WO2021241317A1 - 金属系改質板材の製造方法 - Google Patents

金属系改質板材の製造方法 Download PDF

Info

Publication number
WO2021241317A1
WO2021241317A1 PCT/JP2021/018747 JP2021018747W WO2021241317A1 WO 2021241317 A1 WO2021241317 A1 WO 2021241317A1 JP 2021018747 W JP2021018747 W JP 2021018747W WO 2021241317 A1 WO2021241317 A1 WO 2021241317A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
plate material
face
gap
plate
Prior art date
Application number
PCT/JP2021/018747
Other languages
English (en)
French (fr)
Inventor
元貴 阿野
智弘 丸子
智明 宮澤
祐一 岩本
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to JP2022526912A priority Critical patent/JPWO2021241317A1/ja
Priority to TW110119387A priority patent/TW202146139A/zh
Publication of WO2021241317A1 publication Critical patent/WO2021241317A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present disclosure relates to a method for manufacturing a metal-based modified plate material using a friction stir welding process, for example, a method for manufacturing a large flat sputtering target using a modification of a metal material by a friction stir welding process.
  • plate targets flat sputtering targets
  • Patent Document 1 a method of manufacturing by joining has been proposed (see, for example, Patent Document 1).
  • FSW friction stir welding
  • the size of crystal grains in the friction stir welding (hereinafter referred to as FSW) is the same in the joint portion and the base metal portion as compared with the melt welding.
  • melt welding is very difficult for materials with high thermal conductivity such as Au, Cu, Al, and Ag, and the equipment is also large. Therefore, joining with FSW is more effective and does not require large equipment.
  • Patent Document 2 a plurality of sputtering targets are joined and brought into contact with each other to form a sputtering target, and then the sputtered surface is rubbed and stirred to manufacture the sputtering target.
  • This disclosure has been made against the background of such circumstances, and is simply, at lower cost, and is not affected by the processing accuracy of the end faces of the metal-based plates to be abutted, and is a metal-based modification having excellent quality. It is an object of the present invention to provide a method for manufacturing a plate material. More specifically, the filler is deformed in the thickness direction and the end face direction of the plate material so as to follow the shapes of the first end face and the second end face of the metal-based plate material, and then modified to match them. It is an object of the present invention to provide an integrated high-quality metal-based modified plate material without being affected by the processing accuracy of the end face of the metal-based plate material.
  • the end faces of the plate materials face each other without contacting each other, and the gaps existing between the end faces are filled with the filler without adjusting the shape of the end faces of the plate materials.
  • the filling part is modified by FSP (Friction Stir Processing) using friction stir welding technology.
  • the first end face and the second end face of the metal-based plate material are opposed to each other with a gap between the first end face and the second end face.
  • step B of forming a filling portion by plastically deforming the filling portion at least a probe of a friction stir rotation tool having a probe is inserted into the filling portion, and FSP (Friction Stir Processing) is applied. It is characterized by having a step C of modifying at least the filling portion of the metal-based plate material and the filling portion to obtain a metal-based modified plate material provided with an FSP portion.
  • the gap formed between the first end face and the second end face, or at least one of the fillers is tapered in the depth direction of the gap. It is preferable to form at least a part of the portion.
  • the plastic deformation of the filler is further promoted, and the shape of the first end face and the second end face of the metal-based plate material is followed.
  • the filler can be deformed depending on the thickness direction and the end face direction of the plate material, and the filling portion of the metal-based plate material can be modified after the voids in the filling portion are reduced by the deformation of the filler.
  • the metal-based plate material has a flat plate shape and has the first end face, and the metal-based plate material has the second end face. May be separate.
  • the interval is 0.2 mm or more and less than 5 mm.
  • the filling material can be easily filled in the gap, and the filling portion can be modified more efficiently.
  • a block material having a thickness equal to or larger than the wall thickness of the metal-based plate material is fitted into the gap and pressed by a friction stirring rotation tool having no probe.
  • the probe length Q 1 of the friction stirring rotation tool (unit: mm).
  • Unit: mm) preferably satisfies 0 ⁇ Q 1 ⁇ (T 1 ⁇ 0.2). It is possible to prevent the probe of the friction stir rotation tool from penetrating the filling part.
  • step D in which at least the FSP portion of the metal-based modified plate material is further subjected to plastic working after the step C.
  • step E it is preferable to have a step E of heat-treating the metal-based modified plate material at a temperature equal to or higher than the recrystallization temperature of the metal-based plate material. It is possible to reduce the internal stress of the metal-based modified plate material and improve the uniformity of the crystal grain size between the FSP portion and the metal-based plate material.
  • the metal-based modified plate material is Au, Ag, Al, Cu, Zn, Au-based alloy, Ag-based alloy, Al-based alloy, Cu-based alloy, or Zn-based. It is preferably composed of any one of the alloys.
  • a metal-based modified plate material can be produced even with a material having high thermal conductivity and / or being easily oxidized.
  • the filler is deformed in the thickness direction and the end face direction of the plate material so as to follow the shapes of the first end face and the second end face of the metal-based plate material, and then modified to match them. It is possible to provide an integrated high-quality metal-based modified plate material without being affected by the processing accuracy of the end face of the metal-based plate material.
  • FIG. 3 is a cross-sectional view taken along the line EE. It is a perspective view which shows the comparative example of a metal-based modified plate material.
  • FIG. 5 is a sectional view taken along line FF.
  • the number of metal-based plate materials to be prepared is two, and these metal-based plate materials have a flat plate shape and have a first end face, and a first.
  • the first embodiment which is a separate body from the metal-based plate having the end face of 2, will be described in detail.
  • Step A in which a gap 12 is provided between the first end surface 11a and the second end surface 11b by opening and facing each other, and the filler 2 is put into the gap 12, and the filler is placed in the first end surface 11a and the second end surface 11a and the second.
  • the probe 53 is inserted and the FSP is applied to modify at least the filling portion 22 of the metal-based plate materials 101, 201 and the filling portion 22, and the metal-based modification provided with the FSP portion 32. It has a step C for obtaining a quality plate material 30.
  • step A first, two metal-based plates 101 and 201 are prepared.
  • the metal-based plate materials 101 and 201 are both plate materials having a flat surface on the entire surface in FIGS. 1 and 2, but may be a plate material having at least a flat edge portion of the edge portion of the plate surface.
  • the end faces adjacent to the flat edge portion and to be opposed to each other are the first end face 11a of the metal-based plate material 201 and the second end face 11b of the metal-based plate material 101, respectively.
  • the metal plate 101,201 may have, for example, a parallelogram, a rhombus, a rectangle, a square, a circle, a fan shape, or an ellipse shape in appearance of the plate surface. It is a plate material made of metal or alloy.
  • the appearance shapes of the plate surfaces of the metal-based plate materials 101 and 201 are both rectangular will be described as an example.
  • the composition of the metal-based plate materials 101 and 201 is, for example, Au, Ag, Al, Cu, Zn or an alloy containing these metals.
  • the metal-based plate materials 101 and 201 are preferably made of any one of Au, Ag, Al, Cu, Zn, Au-based alloy, Ag-based alloy, Al-based alloy, Cu-based alloy and Zn-based alloy.
  • Preferred specific examples of Au-based alloys include, for example, Au-Ag-based alloys, Au-Pd-based alloys, Au-Al-based alloys, Au-Cu-based alloys, Au-Zn-based alloys, Au-Sn-based alloys, and Au-. There are Ni-based alloys.
  • the Ag-based alloy include, for example, Ag-Au-based alloy, Ag-Al-based alloy, Ag-Cu-based alloy, Ag-Zn-based alloy, Ag-Pd-based alloy, Ag-Cu-Pd-based alloy, and the like.
  • Ag-Cu-Pd-Ge based alloys Ag-In based alloys
  • Ag-Bi based alloys Ag-Bi based alloys
  • Al-based alloy include, for example, Al-Au-based alloys, Al-Ag-based alloys, Al-Cu-based alloys, Al-Zn-based alloys, Al-Sc-based alloys, Al-Ti-based alloys, and Al-.
  • Cu-based alloys there are Y-based alloys, Al-Zr-based alloys, Al-Hf-based alloys, Al-Nd-based alloys, Al-Si-based alloys, and the like.
  • Preferred specific examples of the Cu-based alloy include Cu-Au-based alloys, Cu-Ag-based alloys, Cu-Al-based alloys, Cu-Zn-based alloys, Cu-Ga-based alloys, Cu-Ta-based alloys, and Cu-Cr-based alloys. There are alloys and so on.
  • Zn-based alloy examples include Zn-Au-based alloys, Zn-Ag-based alloys, Zn-Al-based alloys, Zn-Cu-based alloys, Zn-Fe-based alloys, and the like.
  • M 1 means a main component
  • M 2 means a sub component. ..
  • the “system” means that an auxiliary component or an additive component other than M 2 may be contained.
  • the principal component means that M 1 has the maximum atomic% in the alloy.
  • M 2 indicates the first subcomponent and means that it has the maximum atomic% in the alloy except for M 1.
  • the additive component means, for example, a content element having a content of 1 atomic% or less.
  • Ag corresponds to M 1 and Cu
  • Pd and Ge correspond to M 2
  • the silver alloy disclosed in International Publication No. 2005/031016 is included. ..
  • composition of the metal-based plate material 101 and the composition of the metal-based plate material 201 are the same.
  • a case where the composition of the metal-based plate material 101 and the composition of the metal-based plate material 201 are the same will be described as an example.
  • the wall thicknesses of the metal plates 101 and 201 are T 101 and T 201 (unit: mm) , respectively, the wall thicknesses T 101 and T 201 are preferably 2 mm or more and 25 mm or less. T 101 and T 201 can be adjusted according to the wall thickness of the metal-based modified plate material 30 to be formed.
  • the wall thickness T 101 and the wall thickness T 201 may be equal to or different from each other.
  • the wall thickness ratio T 101 / T 201 is preferably 0.80 or more and 1.25 or less.
  • a case where the wall thickness T 101 and the wall thickness T 201 are equal to each other and T 1 as shown in FIG. 2 will be described as an example.
  • the metal-based modifying plate 30 As the metal-based modifying plate 30 has a desired shape, it is opposed by opening the first end surface 11a of the metallic plate 201, the distance W S and a second end surface 11b of the metallic plate 101, metal By arranging the system plates 101 and 201, a gap 12 is formed between the first end surface 11a and the second end surface 11b.
  • the metal-based plate materials 101 and 201 are arranged so that the flat plate-shaped metal-based modified plate material 30 in which the metal-based plate materials 101 and 201 are flush with each other can be formed.
  • the shapes of the first end face 11a and the second end face 11b are the same when the end face 11a and the end face 11b are butted against each other by arranging the filler 2 between the end face 11a and the end face 11b in the step B. It is not particularly limited because it is not necessary to have a contacting relationship.
  • the shapes of the end face 11a and the end face 11b are, for example, a convex surface, a concave surface, an uneven surface, a plane perpendicular to the plate surface, or a plane having at least a part of a tapered portion formed in the depth direction with respect to the plate surface.
  • the shape of the end face 11a and the shape of the end face 11b may be the same or different.
  • the end face 11a and the end face 11b may be a smooth surface or a rough surface. The roughness of the end face 11a and the roughness of the end face 11b may be the same or different.
  • Opening a gap means that the first end face 11a and the second end face 11b are not butted against each other.
  • the entire surface of both plate surfaces metallic plate 101, 201 is a plate material thickness T 1 is flat, the outer ⁇ line in contact with the plate surface 101a (not shown), to the plate surface 101b
  • the entire surface of the end face 11b exists between the extrapolated straight line (not shown) in contact with the external straight line.
  • the entire surface of the end surface 11a exists between the extrapolated straight line (not shown) in contact with the plate surface 201a and the extrapolated straight line (not shown) in contact with the plate surface 201b.
  • the end face 11a and the end face 11b may or may not be parallel.
  • Interval W S (Unit: mm) will be described. As shown in FIG. 2, it is located on a virtual reference surface 205 separated from the outer plate surface 201a of the metal-based plate material 201 toward the plate surface 201b on the opposite side by a distance KT 1 (however, 0 ⁇ K ⁇ 1). Let P 1 be a point on the first end surface 11a, and on the second end surface 11b located on the virtual reference surface 105 separated by a distance KT 1 from the outer plate surface 101a of the metal-based plate material 101 toward the plate surface 101b on the opposite side. Let P 2 be the point. Interval W S is the length of the line segment P 1 P 2. The numerical value K is a variable.
