WO2021241356A1 - Nanogap electrode structure, method for manufacturing same, analysis device and analysis method - Google Patents

Nanogap electrode structure, method for manufacturing same, analysis device and analysis method Download PDF

Info

Publication number
WO2021241356A1
WO2021241356A1 PCT/JP2021/018972 JP2021018972W WO2021241356A1 WO 2021241356 A1 WO2021241356 A1 WO 2021241356A1 JP 2021018972 W JP2021018972 W JP 2021018972W WO 2021241356 A1 WO2021241356 A1 WO 2021241356A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanopore
nanogap
electrode
upper region
insulating film
Prior art date
Application number
PCT/JP2021/018972
Other languages
French (fr)
Japanese (ja)
Inventor
修二 池田
直孝 橋本
Original Assignee
ティーイーアイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーイーアイソリューションズ株式会社 filed Critical ティーイーアイソリューションズ株式会社
Publication of WO2021241356A1 publication Critical patent/WO2021241356A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the present invention relates to a nanogap electrode structure, a manufacturing method thereof, an analyzer, and an analysis method.
  • nanogap electrodes having nanogap between facing electrodes have been attracting attention, and research on electronic devices and biodevices using nanogap electrodes has been actively conducted.
  • a single-stranded DNA deoxyribonucleic acid
  • the tunnel current flowing between electrodes when the base of the single-stranded DNA passes through the nanogap is measured and the current is measured.
  • An analyzer that identifies the bases constituting single-stranded DNA based on the value has been developed.
  • MMBJ mechanically controllable break junction
  • the MCBJ system as described in Patent Document 1 requires a mechanism for applying mechanical stress in order to form a nanogap, and it is desired to stably form a nanogap by a simple method. It is rare.
  • An object of the present invention is to provide a nanogap electrode structure capable of stably forming a nanogap by a simple method, and a method for manufacturing the same, an analyzer, and an analysis method.
  • the nanogap electrode structure of the present invention includes an insulating film having nanopores through which a sample passes, and a nanogap electrode provided on the insulating film and having a nanogap between a pair of electrode portions, and the pair of electrodes.
  • the portion has a nanopore upper region located above the nanopore and a connection region located above the insulating film and connected to the nanopore upper region, and the nanogap is provided in the nanopore upper region. Has been done.
  • the method for manufacturing a nanogap electrode structure of the present invention is a preparatory step for preparing a nanogap electrode provided on an insulating film having nanopores and composed of a pair of electrode portions having a nanopore upper region located above the nanopores. And a nanogap forming step of applying a voltage between the pair of electrode portions and forming a nanogap in the nanopore upper region by electromigration.
  • the analyzer of the present invention includes the nanogap electrode structure, a power supply that applies a voltage between the pair of electrode portions, a current meter that detects a tunnel current flowing between the pair of electrode portions, and the tunnel. It is equipped with an analysis unit that analyzes the sample based on the current value of the current.
  • the analysis method of the present invention comprises a first step of forming a nanogap in a nanogap electrode provided on an insulating film having nanopores and composed of a pair of electrode portions having a nanopore upper region located above the nanopores.
  • the second step is to detect the tunnel current when the sample passes through the nanogap and analyze the sample based on the current value of the tunnel current.
  • the present invention it is possible to stably form a nanogap in the nanopore upper region located above the nanopore in the pair of electrode portions by a simple method.
  • the sample to be analyzed can be efficiently guided to the nanogap.
  • FIG. 1 It is a perspective view which shows the appearance of the nanogap electrode structure which concerns on 1st Embodiment. It is an enlarged view around the nanopore shown by the symbol II in FIG. 1. It is an enlarged view around the nanopore of a nanogap electrode structure in a state where a pair of electrode portions is not cut. It is a top view for demonstrating the insulating film forming process. 4 is a cross-sectional view taken along the line BB of FIG. 4A. It is a top view for demonstrating the nanopore formation process.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG. 5A. It is a top view for demonstrating the nanopore embedding process.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 6A. It is a top view for demonstrating the electrode formation process.
  • FIG. 7 is a cross-sectional view taken along the line BB of FIG. 7A. It is a top view for demonstrating the flow path formation process.
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG. 8A. It is a top view for demonstrating the nanogap formation process.
  • 9 is a cross-sectional view taken along the line BB of FIG. 9A. It is explanatory drawing for demonstrating the analyzer which concerns on 1st Embodiment. It is an enlarged view around the nanopore of the nanogap electrode structure which concerns on 2nd Embodiment.
  • FIG. 1 It is an enlarged view which shows the state which the 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 2nd Embodiment are not cut. It is explanatory drawing for demonstrating the deformation example of a thin-walled portion. It is an enlarged view around the nanopore of the nanogap electrode structure which concerns on 3rd Embodiment. It is an enlarged view which shows the state which the 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 3rd Embodiment are not cut. It is sectional drawing of the nanogap electrode structure which concerns on 4th Embodiment. It is a top view for demonstrating the adhesive layer formation process.
  • FIG. 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 2nd Embodiment are not cut It is explanatory drawing for demonstrating the deformation example of a thin-walled portion. It is an enlarged view around the nanopore of the nanogap
  • FIG. 11 is a cross-sectional view taken along the line BB of FIG. 17A. It is a top view for demonstrating the electrode formation process.
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG. 18A. It is a top view for demonstrating the adhesive layer removal process.
  • 19A is a cross-sectional view taken along the line BB of FIG. 19A. It is a top view for demonstrating the adhesive layer formation process.
  • 20A is a cross-sectional view taken along the line BB of FIG. 20A. It is a top view for demonstrating the nanopore formation process.
  • FIG. 21 is a cross-sectional view taken along the line BB of FIG. 21A.
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG. 24A. It is a top view for demonstrating the 2nd layer formation process.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG. 25A. It is a top view for demonstrating the flow path formation process.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 26A.
  • FIG. 1 is a perspective view showing the appearance of the nanogap electrode structure 10 according to the first embodiment.
  • the X-axis, the Y-axis, and the Z-axis indicate the three axes of the Cartesian coordinate system.
  • the Z-axis direction is the direction of the thickness of the nanogap electrode structure 10 (thickness direction).
  • the Y-axis direction is the width direction (width direction) of the nanogap electrode structure 10.
  • the X-axis direction is the direction in which the current described later flows.
  • the positive direction of the Z axis is the upward direction, and the negative direction of the Z axis is the downward direction.
  • the upper surface is the front surface and the lower surface is the back surface. Viewing the nanogap electrode structure 10 from top to bottom is referred to as "planar view”.
  • the nanogap electrode structure 10 includes an insulating film 11 and a nanogap electrode 12 provided on the insulating film 11.
  • the insulating film 11 has a nanopore 13 through which the sample passes.
  • the nanogap electrode 12 is composed of a pair of electrode portions 14a and 14b to which a voltage is applied.
  • the pair of electrode portions 14a and 14b have a nanopore upper region 15 located above the nanopore 13 and a connection region 16 located above the insulating film 11 and connected to the nanopore upper region 15.
  • the nanopore upper region 15 is arranged so as to block a part of the nanopore 13, but it may be arranged so as to block the entire nanopore 13.
  • the nanopore upper region 15 is configured to induce disconnection due to electromigration by the current flowing when a voltage is applied between the pair of electrode portions 14a and 14b in a state of being connected to each other. There is. Due to the disconnection occurring in the nanopore upper region 15, a nanogap 17 connected to the nanopore 13 is formed between the pair of electrode portions 14a and 14b.
  • FIG. 1 shows a nanogap electrode structure 10 in which a nanogap 17 is formed between a pair of electrode portions 14a and 14b and the pair of electrode portions 14a and 14b are not connected to each other.
  • the pair of electrode portions 14a and 14b will be described separately, they will be described as the first electrode portion 14a and the second electrode portion 14b.
  • the configuration of the nanogap electrode structure 10 will be described in detail with reference to FIGS. 1 and 2.
  • the outer shape of the nanogap electrode structure 10 in a plan view is not particularly limited, and is a quadrangle in the present embodiment.
  • the insulating film 11 is formed of, for example, a SiN film (silicon nitride film), a SiO film (silicon oxide film), or the like.
  • the insulating film 11 is formed of a SiN film in this embodiment.
  • the thickness of the insulating film 11 is not particularly limited, and is 100 nm in this embodiment.
  • the insulating film 11 is provided on the substrate 18.
  • the substrate 18 is a silicon substrate having a plane orientation of (100) in the present embodiment, but the substrate 18 is not limited to this.
  • the thickness of the substrate 18 is not particularly limited, and is 775 ⁇ m in this embodiment.
  • a flow path 19 is provided inside the substrate 18. In FIG. 1, the flow path 19 is shown by a two-dot chain line. The flow path 19 penetrates the substrate 18 in the thickness direction and connects to the nanopore 13. Further, the flow path 19 is connected to the nanogap 17 via the nanopore 13.
  • the shape of the flow path 19 is not particularly limited and may be any shape. In the present embodiment, the shape of the flow path 19 is a quadrangular pyramid shape, and the area of the cross section parallel to the XY plane is increased from top to bottom.
  • the nanopore 13 penetrates the insulating film 11 in the thickness direction.
  • the diameter of the nanopore 13 is several nm to several hundred nm, and in this embodiment, it is 100 nm.
  • the nanogap electrode 12 has a single-layer structure in this example, but may have a laminated structure in which two or more layers are laminated. When the nanogap electrode 12 has a laminated structure, each layer may be formed of the same material or a different material. When each layer is formed of different materials, the above materials can be used in combination.
  • the outer shape of the first electrode portion 14a and the second electrode portion 14b in a plan view is not particularly limited, but the shape in which the nanopore upper region 15 is thinner than the connection region 16 is preferable, and the vicinity of the center of the nanopore upper region 15 is the thinnest.
  • the shape is particularly preferred.
  • the outer shapes of the first electrode portion 14a and the second electrode portion 14b in a plan view are areosceles triangles, respectively, and their apex angles are arranged near the center of the nanopore upper region 15. ..
  • the width (length in the Y-axis direction) of the nanogap electrode 12 becomes smaller toward the center of the nanopore 13.
  • the minimum width of the first electrode portion 14a and the second electrode portion 14b is, for example, 1 nm to 100 nm.
  • the first electrode portion 14a and the second electrode portion 14b are arranged in the X-axis direction with their apex angles facing each other. When a voltage is applied to the pair of electrode portions 14a and 14b, a current flows in the X-axis direction.
  • the thickness of the pair of electrode portions 14a and 14b is 30 nm in this embodiment.
  • FIG. 2 is an enlarged view of the vicinity of nanopore 13 indicated by reference numeral II in FIG.
  • the boundary between the nanopore upper region 15 and the connecting region 16 is shown by a alternate long and short dash line.
  • the nanopore upper region 15 and the connection region 16 are provided in the first electrode portion 14a and the second electrode portion 14b, respectively.
  • the nanopore upper region 15 is described separately in the following description, the nanopore upper region provided in the first electrode portion 14a is described as the first nanopore upper region 15a and is provided in the second electrode portion 14b.
  • the nanopore upper region is referred to as a second nanopore upper region 15b.
  • connection region 16 is described separately, the connection region provided in the first electrode portion 14a is described as the first connection region 16a, and the connection region provided in the second electrode portion 14b is referred to as the first connection region. It is described as the connection area 16b of 2.
  • the nanogap 17 is provided between the pair of electrode portions 14a and 14b.
  • the spacing between the nanogap 17 is about one atomic layer, for example, 0.1 nm to 0.3 nm.
  • the nanogap 17 is provided near the center of the nanopore upper region 15.
  • FIG. 3 shows a nanogap electrode structure 10 in a state where the pair of electrode portions 14a and 14b are not cut.
  • the nanopore upper region 15 is configured to induce disconnection due to electromigration by a current flowing when a voltage is applied between a pair of electrode portions 14a and 14b in a state of being connected to each other, and an EM disconnection inducing portion.
  • the minimum width (length in the Y-axis direction) of the nanopore upper region 15 is smaller than the minimum width of the connection region 16.
  • the thickness of the nanopore upper region 15 (length in the Z-axis direction) and the thickness of the connecting region 16 are the same.
  • the minimum value of the cross-sectional area of the nanopore upper region 15 is the cross-sectional area of the connection region 16. Less than the minimum. The smaller the cross-sectional area in the plane orthogonal to the direction in which the current flows between the pair of electrode portions 14a and 14b, the higher the current density and the more likely the disconnection due to electromigration occurs.
  • electromigration occurs due to the current flowing when a voltage is applied between the pair of electrode portions 14a and 14b.
  • the first electrode portion 14a and the second electrode portion 14b are cut at a portion where the current density of the nanopore upper region 15 is large, and the nanopore is formed.
  • a nanogap 17 is formed in the upper region 15 (see FIG. 2).
  • the nanogap electrode structure 10 a process in which metal atoms in the nanopore upper region 15 are diffused and / or moved after a predetermined time has elapsed (for example, 15 minutes) after the application of the voltage that causes electromigration is stopped.
  • the nanogap 17 is filled with, and the first electrode portion 14a and the second electrode portion 14b are reconnected.
  • a voltage is applied between the pair of electrode portions 14a and 14b, and electromigration occurs again.
  • a nanogap 17 is formed in the nanopore upper region 15 where the current density is high (see FIG. 2).
  • the nanogap electrode structure 10 is configured such that, of the pair of electrode portions 14a and 14b, the nanopore upper region 15 located above the nanopore 13 induces disconnection due to electromigration.
  • the connection region 16 located at the upper part of the insulating film 11 does not cause disconnection due to electromigration and has the highest current density. Since the disconnection occurs due to electromigration in the vicinity of the nanopore upper region 15, the nanogap 17 connected to the nanopore 13 can be formed. Therefore, the nanogap electrode structure 10 can stably form the nanogap 17 by a simple method.
  • the method for manufacturing the nanogap electrode structure is a nanogap electrode provided on an insulating film having nanopores, and a nanogap electrode composed of a pair of electrode portions having a nanopore upper region located above the nanopores is prepared. It has a preparatory step for forming a nanogap and a nanogap forming step for forming a nanogap in the nanopore upper region by electromigration by applying a voltage between a pair of electrode portions.
  • FIGS. 4A and 4B to 9A and 9B are plan views, and FIGS. 4B to 9B are cross-sectional views taken along the line BB of FIGS. 4A to 9A.
  • the outer shape in a plan view is a square, but in FIGS. 4A to 9A, only a part of the outer shape is shown.
  • the preparatory step includes an insulating film forming step, a nanopore forming step, a nanopore embedding step, an electrode layer forming step, and a flow path forming step.
  • the insulating film forming step forms the insulating film 21 on the substrate 20.
  • the substrate 20 is a silicon substrate having a thickness of 775 ⁇ m and a plane orientation of (100).
  • the insulating film 21 is formed by, for example, a CVD (Chemical Vapor Deposition) method using DCS (dichlorosilane) as a raw material gas.
  • the insulating film 21 is formed only on the surface of the substrate 20, but the insulating films 21 may be formed on both sides of the substrate 20.
  • the nanopore forming step forms the nanopore 23 on the insulating film 21.
  • a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique.
  • a resist pattern is formed in the photoresist layer in which a portion corresponding to the nanopore 23 is opened.
  • the insulating film 21 is dry-etched using the photoresist layer on which the resist pattern is formed as a mask. As a result, the nanopore 23 is formed on the insulating film 21.
  • the nanopore embedding step forms a deposit film 27 on the nanopore 23.
  • a SiO film is formed on the entire surface of the insulating film 21 by a CVD method using, for example, TEOS (tetraexisilane) as a raw material gas.
  • the surface of the SiO film is flattened by a CMP (Chemical Mechanical Polishing) method.
  • the flattening is preferably performed so that the surface of the insulating film 21 is exposed.
  • the flattening removes the SiO film on the surface of the insulating film 21.
  • the deposit film 27 is formed by the SiO film remaining in the nanopore 23.
  • the deposit film 27 may be an a-Si film (amorphous silicon film) or the like.
  • the flattening may be performed by etching back the surface of the deposit film 27 instead of using the CMP method.
  • the nanogap electrode 22 is formed on the insulating film 21.
  • a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique to form a nanogap electrode 22 in the insulating film 21. Is exposed, and the portion where the nanogap electrode 22 is not formed is covered with a photoresist layer.
  • an Au film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using Au as the target material.
  • the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method.
  • the nanogap electrode 22 is formed by the Au film remaining on the insulating film 21.
  • the Au film may be formed by using a vapor deposition method.
  • an adhesive layer such as titanium (Ti) or chromium (Cr) may be provided between the Au film and the insulating film 21.
  • the thickness of the adhesive layer is, for example, about 2 nm.
  • the electrode forming step is not limited to the case where the above lift-off method is performed.
  • a Pt film is formed on the insulating film 21 by a sputtering method using Pt as a target material, and a photoresist is applied to the photoresist to form a photoresist.
  • a layer is formed, the photoresist layer is patterned by a photolithography technique, and the Pt film is dry-etched using the patterned photoresist layer as a mask.
  • the nanogap electrode 22 can be formed from the Pt film remaining on the insulating film 21.
  • the nanogap electrode 22 is composed of a pair of electrode portions 24a and 24b (first electrode portion 24a and second electrode portion 24b) to which a voltage is applied.
  • the pair of electrode portions 24a and 24b are located above the nanopore 23 and the nanopore upper region 25 (first nanopore upper region 25a, second nanopore upper region 25b) and above the insulating film 21 and are located above the nanopore. It has a connection area 26 (first connection area 26a, second connection area 26b) connected to the area 25.
  • the nanogap electrode 22 is formed so that the outer shapes of the first electrode portion 24a and the second electrode portion 24b are isosceles triangles in a plan view.
  • the first electrode portion 24a and the second electrode portion 24b are connected in the vicinity of the apex of each isosceles triangle.
  • the portion where the first electrode portion 24a and the second electrode portion 24b are connected is included in the nanopore upper region 25.
  • the width (length in the Y-axis direction) of the portion where the first electrode portion 24a and the second electrode portion 24b are connected is, for example, 1 nm to 100 nm, which is the minimum value of the width of the entire nanogap electrode 22. be.
  • the minimum width of the nanopore upper region 25 becomes smaller than the minimum width of the connection region 26.
  • the minimum value of the cross-sectional area of the nanopore upper region 25 in the YZ plane is the connection region 26. Less than the minimum cross-sectional area of.
  • the nanopore upper region 25 is configured to induce disconnection due to electromigration by the current flowing when a voltage is applied between the pair of electrode portions 24a and 24b, and functions as an EM disconnection inducing portion.
  • the flow path forming step forms a flow path 29 connected to the nanopore 23 on the substrate 20.
  • a protective film (not shown) is formed on the front surface of the insulating film 21, the surface of the nanogap electrode 22, and the back surface of the substrate 20.
  • the protective film is preferably a material having a large etching rate selectivity with respect to the wet etching solution in anisotropic wet etching described later.
  • the protective film is, for example, a SiO film formed by a CVD method using TEOS as a raw material gas.
  • a photoresist layer (not shown) is formed on a protective film provided on the back surface of the substrate 20, and the photoresist layer is patterned by photolithography technology.
  • the photoresist layer on which the resist pattern is formed is used as a mask on the back surface of the substrate 20. Dry etch the protective film.
  • an opening is formed in the portion of the protective film provided on the back surface of the substrate 20 corresponding to the flow path 29.
  • the back surface of the substrate 20 is exposed from the opening of the protective film.
  • the substrate 20 is immersed in a wet etching solution to perform anisotropic wet etching.
  • the wet etching solution an alkaline aqueous solution such as KOH (potassium hydroxide) or TMAH (tetramethylammonium hydroxide) is used.
  • the protective film functions as a mask for anisotropic wet etching. Therefore, only a part of the back surface of the substrate 20 exposed from the opening of the protective film is etched.
  • the protective film and the deposit film 27, which are SiO films, are removed by wet etching using, for example, HF (hydrofluoric acid) as a wet etching solution.
  • HF hydrofluoric acid
  • the nanogap electrode structure precursor 30 can be manufactured by an insulating film forming step, a nanopore forming step, a nanopore embedding step, an electrode layer forming step, and a flow path forming step.
  • the nanogap electrode structure precursor 30 has the same configuration as the nanogap electrode structure 10 except that it does not have the nanogap 17.
  • the nanogap forming step will be described with reference to FIGS. 9A and 9B.
  • the pair of electrode portions 24a and 24b of the nanogap electrode structure precursor 30 and the power supply 31 are electrically connected by using the wiring 35.
  • the wiring 35 and the power supply 31 are not shown.
  • the power supply 31 is turned on, and a voltage is applied between the pair of electrode portions 24a and 24b. Since the cross-sectional area of the nanopore upper region 25 is smaller than that of the connection region 26, the current density is higher than that of the connection region 26, and disconnection occurs due to electromigration.
  • the first electrode portion 24a and the second electrode portion 24b are cut off, and a nanogap 17 is formed in the nanopore upper region 25.
  • the nanogap electrode structure precursor 30 on which the nanogap 17 is formed becomes the nanogap electrode structure 10 (see FIG. 1).
  • the nanogap electrode structure 10 is used in an analyzer 40 that analyzes a small amount of sample.
  • the analyzer 40 analyzes the sample by detecting a change in the tunnel current flowing between the pair of electrode portions 14a and 14b when the sample passes through the nanogap 17 of the nanogap electrode structure 10.
  • the sample include DNA, protein, pollen, virus, cell, organic particle or inorganic particle, particulate matter such as PM (Particulate Matter) 2.5 and the like.
  • the sample is dispersed in a solution containing an electrolyte, and the obtained sample solution is provided to the analyzer 40.
  • the solution for dispersing the sample include Phosphate Buffered Saline (PBS) and the like.
  • the analyzer 40 includes a nanogap electrode structure 10, a power supply 41, a control unit 42, an ammeter 43, and an analysis unit 44.
  • the nanogap electrode 12, the power supply 41, and the ammeter 43 of the nanogap electrode structure 10 are connected by using the wiring 45.
  • the power supply 41 is electrically connected to the pair of electrode portions 14a and 14b.
  • the power supply 41 applies a voltage between the pair of electrode portions 14a and 14b.
  • the voltage of the power supply 41 is controlled by the control unit 42.
  • the control unit 42 is electrically connected to the power supply 41.
  • the control unit 42 sets the voltage of the power supply 41 to the first voltage, first controls to form a nanogap 17 between the pair of electrode units 14a and 14b, and sets the voltage of the power supply 41 to the first voltage. Is set to a different second voltage, and performs the second control of generating a tunnel current between the pair of electrode portions 14a and 14b facing each other via the nanogap 17.
  • the first control is performed in a state where the first electrode portion 14a and the second electrode portion 14b are not cut off.
  • the second control is performed in a state where the nanogap 17 is formed between the pair of electrode portions 14a and 14b.
