WO2021241468A1 - 診断装置、診断方法および診断プログラム - Google Patents

診断装置、診断方法および診断プログラム Download PDF

Info

Publication number
WO2021241468A1
WO2021241468A1 PCT/JP2021/019494 JP2021019494W WO2021241468A1 WO 2021241468 A1 WO2021241468 A1 WO 2021241468A1 JP 2021019494 W JP2021019494 W JP 2021019494W WO 2021241468 A1 WO2021241468 A1 WO 2021241468A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
dimensional table
driven body
estimated torque
resistance value
Prior art date
Application number
PCT/JP2021/019494
Other languages
English (en)
French (fr)
Inventor
享大 ▲徳▼山
伊智郎 粟屋
友博 井川
純也 瀧田
公人 尾場瀬
元気 中井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US17/927,246 priority Critical patent/US20230204457A1/en
Publication of WO2021241468A1 publication Critical patent/WO2021241468A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present disclosure relates to a diagnostic device, a diagnostic method, and a diagnostic program for a driven body having a rotating shaft.
  • a driven body having a rotating shaft such as a turbo pump of a rocket engine or a machine tool is subjected to a soundness diagnosis in a timely manner in order to evaluate the soundness of the machine. Since the driven body cannot be driven by itself, the driven body is manually rotated by a worker when diagnosing, and the presence or absence of an abnormality is diagnosed. However, empirical diagnosis depends on the sense and skill of the worker, and it is difficult to maintain a certain level of quality.
  • Patent Document 1 discloses that when the rotation speed of a motor exceeds a predetermined reference speed and the estimated disturbance torque of the motor is lower than the predetermined reference torque, it is determined that an abnormality has occurred. Has been done.
  • the present disclosure has been made in view of such circumstances, and an object of the present invention is to provide a diagnostic device, a diagnostic method, and a diagnostic program capable of determining the occurrence status of an abnormality in addition to the presence or absence of an abnormality in the driven body. And.
  • the diagnostic device of the present disclosure is a diagnostic device that diagnoses a driven body having a rotating shaft, and the driven body is rotated by driving an external motor, and the driven body is driven. Based on the actual operation data obtained by driving the drive body with the motor, the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the three-dimensional table of the angle, the angular speed, and the estimated torque resistance value is used.
  • a three-dimensional table of a certain driven body and a motor is obtained, a three-dimensional table of a reference state which is a three-dimensional table of an angle of a reference state, an angular speed, and an estimated torque resistance value is obtained, and a three-dimensional table of the driven body and the motor is obtained.
  • a three-dimensional table for determination is calculated from the difference between the three-dimensional table in the reference state and the three-dimensional table in the reference state.
  • the diagnostic method of the present disclosure is a diagnostic method for diagnosing a driven body having a rotating shaft, in which the driven body is rotated by driving an external motor and the driven body is driven. Based on the actual operation data obtained by driving the drive body with the motor, the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the three-dimensional table of the angle, the angular speed, and the estimated torque resistance value is used.
  • a step of obtaining a three-dimensional table of a certain driven body and a motor a step of obtaining a three-dimensional table of a reference state which is a three-dimensional table of an angle of a reference state, an angular speed, and an estimated torque resistance value, and a step of obtaining the driven body and the motor. It has a step of calculating a three-dimensional table for determination from the difference between the three-dimensional table of the above and the three-dimensional table of the reference state.
  • the diagnostic program of the present disclosure is a diagnostic program for diagnosing a driven body having a rotating shaft, and the driven body is rotated by being driven by an external motor, and the driven body is driven. Based on the actual operation data obtained by driving the drive body with the motor, the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the three-dimensional table of the angle, the angular speed, and the estimated torque resistance value is used.
  • a step of obtaining a three-dimensional table of a certain driven body and a motor a step of obtaining a three-dimensional table of a reference state which is a three-dimensional table of an angle of a reference state, an angular speed, and an estimated torque resistance value, and a step of obtaining the driven body and the motor. It has a step of calculating a three-dimensional table for determination from the difference between the three-dimensional table of the above and the three-dimensional table of the reference state.
  • the inspection can be homogenized without the need for manual work by a skilled worker.
  • FIG. 12 shows a schematic configuration of a diagnostic device according to some embodiments of the present disclosure.
  • the diagnostic device 50 according to the present disclosure is applied to a combination of a driven body 10 having a rotating shaft and an external motor 20 for rotating the driven body 10.
  • the driven body 10 cannot rotate by itself.
  • Examples of the driven body 10 include a turbo pump of a rocket engine, a machine tool, and the like, but any type thereof may be used as long as it has a rotating shaft.
  • the motor 20 is a motor 20 externally attached to the driven body 10 when making a diagnosis by the diagnostic device 50. At the time of diagnosis, the driven body 10 is rotated by the drive of the motor 20.
  • the diagnostic device 50 is, for example, a device for diagnosing the soundness of the driven body 10, and acquires operation data from the motor 20 to perform the diagnosis.
  • the diagnostic device 50 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable non-temporary storage medium, and the like.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • FIG. 1 shows a flowchart of control of a diagnostic device according to some embodiments of the present disclosure.
  • the diagnostic device 50 starts diagnosing the driven body 10
  • the driven body 10 is driven by the motor 20 to acquire actual operation data (S101).
  • Actual operation data is acquired by conducting tests under multiple speed conditions.
  • the acquired actual operation data includes the characteristics of the driven body 10 and the motor 20.
  • FIG. 2 shows a time chart of the angle and estimated torque resistance value for each angular velocity of the diagnostic apparatus in some embodiments of the present disclosure.
  • the diagnostic apparatus 50 acquires a time chart of angles and torques at a constant angular velocity for the combination of the driven body 10 and the motor 20.
  • the vertical axis represents an angle or torque
  • the horizontal axis represents time
  • the alternate long and short dash line indicates an angle time chart
  • the solid line indicates a torque time chart.
  • the angle shows an almost straight line rising to the right in proportion to time. The torque increases sharply at the beginning, reaches a peak value, then decreases, and then converges to a certain range.
  • the diagnostic device 50 of the present embodiment tests a total of 600 patterns at 1 deg / s from an angular velocity of 1 deg / s to 600 deg / s, and acquires actual operation data as time-series data.
  • the value of the angular velocity of the actual operation data acquired by the diagnostic device 50 and the delimiter of the angular velocity are examples.
  • the value of the angular velocity in the actual operation data may reflect the drive angular velocity range of the driven body 10.
  • the delimiter of the angular velocity may be any resolution as long as the distribution in the abnormal state can be discriminated, and may be, for example, 5 deg / s each.
  • the diagnostic device 50 calculates the estimated torque resistance value at each angular velocity.
  • Various methods can be used for estimating the resistance torque, such as estimating with a disturbance observer or using a torque sensor, but the method is not limited. Further, it is assumed that the estimated torque resistance value is calculated in a state where the speeds of the driven body 10 and the motor 20 are stable except immediately after the start-up.
  • FIG. 3 shows the relationship between the angle of the diagnostic device for each angular velocity and the estimated torque resistance value in some embodiments of the present disclosure.
  • the vertical axis is the estimated torque resistance value
  • the horizontal axis is the angle.
  • the diagnostic device 50 of the present embodiment estimates the estimated torque resistance value at each angular velocity from the actual operation data obtained by conducting a total of 600 patterns of tests at 1 deg / s from 1 deg / s to 600 deg / s. To obtain the estimated torque resistance value table.
  • the diagnostic apparatus 50 extracts the maximum value from the estimated torque resistance values within the equidistant angle range.
  • the diagnostic apparatus 50 equalizes the estimated torque resistance value table of FIG. 3 for each angular velocity by, for example, 1 deg, and extracts the maximum value of the estimated torque resistance value within each angle range for each angle range.
  • the angle range is set to 1 deg, but the angle range may be any resolution as long as the distribution in the abnormal state can be discriminated, and may be, for example, 5 deg each.
  • the diagnostic apparatus 50 creates a three-dimensional table of an angle, an angular velocity, and an estimated torque resistance value.
  • the diagnostic device 50 has an angular velocity (angular velocity command (log)) in the radial direction of the cylindrical coordinate system, an evenly spaced angle in the angular direction (circumferential direction), and an estimated torque resistance value (maximum value) in the axial direction (height direction). And create a three-dimensional table.
  • FIG. 4 shows a three-dimensional table of angles, angular velocities, and estimated torque resistance values of the diagnostic device in some embodiments of the present disclosure.
  • the three-dimensional table of angle, angular velocity, and estimated torque resistance value the lighter the color, the larger the estimated torque resistance value in the positive direction, and the darker the color, the larger the estimated torque resistance value in the negative direction. Show that. Since the three-dimensional table of the angle, the angular velocity, and the estimated torque resistance value can input the angle and the angular velocity and output the estimated torque resistance value, it can be said that it is a distribution of the estimated torque resistance value.
