mass of pellet 1 was used as the composition 5.
 3.立体成形回路部品の製造
 まず、各組成物1~5を、メルト熱プレス機(テスター産業社製)でプレス成形し、基体としてシート1~5(厚さ:2.8mm)を得た。
 次に、シートの表面に対して、KOV1-30H(江東電気株式会社製)を用い、照射距離50cmで紫外線を3分間照射して、粗化処理を行った。
 次に、塩化パラジウムを0.5g/L、塩化第一スズを50g/L及び35%塩酸を500mL/Lで溶解した水溶液中に、30℃にて6分間浸漬し、20%硫酸中に30℃にて3分間浸漬した後、水洗した。
3. 3. Manufacture of three-dimensional molded circuit parts First, each composition 1 to 5 was press-molded with a melt heat press machine (manufactured by Tester Sangyo Co., Ltd.) to obtain sheets 1 to 5 (thickness: 2.8 mm) as a substrate.
Next, the surface of the sheet was roughened by irradiating the surface of the sheet with ultraviolet rays for 3 minutes at an irradiation distance of 50 cm using KOV1-30H (manufactured by Koto Electric Co., Ltd.).
Next, the mixture was immersed in an aqueous solution prepared by dissolving palladium chloride at 0.5 g / L, stannous chloride at 50 g / L and 35% hydrochloric acid at 500 mL / L at 30 ° C. for 6 minutes, and then immersed in 20% sulfuric acid for 30 minutes. After soaking at ° C. for 3 minutes, it was washed with water.
 その後、触媒が付与されたシートを、85℃の無電解ニッケルめっき液(奥野製薬工業社製、「TMP化学ニッケルHR-T」)に15分間浸漬し、無電解ニッケルめっき層を析出させた。
 さらに、無電解ニッケルめっき層の表面に、汎用の方法によって電解銅めっき層を析出させて、回路を形成した。
 以上の工程を経て、立体成形回路部品1~5を得た。
Then, the sheet to which the catalyst was applied was immersed in an electroless nickel plating solution at 85 ° C. (“TMP Chemical Nickel HR-T” manufactured by Okuno Pharmaceutical Co., Ltd.) for 15 minutes to precipitate an electroless nickel plating layer.
Further, an electrolytic copper plating layer was deposited on the surface of the electroless nickel plating layer by a general-purpose method to form a circuit.
Through the above steps, three-dimensional molded circuit parts 1 to 5 were obtained.
 4.評価
 4-1.めっき密着性
 得られた各立体成形回路部品1~5の回路に、市販のセロハンテープを貼り付け、その上から指でよく擦って、各立体成形回路部品1~5の表面に密着させた。
 そして、セロハンテープの一端を指で摘まんで、一気にシートから剥離させた。
 その後、回路のシートからの剥離状況を目視にて確認し、以下の基準に従って、めっき密着性について評価した。
 [評価基準]
 ○:剥離せず
 △:一部に剥離あり
 ×:著しい剥離あり
4. Evaluation 4-1. Plating adhesion A commercially available cellophane tape was attached to the circuits of the three-dimensional molded circuit parts 1 to 5 obtained, and the cells were rubbed well with a finger from above to bring them into close contact with the surfaces of the three-dimensional molded circuit parts 1 to 5.
Then, one end of the cellophane tape was picked up with a finger and peeled off from the sheet at once.
After that, the peeling condition of the circuit from the sheet was visually confirmed, and the plating adhesion was evaluated according to the following criteria.
[Evaluation criteria]
○: No peeling △: Partially peeled ×: Significant peeling
 4-2.ヒートサイクル試験
 得られた各立体成形回路部品1~5を、-40℃に20分間保持した後、60分かけて200℃に昇温し、200℃に30分間保持した後、60分かけて-40℃に降温し、-40℃に20分間保持する温度サイクルを1サイクルとして、10サイクル繰り返した。
 10サイクル終了後、回路のシートからの剥離状況を目視にて確認し、以下の基準に従って、ヒートサイクル試験に対する耐性について評価した。
 [評価基準]
 ○:剥離せず
 △:一部に剥離あり
 ×:著しい剥離あり
 これらの結果を、以下の表1に併せて示す。
4-2. Heat cycle test Each of the obtained three-dimensional molded circuit parts 1 to 5 was held at −40 ° C. for 20 minutes, then heated to 200 ° C. over 60 minutes, held at 200 ° C. for 30 minutes, and then over 60 minutes. The temperature was lowered to −40 ° C. and kept at −40 ° C. for 20 minutes, and the temperature cycle was set as one cycle, and 10 cycles were repeated.