  • the control unit 42 is configured to enable switching between the first control and the second control by, for example, operating an operation unit (not shown).
  • the ammeter 43 is electrically connected to the pair of electrode portions 14a and 14b.
  • the ammeter 43 detects the tunnel current flowing between the pair of electrode portions 14a and 14b facing each other via the nanogap 17 when the second control is performed by the control unit 42.
  • the ammeter 43 may detect the current flowing between the pair of electrode units 14a and 14b connected to each other when the first control is performed by the control unit 42.
  • the analysis unit 44 is electrically connected to the ammeter 43.
  • the analysis unit 44 analyzes the sample based on the current value of the tunnel current detected by the ammeter 43.
  • the current value of the tunnel current changes according to the electrical resistance of the sample passing through the nanogap 17. Therefore, for example, when the single-stranded DNA passes through the nanogap 17, the analysis unit 44 identifies the base based on the current value of the tunnel current that changes depending on the type of the base constituting the single-stranded DNA. It is possible to analyze the base sequence and the like.
  • the analyzer 40 may include a pair of electrodes for performing electrophoresis of a sample and a power source for applying a voltage to the pair of electrodes. By applying a voltage from the power source to the pair of electrodes, the sample is electrophoresed and the sample passes through the nanogap 17 and the nanopore 13.
  • the sample may be configured to flow by pressure, or the sample may be configured to flow by using electrophoresis and pressure in combination.
  • the analyzer 40 applies a first voltage between the pair of electrode portions 14a and 14b to form a nanogap 17 in the nanopore upper region 15, and subsequently applies a second voltage between the pair of electrode portions 14a and 14b.
  • the sample is analyzed by applying the voltage and detecting the tunnel current when the sample passes through the nanogap 17. Therefore, the analyzer 40 can continuously form the nanogap 17 and analyze the sample.
  • the nanogap electrode structure precursor 30 may be provided in the analyzer 40.
  • the nanogap electrode structure 10 can be obtained by applying a voltage between the pair of electrode portions 24a and 24b to form the nanogap 17 in the nanopore upper region 25.
  • the analysis method is a first nanogap electrode provided on an insulating film having nanopores, in which a nanogap is formed in a nanogap electrode composed of a pair of electrode portions having a nanopore upper region located above the nanopores.
  • a second step of detecting the tunnel current when the sample passes through the nanogap and analyzing the sample based on the current value of the tunnel current In this embodiment, an analysis method using the analyzer 40 will be described.
  • the nanogap electrode structure 10 in a state where the first electrode portion 14a and the second electrode portion 14b are not cut is provided to the analyzer 40.
  • the control unit 42 performs the first control for setting the voltage of the power supply 41 to the first voltage. Electromigration is generated by the current flowing due to the application of the first voltage between the pair of electrode portions 14a and 14b, and the nanogap 17 is formed in the nanopore upper region 15. As described above, in the analysis method according to the present embodiment, the nanogap 17 can be stably formed by a simple method.
  • the control unit 42 performs the second control of setting the voltage of the power supply 41 to the second voltage.
  • a tunnel current is generated between the pair of electrode portions 14a and 14b facing each other via the nanogap 17.
  • the ammeter 43 detects the tunnel current.
  • the analysis unit 44 analyzes the sample based on the current value of the tunnel current detected by the ammeter 43 when the sample passes through the nanogap 17. Since the nanogap 17 is formed on the nanopore 13, the sample to be analyzed can be efficiently guided to the nanogap.
  • FIG. 11 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 50 according to the second embodiment.
  • the same members as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the nanogap electrode structure 50 includes an insulating film 11 and a nanogap electrode 52 provided on the insulating film 11.
  • the nanogap electrode 52 has a pair of electrode portions 54a and 54b.
  • the pair of electrode portions 54a and 54b are located above the nanopore 13 and the nanopore upper region 55 (first nanopore upper region 55a, second nanopore upper region 55b) and above the insulating film 11 and are located above the nanopore. It has a connection area 56 (first connection area 56a, second connection area 56b) to be connected to the area 55.
  • the nanopore upper region 55 is provided with a nanogap 17 that connects to the nanopore 13.
  • the nanogap electrode 52 has a smaller width (length in the Y-axis direction) toward the center of the nanopore 13.
  • the nanogap electrode 52 is different from the nanogap electrode 12 in that it has a thin portion 57 in the vicinity of the nanopore 13.
  • the thin portion 57 is a portion in which at least one of the front surface and the back surface of the nanogap electrode 52 is recessed, and in FIG. 11, a portion in which the back surface of the nanogap electrode 52 is recessed.
  • the thin portion 57 has a smaller thickness (length in the Z-axis direction) than other portions of the nanogap electrode 52.
  • the thin portion 57 is provided at least in the nanopore upper region 55, and in FIG. 11, it is provided in the entire nanopore upper region 55 and a part of the connection region 56. Further, the thin-walled portion 57 shown in FIG. 11 has a shape in which the side surface is recessed in addition to the back surface of the nanogap electrode 52, and the width (length in the Y-axis direction) is smaller than that of other portions in the nanogap electrode 52. ..
  • the nanogap electrode 52 has a smaller width toward the center of the nanopore 13 and has a thin portion 57 in the vicinity of the nanopore 13. Therefore, in the plane (YZ plane) orthogonal to the direction in which the current flows between the pair of electrode portions 54a and 54b (X-axis direction), the minimum cross-sectional area of the nanopore upper region 55 is the cross-sectional area of the connection region 56. Less than the minimum value of. In the nanopore upper region 55 having a thickness smaller than the connection region 56, the current density is higher than that in the connection region 56, and disconnection due to electromigration is more likely to occur, so that the nanogap 17 is surely formed.
  • FIG. 12 is an enlarged view showing a state in which the first electrode portion 54a and the second electrode portion 54b of the nanogap electrode structure 50 are not cut.
  • the method for manufacturing the nanogap electrode structure 50 is as follows: first, an insulating film forming step (see FIGS. 4A and 4B), a nanopore forming step (see FIGS. 5A and 5B), and a nanopore embedding step (see FIGS. 5A and 5B), as in the first embodiment. 6A and 6B), an electrode forming step (see FIGS. 7A and 7B), and a flow path forming step (see FIGS. 8A and 8B) are performed.
  • the wet etching solution is flowed from the nanopore 23, wet etching is performed on the back surface of the nanopore upper region 25 of the nanogap electrode 22, and the back surface of the nanopore upper region 25 is partially removed in the thickness direction. Then, the nanopore upper region 25 is thinned.
  • the nanogap electrode 22 is isotropically etched, so that the back surface of the connection region 26 is also partially removed in the thickness direction of the nanopore upper region 25. The sides and sides of the connection area 26 are also partially removed in the width direction.
  • the nanogap electrode 22 having dents formed on the back surface and the side surface in the vicinity of the nanopore 23 is the nanogap electrode 52 (see FIG. 12) having a thin-walled portion 57.
  • the thin-walled portion 57 is not limited to the one having a shape in which the back surface and the side surface of the nanogap electrode 52 are recessed. A modified example of the thin-walled portion 57 will be described below.
  • the thin-walled portion 58 is a portion in which the side surface of the nanogap electrode 52 is not recessed and only the back surface of the nanogap electrode 52 is recessed.
  • the side surface of the nanogap electrode 52 is not recessed and only the back surface is recessed, for example, the back surface of the nanopore upper region 25 (see FIGS. 8A and 8B) of the nanogap electrode 22 after the flow path forming step is dry-etched. Anisotropic etching is performed.
  • a dent may be formed on the front surface of the nanogap electrode 52, or a dent may be formed on both the front surface and the back surface of the nanogap electrode 52.
  • an electron beam may be irradiated.
  • the nanopore upper region 55 having a fine groove can also be formed. Since the cross-sectional area of the groove portion of the nanopore upper region 55 is smaller than that of the connection region 56, disconnection due to electromigration is likely to occur.
  • FIG. 14 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 60 according to the third embodiment.
  • the nanogap electrode structure 60 includes an insulating film 11 and a nanogap electrode 62 provided on the insulating film 11.
  • the nanogap electrode 62 has a pair of electrode portions 64a and 64b.
  • the pair of electrode portions 64a and 64b are located above the nanopore 13 and the nanopore upper region 65 (first nanopore upper region 65a, second nanopore upper region 65b) and above the insulating film 11 and are located above the nanopore. It has a connection area 66 (first connection area 66a, second connection area 66b) connected to the area 65.
  • the nanopore upper region 65 is provided with a nanogap 17 that connects to the nanopore 13.
  • the configuration of the nanopore upper region 65 is different from the nanopore upper region 15 according to the first embodiment and the nanopore upper region 55 according to the second embodiment.
  • ion implantation is performed into the nanopore upper region 25 of the nanogap electrode 22 to change the material of the nanopore upper region 25.
  • the element to be injected into the nanopore upper region 25 include Si, Ni, Ti, Cr and the like.
  • the altered nanopore upper region 25 is the nanopore upper region 65 according to the third embodiment.
  • the method of altering the nanopore upper region 25 is not limited to the ion implantation method described above.
  • the substrate 20 and the insulating film 21 may be used as masks for plasma treatment or annealing treatment such as laser annealing or electron beam annealing.
  • the nanopore upper region 65 contains a alteration of the material constituting the connection region 66. In the altered nanopore upper region 65, disconnection due to electromigration is more likely to occur than in the unaltered connection region 66, so that the nanogap 17 is surely formed.
  • FIG. 15 is an enlarged view showing a state in which the first electrode portion 64a and the second electrode portion 64b of the nanogap electrode structure 60 are not cut.
  • the nanopore upper region having a thickness smaller than that of the connecting region may be altered as in the second embodiment. That is, the nanopore upper region may be smaller in thickness than the connection region and may contain a altered material in which the material constituting the connection region is altered.
  • the nanogap electrode structure 70 according to the fourth embodiment includes an adhesive layer 71 for adhering the nanogap electrode 12 to the insulating film 11.
  • the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the adhesive layer 71 is provided between the insulating film 11 and the nanogap electrode 12.
  • the adhesive layer 71 is in contact with the connection region 16 of the nanogap electrode 12 and is not in contact with the nanopore upper region 15.
  • the adhesive layer 71 has a portion corresponding to the nanopore 13 open.
  • the material of the adhesive layer 71 is, for example, Ti, Cr, or the like.
  • the thickness of the adhesive layer 71 is, for example, 2 nm.
  • the outer shape of the adhesive layer 71 in a plan view is not particularly limited, but a similar shape similar to that of the nanogap electrode 12 or larger than the nanogap electrode 12 is preferable.
  • the adhesive layer forming step After performing the insulating film forming step (see FIGS. 4A and 4B), the nanopore forming step (see FIGS. 5A and 5B), and the nanopore embedding step (see FIGS. 6A and 6B), the adhesive layer forming step, the electrode forming step, and the flow path forming are performed. Perform the process and the adhesive layer removal process. Since the insulating film forming step, the nanopore forming step, and the nanopore embedding step are the same as those in the first embodiment, the description thereof will be omitted.
  • the adhesive layer 72 is formed on the insulating film 21.
  • a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique.
  • a resist pattern is formed on the photoresist layer so that the outer shape of the adhesive layer 72 in a plan view has the same shape as the nanogap electrode 12 of the nanogap electrode structure 70.
  • the portion of the insulating film 21 that forms the adhesive layer 72 is exposed, and the portion that does not form the adhesive layer 72 is covered with the photoresist layer.
  • a Ti film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using, for example, Ti as the target material.
  • An adhesive layer 72 having a portion corresponding to the nanopore upper region 25 of the nanogap electrode 22 and a portion corresponding to the connection region 26 is formed.
  • an Au film is formed on the adhesive layer 72 by performing a sputtering method using Au as a target material.
  • the lift-off method is performed to remove the adhesive layer 72 and the Au film on the photoresist layer together with the photoresist layer.
  • the Nanogap electrode 22 is formed by the Au film remaining on the adhesive layer 72.
  • a flow path forming step (see FIGS. 8A and 8B) is performed. Since the flow path forming step is the same as that of the first embodiment, detailed description thereof will be omitted, but the protective film is formed, the flow path 29 is formed, and the deposit film 27 is removed.
  • the adhesive layer removing step removes the portion of the adhesive layer 72 that is in contact with the nanopore upper region 25 of the nanogap electrode 22.
  • a part of the adhesive layer 72 is sputter-etched from the back surface of the substrate 20.
  • the portion of the adhesive layer 72 that is in contact with the nanopore upper region 25 of the nanogap electrode 22 is removed, and the portion that is in contact with the connection region 26 of the nanogap electrode 22 remains.
  • the adhesive layer 72 has a portion corresponding to the nanopore 23 opened.
  • the portion of the adhesive layer 72 in contact with the connection region 26 is the adhesive layer 71 (see FIG. 16).
  • the method for removing a part of the adhesive layer 72 is not limited to the above-mentioned sputter etching, and for example, wet etching may be performed.
  • the nanogap electrode provided with the adhesive layer 71 by performing the insulating film forming step, the nanopore forming step, the nanopore embedding step, the adhesive layer forming step, the electrode forming step, the flow path forming step, and the adhesive layer removing step.
  • the structure 70 is obtained (see FIG. 16).
  • the adhesive layer 71 is not limited to the case where it is not in contact with the nanopore upper region 15 of the nanogap electrode 12, and may be in contact with the nanopore upper region 15.
  • the adhesive layer removing step (see FIGS. 19A and 19B) is not performed, or the adhesive layer 72 remains on the back surface of the nanopore upper region 25 in the adhesive layer removing step. A part of the adhesive layer 72 is removed.
  • the adhesive layer forming step may be performed as the next step of the insulating film forming step (see FIGS. 4A and 4B). The case where the adhesive layer forming step is performed as the next step of the insulating film forming step will be described below.
  • the adhesive layer 73 is formed on the insulating film 21.
  • a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique.
  • a resist pattern is formed on the photoresist layer so that the outer shape of the adhesive layer 73 in a plan view has a shape similar to that of the nanogap electrode 12 of the nanogap electrode structure 70.
  • FIG. 20A the portion corresponding to the outer shape of the nanogap electrode 12 of the nanogap electrode structure 70 is shown by a dotted line.
  • the portion of the insulating film 21 that forms the adhesive layer 73 is exposed, and the portion that does not form the adhesive layer 73 is covered with the photoresist layer.
  • a Ti film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using, for example, Ti as the target material.
  • An adhesive layer 73 having a portion corresponding to the nanopore upper region 25 of the nanogap electrode 22 and a portion corresponding to the connection region 26 of the nanogap electrode 22 is formed.
  • the nanopore forming step forms the nanopore 23 on the insulating film 21.
  • a photoresist is applied to the adhesive layer 73 and the insulating film 21 to form a photoresist layer, the photoresist layer is patterned by photolithography technology, and the bonded layer 73 and the insulating film 21 are formed using the patterned photoresist layer as a mask. Is dry etched.
  • the nanopore 23 is formed on the insulating film 21. Since the portion corresponding to the nanopore 23 is opened, the adhesive layer 73 does not have a portion in contact with the nanopore upper region 25 of the nanogap electrode 22 formed in the electrode forming step which is the next step. Therefore, the nanopore forming step includes an adhesive layer removing step of removing the portion of the adhesive layer 73 in contact with the nanopore upper region 25 of the nanogap electrode 22.
  • the nanogap electrode structure 70 including the adhesive layer 71 is obtained by performing the nanopore embedding step, the electrode forming step, and the flow path forming step in the same manner as in the first embodiment (see FIG. 16). ).
  • FIG. 22 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 80 according to the fifth embodiment.
  • the nanogap electrode structure 80 includes an insulating film 11 and a nanogap electrode 82 provided on the insulating film 11.
  • the nanogap electrode 82 has a pair of electrode portions 84a and 84b.
  • the pair of electrode portions 84a and 84b are located above the nanopore 13 and the nanopore upper region 85 (first nanopore upper region 85a, second nanopore upper region 85b) and above the insulating film 11 and are located above the nanopore. It has a connection region 86 (first connection region 86a, second connection region 86b) to be connected to the region 85.
  • the nanopore upper region 85 is provided with a nanogap 17 that connects to the nanopore 13.
  • the nanogap electrode 82 has a single-layer structure in the nanopore upper region 85 and a laminated structure in the connection region 86, so that the thickness of the nanopore upper region 85 is smaller than the thickness of the connection region 86.
  • the boundary between the single-layer structure and the laminated structure has the same position as the boundary between the nanopore upper region 85 and the connection region 86 in FIG. 22.
  • the nanogap electrode 82 is composed of a first layer 82a provided on the insulating film 11 and a second layer 82b provided on the first layer 82a and the nanopore 13.
  • the first layer 82a is provided only on the insulating film 11 and not on the nanopore 13.
  • the second layer 82b has a stepped shape, and the positions (heights) in the Z-axis direction are different between the portion provided on the first layer 82a and the portion provided on the nanopore 13.
  • the outer shape of the second layer 82b in a plan view is the same as the outer shape of the first layer 82a in this example, but may be a similar shape.
  • the nanopore upper region 85 is composed of the second layer 82b
  • the connection region 86 is composed of the first layer 82a and the second layer 82b.
  • the nanogap electrode 82 has a single-layer structure in the nanopore upper region 85 and a laminated structure in the connection region 86, and the thickness of the nanopore upper region 85 is smaller than the thickness of the connection region 86.
  • the minimum thickness of the nanopore upper region 85 is smaller than the minimum thickness of the connecting region 86.
  • the minimum cross-sectional area of the nanopore upper region 85 is the cross-sectional area of the connection region 86. Less than the minimum value of. In the nanopore upper region 85, which is thinner than the connection region 86, the current density is higher than that in the connection region 86, and disconnection due to electromigration is more likely to occur, so that the nanogap 17 is surely formed.
  • a nanogap 17 can be formed in the nanopore upper region 85 as long as it has at least a single layer structure in the nanopore upper region 85. Therefore, the boundary between the single-layer structure and the laminated structure is not limited to the case where it is held at the same position as the boundary between the nanopore upper region 85 and the connection region 86 as described above, and exists in the nanopore upper region 85 or the connection region 86. You may.
  • the first layer 82a and the second layer 82b are formed of the same material (for example, Au) in this example, but may be formed of different materials.
  • the first layer 82a and the second layer 82b are formed of different materials, for example, Ti or Cr can be used as the first layer 82a, Au, Pt or the like can be used as the second layer 82b in combination.
  • the surface of the first layer 82a may be cleaned before the film formation of the second layer 82b is formed.
  • FIG. 23 is an enlarged view showing a state in which the first electrode portion 84a and the second electrode portion 84b of the nanogap electrode structure 80 are not cut.
  • the method for manufacturing the nanogap electrode structure 80 is as follows: first, an insulating film forming step (see FIGS. 4A and 4B), a nanopore forming step (see FIGS. 5A and 5B), and a nanopore embedding step (see FIGS. 5A and 5B), as in the first embodiment. 6A, 6B). Then, after the nanopore embedding step, an electrode forming step and a flow path forming step are performed.
  • the electrode forming step includes a first layer forming step and a second layer forming step.
  • the electrode forming step according to the fifth embodiment will be described with reference to FIGS. 24A and 24B to 25A and 25B.
  • the first layer 92a is formed on the insulating film 21.
  • a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown).
  • the photoresist layer By patterning the photoresist layer by a photolithography technique, the portion of the insulating film 21 that forms the first layer 92a is exposed, and the portion that does not form the first layer 92a is covered with the photoresist layer.
  • the first layer forming step since the first layer 92a is not formed on the nanopore 23, the deposit film 27 in the nanopore 23 is covered with the photoresist layer.
  • an Au film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using Au as the target material.
  • the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method.
  • the first layer 92a is formed by the Au film remaining on the insulating film 21.
  • the second layer forming step forms the second layer 92b on the first layer 92a and the nanopore 23.
  • a photoresist is applied to the insulating film 21 and the first layer 92a to form a photoresist layer (not shown).
  • the photoresist layer By patterning the photoresist layer by a photolithography technique, the portion forming the second layer 92b is exposed, and the portion not forming the second layer 92b is covered with the photoresist layer.
  • the second layer 92b is partially formed on the nanopore 23 so that the width becomes smaller toward the center of the nanopore 23.
  • the portion of the deposit film 27 in the nanopore 23 that does not form the second layer 92b is covered with the photoresist layer.
  • an Au film is formed on the first layer 92a and on the photoresist layer by performing a sputtering method using Au as the target material.
  • the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method. The Au film remaining on the first layer 92a and the deposit film 27 forms the second layer 92b.
  • the flow path 29 connected to the nanopore 23 is formed on the substrate 20 by the same method as in the first embodiment.
  • the deposit film 27 is removed by wet etching using, for example, HF as a wet etching solution.
  • the nanogap electrode structure is formed by performing the insulating film forming step, the nanopore forming step, the nanopore embedding step, the electrode forming step having the first layer forming step and the second layer forming step, and the flow path forming step. 80 is obtained (see FIG. 23).
  • the second layer 82b has a stepped shape as described above, and the portion provided on the first layer 82a and the portion provided on the nanopore 13 are in the Z-axis direction. It is not limited to the case where the positions (heights) are different.
  • the second layer 82b may have the same position in the Z-axis direction between the portion provided on the first layer 82a and the portion provided on the nanopore 13.
  • the outer shape of the first layer 82a in a plan view can be changed in size by changing the range in which the first layer 92a is formed in the first layer forming step.
  • the outer shape of the second layer 82b in a plan view can be changed in size by changing the range in which the second layer 92b is formed in the second layer forming step.
  • the nanogap electrode 82 is not limited to the case where the first layer 82a is provided only on the insulating film 11 and is not provided on the nanopore 13 as described above.
  • the first layer 82a may be provided on the insulating film 11 and the nanopore 13.
  • the second layer 82b is provided only on the first layer 82a and not on the nanopore 13.
  • the nanopore upper region 85 is composed of the first layer 82a
  • the connection region 86 is composed of the first layer 82a and the second layer 82b
  • the thickness of the nanopore upper region 85 can be made smaller than the thickness of the connection region 86. ..
  • the present invention is not limited to each of the above embodiments as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in each of the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment can be considered. Further, the components described in different embodiments may be combined as appropriate.
  • the nanogap electrode structure 10 according to the first embodiment and the nanogap electrode structure precursor 30 are not limited to the case where the nanogap electrode structure precursor 30 is provided to the analyzer 40.
  • the nanogap electrode structure 60, the nanogap electrode structure 70 according to the fourth embodiment, and the nanogap electrode structure 80 according to the fifth embodiment may be provided to the analyzer 40.