  • step S105 of FIG. 1 the diagnostic apparatus 50 calculates a three-dimensional table for determination from the difference between the three-dimensional table acquired in step S104 and the three-dimensional table in the reference state.
  • FIG. 5 shows a three-dimensional table of angles, angular velocities, and estimated torque resistance values of the diagnostic device in some embodiments of the present disclosure.
  • the normal state in the present disclosure is defined as a normal state excluding the abnormal state in which an abnormality has occurred.
  • the figure on the left of FIG. 5 shows a three-dimensional table of the driven body 10 and the motor 20.
  • the figure in the center of FIG. 5 shows a three-dimensional table of the motor 20 which is a reference state described later.
  • the figure on the right of FIG. 5 shows a three-dimensional table of only the driven body 10.
  • the diagnostic device 50 acquires a three-dimensional table in the reference state in advance. It is assumed that the reference state of the present embodiment is a state in which only the motor 20 that drives and rotates the driven body 10 is driven in the diagnosis of the driven body 10.
  • the diagnostic device 50 calculates the motor estimated torque resistance value, which is the estimated torque resistance value of the motor 20 only, based on the motor operation data obtained by driving only the motor 20, and has 3 of the angle, the angular speed, and the motor estimated torque resistance value.
  • the three-dimensional table of the motor 20 which is a three-dimensional table is acquired as the three-dimensional table of the reference state in the present embodiment.
  • the diagnostic apparatus 50 includes a three-dimensional table acquired in step S104 of FIG. 1 (see the figure on the left in FIG. 5) and a three-dimensional table of the motor 20 acquired in advance (see the figure in the center of FIG. 5). Calculate the difference.
  • This difference is a three-dimensional table (determination three-dimensional table) of only the driven body 10 to be diagnosed by the diagnostic device 50 (see the figure on the right of FIG. 5).
  • FIG. 6 shows a three-dimensional table of the angle, angular velocity, and estimated torque resistance value of the abnormal state of the diagnostic apparatus in some embodiments of the present disclosure.
  • the figure on the left of FIG. 6 shows a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state.
  • the figure in the center of FIG. 6 shows a three-dimensional table of the motor 20 which is a reference state of an abnormal state.
  • the figure on the right of FIG. 6 shows a three-dimensional table of only the driven body 10 in an abnormal state.
  • the diagnostic apparatus 50 When making a diagnosis, the diagnostic apparatus 50 performs the processes of steps S101 to S105 of FIG. 1 to acquire a three-dimensional table of only the driven body 10 to be diagnosed. For example, when a foreign substance of 5 ⁇ m is mixed in the driven body 10, that is, a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state is shown in the left figure of FIG.
  • the diagnostic device 50 includes a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state (see the figure on the left in FIG. 6) and a three-dimensional table of the motor 20 acquired in advance (see the figure in the center of FIG. 6). ) And the difference.
  • This difference is a three-dimensional table (determination three-dimensional table) of only the driven body 10 to be diagnosed by the diagnostic device 50 in the abnormal state (see the figure on the right of FIG. 6).
  • a three-dimensional table of only the driven body 10 in the obtained normal state see the figure on the right of FIG. 5
  • a three-dimensional table of only the driven body 10 to be diagnosed by the diagnostic device 50 in the abnormal state (FIG. 6).
  • the presence or absence of an abnormality can be determined by visually comparing the diagnosis with (see the figure on the right). Further, it is possible to detect the angle and the angular velocity at which the abnormality may have occurred in the driven body 10 and identify the location of the abnormality and the cause of the abnormality.
  • step S106 the diagnostic apparatus 50 compares the three-dimensional table of only the driven body 10, which is the three-dimensional table for determination, with a predetermined threshold distribution described later, and acquires an abnormal distribution.
  • the diagnostic device 50 acquires a predetermined threshold distribution in advance.
  • the diagnostic device 50 is a driven drive, which is a three-dimensional table of an angle, an angular velocity, and an estimated torque resistance value in a normal state (for example, when the driven body 10 is in the initial state (new)), which is a normal state rather than an abnormal state.
  • a normal state for example, when the driven body 10 is in the initial state (new)
  • the threshold distribution of the estimated torque resistance value in the normal state is set as a predetermined threshold distribution.
  • the diagnostic device 50 compares the three-dimensional table of only the driven body 10 with a predetermined threshold distribution and acquires an abnormal distribution. In this way, by comparing the three-dimensional table of only the driven body 10 with the threshold value, the abnormal distribution is output with two values of normal or abnormal. Normal and abnormal may be output as two values of 0 or 1.
  • FIG. 7 shows the anomalous distribution acquired by the diagnostic apparatus in some embodiments of the present disclosure.
  • the radial direction of the circle indicates the angular velocity
  • the angular direction (circumferential direction) of the circle indicates the angle
  • the distribution is acquired with the angle range set to 10 deg.
  • white indicates that the estimated torque resistance value is normal (no abnormality)
  • black indicates that the estimated torque resistance value is abnormal.
  • the three-dimensional table in the reference state is used as the three-dimensional table of the motor 20
  • the three-dimensional table in the reference state is the subject in the predetermined state which is the set predetermined state.
  • the diagnostic apparatus 50 according to the present embodiment will be mainly described with respect to the differences from the above-described embodiment.
  • FIG. 8 shows a three-dimensional table of angles, angular velocities, and estimated torque resistance values of the diagnostic apparatus in some embodiments of the present disclosure.
  • the figure on the left of FIG. 8 shows a three-dimensional table of the driven body 10 and the motor 20 at the time of diagnosis by the diagnostic device 50.
  • the figure in the center of FIG. 8 shows a three-dimensional table of the driven body 10 and the motor 20 in a predetermined state, which is a reference state described later.
  • the figure on the right of FIG. 8 shows a three-dimensional table of changes in the driven body 10 and the motor 20.
  • the diagnostic device 50 acquires a three-dimensional table of the reference state in the present embodiment in advance.
  • the reference state of the present embodiment indicates a predetermined state which is a set predetermined state. Specifically, for example, it is a normal state that is not the above-mentioned abnormal state, a predetermined time point set as a reference for diagnosis, or a state at the time of the day before the diagnosis.
  • the predetermined state set is a normal state that is not an abnormal state of the driven body 10 and the motor 20.
  • the diagnostic device 50 is in a predetermined state of the combination of the driven body 10 and the motor 20 based on the predetermined state operation data obtained by driving the driven body 10 with the motor 20 at the time of the set predetermined state, that is, the normal state.
  • the estimated torque resistance value is calculated, and the three-dimensional table of the driven body 10 and the motor 20 in the predetermined state, which is a three-dimensional table of the angle, the angular velocity, and the estimated torque resistance value in the predetermined state, is three-dimensional in the reference state in the present embodiment. Get it as a table.
  • the diagnostic apparatus 50 performs the processes of steps S101 to S105 in FIG. 1 to acquire a three-dimensional table of the amount of change.
  • the diagnostic apparatus 50 includes a three-dimensional table acquired in step S104 of FIG. 1 (see the figure on the left of FIG. 8) and a three-dimensional table of the driven body 10 and the motor 20 in a predetermined state acquired in advance (FIG. 8). Calculate the difference from (see the figure in the center of).
  • This difference is a three-dimensional table (determination three-dimensional table) of the amount of change from the set predetermined state (normal state in the case of this embodiment) of the driven body 10 and the motor 20 (the figure on the right of FIG. 8). See). From the three-dimensional table of the amount of change, it is possible to grasp the change from the set predetermined state, for example, the normal state, and evaluate the amount of change from the previous time (in this case, aged deterioration).
  • FIG. 9 shows a three-dimensional table of the angle, angular velocity, and estimated torque resistance value of the abnormal state of the diagnostic apparatus in some embodiments of the present disclosure.
  • the figure on the left of FIG. 9 shows a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state.
  • the figure in the center of FIG. 9 shows a three-dimensional table of the driven body 10 and the motor 20 in a predetermined state, which is a reference state of an abnormal state.
  • the figure on the right of FIG. 9 shows a three-dimensional table of changes in the driven body 10 and the motor 20 in an abnormal state.
  • the diagnostic apparatus 50 When making a diagnosis, the diagnostic apparatus 50 performs the processes of steps S101 to S105 of FIG. 1 and acquires a three-dimensional table of the amount of change. For example, when a foreign substance of 5 ⁇ m is mixed in the driven body 10, that is, a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state is shown in the left figure of FIG.
  • the diagnostic device 50 includes a three-dimensional table of the driven body 10 and the motor 20 in an abnormal state (see the figure on the left in FIG. 9), and a three-dimensional table of the driven body 10 and the motor 20 in a predetermined state acquired in advance. (Refer to the figure in the center of FIG. 9) and calculate the difference.