After 10 cycles, the peeling condition of the circuit from the sheet was visually confirmed, and the resistance to the heat cycle test was evaluated according to the following criteria.
[Evaluation criteria]
◯: No peeling Δ: Partially peeled ×: Significant peeling These results are also shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、組成物1の射出成型物である台形状の基体の上底面と斜辺面とに上記「3.」の処理をして得られる立体成形回路部品も、同様に、めっき密着性とヒートサイクル試験に対する耐性とに優れていた。 Similarly, the three-dimensional molded circuit component obtained by subjecting the upper bottom surface and the hypotenuse surface of the trapezoidal substrate, which is the injection molded product of the composition 1, to the treatment of "3." Excellent resistance to testing.
 5.組成物の調製
 [例6]
 58質量部のペレット1と38質量部の無機フィラー1と4質量部のLDS添加剤1をドライブレンドして、組成物6を得た。
 [例7]
 58質量部のペレット1と38質量部の無機フィラー5と4質量部のLDS添加剤1をドライブレンドして、組成物7を得た。
 [例8]
 58質量部のペレット3と38質量部の無機フィラー1と4質量部のLDS添加剤1をドライブレンドして、組成物8を得た。
5. Preparation of composition [Example 6]
58 parts by mass of pellet 1, 38 parts by mass of inorganic filler 1 and 4 parts by mass of LDS additive 1 were dry-blended to obtain composition 6.
[Example 7]
58 parts by mass of pellet 1, 38 parts by mass of inorganic filler 5 and 4 parts by mass of LDS additive 1 were dry-blended to obtain composition 7.
[Example 8]
58 parts by mass of pellet 3 and 38 parts by mass of inorganic filler 1 and 4 parts by mass of LDS additive 1 were dry-blended to obtain composition 8.
 6.立体成形回路部品の製造
 まず、各組成物6~8を、メルト熱プレス機(テスター産業社製)でプレス成形し、基体としてシート6~8(厚さ:0.2mm)を得た。得られた成形品表面に、パナソニック製LP-V10U FAYbレーザー装置を用い、波長1064nm、周波数50Hz、レーザー出力5.0W、走査速度3000mm/sの条件でレーザー照射を行った。その成形品に12μm厚の無電解銅めっき処理を実施した。
 以上の工程を経て、立体成形回路部品6~8を得た。
6. Manufacture of Three-dimensional Molded Circuit Parts First, each composition 6 to 8 was press-molded with a melt heat press machine (manufactured by Tester Sangyo Co., Ltd.) to obtain sheets 6 to 8 (thickness: 0.2 mm) as a substrate. The surface of the obtained molded product was irradiated with a laser using a Panasonic LP-V10U FAYb laser device under the conditions of a wavelength of 1064 nm, a frequency of 50 Hz, a laser output of 5.0 W, and a scanning speed of 3000 mm / s. The molded product was subjected to an electroless copper plating treatment having a thickness of 12 μm.
Through the above steps, three-dimensional molded circuit parts 6 to 8 were obtained.
 7.評価
 7-1.誘電率
 得られたシート6~8について、SPDR(スプリットポスト誘電体共振)法にて誘電率(測定周波数:10GHz)を測定した。
 7-2.めっき密着性
 得られた立体成形回路部品6~8の回路のメッキ密着性を、4-1と同様にして評価した。
7. Evaluation 7-1. Dielectric constant The dielectric constant (measurement frequency: 10 GHz) of the obtained sheets 6 to 8 was measured by the SPDR (split post dielectric resonance) method.
7-2. Plating Adhesion The plating adhesion of the circuits of the obtained three-dimensional molded circuit components 6 to 8 was evaluated in the same manner as in 4-1.
 7-3.アンテナ利得
 得られた立体成形回路部品6~8について、パッチアンテナの利得シミュレーションを行った。基板サイズは、6.4mm(=0.6λ0)四方の正方形、厚さは0.2mmとした。パッチアンテナのサイズは、誘電率に従って設計し、立体成形回路部品6~8について、それぞれこの順に、一辺3.0mm、3.3mm、2.6mmの正方形とした。波長28GHzにおける、アンテナの利得を以下の基準に従って評価した。