Abstract

Provided are a nanogap electrode structure that enables stable formation of a nanogap by an easy way, a method for manufacturing the same, an analysis device and an analysis method. The nanogap electrode structure 10 comprises an insulating film 11 that has a nanopore 13, said nanopore allowing the passage of a sample therethrough, and a nanogap electrode 12 that is formed on the insulating film 11 and provided with a nanogap 17 between a pair of electrode parts 14a and 14b. The pair of electrode parts 14a and 14b have an above-nanopore region 15 that is positioned above the nanopore 13, and a connection region 16 that is positioned above the insulating film 11 and connected to the above-nanopore region 15. The nanogap 17 is formed within the above-nanopore region 15.

Description

ナノギャップ電極構造体、およびその製造方法、分析装置、分析方法Nanogap electrode structure, its manufacturing method, analyzer, analysis method
 本発明は、ナノギャップ電極構造体、およびその製造方法、分析装置、分析方法に関する。 The present invention relates to a nanogap electrode structure, a manufacturing method thereof, an analyzer, and an analysis method.
 近年、対向した電極間にナノギャップを有するナノギャップ電極が注目されており、ナノギャップ電極を用いた電子デバイスや、バイオデバイス等について研究が盛んに行われている。バイオデバイスの分野では、例えば、ナノギャップに一本鎖DNA(deoxyribonucleic acid)を通過させ、当該一本鎖DNAの塩基がナノギャップを通過したときに電極間に流れるトンネル電流を計測し、その電流値を基に一本鎖DNAを構成する塩基を同定する分析装置が開発されている。 In recent years, nanogap electrodes having nanogap between facing electrodes have been attracting attention, and research on electronic devices and biodevices using nanogap electrodes has been actively conducted. In the field of biodevices, for example, a single-stranded DNA (deoxyribonucleic acid) is passed through a nanogap, and the tunnel current flowing between electrodes when the base of the single-stranded DNA passes through the nanogap is measured and the current is measured. An analyzer that identifies the bases constituting single-stranded DNA based on the value has been developed.
 ナノギャップ電極を形成する方法として、機械的に制御可能な破断接合(Mechanically-Controllable Break Junction;MCBJ)システムが知られている(例えば、特許文献1参照)。 As a method for forming a nanogap electrode, a mechanically controllable break junction (MCBJ) system is known (see, for example, Patent Document 1).
特表2019-525766号公報Special Table 2019-525766 Gazette
 しかしながら、特許文献1に記載されたようなMCBJシステムは、ナノギャップを形成するために、機械的な応力を印加する機構が必要であり、簡易な方法で安定にナノギャップを形成することが望まれている。 However, the MCBJ system as described in Patent Document 1 requires a mechanism for applying mechanical stress in order to form a nanogap, and it is desired to stably form a nanogap by a simple method. It is rare.
 本発明は、簡易な方法で安定にナノギャップを形成することができるナノギャップ電極構造体、およびその製造方法、分析装置、分析方法を提供することを目的とする。 An object of the present invention is to provide a nanogap electrode structure capable of stably forming a nanogap by a simple method, and a method for manufacturing the same, an analyzer, and an analysis method.
 本発明のナノギャップ電極構造体は、試料が通過するナノポアを有する絶縁膜と、前記絶縁膜に設けられ、一対の電極部の間にナノギャップを有するナノギャップ電極とを備え、前記一対の電極部は、前記ナノポアの上部に位置するナノポア上部領域と、前記絶縁膜の上部に位置し、前記ナノポア上部領域と接続する接続領域とを有し、前記ナノギャップは、前記ナノポア上部領域内に設けられている。 The nanogap electrode structure of the present invention includes an insulating film having nanopores through which a sample passes, and a nanogap electrode provided on the insulating film and having a nanogap between a pair of electrode portions, and the pair of electrodes. The portion has a nanopore upper region located above the nanopore and a connection region located above the insulating film and connected to the nanopore upper region, and the nanogap is provided in the nanopore upper region. Has been done.
 本発明のナノギャップ電極構造体の製造方法は、ナノポアを有する絶縁膜に設けられ、前記ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極を準備する準備工程と、前記一対の電極部間に電圧を印加し、エレクトロマイグレーションにより前記ナノポア上部領域にナノギャップを形成するナノギャップ形成工程とを有する。 The method for manufacturing a nanogap electrode structure of the present invention is a preparatory step for preparing a nanogap electrode provided on an insulating film having nanopores and composed of a pair of electrode portions having a nanopore upper region located above the nanopores. And a nanogap forming step of applying a voltage between the pair of electrode portions and forming a nanogap in the nanopore upper region by electromigration.
 本発明の分析装置は、上記のナノギャップ電極構造体と、前記一対の電極部間に電圧を印加する電源と、前記一対の電極部の間に流れるトンネル電流を検出する電流計と、前記トンネル電流の電流値に基づき試料の分析を行う分析部とを備える。 The analyzer of the present invention includes the nanogap electrode structure, a power supply that applies a voltage between the pair of electrode portions, a current meter that detects a tunnel current flowing between the pair of electrode portions, and the tunnel. It is equipped with an analysis unit that analyzes the sample based on the current value of the current.
 本発明の分析方法は、ナノポアを有する絶縁膜に設けられ、前記ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極にナノギャップを形成する第1の工程と、試料が前記ナノギャップを通過したときのトンネル電流を検出し、前記トンネル電流の電流値に基づき前記試料の分析を行う第2の工程とを有する。 The analysis method of the present invention comprises a first step of forming a nanogap in a nanogap electrode provided on an insulating film having nanopores and composed of a pair of electrode portions having a nanopore upper region located above the nanopores. The second step is to detect the tunnel current when the sample passes through the nanogap and analyze the sample based on the current value of the tunnel current.
 本発明によれば、一対の電極部のうち、ナノポアの上部に位置するナノポア上部領域に、簡易な方法で安定にナノギャップを形成することができる。 According to the present invention, it is possible to stably form a nanogap in the nanopore upper region located above the nanopore in the pair of electrode portions by a simple method.
 また、ナノポア上にナノギャップが形成されるため、分析対象である試料を効率良くナノギャップに誘導できる。 In addition, since nanogap is formed on the nanopore, the sample to be analyzed can be efficiently guided to the nanogap.
第1実施形態に係るナノギャップ電極構造体の外観を示す斜視図である。It is a perspective view which shows the appearance of the nanogap electrode structure which concerns on 1st Embodiment. 図1中の符号IIで示したナノポア付近を拡大した拡大図である。It is an enlarged view around the nanopore shown by the symbol II in FIG. 1. 一対の電極部が切断されていない状態のナノギャップ電極構造体のナノポア付近を拡大した拡大図である。It is an enlarged view around the nanopore of a nanogap electrode structure in a state where a pair of electrode portions is not cut. 絶縁膜形成工程を説明するための平面図である。It is a top view for demonstrating the insulating film forming process. 図4AのB-B線に沿った断面図である。4 is a cross-sectional view taken along the line BB of FIG. 4A. ナノポア形成工程を説明するための平面図である。It is a top view for demonstrating the nanopore formation process. 図5AのB-B線に沿った断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 5A. ナノポア埋め込み工程を説明するための平面図である。It is a top view for demonstrating the nanopore embedding process. 図6AのB-B線に沿った断面図である。6 is a cross-sectional view taken along the line BB of FIG. 6A. 電極形成工程を説明するための平面図である。It is a top view for demonstrating the electrode formation process. 図7AのB-B線に沿った断面図である。FIG. 7 is a cross-sectional view taken along the line BB of FIG. 7A. 流路形成工程を説明するための平面図である。It is a top view for demonstrating the flow path formation process. 図8AのB-B線に沿った断面図である。FIG. 8 is a cross-sectional view taken along the line BB of FIG. 8A. ナノギャップ形成工程を説明するための平面図である。It is a top view for demonstrating the nanogap formation process. 図9AのB-B線に沿った断面図である。9 is a cross-sectional view taken along the line BB of FIG. 9A. 第1実施形態に係る分析装置を説明するための説明図である。It is explanatory drawing for demonstrating the analyzer which concerns on 1st Embodiment. 第2実施形態に係るナノギャップ電極構造体のナノポア付近を拡大した拡大図である。It is an enlarged view around the nanopore of the nanogap electrode structure which concerns on 2nd Embodiment. 第2実施形態に係るナノギャップ電極構造体の第1の電極部と第2の電極部とが切断されていない状態を示す拡大図である。It is an enlarged view which shows the state which the 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 2nd Embodiment are not cut. 薄肉部の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the deformation example of a thin-walled portion. 第3実施形態に係るナノギャップ電極構造体のナノポア付近を拡大した拡大図である。It is an enlarged view around the nanopore of the nanogap electrode structure which concerns on 3rd Embodiment. 第3実施形態に係るナノギャップ電極構造体の第1の電極部と第2の電極部とが切断されていない状態を示す拡大図である。It is an enlarged view which shows the state which the 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 3rd Embodiment are not cut. 第4実施形態に係るナノギャップ電極構造体の断面図である。It is sectional drawing of the nanogap electrode structure which concerns on 4th Embodiment. 接着層形成工程を説明するための平面図である。It is a top view for demonstrating the adhesive layer formation process. 図17AのB-B線に沿った断面図である。FIG. 11 is a cross-sectional view taken along the line BB of FIG. 17A. 電極形成工程を説明するための平面図である。It is a top view for demonstrating the electrode formation process. 図18AのB-B線に沿った断面図である。FIG. 8 is a cross-sectional view taken along the line BB of FIG. 18A. 接着層除去工程を説明するための平面図である。It is a top view for demonstrating the adhesive layer removal process. 図19AのB-B線に沿った断面図である。19A is a cross-sectional view taken along the line BB of FIG. 19A. 接着層形成工程を説明するための平面図である。It is a top view for demonstrating the adhesive layer formation process. 図20AのB-B線に沿った断面図である。20A is a cross-sectional view taken along the line BB of FIG. 20A. ナノポア形成工程を説明するための平面図である。It is a top view for demonstrating the nanopore formation process. 図21AのB-B線に沿った断面図である。FIG. 21 is a cross-sectional view taken along the line BB of FIG. 21A. 第5実施形態に係るナノギャップ電極構造体のナノポア付近を拡大した拡大図である。It is an enlarged view around the nanopore of the nanogap electrode structure which concerns on 5th Embodiment. 第5実施形態に係るナノギャップ電極構造体の第1の電極部と第2の電極部とが切断されていない状態を示す拡大図である。It is an enlarged view which shows the state which the 1st electrode part and the 2nd electrode part of the nanogap electrode structure which concerns on 5th Embodiment are not cut. 第1層形成工程を説明するための平面図である。It is a top view for demonstrating the 1st layer formation process. 図24AのB-B線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. 24A. 第2層形成工程を説明するための平面図である。It is a top view for demonstrating the 2nd layer formation process. 図25AのB-B線に沿った断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 25A. 流路形成工程を説明するための平面図である。It is a top view for demonstrating the flow path formation process. 図26AのB-B線に沿った断面図である。FIG. 6 is a cross-sectional view taken along the line BB of FIG. 26A.
 [第1実施形態]
 図1は、第1実施形態に係るナノギャップ電極構造体10の外観を示す斜視図である。図1において、X軸、Y軸およびZ軸は、直交座標系の三軸を示している。Z軸方向を、ナノギャップ電極構造体10の厚みの方向(厚み方向)としている。Y軸方向を、ナノギャップ電極構造体10の幅の方向(幅方向)としている。X軸方向を、後述する電流が流れる方向としている。Z軸の正方向を上方向とし、Z軸の負方向を下方向としている。ナノギャップ電極構造体10を構成する各部材において、上側の面を表面とし、下側の面を裏面とする。ナノギャップ電極構造体10を上から下へ向けて見ることを「平面視」と称する。
[First Embodiment]
FIG. 1 is a perspective view showing the appearance of the nanogap electrode structure 10 according to the first embodiment. In FIG. 1, the X-axis, the Y-axis, and the Z-axis indicate the three axes of the Cartesian coordinate system. The Z-axis direction is the direction of the thickness of the nanogap electrode structure 10 (thickness direction). The Y-axis direction is the width direction (width direction) of the nanogap electrode structure 10. The X-axis direction is the direction in which the current described later flows. The positive direction of the Z axis is the upward direction, and the negative direction of the Z axis is the downward direction. In each member constituting the nanogap electrode structure 10, the upper surface is the front surface and the lower surface is the back surface. Viewing the nanogap electrode structure 10 from top to bottom is referred to as "planar view".
 図1に示すように、ナノギャップ電極構造体10は、絶縁膜11と、絶縁膜11に設けられたナノギャップ電極12とを備える。絶縁膜11は、試料が通過するナノポア13を有する。ナノギャップ電極12は、電圧が印加される一対の電極部14a,14bで構成されている。一対の電極部14a,14bは、ナノポア13の上部に位置するナノポア上部領域15と、絶縁膜11の上部に位置し、ナノポア上部領域15と接続する接続領域16とを有する。ナノポア上部領域15は、本実施形態ではナノポア13の一部を塞ぐように配されているが、ナノポア13の全部を塞ぐように配してもよい。詳しくは後述するが、ナノポア上部領域15は、互いに接続している状態の一対の電極部14a,14b間に電圧が印加されたときに流れる電流によってエレクトロマイグレーションによる断線を誘発するように構成されている。ナノポア上部領域15で断線が生じることにより、一対の電極部14a,14bの間に、ナノポア13と接続するナノギャップ17が形成される。図1は、一対の電極部14a,14bの間にナノギャップ17が形成され、一対の電極部14a,14bが接続していない状態のナノギャップ電極構造体10を示している。なお、以下の説明において一対の電極部14a,14bを区別して説明する場合は、第1の電極部14a、第2の電極部14bと記載する。 As shown in FIG. 1, the nanogap electrode structure 10 includes an insulating film 11 and a nanogap electrode 12 provided on the insulating film 11. The insulating film 11 has a nanopore 13 through which the sample passes. The nanogap electrode 12 is composed of a pair of electrode portions 14a and 14b to which a voltage is applied. The pair of electrode portions 14a and 14b have a nanopore upper region 15 located above the nanopore 13 and a connection region 16 located above the insulating film 11 and connected to the nanopore upper region 15. In the present embodiment, the nanopore upper region 15 is arranged so as to block a part of the nanopore 13, but it may be arranged so as to block the entire nanopore 13. As will be described in detail later, the nanopore upper region 15 is configured to induce disconnection due to electromigration by the current flowing when a voltage is applied between the pair of electrode portions 14a and 14b in a state of being connected to each other. There is. Due to the disconnection occurring in the nanopore upper region 15, a nanogap 17 connected to the nanopore 13 is formed between the pair of electrode portions 14a and 14b. FIG. 1 shows a nanogap electrode structure 10 in which a nanogap 17 is formed between a pair of electrode portions 14a and 14b and the pair of electrode portions 14a and 14b are not connected to each other. In the following description, when the pair of electrode portions 14a and 14b will be described separately, they will be described as the first electrode portion 14a and the second electrode portion 14b.
 図1および図2を用いて、ナノギャップ電極構造体10の構成を詳細に説明する。ナノギャップ電極構造体10の平面視における外形形状は、特に限定されず、本実施形態では四角形である。 The configuration of the nanogap electrode structure 10 will be described in detail with reference to FIGS. 1 and 2. The outer shape of the nanogap electrode structure 10 in a plan view is not particularly limited, and is a quadrangle in the present embodiment.
 絶縁膜11は、例えばSiN膜(シリコン窒化膜)やSiO膜(シリコン酸化膜)等により形成される。絶縁膜11は、本実施形態ではSiN膜により形成される。絶縁膜11の厚みは、特に限定されず、本実施形態では100nmである。 The insulating film 11 is formed of, for example, a SiN film (silicon nitride film), a SiO film (silicon oxide film), or the like. The insulating film 11 is formed of a SiN film in this embodiment. The thickness of the insulating film 11 is not particularly limited, and is 100 nm in this embodiment.
 絶縁膜11は、基板18に設けられている。基板18は、本実施形態では面方位が(100)のシリコン基板であるが、これに限定されない。基板18の厚みは、特に限定されず、本実施形態では775μmである。基板18の内部には流路19が設けられている。図1では流路19を二点鎖線で示している。流路19は、基板18を厚み方向に貫通し、ナノポア13と接続する。また、流路19は、ナノポア13を介してナノギャップ17と接続する。流路19の形状は、特に限定されず、任意の形状とすることができる。本実施形態では、流路19の形状は、四角錐台形状であり、XY平面と平行な断面の面積が上から下に向かうほど大きくされている。 The insulating film 11 is provided on the substrate 18. The substrate 18 is a silicon substrate having a plane orientation of (100) in the present embodiment, but the substrate 18 is not limited to this. The thickness of the substrate 18 is not particularly limited, and is 775 μm in this embodiment. A flow path 19 is provided inside the substrate 18. In FIG. 1, the flow path 19 is shown by a two-dot chain line. The flow path 19 penetrates the substrate 18 in the thickness direction and connects to the nanopore 13. Further, the flow path 19 is connected to the nanogap 17 via the nanopore 13. The shape of the flow path 19 is not particularly limited and may be any shape. In the present embodiment, the shape of the flow path 19 is a quadrangular pyramid shape, and the area of the cross section parallel to the XY plane is increased from top to bottom.
 ナノポア13は、絶縁膜11を厚み方向に貫通している。ナノポア13の直径は、数nm~数百nmであり、本実施形態では100nmである。 The nanopore 13 penetrates the insulating film 11 in the thickness direction. The diameter of the nanopore 13 is several nm to several hundred nm, and in this embodiment, it is 100 nm.
 ナノギャップ電極12の材料は、金(Au)または白金(Pt)等が用いられ、本実施形態では金である。ナノギャップ電極12は、この例では単層構造であるが、2つ以上の層を積層させた積層構造を有するものでもよい。ナノギャップ電極12を積層構造とする場合は、各層を同一の材料または異なる材料で形成してもよい。各層を異なる材料で形成する場合は、上記の材料を組み合わせて用いることができる。 Gold (Au), platinum (Pt), or the like is used as the material of the nanogap electrode 12, and in this embodiment, it is gold. The nanogap electrode 12 has a single-layer structure in this example, but may have a laminated structure in which two or more layers are laminated. When the nanogap electrode 12 has a laminated structure, each layer may be formed of the same material or a different material. When each layer is formed of different materials, the above materials can be used in combination.
