WO2021241224A1 - Electrochemical sensor unit - Google Patents

Electrochemical sensor unit Download PDF

Info

Publication number
WO2021241224A1
WO2021241224A1 PCT/JP2021/018001 JP2021018001W WO2021241224A1 WO 2021241224 A1 WO2021241224 A1 WO 2021241224A1 JP 2021018001 W JP2021018001 W JP 2021018001W WO 2021241224 A1 WO2021241224 A1 WO 2021241224A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
sensor electrode
urine
electrode
test sample
Prior art date
Application number
PCT/JP2021/018001
Other languages
French (fr)
Japanese (ja)
Inventor
淳 益子
開 浅井
Original Assignee
株式会社ファーストスクリーニング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファーストスクリーニング filed Critical 株式会社ファーストスクリーニング
Publication of WO2021241224A1 publication Critical patent/WO2021241224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Definitions

  • the present disclosure relates to an electrochemical sensor unit that measures the concentration of a specific component contained in a liquid test sample.
  • an electrochemical sensor unit including a base material, a sensor electrode mounted on the base material, and a sheet provided so as to cover the sensor electrode has been published as a patented technology (Patent Document 1). reference).
  • a liquid test sample (test substance solution) taken in from an intake provided in the sheet is brought into contact with the sensor electrode, and the concentration of a specific component contained in the test sample is measured.
  • the above-mentioned patented technology contributes widely to the industry in that the concentration of a specific component in a test sample can be measured easily and reliably, but in rare cases, the concentration of the specific component itself does not change. However, it was found that the measurement result of the concentration may not be stable. This is a new issue that was first revealed by the inventor's diligent research. It is an object of the present disclosure to provide an electrochemical sensor unit capable of more stably and accurately measuring the concentration of a specific component in a test sample.
  • a sensor electrode provided on one of the two main surfaces of the base material, and An intake capable of taking in a liquid test sample is opened, and a sheet provided on one surface of the substrate so as to cover the sensor electrode is provided.
  • a storage structure is configured in which the peripheral edge of the sheet and the base material are adhered to each other to store the test sample taken in from the intake and bring it into contact with the sensor electrode.
  • the storage structure provides an electrochemical sensor unit having a discharge port for discharging a part of a test sample taken in through the intake.
  • an electrochemical sensor unit capable of more stably and accurately measuring the concentration of a specific component in a test sample.
  • FIG. 3 is a schematic top view of an electrochemical sensor unit in a modified example of one aspect of the present disclosure.
  • the concentration of a specific component may be measured as a concentration higher than the actual concentration or as a concentration lower than the actual concentration.
  • the inventor has conducted diligent research on the factors behind this new issue. As a result, in the sensor structure having a structure with a sheet covering the sensor electrodes, the sensor unit having another structure, for example, the structure with a sheet is not provided, and the electrode portion is immersed in the test sample stored in the container.
  • FIGS. 1 to 3 An electrochemical sensor unit that measures the concentration of a specific component contained in a liquid test sample by a three-electrode method will be described as an example.
  • the electrochemical sensor unit (hereinafter, unit) 100 in this embodiment includes a base material 10, a sensor electrode 20, and a sheet 30.
  • the unit 100 is configured to be disposable.
  • the unit 100 is used by connecting a measuring instrument configured to be able to perform a predetermined voltage sweep operation to the sensor electrode 20.
  • the unit 100 brings a liquid test sample (urine collected from the subject as an example in this embodiment) into contact with the sensor electrode 20, and performs a predetermined voltage sweep operation on the sensor electrode 20 from the measuring device to perform urine.
  • a specific component contained therein uric acid as an example in this embodiment
  • a measuring instrument from the magnitude of the electrochemical reaction (for example, redox reaction) that occurs at that time. can do.
  • the base material 10 is configured to support the sensor electrode 20.
  • the base material 10 is made of a sheet-shaped (plate-shaped) member and is formed in a longitudinal shape.
  • the base material 10 has, for example, a longitudinal shape portion (main portion) 11 and a convex portion 12.
  • the convex portion 12 is a portion that is sandwiched by a connection portion of a measuring instrument, which will be described later, or is inserted into an insertion port of the measuring instrument, that is, a portion that functions as a connection terminal.
  • the length of the main portion 11 is, for example, 90 mm or more and 150 mm or less
  • the width of the main portion 11 is, for example, 6 mm or more and 12 mm or less
  • the thickness of the main portion 11 is, for example, 0.2 mm or more and 2 mm or less, preferably 0.3 mm or more and 1 mm or less.
  • the word "length” when used, it means the length in the longitudinal direction of the base material 10, and when the word "width" is used, the length in the width direction of the base material 10 is used. Means.
  • the length of the convex portion 12 may be, for example, 5 mm or more and 15 mm or less, and the width of the convex portion 12 and the thickness of the convex portion 12 may be the same width and thickness as, for example, the main portion 11.
  • the width of the convex portion 12 is, for example, about 2 mm to 4 mm narrower than the width of the main portion 11, although it depends on the shape of the insertion port and the like. Can be width.
  • the crank portion is configured by the difference between the width of the main portion 11 and the width of the convex portion 12, and this crank portion limits the insertion length when the convex portion 12 is inserted into the insertion port of the measuring instrument. Functions as a stopper. Further, for example, the thickness of the convex portion 12 may be made thinner than the thickness of the main portion 11, and the crank portion may be formed by the difference between the thickness of the main portion 11 and the thickness of the convex portion 12.
  • the base material 10 has a physical (mechanical) strength that can be used as a unit 100, for example, a strength that does not bend or break even when urine adheres.
  • the base material 10 is made of an insulating material.
  • the insulating material plastic, glass epoxy resin, ceramic, glass or the like can be used.
  • the base material 10 for example, a rigid substrate or a flexible substrate can be used.
  • the sensor electrode 20 is provided on one of the two main surfaces of the base material 10.
  • the main surface of the base material 10 on which the sensor electrode 20 is provided is also referred to as “the upper surface of the base material 10”.
  • the sensor electrode 20 is provided on one end side in the longitudinal direction of the base material 10. Specifically, the sensor electrode 20 is provided on the main portion 11 of the base material 10 and in the vicinity of the end portion on the side opposite to the convex portion 12 in the longitudinal direction of the base material 10.
  • wirings 13 to 15 are arranged from above the convex portion 12 of the base material 10 toward the sensor electrode 20. They are provided apart from each other without contacting each other. From the viewpoint of reliably connecting the unit 100 and the measuring instrument described later, it is preferable that the wirings 13 to 15 are provided up to the end of the convex portion 12 opposite to the side adjacent to the main portion 11. ..
  • Wiring 13 to 15 can be formed by using a metal such as copper (Cu) or aluminum (Al).
  • the wirings 13 to 15 may be made of the same material or may be made of different materials.
  • Wiring 13 to 15 uses, for example, a subtractive method in which an unnecessary portion of the copper film previously attached on the base material 10 that is not covered with a resist is removed by etching to form a necessary conductor pattern. Can be formed. Further, the wirings 13 to 15 can also be formed by using an additive method or the like. Further, for example, gold (Au) plating or silver (Ag) plating may be applied onto these conductor patterns formed by using the subtractive method or the additive method. Further, the wirings 13 to 15 can also be formed by a printing method such as screen printing, gravure printing, offset printing, inkjet printing, a vapor deposition method, or the like.
  • the sensor electrode 20 has a working electrode 21, a counter electrode (counter electrode) 22, and a reference electrode 23.
  • One end of the wiring 13 is connected to the working electrode 21, one end of the wiring 14 is connected to the counter electrode 22, and one end of the wiring 15 is connected to the reference electrode 23.
  • the working electrode 21 for example, an electrode made of Ag, Au, platinum (Pt), or Cu metal can be used.
  • a carbon electrode, a conductive diamond electrode doped with boron (B), or the like can also be used.
  • an electrode or the like made of various known materials depending on the type of the specific component to be measured can also be used.
  • the working electrode 21 can be formed by using a known method such as an additive method and a subtractive method.
  • the working electrode 21 can be formed by, for example, applying a predetermined plating to a conductor pattern integrally formed with the wiring 13 by using a subtractive method.
  • the working electrode 21 can also be formed by attaching a predetermined material to a conductor pattern integrally formed with the wiring 13 described later.
  • a predetermined surface decorative film such as an enzyme-containing film or an ion exchange membrane is formed as a functional film that allows only a specific component (for example, uric acid) to permeate or reacts only with this specific component. It may be provided.
  • the counter electrode 22 is an electrode for passing a current generated by an electrochemical reaction to the working electrode 21, and is provided so as to surround the working electrode 21 and the reference electrode 23 described later.
  • the electrode area of the counter electrode 22 is preferably larger than the electrode area of the working electrode 21.
  • an electrode made of a metal such as Pt, Au, Cu, palladium (Pd), nickel (Ni), Ag, or a carbon electrode can be used.
  • the counter electrode 22 can be integrally formed with the wiring 14 by a known method such as a subtractive method or an additive method.
  • the reference electrode 23 is a reference electrode for determining the potential of the working electrode 21, and is provided in the vicinity of the working electrode 21.
  • a silver / silver chloride (Ag / AgCl) electrode or the like can be used.
  • a standard hydrogen electrode, a reversible hydrogen electrode, a palladium / hydrogen electrode, a saturated calomel electrode, a carbon electrode and the like can also be used.
  • an electrode made of a metal such as Pt, Au, Cu, Pd, Ni, Ag or the like can also be used.
  • the reference electrode 23 can be formed by attaching a predetermined material (for example, AgCl) to a conductor pattern integrally formed with the wiring 15 by using a subtractive method, an additive method, or the like. Further, for example, the conductor pattern integrally formed with the wiring 15 can be plated with gold or the like and used as the reference electrode 23.
  • a predetermined material for example, AgCl
  • the conductor pattern integrally formed with the wiring 15 can be plated with gold or the like and used as the reference electrode 23.
  • a sheet-shaped waterproof member 40 is provided on the upper surface of the base material 10 to prevent urine from adhering to the wirings 13 to 15.
  • the waterproof member 40 is configured to cover (seal) the wirings 13 to 15 located on the main portion 11 and expose the wirings 13 to 15 and the sensor electrode 20 located on the convex portion 12.
  • the waterproof member 40 can be formed by using a water-impermeable and insulating material such as plastic, silicon resin, Teflon (registered trademark) resin, and rubber.
  • a sheet (sheet-like member) 30 is provided on the upper surface of the base material 10 so as to cover the sensor electrode 20 and the waterproof member 40.
  • the sheet 30 includes a water-repellent member 31 that does not absorb urine and a water-absorbing member 32 that absorbs urine.
  • the water repellent member 31 can be, for example, a sheet shape (plate shape).
  • the length of the water-repellent member 31 is set to be, for example, about 15 mm to 25 mm longer than the length of the base material 10 (the total length of the length of the main portion 11 and the length of the convex portion 12), and the water-repellent member 31 is set. It is preferable to dispose of the convex portion 12 so as to protrude from the side. As a result, when the unit 100 is connected to the measuring instrument, the portion of the water-repellent member 31 protruding from the convex portion 12 (hereinafter, also referred to as “the protruding portion of the water-repellent member 31 (or the sheet 30)”) is pinched.
  • the convex portion 12 that functions as a connection terminal can be easily exposed.
  • the connection portion (insertion port, holding portion, etc.) of the measuring instrument can be covered with the water repellent member 31.
  • the finger of the subject holding (holding) the unit (measuring instrument connected to the unit) can be covered with the water-repellent member 31, and urine adheres to the subject's finger. It is also possible to prevent.
  • the length of the water-repellent member 31 may be the same as the length of the base material 10.
  • the width of the water-repellent member 31 can be the same as the width of the base material 10 (main portion 11).
  • the thickness of the water-repellent member 31 can be, for example, 0.01 mm or more and 0.3 mm or less.
  • the water-repellent member 31 can be formed by using a paper whose surface is coated with a water-repellent material such as plastic, silicon resin, or Teflon (registered trademark) resin.
  • a sheet-shaped resin formed of the above-mentioned water-repellent material can also be used.
  • the water-repellent member 31 is provided with an intake (opening) 33 capable of taking in urine.
  • the intake 33 is provided so as to be located on the sensor electrode 20 when the sheet 30 is arranged.
  • the intake 33 can be, for example, a circular shape having a diameter of 2 mm or more and 5 mm or less.
  • the intake 33 is not limited to a circular shape, but may be a rectangular shape or the like.
  • the water-repellent member 31 is provided (attached) with a water-absorbing member 32 so as to close the intake 33.
  • the water absorbing member 32 is formed in a sheet shape, for example, and is configured to absorb urine supplied to the unit 100 and bring it into contact with the surface of the sensor electrode 20.
  • the water absorbing member 32 has a size that covers at least a part of the surface of the sensor electrode 20 (working electrode 21, counter electrode 22, and reference electrode 23).
  • the water absorbing member 32 may be provided on the front surface side of the water repellent member 31, but as shown in FIG. 1 and the like, it is preferable to provide the water absorbing member 32 on the back surface (the surface facing the base material 10) of the water repellent member 31. In this case, the water absorbing member 32 will be arranged inside the storage structure described later, and will function to reliably store urine in the storage structure.
  • the flat area of the water absorbing member 32 is preferably a flat area larger than the flat area of the sensor electrode 20.
  • the flat area of the water absorbing member 32 can be, for example, 10 mm 2 or more and 50 mm 2 or less. This makes it possible to reliably bring urine into contact with the entire surface of the sensor electrode 20 and increase the sensitivity of concentration measurement.
  • the flat area of the water absorbing member 32 may be smaller than the flat area of the sensor electrode 20.
  • the thickness of the water absorbing member 32 can be, for example, 0.01 mm or more and 1.0 mm or less.
  • the position where the adhesive is applied is a position not facing the sensor electrode 20.
  • the water absorbing member 32 may be attached to the water repellent member 31 without using an adhesive.
  • the water absorbing member 32 may be attached to the water repellent member 31 by providing a notch in the water repellent member 31, inserting the water absorbing member 32 into the notch, and sandwiching the water absorbing member 32 between the water repellent members 31. .. By doing so, it is possible to reduce the adverse effect of the substance contained in the adhesive on the measurement result.
  • the water absorbing member 32 can be formed by using natural fiber, pulp fiber, regenerated fiber, synthetic fiber and the like. Specifically, the water absorbing member 32 can be formed by using a filter paper, a membrane filter, a glass filter, a filter cloth, or the like. The water-absorbing member 32 can also be formed by adding water-absorbing polymer particles or the like to the above-mentioned aggregate composed of one or more fibers. The water absorbing member 32 may be formed by using a member made of a porous material such as sponge or diatomaceous earth, or a fiber material such as a non-woven fabric.
  • the peripheral edge portion of the sheet 30 that is, the water repellent member 31
  • the base material 10 are adhered to each other via an adhesive 51 or the like.
  • the peripheral edge portion of the sheet 30, the peripheral edge portion of the central portion in the longitudinal direction of the base material 10, and the peripheral edge portion on the side where the sensor electrode 20 is provided are adhered to each other via the adhesive 51. ..
  • the urine taken in from the intake 33 is stored in the space between the base material 10 and the sheet 30 (in the place where the waterproof member 40 is arranged, between the waterproof member 40 and the sheet 30).
  • a storage structure bag-shaped structure that comes into contact with the sensor electrode 20 is configured.
  • Adhesion between the sheet 30 and the base material 10 is not limited to the case where the adhesive 51 is used, but can be performed by various methods such as heat fusion, sewing, and fitting.
  • the sheet 30 and the waterproof member 40 are omitted for the sake of clarity.
  • the storage structure has a discharge port 52 for discharging a part of urine taken into the storage structure via the intake 33.
  • the discharge port 52 is configured so that the amount of urine in contact with the sensor electrode 20 can be adjusted.
  • the discharge port 52 stores excess urine that has been taken into the storage structure via the intake 33 and cannot be completely absorbed by the water absorbing member 32 to the outside of the storage structure (unit 100), thereby storing the excess urine in the storage structure.
  • the amount of urine to be produced that is, the amount of urine to be brought into contact with the sensor electrode 20, is configured to be constant (predetermined amount). This makes it possible to prevent fluctuations in the measurement result of the uric acid concentration in urine and to accurately and stably measure the uric acid concentration in urine. That is, it is possible to stabilize the measurement accuracy of the uric acid concentration by the unit 100.
  • the storage structure is not provided with the discharge port 52, it becomes difficult to adjust the amount of urine in contact with the sensor electrode 20, and the amount of urine in contact with the sensor electrode 20 becomes excessive (predetermined amount). May exceed).
  • the actual uric acid concentration in urine does not change (the concentration does not increase)
  • the output of the detection signal of the unit 100 becomes larger than expected, and the uric acid concentration is measured higher than the actual concentration. May be done.
  • the amount of urine in contact with the sensor electrode 20 can be adjusted to be a constant amount by using the discharge port 52, the measurement of the uric acid concentration in urine can be accurately and accurately performed. It will be possible to do it stably.
  • the discharge port 52 can be configured by using various known check valves, but as shown in FIGS. 1 to 3, etc., the discharge port 52 is based on a part of the peripheral portion of the sheet 30 constituting the storage structure. It can be configured by making it non-adhesive to the material 10. With such a configuration, the discharge port 52 can be easily provided, and the unit 100 can be avoided from becoming complicated, large in size, and costly.
  • the discharge port 52 is arranged at a position where the sensor electrode 20 is arranged on the flow path of urine from the intake port 33 to the discharge port 52. That is, it is preferable that the sensor electrode 20 is arranged on the flow path of urine from the intake 33 to the discharge port 52. As a result, the amount of urine that comes into contact with the sensor electrode 20 can be reliably made constant, and the uric acid concentration in urine can be measured accurately and stably.
  • the sensor electrode 20 When the sensor electrode 20 is not arranged on the urine flow path, the urine taken in from the intake 33 becomes difficult to reach the sensor electrode 20, and the amount of urine in contact with the sensor electrode 20 becomes too small (predetermined amount). May be less than). In this case, although the actual uric acid concentration in urine does not change (the concentration does not decrease), the output of the detection signal of the unit 100 becomes smaller than expected, and the uric acid concentration is measured lower than the actual concentration. May be done. Further, when the sensor electrode 20 is not arranged on the urine flow path, excess urine that should pass on the sensor electrode 20 is less likely to be discharged from the discharge port 52, and a large amount of urine remains on the sensor electrode 20. As a result, the amount of urine that comes into contact with the sensor electrode 20 may become excessive.
  • the output of the detection signal of the unit 100 becomes larger than expected, and the uric acid concentration is measured higher than the actual concentration. May be done. If the sensor electrode 20 is not arranged on the urine flow path as described above, the measurement accuracy of the uric acid concentration by the unit 100 may become unstable. On the other hand, in this embodiment, since the sensor electrode 20 is arranged on the urine flow path, the amount of urine in contact with the sensor electrode 20 can be ensured to a constant amount, and the uric acid concentration in urine can be measured. Can be performed accurately and stably.
  • the position and size of the discharge port 52 are such that the discharge port 52 overlaps with at least a part of the sensor electrode 20 when the unit 100 is viewed from the side surface side (when the unit 100 is viewed from the side surface). It is preferable that the discharge port 52 is positioned and sized so as to include all of the sensor electrodes 20.
  • the discharge ports 52 are provided at a plurality of positions so that excess urine in the storage space can be smoothly discharged regardless of the posture of the unit 100.
  • the discharge port 52 has a direction orthogonal to the longitudinal direction of the base material 10 (width of the base material 10) when the unit 100 is viewed from the sheet 30 side (when the unit 100 is viewed in a plane). It is preferable to provide it on both sides of the direction). That is, it is preferable that the discharge ports 52 are provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view.
  • the excess urine taken into the storage structure can be drained without tilting or shaking the unit 100 after urine is applied.
  • the size of the discharge port 52 can be appropriately set according to the size (flat area) of the water absorption member 32, the water absorption capacity (capacity of urine that can be absorbed), and the like. For example, when the excess space in the storage structure is large, the flat area of the water absorption member 32 is small, or the water absorption capacity of the water absorption member 32 is low, that is, excess urine tends to remain in the storage structure and comes into contact with the sensor electrode 20. If the amount of urine to be collected tends to be excessive, the size of the discharge port 52 (the length of the non-adhesive portion) may be longer than the length of the water absorbing member 32 in the longitudinal direction of the base material 10.
  • the size of the discharge port 52 may be shorter than the length of the water absorption member 32 in the longitudinal direction of the base material 10. As a result, it becomes easy to make the amount of urine in contact with the sensor electrode 20 appropriate and constant, and it becomes possible to measure the uric acid concentration more accurately and stably.
  • the peripheral edge of the sheet 30 and the base material 10 may have a non-adhesive portion in addition to the portion constituting the discharge port 52.
  • the peripheral edge portion of the sheet 30 and the left end portion of the base material 10 may be non-adhesive.
  • the left end portion of the base material 10 when the up / down / left / right direction of the paper surface is defined as the up / down / left / right direction when the unit 100 is viewed in a plan view is simply “the left end portion of the base material 10”. Also called.
  • the left end portion of the base material 10 is simply called.
  • the peripheral edge portion of the sheet 30 and the peripheral edge portion of the convex portion 12 of the base material 10 and the peripheral edge portion of the peripheral edge portion of the main portion 11 on the convex portion 12 side are mutually aligned. It may be non-adhesive. This makes it easier to turn over the water-repellent member 31 to expose the convex portion 12.
  • the sheet 30 and the base material 10 by adhering the sheet 30 and the base material 10 to each other at at least one place (preferably at two or more points), the relative positional deviation of the sheet 30 with respect to the base material 10 can be obtained. Needless to say, it can be suppressed and the reliability of the unit 100 can be maintained.
  • step 1) of electrically connecting the unit 100 and the measuring instrument The step of supplying urine to the unit 100 and bringing the urine into contact with the sensor electrode 20 (step 2), With urine in contact with the surface of the sensor electrode 20, a predetermined voltage sweep operation is performed on the sensor electrode 20 from the measuring instrument to electrolyze the urine acid contained in the urine under specific conditions, which is generated at that time.
  • step 3) of measuring the urinary acid concentration in urine from the magnitude of the electrochemical reaction are carried out in this order. In this embodiment, step 2, step 1, and step 3 may be performed in this order.
  • Step 1 the unit 100 and a measuring instrument (not shown) configured separately from the unit 100 are connected to each other.
  • the subject grips the unit 100 and pinches the protruding portion of the sheet 30 covering the base material 10 to expose the convex portion 12 of the base material 10 that functions as a connection terminal (see FIG. 2).
  • a measuring instrument is connected to the convex portion 12.
  • the measuring instrument is configured so that the connecting portion of the measuring instrument and the wirings 13 to 15 can be electrically connected only by sandwiching the convex portion 12 together with the wirings 13 to 15.
  • the measuring instrument has an insertion port (slot) into which the convex portion 12 is inserted, and simply by inserting the convex portion 12 into the insertion port, the connection portion of the measuring instrument and the wirings 13 to 15 are electrically connected. It may be configured to be able to connect.
  • the measuring instrument is configured to be able to perform a predetermined voltage sweep operation on the sensor electrode 20, and includes a voltage sweep operation unit, a current measurement unit, a potential adjustment unit, a display unit, a wireless communication unit, and the like. ing.
  • the above-mentioned parts of the measuring instrument are connected to each other so that data can be exchanged.
  • the measuring instrument can transmit data indicating the concentration of uric acid obtained by the measurement to an external device (smartphone, tablet, PC, etc.) configured as a computer through a wireless communication means (wireless communication unit) or the like. It is configured as follows.
  • Step 2 After connecting the unit 100 and the measuring instrument, for example, the subject holds the measuring instrument and urinates toward the intake 33 of the unit 100.
  • urine is supplied to the unit 100.
  • the urine supplied to the unit 100 is taken into the storage structure from the intake 33 and absorbed by the water absorbing member 32.
  • the urine absorbed by the water absorbing member 32 passes through the water absorbing member 32 and reaches the surface of the sensor electrode 20.
  • urine comes into contact with the surface of the sensor electrode 20.
  • Excess urine that cannot be completely absorbed by the water absorbing member 32 is discharged to the outside of the storage structure (unit 100) through the discharge port 52 of the storage structure.
  • the position and size of the discharge port 52 are set so that the discharge port 52 includes all of the sensor electrodes 20 when the unit 100 is viewed from the side. Further, when the unit 100 is viewed in a plan view, discharge ports 52 are provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween. As a result, it becomes possible to more reliably discharge excess urine taken into the storage structure without relying on human operation.
  • the wirings 13 to 15 are covered with the waterproof member 40, even if urine flows toward the wirings 13 to 15 depending on the posture of the unit 100, the urine will be collected from the sheet 30 and the waterproof member. It will flow between 40 and 40. Therefore, urine hardly adheres to the wirings 13 to 15.
  • Step 3 With urine in contact with the surface of the sensor electrode 20, a predetermined voltage sweep operation is performed on the sensor electrode 20 from the measuring instrument to electrolyze the uric acid contained in the urine under specific conditions. The magnitude of the electrochemical reaction (eg, redox reaction) that occurs in is measured.
  • uric acid is electrolyzed on the surface of the working electrode 21.
  • a current flows between the working electrode 21 and the counter electrode 22. The value of this current is continuously measured, for example, by a measuring instrument. The value of this current varies depending on the magnitude of the electrochemical reaction that occurs when uric acid is electrolyzed, and the larger the electrochemical reaction, the larger the value of the current.
  • the uric acid concentration is calculated based on the maximum value (peak value) of the current value measured by the measuring instrument. Since the current value correlates with the uric acid concentration, the uric acid concentration can be quantified based on the measured current value if the relationship between the current value and the uric acid concentration is obtained in advance.
  • the measuring instrument displays the measured uric acid concentration on the display unit. Further, the measuring instrument can also transmit the uric acid concentration data obtained by the measurement to an external device via a wireless communication means or the like.
  • the subject removes (extracts) the unit 100 from the measuring instrument and discards the unit 100.
  • the unit 100 has a storage structure in which the peripheral edge portion of the sheet 30 and the base material 10 are adhered to each other, and urine taken in from the intake 33 is stored and brought into contact with the sensor electrode 20. Further, the storage structure includes a discharge port 52 for discharging a part of urine taken in through the intake 33. With these structures, the amount of urine that comes into contact with the sensor electrode 20 is kept constant (predetermined amount), and the uric acid concentration can be accurately and stably measured by the unit 100.
  • the inventor has confirmed that if the amount of urine in contact with the sensor electrode 20 is not constant, the measurement accuracy of the uric acid concentration by the unit 100 may become unstable.
  • the experiments conducted to support this and the results are shown below.
  • This experiment was performed in a state where the sheet 30 was peeled off from the above-mentioned unit 100 and the surface of the sensor electrode 20 was exposed.
  • a predetermined amount of urine was applied (dripping) to the exposed sensor electrode 20 using a dropper.
  • the amount of urine dripping (supplied) on the sensor electrode 20 was different from large, medium, and small.
  • each of the surface and the side surface of the sensor electrode 20 was brought into full contact with urine.
  • 90% or more of the surface of the sensor electrode 20 is in contact with urine, but the rest is exposed including the side surface.
  • about 50% of the surface of the sensor electrode 20 is in contact with urine, but the rest is exposed including the side surface.
  • the solid line shows the cyclic voltammogram when the contact amount is “high”
  • the broken line shows the cyclic voltamogram when the contact amount is “medium”
  • the dotted line shows the cyclic voltamogram when the contact amount is “small”.
  • the position and size of the discharge port 52 are set so that the discharge port 52 includes all of the sensor electrodes 20 when the unit 100 is viewed from the side, and the discharge port 52 is the unit 100.
  • the sheet 30 is provided with a water-repellent member 31 and a water-absorbing member 32, and the water-absorbing member 32 is provided inside the storage structure. Then, the urine absorbed by the water absorbing member 32 is brought into contact with the surface of the sensor electrode 20. As a result, urine can be reliably stored in the storage structure, and the amount of urine that comes into contact with the sensor electrode 20 can be more reliably made constant. Further, by absorbing and holding urine in the water absorbing member 32, the amount of urine in contact with the sensor electrode 20 can be surely kept constant regardless of the posture of the unit 100 when measuring the uric acid concentration. .. As a result, it becomes possible to measure the uric acid concentration by the unit 100 more accurately and stably.
  • the end portions may be adhered to each other via the adhesive 51 or the like, and the sheet 30 and the central portion of the base material 10 may be adhered to each other via the adhesive 51 or the like.
  • the same effect as the above-described embodiment can be obtained by this modification as well.
  • the sheet 30 and the central portion of the base material 10 are adhered to each other, the urine taken into the storage structure from the intake 33 is convex according to the posture of the unit 100. It is also possible to prevent the flow to the portion 12 side. As a result, the adhesion of urine to the wirings 13 to 15 can be reliably avoided, and the uric acid concentration can be measured more accurately and stably. In addition, the infiltration of urine into the measuring instrument can be reliably avoided, and the malfunction or damage of the measuring instrument can be avoided.
  • the discharge port 52 may be provided on either side in the width direction of the base material 10 with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view. Also in this modification, the same effect as the above-mentioned aspect can be obtained. However, as in the above aspect, when the discharge port 52 is provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween, the excess urine taken into the storage structure is artificially discharged. It is preferable in that it can be performed more reliably without relying on a specific operation.
  • the discharge port 52 is a position facing the sensor electrode 20 when the unit 100 is viewed in a plan view, and is located on one end side (the side where the sensor electrode 20 is provided) in the longitudinal direction of the base material 10. It may be provided. That is, it may be provided at the left end portion of the base material 10. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
  • the discharge port 52 is provided on at least one side in the width direction of the base material 10 and the left end portion of the base material 10 with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view. May be. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
  • the discharge port 52 may be configured by a notch provided in the sheet 30 (water repellent member 31) constituting the storage structure.
  • the notch may be provided at a position where a part of the urine taken into the storage structure from the intake 33 can be discharged.
  • the notch can be provided in a part of the peripheral portion of the sheet 30.
  • it is preferable that the notch is provided at at least one position in the width direction of the base material 10 and / or at the left end portion of the base material 10. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
  • the discharge port 52 may be configured by providing a through hole in the base material 10. In this case, it is preferable that a through hole is provided in the base material 10 at a position where the sensor electrode 20 is not provided. Also in this modified example, substantially the same effect as the above-mentioned aspect can be obtained.
  • the sheet 30 does not have to have the water absorbing member 32. That is, the sheet 30 may be composed of the water-repellent member 31 in which the intake 33 is opened, and may be configured so that the urine taken in from the intake 33 comes into direct contact with the surface of the sensor electrode 20. Also in this modified example, substantially the same effect as the above-mentioned aspect can be obtained. However, as in the above aspect, if the urine supplied to the unit 100 is configured to come into contact with the surface of the sensor electrode 20 via the water absorbing member 32, the urine that comes into contact with the surface of the sensor electrode 20 It is preferable in that the amount can be ensured to a constant amount and the uric acid concentration in urine can be measured accurately and stably.
  • the working electrode 21 may be formed separately from the wiring 13, and the working electrode 21 and the wiring 13 may be connected via a conductive adhesive.
  • the counter electrode 22 may be formed separately from the wiring 14, the counter electrode 22 and the wiring 14 may be connected via a conductive adhesive, and the reference electrode 23 may be formed separately from the wiring 15.
  • the reference electrode 23 and the wiring 15 may be connected via conductivity.
  • the liquid test sample is urine collected from a subject
  • the liquid test sample may be body fluid such as saliva, runny nose, sweat, tears, and blood, in addition to urine.
  • the specific component contained in the test sample is uric acid
  • the specific component contained in the test sample may be uric acid, urinary sugar, sodium, potassium, nitrite, arginine, albumin, creatinine and the like.
  • the liquid test sample is not limited to that derived from humans, and may be derived from animals such as dogs and cats, for example.
  • the test sample is supplied to the unit 100 by immersing the side of the unit 100 in which the sensor electrode 20 is provided in a container or the like containing the test sample, and the test sample is taken into the storage structure from the intake 33. May be good.
  • the concentration of a specific component in a test sample may be measured by a two-electrode method.
  • the sensor electrode 20 may have two electrodes, a working electrode 21 and a counter electrode 22 (or a reference electrode 23).
  • one sensor electrode 20 is provided on the upper surface of the base material 10
  • the present disclosure is not limited to such an aspect.
  • a plurality of (two or more) sensor electrodes 20 may be provided on the upper surface of the base material 10.
  • This aspect also has substantially the same effect as the above-mentioned aspect. It should be noted that this aspect can be carried out in any form in combination with the various aspects and modifications described above.
  • a sensor electrode provided on one of the two main surfaces of the base material, and An intake capable of taking in a liquid test sample is opened, and a sheet provided on one surface of the substrate so as to cover the sensor electrode is provided.
  • a storage structure is configured in which the peripheral edge of the sheet and the base material are adhered to each other to store the test sample taken in from the intake and bring it into contact with the sensor electrode.
  • the storage structure provides an electrochemical sensor unit having a discharge port for discharging a part of a test sample taken in through the intake. The discharge port functions to adjust the amount of the test sample in contact with the sensor electrode by discharging a part of the test sample.
  • Appendix 2 The sensor unit according to Appendix 1, preferably.
  • the discharge port is configured such that a part of the peripheral portion of the sheet is non-adhesive to the base material.
  • Appendix 3 The sensor unit according to Appendix 1 or 2, preferably.
  • the discharge port is configured by a notch provided in a part of the peripheral portion of the sheet.
  • the sensor unit according to any one of Supplementary note 1 to 3, preferably.
  • the sensor electrode is arranged on the flow path of the test sample from the inlet to the outlet.
  • the sensor unit according to any one of Supplementary note 1 to 4, preferably.
  • the discharge port is provided at a position overlapping with at least a part of the sensor electrode when the sensor unit is viewed from the side.
  • the sensor unit according to Appendix 5 preferably.
  • the base material has a longitudinal shape and has a longitudinal shape.
  • the discharge port is provided on at least one side in a direction orthogonal to the longitudinal direction of the base material.
  • the sensor unit according to Appendix 5 preferably.
  • the base material has a longitudinal shape and has a longitudinal shape.
  • the discharge ports are provided at positions on both sides in a direction orthogonal to the longitudinal direction of the base material.
  • the sensor unit according to any one of Supplementary note 5 to 8, preferably.
  • the base material has a longitudinal shape and has a longitudinal shape.
  • the sensor electrode is provided on one end side in the longitudinal direction of the base material.
  • the discharge port is provided on the one end side of the base material.
  • the sensor unit according to any one of Supplementary note 1 to 8, preferably.
  • the outlet has a size that overlaps with at least a part of the sensor electrode when the sensor unit is viewed from the side.
  • the sensor unit according to any one of Supplementary note 1 to 9, preferably.
  • the sheet has a water-repellent member that does not absorb the test sample, and a water-absorbing member that is provided so as to close the intake and absorbs the test sample.
  • the water absorbing member is arranged so as to cover at least a part of the sensor electrode.
  • the test sample taken in from the intake is absorbed by the water absorbing member and permeates to the surface of the sensor electrode so that the test sample is brought into contact with the sensor electrode, and the test sample not absorbed by the water absorbing member is discharged. It is configured to be discharged from the outlet.
  • Appendix 11 The sensor unit according to Appendix 10, preferably.
  • the water absorbing member is provided on the back surface side of the water repellent member.
  • Electrochemical sensor unit 10 Base material 20 Sensor electrode 30 Sheet 33 Inlet 52 Outlet