 [評価基準]
 〇:6.5dBi以上
 ×:6.5dBi未満
7-3. Antenna gain A patch antenna gain simulation was performed on the obtained three-dimensional molded circuit components 6 to 8. The substrate size was a 6.4 mm (= 0.6λ0) square, and the thickness was 0.2 mm. The size of the patch antenna was designed according to the dielectric constant, and the three-dimensional molded circuit components 6 to 8 were made into squares having a side of 3.0 mm, 3.3 mm, and 2.6 mm in this order, respectively. The gain of the antenna at a wavelength of 28 GHz was evaluated according to the following criteria.
[Evaluation criteria]
〇: 6.5 dBi or more ×: less than 6.5 dBi
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 8.組成物の調製
 [例9]
 60質量部のペレット1と40質量部の無機フィラー6とをドライブレンドして、組成物9を得た。
 [例10]
 30質量部のペレット1と30質量部のペレット4と40質量部の無機フィラー1とをドライブレンドして、組成物10を得た。
8. Preparation of composition [Example 9]
60 parts by mass of pellet 1 and 40 parts by mass of inorganic filler 6 were dry-blended to obtain composition 9.
[Example 10]
30 parts by mass of pellet 1, 30 parts by mass of pellet 4 and 40 parts by mass of inorganic filler 1 were dry-blended to obtain a composition 10.
 9.立体回路部品の製造
 組成物1を組成物9、組成物10に変更した以外は、立体成形回路部品1と同様にして立体成形回路部品9及び10を得た。
 10.評価
 立体成形回路部品9、10について、めっき密着性、ヒートサイクル試験による耐性を4-1、4-2に記載の方法で評価した結果、立体成形回路部品9の結果は、順に「〇」、「△」、立体成形回路部品10の結果は、順に、「〇」、「〇」であった。なお、立体成形回路部品10は、立体成形回路部品1に比較して、その端部や曲面部において無機フィラーの粉落ちが一層抑制されていた。
9. Manufacture of Three-dimensional Circuit Parts Three-dimensional molded circuit parts 9 and 10 were obtained in the same manner as the three-dimensional molded circuit parts 1 except that the composition 1 was changed to the composition 9 and the composition 10.
10. Evaluation As a result of evaluating the plating adhesion and resistance by the heat cycle test of the three-dimensional molded circuit parts 9 and 10 by the methods described in 4-1 and 4-2, the results of the three-dimensional molded circuit parts 9 are "○" in order. The results of "Δ" and the three-dimensional molded circuit component 10 were "○" and "○" in order. Compared to the three-dimensional molding circuit component 1, the three-dimensional molding circuit component 10 was further suppressed from powder dropping of the inorganic filler at its end portion and curved surface portion.
 本発明の組成物、立体成形回路部品は、電気機器及び電子機器(パソコン、ウェアラブル端末、医療用デバイス、各種センサー、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、ビデオカメラ、デジタルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他の家電製品等)、自動車、航空機、鉄道、ドローン等の回路部品、アンテナ、センサー、コネクター、半導体パッケージの用途において有用である。 The composition and the three-dimensional molded circuit component of the present invention include electrical equipment and electronic equipment (personal computer, wearable terminal, medical device, various sensors, displays, OA equipment, mobile phone, mobile information terminal, facsimile, video camera, digital camera, etc. It is useful in applications such as optical equipment, audio, air conditioners, lighting equipment, entertainment equipment, toy equipment, and other home appliances), circuit parts such as automobiles, aircraft, railways, and drones, antennas, sensors, connectors, and semiconductor packages.