 第1の電極部14aおよび第2の電極部14bの平面視における外形形状は、特に限定されないが、ナノポア上部領域15が接続領域16より細い形状が好ましく、ナノポア上部領域15の中心近傍が最も細い形状が特に好ましい。本実施形態では、第1の電極部14aおよび第2の電極部14bの平面視における外形形状は、それぞれ二等辺三角形であり、互いの頂角がナノポア上部領域15の中心近傍に配置されている。これにより、ナノギャップ電極12の幅(Y軸方向における長さ)は、ナノポア13の中心に向かうほど小さくなっている。第1の電極部14aおよび第2の電極部14bの幅の最小値は、例えば1nm~100nmである。図1では、第1の電極部14aと第2の電極部14bとは、互いの頂角を向き合わせた状態で、X軸方向に配置されている。一対の電極部14a,14bは、電圧が印加されることにより、X軸方向に電流が流れる。一対の電極部14a,14bの厚みは、本実施形態では30nmである。 The outer shape of the first electrode portion 14a and the second electrode portion 14b in a plan view is not particularly limited, but the shape in which the nanopore upper region 15 is thinner than the connection region 16 is preferable, and the vicinity of the center of the nanopore upper region 15 is the thinnest. The shape is particularly preferred. In the present embodiment, the outer shapes of the first electrode portion 14a and the second electrode portion 14b in a plan view are areosceles triangles, respectively, and their apex angles are arranged near the center of the nanopore upper region 15. .. As a result, the width (length in the Y-axis direction) of the nanogap electrode 12 becomes smaller toward the center of the nanopore 13. The minimum width of the first electrode portion 14a and the second electrode portion 14b is, for example, 1 nm to 100 nm. In FIG. 1, the first electrode portion 14a and the second electrode portion 14b are arranged in the X-axis direction with their apex angles facing each other. When a voltage is applied to the pair of electrode portions 14a and 14b, a current flows in the X-axis direction. The thickness of the pair of electrode portions 14a and 14b is 30 nm in this embodiment.
 図2は、図1中の符号IIで示したナノポア13付近を拡大した拡大図である。図2では、ナノポア上部領域15と接続領域16との境界を一点鎖線で示している。ナノポア上部領域15と接続領域16とは、第1の電極部14aと第2の電極部14bとのそれぞれに設けられている。以下の説明においてナノポア上部領域15を区別して説明する場合は、第1の電極部14aに設けられたナノポア上部領域を第1のナノポア上部領域15aと記載し、第2の電極部14bに設けられたナノポア上部領域を第2のナノポア上部領域15bと記載する。また、接続領域16を区別して説明する場合は、第1の電極部14aに設けられた接続領域を第1の接続領域16aと記載し、第2の電極部14bに設けられた接続領域を第2の接続領域16bと記載する。 FIG. 2 is an enlarged view of the vicinity of nanopore 13 indicated by reference numeral II in FIG. In FIG. 2, the boundary between the nanopore upper region 15 and the connecting region 16 is shown by a alternate long and short dash line. The nanopore upper region 15 and the connection region 16 are provided in the first electrode portion 14a and the second electrode portion 14b, respectively. When the nanopore upper region 15 is described separately in the following description, the nanopore upper region provided in the first electrode portion 14a is described as the first nanopore upper region 15a and is provided in the second electrode portion 14b. The nanopore upper region is referred to as a second nanopore upper region 15b. Further, when the connection region 16 is described separately, the connection region provided in the first electrode portion 14a is described as the first connection region 16a, and the connection region provided in the second electrode portion 14b is referred to as the first connection region. It is described as the connection area 16b of 2.
 ナノギャップ17は、一対の電極部14a,14bの間に設けられている。ナノギャップ17の間隔は、1原子層程度であり、例えば0.1nm~0.3nmである。図2では、ナノギャップ17は、ナノポア上部領域15の中心近傍に設けられている。 The nanogap 17 is provided between the pair of electrode portions 14a and 14b. The spacing between the nanogap 17 is about one atomic layer, for example, 0.1 nm to 0.3 nm. In FIG. 2, the nanogap 17 is provided near the center of the nanopore upper region 15.
 図3は、一対の電極部14a,14bが切断されていない状態のナノギャップ電極構造体10を示している。ナノポア上部領域15は、互いに接続している状態の一対の電極部14a,14b間に電圧が印加されたときに流れる電流によってエレクトロマイグレーションによる断線を誘発するように構成されており、EM断線誘発部としての機能を有する。本実施形態では、ナノポア上部領域15の幅(Y軸方向における長さ)の最小値は、接続領域16の幅の最小値より小さい。ナノポア上部領域15の厚み(Z軸方向における長さ)と接続領域16の厚みは同じである。したがって、一対の電極部14a,14bの間に電流が流れる方向(X軸方向)と直交する平面(YZ平面)において、ナノポア上部領域15の断面積の最小値は、接続領域16の断面積の最小値より小さい。一対の電極部14a,14bの間に電流が流れる方向と直交する平面における断面積が小さいほど、電流密度が大きくなり、エレクトロマイグレーションによる断線が発生しやすくなる。 FIG. 3 shows a nanogap electrode structure 10 in a state where the pair of electrode portions 14a and 14b are not cut. The nanopore upper region 15 is configured to induce disconnection due to electromigration by a current flowing when a voltage is applied between a pair of electrode portions 14a and 14b in a state of being connected to each other, and an EM disconnection inducing portion. Has the function as. In this embodiment, the minimum width (length in the Y-axis direction) of the nanopore upper region 15 is smaller than the minimum width of the connection region 16. The thickness of the nanopore upper region 15 (length in the Z-axis direction) and the thickness of the connecting region 16 are the same. Therefore, in the plane (YZ plane) orthogonal to the direction in which the current flows between the pair of electrode portions 14a and 14b (X-axis direction), the minimum value of the cross-sectional area of the nanopore upper region 15 is the cross-sectional area of the connection region 16. Less than the minimum. The smaller the cross-sectional area in the plane orthogonal to the direction in which the current flows between the pair of electrode portions 14a and 14b, the higher the current density and the more likely the disconnection due to electromigration occurs.
 一対の電極部14a,14bが切断されていない状態のナノギャップ電極構造体10では、一対の電極部14a,14b間に電圧が印加されることにより流れる電流によってエレクトロマイグレーションが発生する。エレクトロマイグレーションによりナノポア上部領域15の金属原子が拡散および/または移動する過程で、ナノポア上部領域15の電流密度が大きい箇所で第1の電極部14aと第2の電極部14bとが切断され、ナノポア上部領域15にナノギャップ17が形成される(図2参照)。 In the nanogap electrode structure 10 in which the pair of electrode portions 14a and 14b are not cut, electromigration occurs due to the current flowing when a voltage is applied between the pair of electrode portions 14a and 14b. In the process of diffusion and / or movement of metal atoms in the nanopore upper region 15 by electromigration, the first electrode portion 14a and the second electrode portion 14b are cut at a portion where the current density of the nanopore upper region 15 is large, and the nanopore is formed. A nanogap 17 is formed in the upper region 15 (see FIG. 2).
 ナノギャップ電極構造体10では、エレクトロマイグレーションを発生させる電圧の印加が停止されてから所定の時間が経過した後(例えば15分後)、ナノポア上部領域15の金属原子が拡散および/または移動する過程でナノギャップ17が埋められ、第1の電極部14aと第2の電極部14bとが再び接続される。このように第1の電極部14aと第2の電極部14bとが切断されていない状態のナノギャップ電極構造体10では、一対の電極部14a,14b間に電圧が印加され、再びエレクトロマイグレーションが発生することにより、ナノポア上部領域15の電流密度が大きい箇所にナノギャップ17が形成される(図2参照)。 In the nanogap electrode structure 10, a process in which metal atoms in the nanopore upper region 15 are diffused and / or moved after a predetermined time has elapsed (for example, 15 minutes) after the application of the voltage that causes electromigration is stopped. The nanogap 17 is filled with, and the first electrode portion 14a and the second electrode portion 14b are reconnected. In the nanogap electrode structure 10 in which the first electrode portion 14a and the second electrode portion 14b are not cut in this way, a voltage is applied between the pair of electrode portions 14a and 14b, and electromigration occurs again. As a result, a nanogap 17 is formed in the nanopore upper region 15 where the current density is high (see FIG. 2).
 ナノギャップ電極構造体10は、一対の電極部14a,14bのうち、ナノポア13の上部に位置するナノポア上部領域15がエレクトロマイグレーションによる断線を誘発するように構成されている。互いに接続している状態の一対の電極部14a,14b間に電圧が印加されると、絶縁膜11の上部に位置する接続領域16ではエレクトロマイグレーションによる断線が発生せずに、電流密度が最も高くなるナノポア上部領域15近傍でエレクトロマイグレーションによる断線が発生するため、ナノポア13と接続するナノギャップ17を形成することができる。したがって、ナノギャップ電極構造体10は、簡易な方法で安定にナノギャップ17を形成することができる。 The nanogap electrode structure 10 is configured such that, of the pair of electrode portions 14a and 14b, the nanopore upper region 15 located above the nanopore 13 induces disconnection due to electromigration. When a voltage is applied between the pair of electrode portions 14a and 14b in a state of being connected to each other, the connection region 16 located at the upper part of the insulating film 11 does not cause disconnection due to electromigration and has the highest current density. Since the disconnection occurs due to electromigration in the vicinity of the nanopore upper region 15, the nanogap 17 connected to the nanopore 13 can be formed. Therefore, the nanogap electrode structure 10 can stably form the nanogap 17 by a simple method.
 次に、ナノギャップ電極構造体の製造方法を説明する。ナノギャップ電極構造体の製造方法は、ナノポアを有する絶縁膜に設けられたナノギャップ電極であって、ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極を準備する準備工程と、一対の電極部間に電圧を印加し、エレクトロマイグレーションによりナノポア上部領域にナノギャップを形成するナノギャップ形成工程とを有する。 Next, a method for manufacturing the nanogap electrode structure will be described. The method for manufacturing the nanogap electrode structure is a nanogap electrode provided on an insulating film having nanopores, and a nanogap electrode composed of a pair of electrode portions having a nanopore upper region located above the nanopores is prepared. It has a preparatory step for forming a nanogap and a nanogap forming step for forming a nanogap in the nanopore upper region by electromigration by applying a voltage between a pair of electrode portions.
 図4A,4B~図9A,9Bを用いて、本実施形態に係るナノギャップ電極構造体10の製造方法を説明する。図4A~図9Aは平面図であり、図4B~図9Bは図4A~図9AのB-B線に沿った断面図である。なお、本実施形態では平面視における外形形状は正方形であるが、図4A~図9Aでは外形の一部のみを図示している。 A method for manufacturing the nanogap electrode structure 10 according to the present embodiment will be described with reference to FIGS. 4A and 4B to 9A and 9B. 4A to 9A are plan views, and FIGS. 4B to 9B are cross-sectional views taken along the line BB of FIGS. 4A to 9A. In the present embodiment, the outer shape in a plan view is a square, but in FIGS. 4A to 9A, only a part of the outer shape is shown.
 まず、図4A,4B~図8A,8Bを用いて、準備工程を説明する。準備工程は、絶縁膜形成工程と、ナノポア形成工程と、ナノポア埋め込み工程と、電極層形成工程と、流路形成工程とを有する。 First, the preparation process will be described with reference to FIGS. 4A and 4B to 8A and 8B. The preparatory step includes an insulating film forming step, a nanopore forming step, a nanopore embedding step, an electrode layer forming step, and a flow path forming step.
 図4A,4Bに示すように、絶縁膜形成工程は、基板20に絶縁膜21を形成する。基板20は、厚さ775μm、面方位が(100)のシリコン基板である。絶縁膜21は、例えば、原料ガスとしてDCS(ジクロロシラン)を用いたCVD(Chemical Vapor Deposition)法により形成する。本実施形態では基板20の表面にのみ絶縁膜21を形成するが、基板20の両面に絶縁膜21を形成してもよい。 As shown in FIGS. 4A and 4B, the insulating film forming step forms the insulating film 21 on the substrate 20. The substrate 20 is a silicon substrate having a thickness of 775 μm and a plane orientation of (100). The insulating film 21 is formed by, for example, a CVD (Chemical Vapor Deposition) method using DCS (dichlorosilane) as a raw material gas. In the present embodiment, the insulating film 21 is formed only on the surface of the substrate 20, but the insulating films 21 may be formed on both sides of the substrate 20.
 図5A,5Bに示すように、ナノポア形成工程は、絶縁膜21にナノポア23を形成する。まず、絶縁膜21にフォトレジストを塗布してフォトレジスト層(図示なし)を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングする。フォトレジスト層には、ナノポア23に対応する部分が開口するレジストパターンが形成される。次に、レジストパターンが形成されたフォトレジスト層をマスクとして絶縁膜21をドライエッチングする。これにより、絶縁膜21にナノポア23が形成される。 As shown in FIGS. 5A and 5B, the nanopore forming step forms the nanopore 23 on the insulating film 21. First, a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique. A resist pattern is formed in the photoresist layer in which a portion corresponding to the nanopore 23 is opened. Next, the insulating film 21 is dry-etched using the photoresist layer on which the resist pattern is formed as a mask. As a result, the nanopore 23 is formed on the insulating film 21.
 図6A,6Bに示すように、ナノポア埋め込み工程は、ナノポア23にデポジット膜27を形成する。まず、絶縁膜21の全面に、例えば原料ガスとしてTEOS(テトラエキシシラン)を用いたCVD法によりSiO膜を形成する。次に、例えばCMP(Chemical Mechanical Polishing)法により、SiO膜の表面を平坦化する。平坦化は、絶縁膜21の表面が露出するように行うことが好ましい。平坦化により、絶縁膜21の表面上のSiO膜が除去される。ナノポア23内に残ったSiO膜によりデポジット膜27が形成される。なお、デポジット膜27は、a-Si膜(アモルファスシリコン膜)等でもよい。平坦化としては、CMP法を用いる代わりに、デポジット膜27の表面のエッチバックにより行ってもよい。 As shown in FIGS. 6A and 6B, the nanopore embedding step forms a deposit film 27 on the nanopore 23. First, a SiO film is formed on the entire surface of the insulating film 21 by a CVD method using, for example, TEOS (tetraexisilane) as a raw material gas. Next, for example, the surface of the SiO film is flattened by a CMP (Chemical Mechanical Polishing) method. The flattening is preferably performed so that the surface of the insulating film 21 is exposed. The flattening removes the SiO film on the surface of the insulating film 21. The deposit film 27 is formed by the SiO film remaining in the nanopore 23. The deposit film 27 may be an a-Si film (amorphous silicon film) or the like. The flattening may be performed by etching back the surface of the deposit film 27 instead of using the CMP method.
 図7A,7Bに示すように、電極形成工程は、絶縁膜21にナノギャップ電極22を形成する。まず、絶縁膜21にフォトレジストを塗布してフォトレジスト層(図示なし)を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングすることにより、絶縁膜21のうち、ナノギャップ電極22を形成する部分を露出させ、ナノギャップ電極22を形成しない部分をフォトレジスト層で被覆する。次に、ターゲット材としてAuを用いたスパッタリング法を行うことにより、フォトレジスト層上および露出した絶縁膜21上に、Au膜を形成する。次に、リフトオフ法を行うことにより、フォトレジスト層とともにフォトレジスト層上のAu膜を除去する。絶縁膜21上に残ったAu膜によりナノギャップ電極22が形成される。なお、Au膜は蒸着法を用いて形成してもよい。Au膜と絶縁膜21との接着性が悪い場合には、Au膜と絶縁膜21との間に例えばチタン(Ti)やクロム(Cr)等の接着層を設けてもよい。接着層の厚みは、例えば2nm程度である。 As shown in FIGS. 7A and 7B, in the electrode forming step, the nanogap electrode 22 is formed on the insulating film 21. First, a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique to form a nanogap electrode 22 in the insulating film 21. Is exposed, and the portion where the nanogap electrode 22 is not formed is covered with a photoresist layer. Next, an Au film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using Au as the target material. Next, the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method. The nanogap electrode 22 is formed by the Au film remaining on the insulating film 21. The Au film may be formed by using a vapor deposition method. When the adhesiveness between the Au film and the insulating film 21 is poor, an adhesive layer such as titanium (Ti) or chromium (Cr) may be provided between the Au film and the insulating film 21. The thickness of the adhesive layer is, for example, about 2 nm.
 電極形成工程は、上記のリフトオフ法を行う場合に限られない。例えば、ナノギャップ電極22を形成する材料としてPtを用いる場合は、絶縁膜21上に、ターゲット材としてPtを用いたスパッタリング法でPt膜を形成し、Pt膜にフォトレジストを塗布してフォトレジスト層を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングし、パターニングされたフォトレジスト層をマスクとしてPt膜をドライエッチングする。絶縁膜21上に残ったPt膜によりナノギャップ電極22を形成することができる。 The electrode forming step is not limited to the case where the above lift-off method is performed. For example, when Pt is used as a material for forming the nanogap electrode 22, a Pt film is formed on the insulating film 21 by a sputtering method using Pt as a target material, and a photoresist is applied to the photoresist to form a photoresist. A layer is formed, the photoresist layer is patterned by a photolithography technique, and the Pt film is dry-etched using the patterned photoresist layer as a mask. The nanogap electrode 22 can be formed from the Pt film remaining on the insulating film 21.
 ナノギャップ電極22は、電圧が印加される一対の電極部24a,24b(第1の電極部24a,第2の電極部24b)で構成されている。一対の電極部24a,24bは、ナノポア23の上部に位置するナノポア上部領域25(第1のナノポア上部領域25a,第2のナノポア上部領域25b)と、絶縁膜21の上部に位置し、ナノポア上部領域25と接続する接続領域26(第1の接続領域26a,第2の接続領域26b)とを有する。電極形成工程では、第1の電極部24aおよび第2の電極部24bの平面視における外形形状が二等辺三角形となるように、ナノギャップ電極22を形成する。第1の電極部24aと第2の電極部24bとは、各二等辺三角形の頂点近傍で接続している。第1の電極部24aと第2の電極部24bとが接続している部分は、ナノポア上部領域25内に含まれている。第1の電極部24aと第2の電極部24bとが接続している部分の幅(Y軸方向における長さ)は、例えば1nm~100nmであり、ナノギャップ電極22全体の幅の最小値である。これにより、ナノポア上部領域25の幅の最小値が、接続領域26の幅の最小値より小さくなる。第1の電極部24aの厚み(Z軸方向における長さ)と第2の電極部24bの厚みが同じであるため、YZ平面において、ナノポア上部領域25の断面積の最小値は、接続領域26の断面積の最小値より小さい。このように、ナノポア上部領域25は、一対の電極部24a,24b間に電圧が印加されたときに流れる電流によってエレクトロマイグレーションによる断線を誘発するように構成されており、EM断線誘発部としての機能を有する。 The nanogap electrode 22 is composed of a pair of electrode portions 24a and 24b (first electrode portion 24a and second electrode portion 24b) to which a voltage is applied. The pair of electrode portions 24a and 24b are located above the nanopore 23 and the nanopore upper region 25 (first nanopore upper region 25a, second nanopore upper region 25b) and above the insulating film 21 and are located above the nanopore. It has a connection area 26 (first connection area 26a, second connection area 26b) connected to the area 25. In the electrode forming step, the nanogap electrode 22 is formed so that the outer shapes of the first electrode portion 24a and the second electrode portion 24b are isosceles triangles in a plan view. The first electrode portion 24a and the second electrode portion 24b are connected in the vicinity of the apex of each isosceles triangle. The portion where the first electrode portion 24a and the second electrode portion 24b are connected is included in the nanopore upper region 25. The width (length in the Y-axis direction) of the portion where the first electrode portion 24a and the second electrode portion 24b are connected is, for example, 1 nm to 100 nm, which is the minimum value of the width of the entire nanogap electrode 22. be. As a result, the minimum width of the nanopore upper region 25 becomes smaller than the minimum width of the connection region 26. Since the thickness of the first electrode portion 24a (length in the Z-axis direction) and the thickness of the second electrode portion 24b are the same, the minimum value of the cross-sectional area of the nanopore upper region 25 in the YZ plane is the connection region 26. Less than the minimum cross-sectional area of. As described above, the nanopore upper region 25 is configured to induce disconnection due to electromigration by the current flowing when a voltage is applied between the pair of electrode portions 24a and 24b, and functions as an EM disconnection inducing portion. Has.