  • the interval W S is constant regardless of the variable K.
  • the distance W S decreases as the variable K increases.
  • the distance KT 201 is separated from the plate surface 201a toward the plate surface 201b.
  • Interval W S is, 0.2 mm or more and less than 5 mm.
  • the filler 2 can be easily filled in the gap 12, and the filling portion 22 can be modified more efficiently. If it is less than 0.2 mm, it becomes difficult to fill the gap 12 with the filler 2, and when the filler is pressed after being filled, the filler is not easily pressed, and the filler is the first end face of the metal-based plate material. And there is a possibility that it will be difficult to plastically deform in the thickness direction and the end face direction of the plate material so as to follow the shape of the second end face, and if it is 5 mm or more, the time and effort for modifying the filling portion 22 may increase. There is.
  • the gap 12 is a space sandwiched between the first end faces 11a and the second end faces 11b facing each other.
  • it is a space sandwiched between all of the first end faces 11a and all of the second end faces 11b.
  • the metal plates 101 and 201 are arranged on the backing jig 40.
  • the metal plates 101 and 201 can be easily arranged.
  • the backing jig 40 is preferably made of a steel material or a ceramic material such as silicon nitride.
  • the shape of the backing jig 40 is derived from the shape of the metal-based modified plate material 30 to be manufactured.
  • the wall thickness is integral a flat metallic plate 101, 201 is T 1, if the wall thickness to produce a flat metal-based modifying plate 30 is T 1, the backing jig 40
  • the shape is a flat plate.
  • the metal-based plate materials 101 and 201 having different wall thicknesses T 101 and T 201 are integrated to manufacture the metal-based modified plate material 30 in which the outer plate surface 101a and the outer plate surface 201a are flush with each other, the back surface is manufactured.
  • the shape of the backing jig 40 is, for example, a plate shape including a first plate material arranging portion and a second plate material arranging portion having a metal-based plate material 101, 201 with a lower wall thickness difference than the first plate material arranging portion. (Not shown).
  • step A of the metal-based plates 101 and 201, the thinner metal-based plate is placed in the first plate arrangement portion, and the thicker metal-based plate is placed in the second plate arrangement portion.
  • the metal-based modified plate material 30 in which the plate surface 101a and the plate surface 201a are flush with each other can be obtained.
  • step B the gap 12 shown in FIGS. 1 and 2 is filled with the filler 2 to form the filling portion 22 as shown in FIGS. 3 and 4. As shown in FIGS. 3 and 4, it is preferable to continue to use the backing jig 40.
  • the filling portion 22 has a filling material 2 and a gap 12, and the filling material 2 is fixed to the gap 12.
  • the thickness direction U B It means that the filler 2 is filled in the gap 12 so as to reach at least the straight line P 5 P 6 and at most the straight line P 7 P 8.
  • the filling portion 22 since the inside of the filling material 2 and between the filling material 2 and the end faces 11a and 11b are modified in the step C, voids and defects may remain if the amount is small.
  • the wall thickness T 101 and the wall thickness T 201 are equal and T 1 has been described, but when the wall thickness T 101 and the wall thickness T 201 are different, 0 from the plate surface 201a toward the plate surface 201b.
  • the width direction of the gap 12 is the direction U W and the traveling direction of the gap 12 is the direction UG , when the filling material 2 is completed and the filling portion is formed, the ratio of the filling material 2 in the gap 12 is determined. in the width direction U W of the gap 12, preferably 90 to 100%, and in the traveling direction U G of the gap 12, preferably 90 to 100%.
  • V G (unit: mm 3) of the gap 12 shown in FIG. 1, and, V 2 the apparent volume of the filler 2 in the filling part 22 shown in FIG. 3 (Unit: mm 3) when a, 0 ⁇ V It may be 2 ⁇ V G, but in consideration of the clearance and the defect is preferably V G ⁇ V 2, and more preferably V G ⁇ V 2 ⁇ 1.5V G .
  • the filler 2 is, for example, a block material 202 (FIGS. 8 to 12), a wire 302 (FIG. 13), a granule 402 (FIG. 14), or a powder (non-compounding material) having the same composition as that of the metal-based plate materials 101 and 201. (Illustrated). Further, the form of the filler 2 may be a combination of members having a composition different from that of the metal-based plate members 101 and 201.
  • the form of the block material is a composite block material in which block-shaped constituent members are combined, and includes a block-shaped constituent member having a composition different from that of the metal-based plate materials 101 and 201.
  • a composite block material (not shown) having an average composition having the same composition as that of the metal-based plate materials 101 and 201 may be used.
  • the form of the wire is a wire bundle in which a plurality of wires are bundled and includes a wire having a composition different from that of the metal-based plate materials 101 and 201, but the average composition of the wire bundle is that of the metal-based plate materials 101 and 201.
  • a wire bundle (not shown) having the same composition may be used.
  • the form of the granules is a mixture of granules and contains particles having a composition different from that of the metal plates 101 and 201, but the average composition of the mixture of granules is the same as the composition of the metal plates 101 and 201.
  • the form of the powder is a powder mixture and contains particles having a composition different from that of the metal-based plates 101 and 201, but the average composition of the powder mixture is the same as the composition of the metal-based plates 101 and 201. It may be a certain powder mixture (not shown).
  • Step B is preferably any one of the following steps B1 and B2. It is possible to more efficiently fill the gap 12.
  • the step B1 or B2 the case where the wall thickness T 101 and the wall thickness T 201 are equal and T 1 will be described, but when the wall thickness T 101 and the wall thickness T 201 are different, the wall thickness T 101 And, of the wall thickness T 201, the larger one is defined as the wall thickness T 1 .
  • Step B1 In step B, as shown in FIG. 8, a block material 202 having a thickness H 2 having a wall thickness T 1 or more of the metal plate materials 101 and 201 is fitted into the gap 12, and friction without a probe as shown in FIG.
  • the step B1 of pressing with the stirring rotation tool 70 is preferable.
  • the block material By pressing, the block material can be plastically deformed in the thickness direction and the end face direction of the plate material so as to follow the shapes of the first end face and the second end surface of the metal plate material, and the metal plate materials 101, 201 and the block can be deformed.
  • the gap 23 with the material 202 can be filled.
  • step B1 when a block material having a width narrower than the gap 12 but longer than the thickness of the plate material is used, the block material is filled into the gap and then pressed to press the block material into a metal. It can be plastically deformed in the thickness direction and the end face direction of the plate material so as to follow the shapes of the first end surface 11a and the second end surface 11b of the system plate material, and the gap between the metal plate materials 101 and 201 and the block material 202. 23 can be filled.
  • Gap 12 is preferably a shape in which the width becomes narrower toward the bottom along the thickness direction U B of the plate. The efficiency of the follow-up is improved.
  • step B1 in order to more efficiently perform plastic deformation due to pressing, at least one of the gap 12 formed by the first end face 11a and the second end face 11b or the filler 2 before pressing is performed.
  • at least a part of the tapered portion may be formed in the depth direction of the gap.
  • the first modification to the fourth modification shown in FIGS. 9 to 12 can be exemplified.
  • the metal-based plate material is plastically deformed in the thickness direction and the end surface direction so as to follow the shapes of the first end face and the second end face. be able to.
  • the filler since the filler is wider than the width of the bottom surface of the gap 12, plastic deformation occurs while filling.
  • the width is wider than the narrowest portion of the gap 12 (in FIG. 9, the back portion (bottom portion) in the fitting direction of the block material 202 into the gap 12), and the gap 12 is widened.
  • the block material 202 which is narrower than the entrance portion, is filled in the gap 12. It is preferred that the gap 12 also in the form a shape in which the width becomes narrower toward the bottom along the thickness direction U B of the plate.
  • a part of the end surface of the plate material is inclined so that the gap 12 is partially tapered toward the back, and the block material 202 wider than the partially tapered portion is brought into contact with the inclined surface.
  • the gap 12 is filled with the block material 202.
  • the tip portion of the block material 202 is partially tapered to make the width narrower than the gap 12, and the gap 12 is filled with the block material 202.
  • the tip portion of the block material 202 is tapered to make the width narrower than the gap 12, and the gap 12 is filled with the block material 202.
  • the interval W S in FIG. 2 is preferably made smaller as the variable K approaches from 0 to 1.
  • the block material 202 is easily fitted into the gap 12, and the end face of the plate material does not spread in the downward direction. Adhere without gaps.
  • the pressing force acts not only in the thickness direction of the plate material but also in the end surface direction of the plate material, so that when the block material is plastically deformed, it easily adheres to the end surface of the plate material.
  • the friction stirring rotation tool 70 may be used to press the block material 202 including the boundary portion (not shown) between the block material 202 and the metal-based plate materials 101 and 201. When pressed, the gap 12 may be plastically deformed.
  • FIG. 13 is a diagram showing a state in which a plurality of wires 302 are bundled and installed in the gap 12 shown in FIG.
  • FIG. 14 is a diagram showing a state in which the granular material 402 is installed in the gap 12 in the gap 12 shown in FIG.
  • step B as shown in FIG. 13, the wire 302 is installed in the gap 12, the granules 402 are installed in the gap 12, or the powder is installed in the gap 12 as shown in FIG. 14 (.
  • Step B2 of performing at least one of (not shown) and pressing with a hammer (not shown), a press (not shown), or a friction stir rotation tool 70 without a probe as shown in FIG. Is preferable.
  • the wire, granules or powder can be plastically deformed in the thickness direction and the end face direction of the plate material so as to follow the shapes of the first end face and the second end face of the metal plate material, and the metal plate material can be plastically deformed.
  • the gap 23 between 101, 201 and the wire, granules or powder can be filled.
  • the form of the filler 2 includes wire 302 only (FIG. 13), granule 402 only (FIG. 14), powder only (not shown), a combination of wire 302 and granule 402 (not shown), and wire 302. There are a combination with powder (not shown), a combination of granule 402 and powder (not shown), or a combination of wire 302, granule 402 and powder (not shown).
  • Wire 302 is either linear metal or alloy member having a length L G over the length of the traveling direction U G (see FIG. 1.) Of the gap 12, or short less than the length L G A plurality of linear metal or alloy members are arranged in the gap 12 in the column direction so that the total length is LG or more.
  • the granular material 402 is a member made of a particulate metal or alloy having a particle diameter of 1000 ⁇ m or more and less than 10000 ⁇ m.
  • the powder (not shown) is a particulate metal or alloy member having a particle size of 10 ⁇ m or more and less than 1000 ⁇ m.
  • the wire 302 When the form of the filler 2 is only the wire 302, the wire 302 is installed in the gap 12. Here, there are cases where there is only one wire 302 (not shown), and there are cases where a plurality of wires 302 are bundled in a wire bundle as shown in FIG. After installation, for example, by pressing the wire 302 with a hammer (not shown) or a press machine (not shown), the wire 302 is pressed from the side of the plate surface 101a to the side of the plate surface 101b, and from the side of the plate surface 201a to the side of the plate surface 201b. The wire 302 is pushed into the wire 302 to plastically deform the wire 302 to fill the gap 23 between the wire 302 and the metal plates 101 and 201.
  • the wire 302 may be pressed by the friction stir rotation tool 70 to plastically deform the wire 302 to further fill the gap 23 between the metal plates 101 and 201 and the wire 302.
  • the thickness H 2 is a wall thickness T 1 or more. If the thickness H 2 and the wall thickness T 1 are equal, the wire 302 is directly pressed by the friction stir rotation tool 70 without using a hammer (not shown) or a press (not shown) to plasticize the wire 302. It may be deformed to fill the gap 23 between the metal plates 101 and 201 and the wire 302. Further, the boundary portion (not shown) between the wire 302 and the metal-based plate members 101 and 201 may be included and pressed.
  • the form of the filler 2 is only the form of the granular material 402, it is the same as the form of the wire 302 except that the wire 302 is changed to the granular material 402 as shown in FIG.
  • the step B2 is performed in the same manner as the form of the granules 402 only.
  • the step B2 is performed in the same manner as in the form of only the granular material 402.
  • the filling portion 22 shown in FIGS. 3 and 4 can be obtained.