Claims (15)

  1.  立体成形回路部品の基体を形成するのに用いられる組成物であって、熱溶融性のテトラフルオロエチレン系ポリマーと、平均粒子径が0.1μm超である無機フィラーとを含み、テトラフルオロエチレン系ポリマーの含有量が50質量%超である、組成物。 A composition used to form a substrate for a three-dimensional molded circuit component, which comprises a heat-meltable tetrafluoroethylene-based polymer and an inorganic filler having an average particle size of more than 0.1 μm, and is a tetrafluoroethylene-based polymer. A composition having a polymer content of more than 50% by weight.
  2.  前記テトラフルオロエチレン系ポリマーが、極性官能基を有するテトラフルオロエチレン系ポリマーである、請求項1に記載の組成物。 The composition according to claim 1, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a polar functional group.
  3.  前記無機フィラーが、シランカップリング剤で表面処理されている無機フィラーである、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the inorganic filler is an inorganic filler surface-treated with a silane coupling agent.
  4.  前記無機フィラーの平均粒子径が、0.5~20μmである、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the average particle size of the inorganic filler is 0.5 to 20 μm.
  5.  前記無機フィラーの含有量が、5質量%以上50質量%未満である、請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the content of the inorganic filler is 5% by mass or more and less than 50% by mass.
  6.  前記無機フィラーが、シリカ、タルク、チタニア、アルミナ、酸化スズ、有機パラジウム錯体、酸化銅及び窒化ホウ素からなる群より選択される少なくとも1種を含む無機フィラーである、請求項1~5のいずれか1項に記載の組成物。 Any of claims 1 to 5, wherein the inorganic filler is an inorganic filler containing at least one selected from the group consisting of silica, talc, titania, alumina, tin oxide, an organic palladium complex, copper oxide and boron nitride. The composition according to item 1.
  7.  さらに、非熱溶融性のポリテトラフルオロエチレンを含む請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, further comprising non-heat-meltable polytetrafluoroethylene.
  8.  請求項1~7のいずれか1項に記載の組成物を用いて基体を形成し、前記基体の表面に粗化処理を行った後、触媒を付与し、めっき処理により前記基体の表面に回路を形成して、前記基体と前記回路とを有する立体成形回路部品を得る、立体成形回路部品の製造方法。 A substrate is formed using the composition according to any one of claims 1 to 7, a roughening treatment is performed on the surface of the substrate, a catalyst is applied, and a circuit is applied to the surface of the substrate by a plating treatment. A method for manufacturing a three-dimensional molded circuit component, which comprises forming the substrate and the circuit to obtain a three-dimensional molded circuit component.
  9.  前記無機フィラーの一部が粗化処理を行った後の前記基体の表面から露出しており、前記触媒の一部が露出する前記無機フィラーに担持される、請求項8に記載の製造方法。 The production method according to claim 8, wherein a part of the inorganic filler is exposed from the surface of the substrate after the roughening treatment, and a part of the catalyst is supported on the exposed inorganic filler.
  10.  前記粗化処理を、前記基体の表面への紫外線の照射又は前記基体の表面への溶剤の付与により行う、請求項8又は9に記載の製造方法。 The production method according to claim 8 or 9, wherein the roughening treatment is performed by irradiating the surface of the substrate with ultraviolet rays or applying a solvent to the surface of the substrate.
  11.  請求項1~7のいずれか1項に記載の組成物を用いて基体を形成し、前記基体の表面にレーザー照射した後、めっき処理により前記基体の表面に回路を形成して、前記基体と前記回路とを有する立体成形回路部品を得る、立体成形回路部品の製造方法。 A substrate is formed using the composition according to any one of claims 1 to 7, the surface of the substrate is irradiated with a laser, and then a circuit is formed on the surface of the substrate by a plating treatment to form a circuit with the substrate. A method for manufacturing a three-dimensional molded circuit component, which obtains a three-dimensional molded circuit component having the circuit.
  12.  前記無機フィラーが、酸化銅又は酸化スズを含む無機フィラーである、請求項11に記載の製造方法。 The production method according to claim 11, wherein the inorganic filler is an inorganic filler containing copper oxide or tin oxide.
  13.  熱溶融性のテトラフルオロエチレン系ポリマーと、平均粒子径が0.1μm超である無機フィラーとを含み、テトラフルオロエチレン系ポリマーの含有量が50質量%超である基体と、前記基体の表面に設けられた回路とを有する、立体成形回路部品。 On a substrate containing a heat-meltable tetrafluoroethylene polymer and an inorganic filler having an average particle size of more than 0.1 μm and having a tetrafluoroethylene polymer content of more than 50% by mass, and on the surface of the substrate. A three-dimensional molded circuit component having a provided circuit.
  14.  前記無機フィラーの一部が前記基体の表面から露出しており、前記回路が露出する前記無機フィラーに接触している、請求項13に記載の立体成形回路部品。 The three-dimensional molded circuit component according to claim 13, wherein a part of the inorganic filler is exposed from the surface of the substrate and the circuit is in contact with the exposed inorganic filler.
  15.  請求項13又は14に記載の立体成形回路部品を備えたアンテナ。 An antenna provided with the three-dimensional molded circuit component according to claim 13 or 14.
PCT/JP2021/019518 2020-05-27 2021-05-24 Composition, method for producing three-dimensionally molded circuit component, three-dimensionally molded circuit component and antenna WO2021241473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527012A JPWO2021241473A1 (en) 2020-05-27 2021-05-24