 図8A,8Bに示すように、流路形成工程は、基板20にナノポア23と接続する流路29を形成する。まず、絶縁膜21の表面、ナノギャップ電極22の表面、および基板20の裏面に保護膜(図示なし)を形成する。保護膜は、後述する異方性ウェットエッチングにおけるウェットエッチング液に対するエッチングレート選択比が大きい材料であることが好ましい。保護膜は、例えば、原料ガスとしてTEOSを用いたCVD法により形成されるSiO膜である。次に、基板20の裏面に設けられた保護膜上にフォトレジスト層(図示なし)を形成し、フォトリソグラフィー技術によりパターニングし、レジストパターンが形成されたフォトレジスト層をマスクとして基板20の裏面の保護膜をドライエッチングする。これにより、基板20の裏面に設けられた保護膜のうち、流路29に対応する部分に開口を形成する。保護膜の開口から基板20の裏面が露出する。次に、基板20をウェットエッチング液に浸漬して異方性ウェットエッチングを行う。ウェットエッチング液としては、KOH(水酸化カリウム)やTMAH(水酸化テトラメチルアンモニウム)等のアルカリ性水溶液が用いられる。保護膜は、異方性ウェットエッチングのマスクとして機能する。このため、保護膜の開口から露出した基板20の裏面の一部のみがエッチングされる。基板20に流路29を形成した後、SiO膜である保護膜とデポジット膜27を、例えばウェットエッチング液としてHF(フッ化水素酸)を用いてウェットエッチングすることにより除去する。これにより、図8A,8Bに示すナノギャップ電極構造前駆体30が得られる。 As shown in FIGS. 8A and 8B, the flow path forming step forms a flow path 29 connected to the nanopore 23 on the substrate 20. First, a protective film (not shown) is formed on the front surface of the insulating film 21, the surface of the nanogap electrode 22, and the back surface of the substrate 20. The protective film is preferably a material having a large etching rate selectivity with respect to the wet etching solution in anisotropic wet etching described later. The protective film is, for example, a SiO film formed by a CVD method using TEOS as a raw material gas. Next, a photoresist layer (not shown) is formed on a protective film provided on the back surface of the substrate 20, and the photoresist layer is patterned by photolithography technology. The photoresist layer on which the resist pattern is formed is used as a mask on the back surface of the substrate 20. Dry etch the protective film. As a result, an opening is formed in the portion of the protective film provided on the back surface of the substrate 20 corresponding to the flow path 29. The back surface of the substrate 20 is exposed from the opening of the protective film. Next, the substrate 20 is immersed in a wet etching solution to perform anisotropic wet etching. As the wet etching solution, an alkaline aqueous solution such as KOH (potassium hydroxide) or TMAH (tetramethylammonium hydroxide) is used. The protective film functions as a mask for anisotropic wet etching. Therefore, only a part of the back surface of the substrate 20 exposed from the opening of the protective film is etched. After forming the flow path 29 on the substrate 20, the protective film and the deposit film 27, which are SiO films, are removed by wet etching using, for example, HF (hydrofluoric acid) as a wet etching solution. As a result, the nanogap electrode structure precursor 30 shown in FIGS. 8A and 8B is obtained.
 以上のように、ナノギャップ電極構造前駆体30は、絶縁膜形成工程と、ナノポア形成工程と、ナノポア埋め込み工程と、電極層形成工程と、流路形成工程とにより製造することができる。ナノギャップ電極構造前駆体30は、ナノギャップ17を有しないこと以外は、ナノギャップ電極構造体10と同じ構成を有する。 As described above, the nanogap electrode structure precursor 30 can be manufactured by an insulating film forming step, a nanopore forming step, a nanopore embedding step, an electrode layer forming step, and a flow path forming step. The nanogap electrode structure precursor 30 has the same configuration as the nanogap electrode structure 10 except that it does not have the nanogap 17.
 次に、図9A,9Bを用いて、ナノギャップ形成工程を説明する。まず、配線35を用いて、ナノギャップ電極構造前駆体30の一対の電極部24a,24bと電源31とを電気的に接続する。なお、図9Aでは、配線35と電源31の図示を省略している。電源31をONとし、一対の電極部24a,24b間に電圧を印加する。ナノポア上部領域25では、接続領域26よりも断面積が小さいため、接続領域26よりも電流密度が大きくなり、エレクトロマイグレーションによる断線が発生する。ナノポア上部領域25が断線することにより、第1の電極部24aと第2の電極部24bとが切断され、ナノポア上部領域25にナノギャップ17が形成される。ナノギャップ17が形成されたナノギャップ電極構造前駆体30がナノギャップ電極構造体10(図1参照)となる。 Next, the nanogap forming step will be described with reference to FIGS. 9A and 9B. First, the pair of electrode portions 24a and 24b of the nanogap electrode structure precursor 30 and the power supply 31 are electrically connected by using the wiring 35. In FIG. 9A, the wiring 35 and the power supply 31 are not shown. The power supply 31 is turned on, and a voltage is applied between the pair of electrode portions 24a and 24b. Since the cross-sectional area of the nanopore upper region 25 is smaller than that of the connection region 26, the current density is higher than that of the connection region 26, and disconnection occurs due to electromigration. When the nanopore upper region 25 is disconnected, the first electrode portion 24a and the second electrode portion 24b are cut off, and a nanogap 17 is formed in the nanopore upper region 25. The nanogap electrode structure precursor 30 on which the nanogap 17 is formed becomes the nanogap electrode structure 10 (see FIG. 1).
 図10に示すように、ナノギャップ電極構造体10は、微量な試料の分析を行う分析装置40に用いられる。分析装置40は、ナノギャップ電極構造体10のナノギャップ17を試料が通過したときに一対の電極部14a,14bの間に流れるトンネル電流の変化を検出することにより試料の分析を行う。試料としては、DNA、たんぱく質、花粉、ウイルス、細胞、有機粒子または無機粒子、PM(Particulate Matter)2.5等の粒子状物質等が挙げられる。電解質を含む溶液に試料を分散させ、得られた試料液が分析装置40に供される。試料を分散させる溶液としては、リン酸緩衝食塩水(PBS:Phosphate Buffered Saline)等が挙げられる。 As shown in FIG. 10, the nanogap electrode structure 10 is used in an analyzer 40 that analyzes a small amount of sample. The analyzer 40 analyzes the sample by detecting a change in the tunnel current flowing between the pair of electrode portions 14a and 14b when the sample passes through the nanogap 17 of the nanogap electrode structure 10. Examples of the sample include DNA, protein, pollen, virus, cell, organic particle or inorganic particle, particulate matter such as PM (Particulate Matter) 2.5 and the like. The sample is dispersed in a solution containing an electrolyte, and the obtained sample solution is provided to the analyzer 40. Examples of the solution for dispersing the sample include Phosphate Buffered Saline (PBS) and the like.
 分析装置40は、ナノギャップ電極構造体10と、電源41と、制御部42と、電流計43と、分析部44とを備える。ナノギャップ電極構造体10のナノギャップ電極12、電源41、および電流計43は、配線45を用いて接続されている。 The analyzer 40 includes a nanogap electrode structure 10, a power supply 41, a control unit 42, an ammeter 43, and an analysis unit 44. The nanogap electrode 12, the power supply 41, and the ammeter 43 of the nanogap electrode structure 10 are connected by using the wiring 45.
 電源41は、一対の電極部14a,14bと電気的に接続している。電源41は、一対の電極部14a,14b間に電圧を印加する。電源41の電圧は、制御部42により制御される。 The power supply 41 is electrically connected to the pair of electrode portions 14a and 14b. The power supply 41 applies a voltage between the pair of electrode portions 14a and 14b. The voltage of the power supply 41 is controlled by the control unit 42.
 制御部42は、電源41と電気的に接続している。制御部42は、電源41の電圧を第1の電圧に設定し、一対の電極部14a,14bの間にナノギャップ17を形成する第1の制御と、電源41の電圧を第1の電圧とは異なる第2の電圧に設定し、ナノギャップ17を介して対向する一対の電極部14a,14bの間にトンネル電流を発生させる第2の制御とを行う。 The control unit 42 is electrically connected to the power supply 41. The control unit 42 sets the voltage of the power supply 41 to the first voltage, first controls to form a nanogap 17 between the pair of electrode units 14a and 14b, and sets the voltage of the power supply 41 to the first voltage. Is set to a different second voltage, and performs the second control of generating a tunnel current between the pair of electrode portions 14a and 14b facing each other via the nanogap 17.
 第1の制御は、第1の電極部14aと第2の電極部14bとが切断されていない状態で行われる。第2の制御は、一対の電極部14a,14bの間にナノギャップ17が形成されている状態で行われる。制御部42は、例えば図示しない操作部が操作されることにより、第1の制御と第2の制御との切り替えを可能とするように構成されている。 The first control is performed in a state where the first electrode portion 14a and the second electrode portion 14b are not cut off. The second control is performed in a state where the nanogap 17 is formed between the pair of electrode portions 14a and 14b. The control unit 42 is configured to enable switching between the first control and the second control by, for example, operating an operation unit (not shown).
 電流計43は、一対の電極部14a,14bと電気的に接続している。電流計43は、制御部42により第2の制御が行われているときに、ナノギャップ17を介して対向する一対の電極部14a,14bの間に流れるトンネル電流を検出する。なお、電流計43は、制御部42により第1の制御が行われているときに、互いに接続している一対の電極部14a,14bの間に流れる電流を検出してもよい。 The ammeter 43 is electrically connected to the pair of electrode portions 14a and 14b. The ammeter 43 detects the tunnel current flowing between the pair of electrode portions 14a and 14b facing each other via the nanogap 17 when the second control is performed by the control unit 42. The ammeter 43 may detect the current flowing between the pair of electrode units 14a and 14b connected to each other when the first control is performed by the control unit 42.
 分析部44は、電流計43と電気的に接続している。分析部44は、電流計43により検出されたトンネル電流の電流値に基づき試料の分析を行う。トンネル電流の電流値は、ナノギャップ17を通過する試料の電気抵抗に応じて変化する。このため、例えば一本鎖DNAがナノギャップ17を通過する場合、分析部44は、一本鎖DNAを構成する塩基の種類に応じて変化するトンネル電流の電流値に基づき、塩基を同定し、塩基配列等の分析を行うことができる。 The analysis unit 44 is electrically connected to the ammeter 43. The analysis unit 44 analyzes the sample based on the current value of the tunnel current detected by the ammeter 43. The current value of the tunnel current changes according to the electrical resistance of the sample passing through the nanogap 17. Therefore, for example, when the single-stranded DNA passes through the nanogap 17, the analysis unit 44 identifies the base based on the current value of the tunnel current that changes depending on the type of the base constituting the single-stranded DNA. It is possible to analyze the base sequence and the like.
 分析装置40は、図示していないが、試料の電気泳動を行うための一対の電極と、一対の電極に電圧を印加するための電源とを備えていてもよい。電源から一対の電極に電圧が印加されることにより、試料の電気泳動が行われ、試料がナノギャップ17およびナノポア13を通過する。圧力により試料を流すように構成してもよく、電気泳動と圧力を併用して試料を流すように構成してもよい。 Although not shown, the analyzer 40 may include a pair of electrodes for performing electrophoresis of a sample and a power source for applying a voltage to the pair of electrodes. By applying a voltage from the power source to the pair of electrodes, the sample is electrophoresed and the sample passes through the nanogap 17 and the nanopore 13. The sample may be configured to flow by pressure, or the sample may be configured to flow by using electrophoresis and pressure in combination.
 分析装置40は、一対の電極部14a,14b間に第1の電圧を印加し、ナノポア上部領域15にナノギャップ17を形成し、続いて一対の電極部14a,14b間に第2の電圧を印加し、試料がナノギャップ17を通過したときのトンネル電流を検出することにより、試料の分析を行う。したがって、分析装置40は、ナノギャップ17の形成と試料の分析とを連続して行うことができる。 The analyzer 40 applies a first voltage between the pair of electrode portions 14a and 14b to form a nanogap 17 in the nanopore upper region 15, and subsequently applies a second voltage between the pair of electrode portions 14a and 14b. The sample is analyzed by applying the voltage and detecting the tunnel current when the sample passes through the nanogap 17. Therefore, the analyzer 40 can continuously form the nanogap 17 and analyze the sample.
 なお、分析装置40にナノギャップ電極構造前駆体30を供してもよい。一対の電極部24a,24b間に電圧を印加し、ナノポア上部領域25にナノギャップ17を形成することにより、ナノギャップ電極構造体10を得ることができる。 The nanogap electrode structure precursor 30 may be provided in the analyzer 40. The nanogap electrode structure 10 can be obtained by applying a voltage between the pair of electrode portions 24a and 24b to form the nanogap 17 in the nanopore upper region 25.
 次に、分析方法について説明する。分析方法は、ナノポアを有する絶縁膜に設けられたナノギャップ電極であって、ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極にナノギャップを形成する第1の工程と、試料がナノギャップを通過したときのトンネル電流を検出し、トンネル電流の電流値に基づき試料の分析を行う第2の工程とを有する。本実施形態では、分析装置40を用いた分析方法を説明する。 Next, the analysis method will be explained. The analysis method is a first nanogap electrode provided on an insulating film having nanopores, in which a nanogap is formed in a nanogap electrode composed of a pair of electrode portions having a nanopore upper region located above the nanopores. A second step of detecting the tunnel current when the sample passes through the nanogap and analyzing the sample based on the current value of the tunnel current. In this embodiment, an analysis method using the analyzer 40 will be described.
 第1の工程では、まず、第1の電極部14aと第2の電極部14bとが切断されていない状態のナノギャップ電極構造体10を分析装置40に供する。制御部42は、電源41の電圧を第1の電圧に設定する第1の制御を行う。一対の電極部14a,14b間に第1の電圧が印加されることにより流れる電流によってエレクトロマイグレーションが発生し、ナノポア上部領域15にナノギャップ17が形成される。このように、本実施形態に係る分析方法では簡易な方法で安定にナノギャップ17を形成できる。 In the first step, first, the nanogap electrode structure 10 in a state where the first electrode portion 14a and the second electrode portion 14b are not cut is provided to the analyzer 40. The control unit 42 performs the first control for setting the voltage of the power supply 41 to the first voltage. Electromigration is generated by the current flowing due to the application of the first voltage between the pair of electrode portions 14a and 14b, and the nanogap 17 is formed in the nanopore upper region 15. As described above, in the analysis method according to the present embodiment, the nanogap 17 can be stably formed by a simple method.
 第2の工程では、制御部42は、電源41の電圧を第2の電圧に設定する第2の制御を行う。一対の電極部14a,14b間に第2の電圧が印加されることにより、ナノギャップ17を介して対向する一対の電極部14a,14bの間にトンネル電流が発生する。電流計43はトンネル電流を検出する。分析部44は、試料がナノギャップ17を通過したときに電流計43で検出されたトンネル電流の電流値に基づき、試料の分析を行う。ナノポア13上にナノギャップ17が形成されるため、分析対象である試料を効率良くナノギャップに誘導できる。 In the second step, the control unit 42 performs the second control of setting the voltage of the power supply 41 to the second voltage. By applying a second voltage between the pair of electrode portions 14a and 14b, a tunnel current is generated between the pair of electrode portions 14a and 14b facing each other via the nanogap 17. The ammeter 43 detects the tunnel current. The analysis unit 44 analyzes the sample based on the current value of the tunnel current detected by the ammeter 43 when the sample passes through the nanogap 17. Since the nanogap 17 is formed on the nanopore 13, the sample to be analyzed can be efficiently guided to the nanogap.
 [第2実施形態]
 図11は、第2実施形態に係るナノギャップ電極構造体50のナノポア13付近を拡大した拡大図である。以下の説明では、上記第1実施形態と同じ部材については、同符号を付して説明を省略する。
[Second Embodiment]
FIG. 11 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 50 according to the second embodiment. In the following description, the same members as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 ナノギャップ電極構造体50は、絶縁膜11と、絶縁膜11に設けられたナノギャップ電極52とを備える。ナノギャップ電極52は、一対の電極部54a,54bを有する。一対の電極部54a,54bは、ナノポア13の上部に位置するナノポア上部領域55(第1のナノポア上部領域55a,第2のナノポア上部領域55b)と、絶縁膜11の上部に位置し、ナノポア上部領域55と接続する接続領域56(第1の接続領域56a,第2の接続領域56b)とを有する。ナノポア上部領域55には、ナノポア13と接続するナノギャップ17が設けられている。 The nanogap electrode structure 50 includes an insulating film 11 and a nanogap electrode 52 provided on the insulating film 11. The nanogap electrode 52 has a pair of electrode portions 54a and 54b. The pair of electrode portions 54a and 54b are located above the nanopore 13 and the nanopore upper region 55 (first nanopore upper region 55a, second nanopore upper region 55b) and above the insulating film 11 and are located above the nanopore. It has a connection area 56 (first connection area 56a, second connection area 56b) to be connected to the area 55. The nanopore upper region 55 is provided with a nanogap 17 that connects to the nanopore 13.
 ナノギャップ電極52は、上記第1実施形態に係るナノギャップ電極12と同様に、ナノポア13の中心に向かうほど幅(Y軸方向における長さ)が小さくなっている。ナノギャップ電極52は、ナノポア13付近に薄肉部57を有することが、ナノギャップ電極12と異なる。薄肉部57は、ナノギャップ電極52の表面と裏面との少なくとも一方を凹ませた部位であり、図11ではナノギャップ電極52の裏面を凹ませた部位である。薄肉部57は、ナノギャップ電極52における他の部位よりも厚み(Z軸方向における長さ)が小さい。薄肉部57は、ナノポア上部領域55に少なくとも設けられ、図11ではナノポア上部領域55の全部と接続領域56の一部とに設けられている。また、図11に示す薄肉部57は、ナノギャップ電極52の裏面に加え側面も凹ませた形状を有し、ナノギャップ電極52における他の部位よりも幅(Y軸方向における長さ)が小さい。 Similar to the nanogap electrode 12 according to the first embodiment, the nanogap electrode 52 has a smaller width (length in the Y-axis direction) toward the center of the nanopore 13. The nanogap electrode 52 is different from the nanogap electrode 12 in that it has a thin portion 57 in the vicinity of the nanopore 13. The thin portion 57 is a portion in which at least one of the front surface and the back surface of the nanogap electrode 52 is recessed, and in FIG. 11, a portion in which the back surface of the nanogap electrode 52 is recessed. The thin portion 57 has a smaller thickness (length in the Z-axis direction) than other portions of the nanogap electrode 52. The thin portion 57 is provided at least in the nanopore upper region 55, and in FIG. 11, it is provided in the entire nanopore upper region 55 and a part of the connection region 56. Further, the thin-walled portion 57 shown in FIG. 11 has a shape in which the side surface is recessed in addition to the back surface of the nanogap electrode 52, and the width (length in the Y-axis direction) is smaller than that of other portions in the nanogap electrode 52. ..
 ナノギャップ電極52は、上記のようにナノポア13の中心に向かうほど幅が小さく、かつナノポア13付近に薄肉部57を有している。このため、一対の電極部54a,54bの間に電流が流れる方向(X軸方向)と直交する平面(YZ平面)において、ナノポア上部領域55の断面積の最小値は、接続領域56の断面積の最小値より小さい。接続領域56よりも厚みが小さいナノポア上部領域55では、接続領域56よりも電流密度が大きくなり、エレクトロマイグレーションによる断線がより発生しやすくなるため、ナノギャップ17が確実に形成される。 As described above, the nanogap electrode 52 has a smaller width toward the center of the nanopore 13 and has a thin portion 57 in the vicinity of the nanopore 13. Therefore, in the plane (YZ plane) orthogonal to the direction in which the current flows between the pair of electrode portions 54a and 54b (X-axis direction), the minimum cross-sectional area of the nanopore upper region 55 is the cross-sectional area of the connection region 56. Less than the minimum value of. In the nanopore upper region 55 having a thickness smaller than the connection region 56, the current density is higher than that in the connection region 56, and disconnection due to electromigration is more likely to occur, so that the nanogap 17 is surely formed.