Abstract

The present invention comprises a substrate, a sensor electrode that is provided on one of two principal surfaces of the substrate, and a sheet that has an intake port for taking in a liquid test sample and is provided on the one surface of the substrate so as to cover the sensor electrode. A circumferential edge part of the sheet is bonded to the substrate to form a holding structure that holds the test sample taken in through the intake port and allows the test sample to contact the sensor electrode. The holding structure has a discharge port that discharges a portion of the test sample taken in through the intake port.

Description

電気化学センサユニットElectrochemical sensor unit
 本開示は、液状の被験試料に含まれる特定成分の濃度を測定する電気化学センサユニットに関する。 The present disclosure relates to an electrochemical sensor unit that measures the concentration of a specific component contained in a liquid test sample.
 近年、基材と、この基材上に搭載されたセンサ電極と、このセンサ電極を覆うように設けられたシートと、を備える電気化学センサユニットが、特許技術として公開されている(特許文献1参照)。このセンサユニットでは、シートに開設された取入口から取り入れた液状の被験試料(被検物質溶液)をセンサ電極に接触させ、被験試料に含まれる特定成分の濃度を測定する。 In recent years, an electrochemical sensor unit including a base material, a sensor electrode mounted on the base material, and a sheet provided so as to cover the sensor electrode has been published as a patented technology (Patent Document 1). reference). In this sensor unit, a liquid test sample (test substance solution) taken in from an intake provided in the sheet is brought into contact with the sensor electrode, and the concentration of a specific component contained in the test sample is measured.
特許第6653847号公報Japanese Patent No. 6653847
 上述の特許技術は、被験試料中における特定成分の濃度測定を簡便かつ確実に行えるといった点で産業に広く貢献するものであるが、まれに、特定成分の濃度自体には変化がないにもかかわらず、濃度の測定結果が安定しない場合があることが判明した。このことは、発明者の鋭意研究によって初めて明らかとなった新規課題である。本開示は、被験試料中の特定成分の濃度をより安定して正確に測定することができる電気化学センサユニットを提供することを目的とする。 The above-mentioned patented technology contributes widely to the industry in that the concentration of a specific component in a test sample can be measured easily and reliably, but in rare cases, the concentration of the specific component itself does not change. However, it was found that the measurement result of the concentration may not be stable. This is a new issue that was first revealed by the inventor's diligent research. It is an object of the present disclosure to provide an electrochemical sensor unit capable of more stably and accurately measuring the concentration of a specific component in a test sample.
 本開示の一態様によれば、
 基材と、
 前記基材が有する2つの主面のうちいずれか一方の面上に設けられたセンサ電極と、
 液状の被験試料を取り入れ可能な取入口が開設され、前記センサ電極を覆うように前記基材の前記一方の面上に設けられたシートと、を備え、
 前記シートの周縁部と前記基材とが接着されてなり、前記取入口から取り入れた被験試料を貯留して前記センサ電極に接触させる貯留構造が構成されており、
 前記貯留構造は、前記取入口を介して取り入れられた被験試料の一部を排出する排出口を有する電気化学センサユニットが提供される。
According to one aspect of the present disclosure
With the base material
A sensor electrode provided on one of the two main surfaces of the base material, and
An intake capable of taking in a liquid test sample is opened, and a sheet provided on one surface of the substrate so as to cover the sensor electrode is provided.
A storage structure is configured in which the peripheral edge of the sheet and the base material are adhered to each other to store the test sample taken in from the intake and bring it into contact with the sensor electrode.
The storage structure provides an electrochemical sensor unit having a discharge port for discharging a part of a test sample taken in through the intake.
 本開示によれば、被験試料中の特定成分の濃度をより安定して正確に測定することができる電気化学センサユニットを提供することが可能となる。 According to the present disclosure, it is possible to provide an electrochemical sensor unit capable of more stably and accurately measuring the concentration of a specific component in a test sample.
本開示の一態様における電気化学センサユニットの分解斜視図である。It is an exploded perspective view of the electrochemical sensor unit in one aspect of this disclosure. 本開示の一態様における電気化学センサユニットの上面概略図である。It is a schematic top view of the electrochemical sensor unit in one aspect of this disclosure. 本開示の一態様における電気化学センサユニットのセンサ電極が配置された部分を拡大した上面概略図である。It is an enlarged top view of the portion where the sensor electrode of the electrochemical sensor unit in one aspect of the present disclosure is arranged. センサ電極に接触させる尿の量を多、中、少としてサイクリックボルタンメトリーを実施して得た各サイクリックボルタモグラムを示す。The amount of urine to be brought into contact with the sensor electrode is set to high, medium, and low, and each cyclic voltammetry obtained by performing cyclic voltammetry is shown. 本開示の一態様の変形例における電気化学センサユニットの上面概略図である。FIG. 3 is a schematic top view of an electrochemical sensor unit in a modified example of one aspect of the present disclosure.
<発明者が得た知見>
 上述したように、シート付構造のセンサユニットを用いた場合、被験試料中における特定成分の濃度自体には変化がないにもかかわらず、濃度の測定結果が安定しない場合があること、具体的には、特定成分の濃度が、実際の濃度よりも高い濃度として測定されたり、実際の濃度よりも低い濃度として測定されたりする場合があることが判明した。発明者は、この新規課題の要因について鋭意研究を行った。その結果、センサ電極を覆うシート付構造を備えたセンサ構造においては、他の構造を有するセンサユニット、例えば、シート付構造を有さず、容器内に貯留された被験試料中に電極部分を浸漬させるタイプのセンサユニット等に比べ、センサ電極に接触させる被験試料の量が変動しやすい傾向があり、このことが、濃度の測定結果に影響を与える一要因ではないか、との知見を得た。本開示は、この知見に基づいてなされたものである。
<Findings obtained by the inventor>
As described above, when a sensor unit having a structure with a sheet is used, the measurement result of the concentration may not be stable even though the concentration itself of the specific component in the test sample does not change. It was found that the concentration of a specific component may be measured as a concentration higher than the actual concentration or as a concentration lower than the actual concentration. The inventor has conducted diligent research on the factors behind this new issue. As a result, in the sensor structure having a structure with a sheet covering the sensor electrodes, the sensor unit having another structure, for example, the structure with a sheet is not provided, and the electrode portion is immersed in the test sample stored in the container. It was found that the amount of the test sample that comes into contact with the sensor electrode tends to fluctuate more easily than the sensor unit of the type that allows the sensor unit to be contacted, and this may be one factor that affects the measurement result of the concentration. .. This disclosure is based on this finding.
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図3を参照しながら説明する。本態様では、液状の被験試料に含まれる特定成分の濃度を三電極法により測定する電気化学センサユニットを例に説明する。
<One aspect of the present disclosure>
Hereinafter, one aspect of the present disclosure will be described mainly with reference to FIGS. 1 to 3. In this embodiment, an electrochemical sensor unit that measures the concentration of a specific component contained in a liquid test sample by a three-electrode method will be described as an example.
(1)電気化学センサユニットの構成
 図1に示すように、本態様における電気化学センサユニット(以下、ユニット)100は、基材10と、センサ電極20と、シート30と、を備えている。ユニット100は、使い捨て可能に構成されている。
(1) Configuration of Electrochemical Sensor Unit As shown in FIG. 1, the electrochemical sensor unit (hereinafter, unit) 100 in this embodiment includes a base material 10, a sensor electrode 20, and a sheet 30. The unit 100 is configured to be disposable.
 ユニット100は、センサ電極20に対して所定の電圧掃引操作を行うことが可能なように構成された測定器が接続されて使用される。ユニット100は、液状の被験試料(本態様では一例として、被験者から採取した尿)をセンサ電極20に接触させ、このセンサ電極20に対して測定器から所定の電圧掃引操作を行うことにより、尿中に含まれる特定成分(本態様では一例として、尿酸)を特定の条件下で電気分解させ、その際に生じる電気化学反応(例えば酸化還元反応)の大きさから尿酸の濃度を測定器により測定することができる。 The unit 100 is used by connecting a measuring instrument configured to be able to perform a predetermined voltage sweep operation to the sensor electrode 20. The unit 100 brings a liquid test sample (urine collected from the subject as an example in this embodiment) into contact with the sensor electrode 20, and performs a predetermined voltage sweep operation on the sensor electrode 20 from the measuring device to perform urine. A specific component contained therein (uric acid as an example in this embodiment) is electrolyzed under specific conditions, and the concentration of uric acid is measured by a measuring instrument from the magnitude of the electrochemical reaction (for example, redox reaction) that occurs at that time. can do.
 基材10は、センサ電極20を支持するように構成されている。基材10は、シート状(板状)部材で構成されており、長手形状に形成されている。基材10は、例えば、長手形状部(主部)11と、凸状部12と、を有している。凸状部12は、後述の測定器の接続部によって挟持されたり、測定器の挿入口に挿入されたりする部分、すなわち、接続端子として機能する部分である。 The base material 10 is configured to support the sensor electrode 20. The base material 10 is made of a sheet-shaped (plate-shaped) member and is formed in a longitudinal shape. The base material 10 has, for example, a longitudinal shape portion (main portion) 11 and a convex portion 12. The convex portion 12 is a portion that is sandwiched by a connection portion of a measuring instrument, which will be described later, or is inserted into an insertion port of the measuring instrument, that is, a portion that functions as a connection terminal.
 主部11の長さは例えば90mm以上150mm以下とし、主部11の幅は例えば6mm以上12mm以下とし、主部11の厚さは例えば0.2mm以上2mm以下、好ましくは0.3mm以上1mm以下とすることができる。なお、本明細書において、「長さ」という文言を用いる場合は、基材10の長手方向における長さを意味し、「幅」という文言を用いる場合は、基材10の幅方向における長さを意味する。 The length of the main portion 11 is, for example, 90 mm or more and 150 mm or less, the width of the main portion 11 is, for example, 6 mm or more and 12 mm or less, and the thickness of the main portion 11 is, for example, 0.2 mm or more and 2 mm or less, preferably 0.3 mm or more and 1 mm or less. Can be. In the present specification, when the word "length" is used, it means the length in the longitudinal direction of the base material 10, and when the word "width" is used, the length in the width direction of the base material 10 is used. Means.
 凸状部12の長さは例えば5mm以上15mm以下とし、凸状部12の幅および凸状部12の厚さは、それぞれ、例えば主部11と同様の幅、厚さとすることができる。なお、凸状部12が測定器の挿入口に挿入される場合は、挿入口の形状等にもよるが、凸状部12の幅は、主部11の幅よりも例えば2mm~4mm程度狭い幅とすることができる。主部11の幅と凸状部12の幅との相違によってクランク部が構成され、このクランク部は、測定器の挿入口に凸状部12を挿入する際に、その挿入長さを制限するストッパとして機能する。また例えば、凸状部12の厚さを主部11の厚さよりも薄くし、主部11の厚さと凸状部12の厚さとの相違によってクランク部を構成してもよい。 The length of the convex portion 12 may be, for example, 5 mm or more and 15 mm or less, and the width of the convex portion 12 and the thickness of the convex portion 12 may be the same width and thickness as, for example, the main portion 11. When the convex portion 12 is inserted into the insertion port of the measuring instrument, the width of the convex portion 12 is, for example, about 2 mm to 4 mm narrower than the width of the main portion 11, although it depends on the shape of the insertion port and the like. Can be width. The crank portion is configured by the difference between the width of the main portion 11 and the width of the convex portion 12, and this crank portion limits the insertion length when the convex portion 12 is inserted into the insertion port of the measuring instrument. Functions as a stopper. Further, for example, the thickness of the convex portion 12 may be made thinner than the thickness of the main portion 11, and the crank portion may be formed by the difference between the thickness of the main portion 11 and the thickness of the convex portion 12.
 基材10は、ユニット100として使用することができる物理的(機械的)強度、例えば尿が付着した場合であっても、折れ曲がったり、破損したりすることがない強度を有している。基材10は絶縁性材料により形成されている。絶縁性材料としては、プラスチック、ガラスエポキシ樹脂、セラミック、ガラス等を用いることができる。基材10としては、例えばリジット基板、フレキシブル基板を用いることができる。 The base material 10 has a physical (mechanical) strength that can be used as a unit 100, for example, a strength that does not bend or break even when urine adheres. The base material 10 is made of an insulating material. As the insulating material, plastic, glass epoxy resin, ceramic, glass or the like can be used. As the base material 10, for example, a rigid substrate or a flexible substrate can be used.
 基材10が有する2つの主面のうちいずれか一方の面上には、センサ電極20が設けられている。以下では、センサ電極20が設けられている基材10の主面を「基材10の上面」とも称する。センサ電極20は、基材10の長手方向における一端部側に設けられている。具体的には、センサ電極20は、基材10の主部11上であって、基材10の長手方向において凸状部12とは反対側の端部近傍に設けられている。 The sensor electrode 20 is provided on one of the two main surfaces of the base material 10. Hereinafter, the main surface of the base material 10 on which the sensor electrode 20 is provided is also referred to as “the upper surface of the base material 10”. The sensor electrode 20 is provided on one end side in the longitudinal direction of the base material 10. Specifically, the sensor electrode 20 is provided on the main portion 11 of the base material 10 and in the vicinity of the end portion on the side opposite to the convex portion 12 in the longitudinal direction of the base material 10.
 基材10の上面には、3本の配線(導体配線)13,14,15(以下、配線13~15とも称する)が、基材10の凸状部12上からセンサ電極20に向かって、互いに接触することなく離間して設けられている。ユニット100と後述の測定器とを確実に接続する観点から、配線13~15は、それぞれ、凸状部12において主部11と隣接する側とは反対側の端まで設けられていることが好ましい。 On the upper surface of the base material 10, three wirings (conductor wirings) 13, 14, 15 (hereinafter, also referred to as wirings 13 to 15) are arranged from above the convex portion 12 of the base material 10 toward the sensor electrode 20. They are provided apart from each other without contacting each other. From the viewpoint of reliably connecting the unit 100 and the measuring instrument described later, it is preferable that the wirings 13 to 15 are provided up to the end of the convex portion 12 opposite to the side adjacent to the main portion 11. ..
 配線13~15は、銅(Cu)、アルミニウム(Al)等の金属を用いて形成することができる。配線13~15は、同一の材料で形成されていてもよいし、互いに異なる材料で形成されていてもよい。 Wiring 13 to 15 can be formed by using a metal such as copper (Cu) or aluminum (Al). The wirings 13 to 15 may be made of the same material or may be made of different materials.
 配線13~15は、例えば、基材10上に予め貼られた銅膜のうち、レジストで覆われていない不要な部分をエッチングにより除去して必要な導体パターンを形成する、サブトラクティブ法を用いて形成することができる。また、配線13~15は、アディティブ法等を用いて形成することもできる。また、サブトラクティブ法やアディティブ法を用いて形成されたこれらの導体パターン上に、例えば、金(Au)めっきや銀(Ag)めっきを施してもよい。また、配線13~15は、スクリーン印刷、グラビア印刷、オフセット印刷、インクジェット印刷等の印刷法や、蒸着法等により形成することもできる。 Wiring 13 to 15 uses, for example, a subtractive method in which an unnecessary portion of the copper film previously attached on the base material 10 that is not covered with a resist is removed by etching to form a necessary conductor pattern. Can be formed. Further, the wirings 13 to 15 can also be formed by using an additive method or the like. Further, for example, gold (Au) plating or silver (Ag) plating may be applied onto these conductor patterns formed by using the subtractive method or the additive method. Further, the wirings 13 to 15 can also be formed by a printing method such as screen printing, gravure printing, offset printing, inkjet printing, a vapor deposition method, or the like.
 センサ電極20は、作用電極21と、対電極(対向電極)22と、参照電極23とを有している。作用電極21には配線13の一端部が接続され、対電極22には配線14の一端部が接続され、参照電極23には配線15の一端部が接続されている。 The sensor electrode 20 has a working electrode 21, a counter electrode (counter electrode) 22, and a reference electrode 23. One end of the wiring 13 is connected to the working electrode 21, one end of the wiring 14 is connected to the counter electrode 22, and one end of the wiring 15 is connected to the reference electrode 23.
 作用電極21としては、例えば、Ag、Au、白金(Pt)、Cuの金属で形成された電極を用いることができる。作用電極21として、カーボン電極、ホウ素(B)をドープした導電性ダイヤモンド電極等を用いることもできる。また、作用電極21として、測定対象となる特定成分の種類に応じて公知の種々の材料で構成された電極等を用いることもできる。作用電極21は、アディティブ法、サブトラクティブ法等の公知の手法を用いて形成することができる。作用電極21は、例えば、サブトラクティブ法を用いて配線13と一体に形成された導体パターンに所定のめっきを施して形成することができる。作用電極21は、後述の配線13と一体に形成された導体パターンに所定の材料を貼り付けて形成することもできる。 As the working electrode 21, for example, an electrode made of Ag, Au, platinum (Pt), or Cu metal can be used. As the working electrode 21, a carbon electrode, a conductive diamond electrode doped with boron (B), or the like can also be used. Further, as the working electrode 21, an electrode or the like made of various known materials depending on the type of the specific component to be measured can also be used. The working electrode 21 can be formed by using a known method such as an additive method and a subtractive method. The working electrode 21 can be formed by, for example, applying a predetermined plating to a conductor pattern integrally formed with the wiring 13 by using a subtractive method. The working electrode 21 can also be formed by attaching a predetermined material to a conductor pattern integrally formed with the wiring 13 described later.