  • the end faces 11a and 11b of the gap 12 may be plastically deformed by being pressed by the plastic deformation of the filler 2, and in FIGS. 3 and 4, as an example, the upper portion of the end faces 11a and 11b expands the gap 12. It shows how it was deformed in the direction.
  • pressing with the friction stir rotation tool 70 means, for example, pressing the granular material 402 shown in FIG. 14 simply in the pressing direction 76 as shown in FIG. 15, and friction stirring rotation as shown in FIG.
  • the granule 402 is deformed by the rotation of the shoulder portion 72 of the tool 70 to generate a plastic fluid in the plastic region 3, and as shown in FIG. 4, after the filling portion 22 is formed, the filler in the filling portion 22 is formed. It means to reduce the gap between 2 and the end faces 11a and 11b.
  • the friction stir rotation tool 70 is rotated in the rotation direction 75, and the shoulder portion 72 of the friction stir rotation rotation tool 70 is slowly pressed against the grain body 402 in the pressing direction 76.
  • the friction stir rotation tool 70 is made of, for example, Fe, Ni, Co, W, Ir, an alloy based on them, and a ceramic material.
  • a friction stir rotation tool having no probe can be used as the friction stir rotation tool 70.
  • the pressure for pressing the friction stir rotation tool 70 is adjusted in consideration of the dimensions such as the wall thickness of the filler 2 and the metal plates 101 and 201 each time. By the above pressing, as shown in FIG. 16, plastic flow may be generated up to the side of the plate surfaces 101b and 201b.
  • the shoulder portion 72 has, for example, a flat shape, a rounded shape, or a rough surface having irregularities, and is preferably a flat shape.
  • the end faces 11a and 11b may be deformed by pressing.
  • step B the plate surfaces 101b and 201b are pressed against the surface 40a of the backing jig 40 by using a gripping member (not shown) so as not to cover the gap 12, and the metal plate material is pressed against the backing jig 40. It is preferable to fill the gap 12 with the filler 2 while preventing the 101 and 201 from moving. It is possible to prevent the gap 12 from expanding due to the displacement of the metal plate materials 101 and 201 with respect to the backing jig 40. Further, when the filler 2 is a wire 302 (FIG. 13), a granular material 402 (FIG. 14) or a powder (not shown), the filler 2 may enter between the plate surfaces 101b and 201b and the surface 40a. Can be prevented.
  • a gripping member not shown
  • step C at least the probe 53 of the friction stir rotation tool 50 having the probe 53 is inserted into the filling portion 22 to construct the FSP, and at least the metal plate materials 101 and 201 and the filling portion 22 are provided.
  • the filling portion 22 is modified to form the metal-based modified plate material 30 provided with the FSP portion 32. As shown in FIGS. 5 to 7, it is preferable to continue to use the backing jig 40. After the modification, the metal-based modified plate material 30 can be taken out from the backing jig 40.
  • the friction stir rotation tool 50 the friction stir rotation tool used in a normal FSP can be used. As shown in FIGS. 5 and 6, the friction stir rotation tool 50 includes, for example, a columnar body portion 51, a shoulder portion 52 provided at one end of the body portion 51, and a probe 53 provided on the shoulder portion 52. Has.
  • the friction stir rotation tool 50 is made of, for example, the same material as the friction stir rotation tool 70 without a probe.
  • step C the metal-based plate materials 101 and 201 are gripped by using a gripping member (not shown) so as not to cover the filling portion 22, so that the metal-based plate materials 101 and 201 do not move with respect to the backing jig 40. It is preferable to insert the friction stir rotation tool 50 toward the backing jig 40 to perform the modification.
  • the surface 40a of the backing jig 40 serves as a support surface that receives the force due to pressing, prevents the metal-based plates 101 and 201 from shifting with respect to the backing jig 40, and has better quality with no space or defects inside the FSP portion 32. Modification can be achieved.
  • the rotating friction stir rotation tool 50 is inserted into the outer plate surfaces 101a and 201a. At this time, in the friction stir rotation tool 50, as shown in FIGS. 5 and 6, the probe 53 is buried in the filling portion 22, and the shoulder portion 52 is pressed against the filling portion 22. When the probe 53 is inserted into the filling portion 22, the filling portion 22 is rapidly heated by friction due to rotation, and as a result, the mechanical strength of the filling portion 22 is reduced. The friction stir rotation tool 50 is moved along the traveling direction 54 so that the metal plate 101 does not move relative to the metal plate 201 and passes over the filling portion 22.
  • the frictional heat generated by the rotation of the friction stir rotation tool 50 while the shoulder portion 52 and the probe 53 are in contact with the filling portion 22 is generated around the shoulder portion 52 and the probe 53.
  • a high temperature plastic region 4 is formed in the filling portion 22 of the above.
  • the rotational force applied from the friction stir rotation tool 50 applies a shear force in the rotational direction 55 to the plastic fluid in the plastic region 4, and defects and voids contained in the plastic fluid are removed and reforming is performed. ..
  • the plastic fluid is cooled to become a solid FSP portion 32 as shown in FIGS. 5 and 7, and a metal-based modified plate material 30 having the FSP portion 32 is formed.
  • the movement of the friction stir rotation tool 50 in the traveling direction 54 is once one way from one end to the other end of the filling portion 22, and the formation of the FSP portion 32 is completed by the movement.
  • the FSP is constructed so as to include at least the filling portion 22.
  • the construction is carried out not only in the filling portion 22 but also in the metal plates 101 and 201 on both sides of the filling portion 22.
  • the shoulder portion 52 has, for example, a concave shape, a convex shape, and a flat shape, preferably a concave shape.
  • the shoulder portion 52 When the shoulder portion 52 has a flat shape and the outer plate surfaces 101a and 201a are on the same plane, the flat surface 5 of the filling portion 22 is slightly smaller than the outer plate surfaces 101a and 201a as shown in FIG. when you are raised, pushed friction stir rotation tool 50, with the thinning amount T W is thinning a flat surface 5 of the filling unit 22, the shoulder portion 52 is pressed to the plastic flow of the plastic region 4 It is preferable that it is hit.
  • the shoulder diameter RS of the shoulder portion 52 is preferably 6 mm or more.
  • the probe diameter R P of the probe 53 is preferably 1.0mm or more and the gap width or more. While facilitating the integration of the metal plates 101 and 201 and the filler 2, the labor for moving the friction stir rotation tool 50 can be reduced.
  • the relationship between the length Q 1 (unit: mm) of the probe 53 and the wall thickness T 1 (unit: mm) of the metal-based plates 101 and 201 is 0 ⁇ Q 1 ⁇ (T 1). -0.2) is preferably satisfied. It is possible to stir even if Q 1 is 0, but the stirring capacity is improved when Q 1> 0.
  • Q 1 is greater than (T 1 -0.2)
  • the range of suitable thinning min T W when the shoulder portion 52 is pressed against to be in contact with the plastic flow of the plastic region 4, the probe 53 may penetrate the metal plates 101 and 201. Further, when the metal-based plate materials 101 and 201 are arranged on the backing jig 40, the probe 53 penetrating the metal-based plate materials 101 and 201 may rub the backing jig 40.
  • the metal-based modified plate material 30 is preferably made of any one of Au, Ag, Al, Cu, Zn, Au-based alloy, Ag-based alloy, Al-based alloy, Cu-based alloy, and Zn-based alloy.
  • the metal-based modified plate material 30 can be manufactured even with a material having high thermal conductivity and / or being easily oxidized.
  • the filler 2 is a grain mixture and contains particles having a composition different from that of the metal-based plates 101 and 201, but the average composition of the granule mixture is the same as the composition of the metal plates 101 and 201.
  • the filler 2 in the filling portion 22 may have a bias in composition components. Since the FSP causes stirring in the plastic region 4, the filling portion 22 is modified so that the composition is not biased and the metal-based modified plate material has the same composition as the metal-based plate materials 101 and 201. 30 is obtained.
  • Step D After the step C, it is preferable to further have a step D in which at least the FSP portion 32 of the metal-based modified plate material 30 is subjected to plastic working.
  • the crystal grains in the FSP portion 32 of the metal-based modified plate material 30 and the metal-based plate materials 101 and 201 shown in FIGS. 5 and 7 are adjusted, and the uniformity of the crystal grain size is adjusted. Can be improved. Further, as shown in FIGS. 17 and 18, the appearance is beautiful, an integrated metal-based modifying plate 80 so that the metallic plate 181,281 and FSP 82 becomes uniform wall thickness T 80 produced can do.
  • the wall thickness T 80 of the metal-based modified plate material that has undergone step D preferably has a range of ⁇ 10% or less of the average plate thickness in order to reduce the deviation of the plate thickness.
  • the wall thickness T 1 of the metal-based plate materials 101 and 201 is smaller than the wall thickness T 32 of the FSP portion 32, it is necessary to perform plastic working on the FSP portion. Therefore, it is preferable to perform plastic working on the FSP portion and the metal-based plate material.
  • the wall thickness T 1 of the metal-based plate materials 101 and 201 is larger than the wall thickness T 32 of the FSP portion 32, the metal-based plate material is subjected to plastic working and then FSP as necessary.
  • plastic working on the part and the metal-based plate material.
  • the FSP portion 32 is subjected to plastic working, for example, it is applied not only to the FSP portion 32 but also to the metal plates 101 and 201 on both sides of the FSP portion 32.
  • the form of plastic working includes, for example, press working, forging or rolling.
  • Step E Metallic reforming at a temperature equal to or higher than the recrystallization temperature of the metal-based plate materials 101, 201 between step C and step D, after step D, or both between step C and step D and after step D. It is preferable to have a step E for heat-treating the plate material 30.
  • the internal stress of the metal-based modified plate material 30 can be reduced, the crystal grains in the FSP portion 32 and the metal-based plate materials 101 and 201 can be adjusted, and the uniformity of the crystal grain size can be improved.
  • the melting points of the metal plates 101 and 201 are S R (temperature unit: K), it is preferable to perform heat treatment in a temperature range of 0.5 S R or more and 0.95 S R or less.
  • the heat treatment temperature is less than 0.5S R, it may not be possible to reduce internal stress. In addition, it may not be possible to improve the uniformity of the size of the crystal grains of the FSP portion 32 and the metal-based plate materials 101 and 201. If the heat treatment temperature exceeds 0.95S R, there is a case where the metal-based modifying plate 30 is thermally deformed.
  • the heat treatment time is preferably 30 minutes or more, more preferably 60 minutes or more, and particularly preferably 120 minutes or more after the start of the heat treatment.
  • the metal-based modified plate material 30 may not be sufficiently heated and the internal stress may not be reduced. In addition, it may not be possible to improve the uniformity of the size of the crystal grains of the FSP portion 32 and the metal-based plate materials 101 and 201.
  • the upper limit of the heat treatment time is preferably 1440 minutes or less, more preferably 720 minutes or less.
  • the internal stress can be confirmed by a general method such as measurement of hardness.
  • the length and width of the metal-based modified plate material 30 are not particularly limited. Further, the metal-based modified plate material 30 may be cut out into an arbitrary shape. Depending on the application, the metal-based modified plate material 30 of any size can be manufactured more efficiently.
  • the metal-based modified plate material 30 is preferably the whole or a part of the sputtering target, or a part of the container.
  • As a partial form of the container there is a form forming a part of the container itself or a form of lining the container. In these devices or parts, it is possible to easily realize the large size and suppression of the variation in wall thickness at low cost.
  • the form of the gap formed between the first end face and the second end face is, for example, a streak like the gap 12 shown in FIG.
  • N metal plates having a rectangular appearance on the plate surface are arranged in one direction, (N-1) streaky gaps can be formed without intersecting each other. ..
  • the filling material is filled in each gap in step B to form a filling portion, and further, FSP is applied to each filling portion in step C (N-). 1) It is possible to manufacture a metal-based modified plate material having a streak-shaped FSP portion (not shown).
  • step B the filling material is filled in the entire gap including the intersection to form a filling portion
  • step C FSP is applied to the entire filling portion to form a branched FSP.
  • a metal-based modified plate material having a portion (not shown).
  • the portion into which the friction stir rotation tool is inserted and the portion from which the friction stir rotation tool is pulled out are preferably end portions of a branched filling portion (not shown).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本開示は、簡便に、より低コストで、突き合わせる金属系板材の端面の加工精度による影響を受けることなく、品質に優れた金属系改質板材を製造する方法を提供する。本開示に係る金属系改質板材の製造方法は、金属系板材の第1の端面と第2の端面とを間隔を開けて対向させて、第1の端面と第2の端面との間に隙間を設ける工程Aと、充填材を前記隙間に入れ、前記充填材を第1の端面および第2の端面の形状に追随するように金属系板材の厚さ方向及び端面方向に塑性変形させることによって充填部を形成する工程Bと、少なくとも充填部に、プローブを有する摩擦攪拌回転ツールのうち、少なくともプローブを挿入させ、FSPを施工することによって、金属系板材及び充填部のうち、少なくとも充填部を改質して、FSP部を備えた金属系改質板材を得る工程Cと、を有する。