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020092075 2020-05-27
JP2020-092075 2020-05-27
JP2020-147259 2020-09-02
JP2020147259 2020-09-02

Publications (1)

Publication Number Publication Date
WO2021241473A1 true WO2021241473A1 (en) 2021-12-02

Family

ID=78744789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019518 WO2021241473A1 (en) 2020-05-27 2021-05-24 Composition, method for producing three-dimensionally molded circuit component, three-dimensionally molded circuit component and antenna

Country Status (3)

Country Link
JP (1) JPWO2021241473A1 (en)
TW (1) TW202204508A (en)
WO (1) WO2021241473A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JP2019054034A (en) * 2017-09-13 2019-04-04 Agc株式会社 Resin composition for solid-molded circuit component, solid molded product and method for manufacturing the same, and solid-molded circuit component and method for manufacturing the same
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JP2019054034A (en) * 2017-09-13 2019-04-04 Agc株式会社 Resin composition for solid-molded circuit component, solid molded product and method for manufacturing the same, and solid-molded circuit component and method for manufacturing the same
JP2019183005A (en) * 2018-04-11 2019-10-24 Agc株式会社 Fluorine resin sheet, laminate, and manufacturing method therefor

Also Published As

Publication number Publication date
TW202204508A (en) 2022-02-01
JPWO2021241473A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
KR101297156B1 (en) High performance emi/rfi shielding polymer composite
TWI574913B (en) The method of granulating insulating fins and boron nitride
JP2021511398A (en) Polyphenylene sulfide resin composition, its production method and injection molded products produced from it.
TW201510109A (en) Additive for LDS plastics
TWI671189B (en) Manufacturing method of laminated body
CN103923332A (en) Method for preparing nano SiO2 hollow ball composite materials based on polyimide base body
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2010135205A (en) Coaxial cable and manufacturing method of the same
KR20110127212A (en) Functional molded article and method for producing same
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
CN108250699B (en) High-thermal-conductivity insulating polybutylene terephthalate alloy and preparation method thereof
WO2021241473A1 (en) Composition, method for producing three-dimensionally molded circuit component, three-dimensionally molded circuit component and antenna
JPH11228824A (en) Resin composition, molded product and production of the resin composition
JP7009858B2 (en) Resin composition for three-dimensional molded circuit parts, three-dimensional molded products and their manufacturing methods, and three-dimensional molded circuit parts and their manufacturing methods.
JP2022113635A (en) Electromagnetic wave-shielding composition, production method of substrate with electromagnetic wave-shielding sheet attached, electromagnetic wave-shielding sheet, and printed wiring board
TWI639370B (en) Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin components having conductive pattern thereon
KR101527164B1 (en) Thermal conductive hybrid composite and preparation methods thereof
JP6776584B2 (en) Manufacturing method of electric wires and cables
JP2022061412A (en) Production method of liquid composition and production method of laminate
JP6413424B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP2022098733A (en) Composition of tetrafluoroethylene polymer, liquid composition containing the same, and sheet
KR102079371B1 (en) Method for preparation of heat-sink compound
TW201529722A (en) Anti-flaming polyamide resin composition and forming product of the same
JP2021147503A (en) Vinyl chloride-based resin composition and molding of the same
JP7125319B2 (en) Silver-coated resin particles and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813151

Country of ref document: EP

Kind code of ref document: A1