 また、作用電極21の表面には、特定成分(例えば尿酸)のみを透過させる機能膜やこの特定成分のみと反応する機能膜として、例えば、酵素含有膜やイオン交換膜といった所定の表面装飾膜が設けられていてもよい。 Further, on the surface of the working electrode 21, a predetermined surface decorative film such as an enzyme-containing film or an ion exchange membrane is formed as a functional film that allows only a specific component (for example, uric acid) to permeate or reacts only with this specific component. It may be provided.
 対電極22は、電気化学反応により生じた電流を作用電極21に流すための電極であり、作用電極21及び後述の参照電極23を取り囲むように設けられている。対電極22の電極面積は、作用電極21の電極面積に比して大きいことが好ましい。対電極22としては、Pt、Au、Cu、パラジウム(Pd)、ニッケル(Ni)、Ag等の金属で形成された電極やカーボン電極等を用いることができる。対電極22は、サブトラクティブ法やアディティブ法等の公知の手法により、配線14と一体に形成することができる。 The counter electrode 22 is an electrode for passing a current generated by an electrochemical reaction to the working electrode 21, and is provided so as to surround the working electrode 21 and the reference electrode 23 described later. The electrode area of the counter electrode 22 is preferably larger than the electrode area of the working electrode 21. As the counter electrode 22, an electrode made of a metal such as Pt, Au, Cu, palladium (Pd), nickel (Ni), Ag, or a carbon electrode can be used. The counter electrode 22 can be integrally formed with the wiring 14 by a known method such as a subtractive method or an additive method.
 参照電極23は、作用電極21の電位を決定する際の基準となる電極であり、作用電極21の近傍に設けられている。参照電極23としては、銀/塩化銀(Ag/AgCl)電極等を用いることができる。また、参照電極23としては、標準水素電極、可逆水素電極、パラジウム・水素電極、飽和カロメル電極、カーボン電極等を用いることもできる。また、参照電極23として、Pt、Au、Cu、Pd、Ni、Ag等の金属で形成された電極等を用いることもできる。参照電極23は、サブトラクティブ法やアディティブ法等を用いて配線15と一体に形成された導体パターンに所定の材料(例えば、AgCl)を貼り付けて形成することができる。また、例えば、配線15と一体に形成された導体パターンに金めっき等を施して参照電極23として用いることもできる。 The reference electrode 23 is a reference electrode for determining the potential of the working electrode 21, and is provided in the vicinity of the working electrode 21. As the reference electrode 23, a silver / silver chloride (Ag / AgCl) electrode or the like can be used. Further, as the reference electrode 23, a standard hydrogen electrode, a reversible hydrogen electrode, a palladium / hydrogen electrode, a saturated calomel electrode, a carbon electrode and the like can also be used. Further, as the reference electrode 23, an electrode made of a metal such as Pt, Au, Cu, Pd, Ni, Ag or the like can also be used. The reference electrode 23 can be formed by attaching a predetermined material (for example, AgCl) to a conductor pattern integrally formed with the wiring 15 by using a subtractive method, an additive method, or the like. Further, for example, the conductor pattern integrally formed with the wiring 15 can be plated with gold or the like and used as the reference electrode 23.
 基材10の上面には、配線13~15に尿が付着することを防止するシート状の防水部材40が設けられている。防水部材40は、主部11上に位置する配線13~15を覆い(密封し)、凸状部12上に位置する配線13~15およびセンサ電極20を露出させるように構成されている。防水部材40は、プラスチック、シリコン樹脂、テフロン(登録商標)樹脂、ゴム等の不透水性および絶縁性を有する材料を用いて形成することができる。 A sheet-shaped waterproof member 40 is provided on the upper surface of the base material 10 to prevent urine from adhering to the wirings 13 to 15. The waterproof member 40 is configured to cover (seal) the wirings 13 to 15 located on the main portion 11 and expose the wirings 13 to 15 and the sensor electrode 20 located on the convex portion 12. The waterproof member 40 can be formed by using a water-impermeable and insulating material such as plastic, silicon resin, Teflon (registered trademark) resin, and rubber.
 基材10の上面には、センサ電極20および防水部材40を覆うようにシート(シート状部材)30が設けられている。シート30は、尿を吸収しない撥水部材31と、尿を吸収する吸水部材32と、を備えて構成されている。 A sheet (sheet-like member) 30 is provided on the upper surface of the base material 10 so as to cover the sensor electrode 20 and the waterproof member 40. The sheet 30 includes a water-repellent member 31 that does not absorb urine and a water-absorbing member 32 that absorbs urine.
 撥水部材31は、例えばシート状(板状)とすることができる。撥水部材31の長さは、基材10の長さ(主部11の長さと凸状部12の長さとの合計長さ)よりも例えば15mm~25mm程度長い長さとし、撥水部材31を凸状部12の側からはみ出させて配置することが好ましい。これにより、ユニット100を測定器に接続する際、凸状部12からはみ出した撥水部材31の部分(以下、「撥水部材31(又はシート30)の突出部分」とも称する。)をつまんでめくることができ、基材10の上面の一部、例えば接続端子として機能する凸状部12を容易に露出させることが可能となる。また、ユニット100を測定器に接続した際、測定器の接続箇所(挿入口、挟持箇所等)を撥水部材31で覆うことができる。これにより、測定器内への尿の浸入を回避することができ、測定の信頼性等を高めることも可能となる。また、測定を行う際に、ユニット(ユニットに接続された測定器)を持っている(把持している)被験者の指を撥水部材31により覆うことができ、被験者の指への尿の付着を防止することも可能となる。撥水部材31の長さは、基材10の長さと同様の長さであってもよい。撥水部材31の幅は、基材10(主部11)の幅と同様の幅とすることができる。撥水部材31の厚さは、例えば0.01mm以上0.3mm以下とすることができる。 The water repellent member 31 can be, for example, a sheet shape (plate shape). The length of the water-repellent member 31 is set to be, for example, about 15 mm to 25 mm longer than the length of the base material 10 (the total length of the length of the main portion 11 and the length of the convex portion 12), and the water-repellent member 31 is set. It is preferable to dispose of the convex portion 12 so as to protrude from the side. As a result, when the unit 100 is connected to the measuring instrument, the portion of the water-repellent member 31 protruding from the convex portion 12 (hereinafter, also referred to as “the protruding portion of the water-repellent member 31 (or the sheet 30)”) is pinched. It can be turned over, and a part of the upper surface of the base material 10, for example, the convex portion 12 that functions as a connection terminal can be easily exposed. Further, when the unit 100 is connected to the measuring instrument, the connection portion (insertion port, holding portion, etc.) of the measuring instrument can be covered with the water repellent member 31. As a result, it is possible to prevent the infiltration of urine into the measuring instrument, and it is possible to improve the reliability of the measurement and the like. Further, when performing measurement, the finger of the subject holding (holding) the unit (measuring instrument connected to the unit) can be covered with the water-repellent member 31, and urine adheres to the subject's finger. It is also possible to prevent. The length of the water-repellent member 31 may be the same as the length of the base material 10. The width of the water-repellent member 31 can be the same as the width of the base material 10 (main portion 11). The thickness of the water-repellent member 31 can be, for example, 0.01 mm or more and 0.3 mm or less.
 撥水部材31は、プラスチック、シリコン樹脂、テフロン(登録商標)樹脂等の撥水材料で表面をコーティングした紙を用いて形成することができる。撥水部材31は、上述の撥水材料で形成されたシート状の樹脂を用いることもできる。 The water-repellent member 31 can be formed by using a paper whose surface is coated with a water-repellent material such as plastic, silicon resin, or Teflon (registered trademark) resin. As the water-repellent member 31, a sheet-shaped resin formed of the above-mentioned water-repellent material can also be used.
 撥水部材31には、尿を取り入れ可能な取入口(開口)33が開設されている。取入口33は、シート30が配設された際にセンサ電極20上に位置するように開設されている。取入口33は、例えば、2mm以上5mm以下の直径を有する円形状とすることができる。取入口33は、円形状に限定されず、矩形状等であってもよい。 The water-repellent member 31 is provided with an intake (opening) 33 capable of taking in urine. The intake 33 is provided so as to be located on the sensor electrode 20 when the sheet 30 is arranged. The intake 33 can be, for example, a circular shape having a diameter of 2 mm or more and 5 mm or less. The intake 33 is not limited to a circular shape, but may be a rectangular shape or the like.
 撥水部材31には、吸水部材32が取入口33を塞ぐように設けられて(取り付けられて)いる。吸水部材32は、例えばシート状に形成されており、ユニット100に供給された尿を吸収してセンサ電極20の表面に接触させるように構成されている。吸水部材32は、センサ電極20(作用電極21、対電極22、および参照電極23)の表面の少なくとも一部を覆う大きさを有している。吸水部材32は、撥水部材31の表面側に設けてもよいが、図1等に示すように、撥水部材31の裏面(基材10と向き合う面)に設けることが好ましい。この場合、吸水部材32は、後述する貯留構造の内部に配置されることになり、貯留構造内に尿を確実に貯留するように機能することになる。 The water-repellent member 31 is provided (attached) with a water-absorbing member 32 so as to close the intake 33. The water absorbing member 32 is formed in a sheet shape, for example, and is configured to absorb urine supplied to the unit 100 and bring it into contact with the surface of the sensor electrode 20. The water absorbing member 32 has a size that covers at least a part of the surface of the sensor electrode 20 (working electrode 21, counter electrode 22, and reference electrode 23). The water absorbing member 32 may be provided on the front surface side of the water repellent member 31, but as shown in FIG. 1 and the like, it is preferable to provide the water absorbing member 32 on the back surface (the surface facing the base material 10) of the water repellent member 31. In this case, the water absorbing member 32 will be arranged inside the storage structure described later, and will function to reliably store urine in the storage structure.
 吸水部材32の平面積や厚さを調整することにより、貯留構造内に貯留される尿の量、すなわち、センサ電極20に接触させる尿の量を適正に制御することが容易に行えるようになる。図1等に示すように、吸水部材32の平面積は、センサ電極20の平面積よりも大きい平面積とすることが好ましい。吸水部材32の平面積は、例えば10mm以上50mm以下とすることができる。これにより、尿を、センサ電極20の表面全域に確実に接触させ、濃度測定の感度を高めることが可能となる。なお、吸水部材32の平面積は、センサ電極20の平面積よりも小さい面積としてもよい。吸水部材32の厚さは、例えば0.01mm以上1.0mm以下とすることができる。 By adjusting the flat area and the thickness of the water absorbing member 32, it becomes possible to easily control the amount of urine stored in the storage structure, that is, the amount of urine that comes into contact with the sensor electrode 20. .. As shown in FIG. 1 and the like, the flat area of the water absorbing member 32 is preferably a flat area larger than the flat area of the sensor electrode 20. The flat area of the water absorbing member 32 can be, for example, 10 mm 2 or more and 50 mm 2 or less. This makes it possible to reliably bring urine into contact with the entire surface of the sensor electrode 20 and increase the sensitivity of concentration measurement. The flat area of the water absorbing member 32 may be smaller than the flat area of the sensor electrode 20. The thickness of the water absorbing member 32 can be, for example, 0.01 mm or more and 1.0 mm or less.
 接着剤を用いて吸水部材32を撥水部材31に取り付ける場合は、接着剤を塗布する位置を、センサ電極20とは対向しない位置とすることが好ましい。また、吸水部材32は、接着剤を用いることなく撥水部材31に取り付けられていてもよい。例えば、撥水部材31に切り込み部を設け、この切り込み部に吸水部材32を差し込んで撥水部材31で吸水部材32を挟むことにより、吸水部材32が撥水部材31に取り付けられていてもよい。これらのようにすることで、接着剤に含まれる物質による測定結果への悪影響を低減させることが可能となる。 When the water absorbing member 32 is attached to the water repellent member 31 using an adhesive, it is preferable that the position where the adhesive is applied is a position not facing the sensor electrode 20. Further, the water absorbing member 32 may be attached to the water repellent member 31 without using an adhesive. For example, the water absorbing member 32 may be attached to the water repellent member 31 by providing a notch in the water repellent member 31, inserting the water absorbing member 32 into the notch, and sandwiching the water absorbing member 32 between the water repellent members 31. .. By doing so, it is possible to reduce the adverse effect of the substance contained in the adhesive on the measurement result.
 吸水部材32は、天然繊維、パルプ繊維、再生繊維、合成繊維等を用いて形成することができる。具体的には、吸水部材32は、ろ紙、メンブレンフィルタ、ガラスフィルタ、又はろ布等を用いて形成することができる。吸水部材32は、上述の1つまたは複数の繊維からなる集合体に吸水性ポリマ粒子等を加えて形成することもできる。吸水部材32は、スポンジや珪藻土等の多孔質材料や、不織布等の繊維材料からなる部材を用いて形成してもよい。 The water absorbing member 32 can be formed by using natural fiber, pulp fiber, regenerated fiber, synthetic fiber and the like. Specifically, the water absorbing member 32 can be formed by using a filter paper, a membrane filter, a glass filter, a filter cloth, or the like. The water-absorbing member 32 can also be formed by adding water-absorbing polymer particles or the like to the above-mentioned aggregate composed of one or more fibers. The water absorbing member 32 may be formed by using a member made of a porous material such as sponge or diatomaceous earth, or a fiber material such as a non-woven fabric.
 図2及び図3に示すように、シート30(すなわち、撥水部材31)の周縁部と基材10とは、接着剤51等を介して互いに接着されている。具体的には、シート30の周縁部と、基材10の長手方向における中央部の周縁部およびセンサ電極20が設けられた側の周縁部と、が接着剤51を介して互いに接着されている。これにより、取入口33から取り入れた尿を、基材10とシート30との間(防水部材40が配設されている箇所では、防水部材40とシート30との間)の空間に貯留してセンサ電極20に接触させる貯留構造(袋状構造)が構成されることとなる。シート30と基材10との接着は、接着剤51を用いて行う場合に限らず、熱融着、縫い付け、勘合といった種々の手法を用いて行うことができる。なお、図3では、分かりやすさのために、シート30および防水部材40を省略している。 As shown in FIGS. 2 and 3, the peripheral edge portion of the sheet 30 (that is, the water repellent member 31) and the base material 10 are adhered to each other via an adhesive 51 or the like. Specifically, the peripheral edge portion of the sheet 30, the peripheral edge portion of the central portion in the longitudinal direction of the base material 10, and the peripheral edge portion on the side where the sensor electrode 20 is provided are adhered to each other via the adhesive 51. .. As a result, the urine taken in from the intake 33 is stored in the space between the base material 10 and the sheet 30 (in the place where the waterproof member 40 is arranged, between the waterproof member 40 and the sheet 30). A storage structure (bag-shaped structure) that comes into contact with the sensor electrode 20 is configured. Adhesion between the sheet 30 and the base material 10 is not limited to the case where the adhesive 51 is used, but can be performed by various methods such as heat fusion, sewing, and fitting. In FIG. 3, the sheet 30 and the waterproof member 40 are omitted for the sake of clarity.
 貯留構造は、取入口33を介して貯留構造内に取り入れられた尿の一部を排出する排出口52を有している。排出口52は、センサ電極20に接触する尿の量を調整可能に構成されている。排出口52は、取入口33を介して貯留構造内に取り入れられて吸水部材32で吸収しきれなかった余剰な尿を、貯留構造(ユニット100)外へ排出することで、貯留構造内に貯留する尿の量、すなわち、センサ電極20に接触させる尿の量を一定に(所定量に)するように構成されている。これにより、尿中における尿酸濃度の測定結果の変動を防止し、尿中における尿酸濃度の測定を正確かつ安定に行うことが可能となる。すなわち、ユニット100による尿酸濃度の測定精度を安定させることが可能となる。 The storage structure has a discharge port 52 for discharging a part of urine taken into the storage structure via the intake 33. The discharge port 52 is configured so that the amount of urine in contact with the sensor electrode 20 can be adjusted. The discharge port 52 stores excess urine that has been taken into the storage structure via the intake 33 and cannot be completely absorbed by the water absorbing member 32 to the outside of the storage structure (unit 100), thereby storing the excess urine in the storage structure. The amount of urine to be produced, that is, the amount of urine to be brought into contact with the sensor electrode 20, is configured to be constant (predetermined amount). This makes it possible to prevent fluctuations in the measurement result of the uric acid concentration in urine and to accurately and stably measure the uric acid concentration in urine. That is, it is possible to stabilize the measurement accuracy of the uric acid concentration by the unit 100.