Description

金属系改質板材の製造方法
 本開示は、摩擦攪拌プロセスを利用した金属系改質板材の製造方法に関し、例えば、摩擦攪拌プロセスによる金属材料の改質を利用した大型の平面型のスパッタリングターゲットの製造方法に関する。
 大型ディスプレイの需要から、平面型のスパッタリングターゲット(以下、板ターゲットという。)が大型化している。
 板ターゲットの製造方法に関して、接合により製造する手法が提案されている(例えば、特許文献1を参照。)。特に、固相接合法の1種である摩擦攪拌接合(Friction Stir Welding:以下、FSWという。)は結晶粒の大きさが接合部と母材部分とで溶融溶接に比べ同等であると主張されている(例えば、特許文献1を参照。)。加えて、Au、Cu、Al、Agなどの熱伝導性の高い材質において溶融溶接は非常に難しく、設備も大型化することから、FSWでの接合はより効果的で大型の設備も必要としない利点がある。また、特許文献2では、複数のスパッタリングターゲットを接合、接触してスパッタリングターゲットを形成してからスパッタ面を摩擦攪拌してスパッタリングターゲットを製造している。
国際公開第2004/090194号公報 特開2015-120975号公報
 特許文献1及び2に記載の製造方法では、板材の端面同士を突き合わせるとき、両端面の加工精度が低いと、端面間に隙間が生じ、接合不良が発生するおそれがある。一方、隙間が生じないように、大型の板材の端面を事前に切削加工するには、多くの費用と時間が必要である。また、板材の端面の間に別の板材や粉末を詰めたとしても、板材の端面と別の板材または粉末との間に隙間が残ってしまい、隙間が残った状態で改質してしまうと欠陥が生じ、異常放電や成膜速度の相違などが発生してしまう。
 本開示は、かかる事情を背景として為されたものであって、簡便に、より低コストで、突き合わせる金属系板材の端面の加工精度による影響を受けることなく、品質に優れた金属系改質板材を製造する方法を提供することを目的とする。より具体的には、金属系板材の第1の端面および第2の端面の形状に追随するように充填材を板材の厚さ方向及び端面方向に変形させてから改質することによって、突き合わせる金属系板材の端面の加工精度による影響を受けることなく、一体型の良質な金属系改質板材を提供することを目的とする。
 上記目的を達成するために、鋭意検討した結果、板材の端面を接触させず向かい合わせ、板材の端面の形状を調整することなく、端面間に存在する隙間に充填材を充填し、金属系板材の第1の端面および第2の端面の形状に追随するように充填材を板材の厚さ方向及び端面方向に変形させてから摩擦攪拌技術を用いて充填部をFSP(Friction Stir Processing)によって改質することにより上記課題を解決することを見出し、本発明を完成させた。
 本発明に係る金属系改質板材の製造方法は、金属系板材の第1の端面と第2の端面とを間隔を開けて対向させて、前記第1の端面と前記第2の端面との間に隙間を設ける工程Aと、充填材を前記隙間に入れ、前記充填材を前記第1の端面および前記第2の端面の形状に追随するように前記金属系板材の厚さ方向及び端面方向に塑性変形させることによって充填部を形成する工程Bと、少なくとも前記充填部に、プローブを有する摩擦攪拌回転ツールのうち、少なくともプローブを挿入させ、FSP(Friction Stir Processing)を施工することによって、前記金属系板材及び前記充填部のうち、少なくとも前記充填部を改質して、FSP部を備えた金属系改質板材を得る工程Cと、を有することを特徴とする。
 本発明に係る金属系改質板材の製造方法では、前記第1の端面及び第2の端面で形成される隙間、若しくは、充填材の少なくとも一つに、前記隙間の深さ方向に向けて先細り箇所を少なくとも一部形成することが好ましい。端面の深さ方向に向けて先細り箇所を少なくとも一部形成することにより、充填材の塑性変形をより促進するとともに、金属系板材の第1の端面および第2の端面の形状に追随するように充填材を板材の厚さ方向及び端面方向により変形させることができ、充填材の変形により充填部の空隙箇所を少なくしてから金属系板材の充填部を改質することができる。
 本発明に係る金属系改質板材の製造方法では、前記金属系板材が、平板形状を有し、かつ前記第1の端面を有する金属系板材と、前記第2の端面を有する金属系板材とが別体であってもよい。複数枚の平板形状の金属系板材の一体化によって、大型の金属系改質板材を製造することができる。
 本発明に係る金属系改質板材の製造方法では、前記間隔が0.2mm以上、5mm未満であることが好ましい。充填材を隙間に充填せしめやすくし、充填部の改質をより効率的に行うことができる。
 本発明に係る金属系改質板材の製造方法では、前記工程Bは、前記金属系板材の肉厚以上の厚みを有するブロック材を前記隙間に嵌め込み、プローブを有さない摩擦攪拌回転ツールで押圧する工程B1、又は、前記隙間にワイヤー、粒体及び粉体のうち少なくとも1種を設置し、ハンマー、プレス機、若しくはプローブを有さない摩擦攪拌回転ツールで押圧する工程B2、のいずれか1つの工程であることが好ましい。金属系板材の厚さ方向の塑性変形だけでなく、金属系板材の厚さ方向及び端面方向にも塑性変形を促進し、金属系板材の第1の端面および第2の端面の形状に追随するように充填材を充填せしめることをより効率的に行うことができる。
 本発明に係る金属系改質板材の製造方法では、前記工程Cにおいて、前記金属系板材の肉厚をT(単位:mm)とするとき、前記摩擦攪拌回転ツールのプローブ長さQ(単位:mm)が、0<Q≦(T-0.2)を満たすことが好ましい。摩擦攪拌回転ツールのプローブが充填部を貫通することを防ぐことができる。
 本発明に係る金属系改質板材の製造方法では、前記工程Cの後に、さらに、前記金属系改質板材の少なくとも前記FSP部に塑性加工を施す工程Dを有することが好ましい。塑性加工による加工歪みを入れることで、結晶粒を調整し、FSP部と金属系板材とにおいて、結晶粒の大きさの均一性を向上させることができるとともに、寸法精度を向上させることができる。
 本発明に係る金属系改質板材の製造方法では、前記工程Cと前記工程Dとの間、前記工程Dの後、又は前記工程Cと前記工程Dとの間及び前記工程Dの後の両方において、前記金属系板材の再結晶温度以上の温度で前記金属系改質板材を熱処理する工程Eを有することが好ましい。金属系改質板材の内部応力を減少させ、FSP部と金属系板材とにおいて、結晶粒の大きさの均一性を向上させることができる。
 本発明に係る金属系改質板材の製造方法では、前記金属系改質板材がAu、Ag、Al、Cu、Zn、Au基合金、Ag基合金、Al基合金、Cu基合金、又はZn基合金のいずれか1種からなることが好ましい。熱伝導性の高い及び/又は酸化されやすい材質でも、金属系改質板材を製造することができる。
 本開示によれば、簡便に、より低コストで、突き合わせる金属系板材の端面の加工精度による影響を受けることなく、品質に優れた金属系改質板材を製造する方法を提供することができる。より具体的には、金属系板材の第1の端面および第2の端面の形状に追随するように充填材を板材の厚さ方向及び端面方向に変形させてから改質することによって、突き合わせる金属系板材の端面の加工精度による影響を受けることなく、一体型の良質な金属系改質板材を提供することができる。
工程Aにおいて隙間を設けた状態の第1の形態を示す斜視図である。 A‐A線断面図である。 工程Bにおいて充填部を形成した状態の第1の形態を示す斜視図である。 B‐B線断面図である。 工程Cにおける金属系改質板材の形成途中の第1の形態を示す斜視図である。 C‐C線断面図である。 D‐D線断面図である。 工程B1においてブロック材の嵌め込み方の一例を示す概略断面図である。 工程B1においてブロック材の嵌め込み方の第1変形例を示す概略断面図である。 工程B1においてブロック材の嵌め込み方の第2変形例を示す概略断面図である。 工程B1においてブロック材の嵌め込み方の第3変形例を示す概略断面図である。 工程B1においてブロック材の嵌め込み方の第4変形例を示す概略断面図である。 工程B2においてワイヤーを設置した状態の一例を示す概略断面図である。 工程B2において粒体を設置した状態の一例を示す概略断面図である。 粒体を摩擦攪拌回転ツールによって単に押圧する状態の一例を示す断面図である。 粒体を摩擦攪拌回転ツールによって塑性流動体とする状態の一例を示す断面図である。 工程Dにおいて塑性加工を施した金属系改質板材の一例を示す斜視図である。 E‐E線断面図である。 金属系改質板材の比較例を示す斜視図である。 F‐F線断面図である。
 以降、本発明について図面を参照しながら実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
[第1の形態]
 まず、金属系改質板材の製造方法について、準備する金属系板材の枚数が2枚であり、これらの金属系板材が平板形状を有し、かつ第1の端面を有する金属系板材と、第2の端面を有する金属系板材とが別体である第1の形態について詳細に説明する。
 本実施形態に係る金属系改質板材の製造方法は、図1~図7に示すように、金属系板材201の第1の端面11aと金属系板材101の第2の端面11bとを間隔を開けて対向させて、第1の端面11aと第2の端面11bとの間に隙間12を設ける工程Aと、充填材2を隙間12に入れ、前記充填材を第1の端面11aおよび第2の端面11bの形状に追随するように金属系板材の厚さ方向及び端面方向に塑性変形させることによって充填部22を形成する工程Bと、少なくとも充填部22に、プローブ53を有する摩擦攪拌回転ツール50のうち、少なくともプローブ53を挿入させ、FSPを施工することによって、金属系板材101,201及び充填部22のうち、少なくとも充填部22を改質して、FSP部32を備えた金属系改質板材30を得る工程Cと、を有する。
(工程A)
 工程Aでは、まず2枚の金属系板材101,201を準備する。金属系板材101,201は、図1及び図2では共に板面の全面が平坦である板材であるが、板面の縁部のうち少なくとも一部が平坦な縁部である板材でもよい。平坦な縁部に隣接する端面であって対向させる予定となる端面を、それぞれ金属系板材201の第1の端面11a、金属系板材101の第2の端面11bとする。金属系板材101,201の板面の全面が平坦である場合、金属系板材101,201は、例えば、板面の外観の形状が平行四辺形、菱形、長方形、正方形、円形、扇形又は楕円形である金属又は合金製の板材である。以下、断りのない限り、金属系板材101,201の板面の外観の形状が共に長方形である場合を例にとって説明する。