  • This difference is a three-dimensional table (determination three-dimensional table) (FIG. 9) of the amount of change from the set predetermined state (normal state in the case of this embodiment) of the driven body 10 and the motor 20 in the abnormal state. (See the figure on the right).
  • a three-dimensional table of the obtained changes in the driven body 10 and the motor 20 in the normal state see the figure on the right of FIG. 8
  • a three-dimensional table of the changes in the driven body 10 and the motor 20 in the abnormal state FIG. 8
  • By visually comparing with (see the figure on the right of 9) by the operator performing the diagnosis it is possible to determine the presence or absence of an abnormality different from the aged deterioration. Further, it is possible to detect the angle and the angular velocity at which the abnormality may have occurred in the driven body 10 and identify the location of the abnormality and the cause of the abnormality.
  • the set predetermined state is regarded as the normal state, but a certain point on the time axis such as the day before or one month ago may be set as the predetermined state.
  • FIG. 10 shows a three-dimensional table of angles, angular velocities, and estimated torque resistance values of the diagnostic apparatus in some embodiments of the present disclosure.
  • the figure on the left of FIG. 10 shows a three-dimensional table of changes in the driven body 10 and the motor 20.
  • the figure in the center of FIG. 10 shows the average value of the estimated torque resistance values for each angular velocity.
  • the figure on the right of FIG. 10 shows a three-dimensional table of changes in the angles of the driven body 10 and the motor 20.
  • the diagnostic apparatus 50 performs the processes of steps S101 to S104 of FIG. 1 to acquire a three-dimensional table of changes in the driven body 10 and the motor 20 (see the figure on the left of FIG. 10).
  • the diagnostic device 50 obtains the average value of the estimated torque resistance values for each angular velocity, and obtains the graph in the center of FIG.
  • the vertical axis represents the estimated torque resistance value
  • the horizontal axis represents the angular velocity
  • the solid line represents the average value of the estimated torque resistance values for each angular velocity in the normal state.
  • the diagnostic device 50 uses a three-dimensional table of changes in the driven body 10 and the motor 20 (see the figure on the left in FIG. 10) and an average value of estimated torque resistance values for each angular velocity in a normal state (FIG. 10). Calculate the difference from the center figure). This difference is a three-dimensional table (determination three-dimensional table) of the amount of change in the angles of the driven body 10 and the motor 20 (see the figure on the right of FIG. 10). Since the characteristics for each angular velocity are subtracted from the three-dimensional table of the amount of change in the angle, it is possible to determine at which angle the variation during one rotation is.
  • FIG. 11 shows a three-dimensional table of the angle, angular velocity, and estimated torque resistance value of the abnormal state of the diagnostic apparatus in some embodiments of the present disclosure.
  • the figure on the left of FIG. 11 shows a three-dimensional table of changes in the driven body 10 and the motor 20 in an abnormal state.
  • the figure in the center of FIG. 11 shows the average value of the estimated torque resistance values for each angular velocity in the abnormal state.
  • the figure on the right of FIG. 11 shows a three-dimensional table of changes in the angles of the driven body 10 and the motor 20 in an abnormal state.
  • the diagnostic apparatus 50 performs the processes of steps S101 to S104 of FIG. 1 to acquire a three-dimensional table (see the figure on the left of FIG. 11) of the amount of change of the driven body 10 and the motor 20 in an abnormal state.
  • a three-dimensional table of changes in the driven body 10 and the motor 20 in an abnormal state when a foreign substance of 5 ⁇ m is mixed in the driven body 10 is shown in the left figure of FIG.
  • the diagnostic device 50 obtains the average value of the estimated torque resistance values for each angular velocity, and obtains the graph in the center of FIG.
  • the vertical axis represents the estimated torque resistance value
  • the horizontal axis represents the angular velocity
  • the broken line represents the average value of the estimated torque resistance values for each angular velocity in the abnormal state.
  • the diagnostic device 50 uses a three-dimensional table of changes in the driven body 10 and the motor 20 in an abnormal state (see the figure on the left in FIG. 11) and an average value of estimated torque resistance values for each angular velocity in the abnormal state (see the figure on the left in FIG. 11).
  • the difference from the figure in the center of FIG. 11) is calculated.
  • This difference is a three-dimensional table (determination three-dimensional table) of the amount of change in the angles of the driven body 10 and the motor 20 in the abnormal state (see the figure on the right of FIG. 11). Since the characteristics for each angular velocity are subtracted from the three-dimensional table of the amount of change in the angle in the abnormal state, it is possible to determine at which angle the variation during one rotation is.
  • a three-dimensional table (see the figure on the right of FIG. 10) of the amount of change in the angles of the driven body 10 and the motor 20 in the normal state thus obtained, and the change in the angles of the driven body 10 and the motor 20 in the abnormal state.
  • the presence or absence of an abnormality at each angle can be determined by visually comparing the quantity with the three-dimensional table (see the figure on the right of FIG. 11) by the operator performing the diagnosis. Further, it is possible to detect the angle at which the abnormality may have occurred in the driven body 10 and identify the location where the abnormality has occurred and the cause of the abnormality.
  • the diagnostic apparatus, diagnostic method, and diagnostic program described in each of the above-described embodiments are grasped as follows, for example.
  • the diagnostic device (50) according to the present disclosure is a diagnostic device for diagnosing a driven body (10) having a rotating shaft, and the driven body is rotated by being driven by an external motor (20). Based on the actual operation data obtained by driving the driven body with the motor, the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the angle, the angular speed, and the estimated torque resistance value are three-dimensional.
  • a three-dimensional table of the driven body and the motor which is a table, is obtained, and a three-dimensional table of the reference state, which is a three-dimensional table of the angle, the angular speed, and the estimated torque resistance value of the reference state, is obtained.
  • a three-dimensional table for determination is calculated from the difference between the three-dimensional table and the three-dimensional table in the reference state.
  • the diagnostic apparatus uses a three-dimensional table when diagnosing the soundness of the driven body, it is possible to perform a diagnosis with higher accuracy than the diagnosis in two dimensions. Further, in the diagnostic apparatus according to the present disclosure, since the angle and the angular velocity can be obtained from the three-dimensional table, not only the presence or absence of the abnormality but also the angle and the angular velocity at which the abnormality may have occurred can be obtained. , Can contribute to the identification of the location of the abnormality and the cause of the abnormality.
  • the diagnostic device does not require work by a skilled worker in diagnosing the soundness of the driven body that has a rotating shaft and is rotated by an external motor. Therefore, the soundness diagnosis / inspection of the driven body is performed.
  • the reference state indicates a reference state used for diagnosing an abnormality in the three-dimensional table based on actual operation data
  • the three-dimensional table in the reference state is, for example, a three-dimensional table having only a motor, the day before. It is a three-dimensional table of the driven body and the motor of the above.
  • the diagnostic apparatus distributes the threshold value of the estimated torque resistance value in the normal state based on the three-dimensional table in the normal state, which is a three-dimensional table of the angle, the angular velocity, and the estimated torque resistance value in the normal state that is not in the abnormal state.
  • a predetermined threshold distribution is used, the three-dimensional table for determination obtained based on the actual operation data is compared with the predetermined threshold distribution, and the comparison result is output as a binary value.
  • the result of comparing the three-dimensional table for judgment based on the actual operation data with the predetermined threshold distribution which is the distribution of the thresholds based on the three-dimensional table in the normal state, can be obtained as two values. Not only the presence or absence of the abnormality, but also the angle and the angular velocity at which the abnormality may occur as compared with the normal state can be obtained, which can contribute to the identification of the cause of the abnormality.
  • the diagnostic apparatus according to the present disclosure can identify the cause of the abnormality with higher accuracy.
  • the three-dimensional table in the reference state has an angle and an angular speed obtained by calculating the motor estimated torque resistance value of the motor based on the motor operation data obtained by driving only the motor. It is a three-dimensional table of the motor which is a three-dimensional table with the estimated torque resistance value of the motor, and is the three-dimensional table for determination from the difference between the three-dimensional table of the driven body and the motor and the three-dimensional table of the motor. Calculate a three-dimensional table of the driven body.
  • the driven body cannot rotate by itself, and when diagnosing the soundness of the driven body by attaching and rotating the motor, the diagnostic device according to the present disclosure provides information on the motor. Only the excluded driven body can be diagnosed. According to the diagnostic apparatus according to the present disclosure, since a three-dimensional table of only the driven body can be obtained, not only the presence or absence of an abnormality in the driven body but also the angle and the angular velocity at which the abnormality may have occurred can be obtained. It can contribute to the identification of the cause of the abnormality.