 なお、貯留構造に排出口52を設けないこととした場合、センサ電極20に接触する尿の量を調整することが難しくなり、センサ電極20に接触させる尿の量が過大になる(所定量を超える)ことがある。この場合、尿中における実際の尿酸濃度に変化はない(濃度は増えていない)にもかかわらず、ユニット100の検出信号の出力が想定よりも大きくなり、尿酸濃度が実際の濃度よりも高く測定されることがある。これに対し、本態様では、センサ電極20に接触する尿の量を、排出口52を用いて一定な量となるように調整することができることから、尿中における尿酸濃度の測定を、正確かつ安定に行うことが可能となる。 If the storage structure is not provided with the discharge port 52, it becomes difficult to adjust the amount of urine in contact with the sensor electrode 20, and the amount of urine in contact with the sensor electrode 20 becomes excessive (predetermined amount). May exceed). In this case, although the actual uric acid concentration in urine does not change (the concentration does not increase), the output of the detection signal of the unit 100 becomes larger than expected, and the uric acid concentration is measured higher than the actual concentration. May be done. On the other hand, in this embodiment, since the amount of urine in contact with the sensor electrode 20 can be adjusted to be a constant amount by using the discharge port 52, the measurement of the uric acid concentration in urine can be accurately and accurately performed. It will be possible to do it stably.
 排出口52は、公知である種々の逆止弁を用いて構成することも可能であるが、図1~3等に示すように、貯留構造を構成するシート30の周縁部の一部を基材10と非接着とすることにより構成することができる。このような構成であれば、排出口52を容易に設けることができ、また、ユニット100の複雑化、大型化、高コスト化等を回避することが可能となる。 The discharge port 52 can be configured by using various known check valves, but as shown in FIGS. 1 to 3, etc., the discharge port 52 is based on a part of the peripheral portion of the sheet 30 constituting the storage structure. It can be configured by making it non-adhesive to the material 10. With such a configuration, the discharge port 52 can be easily provided, and the unit 100 can be avoided from becoming complicated, large in size, and costly.
 排出口52は、取入口33から排出口52に至る尿の流路上にセンサ電極20が配置されこととなるような位置に配置することが好ましい。すなわち、センサ電極20は、取入口33から排出口52に至る尿の流路上に配置されていることが好ましい。これにより、センサ電極20に接触する尿の量を確実に一定にすることができ、尿中における尿酸濃度の測定を正確かつ安定に行うことが可能となる。 It is preferable that the discharge port 52 is arranged at a position where the sensor electrode 20 is arranged on the flow path of urine from the intake port 33 to the discharge port 52. That is, it is preferable that the sensor electrode 20 is arranged on the flow path of urine from the intake 33 to the discharge port 52. As a result, the amount of urine that comes into contact with the sensor electrode 20 can be reliably made constant, and the uric acid concentration in urine can be measured accurately and stably.
 センサ電極20を尿の流路上に配置しないこととした場合、取入口33から取り込んだ尿がセンサ電極20に到達しにくくなって、センサ電極20に接触する尿の量が過小になる(所定量よりも少なくなる)ことがある。この場合、尿中における実際の尿酸濃度に変化はない(濃度は減っていない)にもかかわらず、ユニット100の検出信号の出力が想定よりも小さくなり、尿酸濃度が実際の濃度よりも低く測定されることがある。また、センサ電極20を尿の流路上に配置しないこととした場合、センサ電極20上を通過すべき余剰な尿が排出口52から排出されにくくなって、センサ電極20上に多量の尿が残留する結果、センサ電極20に接触する尿の量が過大になることがある。この場合、尿中における実際の尿酸濃度に変化はない(濃度は増えていない)にもかかわらず、ユニット100の検出信号の出力が想定よりも大きくなり、尿酸濃度が実際の濃度よりも高く測定されることがある。これらのように、センサ電極20を尿の流路上に配置しないこととした場合、ユニット100による尿酸濃度の測定精度が不安定になることがある。これに対し、本態様では、センサ電極20を尿の流路上に配置することから、センサ電極20に接触する尿の量を一定な量に確実にすることができ、尿中における尿酸濃度の測定を、正確かつ安定に行うことが可能となる。 When the sensor electrode 20 is not arranged on the urine flow path, the urine taken in from the intake 33 becomes difficult to reach the sensor electrode 20, and the amount of urine in contact with the sensor electrode 20 becomes too small (predetermined amount). May be less than). In this case, although the actual uric acid concentration in urine does not change (the concentration does not decrease), the output of the detection signal of the unit 100 becomes smaller than expected, and the uric acid concentration is measured lower than the actual concentration. May be done. Further, when the sensor electrode 20 is not arranged on the urine flow path, excess urine that should pass on the sensor electrode 20 is less likely to be discharged from the discharge port 52, and a large amount of urine remains on the sensor electrode 20. As a result, the amount of urine that comes into contact with the sensor electrode 20 may become excessive. In this case, although the actual uric acid concentration in urine does not change (the concentration does not increase), the output of the detection signal of the unit 100 becomes larger than expected, and the uric acid concentration is measured higher than the actual concentration. May be done. If the sensor electrode 20 is not arranged on the urine flow path as described above, the measurement accuracy of the uric acid concentration by the unit 100 may become unstable. On the other hand, in this embodiment, since the sensor electrode 20 is arranged on the urine flow path, the amount of urine in contact with the sensor electrode 20 can be ensured to a constant amount, and the uric acid concentration in urine can be measured. Can be performed accurately and stably.
 排出口52の位置および大きさは、ユニット100を側面側から見た際(ユニット100を側面視した際)に、排出口52がセンサ電極20の少なくとも一部と重複するような位置、大きさ、好ましくは、排出口52がセンサ電極20の全てを含むような位置および大きさとすることが好ましい。 The position and size of the discharge port 52 are such that the discharge port 52 overlaps with at least a part of the sensor electrode 20 when the unit 100 is viewed from the side surface side (when the unit 100 is viewed from the side surface). It is preferable that the discharge port 52 is positioned and sized so as to include all of the sensor electrodes 20.
 また、貯留空間内の余剰な尿の排出を、ユニット100の姿勢によらずにスムーズに行えるように、排出口52は、複数の位置に設けることが好ましい。例えば、本態様のように、排出口52は、ユニット100をシート30側から見た際(ユニット100を平面視した際)に、基材10の長手方向と直交する方向(基材10の幅方向)の両側に設けることが好ましい。すなわち、排出口52は、ユニット100を平面視した際に、センサ電極20を挟んで基材10の幅方向の両側のそれぞれに設けられていることが好ましい。 Further, it is preferable that the discharge ports 52 are provided at a plurality of positions so that excess urine in the storage space can be smoothly discharged regardless of the posture of the unit 100. For example, as in this embodiment, the discharge port 52 has a direction orthogonal to the longitudinal direction of the base material 10 (width of the base material 10) when the unit 100 is viewed from the sheet 30 side (when the unit 100 is viewed in a plane). It is preferable to provide it on both sides of the direction). That is, it is preferable that the discharge ports 52 are provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view.
 これらの構成のうち少なくともいずれかを採用することにより、貯留構造内に取り込まれた余剰な尿を排出することが、尿をかけた後のユニット100を傾けたり振ったりといった行為を行うことなく、また、ユニット100の姿勢によらずに、より確実に行えるようになる。すなわち、排出口52を用いた排出によってセンサ電極20に接触させる尿の量を一定にし、尿中における尿酸濃度の測定を正確かつ安定に行うという上述の作用効果が、被験者等の人為的操作に頼ることなく、より確実かつ自然に発揮されるようになる。 By adopting at least one of these configurations, the excess urine taken into the storage structure can be drained without tilting or shaking the unit 100 after urine is applied. In addition, it becomes possible to perform more reliably regardless of the posture of the unit 100. That is, the above-mentioned action and effect of making the amount of urine in contact with the sensor electrode 20 constant by discharging using the discharge port 52 and accurately and stably measuring the uric acid concentration in urine is applied to the artificial operation of the subject or the like. It will be more reliable and natural without relying on it.
 排出口52の大きさは、吸水部材32の大きさ(平面積)や吸水能力(吸収可能な尿の容量)等に応じて適宜設定することができる。例えば、貯留構造内における余剰空間が大きい、吸水部材32の平面積が小さい、吸水部材32の吸水能力が低いといった場合、すなわち、貯留構造内に余剰な尿が残留しやすく、センサ電極20に接触する尿の量が過大となりやすい場合には、排出口52の大きさ(非接着部分の長さ)を、基材10の長手方向における吸水部材32の長さよりも長くしてもよい。また、貯留構造内における余剰空間が小さい、吸水部材32の平面積が大きい、吸水部材32の吸水能力が高いといった場合、すなわち、貯留構造内に余剰な尿が残留しにくく、センサ電極20に接触する尿の量が過少となりやすい場合には、排出口52の大きさを、基材10の長手方向における吸水部材32の長さよりも短くしてもよい。これらにより、センサ電極20に接触させる尿の量を適正かつ一定にしやすくなり、尿酸濃度の測定を、より正確かつ安定に行うことが可能となる。 The size of the discharge port 52 can be appropriately set according to the size (flat area) of the water absorption member 32, the water absorption capacity (capacity of urine that can be absorbed), and the like. For example, when the excess space in the storage structure is large, the flat area of the water absorption member 32 is small, or the water absorption capacity of the water absorption member 32 is low, that is, excess urine tends to remain in the storage structure and comes into contact with the sensor electrode 20. If the amount of urine to be collected tends to be excessive, the size of the discharge port 52 (the length of the non-adhesive portion) may be longer than the length of the water absorbing member 32 in the longitudinal direction of the base material 10. Further, when the excess space in the storage structure is small, the flat area of the water absorption member 32 is large, and the water absorption capacity of the water absorption member 32 is high, that is, excess urine is unlikely to remain in the storage structure and comes into contact with the sensor electrode 20. If the amount of urine produced is likely to be too small, the size of the discharge port 52 may be shorter than the length of the water absorption member 32 in the longitudinal direction of the base material 10. As a result, it becomes easy to make the amount of urine in contact with the sensor electrode 20 appropriate and constant, and it becomes possible to measure the uric acid concentration more accurately and stably.
 シート30の周縁部と基材10とは、排出口52を構成する箇所の他に、非接着である部分があってもよい。 The peripheral edge of the sheet 30 and the base material 10 may have a non-adhesive portion in addition to the portion constituting the discharge port 52.
 例えば、図2において、紙面の上下左右方向を、ユニット100を平面視した際の上下左右方向と定義した場合、シート30の周縁部と基材10の左側端部とを非接着としてもよい。なお、以下では、図2において、紙面の上下左右方向を、ユニット100を平面視した際の上下左右方向と定義した場合の基材10の左側端部を、単に「基材10の左側端部」とも称する。ただし、図2に示すように、この部分を接着することにより、シート30端部のめくれによるセンサ電極20の露出を回避でき、結果として、センサ電極20に被験者等の皮脂が付着してその感度が低下したり、センサ電極20が破損したりといった事態を回避できるようになる。 For example, in FIG. 2, when the vertical / horizontal direction of the paper surface is defined as the vertical / horizontal direction when the unit 100 is viewed in a plan view, the peripheral edge portion of the sheet 30 and the left end portion of the base material 10 may be non-adhesive. In the following, in FIG. 2, the left end portion of the base material 10 when the up / down / left / right direction of the paper surface is defined as the up / down / left / right direction when the unit 100 is viewed in a plan view is simply “the left end portion of the base material 10”. Also called. However, as shown in FIG. 2, by adhering this portion, it is possible to avoid the exposure of the sensor electrode 20 due to the turning of the edge of the sheet 30, and as a result, the sebum of the subject or the like adheres to the sensor electrode 20 and its sensitivity. It becomes possible to avoid a situation in which the sensor electrode 20 is lowered or the sensor electrode 20 is damaged.
 また例えば、図2に示すように、シート30の周縁部と、基材10のうち凸状部12の周縁部および主部11の周縁部のうち凸状部12側の周縁部と、が互いに非接着であってもよい。これにより、撥水部材31をめくって凸状部12を露出させることがより容易になる。 Further, for example, as shown in FIG. 2, the peripheral edge portion of the sheet 30 and the peripheral edge portion of the convex portion 12 of the base material 10 and the peripheral edge portion of the peripheral edge portion of the main portion 11 on the convex portion 12 side are mutually aligned. It may be non-adhesive. This makes it easier to turn over the water-repellent member 31 to expose the convex portion 12.
 なお、本態様のように、シート30と基材10とを少なくともいずれかの箇所(好ましくは2点以上の箇所)で互いに接着することにより、基材10に対するシート30の相対的な位置ずれを抑制でき、ユニット100の信頼性を維持できる点はいうまでもない。 In addition, as in this aspect, by adhering the sheet 30 and the base material 10 to each other at at least one place (preferably at two or more points), the relative positional deviation of the sheet 30 with respect to the base material 10 can be obtained. Needless to say, it can be suppressed and the reliability of the unit 100 can be maintained.
(2)電気化学センサユニットを用いた尿酸濃度の測定方法
 続いて、上述のユニット100を用いた電気化学測定による尿中における尿酸濃度の測定方法の一例について説明する。
(2) Method for Measuring Uric Acid Concentration Using Electrochemical Sensor Unit Next, an example of a method for measuring uric acid concentration in urine by electrochemical measurement using the above-mentioned unit 100 will be described.
 ユニット100を用いた尿酸濃度測定方法では、
 ユニット100と測定器とを電気的に接続するステップ(ステップ1)と、
 ユニット100に尿を供給して、センサ電極20に尿を接触させるステップ(ステップ2)と、
 センサ電極20の表面に尿が接触した状態で、センサ電極20に対して測定器から所定の電圧掃引操作を行い、尿中に含まれる尿酸を特定の条件下で電気分解させ、その際に生じる電気化学反応の大きさから尿中における尿酸濃度を測定するステップ(ステップ3)と、をこの順に実施する。なお、本態様では、ステップ2、ステップ1、ステップ3の順に実施してもよい。
In the uric acid concentration measuring method using the unit 100,
The step (step 1) of electrically connecting the unit 100 and the measuring instrument,
The step of supplying urine to the unit 100 and bringing the urine into contact with the sensor electrode 20 (step 2),
With urine in contact with the surface of the sensor electrode 20, a predetermined voltage sweep operation is performed on the sensor electrode 20 from the measuring instrument to electrolyze the urine acid contained in the urine under specific conditions, which is generated at that time. The steps (step 3) of measuring the urinary acid concentration in urine from the magnitude of the electrochemical reaction are carried out in this order. In this embodiment, step 2, step 1, and step 3 may be performed in this order.
(ステップ1)
 本ステップでは、ユニット100と、ユニット100とは別体で構成された測定器(不図示)と、を互いに接続する。例えば、被験者は、ユニット100を把持し、基材10を覆っているシート30の突出部分をつまんでめくって接続端子として機能する基材10の凸状部12を露出させ(図2参照)、この凸状部12に測定器を接続する。測定器は、凸状部12を配線13~15と一緒に挟むだけで、測定器の接続部と配線13~15とを電気的に接続できるように構成されている。測定器は、凸状部12が挿入される挿入口(スロット)を有し、この挿入口に凸状部12を挿入するだけで、測定器の接続部と配線13~15とを電気的に接続できるように構成されていてもよい。
(Step 1)
In this step, the unit 100 and a measuring instrument (not shown) configured separately from the unit 100 are connected to each other. For example, the subject grips the unit 100 and pinches the protruding portion of the sheet 30 covering the base material 10 to expose the convex portion 12 of the base material 10 that functions as a connection terminal (see FIG. 2). A measuring instrument is connected to the convex portion 12. The measuring instrument is configured so that the connecting portion of the measuring instrument and the wirings 13 to 15 can be electrically connected only by sandwiching the convex portion 12 together with the wirings 13 to 15. The measuring instrument has an insertion port (slot) into which the convex portion 12 is inserted, and simply by inserting the convex portion 12 into the insertion port, the connection portion of the measuring instrument and the wirings 13 to 15 are electrically connected. It may be configured to be able to connect.
 測定器は、センサ電極20に対して所定の電圧掃引操作を行うことが可能なように構成されており、電圧掃引操作部、電流測定部、電位調整部、表示部、無線通信部等を備えている。測定器が有する上記の各部は、それぞれデータ交換可能なように互いに接続されている。測定器は、測定によって得られた尿酸の濃度を示すデータを、無線通信手段(無線通信部)等を通じて、コンピュータとして構成された外部装置(スマートフォン、タブレット、PC等)に送信することが可能なように構成されている。 The measuring instrument is configured to be able to perform a predetermined voltage sweep operation on the sensor electrode 20, and includes a voltage sweep operation unit, a current measurement unit, a potential adjustment unit, a display unit, a wireless communication unit, and the like. ing. The above-mentioned parts of the measuring instrument are connected to each other so that data can be exchanged. The measuring instrument can transmit data indicating the concentration of uric acid obtained by the measurement to an external device (smartphone, tablet, PC, etc.) configured as a computer through a wireless communication means (wireless communication unit) or the like. It is configured as follows.
(ステップ2)
 ユニット100と測定器とを接続したら、例えば、被験者は、測定器を持ち、ユニット100の取入口33に向かって尿をかける。これにより、ユニット100に尿が供給される。ユニット100に供給された尿は、取入口33から貯留構造内に取り入れられ、吸水部材32に吸収される。吸水部材32に吸収された尿は、吸水部材32を透過してセンサ電極20の表面に到達する。その結果、センサ電極20の表面に尿が接触することとなる。吸水部材32に吸収しきれなかった余剰な尿は、貯留構造が有する排出口52を介して貯留構造(ユニット100)外へと排出される。上述したように、本態様においては、排出口52の位置および大きさを、ユニット100を側面視した際に、排出口52がセンサ電極20の全てを含むような位置および大きさとしている。また、ユニット100を平面視した際に、排出口52を、センサ電極20を挟んで基材10の幅方向の両側のそれぞれに設けている。これらにより、貯留構造内に取り込まれた余剰な尿の排出を、人為的操作に頼ることなく、より確実に行うことが可能となる。
(Step 2)