 金属系板材101,201の組成は、例えば、Au、Ag、Al、Cu、Zn又はこれらの金属を含む合金である。金属系板材101,201は、Au、Ag、Al、Cu、Zn、Au基合金、Ag基合金、Al基合金、Cu基合金又はZn基合金のいずれか1種からなることが好ましい。Au基合金の好ましい具体例としては、例えば、Au‐Ag系合金、Au‐Pd系合金、Au‐Al系合金、Au‐Cu系合金、Au‐Zn系合金、Au‐Sn系合金、Au‐Ni系合金などがある。Ag基合金の好ましい具体例としては、例えば、Ag‐Au系合金、Ag‐Al系合金、Ag‐Cu系合金、Ag‐Zn系合金、Ag‐Pd系合金、Ag‐Cu‐Pd系合金、Ag‐Cu‐Pd‐Ge系合金、Ag‐In系合金、Ag‐Bi系合金などがある。Al基合金の好ましい具体例としては、例えば、Al‐Au系合金、Al‐Ag系合金、Al‐Cu系合金、Al‐Zn系合金、Al‐Sc系合金、Al‐Ti系合金、Al‐Y系合金、Al‐Zr系合金、Al‐Hf系合金、Al‐Nd系合金、Al‐Si系合金などがある。Cu基合金の好ましい具体例としては、Cu‐Au系合金、Cu‐Ag系合金、Cu‐Al系合金、Cu‐Zn系合金、Cu‐Ga系合金、Cu‐Ta系合金、Cu‐Cr系合金などがある。Zn基合金の好ましい具体例としては、Zn‐Au系合金、Zn‐Ag系合金、Zn‐Al系合金、Zn‐Cu系合金、Zn‐Fe系合金などがある。ここで、「M-M系合金」(但し、M及びMは金属元素を意味する。)と表記したとき、Mは主成分を意味し、Mは副成分を意味する。「系」とは、M以外の副成分又は添加成分を含んでいてもよいという意味を示す。主成分とは、Mが合金中で最大原子%を有することを意味する。Mは、第1の副成分を示し、合金中でMを除いて最大原子%を有することを意味する。添加成分とは、例えば1原子%以下の含有量の含有元素を意味する。なお、Ag‐Cu‐Pd‐Ge系合金については、AgがMに相当し、Cu、Pd及びGeがMに相当し、例えば、国際公開第2005/031016号に開示の銀合金を含む。
 金属系板材101の組成と、金属系板材201の組成とは、同じであることが好ましい。以下、断りのない限り、金属系板材101の組成と金属系板材201の組成とが同じである場合を例にとって説明する。
 金属系板材101,201の肉厚を、それぞれT101,T201(単位:mm)とするとき、肉厚T101及びT201は、2mm以上25mm以下であることが好ましい。形成する金属系改質板材30の肉厚に応じて、T101及びT201を調整することができる。肉厚T101と肉厚T201とは、互いに等しくてもよく、異なってもよい。肉厚比T101/T201は、0.80以上1.25以下であることが好ましい。以下、断りのない限り、図2に示すような、肉厚T101と肉厚T201とが互いに等しくTである場合を例にとって説明する。
 金属系改質板材30が所望の形状になるように、金属系板材201の第1の端面11aと、金属系板材101の第2の端面11bとを間隔Wを開けて対向させて、金属系板材101,201を配置させることによって、第1の端面11aと第2の端面11bとの間に隙間12を形成する。図1及び図2では、金属系板材101,201が面一となる平板形状の金属系改質板材30が形成できるように、金属系板材101,201が配置されている。
 第1の端面11a及び第2の端面11bの形状は、工程Bにて端面11aと端面11bとの間に充填材2が配置されることによって、端面11aと端面11bとを突合せしたときに当接し合う関係を有している必要がないため、特に限定されない。端面11a及び端面11bの形状は、例えば凸面、凹面、凹凸面、板面に対し鉛直な平面又は板面に対し深さ方向に向けて先細り箇所を少なくとも一部形成した平面である。端面11aの形状と端面11bの形状とは、同じでもよく、異なってもよい。また、端面11a及び端面11bは、平滑面でもよく、粗面であってもよい。端面11aの粗さと端面11bの粗さとは、同じでもよく、異なってもよい。
 間隔を開けるとは、第1の端面11aと第2の端面11bとの突合せをしないことをいう。図2で説明すると、金属系板材101,201が共に板面の全面が平坦である肉厚Tの板材であるため、板面101aに接する外挿直線(不図示)と、板面101bに接する外挿直線(不図示)との間に、端面11bの全面が存在する。また、板面201aに接する外挿直線(不図示)と、板面201bに接する外挿直線(不図示)との間に、端面11aの全面が存在する。端面11aと端面11bとは、平行でもよいし、平行でなくてもよい。
 間隔W(単位:mm)について説明する。図2に示すように、金属系板材201の外側板面201aから反対側の板面201bに向かって距離KT(但し、0≦K≦1である。)離れた仮想基準面205に位置する第1の端面11a上の点をPとし、金属系板材101の外側板面101aから反対側の板面101bに向かって距離KT離れた仮想基準面105に位置する第2の端面11b上の点をPとする。間隔Wは、線分Pの長さである。数値Kは変数である。端面11aと端面11bとが平行である場合、間隔Wは、変数Kに関わらず一定である。図1及び図2のように、端面11aと端面11bとが互いに傾斜して向かい合う場合、間隔Wは、変数Kが大きくなるにつれて減少する。上記では、肉厚T101と肉厚T201が等しくTである場合を説明したが、肉厚T101とT201とが異なる場合、板面201aから板面201bに向かって距離KT201離れた箇所に位置する端面11a上の点をPとし、板面101aから板面101bに向かって距離KT101離れた箇所に位置する端面11b上の点をPとする。
 間隔Wは、0.2mm以上、5mm未満であることが好ましい。充填材2を隙間12に充填しやすくし、充填部22の改質をより効率的に行うことができる。0.2mm未満であると、充填材2を隙間12に充填しにくくなるとともに、充填材を充填後に押圧したときに、充填材に押圧が掛かりにくく、充填材を金属系板材の第1の端面および第2の端面の形状に追随するように板材の厚さ方向及び端面方向に塑性変形し辛くなる可能性があり、5mm以上であると、充填部22の改質の手間が増大する可能性がある。
 隙間12は、対向し合う第1の端面11aと第2の端面11bとの間に挟まれた空間である。例えば、図1では、第1の端面11aの全てと、第2の端面11bの全てとに挟まれた空間である。
 金属系板材101,201は、裏当て治具40上に配置されることが好ましい。金属系板材101,201を容易に配置することができる。裏当て治具40は、鋼材からなるか、又は窒化珪素などのセラミック材料からなることが好ましい。
 裏当て治具40の形状は、製造する金属系改質板材30の形状に由来する。例えば、肉厚がTである平板状の金属系板材101,201を一体化して、肉厚がTである平板状の金属系改質板材30を製造する場合、裏当て治具40の形状は、平板状である。肉厚T101と肉厚T201とが異なる金属系板材101,201を一体化して、外側板面101aと外側板面201aとが面一となる金属系改質板材30を製造する場合、裏当て治具40の形状は、例えば、第1の板材配置部と、第1の板材配置部よりも金属系板材101,201の肉厚差分低い第2の板材配置部とを備えた板形状(不図示)である。工程Aにて、金属系板材101,201のうち、肉厚が薄いほうの金属系板材を第1の板材配置部に配置し、肉厚が厚いほうの金属系板材を第2の板材配置部に配置し、後続の工程を行うことによって(不図示)、板面101aと板面201aとが面一となる金属系改質板材30を得ることができる。
(工程B)
 工程Bでは、図1及び図2に示される隙間12に、充填材2を充填せしめて、図3及び図4に示すように、充填部22を形成する。図3及び図4に示すように、裏当て治具40を引き続き使用することが好ましい。
 充填部22は、充填材2と隙間12とを有し、充填材2が隙間12に固定されている。
 図4において、金属系板材201の外側板面201aから反対側の板面201bに向かって0.95T離れた仮想基準面206に位置する第1の端面11a上の点をPとし、金属系板材101の外側板面101aから反対側の板面101bに向かって0.95T離れた仮想基準面106に位置する第2の端面11b上の点をPとする。また、図4において、板面201bと充填部22との境界上の点をPとし、板面101bと充填部22との境界上の点をPとする。充填材2を隙間12に充填せしめたとは、例えば、図4に示すような断面において、金属系板材101の外側板面101a及び金属系板材201の外側板面201aから、肉厚方向Uに沿って、少なくとも直線Pまで到達し、多くとも直線Pまで到達するように、充填材2を隙間12に埋めたことをいう。充填部22において、充填材2の内部及び充填材2と端面11a,11bとの間には、工程Cにて改質されるため、僅かであれば空隙及び欠陥が残ってもよい。上記では、肉厚T101と肉厚T201とが等しくTである場合を説明したが、肉厚T101と肉厚T201とが異なる場合、板面201aから板面201bに向かって0.95T201離れた仮想基準面206に位置する第1の端面11a上の点をPとし、板面101aから板面101bに向かって0.95T101離れた仮想基準面106に位置する第2の端面11b上の点をPとする。
 隙間12の幅方向を方向Uとし、隙間12の進行方向を方向Uとするとき、充填材2が充填完了して充填部が形成されたとき、隙間12における充填材2の割合は、隙間12の幅方向Uにおいて、90~100%であることが好ましく、隙間12の進行方向Uにおいて、90~100%であることが好ましい。
 図1に示す隙間12の容積をV(単位:mm)とし、図3に示す充填部22における充填材2の見掛けの体積をV(単位:mm)としたとき、0<V≦Vでもよいが、隙間及び欠陥を考慮して、V<Vが好ましく、V<V≦1.5Vであることがより好ましい。
 充填材2は、例えば、金属系板材101,201の組成と同じ組成のブロック材202(図8~図12)、ワイヤー302(図13)、粒体402(図14)、又は粉体(不図示)とする。また、充填材2の形態としては、金属系板材101,201の組成と異なる組成の部材の組合せの形態としてもよい。例えば、ブロック材の形態としては、ブロック状の構成部材を組合せた複合ブロック材であって、金属系板材101,201の組成と異なる組成のブロック状の構成部材を含むが、当該複合ブロック材の平均組成が金属系板材101,201の組成と同じである複合ブロック材(不図示)でもよい。ワイヤーの形態としては、複数本のワイヤーを束ねたワイヤー束であって、金属系板材101,201の組成と異なる組成のワイヤーを含むが、当該ワイヤー束の平均組成が金属系板材101,201の組成と同じであるワイヤー束(不図示)でもよい。粒体の形態としては、粒体混合物であって、金属系板材101,201の組成と異なる組成の粒子を含むが、当該粒体混合物の平均組成が金属系板材101,201の組成と同じである粒体混合物(不図示)でもよい。粉体の形態としては、粉体混合物であって、金属系板材101,201の組成と異なる組成の粒子を含むが、当該粉体混合物の平均組成が金属系板材101,201の組成と同じである粉体混合物(不図示)でもよい。
 工程Bは、次の工程B1又はB2のいずれか1つの工程であることが好ましい。隙間12に充填せしめることをより効率的に行うことができる。以下、工程B1又はB2の説明では、肉厚T101と肉厚T201とが等しくTである場合を説明するが、肉厚T101と肉厚T201とが異なる場合、肉厚T101及び肉厚T201のうち、いずれか大きいほうを肉厚Tとする。