 図12は、ナノギャップ電極構造体50の第1の電極部54aと第2の電極部54bとが切断されていない状態を示す拡大図である。互いに接続している一対の電極部54a,54b間に電圧を印加することで、ナノポア上部領域55にエレクトロマイグレーションによる断線を発生させ、ナノポア上部領域55にナノギャップ17を形成することができる(図11参照)。 FIG. 12 is an enlarged view showing a state in which the first electrode portion 54a and the second electrode portion 54b of the nanogap electrode structure 50 are not cut. By applying a voltage between the pair of electrode portions 54a and 54b connected to each other, it is possible to generate a disconnection due to electromigration in the nanopore upper region 55 and form a nanogap 17 in the nanopore upper region 55 (Fig.). 11).
 次に、ナノギャップ電極構造体50の製造方法を説明する。ナノギャップ電極構造体50の製造方法は、まず、上記第1実施形態と同様に、絶縁膜形成工程(図4A,4B参照)、ナノポア形成工程(図5A,5B参照)、ナノポア埋め込み工程(図6A,6B参照)、電極形成工程(図7A,7B参照)、流路形成工程(図8A,8B参照)を行う。そして、流路形成工程後に、ナノポア23からウェットエッチング液を流入させ、ナノギャップ電極22のナノポア上部領域25の裏面に対しウェットエッチングを行い、ナノポア上部領域25の裏面を厚み方向に部分的に除去し、ナノポア上部領域25を薄肉化する。ナノポア上部領域25の裏面をウェットエッチングにより除去する際に、ナノギャップ電極22が等方的にエッチングされることにより、接続領域26の裏面も厚み方向に部分的に除去され、ナノポア上部領域25の側面および接続領域26の側面も幅方向に部分的に除去される。この結果、ナノポア23付近において、ナノギャップ電極22の裏面と側面とに凹みが形成される。ナノポア23付近の裏面と側面とに凹みが形成されたナノギャップ電極22が、薄肉部57を有するナノギャップ電極52(図12参照)である。 Next, a method for manufacturing the nanogap electrode structure 50 will be described. The method for manufacturing the nanogap electrode structure 50 is as follows: first, an insulating film forming step (see FIGS. 4A and 4B), a nanopore forming step (see FIGS. 5A and 5B), and a nanopore embedding step (see FIGS. 5A and 5B), as in the first embodiment. 6A and 6B), an electrode forming step (see FIGS. 7A and 7B), and a flow path forming step (see FIGS. 8A and 8B) are performed. Then, after the flow path forming step, the wet etching solution is flowed from the nanopore 23, wet etching is performed on the back surface of the nanopore upper region 25 of the nanogap electrode 22, and the back surface of the nanopore upper region 25 is partially removed in the thickness direction. Then, the nanopore upper region 25 is thinned. When the back surface of the nanopore upper region 25 is removed by wet etching, the nanogap electrode 22 is isotropically etched, so that the back surface of the connection region 26 is also partially removed in the thickness direction of the nanopore upper region 25. The sides and sides of the connection area 26 are also partially removed in the width direction. As a result, dents are formed on the back surface and the side surface of the nanogap electrode 22 in the vicinity of the nanopore 23. The nanogap electrode 22 having dents formed on the back surface and the side surface in the vicinity of the nanopore 23 is the nanogap electrode 52 (see FIG. 12) having a thin-walled portion 57.
 なお、薄肉部57は、ナノギャップ電極52の裏面と側面とを凹ませた形状を有するものに限られない。薄肉部57の変形例を以下に説明する。 The thin-walled portion 57 is not limited to the one having a shape in which the back surface and the side surface of the nanogap electrode 52 are recessed. A modified example of the thin-walled portion 57 will be described below.
 図13に示すように、薄肉部58は、ナノギャップ電極52の側面を凹ませず、ナノギャップ電極52の裏面のみを凹ませた部位である。ナノギャップ電極52の側面を凹ませず、裏面のみを凹ませる場合は、例えば、流路形成工程後のナノギャップ電極22のナノポア上部領域25(図8A,8B参照)の裏面に対しドライエッチングによる異方性エッチングを行う。また、ナノギャップ電極52の裏面に凹みを形成する代わりに、ナノギャップ電極52の表面に凹みを形成してもよく、ナノギャップ電極52の表面および裏面の両面に凹みを形成してもよい。ウェットエッチングやドライエッチングを行う代わりに、電子ビームを照射してもよい。電子ビームを用いる場合は、微細な溝を有するナノポア上部領域55を形成することもできる。ナノポア上部領域55の溝の部分では、接続領域56よりも断面積が小さいため、エレクトロマイグレーションによる断線が発生しやすくなる。 As shown in FIG. 13, the thin-walled portion 58 is a portion in which the side surface of the nanogap electrode 52 is not recessed and only the back surface of the nanogap electrode 52 is recessed. When the side surface of the nanogap electrode 52 is not recessed and only the back surface is recessed, for example, the back surface of the nanopore upper region 25 (see FIGS. 8A and 8B) of the nanogap electrode 22 after the flow path forming step is dry-etched. Anisotropic etching is performed. Further, instead of forming a dent on the back surface of the nanogap electrode 52, a dent may be formed on the front surface of the nanogap electrode 52, or a dent may be formed on both the front surface and the back surface of the nanogap electrode 52. Instead of performing wet etching or dry etching, an electron beam may be irradiated. When an electron beam is used, the nanopore upper region 55 having a fine groove can also be formed. Since the cross-sectional area of the groove portion of the nanopore upper region 55 is smaller than that of the connection region 56, disconnection due to electromigration is likely to occur.
 [第3実施形態]
 図14は、第3実施形態に係るナノギャップ電極構造体60のナノポア13付近を拡大した拡大図である。
[Third Embodiment]
FIG. 14 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 60 according to the third embodiment.
 ナノギャップ電極構造体60は、絶縁膜11と、絶縁膜11に設けられたナノギャップ電極62とを備える。ナノギャップ電極62は、一対の電極部64a,64bを有する。一対の電極部64a,64bは、ナノポア13の上部に位置するナノポア上部領域65(第1のナノポア上部領域65a,第2のナノポア上部領域65b)と、絶縁膜11の上部に位置し、ナノポア上部領域65と接続する接続領域66(第1の接続領域66a,第2の接続領域66b)とを有する。ナノポア上部領域65には、ナノポア13と接続するナノギャップ17が設けられている。 The nanogap electrode structure 60 includes an insulating film 11 and a nanogap electrode 62 provided on the insulating film 11. The nanogap electrode 62 has a pair of electrode portions 64a and 64b. The pair of electrode portions 64a and 64b are located above the nanopore 13 and the nanopore upper region 65 (first nanopore upper region 65a, second nanopore upper region 65b) and above the insulating film 11 and are located above the nanopore. It has a connection area 66 (first connection area 66a, second connection area 66b) connected to the area 65. The nanopore upper region 65 is provided with a nanogap 17 that connects to the nanopore 13.
 第3実施形態では、ナノポア上部領域65の構成が、上記第1実施形態に係るナノポア上部領域15、および上記第2実施形態に係るナノポア上部領域55と異なる。第3実施形態では、例えば、図8A,8Bに示す流路形成工程の後に、ナノギャップ電極22のナノポア上部領域25に対しイオン注入を行い、ナノポア上部領域25の材質を変質させる。ナノポア上部領域25に注入する元素としては、例えば、Si、Ni、TiやCr等が挙げられる。変質したナノポア上部領域25が、第3実施形態に係るナノポア上部領域65である。ナノポア上部領域25を変質させる方法は、上記のイオン注入法に限られない。例えば、基板20と絶縁膜21をマスクとして用い、プラズマ処理、またはレーザアニールや電子ビームアニール等のアニール処理を行ってもよい。 In the third embodiment, the configuration of the nanopore upper region 65 is different from the nanopore upper region 15 according to the first embodiment and the nanopore upper region 55 according to the second embodiment. In the third embodiment, for example, after the flow path forming step shown in FIGS. 8A and 8B, ion implantation is performed into the nanopore upper region 25 of the nanogap electrode 22 to change the material of the nanopore upper region 25. Examples of the element to be injected into the nanopore upper region 25 include Si, Ni, Ti, Cr and the like. The altered nanopore upper region 25 is the nanopore upper region 65 according to the third embodiment. The method of altering the nanopore upper region 25 is not limited to the ion implantation method described above. For example, the substrate 20 and the insulating film 21 may be used as masks for plasma treatment or annealing treatment such as laser annealing or electron beam annealing.
 ナノポア上部領域65は、接続領域66を構成する材料が変質した変質物を含む。変質したナノポア上部領域65では、変質していない接続領域66よりもエレクトロマイグレーションによる断線がより発生しやすくなるため、ナノギャップ17が確実に形成される。 The nanopore upper region 65 contains a alteration of the material constituting the connection region 66. In the altered nanopore upper region 65, disconnection due to electromigration is more likely to occur than in the unaltered connection region 66, so that the nanogap 17 is surely formed.
 図15は、ナノギャップ電極構造体60の第1の電極部64aと第2の電極部64bとが切断されていない状態を示す拡大図である。互いに接続している一対の電極部64a,64b間に電圧を印加することで、ナノポア上部領域65にエレクトロマイグレーションによる断線を発生させ、ナノポア上部領域65にナノギャップ17を形成することができる(図14参照)。 FIG. 15 is an enlarged view showing a state in which the first electrode portion 64a and the second electrode portion 64b of the nanogap electrode structure 60 are not cut. By applying a voltage between the pair of electrode portions 64a and 64b connected to each other, it is possible to generate a disconnection due to electromigration in the nanopore upper region 65 and form a nanogap 17 in the nanopore upper region 65 (Fig.). 14).
 なお、上記第2実施形態のように接続領域よりも厚みが小さいナノポア上部領域を変質させてもよい。すなわち、ナノポア上部領域は、接続領域よりも厚みが小さく、かつ、接続領域を構成する材料が変質した変質物を含むものでもよい。 It should be noted that the nanopore upper region having a thickness smaller than that of the connecting region may be altered as in the second embodiment. That is, the nanopore upper region may be smaller in thickness than the connection region and may contain a altered material in which the material constituting the connection region is altered.
 [第4実施形態]
 図16に示すように、第4実施形態に係るナノギャップ電極構造体70は、ナノギャップ電極12を絶縁膜11に接着するための接着層71を備える。上記第1実施形態と同じ部材については、同符号を付して説明を省略する。
[Fourth Embodiment]
As shown in FIG. 16, the nanogap electrode structure 70 according to the fourth embodiment includes an adhesive layer 71 for adhering the nanogap electrode 12 to the insulating film 11. The same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 接着層71は、絶縁膜11とナノギャップ電極12との間に設けられている。接着層71は、ナノギャップ電極12の接続領域16と接触し、ナノポア上部領域15と非接触である。接着層71は、ナノポア13に対応する部分が開口している。接着層71の材料は、例えば、TiやCr等である。接着層71の厚みは、例えば2nmである。平面視における接着層71の外形形状は、特に限定されないが、ナノギャップ電極12と同形状、またはナノギャップ電極12より大きい相似形状が好ましい。 The adhesive layer 71 is provided between the insulating film 11 and the nanogap electrode 12. The adhesive layer 71 is in contact with the connection region 16 of the nanogap electrode 12 and is not in contact with the nanopore upper region 15. The adhesive layer 71 has a portion corresponding to the nanopore 13 open. The material of the adhesive layer 71 is, for example, Ti, Cr, or the like. The thickness of the adhesive layer 71 is, for example, 2 nm. The outer shape of the adhesive layer 71 in a plan view is not particularly limited, but a similar shape similar to that of the nanogap electrode 12 or larger than the nanogap electrode 12 is preferable.
 接着層71を形成する方法の一例を以下に説明する。絶縁膜形成工程(図4A,4B参照)、ナノポア形成工程(図5A,5B参照)、ナノポア埋め込み工程(図6A,6B参照)を行った後に、接着層形成工程、電極形成工程、流路形成工程、接着層除去工程を行う。絶縁膜形成工程、ナノポア形成工程、ナノポア埋め込み工程は、上記第1実施形態と同じであるため説明を省略する。 An example of a method for forming the adhesive layer 71 will be described below. After performing the insulating film forming step (see FIGS. 4A and 4B), the nanopore forming step (see FIGS. 5A and 5B), and the nanopore embedding step (see FIGS. 6A and 6B), the adhesive layer forming step, the electrode forming step, and the flow path forming are performed. Perform the process and the adhesive layer removal process. Since the insulating film forming step, the nanopore forming step, and the nanopore embedding step are the same as those in the first embodiment, the description thereof will be omitted.
 図17A,17Bに示すように、接着層形成工程は、絶縁膜21に接着層72を形成する。まず、絶縁膜21にフォトレジストを塗布してフォトレジスト層(図示なし)を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングする。この例では、平面視における接着層72の外形形状が、ナノギャップ電極構造体70のナノギャップ電極12と同形状となるように、フォトレジスト層にレジストパターンを形成する。絶縁膜21のうち、接着層72を形成する部分が露出し、接着層72を形成しない部分がフォトレジスト層により被覆される。次に、ターゲット材として例えばTiを用いたスパッタリング法を行うことにより、フォトレジスト層上および露出した絶縁膜21上にTi膜を形成する。ナノギャップ電極22のナノポア上部領域25に対応する部分と、接続領域26に対応する部分とを有する接着層72が形成される。 As shown in FIGS. 17A and 17B, in the adhesive layer forming step, the adhesive layer 72 is formed on the insulating film 21. First, a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique. In this example, a resist pattern is formed on the photoresist layer so that the outer shape of the adhesive layer 72 in a plan view has the same shape as the nanogap electrode 12 of the nanogap electrode structure 70. The portion of the insulating film 21 that forms the adhesive layer 72 is exposed, and the portion that does not form the adhesive layer 72 is covered with the photoresist layer. Next, a Ti film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using, for example, Ti as the target material. An adhesive layer 72 having a portion corresponding to the nanopore upper region 25 of the nanogap electrode 22 and a portion corresponding to the connection region 26 is formed.
 図18A,18Bに示すように、電極形成工程では、ターゲット材としてAuを用いたスパッタリング法を行うことにより、接着層72上にAu膜を形成する。次に、リフトオフ法を行うことにより、フォトレジスト層とともにフォトレジスト層上の接着層72とAu膜とを除去する。接着層72上に残ったAu膜によりナノギャップ電極22が形成される。 As shown in FIGS. 18A and 18B, in the electrode forming step, an Au film is formed on the adhesive layer 72 by performing a sputtering method using Au as a target material. Next, the lift-off method is performed to remove the adhesive layer 72 and the Au film on the photoresist layer together with the photoresist layer. The Nanogap electrode 22 is formed by the Au film remaining on the adhesive layer 72.
 次に、流路形成工程(図8A,8B参照)を行う。流路形成工程は、上記第1実施形態と同じであるため詳細な説明は省略するが、保護膜の形成、流路29の形成、デポジット膜27の除去を行う。 Next, a flow path forming step (see FIGS. 8A and 8B) is performed. Since the flow path forming step is the same as that of the first embodiment, detailed description thereof will be omitted, but the protective film is formed, the flow path 29 is formed, and the deposit film 27 is removed.
 図19A,19Bに示すように、接着層除去工程は、接着層72のうち、ナノギャップ電極22のナノポア上部領域25と接する部分を除去する。接着層除去工程では、基板20の裏面から、接着層72の一部のスパッタエッチングを行う。これにより、接着層72のうち、ナノギャップ電極22のナノポア上部領域25と接する部分が除去され、ナノギャップ電極22の接続領域26と接する部分が残る。接着層72は、ナノポア23に対応する部分が開口する。接着層72のうちの接続領域26と接する部分が接着層71(図16参照)となる。なお、接着層72の一部を除去する方法としては、上記のスパッタエッチングに限られず、例えばウェットエッチングを行ってもよい。 As shown in FIGS. 19A and 19B, the adhesive layer removing step removes the portion of the adhesive layer 72 that is in contact with the nanopore upper region 25 of the nanogap electrode 22. In the adhesive layer removing step, a part of the adhesive layer 72 is sputter-etched from the back surface of the substrate 20. As a result, the portion of the adhesive layer 72 that is in contact with the nanopore upper region 25 of the nanogap electrode 22 is removed, and the portion that is in contact with the connection region 26 of the nanogap electrode 22 remains. The adhesive layer 72 has a portion corresponding to the nanopore 23 opened. The portion of the adhesive layer 72 in contact with the connection region 26 is the adhesive layer 71 (see FIG. 16). The method for removing a part of the adhesive layer 72 is not limited to the above-mentioned sputter etching, and for example, wet etching may be performed.
 以上のように、絶縁膜形成工程、ナノポア形成工程、ナノポア埋め込み工程、接着層形成工程、電極形成工程、流路形成工程、および接着層除去工程を行うことにより、接着層71を備えるナノギャップ電極構造体70が得られる(図16参照)。 As described above, the nanogap electrode provided with the adhesive layer 71 by performing the insulating film forming step, the nanopore forming step, the nanopore embedding step, the adhesive layer forming step, the electrode forming step, the flow path forming step, and the adhesive layer removing step. The structure 70 is obtained (see FIG. 16).
 なお、接着層71は、ナノギャップ電極12のナノポア上部領域15と非接触である場合に限られず、ナノポア上部領域15と接触するものでもよい。ナノポア上部領域15と接触する接着層71を得る場合は、接着層除去工程(図19A,19B参照)を行わない、または接着層除去工程において接着層72がナノポア上部領域25の裏面に残るように接着層72の一部を除去する。 The adhesive layer 71 is not limited to the case where it is not in contact with the nanopore upper region 15 of the nanogap electrode 12, and may be in contact with the nanopore upper region 15. When the adhesive layer 71 in contact with the nanopore upper region 15 is obtained, the adhesive layer removing step (see FIGS. 19A and 19B) is not performed, or the adhesive layer 72 remains on the back surface of the nanopore upper region 25 in the adhesive layer removing step. A part of the adhesive layer 72 is removed.
 接着層形成工程は、絶縁膜形成工程(図4A,4B参照)の次工程として行ってもよい。絶縁膜形成工程の次工程として接着層形成工程を行う場合を以下に説明する。 The adhesive layer forming step may be performed as the next step of the insulating film forming step (see FIGS. 4A and 4B). The case where the adhesive layer forming step is performed as the next step of the insulating film forming step will be described below.
 図20A,20Bに示すように、接着層形成工程は、絶縁膜21に接着層73を形成する。まず、絶縁膜21にフォトレジストを塗布してフォトレジスト層(図示なし)を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングする。この例では、平面視における接着層73の外形形状が、ナノギャップ電極構造体70のナノギャップ電極12より大きい相似形状となるように、フォトレジスト層にレジストパターンを形成する。図20Aには、ナノギャップ電極構造体70のナノギャップ電極12の外形形状に対応する部分を点線で示している。絶縁膜21のうち、接着層73を形成する部分が露出し、接着層73を形成しない部分がフォトレジスト層により被覆される。次に、ターゲット材として例えばTiを用いたスパッタリング法を行うことにより、フォトレジスト層上および露出した絶縁膜21上にTi膜を形成する。ナノギャップ電極22のナノポア上部領域25に対応する部分と、ナノギャップ電極22の接続領域26に対応する部分とを有する接着層73が形成される。 As shown in FIGS. 20A and 20B, in the adhesive layer forming step, the adhesive layer 73 is formed on the insulating film 21. First, a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown), and the photoresist layer is patterned by a photolithography technique. In this example, a resist pattern is formed on the photoresist layer so that the outer shape of the adhesive layer 73 in a plan view has a shape similar to that of the nanogap electrode 12 of the nanogap electrode structure 70. In FIG. 20A, the portion corresponding to the outer shape of the nanogap electrode 12 of the nanogap electrode structure 70 is shown by a dotted line. The portion of the insulating film 21 that forms the adhesive layer 73 is exposed, and the portion that does not form the adhesive layer 73 is covered with the photoresist layer. Next, a Ti film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using, for example, Ti as the target material. An adhesive layer 73 having a portion corresponding to the nanopore upper region 25 of the nanogap electrode 22 and a portion corresponding to the connection region 26 of the nanogap electrode 22 is formed.