  • the diagnostic apparatus calculates the average estimated torque resistance value of the driven body, which is the average value of the estimated torque resistance values of the driven body, for each of the angular velocities, and uses the three-dimensional table of the driven body.
  • a three-dimensional table of the amount of change in the driven body is calculated from the difference from the average estimated torque resistance value of the driven body.
  • the average estimated torque resistance value of the driven body for each angular velocity is calculated, and the three-dimensional table of the change amount of the driven body is calculated from the difference from the three-dimensional table of the driven body. Therefore, it is possible to obtain a three-dimensional table obtained by subtracting the characteristics for each angular velocity, and it is possible to evaluate the variation in the distribution on the three-dimensional table for each angle.
  • the three-dimensional table in the reference state is the driven body and the driven body based on the predetermined state operation data obtained by driving the driven body with the motor in the set predetermined state. It is a three-dimensional table of a driven body and a motor in a predetermined state, which is a three-dimensional table of an angle and an angular speed obtained by calculating an estimated torque resistance value in a predetermined state of a combination of motors and an estimated torque resistance value in the predetermined state.
  • the three-dimensional table of the amount of change of the driven body and the motor which is the three-dimensional table for determination, is obtained. calculate.
  • the driven body cannot rotate by itself, and is a reference state according to the diagnostic device according to the present disclosure when a motor is attached and rotated to make a diagnosis when diagnosing the soundness of the driven body.
  • Diagnosis can be made based on the amount of change in the estimated resistance torque value from the predetermined state, excluding the information in the three-dimensional table of the driven body and the motor in the predetermined state. According to the diagnostic device according to the present disclosure, it is possible to confirm how much the resistance torque has changed from the predetermined state (reference state), and it is possible to evaluate the presence or absence of an abnormality, the angle at which the abnormality may occur, and the angular velocity. In addition, it is possible to evaluate and judge the aged deterioration of the driven body.
  • the diagnostic apparatus calculates the average estimated torque resistance value of the driven body and the motor, which is the average value of the estimated torque resistance values of the driven body and the motor, for each of the angular velocities, and the driven body.
  • the three-dimensional table of the change amount of the driven body and the motor is calculated from the difference between the three-dimensional table of the change amount of the motor and the average estimated torque resistance value of the driven body and the motor.
  • the average estimated torque resistance value of the driven body and the motor for each angular velocity is calculated, and the three-dimensional change amount of the driven body and the motor is calculated from the difference from the three-dimensional table of the driven body and the motor. Since the table is calculated, it is possible to obtain a three-dimensional table obtained by subtracting the characteristics for each angular velocity, and it is possible to evaluate the variation in the distribution on the three-dimensional table for each angle.
  • the actual operation data is data obtained by acquiring the angle and the estimated torque resistance value for each of the angular velocities, and is among the estimated torque resistance values within the equidistant angle range.
  • the maximum value is extracted and calculated as the estimated torque resistance value.
  • the diagnostic apparatus since the maximum value of the estimated torque resistance values is extracted and calculated as the estimated torque resistance value, an abnormality in which the estimated torque resistance value locally increases, for example, foreign matter enters the bearing and becomes difficult to slip. It is possible to easily detect such abnormalities.
  • the actual operation data is data obtained by acquiring the angle and the estimated torque resistance value for each of the angular velocities, and is among the estimated torque resistance values within the equidistant angle range.
  • the minimum value is extracted and calculated as the estimated torque resistance value.
  • the diagnostic apparatus since the minimum value of the estimated torque resistance values is extracted and calculated as the estimated torque resistance value, an abnormality in which the estimated torque resistance value is locally reduced, for example, oil enters the bearing and becomes slippery. It is possible to easily detect such abnormalities.
  • the diagnostic method is a diagnostic method for diagnosing a driven body having a rotating shaft, in which the driven body is rotated by driving an external motor and the driven body is driven by the motor. Based on the actual operation data obtained, the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the driven body and the motor which are a three-dimensional table of the angle, the angular speed, and the estimated torque resistance value.
  • a step of obtaining a three-dimensional table a step of obtaining a reference state three-dimensional table which is a three-dimensional table of a reference state angle, an angular speed, and an estimated torque resistance value, and a three-dimensional table of the driven body and the motor and the reference. It has a step of calculating a three-dimensional table for determination from the difference from the three-dimensional table of the state.
  • the three-dimensional table in the reference state has an angle and an angular speed obtained by calculating the motor estimated torque resistance value of the motor based on the motor operation data obtained by driving only the motor. It is a three-dimensional table of the motor which is a three-dimensional table with the estimated torque resistance value of the motor, and is the three-dimensional table for determination from the difference between the three-dimensional table of the driven body and the motor and the three-dimensional table of the motor. It has a step of calculating a three-dimensional table of a driven body.
  • the three-dimensional table in the reference state is the driven body and the driven body based on the predetermined state operation data obtained by driving the driven body with the motor in the set predetermined state. It is a three-dimensional table of a driven body and a motor in a predetermined state, which is a three-dimensional table of an angle and an angular speed obtained by calculating an estimated torque resistance value in a predetermined state of a combination of motors and an estimated torque resistance value in the predetermined state.
  • the three-dimensional table of the amount of change of the driven body and the motor which is the three-dimensional table for determination, is obtained. It has a calculation process.
  • the diagnostic program according to the present disclosure is a diagnostic program for diagnosing a driven body having a rotating shaft.
  • the driven body is rotated by driving an external motor, and the driven body is driven by the motor.
  • the estimated torque resistance value of the combination of the driven body and the motor is calculated, and the driven body and the motor which are a three-dimensional table of the angle, the angular speed, and the estimated torque resistance value.
  • a step to obtain a three-dimensional table a step to obtain a reference state three-dimensional table which is a three-dimensional table of a reference state angle, an angular speed, and an estimated torque resistance value, and a three-dimensional table of the driven body and the motor and the reference. It has a step of calculating a three-dimensional table for determination from the difference from the three-dimensional table of the state.
  • the three-dimensional table in the reference state calculates the motor estimated torque resistance value of the motor based on the motor operation data obtained by driving only the motor, and the angle and angular speed obtained. It is a 3D table of the motor which is a 3D table with the estimated torque resistance value of the motor, and is a 3D table for determination from the difference between the 3D table of the driven body and the motor and the 3D table of the motor. It has a step of calculating a three-dimensional table of the drive body.
  • the three-dimensional table in the reference state is the driven body and the driven body based on the predetermined state operation data obtained by driving the driven body with the motor in the set predetermined state. It is a three-dimensional table of a driven body and a motor in a predetermined state, which is a three-dimensional table of an angle and an angular speed obtained by calculating an estimated torque resistance value in a predetermined state of a combination of motors and an estimated torque resistance value in the predetermined state.
  • the three-dimensional table of the amount of change of the driven body and the motor which is the three-dimensional table for determination, is obtained. Has a step to calculate.
  • the specific configuration is not limited to these embodiments.
  • the maximum value of the estimated torque resistance values within the equidistant angle range is extracted, but the minimum value may be extracted instead of the maximum value.
  • the minimum value among the estimated torque resistance values is extracted and calculated as the estimated torque resistance value. Therefore, it is possible to easily detect an abnormality in which the estimated torque resistance value is locally reduced, for example, an abnormality in which oil enters the bearing of the driven body 10 and becomes slippery.
  • the calculated three-dimensional table of the amount of change is compared with the average value of the estimated torque resistance values at each angular velocity to evaluate the variation in the amount of change for each angle, but it is calculated.
  • the variation in the amount of change for each angle may be evaluated by comparing the three-dimensional table of the driven body 10 with the average value of the estimated torque resistance values at each angular velocity. In this case, it is possible to evaluate the variation in the amount of change for each angle with high accuracy limited to the driven body 10, and contribute to the identification of the location where the abnormality occurs and the cause of the abnormality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