(工程B1)
 工程Bは、図8に示すように、金属系板材101,201の肉厚T以上の厚みHを有するブロック材202を隙間12に嵌め込み、図16に示すようにプローブを有さない摩擦攪拌回転ツール70で押圧する工程B1であることが好ましい。押圧により、ブロック材を金属系板材の第1の端面および第2の端面の形状に追随するように板材の厚さ方向及び端面方向に塑性変形させることができ、金属系板材101,201とブロック材202との空隙23を埋めることができる。
 工程B1では、例えば、図8に示すように、隙間12より幅が狭いが板材の厚さより長いブロック材を用いた場合、このブロック材を隙間に充填後、押圧することにより、ブロック材を金属系板材の第1の端面11a及び第2の端面11bの形状に追随するように板材の厚さ方向及び端面方向に塑性変形させることができ、金属系板材101,201とブロック材202との空隙23を埋めることができる。隙間12は板材の肉厚方向Uに沿って底に近づくにつれて幅が狭くなっている形状であることが好ましい。前記追随の効率が向上する。
 さらに工程B1では、押圧による塑性変形をより効率的に行うために、押圧を行う前に、第1の端面11a及び第2の端面11bで形成される隙間12、若しくは、充填材2の少なくとも一つに、隙間の深さ方向に向けて先細り箇所を少なくとも一部形成してもよい。例えば、図9~図12に示す第1変形例~第4変形例が例示できる。図9~図12に示す形態についてもブロック材202を押圧することよって金属系板材の第1の端面および第2の端面の形状に追随するように板材の厚さ方向及び端面方向に塑性変形させることができる。図9~図12に示す形態では、隙間12の底面の幅より充填材が幅広いので、充填しながら塑性変形が生じることとなる。
 図9に示す形態では、隙間12の最も幅が狭い部分(図9ではブロック材202の隙間12への嵌め込み方向において奥の部分(底の部分))よりも幅が広く、かつ、隙間12の入口の部分よりも幅が狭いブロック材202を隙間12に充填する形態である。この形態においても隙間12は板材の肉厚方向Uに沿って底に近づくにつれて幅が狭くなっている形状であることが好ましい。
 図10に示す形態では、板材の端面の一部を傾斜させて隙間12が奥に向かって一部先細りとなっていて、一部先細り部分よりも幅の広いブロック材202を傾斜面に接触させながら隙間12をブロック材202で充填する形態である。
 図11に示す形態では、ブロック材202の先端部分を一部先細りさせて隙間12よりも幅を狭くして、隙間12をブロック材202で充填する形態である。
 図12に示す形態では、ブロック材202の先端部分を先細りさせて隙間12よりも幅を狭くして、隙間12をブロック材202で充填する形態である。
 工程B1では、図2における間隔Wは、変数Kが0から1に近づくにつれて小さくなることが好ましい。ブロック材202を隙間12に嵌め込む際、ブロック材202を隙間12に嵌めこみやすく、板材の端面が下方向において広がっていないため、ブロック材202を押圧したときに塑性変形させながら板材の端面に隙間なく密着する。また、押圧したときに、板材の厚さ方向のみならず、板材の端面方向にも押圧の力が働くことからブロック材を塑性変形させたときに板材の端面に密着しやすくなる。肉厚Tと厚みHが等しければ、摩擦攪拌回転ツール70でブロック材202と金属系板材101,201との境界部(不図示)を含めて押圧してもよい。押圧する際、隙間12は、塑性変形されてもよい。
(工程B2)
 図13は、図2に示される隙間12に、ワイヤー302を複数本束ねて設置した状態の図である。図14は、図2に示される隙間12に、粒体402を隙間12に設置した状態の図である。
 工程Bは、図13に示すように、隙間12にワイヤー302を設置するか、図14に示すように、粒体402を隙間12に設置するか、又は粉体を隙間12に設置するか(不図示)の少なくともいずれかを行い、ハンマー(不図示)、プレス機(不図示)、又は、図15に示すように、プローブを有さない摩擦攪拌回転ツール70で押圧する工程B2であることが好ましい。押圧により、ワイヤー、粒体又は粉体を金属系板材の第1の端面および第2の端面の形状に追随するように板材の厚さ方向及び端面方向に塑性変形させることができ、金属系板材101,201とワイヤー、粒体又は粉体との空隙23を埋めることができる。
 充填材2の形態としては、ワイヤー302のみ(図13)、粒体402のみ(図14)、粉体のみ(不図示)、ワイヤー302と粒体402との組合せ(不図示)、ワイヤー302と粉体との組合せ(不図示)、粒体402と粉体との組合せ(不図示)又はワイヤー302と粒体402と粉体との組合せ(不図示)がある。
 ワイヤー302は、隙間12の進行方向U(図1を参照。)の長さL以上の長さを有する線状の金属又は合金製部材であるか、又は、長さL未満の短い線状の金属又は合金製部材を隙間12内で縦列方向に複数配置して合計で長さL以上になるようにする。粒体402は、粒子径1000μm以上10000μm未満の粒子状の金属又は合金製部材である。粉体(不図示)は、粒子径10μm以上1000μm未満の粒子状の金属又は合金製部材である。
 充填材2の形態がワイヤー302のみの形態である場合、ワイヤー302を隙間12内に設置する。ここで、ワイヤー302が1本のみである場合(不図示)と、図13に示すように、複数本のワイヤー302がワイヤー束に束ねられた場合とがある。設置後、例えば、ハンマー(不図示)又はプレス機(不図示)でワイヤー302を押圧して、板面101aの側から板面101bの側に、かつ板面201aの側から板面201bの側に、ワイヤー302を押し込み、ワイヤー302を塑性変形させ、ワイヤー302と金属系板材101,201との空隙23を埋めていく。その後、摩擦攪拌回転ツール70でワイヤー302を押圧して、ワイヤー302を塑性変形させ、金属系板材101,201とワイヤー302との空隙23をさらに埋めてもよい。ワイヤー302の設置厚さをHとすると、厚さHが肉厚T以上であることが好ましい。厚さHと肉厚Tとが等しければ、ハンマー(不図示)又はプレス機(不図示)を使用せず、直接、摩擦攪拌回転ツール70でワイヤー302を押圧して、ワイヤー302を塑性変形させ、金属系板材101,201とワイヤー302との空隙23を埋めてもよい。また、ワイヤー302と金属系板材101,201との境界部(不図示)を含めて押圧してもよい。
 充填材2の形態が粒体402のみの形態である場合、図14に示すように、ワイヤー302を粒体402に変更した以外は、ワイヤー302の形態と同様である。充填材2の形態が粉体(不図示)のみの形態である場合、粒体402のみの形態と同様に工程B2を行う。充填材2の形態が組合せの形態である場合、粒体402のみである形態と同様に工程B2を行う。
 工程Bにおいて充填部22が形成されると、例えば、図3及び図4に示した充填部22が得られる。隙間12の端面11a,11bは充填材2の塑性変形に伴って押圧を受けて塑性変形してもよく、図3及び図4では、例として、端面11a,11bの上部分が隙間12を拡げる方向に変形させられた様子を示している。
 本実施形態において摩擦攪拌回転ツール70で押圧するとは、例えば図14に示す粒体402を、図15に示すように、単に押圧方向76で押圧しつつ、図16に示すように、摩擦攪拌回転ツール70のショルダ部72の回転によって粒体402を変形させて、可塑性領域3内に塑性流動体を生じさせ、図4に示すように、充填部22の形成後において、充填部22における充填材2と端面11a,11bとの空隙を少なくすることをいう。具体的には、図15に示すように、摩擦攪拌回転ツール70を回転方向75で回転させ、摩擦攪拌回転ツール70のショルダ部72をゆっくりと粒体402に押圧方向76で押し当てる。ショルダ部72が粒体402に接触すると、回転による摩擦熱によって、接触した粒体402に高温の可塑性領域3が発生し、熱伝導により粒体402が加熱されて、図16に示すように、可塑性領域3が拡がる。同時に摩擦攪拌回転ツール70から与えられた回転力が可塑性領域3内の塑性流動体に回転方向75のせん断力を与え、空隙23が減少し、塑性流動体の外側板面がさらに端面11a,11bの形状に追随するよう変形しながら、充填せしめられる。ブロック材202のみ、ワイヤー302のみ、粉体のみ(不図示)、組合せなどの充填材2の他の形態においても同様である。ここで、摩擦攪拌回転ツール70は、例えば、Fe、Ni、Co、W、Ir及びそれらを基材とした合金の他、セラミックの材料からなる。摩擦攪拌回転ツール70は、プローブを有さない摩擦攪拌回転ツールを用いることができる。摩擦攪拌回転ツール70を押付ける押圧は、充填材2及び金属系板材101,201の肉厚などの寸法を都度、考慮して調整される。上記押圧によって、図16に示すように、塑性流動が板面101b,201bの側まで生じてもよい。ショルダ部72は、例えば、平坦形状、丸みを帯びた形状又は凹凸を帯びた粗面であり、好ましくは平坦形状である。端面11a,11bは押圧によって変形してもよい。
 工程Bでは、把持部材(不図示)を用いて、隙間12を覆わないように、板面101b,201bを裏当て治具40の表面40aに押し付け、裏当て治具40に対して金属系板材101,201が動かないようにしつつ、充填材2を隙間12に充填せしめることが好ましい。金属系板材101,201の裏当て治具40に対するズレによる隙間12の広がりを防止することができる。また、充填材2がワイヤー302(図13)、粒体402(図14)又は粉体(不図示)である場合、充填材2が板面101b,201bと表面40aとの間に入り込むことを防止することができる。
(工程C)
 工程Cでは、少なくとも充填部22に、プローブ53を有する摩擦攪拌回転ツール50のうち、少なくともプローブ53を挿入させて、FSPを施工して、金属系板材101,201及び充填部22のうち、少なくとも充填部22を改質して、FSP部32を備えた金属系改質板材30を形成する。図5~図7に示すように、裏当て治具40を引き続き使用することが好ましい。改質後、裏当て治具40から金属系改質板材30を取り出すことができる。
 摩擦攪拌回転ツール50は、通常のFSPで用いられる摩擦攪拌回転ツールを用いることができる。摩擦攪拌回転ツール50は、図5及び図6に示すように、例えば円柱状の胴体部51と、胴体部51の一端に設けられたショルダ部52と、ショルダ部52に設けられたプローブ53とを有する。摩擦攪拌回転ツール50は、例えば、プローブを有さない摩擦攪拌回転ツール70と同様の材料からなる。
 工程Cでは、把持部材(不図示)を用いて、充填部22を覆わないように金属系板材101,201を把持し、裏当て治具40に対して金属系板材101,201が動かないようにし、裏当て治具40に向かって、摩擦攪拌回転ツール50を挿入して改質を行うことが好ましい。裏当て治具40の表面40aが押圧による力を受ける支持面となり、金属系板材101,201の裏当て治具40に対するズレを防止し、FSP部32の内部に空間や欠陥のないより良質な改質を達成することができる。