 図21A,21Bに示すように、ナノポア形成工程は、絶縁膜21にナノポア23を形成する。接着層73と絶縁膜21とにフォトレジストを塗布してフォトレジスト層を形成し、フォトリソグラフィー技術によりフォトレジスト層をパターニングし、パターニングされたフォトレジスト層をマスクとして接着層73と絶縁膜21とをドライエッチングする。これにより、絶縁膜21にナノポア23が形成される。接着層73は、ナノポア23に対応する部分が開口するため、次工程である電極形成工程で形成されるナノギャップ電極22のナノポア上部領域25と接する部分を有しない。したがって、ナノポア形成工程は、接着層73のうち、ナノギャップ電極22のナノポア上部領域25と接する部分を除去する接着層除去工程を含む。 As shown in FIGS. 21A and 21B, the nanopore forming step forms the nanopore 23 on the insulating film 21. A photoresist is applied to the adhesive layer 73 and the insulating film 21 to form a photoresist layer, the photoresist layer is patterned by photolithography technology, and the bonded layer 73 and the insulating film 21 are formed using the patterned photoresist layer as a mask. Is dry etched. As a result, the nanopore 23 is formed on the insulating film 21. Since the portion corresponding to the nanopore 23 is opened, the adhesive layer 73 does not have a portion in contact with the nanopore upper region 25 of the nanogap electrode 22 formed in the electrode forming step which is the next step. Therefore, the nanopore forming step includes an adhesive layer removing step of removing the portion of the adhesive layer 73 in contact with the nanopore upper region 25 of the nanogap electrode 22.
 ナノポア形成工程後、上記第1実施形態と同様に、ナノポア埋め込み工程、電極形成工程、および流路形成工程を行うことにより、接着層71を備えるナノギャップ電極構造体70が得られる(図16参照)。 After the nanopore forming step, the nanogap electrode structure 70 including the adhesive layer 71 is obtained by performing the nanopore embedding step, the electrode forming step, and the flow path forming step in the same manner as in the first embodiment (see FIG. 16). ).
 [第5実施形態]
 図22は、第5実施形態に係るナノギャップ電極構造体80のナノポア13付近を拡大した拡大図である。
[Fifth Embodiment]
FIG. 22 is an enlarged view of the vicinity of the nanopore 13 of the nanogap electrode structure 80 according to the fifth embodiment.
 ナノギャップ電極構造体80は、絶縁膜11と、絶縁膜11に設けられたナノギャップ電極82とを備える。ナノギャップ電極82は、一対の電極部84a,84bを有する。一対の電極部84a,84bは、ナノポア13の上部に位置するナノポア上部領域85(第1のナノポア上部領域85a,第2のナノポア上部領域85b)と、絶縁膜11の上部に位置し、ナノポア上部領域85と接続する接続領域86(第1の接続領域86a,第2の接続領域86b)とを有する。ナノポア上部領域85には、ナノポア13と接続するナノギャップ17が設けられている。 The nanogap electrode structure 80 includes an insulating film 11 and a nanogap electrode 82 provided on the insulating film 11. The nanogap electrode 82 has a pair of electrode portions 84a and 84b. The pair of electrode portions 84a and 84b are located above the nanopore 13 and the nanopore upper region 85 (first nanopore upper region 85a, second nanopore upper region 85b) and above the insulating film 11 and are located above the nanopore. It has a connection region 86 (first connection region 86a, second connection region 86b) to be connected to the region 85. The nanopore upper region 85 is provided with a nanogap 17 that connects to the nanopore 13.
 ナノギャップ電極82は、ナノポア上部領域85に単層構造を有し、接続領域86に積層構造を有することにより、ナノポア上部領域85の厚みが接続領域86の厚みより小さい。単層構造と積層構造との境界は、図22ではナノポア上部領域85と接続領域86との境界と同じ位置に有している。 The nanogap electrode 82 has a single-layer structure in the nanopore upper region 85 and a laminated structure in the connection region 86, so that the thickness of the nanopore upper region 85 is smaller than the thickness of the connection region 86. The boundary between the single-layer structure and the laminated structure has the same position as the boundary between the nanopore upper region 85 and the connection region 86 in FIG. 22.
 ナノギャップ電極82は、絶縁膜11上に設けられた第1層82aと、第1層82a上およびナノポア13上に設けられた第2層82bとにより構成されている。第1層82aは、絶縁膜11上にのみ設けられ、ナノポア13上には設けられていない。第2層82bは、段差形状を有しており、第1層82a上に設けられた部分とナノポア13上に設けられた部分とのZ軸方向における位置(高さ)が異なる。平面視における第2層82bの外形形状は、この例では第1層82aの外形形状と同形状であるが、相似形状でもよい。 The nanogap electrode 82 is composed of a first layer 82a provided on the insulating film 11 and a second layer 82b provided on the first layer 82a and the nanopore 13. The first layer 82a is provided only on the insulating film 11 and not on the nanopore 13. The second layer 82b has a stepped shape, and the positions (heights) in the Z-axis direction are different between the portion provided on the first layer 82a and the portion provided on the nanopore 13. The outer shape of the second layer 82b in a plan view is the same as the outer shape of the first layer 82a in this example, but may be a similar shape.
 ナノギャップ電極82では、ナノポア上部領域85が第2層82bにより構成され、接続領域86が第1層82aと第2層82bとにより構成されている。換言すると、ナノギャップ電極82は、ナノポア上部領域85に単層構造を有し、接続領域86に積層構造を有しており、ナノポア上部領域85の厚みが接続領域86の厚みより小さい。具体的には、ナノポア上部領域85の厚みの最小値が、接続領域86の厚みの最小値より小さい。このため、一対の電極部84a,84bの間に電流が流れる方向(X軸方向)と直交する平面(YZ平面)において、ナノポア上部領域85の断面積の最小値は、接続領域86の断面積の最小値より小さい。接続領域86よりも厚みが小さいナノポア上部領域85では、接続領域86よりも電流密度が大きくなり、エレクトロマイグレーションによる断線がより発生しやすくなるため、ナノギャップ17が確実に形成される。 In the nanogap electrode 82, the nanopore upper region 85 is composed of the second layer 82b, and the connection region 86 is composed of the first layer 82a and the second layer 82b. In other words, the nanogap electrode 82 has a single-layer structure in the nanopore upper region 85 and a laminated structure in the connection region 86, and the thickness of the nanopore upper region 85 is smaller than the thickness of the connection region 86. Specifically, the minimum thickness of the nanopore upper region 85 is smaller than the minimum thickness of the connecting region 86. Therefore, in the plane (YZ plane) orthogonal to the direction in which the current flows between the pair of electrode portions 84a and 84b (X-axis direction), the minimum cross-sectional area of the nanopore upper region 85 is the cross-sectional area of the connection region 86. Less than the minimum value of. In the nanopore upper region 85, which is thinner than the connection region 86, the current density is higher than that in the connection region 86, and disconnection due to electromigration is more likely to occur, so that the nanogap 17 is surely formed.
 ナノポア上部領域85に単層構造を少なくとも有するものであれば、ナノポア上部領域85にナノギャップ17を形成することができる。したがって、単層構造と積層構造との境界は、上記のようにナノポア上部領域85と接続領域86との境界と同じ位置に有する場合に限られず、ナノポア上部領域85内または接続領域86内に有してもよい。 A nanogap 17 can be formed in the nanopore upper region 85 as long as it has at least a single layer structure in the nanopore upper region 85. Therefore, the boundary between the single-layer structure and the laminated structure is not limited to the case where it is held at the same position as the boundary between the nanopore upper region 85 and the connection region 86 as described above, and exists in the nanopore upper region 85 or the connection region 86. You may.
 第1層82aと第2層82bとは、この例では同じ材料(例えばAu)で形成されるが、異なる材料で形成してもよい。第1層82aと第2層82bとを異なる材料で形成する場合は、例えば、第1層82aとしてTiやCr、第2層82bとしてAu、Pt等を組み合わせて用いることができる。この際、第2層82b成膜前に第1層82a表面のクリーニングを行ってもよい。 The first layer 82a and the second layer 82b are formed of the same material (for example, Au) in this example, but may be formed of different materials. When the first layer 82a and the second layer 82b are formed of different materials, for example, Ti or Cr can be used as the first layer 82a, Au, Pt or the like can be used as the second layer 82b in combination. At this time, the surface of the first layer 82a may be cleaned before the film formation of the second layer 82b is formed.
 図23は、ナノギャップ電極構造体80の第1の電極部84aと第2の電極部84bとが切断されていない状態を示す拡大図である。互いに接続している一対の電極部84a,84b間に電圧を印加することで、ナノポア上部領域85にエレクトロマイグレーションによる断線を発生させ、ナノポア上部領域85にナノギャップ17を形成することができる(図22参照)。 FIG. 23 is an enlarged view showing a state in which the first electrode portion 84a and the second electrode portion 84b of the nanogap electrode structure 80 are not cut. By applying a voltage between the pair of electrode portions 84a and 84b connected to each other, it is possible to generate a disconnection due to electromigration in the nanopore upper region 85 and form a nanogap 17 in the nanopore upper region 85 (Fig.). 22).
 次に、ナノギャップ電極構造体80の製造方法を説明する。ナノギャップ電極構造体80の製造方法は、まず、上記第1実施形態と同様に、絶縁膜形成工程(図4A,4B参照)、ナノポア形成工程(図5A,5B参照)、ナノポア埋め込み工程(図6A,6B参照)を行う。そして、ナノポア埋め込み工程後に、電極形成工程と流路形成工程とを行う。 Next, a method for manufacturing the nanogap electrode structure 80 will be described. The method for manufacturing the nanogap electrode structure 80 is as follows: first, an insulating film forming step (see FIGS. 4A and 4B), a nanopore forming step (see FIGS. 5A and 5B), and a nanopore embedding step (see FIGS. 5A and 5B), as in the first embodiment. 6A, 6B). Then, after the nanopore embedding step, an electrode forming step and a flow path forming step are performed.
 電極形成工程は、第1層形成工程と第2層形成工程とを有する。図24A,24B~図25A,25Bを用いて、第5実施形態に係る電極形成工程を説明する。 The electrode forming step includes a first layer forming step and a second layer forming step. The electrode forming step according to the fifth embodiment will be described with reference to FIGS. 24A and 24B to 25A and 25B.
 図24A,24Bに示すように、第1層形成工程は、絶縁膜21上に第1層92aを形成する。まず、絶縁膜21にフォトレジストを塗布してフォトレジスト層(図示なし)を形成する。フォトリソグラフィー技術によりフォトレジスト層をパターニングすることにより、絶縁膜21のうち、第1層92aを形成する部分を露出させ、第1層92aを形成しない部分をフォトレジスト層で被覆する。第1層形成工程では、ナノポア23上に第1層92aを形成しないので、ナノポア23内のデポジット膜27をフォトレジスト層で被覆する。次に、ターゲット材としてAuを用いたスパッタリング法を行うことにより、フォトレジスト層上および露出した絶縁膜21上に、Au膜を形成する。次に、リフトオフ法を行うことにより、フォトレジスト層とともにフォトレジスト層上のAu膜を除去する。絶縁膜21上に残ったAu膜により第1層92aが形成される。 As shown in FIGS. 24A and 24B, in the first layer forming step, the first layer 92a is formed on the insulating film 21. First, a photoresist is applied to the insulating film 21 to form a photoresist layer (not shown). By patterning the photoresist layer by a photolithography technique, the portion of the insulating film 21 that forms the first layer 92a is exposed, and the portion that does not form the first layer 92a is covered with the photoresist layer. In the first layer forming step, since the first layer 92a is not formed on the nanopore 23, the deposit film 27 in the nanopore 23 is covered with the photoresist layer. Next, an Au film is formed on the photoresist layer and on the exposed insulating film 21 by performing a sputtering method using Au as the target material. Next, the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method. The first layer 92a is formed by the Au film remaining on the insulating film 21.
 図25A,25Bに示すように、第2層形成工程は、第1層92a上およびナノポア23上に第2層92bを形成する。まず、絶縁膜21および第1層92aにフォトレジストを塗布してフォトレジスト層(図示なし)を形成する。フォトリソグラフィー技術によりフォトレジスト層をパターニングすることにより、第2層92bを形成する部分を露出させ、第2層92bを形成しない部分をフォトレジスト層で被覆する。第2層形成工程では、ナノポア23の中心に向かうほど幅が小さくなるように、ナノポア23上に第2層92bを部分的に形成する。このため、ナノポア23内のデポジット膜27のうち、第2層92bを形成しない部分をフォトレジスト層で被覆する。次に、ターゲット材としてAuを用いたスパッタリング法を行うことにより、第1層92a上およびフォトレジスト層上に、Au膜を形成する。次に、リフトオフ法を行うことにより、フォトレジスト層とともにフォトレジスト層上のAu膜を除去する。第1層92a上およびデポジット膜27上に残ったAu膜により第2層92bが形成される。 As shown in FIGS. 25A and 25B, the second layer forming step forms the second layer 92b on the first layer 92a and the nanopore 23. First, a photoresist is applied to the insulating film 21 and the first layer 92a to form a photoresist layer (not shown). By patterning the photoresist layer by a photolithography technique, the portion forming the second layer 92b is exposed, and the portion not forming the second layer 92b is covered with the photoresist layer. In the second layer forming step, the second layer 92b is partially formed on the nanopore 23 so that the width becomes smaller toward the center of the nanopore 23. Therefore, the portion of the deposit film 27 in the nanopore 23 that does not form the second layer 92b is covered with the photoresist layer. Next, an Au film is formed on the first layer 92a and on the photoresist layer by performing a sputtering method using Au as the target material. Next, the Au film on the photoresist layer is removed together with the photoresist layer by performing a lift-off method. The Au film remaining on the first layer 92a and the deposit film 27 forms the second layer 92b.
 図26A,26Bに示すように、流路形成工程は、例えば上記第1実施形態と同様の方法で、基板20にナノポア23と接続する流路29を形成する。基板20に流路29を形成した後、デポジット膜27を、例えばウェットエッチング液としてHFを用いてウェットエッチングすることにより除去する。 As shown in FIGS. 26A and 26B, in the flow path forming step, for example, the flow path 29 connected to the nanopore 23 is formed on the substrate 20 by the same method as in the first embodiment. After forming the flow path 29 on the substrate 20, the deposit film 27 is removed by wet etching using, for example, HF as a wet etching solution.
 以上のように、絶縁膜形成工程、ナノポア形成工程、ナノポア埋め込み工程、第1層形成工程と第2層形成工程とを有する電極形成工程、流路形成工程を行うことにより、ナノギャップ電極構造体80が得られる(図23参照)。 As described above, the nanogap electrode structure is formed by performing the insulating film forming step, the nanopore forming step, the nanopore embedding step, the electrode forming step having the first layer forming step and the second layer forming step, and the flow path forming step. 80 is obtained (see FIG. 23).
 なお、ナノギャップ電極82は、上記のように第2層82bが段差形状を有しており、第1層82a上に設けられた部分とナノポア13上に設けられた部分とのZ軸方向における位置(高さ)が異なる構成である場合に限られない。例えば、第2層82bは、第1層82a上に設けられた部分とナノポア13上に設けられた部分とのZ軸方向における位置が同じでもよい。第1層形成工程(図24A,24B参照)を行った後に、デポジット膜27上に更にデポジット膜を形成し、第2層形成工程(図25A,25B)を行う。これにより、段差形状を有しない第2層82bを形成できる。 In the nanogap electrode 82, the second layer 82b has a stepped shape as described above, and the portion provided on the first layer 82a and the portion provided on the nanopore 13 are in the Z-axis direction. It is not limited to the case where the positions (heights) are different. For example, the second layer 82b may have the same position in the Z-axis direction between the portion provided on the first layer 82a and the portion provided on the nanopore 13. After performing the first layer forming step (see FIGS. 24A and 24B), a deposit film is further formed on the deposit film 27, and the second layer forming step (FIG. 25A and 25B) is performed. As a result, the second layer 82b having no step shape can be formed.
 平面視における第1層82aの外形形状は、第1層形成工程で第1層92aを形成する範囲を変更することにより、大きさを変更できる。平面視における第2層82bの外形形状は、第2層形成工程で第2層92bを形成する範囲を変更することにより、大きさを変更できる。 The outer shape of the first layer 82a in a plan view can be changed in size by changing the range in which the first layer 92a is formed in the first layer forming step. The outer shape of the second layer 82b in a plan view can be changed in size by changing the range in which the second layer 92b is formed in the second layer forming step.
 ナノギャップ電極82は、上記のように第1層82aが絶縁膜11上にのみ設けられ、ナノポア13上には設けられていない構成である場合に限られない。図示しないが、第1層82aは、絶縁膜11上およびナノポア13上に設けてもよい。第1層82aをナノポア13上に設ける場合、第2層82bは、第1層82a上にのみ設け、ナノポア13上には設けない。これにより、ナノポア上部領域85が第1層82aにより構成され、接続領域86が第1層82aと第2層82bとにより構成され、ナノポア上部領域85の厚みを、接続領域86の厚みより小さくできる。 The nanogap electrode 82 is not limited to the case where the first layer 82a is provided only on the insulating film 11 and is not provided on the nanopore 13 as described above. Although not shown, the first layer 82a may be provided on the insulating film 11 and the nanopore 13. When the first layer 82a is provided on the nanopore 13, the second layer 82b is provided only on the first layer 82a and not on the nanopore 13. As a result, the nanopore upper region 85 is composed of the first layer 82a, the connection region 86 is composed of the first layer 82a and the second layer 82b, and the thickness of the nanopore upper region 85 can be made smaller than the thickness of the connection region 86. ..
 本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。 The present invention is not limited to each of the above embodiments as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in each of the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment can be considered. Further, the components described in different embodiments may be combined as appropriate.
 第1実施形態に係るナノギャップ電極構造体10やナノギャップ電極構造前駆体30を分析装置40に供する場合に限られず、第2実施形態に係るナノギャップ電極構造体50、第3実施形態に係るナノギャップ電極構造体60、第4実施形態に係るナノギャップ電極構造体70、第5実施形態に係るナノギャップ電極構造体80を分析装置40に供してもよい。 The nanogap electrode structure 10 according to the first embodiment and the nanogap electrode structure precursor 30 are not limited to the case where the nanogap electrode structure precursor 30 is provided to the analyzer 40. The nanogap electrode structure 60, the nanogap electrode structure 70 according to the fourth embodiment, and the nanogap electrode structure 80 according to the fifth embodiment may be provided to the analyzer 40.
 10,50,60,70,80 ナノギャップ電極構造体
 11,21 絶縁膜
 12,22,52,62,82 ナノギャップ電極
 13,23 ナノポア
 14a,24a,54a,64a,84a 電極部(第1の電極部)
 14b,24b,54b,64b,84b 電極部(第2の電極部)
 15,25,55,65,85 ナノポア上部領域
 15a,25a,55a,65a,85a 第1のナノポア上部領域
 15b,25b,55b,65b,85b 第2のナノポア上部領域
 16,26,56,66,86 接続領域
 16a,26a,56a,66a,86a 第1の接続領域
 16b,26b,56b,66b,86b 第2の接続領域
 17 ナノギャップ
 18,20 基板
 19,29 流路
 30 ナノギャップ電極構造前駆体
 40 分析装置
 31,41 電源
 42 制御部
 43 電流計
 44 分析部
 71,72,73 接着層