After connecting the unit 100 and the measuring instrument, for example, the subject holds the measuring instrument and urinates toward the intake 33 of the unit 100. As a result, urine is supplied to the unit 100. The urine supplied to the unit 100 is taken into the storage structure from the intake 33 and absorbed by the water absorbing member 32. The urine absorbed by the water absorbing member 32 passes through the water absorbing member 32 and reaches the surface of the sensor electrode 20. As a result, urine comes into contact with the surface of the sensor electrode 20. Excess urine that cannot be completely absorbed by the water absorbing member 32 is discharged to the outside of the storage structure (unit 100) through the discharge port 52 of the storage structure. As described above, in this embodiment, the position and size of the discharge port 52 are set so that the discharge port 52 includes all of the sensor electrodes 20 when the unit 100 is viewed from the side. Further, when the unit 100 is viewed in a plan view, discharge ports 52 are provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween. As a result, it becomes possible to more reliably discharge excess urine taken into the storage structure without relying on human operation.
 配線13~15は防水部材40で覆われていることから、ユニット100の姿勢に応じて配線13~15の方に尿が流れてしまった場合であっても、尿は、シート30と防水部材40との間を流れることとなる。このため、配線13~15に尿が付着することは殆どない。 Since the wirings 13 to 15 are covered with the waterproof member 40, even if urine flows toward the wirings 13 to 15 depending on the posture of the unit 100, the urine will be collected from the sheet 30 and the waterproof member. It will flow between 40 and 40. Therefore, urine hardly adheres to the wirings 13 to 15.
(ステップ3)
 センサ電極20の表面に尿が接触した状態で、センサ電極20に対して測定器から所定の電圧掃引操作を行うことにより、尿中に含まれる尿酸を特定の条件下で電気分解させ、その際に生じる電気化学反応(例えば、酸化還元反応)の大きさを測定する。
(Step 3)
With urine in contact with the surface of the sensor electrode 20, a predetermined voltage sweep operation is performed on the sensor electrode 20 from the measuring instrument to electrolyze the uric acid contained in the urine under specific conditions. The magnitude of the electrochemical reaction (eg, redox reaction) that occurs in is measured.
 例えば、センサ電極20(作用電極21)の表面に尿が接触した状態で作用電極21と参照電極23との間に所定範囲の電圧を掃引しながら印加すると、特定の条件下で(特定の電圧を印加したときに)作用電極21の表面で尿酸が電気分解する。尿酸が電気分解することで、作用電極21と対電極22との間に電流が流れる。この電流の値を測定器により例えば連続的に測定する。この電流の値は、尿酸が電気分解する際に生じる電気化学反応の大きさによって変動し、電気化学反応が大きくなるほど、電流の値が大きくなる。 For example, when urine is in contact with the surface of the sensor electrode 20 (working electrode 21) and a voltage within a predetermined range is swept between the working electrode 21 and the reference electrode 23, a voltage within a predetermined range is applied under specific conditions (specific voltage). Is applied), uric acid is electrolyzed on the surface of the working electrode 21. When uric acid is electrolyzed, a current flows between the working electrode 21 and the counter electrode 22. The value of this current is continuously measured, for example, by a measuring instrument. The value of this current varies depending on the magnitude of the electrochemical reaction that occurs when uric acid is electrolyzed, and the larger the electrochemical reaction, the larger the value of the current.
 続いて、測定器により測定した電流の値の最大値(ピーク値)に基づいて尿酸濃度を算出する。電流値は、尿酸濃度と相関関係にあることから、電流値と尿酸濃度との関係を予め求めておけば、測定した電流値に基づいて尿酸濃度を定量することができる。測定器は、測定した尿酸濃度を表示部に表示する。また、測定器は、測定によって得られた尿酸濃度のデータを、無線通信手段等を介して外部装置に送信することもできる。測定器による尿酸濃度の測定が終了したら、被験者はユニット100を測定器から外し(抜き)、ユニット100を廃棄する。 Subsequently, the uric acid concentration is calculated based on the maximum value (peak value) of the current value measured by the measuring instrument. Since the current value correlates with the uric acid concentration, the uric acid concentration can be quantified based on the measured current value if the relationship between the current value and the uric acid concentration is obtained in advance. The measuring instrument displays the measured uric acid concentration on the display unit. Further, the measuring instrument can also transmit the uric acid concentration data obtained by the measurement to an external device via a wireless communication means or the like. When the measurement of the uric acid concentration by the measuring instrument is completed, the subject removes (extracts) the unit 100 from the measuring instrument and discards the unit 100.
(3)効果
 本態様によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effect According to this aspect, one or more of the following effects are exhibited.
 (a)ユニット100は、シート30の周縁部と基材10とが互いに接着されてなり、取入口33から取り入れた尿を貯留してセンサ電極20に接触させる貯留構造を備えている。また、貯留構造は、取入口33を介して取り入れられた尿の一部を排出する排出口52を備えている。これらの構造により、センサ電極20に接触させる尿の量を一定(所定量)とし、ユニット100による尿酸濃度の測定を、正確かつ安定に行うことが可能となる。 (A) The unit 100 has a storage structure in which the peripheral edge portion of the sheet 30 and the base material 10 are adhered to each other, and urine taken in from the intake 33 is stored and brought into contact with the sensor electrode 20. Further, the storage structure includes a discharge port 52 for discharging a part of urine taken in through the intake 33. With these structures, the amount of urine that comes into contact with the sensor electrode 20 is kept constant (predetermined amount), and the uric acid concentration can be accurately and stably measured by the unit 100.
 発明者は、センサ電極20に接触させる尿の量が一定でないと、ユニット100による尿酸濃度の測定精度が不安定になる場合があることを確認済みである。以下に、このことを裏付けるために行った実験とその結果を示す。 The inventor has confirmed that if the amount of urine in contact with the sensor electrode 20 is not constant, the measurement accuracy of the uric acid concentration by the unit 100 may become unstable. The experiments conducted to support this and the results are shown below.
 この実験は、上述のユニット100からシート30を剥がし、センサ電極20の表面を露出させた状態で行った。まず、スポイトを用い、露出させたセンサ電極20に対して所定量の尿をかけた(垂らした)。このとき、センサ電極20に垂らす(供給する)尿の量を多、中、少と異ならせた。「多」の場合においては、センサ電極20の表面および側面のそれぞれを全面的に尿に接触させた状態とした。「中」の場合においては、センサ電極20の表面の90%以上が尿に接触しているものの、残部は側面も含めて露出している状態とした。「少」の場合においては、センサ電極20の表面のうち50%程度が尿に接触しているものの、残部は側面も含めて露出している状態とした。そして、「多」「中」「少」のそれぞれの場合において、サイクリックボルタンメトリーを実施し、図4に示すサイクリックボルタモグラムを得た。なお、全ての測定は、同一のユニット100を用いて行った。また、尿の接触量以外の他の測定条件(尿中における尿酸濃度、掃引速度、掃引電圧範囲、測定温度等)は、全て同一の条件とした。 This experiment was performed in a state where the sheet 30 was peeled off from the above-mentioned unit 100 and the surface of the sensor electrode 20 was exposed. First, a predetermined amount of urine was applied (dripping) to the exposed sensor electrode 20 using a dropper. At this time, the amount of urine dripping (supplied) on the sensor electrode 20 was different from large, medium, and small. In the case of "many", each of the surface and the side surface of the sensor electrode 20 was brought into full contact with urine. In the case of "medium", 90% or more of the surface of the sensor electrode 20 is in contact with urine, but the rest is exposed including the side surface. In the case of "small", about 50% of the surface of the sensor electrode 20 is in contact with urine, but the rest is exposed including the side surface. Then, cyclic voltammetry was performed in each of the "many", "medium", and "small" cases to obtain the cyclic voltammetry shown in FIG. All measurements were performed using the same unit 100. In addition, the measurement conditions other than the contact amount of urine (uric acid concentration in urine, sweep speed, sweep voltage range, measurement temperature, etc.) were all the same conditions.
 図4において、実線は接触量「多」の場合のサイクリックボルタモグラムを、破線は接触量「中」の場合のサイクリックボルタモグラムを、点線は接触量「少」の場合のサイクリックボルタモグラムを示している。図4から、実際の尿酸濃度は変化していない(実際の尿酸濃度は同一である)にもかかわらず、センサ電極20の表面に接触させる尿の量が変化すると、測定結果がばらつくことが分かる。すなわち、センサ電極20に接触させる尿の量が一定でない場合には、ユニット100による被験試料中の特定成分の濃度(例えば尿中における尿酸濃度)の測定精度が不安定になることが分かる。 In FIG. 4, the solid line shows the cyclic voltammogram when the contact amount is “high”, the broken line shows the cyclic voltamogram when the contact amount is “medium”, and the dotted line shows the cyclic voltamogram when the contact amount is “small”. There is. From FIG. 4, it can be seen that the measurement results vary when the amount of urine in contact with the surface of the sensor electrode 20 changes even though the actual uric acid concentration has not changed (the actual uric acid concentration is the same). .. That is, it can be seen that when the amount of urine in contact with the sensor electrode 20 is not constant, the measurement accuracy of the concentration of a specific component in the test sample (for example, the uric acid concentration in urine) by the unit 100 becomes unstable.
 以上の実験結果は、排出口52を用いてセンサ電極20に接触させる尿の量を一定にすることによって、尿酸濃度の測定を正確かつ安定に行うことが可能となる、という上述の作用効果の裏付けとなるものである。 The above experimental results show that by keeping the amount of urine in contact with the sensor electrode 20 using the discharge port 52 constant, the uric acid concentration can be measured accurately and stably. It is a proof.
 (b)ユニット100に尿を流しかけて取入口33から貯留構造内に取り込ませる際に、貯留構造内に過剰に取り込まれた尿を、排出口52を使って速やかに(リアルタイムに)排出させることが可能となる。これにより、貯留構造を構成するシート30等の各種部材に加わるストレスを低減させ、シート30の変形や基材10からの剥離等を回避することができ、結果として、貯留構造の内容積の変動を抑制することが可能となる。これにより、センサ電極20に接触させる尿の量を一定とし、ユニット100による尿酸濃度の測定を正確かつ安定に行う、という上述の効果が、より確実に得られるようになる。 (B) When urine is poured into the unit 100 and taken into the storage structure from the intake 33, the urine excessively taken into the storage structure is quickly (in real time) discharged using the discharge port 52. It becomes possible. As a result, stress applied to various members such as the sheet 30 constituting the storage structure can be reduced, deformation of the sheet 30 and peeling from the base material 10 can be avoided, and as a result, fluctuations in the internal volume of the storage structure can be avoided. Can be suppressed. As a result, the above-mentioned effect of keeping the amount of urine in contact with the sensor electrode 20 constant and accurately and stably measuring the uric acid concentration by the unit 100 can be obtained more reliably.
 (c)センサ電極20を取入口33から排出口52に至る尿の流路上に配置することにより、センサ電極20に接触させる尿の量を確実に一定にすることができる。その結果、尿中における尿酸濃度の測定を、より正確かつ安定に行うことが可能となる。 (C) By arranging the sensor electrode 20 on the urine flow path from the inlet 33 to the discharge port 52, the amount of urine that comes into contact with the sensor electrode 20 can be reliably made constant. As a result, it becomes possible to measure the uric acid concentration in urine more accurately and stably.
 (d)排出口52の位置および大きさを、ユニット100を側面視した際に、排出口52がセンサ電極20の全てを含むような位置および大きさとし、また、排出口52を、ユニット100を平面視した際に、センサ電極20を挟んで基材10の幅方向の両側のそれぞれに設けることにより、貯留構造内に取り込まれた余剰な尿の排出を、人為的操作に頼ることなく、より確実に行うことが可能となる。その結果、センサ電極20に接触させる尿の量を確実に一定にすることができ、尿中における尿酸濃度の測定を、より正確かつ安定に行うことが可能となる。 (D) The position and size of the discharge port 52 are set so that the discharge port 52 includes all of the sensor electrodes 20 when the unit 100 is viewed from the side, and the discharge port 52 is the unit 100. By providing the sensor electrodes 20 on both sides of the base material 10 in the width direction when viewed in a plan view, the excess urine taken into the storage structure can be discharged without relying on human operation. It will be possible to do it reliably. As a result, the amount of urine that comes into contact with the sensor electrode 20 can be reliably made constant, and the uric acid concentration in urine can be measured more accurately and stably.
 (e)シート30に撥水部材31と吸水部材32と設け、吸水部材32を貯留構造の内部に設けている。そして、吸水部材32に吸収させた尿をセンサ電極20の表面に接触させるようにしている。これらにより、貯留構造内に尿を確実に貯留させ、センサ電極20に接触させる尿の量を、より確実に一定にすることができる。また、吸水部材32に尿を吸収させて保持することにより、尿酸濃度を測定する時のユニット100の姿勢によらずに、センサ電極20に接触させる尿の量を確実に一定にすることができる。これらの結果、ユニット100による尿酸濃度の測定を、より正確かつ安定に行うことが可能となる。 (E) The sheet 30 is provided with a water-repellent member 31 and a water-absorbing member 32, and the water-absorbing member 32 is provided inside the storage structure. Then, the urine absorbed by the water absorbing member 32 is brought into contact with the surface of the sensor electrode 20. As a result, urine can be reliably stored in the storage structure, and the amount of urine that comes into contact with the sensor electrode 20 can be more reliably made constant. Further, by absorbing and holding urine in the water absorbing member 32, the amount of urine in contact with the sensor electrode 20 can be surely kept constant regardless of the posture of the unit 100 when measuring the uric acid concentration. .. As a result, it becomes possible to measure the uric acid concentration by the unit 100 more accurately and stably.
 (f)シート30の周縁部と基材10の左側端部とを互いに接着することにより、シート30端部のめくれによるセンサ電極20の露出を回避し、センサ電極20の皮脂汚れによる感度低下や破損といった事態を回避することが可能となる。 (F) By adhering the peripheral edge of the sheet 30 and the left end of the base material 10 to each other, the exposure of the sensor electrode 20 due to the turning of the edge of the sheet 30 is avoided, and the sensitivity of the sensor electrode 20 is lowered due to sebum stains. It is possible to avoid situations such as damage.
 (g)排出口52を、逆止弁ではなく、シート30の周縁部の一部と基材10とを非接着とする簡素な構造とすることにより、ユニット100の複雑化、大型化、高コスト化等を回避することが可能となる。 (G) By making the discharge port 52 a simple structure in which a part of the peripheral edge of the sheet 30 and the base material 10 are not adhered to each other instead of a check valve, the unit 100 is complicated, upsized, and high. It is possible to avoid costing.
(4)変形例
 本態様は、以下の変形例のように変更することができる。また、これらの変形例は任意に組み合わせることが可能である。
(4) Modification example This embodiment can be modified as the following modification example. Further, these modified examples can be arbitrarily combined.
(変形例1)
 上述の態様では、シート30の周縁部と基材10とが接着剤51等を介して互いに接着されてなる例について説明したが、本開示はこのような態様に限定されない。例えば、図5に示すように、シート30と基材10とが接着剤51等を介して互いに接着されていてもよい。例えば、図5において、紙面の上下左右方向を、ユニット100を平面視した際の上下左右方向と定義した場合、シート30の周縁部と基材10の左側(センサ電極20が設けられた側の)端部とが接着剤51等を介して互いに接着されるとともに、シート30と基材10の中央部とが接着剤51等を介して互いに接着されていてもよい。本変形例によっても、上述の態様と同様の効果を得ることができる。また、本変形例では、シート30と基材10の中央部とが互いに接着されていることから、ユニット100の姿勢に応じて、取入口33から貯留構造内に取入られた尿が凸状部12側へと流れることを防止することも可能となる。その結果、配線13~15への尿の付着も確実に回避でき、尿酸濃度の測定を、より正確かつ安定に行うことが可能となる。また、測定器への尿の浸入を確実に回避でき、測定器の誤作動や破損を回避することも可能となる。
(Modification 1)
In the above aspect, an example in which the peripheral edge portion of the sheet 30 and the base material 10 are adhered to each other via an adhesive 51 or the like has been described, but the present disclosure is not limited to such an aspect. For example, as shown in FIG. 5, the sheet 30 and the base material 10 may be adhered to each other via an adhesive 51 or the like. For example, in FIG. 5, when the vertical and horizontal directions of the paper surface are defined as the vertical and horizontal directions when the unit 100 is viewed in a plan view, the peripheral edge of the sheet 30 and the left side of the base material 10 (the side on which the sensor electrode 20 is provided). ) The end portions may be adhered to each other via the adhesive 51 or the like, and the sheet 30 and the central portion of the base material 10 may be adhered to each other via the adhesive 51 or the like. The same effect as the above-described embodiment can be obtained by this modification as well. Further, in this modification, since the sheet 30 and the central portion of the base material 10 are adhered to each other, the urine taken into the storage structure from the intake 33 is convex according to the posture of the unit 100. It is also possible to prevent the flow to the portion 12 side. As a result, the adhesion of urine to the wirings 13 to 15 can be reliably avoided, and the uric acid concentration can be measured more accurately and stably. In addition, the infiltration of urine into the measuring instrument can be reliably avoided, and the malfunction or damage of the measuring instrument can be avoided.