 FSPの原理について説明する。回転する摩擦攪拌回転ツール50を、外側板面101a,201aの側に挿入する。このとき、摩擦攪拌回転ツール50では、図5及び図6に示すように、プローブ53が充填部22内に埋没し、ショルダ部52が充填部22に押し当てられる。プローブ53が充填部22に挿入されると、回転による摩擦によって充填部22が急速に加熱され、その結果、充填部22の機械的強度が低下する。金属系板材101が金属系板材201に対して相対的に動かないようにし、充填部22上を通るように、進行方向54に沿って摩擦攪拌回転ツール50を動かす。摩擦攪拌回転ツール50が挿入された部分では、摩擦攪拌回転ツール50のショルダ部52及びプローブ53が充填部22に当接しながら回転することによって発生した摩擦熱が、ショルダ部52及びプローブ53の周りの充填部22に高温の可塑性領域4を形成する。同時に摩擦攪拌回転ツール50から与えられた回転力が可塑性領域4内の塑性流動体に回転方向55のせん断力を与え、塑性流動体中に含まれる欠陥及び空隙が除去されて改質が行われる。摩擦攪拌回転ツール50が通過した後、塑性流動体は冷却されて、図5及び図7に示すように、固体状のFSP部32となり、FSP部32を備えた金属系改質板材30が形成される。これらの現象はすべて金属系板材101,201の融点及び充填材2の融点よりも低い温度で生じる。ここで摩擦攪拌回転ツール50の進行方向54の移動を、充填部22の一端から他端までの片道一回として、その移動によってFSP部32の形成を完了させることが好ましい。
 FSPの施工は、少なくとも充填部22を含むように行う。少なくとも充填部22を含むように行う形態としては、例えば、充填部22のみに施工する形態、充填部22のみならず、充填部22を挟んだ両側の金属系板材101,201にはみ出して施工する形態、充填部22のみならず、金属系板材101,201全体にも施工する形態がある。
 ショルダ部52は、例えば、凹形状、凸形状、平坦形状であり、好ましくは凹形状である。
 ショルダ部52が平坦形状であり、かつ外側板面101a,201aが同一平面上にある場合、図6に示すように、充填部22の平坦面5が、外側板面101a,201aよりもわずかに盛り上がっているときは、摩擦攪拌回転ツール50が押し込まれて、充填部22の平坦面5から減肉分Tが減肉した状態で、ショルダ部52が可塑性領域4内の塑性流動体に押し当てられていることが好ましい。
 ショルダ部52のショルダ径Rは、6mm以上であることが好ましい。また、プローブ53のプローブ径Rは、1.0mm以上かつ隙間以上の幅であることが好ましい。金属系板材101,201と充填材2との一体化を容易にしつつ、摩擦攪拌回転ツール50を移動させる労力を軽減することができる。
 図6に示すように、プローブ53の長さQ(単位:mm)と、金属系板材101,201の肉厚T(単位:mm)との関係は、0<Q≦(T-0.2)を満たすことが好ましい。Qは0でも攪拌することは可能であるが、Q>0の方が攪拌能力は向上する。Qが(T-0.2)を超えると、好適な減肉分Tの範囲において、ショルダ部52が可塑性領域4内の塑性流動体に接するように押し当てられた際に、プローブ53が金属系板材101,201を貫通する場合がある。また、金属系板材101,201が裏当て治具40上に配置されたとき、金属系板材101,201を貫通したプローブ53が裏当て治具40をこする場合がある。
 金属系改質板材30は、Au、Ag、Al、Cu、Zn、Au基合金、Ag基合金、Al基合金、Cu基合金、又はZn基合金のいずれか1種からなることが好ましい。熱伝導性の高い及び/又は酸化されやすい材質でも、金属系改質板材30を製造することができる。
 充填材2が、粒体混合物であって、金属系板材101,201の組成と異なる組成の粒子を含むが、当該粒体混合物の平均組成が金属系板材101,201の組成と同じである粒体混合物(不図示)である場合、充填部22における充填材2には、組成成分の偏りが発生する可能性がある。FSPによって、可塑性領域4において攪拌が生じるため、充填部22が改質されて、組成の偏りがなく、金属系板材101,201の組成と同じであるFSP部32を備えた金属系改質板材30が得られる。
(工程D)
 工程Cの後に、さらに、金属系改質板材30の少なくともFSP部32に塑性加工を施す工程Dを有することが好ましい。塑性加工による加工歪みを入れることで、図5及び図7に示す金属系改質板材30のFSP部32と金属系板材101,201とにおける結晶粒を調整し、結晶粒の大きさの均一性を向上させることができる。また、図17及び図18に示すように、外観が美しく、金属系板材181,281とFSP部82とが均一な肉厚T80になるように一体化された金属系改質板材80を製造することができる。工程Dを経た金属系改質板材の肉厚T80は、板厚のズレを少なくするためにその範囲は平均板厚の±10%以内であることが好ましい。例えば、工程C終了後、図7に示すように、金属系板材101,201の肉厚TがFSP部32の肉厚T32よりも小さい場合、FSP部に塑性加工を施してから必要に応じてFSP部及び金属系板材に塑性加工を施すことが好ましい。また、図7とは対照的に、金属系板材101,201の肉厚TがFSP部32の肉厚T32よりも大きい場合、金属系板材に塑性加工を施してから必要に応じてFSP部及び金属系板材に塑性加工を施すことが好ましい。少なくともFSP部32に塑性加工を施す形態としては、例えば、FSP部32のみに施工する形態、FSP部32のみならず、FSP部32を挟んだ両側の金属系板材101,201にはみ出して施工する形態、FSP部32のみならず、金属系板材101,201全体にも施工する形態がある。塑性加工の形態としては、例えば、プレス加工、鍛造又は圧延加工がある。
(工程E)
 工程Cと工程Dとの間、工程Dの後、又は工程Cと工程Dとの間及び工程Dの後の両方において、金属系板材101,201の再結晶温度以上の温度で金属系改質板材30を熱処理する工程Eを有することが好ましい。金属系改質板材30の内部応力を減少させることができ、FSP部32と金属系板材101,201とにおける結晶粒を調整し、結晶粒の大きさの均一性を向上させることができる。金属系板材101,201の融点をS(温度単位:K)としたとき、0.5S以上0.95S以下の温度範囲で熱処理をすることが好ましい。より好ましくは、0.65S以上0.90S以下であり、特に好ましくは、0.70S以上0.80S以下である。熱処理温度が0.5S未満では、内部応力を減少させることができない場合がある。また、FSP部32と金属系板材101,201の結晶粒の大きさの均一性を向上させることができない場合がある。熱処理温度が0.95Sを超えると、金属系改質板材30が熱変形する場合がある。熱処理時間は、熱処理の開始後30分以上であることが好ましく、60分以上であることがより好ましく、120分以上であることが特に好ましい。熱処理時間が30分未満では、金属系改質板材30が十分に加熱されず、内部応力を減少させることができない場合がある。また、FSP部32と金属系板材101,201の結晶粒の大きさの均一性を向上させることができない場合がある。熱処理時間の上限は、1440分以下であることが好ましく、720分以下であることがより好ましい。内部応力は、硬さの測定などの一般的な方法で確認することができる。
 金属系改質板材30の長さ及び幅は、特に限定されない。また、金属系改質板材30は、任意の形状に切り出されてもよい。用途に応じて、より効率的に、任意のサイズの金属系改質板材30を製造することができる。
(用途)
 金属系改質板材30は、スパッタリングターゲットの全体又は一部、又は容器の一部であることが好ましい。容器の一部の形態としては、容器そのものの一部分をなす形態、または、容器の内張の形態がある。これらの装置又は部品において、大型でありかつ肉厚のバラツキの抑制を簡便に低コストで実現することができる。
[第2の形態]
 次に、金属系改質板材の製造方法の第2の形態について第1の形態との相違点を中心に詳細に説明する。第2の形態では、準備する金属系板材の枚数が3枚以上であること以外は第1の形態と同様である。
 準備する金属系板材の枚数が3枚以上であるとき、第1の端面と第2の端面との間に形成する隙間の形態には、例えば、図1に示す隙間12のような筋状の隙間が互いに交差しない形態がある(不図示)。例えば、板面の外観の形状が長方形であるN枚の金属系板材が一方向に配置されていると、(N-1)本の筋状の隙間が、互いに交差せずに形成可能となる。この形態の場合、第1の形態と同様に、工程Bにて各隙間に充填材を充填せしめて充填部を形成し、さらに工程Cにて各充填部についてFSPを施工して、(N-1)本の筋状のFSP部を備えた金属系改質板材を製造することができる(不図示)。上記の形態の他には、一方の筋状の隙間と、他方の筋状の隙間とが、隙間同士の交わりの部分を介してつながる形態がある(不図示)。この形態の場合、工程Bにてこの交わりの部分を含めて隙間全体に充填材を充填せしめて充填部を形成し、さらに工程Cにて充填部全体についてFSPを施工して、分岐形状のFSP部を備えた金属系改質板材を製造することができる(不図示)。ここで、工程CにてFSPを施工するとき、摩擦攪拌回転ツールを挿入する部分、及び摩擦攪拌回転ツールを引き抜く部分は、分岐形状の充填部の末端部分であることが好ましい(不図示)。
[比較例:端面間の隙間をなくすようにして突合せをする技術]
 図19及び図20は、金属系板材201の第1の端面91aと、金属系板材101の第2の端面91bとを突合せて、金属系板材101,201を裏当て治具40上に配置した状態を示す図である。このとき、端面91a及び端面91bは、面の形状及び面の粗さの影響を受けるため、開口した非連続部92が生じる。非連続部92にFSW(Friction Stir Welding)を施工して、非連続部92を接合することは困難である。
2 充填材
3 可塑性領域
4 可塑性領域
5 平坦面
11a 金属系板材の第1の端面
11b 金属系板材の第2の端面
12 隙間
22 充填部
23 空隙
30 金属系改質板材
32 FSP部
40 裏当て治具
40a 裏当て治具の表面
50 プローブを有する摩擦攪拌回転ツール
51 胴体部
52 ショルダ部
53 プローブ
54 進行方向
55 回転方向
70 プローブを有さない摩擦攪拌回転ツール
72 ショルダ部
75 回転方向
76 押圧方向
80 金属系改質板材
82 FSP部
91a 金属系板材の第1の端面
91b 金属系板材の第2の端面
92 非連続部
101,201 金属系板材
101a,201a 金属系板材の外側板面
101b,201b 金属系板材の外側板面とは反対側の板面
105,205 仮想基準面
106,206 仮想基準面
181,281 金属系板材
102 溶接材料
202 ブロック材
302 ワイヤー
402 粒体