 
10,50,60,70,80 Nanogap electrode structure 11,21 Insulation film 12,22,52,62,82 Nanogap electrode 13,23 Nanopore 14a, 24a, 54a, 64a, 84a Electrode part (first Electrode part)
14b, 24b, 54b, 64b, 84b Electrode part (second electrode part)
15,25,55,65,85 Nanopore upper region 15a, 25a, 55a, 65a, 85a First nanopore upper region 15b, 25b, 55b, 65b, 85b Second nanopore upper region 16,26,56,66, 86 Connection area 16a, 26a, 56a, 66a, 86a First connection area 16b, 26b, 56b, 66b, 86b Second connection area 17 Nanogap 18,20 Substrate 19,29 Channel 30 Nanogap electrode structure precursor 40 Analytical unit 31, 41 Power supply 42 Control unit 43 Ammeter 44 Analytical unit 71, 72, 73 Adhesive layer

Claims (11)

  1.  試料が通過するナノポアを有する絶縁膜と、
     前記絶縁膜に設けられ、一対の電極部の間にナノギャップを有するナノギャップ電極と
     を備え、
     前記一対の電極部は、前記ナノポアの上部に位置するナノポア上部領域と、前記絶縁膜の上部に位置し、前記ナノポア上部領域と接続する接続領域とを有し、
     前記ナノギャップは、前記ナノポア上部領域内に設けられているナノギャップ電極構造体。
    An insulating film with nanopores through which the sample passes, and
    A nanogap electrode provided on the insulating film and having a nanogap between a pair of electrode portions is provided.
    The pair of electrode portions has a nanopore upper region located above the nanopore and a connection region located above the insulating film and connected to the nanopore upper region.
    The nanogap is a nanogap electrode structure provided in the nanopore upper region.
  2.  前記ナノポア上部領域は、前記一対の電極部間に電圧が印加されたときに流れる電流によりエレクトロマイグレーションによる断線を誘発するように構成されている請求項1に記載のナノギャップ電極構造体。 The nanogap electrode structure according to claim 1, wherein the nanopore upper region is configured to induce disconnection due to electromigration by a current flowing when a voltage is applied between the pair of electrode portions.
  3.  前記一対の電極部の間に電流が流れる方向と直交する平面において、前記ナノポア上部領域の断面積の最小値は、前記接続領域の断面積の最小値より小さい請求項2に記載のナノギャップ電極構造体。 The nanogap electrode according to claim 2, wherein the minimum value of the cross-sectional area of the nanopore upper region is smaller than the minimum value of the cross-sectional area of the connection region in a plane orthogonal to the direction in which a current flows between the pair of electrodes. Structure.
  4.  前記ナノポア上部領域の厚みが前記接続領域の厚みより小さい請求項3に記載のナノギャップ電極構造体。 The nanogap electrode structure according to claim 3, wherein the thickness of the nanopore upper region is smaller than the thickness of the connection region.
  5.  前記ナノポア上部領域は、前記接続領域を構成する材料が変質した変質物を含む請求項2~4のいずれか1項に記載のナノギャップ電極構造体。 The nanogap electrode structure according to any one of claims 2 to 4, wherein the nanopore upper region contains a altered product in which the material constituting the connection region is altered.
  6.  前記絶縁膜と前記ナノギャップ電極との間に設けられた接着層を備え、
     前記接着層は、前記接続領域と接触し、前記ナノポア上部領域と非接触である請求項1~5のいずれか1項に記載のナノギャップ電極構造体。
    An adhesive layer provided between the insulating film and the nanogap electrode is provided.
    The nanogap electrode structure according to any one of claims 1 to 5, wherein the adhesive layer is in contact with the connection region and is not in contact with the nanopore upper region.
  7.  ナノポアを有する絶縁膜に設けられ、前記ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極を準備する準備工程と、
     前記一対の電極部間に電圧を印加し、エレクトロマイグレーションにより前記ナノポア上部領域にナノギャップを形成するナノギャップ形成工程とを有するナノギャップ電極構造体の製造方法。
    A preparatory step for preparing a nanogap electrode provided on an insulating film having a nanopore and composed of a pair of electrode portions having a nanopore upper region located above the nanopore.
    A method for manufacturing a nanogap electrode structure, comprising a nanogap forming step of applying a voltage between the pair of electrode portions and forming a nanogap in the nanopore upper region by electromigration.
  8.  前記準備工程は、
     基板に前記絶縁膜を形成する絶縁膜形成工程と、
     前記絶縁膜に前記ナノポアを形成するナノポア形成工程と、
     前記絶縁膜に前記ナノギャップ電極を形成する電極形成工程と、
     前記基板に前記ナノポアと接続する流路を形成する流路形成工程と
     を有する請求項7に記載のナノギャップ電極構造体の製造方法。
    The preparation step is
    The insulating film forming step of forming the insulating film on the substrate, and
    The nanopore forming step of forming the nanopore on the insulating film,
    An electrode forming step of forming the nanogap electrode on the insulating film and
    The method for manufacturing a nanogap electrode structure according to claim 7, further comprising a flow path forming step of forming a flow path connected to the nanopore on the substrate.
  9.  請求項1~6のいずれか1項に記載のナノギャップ電極構造体と、
     前記一対の電極部間に電圧を印加する電源と、
     前記一対の電極部の間に流れるトンネル電流を検出する電流計と、
     前記トンネル電流の電流値に基づき試料の分析を行う分析部とを備える分析装置。
    The nanogap electrode structure according to any one of claims 1 to 6.
    A power supply that applies a voltage between the pair of electrodes and
    An ammeter that detects the tunnel current flowing between the pair of electrodes,
    An analyzer including an analysis unit that analyzes a sample based on the current value of the tunnel current.
  10.  前記電源の電圧を第1の電圧に設定し、前記一対の電極部の間に前記ナノギャップを形成する第1の制御と、前記電源の電圧を前記第1の電圧とは異なる第2の電圧に設定し、前記一対の電極部の間に前記トンネル電流を発生させる第2の制御とを行う制御部を更に備える請求項9に記載の分析装置。 The first control in which the voltage of the power supply is set to the first voltage and the nanogap is formed between the pair of electrodes, and the voltage of the power supply is a second voltage different from the first voltage. The analyzer according to claim 9, further comprising a control unit for performing the second control for generating the tunnel current between the pair of electrode units.
  11.  ナノポアを有する絶縁膜に設けられ、前記ナノポアの上部に位置するナノポア上部領域を有する一対の電極部で構成されたナノギャップ電極にナノギャップを形成する第1の工程と、
     試料が前記ナノギャップを通過したときのトンネル電流を検出し、前記トンネル電流の電流値に基づき前記試料の分析を行う第2の工程とを有する分析方法。

     
    The first step of forming a nanogap in a nanogap electrode provided on an insulating film having nanopores and composed of a pair of electrode portions having a nanopore upper region located above the nanopores.
    An analysis method comprising a second step of detecting a tunnel current when a sample passes through the nanogap and analyzing the sample based on the current value of the tunnel current.

PCT/JP2021/018972 2020-05-25 2021-05-19 Nanogap electrode structure, method for manufacturing same, analysis device and analysis method WO2021241356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-090914 2020-05-25
JP2020090914A JP2021188910A (en) 2020-05-25 2020-05-25 Nano-gap electrode structure, manufacturing method therefor, analyzer, and analysis method

Publications (1)

Publication Number Publication Date
WO2021241356A1 true WO2021241356A1 (en) 2021-12-02

Family

ID=78744608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018972 WO2021241356A1 (en) 2020-05-25 2021-05-19 Nanogap electrode structure, method for manufacturing same, analysis device and analysis method

Country Status (3)

Country Link
JP (1) JP2021188910A (en)
TW (1) TW202203303A (en)
WO (1) WO2021241356A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513853A (en) * 2006-12-15 2010-04-30 インペリアル イノベーションズ リミテッド Electrode system and electrode system used for molecular characterization
JP2012190840A (en) * 2011-03-08 2012-10-04 National Institute Of Advanced Industrial & Technology Nanostructure device and manufacturing method therefor
US20140125310A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd. Nanogap device and method of processing signal from the nanogap device
JP2014521956A (en) * 2011-07-27 2014-08-28 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Nanopore sensors for characterizing biomolecules
JP2019518954A (en) * 2016-05-31 2019-07-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method and system for nucleic acid sequencing by tunnel recognition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513853A (en) * 2006-12-15 2010-04-30 インペリアル イノベーションズ リミテッド Electrode system and electrode system used for molecular characterization
JP2012190840A (en) * 2011-03-08 2012-10-04 National Institute Of Advanced Industrial & Technology Nanostructure device and manufacturing method therefor
JP2014521956A (en) * 2011-07-27 2014-08-28 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Nanopore sensors for characterizing biomolecules
US20140125310A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd. Nanogap device and method of processing signal from the nanogap device
JP2019518954A (en) * 2016-05-31 2019-07-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method and system for nucleic acid sequencing by tunnel recognition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TSUTSUI, MAKUSU: "Electrical Identification of Single-Nucleotides Using an Electrode-Embedded In-Plane Nanopore", THE BULLETIN OF THE SOCIETY OF NANO SCIENCE AND TECHNOLOGY, vol. 11, no. 1, 2012, pages 3 - 9 *
TSUTSUI, MAKUSU: "Fabrication of gating nanopores using the electromigration method", LECTURE PREPRINTS OF THE 58TH MEETING OF THE JAPAN SOCIETY OF APPLIED PHYSICS AND THE RELATED SOCIETIES, vol. 58, 2011, pages 12 - 377 *

Also Published As

Publication number Publication date
TW202203303A (en) 2022-01-16
JP2021188910A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP6121507B2 (en) Sample collection device, manufacturing method thereof, and sample collection device array
US7385295B2 (en) Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks
US20090215156A1 (en) Method for Fabricating Nanogap and Nanogap Sensor
US7344908B2 (en) Atomic force microscope cantilever including field effect transistor and method for manufacturing the same
JPH02160339A (en) Field ionizer using
EP2186128B1 (en) Nano-interconnects for atomic and molecular scale circuits
US20060292041A1 (en) Solid state membrane channel device for the measurement and characterization of atomic and molecular sized samples
WO2021241356A1 (en) Nanogap electrode structure, method for manufacturing same, analysis device and analysis method
JP2011259371A (en) Manufacturing method of capacitive electromechanical transducer
JP5101563B2 (en) Manufacturing method of micro sample stage
US9130159B2 (en) Method of fabricating element including nanogap electrodes
JP2001168081A (en) Etching method and manufacturing method of structure
US20050069687A1 (en) Apparatus and method for making a tensile diaphragm with a compressive region
CN113460956A (en) MEMS device and method of forming the same
US11249067B2 (en) Nanopore flow cells and methods of fabrication
JP2008155342A (en) Manufacturing method for micro structure
JP2003075459A (en) Method of forming electrode on substrate having very small three-dimensional structure and microchip manufactured thereby
CN106290475A (en) A kind of from nanowire biosensor selecting modification and preparation method thereof
CN106290525B (en) A kind of nanowire biosensor part and preparation method thereof with grid electrode front regulation and control
JP5298230B2 (en) Micro sample table, substrate for preparing micro sample table, and analysis method using micro sample table
JPH08124896A (en) Plasma evaluation system and manufacture thereof
CN114682311A (en) Chip, chip preparation method and solid-state nanopore microarray device
JPS58147122A (en) Dry etching method for compound semiconductor
TW201240908A (en) 3D nanochannel device and method of manufacturing the same
Duffy et al. Diagnosis of phosphorus monolayer doping in silicon based on nanowire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812319

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812319

Country of ref document: EP

Kind code of ref document: A1