被駆動体の異常の有無に加えて異常の発生状況を判定可能な診断装置、診断方法および診断プログラムを提供することを目的とする。 回転軸を有する被駆動体(10)の診断を行う診断装置(50)であって、被駆動体(10)は、外付けのモータ(20)の駆動により回転し、被駆動体(10)をモータ(20)で駆動させて得られる実運転データに基づき、被駆動体(10)とモータ(20)の組み合わせの推定トルク抵抗値を算出し、角度と角速度と推定トルク抵抗値との3次元テーブルである被駆動体(10)及びモータ(20)の3次元テーブルを求め、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求め、被駆動体(10)及びモータ(20)の3次元テーブルと基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する。

Description

診断装置、診断方法および診断プログラム
 本開示は、回転軸を有する被駆動体の診断装置、診断方法および診断プログラムに関するものである。
 ロケットエンジンのターボポンプや工作機械などの回転軸を有する被駆動体は、その機械としての健全性を評価するため適時に健全性診断が行われる。被駆動体は、それ自身のみでは駆動できないことから、診断する際は作業熟練者による手作業にて回転が行われ、異常の有無が診断されている。
 しかし、経験に基づく診断では、その作業者の感覚や熟練度に頼ることとなり、一定の品質を保つことが困難である。
 そこで、特許文献1に開示があるように、被駆動体をモータで駆動することが検討されている。特許文献1には、モータの回転速度が予め定められた基準速度を上回り、かつ、推定されたモータの外乱トルクが予め定められた基準トルクを下回ると、異常が発生したと判断することが開示されている。
特開2007-219991号公報
 しかしながら、上記特許文献1に開示された発明では、モータの回転速度と外乱トルクの2変数により診断されるため、その診断では診断対象である被駆動体の異常の有無の判断にとどまる、という問題があった。
 本開示は、このような事情に鑑みてなされたものであって、被駆動体の異常の有無に加えて異常の発生状況を判定可能な診断装置、診断方法および診断プログラムを提供することを目的とする。
 上記課題を解決するために、本開示の診断装置は、回転軸を有する被駆動体の診断を行う診断装置であって、前記被駆動体は、外付けのモータの駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求め、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求め、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する。
 上記課題を解決するために、本開示の診断方法は、回転軸を有する被駆動体の診断を行う診断方法であって、前記被駆動体は、外付けのモータの駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求める工程と、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求める工程と、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する工程とを有する。
 上記課題を解決するために、本開示の診断プログラムは、回転軸を有する被駆動体の診断を行う診断プログラムであって、前記被駆動体は、外付けのモータの駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求めるステップと、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求めるステップと、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出するステップとを有する。
 本開示によれば、3次元テーブルを用いるので、異常の有無に加えて異常の発生状況を判定することができる。
 また、モータを用いて被駆動体の診断を行うので、作業熟練者による手作業を必要とせず、検査の均質化を図ることができる。
本開示の幾つかの実施形態における診断装置の制御を示すフローチャートである。 本開示の幾つかの実施形態における診断装置の角速度ごとの角度及びトルクのタイムチャートを示す図である。 本開示の幾つかの実施形態における診断装置の角速度ごとの角度と推定トルク抵抗値の関係を示す図である。 本開示の幾つかの実施形態における診断装置の角度と角速度と推定トルク抵抗値の3次元テーブルの図である。 本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブルの図である。 本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブルの図である。 本開示の幾つかの実施形態における診断装置が取得する異常分布の図である。 本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブルの図である。 本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブルの図である。 本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブル及び推定トルク抵抗値の平均値の図である。 本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブル及び推定トルク抵抗値の平均値の図である。 本開示の幾つかの実施形態における診断装置の概略構成図である。
 以下に、本開示に係る診断装置、診断方法および診断プログラムの一実施形態について、図面を参照して説明する。
 図12には、本開示の幾つかの実施形態に係る診断装置の概略構成が図に示されている。
 本開示に係る診断装置50は、回転軸を有する被駆動体10と、被駆動体10を回転させる外付けのモータ20と、の組み合わせに対して適用される。
 被駆動体10は、それ自身のみでは回転不可である。被駆動体10としては、例えばロケットエンジンのターボポンプや、工作機械などが挙げられるが、回転軸を有するものであれば、その種類は問わない。
 モータ20は、診断装置50による診断を行う場合に被駆動体10に外付けされるモータ20である。診断時において、モータ20の駆動により被駆動体10は回転する。
 診断装置50は、例えば被駆動体10の健全性を診断する装置であり、モータ20から運転データを取得して診断を行う。
 診断装置50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な非一時的な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 図1には、本開示の幾つかの実施形態に係る診断装置の制御がフローチャートに示されている。
 診断装置50は、被駆動体10の診断を始めると、被駆動体10をモータ20で駆動させて実運転データを取得する(S101)。実運転データは、複数の速度条件で試験を実施して取得される。取得される実運転データは、被駆動体10及びモータ20の特性を含む。
 図2には、本開示の幾つかの実施形態における診断装置の角速度ごとの角度及び推定トルク抵抗値のタイムチャートが図に示されている。
 図2に示されるように、診断装置50は、被駆動体10とモータ20の組み合わせについて一定の角速度における角度及びトルクのタイムチャートを取得する。図2のグラフにおいて、縦軸は角度またはトルク、横軸は時間であり、一点鎖線が角度のタイムチャート、実線がトルクのタイムチャートを示す。角度は、時間に比例するように右肩上がりのほぼ直線を示す。トルクは、初めに急激に増加し、ピーク値を示した後減少してその後一定の範囲に収束する。
 本実施形態の診断装置50は、角速度1deg/sから600deg/sまで1deg/sずつ計600パターンの試験を行い、実運転データを時系列データとして取得するものとする。なお、診断装置50が取得する実運転データの角速度の値や、角速度の区切りは一例である。例えば、実運転データの角速度の値は、被駆動体10の駆動角速度範囲が反映されるとしてもよい。また例えば角速度の区切りは異常状態における分布が判別可能な分解能であればよく、例えば5deg/sずつなどであってもよい。
 次に図1のステップS102において、診断装置50は各角速度における推定トルク抵抗値を算出する。
 抵抗トルクの推定については、外乱オブザーバにて推定を行う、トルクセンサを用いるなど、様々な方法を採り得るが、その方法については問わない。また、推定トルク抵抗値の算出は、起動直後などを除く被駆動体10及びモータ20の速度が安定した状態で行われるものとする。
 図3には、本開示の幾つかの実施形態における診断装置の角速度ごとの角度と推定トルク抵抗値の関係が図に示されている。
 図3のグラフにおいて、縦軸は推定トルク抵抗値、横軸は角度である。本実施形態の診断装置50は、前述したように角速度1deg/sから600deg/sまで1deg/sずつ計600パターンの試験を行い取得した実運転データから、各角速度における推定トルク抵抗値を推定して推定トルク抵抗値テーブルを取得する。
 次に図1のステップS103において、診断装置50は等間隔化した角度範囲内の推定トルク抵抗値のうち、最大値を抽出する。
 診断装置50は、各角速度の図3の推定トルク抵抗値テーブルに対し、例えば1degずつに等間隔化し、それぞれの角度範囲内における推定トルク抵抗値の最大値を各角度範囲ごとに抽出する。ここで、本実施形態では角度範囲を1degとしたが、角度範囲は異常状態における分布が判別可能な分解能であればよく、例えば5degずつなどであってもよい。
 次に図1のステップS104において、診断装置50は角度と角速度と推定トルク抵抗値の3次元テーブルを作成する。
 診断装置50は、円柱座標系の半径方向に角速度(角速度指令(対数))、角度方向(周方向)に等間隔化した角度、軸方向(高さ方向)に推定トルク抵抗値(最大値)をとり、3次元テーブルを作成する。
 図4には、本開示の幾つかの実施形態における診断装置の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図4に示されるように、角度と角速度と推定トルク抵抗値の3次元テーブルは、淡色であるほど推定トルク抵抗値が正方向に大きく、濃色であるほど推定トルク抵抗値が負方向に大きいことを示す。角度と角速度と推定トルク抵抗値の3次元テーブルは、角度および角速度を入力とし、推定トルク抵抗値を出力とできることから、推定トルク抵抗値の分布であるともいえる。
 次に図1のステップS105において、診断装置50はステップS104で取得した3次元テーブルと基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する。