 

Claims (9)

  1.  金属系板材の第1の端面と第2の端面とを間隔を開けて対向させて、前記第1の端面と前記第2の端面との間に隙間を設ける工程Aと、
     充填材を前記隙間に入れ、前記充填材を前記第1の端面および前記第2の端面の形状に追随するように前記金属系板材の厚さ方向及び端面方向に塑性変形させることによって充填部を形成する工程Bと、
     少なくとも前記充填部に、プローブを有する摩擦攪拌回転ツールのうち、少なくともプローブを挿入させ、FSP(Friction Stir Processing)を施工することによって、前記金属系板材及び前記充填部のうち、少なくとも前記充填部を改質して、FSP部を備えた金属系改質板材を得る工程Cと、
     を有することを特徴とする金属系改質板材の製造方法。
  2.  前記第1の端面及び前記第2の端面で形成される隙間、若しくは、前記充填材の少なくとも一つに、前記隙間の深さ方向に向けて先細り箇所を少なくとも一部形成することを特徴とする請求項1に記載の金属系改質板材の製造方法。
  3.  前記金属系板材が、平板形状を有し、かつ前記第1の端面を有する金属系板材と、前記第2の端面を有する金属系板材とが別体であることを特徴とする請求項1又は2に記載の金属系改質板材の製造方法。
  4.  前記間隔が0.2mm以上、5mm未満であることを特徴とする請求項1~3のいずれか1つに記載の金属系改質板材の製造方法。
  5.  前記工程Bは、
     前記金属系板材の肉厚以上の厚みを有するブロック材を前記隙間に嵌め込み、プローブを有さない摩擦攪拌回転ツールで押圧する工程B1、又は、
     前記隙間にワイヤー、粒体及び粉体のうち少なくとも1種を設置し、ハンマー、プレス機、若しくはプローブを有さない摩擦攪拌回転ツールで押圧する工程B2、
    のいずれか1つの工程であることを特徴とする請求項1~4のいずれか1つに記載の金属系改質板材の製造方法。
  6.  前記工程Cにおいて、前記金属系板材の肉厚をT(単位:mm)とするとき、前記摩擦攪拌回転ツールのプローブ長さQ(単位:mm)が、0<Q≦(T-0.2)を満たすことを特徴とする請求項1~5のいずれか1つに記載の金属系改質板材の製造方法。
  7.  前記工程Cの後に、さらに、前記金属系改質板材の少なくとも前記FSP部に塑性加工を施す工程Dを有することを特徴とする請求項1~6のいずれか1つに記載の金属系改質板材の製造方法。
  8.  前記工程Cと前記工程Dとの間、前記工程Dの後、又は前記工程Cと前記工程Dとの間及び前記工程Dの後の両方において、前記金属系板材の再結晶温度以上の温度で前記金属系改質板材を熱処理する工程Eを有することを特徴とする請求項7に記載の金属系改質板材の製造方法。
  9.  前記金属系改質板材がAu、Ag、Al、Cu、Zn、Au基合金、Ag基合金、Al基合金、Cu基合金、又はZn基合金のいずれか1種からなることを特徴とする請求項1~8のいずれか1つに記載の金属系改質板材の製造方法。
PCT/JP2021/018747 2020-05-29 2021-05-18 金属系改質板材の製造方法 WO2021241317A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022526912A JPWO2021241317A1 (ja) 2020-05-29 2021-05-18
TW110119387A TW202146139A (zh) 2020-05-29 2021-05-28 金屬系改質板材之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094031 2020-05-29
JP2020094031 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241317A1 true WO2021241317A1 (ja) 2021-12-02

Family

ID=78744654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018747 WO2021241317A1 (ja) 2020-05-29 2021-05-18 金属系改質板材の製造方法

Country Status (3)

Country Link
JP (1) JPWO2021241317A1 (ja)
TW (1) TW202146139A (ja)
WO (1) WO2021241317A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042095A (ja) * 2002-07-12 2004-02-12 Hitachi Industries Co Ltd 摩擦攪拌接合法とその装置
JP2007029955A (ja) * 2005-07-22 2007-02-08 Mitsui Eng & Shipbuild Co Ltd 摩擦撹拌接合方法及び装置
JP2007185683A (ja) * 2006-01-12 2007-07-26 Mitsubishi Heavy Ind Ltd 亀裂補修方法
JP2012200736A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 摩擦攪拌処理方法
JP6698927B1 (ja) * 2019-08-22 2020-05-27 株式会社フルヤ金属 金属系筒材の製造方法及びそれに用いられる裏当て治具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042095A (ja) * 2002-07-12 2004-02-12 Hitachi Industries Co Ltd 摩擦攪拌接合法とその装置
JP2007029955A (ja) * 2005-07-22 2007-02-08 Mitsui Eng & Shipbuild Co Ltd 摩擦撹拌接合方法及び装置
JP2007185683A (ja) * 2006-01-12 2007-07-26 Mitsubishi Heavy Ind Ltd 亀裂補修方法
JP2012200736A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 摩擦攪拌処理方法
JP6698927B1 (ja) * 2019-08-22 2020-05-27 株式会社フルヤ金属 金属系筒材の製造方法及びそれに用いられる裏当て治具

Also Published As

Publication number Publication date
JPWO2021241317A1 (ja) 2021-12-02
TW202146139A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
US6543670B2 (en) Interface preparation for weld joints
US8960523B2 (en) Friction stir welding of dissimilar metals
Duarte et al. Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers
Aonuma et al. Effect of alloying elements on interface microstructure of Mg–Al–Zn magnesium alloys and titanium joint by friction stir welding
Haddadi et al. Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding
JP5199379B2 (ja) アルミニウムの拡散結合を減じるための方法および超音波溶接装置
US20240058891A1 (en) Methods and devices for connecting two dissimilar materials
US20110076419A1 (en) Method for developing fine grained, thermally stable metallic material
WO2001083153A1 (en) Method of processing metal members
EP0535817A2 (en) Method for producing clad metal plate
Wohletz et al. Temperature influence on bond formation in multi-material joining by forging
Grong et al. Progress in solid state joining of metals and alloys
Acharya et al. Microstructure and mechanical property of friction stir welded Al-Mg joints by adopting modified joint configuration technique
WO2021033580A1 (ja) 金属系筒材の製造方法及びそれに用いられる裏当て治具
WO2021241317A1 (ja) 金属系改質板材の製造方法
Ohashi et al. Fastenerless-riveting utilizing friction stir forming for dissimilar materials joining
WO2021241318A1 (ja) 金属系改質板材の製造方法
Mukhopadhyay et al. Development and analysis of a powder bed friction stir (PBFS) additive manufacturing process for aluminum alloys: A study on friction-stirring pitch (ω/v) and print location
Kumaraswamy et al. A study of shear friction factor in friction stir welding for developing a finite element model and its importance in the context of formation of defect free and defective weld
JP2000312981A (ja) 円柱内面のコーティング方法
JP2003266182A (ja) 異種金属材料の摩擦攪拌接合方法
JP7173081B2 (ja) アルミニウム合金板と鋼板の摩擦撹拌接合方法
Yang et al. A study of the method of manufacturing bimaterial composite parts through semisolid metal processing
Karmakar et al. A novel zero tool defect accelerated friction stir thin sheet welding technique for automotive light-weight structural component fabrication with dissimilar material
EP3406390B1 (en) Method for joining thin metal sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812849

Country of ref document: EP

Kind code of ref document: A1