(変形例2)
 また例えば、排出口52は、ユニット100を平面視した際に、センサ電極20を挟んで基材10の幅方向のいずれか一方の側に設けられていてもよい。本変形例においても、上述の態様と同様の効果を得ることができる。しかしながら、上述の態様のように、排出口52がセンサ電極20を挟んで基材10の幅方向の両側に設けられている方が、貯留構造内に取り込まれた余剰な尿の排出を、人為的操作に頼ることなく、より確実に行うことが可能となる点で好ましい。
(Modification 2)
Further, for example, the discharge port 52 may be provided on either side in the width direction of the base material 10 with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view. Also in this modification, the same effect as the above-mentioned aspect can be obtained. However, as in the above aspect, when the discharge port 52 is provided on both sides of the base material 10 in the width direction with the sensor electrode 20 interposed therebetween, the excess urine taken into the storage structure is artificially discharged. It is preferable in that it can be performed more reliably without relying on a specific operation.
(変形例3)
 また例えば、排出口52は、ユニット100を平面視した際に、センサ電極20と対向する位置であって、基材10の長手方向における一端部側(センサ電極20が設けられている側)に設けられていてもよい。すなわち、基材10の左側端部に設けられていてもよい。本変形例においても、上述の態様と同様の効果を得ることができる。
(Modification 3)
Further, for example, the discharge port 52 is a position facing the sensor electrode 20 when the unit 100 is viewed in a plan view, and is located on one end side (the side where the sensor electrode 20 is provided) in the longitudinal direction of the base material 10. It may be provided. That is, it may be provided at the left end portion of the base material 10. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
(変形例4)
 また例えば、排出口52は、ユニット100を平面視した際に、センサ電極20を挟んで基材10の幅方向の少なくともいずれか一方の側と、基材10の左側端部と、に設けられていてもよい。本変形例においても、上述の態様と同様の効果を得ることができる。
(Modification example 4)
Further, for example, the discharge port 52 is provided on at least one side in the width direction of the base material 10 and the left end portion of the base material 10 with the sensor electrode 20 interposed therebetween when the unit 100 is viewed in a plan view. May be. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
(変形例5)
 また例えば、排出口52は、貯留構造を構成するシート30(撥水部材31)に設けられた切れ込みにより構成されていてもよい。切れ込みは、取入口33から貯留構造内に取り入れた尿の一部を排出可能な位置に設けられていればよい。例えば、切れ込みは、シート30の周縁部の一部に設けることができる。また、切れ込みは、基材10の幅方向の少なくともいずれか一方の位置、及び/又は、基材10の左側端部に設けられていることが好ましい。本変形例においても、上述の態様と同様の効果を得ることができる。
(Modification 5)
Further, for example, the discharge port 52 may be configured by a notch provided in the sheet 30 (water repellent member 31) constituting the storage structure. The notch may be provided at a position where a part of the urine taken into the storage structure from the intake 33 can be discharged. For example, the notch can be provided in a part of the peripheral portion of the sheet 30. Further, it is preferable that the notch is provided at at least one position in the width direction of the base material 10 and / or at the left end portion of the base material 10. Also in this modification, the same effect as the above-mentioned aspect can be obtained.
(変形例6)
 また例えば、排出口52は、基材10に貫通孔を設けることで構成されていてもよい。この場合、基材10のうちセンサ電極20が設けられていない位置に貫通孔が設けられていることが好ましい。本変形例においても、上述の態様と略同様の効果を得ることができる。
(Modification 6)
Further, for example, the discharge port 52 may be configured by providing a through hole in the base material 10. In this case, it is preferable that a through hole is provided in the base material 10 at a position where the sensor electrode 20 is not provided. Also in this modified example, substantially the same effect as the above-mentioned aspect can be obtained.
(変形例7)
 また例えば、シート30は吸水部材32を有していなくてもよい。すなわち、シート30は、取入口33が開設された撥水部材31で構成されており、取入口33から取り入れられた尿がセンサ電極20の表面に直接接触するように構成されていてもよい。本変形例においても、上述の態様と略同様の効果を得ることができる。しかしながら、上述の態様のように、ユニット100に供給された尿が吸水部材32を介してセンサ電極20の表面に接触するように構成されている方が、センサ電極20の表面に接触する尿の量を一定な量に確実にすることができ、尿中における尿酸濃度の測定を、正確かつ安定に行うことが可能となる点で好ましい。
(Modification 7)
Further, for example, the sheet 30 does not have to have the water absorbing member 32. That is, the sheet 30 may be composed of the water-repellent member 31 in which the intake 33 is opened, and may be configured so that the urine taken in from the intake 33 comes into direct contact with the surface of the sensor electrode 20. Also in this modified example, substantially the same effect as the above-mentioned aspect can be obtained. However, as in the above aspect, if the urine supplied to the unit 100 is configured to come into contact with the surface of the sensor electrode 20 via the water absorbing member 32, the urine that comes into contact with the surface of the sensor electrode 20 It is preferable in that the amount can be ensured to a constant amount and the uric acid concentration in urine can be measured accurately and stably.
(変形例8)
 上述の態様では、作用電極21と配線13とが一体に形成され、対電極22と配線14とが一体に形成され、参照電極23と配線15とが一体に形成されている例について説明したが、本開示はこのような態様に限定されない。作用電極21が配線13と別体に形成され、作用電極21と配線13とが導電性接着剤を介して接続されていてもよい。同様に、対電極22が配線14と別体に形成され、対電極22と配線14とが導電性接着剤を介して接続されていてもよく、参照電極23が配線15と別体に形成され、参照電極23と配線15とが導電性を介して接続されていてもよい。
(Modification 8)
In the above aspect, an example in which the working electrode 21 and the wiring 13 are integrally formed, the counter electrode 22 and the wiring 14 are integrally formed, and the reference electrode 23 and the wiring 15 are integrally formed has been described. , The present disclosure is not limited to such aspects. The working electrode 21 may be formed separately from the wiring 13, and the working electrode 21 and the wiring 13 may be connected via a conductive adhesive. Similarly, the counter electrode 22 may be formed separately from the wiring 14, the counter electrode 22 and the wiring 14 may be connected via a conductive adhesive, and the reference electrode 23 may be formed separately from the wiring 15. , The reference electrode 23 and the wiring 15 may be connected via conductivity.
<本開示の他の態様>
 以上、本開示の一実施形態を具体的に説明した。但し、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other aspects of the present disclosure>
The embodiment of the present disclosure has been specifically described above. However, the present disclosure is not limited to the above-described embodiment, and various changes can be made without departing from the gist thereof.
 上述の態様では、液状の被験試料が被験者から採取した尿である例について説明したが、本開示はこのような態様に限定されない。例えば、液状の被験試料としては、尿の他、唾液、鼻水、汗、涙、血液等の体液であってもよい。また、上述の態様では、被験試料中に含まれる特定成分が尿酸である例について説明したが、本開示はこのような態様に限定されない。例えば、被験試料中に含まれる特定成分としては、尿酸の他、尿糖、ナトリウム、カリウム、亜硝酸塩、アルギニン、アルブミン、クレアチニン等であってもよい。また、液状の被験試料は人間由来のものに限定されず、例えば、犬や猫等の動物由来のものであってもよい。 In the above aspect, an example in which the liquid test sample is urine collected from a subject has been described, but the present disclosure is not limited to such an aspect. For example, the liquid test sample may be body fluid such as saliva, runny nose, sweat, tears, and blood, in addition to urine. Further, in the above aspect, an example in which the specific component contained in the test sample is uric acid has been described, but the present disclosure is not limited to such an aspect. For example, the specific component contained in the test sample may be uric acid, urinary sugar, sodium, potassium, nitrite, arginine, albumin, creatinine and the like. Further, the liquid test sample is not limited to that derived from humans, and may be derived from animals such as dogs and cats, for example.
 上述の態様では、被験者がユニット100の取入口33に向かって尿をかけることにより、ユニット100に尿を供給する例について説明したが、これに限定されない。例えば、被験試料が入った容器等に、ユニット100のセンサ電極20が設けられた側を浸漬させることにより、ユニット100に被験試料を供給し、取入口33から被験試料を貯留構造内に取り入れてもよい。この場合、基材10として、フレキシブル基板を用いることが好ましい。これにより、基材10を容易に折り曲げることができる。その結果、例えば、容器内の被験試料の量が少ない場合であっても、基材10を折り曲げることで、取入口33から被験試料を容易に取り込むことが可能となる。 In the above aspect, an example in which the subject supplies urine to the unit 100 by pouring urine toward the intake 33 of the unit 100 has been described, but the present invention is not limited to this. For example, the test sample is supplied to the unit 100 by immersing the side of the unit 100 in which the sensor electrode 20 is provided in a container or the like containing the test sample, and the test sample is taken into the storage structure from the intake 33. May be good. In this case, it is preferable to use a flexible substrate as the base material 10. As a result, the base material 10 can be easily bent. As a result, for example, even when the amount of the test sample in the container is small, the test sample can be easily taken in from the intake 33 by bending the base material 10.
 上述の態様では、被験試料中の特定成分の濃度を三電極法により測定する例について説明したが、本開示はこのような態様に限定されない。例えば、被験試料中の特定成分の濃度を、二電極法により測定してもよい。この場合、センサ電極20は、作用電極21と、対電極22(又は参照電極23)と、の2つの電極を有していればよい。 In the above aspect, an example of measuring the concentration of a specific component in a test sample by a three-electrode method has been described, but the present disclosure is not limited to such an aspect. For example, the concentration of a specific component in a test sample may be measured by a two-electrode method. In this case, the sensor electrode 20 may have two electrodes, a working electrode 21 and a counter electrode 22 (or a reference electrode 23).
 上述の態様では、1つのセンサ電極20が基材10の上面に設けられている例について説明したが、本開示はこのような態様に限定されない。複数(2つ以上)のセンサ電極20が基材10の上面に設けられていてもよい。この場合、尿中の複数種類の特定成分の濃度を測定することが可能となる。例えば、尿中における尿酸濃度と、尿中における尿酸とは異なる特定成分(例えば尿糖)の濃度とを1つのユニット100で測定することが可能となる。 In the above aspect, an example in which one sensor electrode 20 is provided on the upper surface of the base material 10 has been described, but the present disclosure is not limited to such an aspect. A plurality of (two or more) sensor electrodes 20 may be provided on the upper surface of the base material 10. In this case, it becomes possible to measure the concentration of a plurality of types of specific components in urine. For example, it is possible to measure the uric acid concentration in urine and the concentration of a specific component (for example, urinary sugar) different from uric acid in urine with one unit 100.
 本態様によっても、上述の態様と略同様の効果が得られる。なお、本態様は、上述した各種態様および変形例と任意の形態で組み合わせて実施することができる。 This aspect also has substantially the same effect as the above-mentioned aspect. It should be noted that this aspect can be carried out in any form in combination with the various aspects and modifications described above.
<本開示の好ましい態様>
 以下、本開示の好ましい態様について付記する。
<Preferable aspect of the present disclosure>
Hereinafter, preferred embodiments of the present disclosure will be described.
(付記1)
 本開示の一態様によれば、
 基材と、
 前記基材が有する2つの主面のうちいずれか一方の面上に設けられたセンサ電極と、
 液状の被験試料を取り入れ可能な取入口が開設され、前記センサ電極を覆うように前記基材の前記一方の面上に設けられたシートと、を備え、
 前記シートの周縁部と前記基材とが接着されてなり、前記取入口から取り入れた被験試料を貯留して前記センサ電極に接触させる貯留構造が構成されており、
 前記貯留構造は、前記取入口を介して取り入れられた被験試料の一部を排出する排出口を有する電気化学センサユニットが提供される。なお、前記排出口は、前記被験試料の一部を排出することで、前記センサ電極に接触する前記被験試料の量を調整するよう機能する。
(Appendix 1)
According to one aspect of the present disclosure
With the base material
A sensor electrode provided on one of the two main surfaces of the base material, and
An intake capable of taking in a liquid test sample is opened, and a sheet provided on one surface of the substrate so as to cover the sensor electrode is provided.
A storage structure is configured in which the peripheral edge of the sheet and the base material are adhered to each other to store the test sample taken in from the intake and bring it into contact with the sensor electrode.
The storage structure provides an electrochemical sensor unit having a discharge port for discharging a part of a test sample taken in through the intake. The discharge port functions to adjust the amount of the test sample in contact with the sensor electrode by discharging a part of the test sample.
(付記2)
 付記1に記載のセンサユニットであって、好ましくは、
 前記排出口は、前記シートの前記周縁部の一部が前記基材と非接着であることにより構成されている。
(Appendix 2)
The sensor unit according to Appendix 1, preferably.
The discharge port is configured such that a part of the peripheral portion of the sheet is non-adhesive to the base material.
(付記3)
 付記1または2に記載のセンサユニットであって、好ましくは、
 前記排出口は、前記シートの前記周縁部の一部に設けられた切れ込みにより構成されている。
(Appendix 3)
The sensor unit according to Appendix 1 or 2, preferably.
The discharge port is configured by a notch provided in a part of the peripheral portion of the sheet.
(付記4)
 付記1~3のいずれか1つに記載のセンサユニットであって、好ましくは、
 前記センサ電極は、前記取入口から前記排出口に至る被験試料の流路上に配置されている。
(Appendix 4)
The sensor unit according to any one of Supplementary note 1 to 3, preferably.
The sensor electrode is arranged on the flow path of the test sample from the inlet to the outlet.
(付記5)
 付記1~4のいずれか1つに記載のセンサユニットであって、好ましくは、
 前記排出口は、前記センサユニットを側面視した際に前記センサ電極の少なくとも一部と重複する位置に設けられている。
(Appendix 5)
The sensor unit according to any one of Supplementary note 1 to 4, preferably.
The discharge port is provided at a position overlapping with at least a part of the sensor electrode when the sensor unit is viewed from the side.
(付記6)
 付記5に記載のセンサユニットであって、好ましくは、
 前記基材は、長手形状を有しており、
 前記排出口は、前記基材の長手方向と直交する方向の少なくともいずれか一方の側に設けられている。
(Appendix 6)
The sensor unit according to Appendix 5, preferably.
The base material has a longitudinal shape and has a longitudinal shape.
The discharge port is provided on at least one side in a direction orthogonal to the longitudinal direction of the base material.
(付記7)
 付記5に記載のセンサユニットであって、好ましくは、
 前記基材は、長手形状を有しており、
 前記排出口は、前記基材の長手方向と直交する方向の両側の位置に設けられている。
(Appendix 7)
The sensor unit according to Appendix 5, preferably.
The base material has a longitudinal shape and has a longitudinal shape.
The discharge ports are provided at positions on both sides in a direction orthogonal to the longitudinal direction of the base material.
(付記8)
 付記5~8のいずれか1つに記載のセンサユニットであって、好ましくは、
 前記基材は、長手形状を有しており、
 前記センサ電極は、前記基材の長手方向における一端部側に設けられており、
 前記排出口は、前記基材の前記一端部側に設けられている。
(Appendix 8)
The sensor unit according to any one of Supplementary note 5 to 8, preferably.
The base material has a longitudinal shape and has a longitudinal shape.
The sensor electrode is provided on one end side in the longitudinal direction of the base material.
The discharge port is provided on the one end side of the base material.
(付記9)
 付記1~8のいずれか1つに記載のセンサユニットであって、好ましくは、
 前記排出口は、前記センサユニットを側面視した際に前記センサ電極の少なくとも一部と重複する大きさを有している。
(Appendix 9)
The sensor unit according to any one of Supplementary note 1 to 8, preferably.
The outlet has a size that overlaps with at least a part of the sensor electrode when the sensor unit is viewed from the side.
(付記10)
 付記1~9のいずれか1つに記載のセンサユニットであって、好ましくは、
 前記シートは、被験試料を吸収しない撥水部材と、前記取入口を塞ぐように設けられ、被験試料を吸収する吸水部材と、を有し、
 前記吸水部材は、前記センサ電極の少なくとも一部を覆うように配置されており、
 前記取入口から取り入れられた被験試料が前記吸水部材に吸収されて前記センサ電極の表面まで透過することで被験試料を前記センサ電極に接触させ、前記吸水部材で吸収されなかった被験試料が前記排出口から排出されるように構成されている。
(Appendix 10)
The sensor unit according to any one of Supplementary note 1 to 9, preferably.
The sheet has a water-repellent member that does not absorb the test sample, and a water-absorbing member that is provided so as to close the intake and absorbs the test sample.
The water absorbing member is arranged so as to cover at least a part of the sensor electrode.
The test sample taken in from the intake is absorbed by the water absorbing member and permeates to the surface of the sensor electrode so that the test sample is brought into contact with the sensor electrode, and the test sample not absorbed by the water absorbing member is discharged. It is configured to be discharged from the outlet.
(付記11)
 付記10に記載のセンサユニットであって、好ましくは、
 前記吸水部材は、前記撥水部材の裏面側に設けられている。
(Appendix 11)
The sensor unit according to Appendix 10, preferably.
The water absorbing member is provided on the back surface side of the water repellent member.
 100  電気化学センサユニット
 10   基材
 20   センサ電極
 30   シート
 33   取入口
 52   排出口
100 Electrochemical sensor unit 10 Base material 20 Sensor electrode 30 Sheet 33 Inlet 52 Outlet