 図5には、本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 本開示における通常状態とは、異常が発生している異常状態を除く、通常時の状態であるとする。
 図5の左の図は、被駆動体10及びモータ20の3次元テーブルを示す。図5の中央の図は、後述する基準状態であるモータ20の3次元テーブルを示す。図5の右の図は、被駆動体10のみの3次元テーブルを示す。
 診断装置50は、予め基準状態の3次元テーブルを取得しておく。本実施形態の基準状態は、被駆動体10の診断において被駆動体10を駆動し回転させるモータ20のみを駆動させた状態であるとする。診断装置50は、モータ20のみを駆動させて得られるモータ運転データに基づきモータ20のみの推定トルク抵抗値であるモータ推定トルク抵抗値を算出し、角度と角速度とモータ推定トルク抵抗値との3次元テーブルであるモータ20の3次元テーブルを本実施形態における基準状態の3次元テーブルとして取得しておく。
 診断装置50は、図1のステップS104で取得した3次元テーブル(図5の左の図参照)と、予め取得しておいたモータ20の3次元テーブル(図5の中央の図参照)との差分を算出する。この差分が、診断装置50の診断対象である被駆動体10のみの3次元テーブル(判定用3次元テーブル)(図5の右の図参照)である。
 図6には、本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図6の左の図は、異常状態の被駆動体10及びモータ20の3次元テーブルを示す。図6の中央の図は、異常状態の基準状態であるモータ20の3次元テーブルを示す。図6の右の図は、異常状態の被駆動体10のみの3次元テーブルを示す。
 診断装置50は、診断を行う場合、図1のステップS101乃至S105の処理を行い、診断対象である被駆動体10のみの3次元テーブルを取得する。
 例えば、被駆動体10に5μmの異物が混入した場合、すなわち異常状態の被駆動体10及びモータ20の3次元テーブルが図6の左の図に示されている。
 診断装置50は、異常状態の被駆動体10及びモータ20の3次元テーブル(図6の左の図参照)と、予め取得しておいたモータ20の3次元テーブル(図6の中央の図参照)との差分を算出する。この差分が、異常状態における診断装置50の診断対象である被駆動体10のみの3次元テーブル(判定用3次元テーブル)(図6の右の図参照)である。
 求められた通常状態における被駆動体10のみの3次元テーブル(図5の右の図参照)と、異常状態における診断装置50の診断対象である被駆動体10のみの3次元テーブル(図6の右の図参照)とを診断を行う作業者が目視で比較することにより、異常の有無を判定可能である。また被駆動体10における異常が発生している可能性のある角度や角速度を検知し、異常発生個所および異常原因の特定を行うことができる。
 さらに、明確な診断結果を必要とする場合は、ステップS106へ遷移する。
 ステップS106において、診断装置50は判定用3次元テーブルである被駆動体10のみの3次元テーブルと、後述する所定の閾値分布とを比較し、異常分布を取得する。
 診断装置50は、予め所定の閾値分布を取得しておく。
 診断装置50は、異常状態ではなく正常な状態である正常状態(例えば被駆動体10が初期状態(新品)である場合)の角度と角速度と推定トルク抵抗値との3次元テーブルである被駆動体10の正常状態の3次元テーブルを取得する。この被駆動体10の正常状態の3次元テーブルに基づき、正常状態の推定トルク抵抗値の閾値の分布を、所定の閾値分布として設定する。
 診断装置50は、被駆動体10のみの3次元テーブルと、所定の閾値分布とを比較し、異常分布を取得する。このように、被駆動体10のみの3次元テーブルを閾値と比較することにより、正常または異常の2値にて異常分布が出力される。正常及び異常を0または1の2値で出力してもよい。
 図7には、本開示の幾つかの実施形態における診断装置が取得する異常分布が図に示されている。
 図7では、円の半径方向が角速度を示し、円の角度方向(周方向)が角度を示し、角度範囲を10degとして分布を取得している。図7において、白は推定トルク抵抗値が正常である(異常がない)ことを表し、黒は推定トルク抵抗値が異常であることを表す。このように、異常分布を取得することで、被駆動体10において異常が発生している角度及び角速度を一覧することができ、精度の高い異常原因の特定を行うことができる。
 上記実施形態では、基準状態の3次元テーブルをモータ20の3次元テーブルとする場合について説明したが、本実施形態では、基準状態の3次元テーブルを設定された所定の状態である所定状態の被駆動体10とモータ20の3次元テーブルとする場合について説明する。以下、本実施形態に係る診断装置50について、前述の実施形態と異なる点について主に説明する。
 図8には、本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図8の左の図は、診断装置50による診断時点の被駆動体10及びモータ20の3次元テーブルを示す。図8の中央の図は、後述する基準状態である所定状態の被駆動体10とモータ20の3次元テーブルを示す。図8の右の図は、被駆動体10及びモータ20の変化量の3次元テーブルを示す。
 診断装置50は、予め本実施形態における基準状態の3次元テーブルを取得しておく。本実施形態の基準状態は、設定された所定の状態である所定状態を示す。具体的には、例えば前述した異常状態ではない正常状態時や、診断の基準となる設定された所定の時点や診断時の前日の時点の状態などである。本実施形態では、設定された所定の状態は、被駆動体10及びモータ20の異常状態ではない正常状態であるとする。
 診断装置50は、設定された所定の状態、すなわち正常状態の時点において被駆動体10をモータ20で駆動されて得られる所定状態運転データに基づき被駆動体10とモータ20の組み合わせの所定状態の推定トルク抵抗値を算出し、角度と角速度と所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体10及びモータ20の3次元テーブルを本実施形態における基準状態の3次元テーブルとして取得しておく。
 本実施形態において診断装置50は図1のステップS101乃至S105の処理を行い、変化量の3次元テーブルを取得する。
 診断装置50は、図1のステップS104で取得した3次元テーブル(図8の左の図参照)と、予め取得しておいた所定状態の被駆動体10及びモータ20の3次元テーブル(図8の中央の図参照)との差分を算出する。この差分が、被駆動体10及びモータ20の設定された所定の状態(本実施形態の場合、正常状態)からの変化量の3次元テーブル(判定用3次元テーブル)(図8の右の図参照)である。この変化量の3次元テーブルから、設定された所定の状態、例えば正常状態からの変化を把握し、前回からの変化量(この場合経年劣化)を評価することが可能である。
 図9には、本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図9の左の図は、異常状態の被駆動体10及びモータ20の3次元テーブルを示す。図9の中央の図は、異常状態の基準状態である所定状態の被駆動体10とモータ20の3次元テーブルを示す。図9の右の図は、異常状態の被駆動体10及びモータ20の変化量の3次元テーブルを示す。
 診断装置50は、診断を行う場合、図1のステップS101乃至S105の処理を行い、変化量の3次元テーブルを取得する。
 例えば、被駆動体10に5μmの異物が混入した場合、すなわち異常状態の被駆動体10及びモータ20の3次元テーブルが図9の左の図に示されている。
 診断装置50は、異常状態の被駆動体10及びモータ20の3次元テーブル(図9の左の図参照)と、予め取得しておいた所定状態の被駆動体10及びモータ20の3次元テーブル(図9の中央の図参照)との差分を算出する。この差分が、異常状態における被駆動体10及びモータ20の設定された所定の状態(本実施形態の場合、正常状態)からの変化量の3次元テーブル(判定用3次元テーブル)(図9の右の図参照)である。
 求められた通常状態における被駆動体10及びモータ20の変化量の3次元テーブル(図8の右の図参照)と、異常状態における被駆動体10及びモータ20の変化量の3次元テーブル(図9の右の図参照)とを、診断を行う作業者が目視で比較することにより、経年劣化とは異なる異常の有無を判定可能である。また被駆動体10における異常が発生している可能性のある角度や角速度を検知し、異常発生個所および異常原因の特定を行うことができる。
 本実施形態では、設定された所定の状態を正常状態であるとしたが、前日や1か月前など時間軸におけるある時点を所定状態としてもよい。ある時点を所定状態とすることで、被駆動体10及びモータ20の経年劣化をより詳細に診断することが可能である。
 さらに、算出された変化量の3次元テーブルについて、各角速度における推定トルク抵抗値の平均値と比較することで、角度毎の変化量のばらつきを評価することができる。
 図10には、本開示の幾つかの実施形態における診断装置の通常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図10の左の図は、被駆動体10及びモータ20の変化量の3次元テーブルを示す。図10の中央の図は、各角速度毎の推定トルク抵抗値の平均値を示す。図10の右の図は、被駆動体10及びモータ20の角度の変化量の3次元テーブルを示す。
 本実施形態において診断装置50は図1のステップS101乃至S104の処理を行い、被駆動体10及びモータ20の変化量の3次元テーブル(図10の左の図参照)を取得する。
 次に診断装置50は、各角速度毎に推定トルク抵抗値の平均値を求め、図10の中央の図のグラフを求める。図10の中央の図において、縦軸は推定トルク抵抗値、横軸は角速度であり、実線は通常状態における各角速度毎の推定トルク抵抗値の平均値を表す。
 次に診断装置50は、被駆動体10及びモータ20の変化量の3次元テーブル(図10の左の図参照)と、通常状態における各角速度毎の推定トルク抵抗値の平均値(図10の中央の図参照)との差分を算出する。この差分が、被駆動体10及びモータ20の角度の変化量の3次元テーブル(判定用3次元テーブル)(図10の右の図参照)である。この角度の変化量の3次元テーブルは、角速度毎の特性が差し引かれていることから、1回転中のばらつきがどの角度にあるかを判定することができる。
 図11には、本開示の幾つかの実施形態における診断装置の異常状態の角度と角速度と推定トルク抵抗値の3次元テーブルが図に示されている。
 図11の左の図は、異常状態の被駆動体10及びモータ20の変化量の3次元テーブルを示す。図11の中央の図は、異常状態の各角速度毎の推定トルク抵抗値の平均値を示す。図11の右の図は、異常状態の被駆動体10及びモータ20の角度の変化量の3次元テーブルを示す。
 本実施形態において診断装置50は図1のステップS101乃至S104の処理を行い、異常状態の被駆動体10及びモータ20の変化量の3次元テーブル(図11の左の図参照)を取得する。
 例えば、被駆動体10に5μmの異物が混入した場合、すなわち異常状態の被駆動体10及びモータ20の変化量の3次元テーブルが図11の左の図に示されている。