Claims (10)

  1.  基材と、
     前記基材が有する2つの主面のうちいずれか一方の面上に設けられたセンサ電極と、
     液状の被験試料を取り入れ可能な取入口が開設され、前記センサ電極を覆うように前記基材の前記一方の面上に設けられたシートと、を備え、
     前記シートの周縁部と前記基材とが接着されてなり、前記取入口から取り入れた被験試料を貯留して前記センサ電極に接触させる貯留構造が構成されており、
     前記貯留構造は、前記取入口を介して取り入れられた被験試料の一部を排出する排出口を有する電気化学センサユニット。
    With the base material
    A sensor electrode provided on one of the two main surfaces of the base material, and
    An intake capable of taking in a liquid test sample is opened, and a sheet provided on one surface of the substrate so as to cover the sensor electrode is provided.
    A storage structure is configured in which the peripheral edge of the sheet and the base material are adhered to each other to store the test sample taken in from the intake and bring it into contact with the sensor electrode.
    The storage structure is an electrochemical sensor unit having an outlet for discharging a part of a test sample taken in through the intake.
  2.  前記排出口は、前記シートの前記周縁部の一部が前記基材と非接着であることにより構成されている請求項1に記載の電気化学センサユニット。 The electrochemical sensor unit according to claim 1, wherein the discharge port is configured such that a part of the peripheral portion of the sheet is non-adhesive to the base material.
  3.  前記排出口は、前記シートの前記周縁部の一部に設けられた切れ込みにより構成されている請求項1または2に記載の電気化学センサユニット。 The electrochemical sensor unit according to claim 1 or 2, wherein the discharge port is formed by a notch provided in a part of the peripheral portion of the sheet.
  4.  前記センサ電極は、前記取入口から前記排出口に至る被験試料の流路上に配置されている請求項1~3のいずれか1項に記載の電気化学センサユニット。 The electrochemical sensor unit according to any one of claims 1 to 3, wherein the sensor electrode is arranged on a flow path of a test sample from the intake port to the discharge port.
  5.  前記排出口は、前記センサユニットを側面視した際に前記センサ電極の少なくとも一部と重複する位置に設けられている請求項1~4のいずれか1項に記載の電気化学センサユニット。 The electrochemical sensor unit according to any one of claims 1 to 4, wherein the discharge port is provided at a position overlapping with at least a part of the sensor electrode when the sensor unit is viewed from the side.
  6.  前記基材は、長手形状を有しており、
     前記排出口は、前記基材の長手方向と直交する方向の少なくともいずれか一方の側に設けられている請求項5に記載の電気化学センサユニット。
    The base material has a longitudinal shape and has a longitudinal shape.
    The electrochemical sensor unit according to claim 5, wherein the discharge port is provided on at least one side in a direction orthogonal to the longitudinal direction of the base material.
  7.  前記基材は、長手形状を有しており、
     前記排出口は、前記基材の長手方向と直交する方向の両側に設けられている請求項5に記載の電気化学センサユニット。
    The base material has a longitudinal shape and has a longitudinal shape.
    The electrochemical sensor unit according to claim 5, wherein the discharge ports are provided on both sides in a direction orthogonal to the longitudinal direction of the base material.
  8.  前記基材は、長手形状を有しており、
     前記センサ電極は、前記基材の長手方向における一端部側に設けられており、
     前記排出口は、前記基材の前記一端部側に設けられている請求項5~7のいずれか1項に記載の電気化学センサユニット。
    The base material has a longitudinal shape and has a longitudinal shape.
    The sensor electrode is provided on one end side in the longitudinal direction of the base material.
    The electrochemical sensor unit according to any one of claims 5 to 7, wherein the discharge port is provided on one end side of the base material.
  9.  前記排出口は、前記センサユニットを側面視した際に前記センサ電極の少なくとも一部と重複する大きさを有している請求項1~8のいずれか1項に記載の電気化学センサユニット。 The electrochemical sensor unit according to any one of claims 1 to 8, wherein the outlet has a size that overlaps with at least a part of the sensor electrode when the sensor unit is viewed from the side.
  10.  前記シートは、被験試料を吸収しない撥水部材と、前記取入口を塞ぐように設けられ、被験試料を吸収する吸水部材と、を有し、
     前記吸水部材は、前記センサ電極の少なくとも一部を覆うように配置されており、
     前記取入口から取り入れられた被験試料が前記吸水部材に吸収されて前記センサ電極の表面まで透過することで被験試料を前記センサ電極に接触させ、前記吸水部材で吸収されなかった被験試料が前記排出口から排出されるように構成されている請求項1~9のいずれか1項に記載の電気化学センサユニット。
    The sheet has a water-repellent member that does not absorb the test sample, and a water-absorbing member that is provided so as to close the intake and absorbs the test sample.
    The water absorbing member is arranged so as to cover at least a part of the sensor electrode.
    The test sample taken in from the intake is absorbed by the water absorbing member and permeates to the surface of the sensor electrode to bring the test sample into contact with the sensor electrode, and the test sample not absorbed by the water absorbing member is discharged. The electrochemical sensor unit according to any one of claims 1 to 9, which is configured to be discharged from an outlet.
PCT/JP2021/018001 2020-05-27 2021-05-12 Electrochemical sensor unit WO2021241224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020092188A JP6749721B1 (en) 2020-05-27 2020-05-27 Electrochemical sensor unit
JP2020-092188 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241224A1 true WO2021241224A1 (en) 2021-12-02

Family

ID=72240839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018001 WO2021241224A1 (en) 2020-05-27 2021-05-12 Electrochemical sensor unit

Country Status (2)

Country Link
JP (2) JP6749721B1 (en)
WO (1) WO2021241224A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022040521A (en) * 2020-08-31 2022-03-11 住友化学株式会社 Electrochemical sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502589A (en) * 1993-06-08 1996-03-19 ベーリンガー マンハイム コーポレーション Bio-sensing meter with fail-safe function to prevent false display
JPH10307119A (en) * 1997-05-08 1998-11-17 Nec Corp Biosensor
US20030211625A1 (en) * 2002-04-05 2003-11-13 Cohan Bruce E. Method and apparatus for non-invasive monitoring of blood substances using self-sampled tears
JP2004257944A (en) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd Biosensor
JP2005524842A (en) * 2002-05-07 2005-08-18 エフ.ホフマン−ラ ロシュ アーゲー Sampling device for liquid samples
JP2006308458A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Biosensor
US20150253280A1 (en) * 2012-09-28 2015-09-10 Case Western Reserve University System and method for detecting lysyl oxidase-like 2 protein (loxl2) and breast cancer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338939B2 (en) * 2014-06-19 2018-06-06 株式会社Lixil Sensor, urine sensor and toilet device
JP2019012056A (en) * 2017-06-30 2019-01-24 Tdk株式会社 Analysis kit and analysis method
JP6653847B1 (en) * 2019-07-18 2020-02-26 株式会社ファーストスクリーニング Electrochemical sensor unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502589A (en) * 1993-06-08 1996-03-19 ベーリンガー マンハイム コーポレーション Bio-sensing meter with fail-safe function to prevent false display
JPH10307119A (en) * 1997-05-08 1998-11-17 Nec Corp Biosensor
US20030211625A1 (en) * 2002-04-05 2003-11-13 Cohan Bruce E. Method and apparatus for non-invasive monitoring of blood substances using self-sampled tears
JP2005524842A (en) * 2002-05-07 2005-08-18 エフ.ホフマン−ラ ロシュ アーゲー Sampling device for liquid samples
JP2004257944A (en) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd Biosensor
JP2006308458A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Biosensor
US20150253280A1 (en) * 2012-09-28 2015-09-10 Case Western Reserve University System and method for detecting lysyl oxidase-like 2 protein (loxl2) and breast cancer

Also Published As

Publication number Publication date
JP2021188957A (en) 2021-12-13
JP6749721B1 (en) 2020-09-02
JP2021189159A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US10690608B2 (en) Sensor array
US20100276303A1 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
JP5834599B2 (en) Sensor head, electrochemical sensor, and method of using electrochemical sensor
JP3212682U (en) Body fluid receiving structure and body fluid analyzer having the same
CN101135682B (en) Micro-fluidic test apparatus and method
WO2021241224A1 (en) Electrochemical sensor unit
CN113164103A (en) Microneedle indentation management
WO2022044475A1 (en) Electrochemical sensor
CN107271525A (en) A kind of integrated form ampere detection sensor for micro-total analysis system chip
US6719888B1 (en) Reference electrode assembly
JP6653847B1 (en) Electrochemical sensor unit
KR100943114B1 (en) Cartridge-type electrochemical analysis apparatus and method
JP2001514760A (en) Manufacturing method of wiring substrate with subminiature through hole
WO2022168360A1 (en) Electrochemical sensor
CN210720233U (en) Biochemical test card with filter element, reagent pack and blood gas analyzer
JP7356733B2 (en) electrochemical sensor
JP6694627B1 (en) Electrochemical sensor unit
JP4649767B2 (en) Biosensor
JP2004053613A (en) Oxidation-reduction potential measuring device
US11846598B2 (en) Reference electrode
JP2021018230A (en) Electrochemical sensor unit
JP2001066283A (en) Electrochemical detector and liquid chromatography
KR20140140880A (en) Reference electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21812145

Country of ref document: EP

Kind code of ref document: A1