 次に診断装置50は、各角速度毎に推定トルク抵抗値の平均値を求め、図11の中央の図のグラフを求める。図11の中央の図において、縦軸は推定トルク抵抗値、横軸は角速度であり、破線は異常状態における各角速度毎の推定トルク抵抗値の平均値を表す。
 次に診断装置50は、異常状態の被駆動体10及びモータ20の変化量の3次元テーブル(図11の左の図参照)と、異常状態における各角速度毎の推定トルク抵抗値の平均値(図11の中央の図参照)との差分を算出する。この差分が、異常状態の被駆動体10及びモータ20の角度の変化量の3次元テーブル(判定用3次元テーブル)(図11の右の図参照)である。この異常状態の角度の変化量の3次元テーブルは、角速度毎の特性が差し引かれていることから、1回転中のばらつきがどの角度にあるかを判定することができる。
 このように求められた通常状態における被駆動体10及びモータ20の角度の変化量の3次元テーブル(図10の右の図参照)と、異常状態における被駆動体10及びモータ20の角度の変化量の3次元テーブル(図11の右の図参照)とを、診断を行う作業者が目視で比較することにより、角度毎の異常の有無を判定可能である。また被駆動体10における異常が発生している可能性のある角度を検知し、異常発生個所および異常原因の特定を行うことができる。
 以上説明した各実施形態に記載の診断装置、診断方法および診断プログラムは例えば以下のように把握される。
 本開示に係る診断装置(50)は、回転軸を有する被駆動体(10)の診断を行う診断装置であって、前記被駆動体は、外付けのモータ(20)の駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求め、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求め、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する。
 本開示に係る診断装置は、被駆動体の健全性の診断を行う場合において3次元テーブルを用いるため、2次元での診断よりもより精度の高い診断を行うことができる。
 また、本開示に係る診断装置では、3次元テーブルから角度及び角速度をそれぞれ得ることができるため、異常の有無だけでなく、異常が発生している可能性のある角度及び角速度を得ることができ、異常発生個所および異常原因の特定に寄与することができる。
 本開示に係る診断装置では、回転軸を有し外付けのモータで回転する被駆動体に対する健全性の診断において、作業熟練者による作業を必要としないため、被駆動体の健全性診断・検査の均質化を図ることができる。
 ここで、基準状態とは、実運転データに基づく3次元テーブルの異常を診断するために用いられる基準となる状態を示し、基準状態の3次元テーブルとは、例えばモータのみの3次元テーブル、前日の被駆動体及びモータの3次元テーブルなどである。
 また本開示に係る診断装置は、異常状態でない正常状態の角度と角速度と推定トルク抵抗値との3次元テーブルである正常状態の3次元テーブルに基づく正常状態の推定トルク抵抗値の閾値の分布を所定の閾値分布とし、前記実運転データに基づき求められた前記判定用3次元テーブルと前記所定の閾値分布とを比較し、比較結果を2値出力する。
 本開示に係る診断装置では、実運転データに基づく判定用3次元テーブルを、正常状態の3次元テーブルに基づく閾値の分布である所定の閾値分布と比較した結果を2値で得られるため、異常の有無だけでなく、正常状態と比較して異常が発生している可能性のある角度及び角速度が得られ、異常原因の特定に寄与することができる。運転データに基づく判定用3次元テーブルのみを取得する場合と比べて、本開示に係る診断装置ではさらに精度の高い異常原因の特定を行うことができる。
 また本開示に係る診断装置は、前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出して求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出する。
 被駆動体が自身だけでは回転することができず、被駆動体の健全性の診断を行う場合にモータを取り付け回転させて診断する場合に、本開示に係る診断装置によればモータの情報を除外した被駆動体のみの診断を行うことができる。
 本開示に係る診断装置によれば被駆動体のみの3次元テーブルが得られるため、被駆動体の異常の有無だけでなく、異常が発生している可能性のある角度及び角速度が得られ、異常原因の特定に寄与することができる。
 また本開示に係る診断装置は、各前記角速度ごとに前記被駆動体の推定トルク抵抗値の平均値である被駆動体の平均推定トルク抵抗値を算出し、前記被駆動体の3次元テーブルと前記被駆動体の平均推定トルク抵抗値との差分から被駆動体の変化量の3次元テーブルを算出する。
 本開示に係る診断装置によれば各角速度ごとの被駆動体の平均推定トルク抵抗値を算出して被駆動体の3次元テーブルとの差分から被駆動体の変化量の3次元テーブルを算出するため、角速度ごとの特性を差し引いた3次元テーブルを得ることができ、角度ごとの3次元テーブル上の分布のばらつきを評価することが可能となる。
 また本開示に係る診断装置は、前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出する。
 被駆動体が自身だけでは回転することができず、被駆動体の健全性の診断を行う場合にモータを取り付け回転させて診断する場合に、本開示に係る診断装置によれば基準状態である所定の状態における被駆動体とモータの3次元テーブルの情報を除外した、所定状態からの抵抗トルク推定値の変化量に基づく診断を行うことができる。
 本開示に係る診断装置によれば所定状態(基準状態)からどのくらい抵抗トルクが変化したかを確認することができ、異常の有無、異常が発生している可能性のある角度及び角速度の評価に加えて、被駆動体の経年劣化についても評価・判断することができる。
 また本開示に係る診断装置は、各前記角速度ごとに前記被駆動体及び前記モータの推定トルク抵抗値の平均値である被駆動体及びモータの平均推定トルク抵抗値を算出し、前記被駆動体及びモータの変化量の3次元テーブルと前記被駆動体及びモータの平均推定トルク抵抗値との差分から被駆動体及びモータの変化量の3次元テーブルを算出する。
 本開示に係る診断装置では各角速度ごとの被駆動体及びモータの平均推定トルク抵抗値を算出して被駆動体及びモータの3次元テーブルとの差分から被駆動体及びモータの変化量の3次元テーブルを算出するため、角速度ごとの特性を差し引いた3次元テーブルを得ることができ、角度ごとの3次元テーブル上の分布のばらつきを評価することが可能となる。
 また本開示に係る診断装置では、前記実運転データは、各前記角速度ごとに前記角度及び前記推定トルク抵抗値を取得したデータであり、等間隔化した角度範囲内の前記推定トルク抵抗値のうち最大値が抽出されて前記推定トルク抵抗値として算出される。
 本開示に係る診断装置では推定トルク抵抗値のうち最大値が抽出されて推定トルク抵抗値として算出されるため、推定トルク抵抗値が局所的に大きくなる異常、例えば軸受に異物が入り滑りにくくなるなどの異常を検知しやすくすることができる。
 また本開示に係る診断装置では、前記実運転データは、各前記角速度ごとに前記角度及び前記推定トルク抵抗値を取得したデータであり、等間隔化した角度範囲内の前記推定トルク抵抗値のうち最小値が抽出されて前記推定トルク抵抗値として算出される。
 本開示に係る診断装置では推定トルク抵抗値のうち最小値が抽出されて推定トルク抵抗値として算出されるため、推定トルク抵抗値が局所的に小さくなる異常、例えば軸受に油が入り滑りやすくなるなどの異常を検知しやすくすることができる。
 本開示に係る診断方法は、回転軸を有する被駆動体の診断を行う診断方法であって、前記被駆動体は、外付けのモータの駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求める工程と、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求める工程と、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する工程とを有する。
 また本開示に係る診断方法は、前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出して求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出する工程を有する。
 また本開示に係る診断方法は、前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出する工程を備える。
 本開示に係る診断プログラムは、回転軸を有する被駆動体の診断を行う診断プログラムであって、前記被駆動体は、外付けのモータの駆動により回転し、前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求めるステップと、基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求めるステップと、前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出するステップとを有する。
 また本開示に係る診断プログラムは、前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出し求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出するステップを有する。
 また本開示に係る診断プログラムは、前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出するステップを有する。
 以上、本開示の幾つかの実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではない。
 例えば、上述した各実施形態においては等間隔化した角度範囲内の推定トルク抵抗値のうち最大値を抽出するとしたが、最大値に代えて最小値を抽出するとしてもよい。最小値を抽出した場合は、推定トルク抵抗値のうち最小値が抽出されて推定トルク抵抗値として算出される。そのため、推定トルク抵抗値が局所的に小さくなる異常、例えば被駆動体10における軸受に油が入り滑りやすくなるなどの異常を検知しやすくすることができる。
 また、上述した実施形態においては算出された変化量の3次元テーブルについて、各角速度における推定トルク抵抗値の平均値と比較することで、角度毎の変化量のばらつきを評価するとしたが、算出された被駆動体10の3次元テーブルについて、各角速度における推定トルク抵抗値の平均値と比較することで、角度毎の変化量のばらつきを評価するとしてもよい。この場合、被駆動体10に限定した精度の高い角度毎の変化量のばらつきを評価し、異常発生個所および異常原因の特定に寄与することができる。
10 被駆動体
20 モータ
50 診断装置
 

Claims (14)

  1.  回転軸を有する被駆動体の診断を行う診断装置であって、
     前記被駆動体は、外付けのモータの駆動により回転し、
     前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求め、
     基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求め、
     前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する診断装置。
  2.  異常状態でない正常状態の角度と角速度と推定トルク抵抗値との3次元テーブルである正常状態の3次元テーブルに基づく正常状態の推定トルク抵抗値の閾値の分布を所定の閾値分布とし、
     前記実運転データに基づき求められた前記判定用3次元テーブルと前記所定の閾値分布とを比較し、比較結果を2値出力する請求項1に記載の診断装置。
  3.  前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出して求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出する請求項1または請求項2に記載の診断装置。
  4.  各前記角速度ごとに前記被駆動体の推定トルク抵抗値の平均値である被駆動体の平均推定トルク抵抗値を算出し、
     前記被駆動体の3次元テーブルと前記被駆動体の平均推定トルク抵抗値との差分から被駆動体の変化量の3次元テーブルを算出する請求項3に記載の診断装置。
  5.  前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出する請求項1または請求項2に記載の診断装置。
  6.  各前記角速度ごとに前記被駆動体及び前記モータの推定トルク抵抗値の平均値である被駆動体及びモータの平均推定トルク抵抗値を算出し、
     前記被駆動体及びモータの変化量の3次元テーブルと前記被駆動体及びモータの平均推定トルク抵抗値との差分から被駆動体及びモータの変化量の3次元テーブルを算出する請求項5に記載の診断装置。
  7.  前記実運転データは、各前記角速度ごとに前記角度及び前記推定トルク抵抗値を取得したデータであり、
     等間隔化した角度範囲内の前記推定トルク抵抗値のうち最大値が抽出されて前記推定トルク抵抗値として算出される請求項1から請求項6のいずれか一項に記載の診断装置。
  8.  前記実運転データは、各前記角速度ごとに前記角度及び前記推定トルク抵抗値を取得したデータであり、
     等間隔化した角度範囲内の前記推定トルク抵抗値のうち最小値が抽出されて前記推定トルク抵抗値として算出される請求項1から請求項6のいずれか一項に記載の診断装置。
  9.  回転軸を有する被駆動体の診断を行う診断方法であって、
     前記被駆動体は、外付けのモータの駆動により回転し、
     前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求める工程と、
     基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求める工程と、
     前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出する工程とを有する診断方法。
  10.  前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出して求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出する工程を有する請求項9に記載の診断方法。
  11.  前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出する工程を備える請求項9に記載の診断方法。
  12.  回転軸を有する被駆動体の診断を行う診断プログラムであって、
     前記被駆動体は、外付けのモータの駆動により回転し、
     前記被駆動体を前記モータで駆動させて得られる実運転データに基づき、前記被駆動体と前記モータの組み合わせの推定トルク抵抗値を算出し、角度と角速度と前記推定トルク抵抗値との3次元テーブルである被駆動体及びモータの3次元テーブルを求めるステップと、
     基準状態の角度と角速度と推定トルク抵抗値との3次元テーブルである基準状態の3次元テーブルを求めるステップと、
     前記被駆動体及びモータの3次元テーブルと前記基準状態の3次元テーブルとの差分から判定用3次元テーブルを算出するステップとを有する診断プログラム。
  13.  前記基準状態の3次元テーブルは、前記モータのみを駆動させて得られるモータ運転データに基づき前記モータのモータ推定トルク抵抗値を算出し求められる角度と角速度と前記モータ推定トルク抵抗値との3次元テーブルであるモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記モータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体の3次元テーブルを算出するステップを有する請求項12に記載の診断プログラム。
  14.  前記基準状態の3次元テーブルは、設定された所定の状態において前記被駆動体を前記モータで駆動させて得られる所定状態運転データに基づき前記被駆動体と前記モータの組み合わせの所定状態の推定トルク抵抗値を算出して求められる角度と角速度と前記所定状態の推定トルク抵抗値との3次元テーブルである所定状態の被駆動体及びモータの3次元テーブルであり、
     前記被駆動体及びモータの3次元テーブルと前記所定状態の被駆動体及びモータの3次元テーブルとの差分から前記判定用3次元テーブルである被駆動体及びモータの変化量の3次元テーブルを算出するステップを有する請求項12に記載の診断プログラム。
PCT/JP2021/019494 2020-05-27 2021-05-24 診断装置、診断方法および診断プログラム WO2021241468A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,246 US20230204457A1 (en) 2020-05-27 2021-05-24 Diagnosis device, diagnosis method, and diagnosis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-092219 2020-05-27
JP2020092219A JP7423422B2 (ja) 2020-05-27 2020-05-27 診断装置、診断方法および診断プログラム

Publications (1)

Publication Number Publication Date
WO2021241468A1 true WO2021241468A1 (ja) 2021-12-02

Family

ID=78744490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019494 WO2021241468A1 (ja) 2020-05-27 2021-05-24 診断装置、診断方法および診断プログラム

Country Status (3)

Country Link
US (1) US20230204457A1 (ja)
JP (1) JP7423422B2 (ja)
WO (1) WO2021241468A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176977A (ja) * 1996-12-18 1998-06-30 Hitachi Powdered Metals Co Ltd 軸受用試験機
JP2005257416A (ja) * 2004-03-10 2005-09-22 Internatl Business Mach Corp <Ibm> 診断装置、検出装置、制御方法、検出方法、プログラム、及び記録媒体
CN201488848U (zh) * 2009-05-19 2010-05-26 北京鼎信合力数控成套设备有限公司 回转支承扭矩测试机
JP2016121956A (ja) * 2014-12-25 2016-07-07 株式会社ロボテック 転がり軸受のトルク測定装置
CN109059816A (zh) * 2018-06-08 2018-12-21 上海微小卫星工程中心 用于确定转动机构的周向磨损位置的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176977A (ja) * 1996-12-18 1998-06-30 Hitachi Powdered Metals Co Ltd 軸受用試験機
JP2005257416A (ja) * 2004-03-10 2005-09-22 Internatl Business Mach Corp <Ibm> 診断装置、検出装置、制御方法、検出方法、プログラム、及び記録媒体
CN201488848U (zh) * 2009-05-19 2010-05-26 北京鼎信合力数控成套设备有限公司 回转支承扭矩测试机
JP2016121956A (ja) * 2014-12-25 2016-07-07 株式会社ロボテック 転がり軸受のトルク測定装置
CN109059816A (zh) * 2018-06-08 2018-12-21 上海微小卫星工程中心 用于确定转动机构的周向磨损位置的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YEH, CHIH-JUNG ET AL.: "Development of a Test Bench for Tuning and Validating Electric Power Steering Control Method", PROCEEDINGS OF THE 2007 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, 9 September 2007 (2007-09-09), pages 618 - 622, XP031273644, DOI: 10.1109/VPPC.2007.4544197 *

Also Published As

Publication number Publication date
JP7423422B2 (ja) 2024-01-29
US20230204457A1 (en) 2023-06-29
JP2021188958A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
US10513001B2 (en) Bearing diagnostic device
DE102016106282B4 (de) Werkzeugmaschine mit der funktion zur untersuchung des verschlechterungszustands der spindel
JP6657256B2 (ja) 送り軸の異常診断方法及び異常診断装置
EP2083338B1 (de) Verfahren und Vorrichtung zum Überwachen einer Maschine
US10585416B2 (en) Abnormality diagnostic method and abnormality diagnostic device for feed axis
CN109083756B (zh) 一种发动机进气故障检测方法及装置
DE102016216304A1 (de) Lagerdiagnoseeinrichtung für eine Werkzeugmaschine
JP2008097363A (ja) 異常診断方法及びその装置
EP2131178A1 (de) Diagnoseverfahren für zumindest ein Kugellager, insbesondere für ein Schrägkugellager, korrespondierendes Diagnosesystem sowie Verwendung eines derartigen Diagnosesystems
DE102019110781B4 (de) Vorrichtung zur überwachung eines drehbaren elements
DE102016220497A1 (de) Hauptspindelfehlererfassungsvorrichtung für ein Maschinenwerkzeug und Verfahren zum Erfassen eines Hauptspindelfehlers
JP2019132773A (ja) 回転軸装置の診断装置
WO2021241468A1 (ja) 診断装置、診断方法および診断プログラム
KR20230114818A (ko) IoT 기반 공작기계의 지능형 모니터링 진단 방법 및 장치
KR20180008576A (ko) 고장 진단 장치 및 고장 진단 방법
JP6742205B2 (ja) 回転軸装置及び回転軸装置における軸受の異常診断方法
US11619922B2 (en) Numerical control system of machine tool
JP6848845B2 (ja) サーボモータの負荷状態診断装置及び負荷状態診断方法
JPH0731007Y2 (ja) 動力伝達監視装置
US11511416B2 (en) Method and apparatus for monitoring an acceleration of an axis of a multi-axis kinematic system
WO2023020698A1 (de) Verfahren und vorrichtung zur überwachung einer elektrischen maschine
CN104162749B (zh) 多滑铃高速球螺纹丝杆状态诊断方法及用于该方法的装置
EP3388810B1 (de) Verfahren sowie eine vorrichtung zur unwuchterkennung
CN111356963A (zh) 用于制造设施的状态监控的方法
JP2023106207A (ja) 工作機械の主軸診断方法及び主軸診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812856

Country of ref document: EP

Kind code of ref document: A1