WO2021240959A1 - Abnormal device determination system - Google Patents

Abnormal device determination system Download PDF

Info

Publication number
WO2021240959A1
WO2021240959A1 PCT/JP2021/010875 JP2021010875W WO2021240959A1 WO 2021240959 A1 WO2021240959 A1 WO 2021240959A1 JP 2021010875 W JP2021010875 W JP 2021010875W WO 2021240959 A1 WO2021240959 A1 WO 2021240959A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
abnormality
power consuming
control board
abnormal
Prior art date
Application number
PCT/JP2021/010875
Other languages
French (fr)
Japanese (ja)
Inventor
翼 渡辺
真彰 前田
徹 矢崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202180031565.4A priority Critical patent/CN115461690A/en
Publication of WO2021240959A1 publication Critical patent/WO2021240959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to an abnormal device determination system.
  • the present invention claims the priority of application number 2020-093852 of the Japanese patent filed on May 29, 2020, and for designated countries where incorporation by reference to the literature is permitted, the content described in the application is Incorporated into this application by reference.
  • Patent Document 1 describes an abnormality of each drive device of a printer having a plurality of drive devices from the current value of each drive device in a normal state that has been acquired in advance and the total current consumption that is sequentially acquired during operation.
  • a technique for determining an abnormality in each drive device is disclosed.
  • An object of the present invention is to detect an abnormality of an arbitrary and a plurality of power consuming devices from a total current waveform while reducing the sensing cost required during operation.
  • the present application includes a plurality of means for solving at least a part of the above problems, and examples thereof are as follows.
  • One aspect of the present invention is an abnormal device determination system, in which a current supplied to a power consuming device that consumes power during normal operation and a current supplied to a control board that supplies power to the plurality of the power consuming devices.
  • a storage unit that stores a reference waveform in which each of these is recorded in time series, a current acquisition unit that acquires the current supplied to the control board in time series during operation, and the control acquired by the current acquisition unit.
  • An abnormality determination unit that calculates the current change rate for each power consumption device using the current supplied to the substrate and the reference waveform to determine an abnormality in the power consumption device, and a result of determination by the abnormality determination unit. It is characterized by including a determination result display unit for displaying.
  • the present invention it is possible to detect an abnormality of any and a plurality of power consuming devices from the total current waveform while reducing the sensing cost required during operation.
  • FIG. 6A is a block diagram showing an example of a configuration related to learning
  • FIG. 6B is a block diagram showing an example of a configuration related to operation. It is a figure which illustrates the current waveform at the time of operation.
  • FIG. 7 (a) shows the acquired total current waveform
  • FIG. 7 (b) shows an example of a graph in which the current waveforms of individual devices are stacked. It is a figure which shows the example of the waveform of the current for one manufacturing process for each motor at the time of operation. It is a figure which shows the example of the processing flow of the abnormality determination processing (first embodiment). It is a figure which estimated the individual device current waveform using the calculated rate of change. It is a figure which shows the example of the display screen of the change rate displayed by the determination result display part. It is a figure which shows the example of the processing flow of the abnormality determination processing (second embodiment). It is the figure which estimated the individual device current waveform at the time of abnormality.
  • FIG. 18A shows the acquired total current waveform
  • FIG. 18B shows an example of a graph in which the current waveforms of individual devices are stacked. It is a figure which estimated the current waveform of an individual device using the calculated rate of change.
  • FIG. 20A shows the acquired total current waveform
  • FIG. 20B shows an example of stacking graphs of current ⁇ voltage ratio of individual devices.
  • FIG. 23 (a) shows the acquired total current waveform
  • FIG. 23 (b) shows the acquired total current waveform
  • 23 (b) is a diagram showing an example of stacking graphs of current ⁇ voltage ratio of individual devices converted by voltage ratio. It is a figure which shows the structure of the outline of the target apparatus which concerns on 6th Embodiment. It is a figure which shows the structural example of the outline of the power supply system circuit of a numerical control metal processing machine. It is a figure which shows the example of the processing flow of the abnormality determination processing (the sixth embodiment). It is a figure which shows the hardware configuration example of the abnormality equipment determination apparatus.
  • the shape, etc. when the shape, positional relationship, etc. of the components, etc. are referred to, the shape, etc. It shall include those that are close to or similar to. This also applies to the above numerical values and ranges.
  • a learning phase is provided before operation to measure and store the current of each drive device, and during operation, the total current consumption of each drive device is large. Only the current consumption of the original control board (hereinafter referred to as the total current) is measured by the sensor to detect the abnormality.
  • the target drive device when calculating the current waveform of the target drive device, is obtained by subtracting the currents of other drive devices other than the target drive device from the total current measured during operation. Obtain the current waveform during operation. At the time of abnormality determination, the determination is made by comparing the obtained operating current waveform of the target drive device with the stored current waveform of the target drive device.
  • this method has two drawbacks.
  • the first is that when the current waveforms of a plurality of drive devices change at the same time, it is difficult to obtain the operating current waveform of each drive device from the total current waveform during operation by using subtraction.
  • the second is that even if only one drive device changes the current waveform, only the drive device in which the abnormality first occurs can be targeted.
  • FIG. 1 is a diagram showing an example of an abnormal device determination device and a target device.
  • the target device includes a control Box 200 and a robot unit 300.
  • the power supply of the target device is obtained from the switchboard 100.
  • the robot unit 300 has a plurality of operating axes, and the first operating axis 301, the second operating axis 302, the third operating axis 303, the fourth operating axis 304, the fifth operating axis 305, and the sixth operating axis 306 are , Each can rotate in the direction of the arrow. It can be said that each operating axis is a power consuming device that consumes electric power during normal operation.
  • the control Box 200 controls the operation of the robot unit 300.
  • the abnormal device determination device 1 is connected to the control Box 200 of the target device.
  • the abnormality device determination device 1 includes a storage unit 10 and a processing unit 20.
  • the storage unit 10 stores a reference waveform storage unit 11 that stores a reference waveform. More specifically, the storage unit 10 records a reference waveform in which each of the current supplied to the power consuming device and the current supplied to the control board that supplies power to the plurality of power consuming devices is recorded in time series.
  • the processing unit 20 includes a current acquisition unit 21, an abnormality determination unit 22, and a determination result display unit 23.
  • the current acquisition unit 21 acquires the current supplied to the control board 220 in time series via a current sensor described later.
  • the abnormality determination unit 22 determines whether or not the acquired current value is abnormal.
  • the determination result display unit 23 displays the result determined by the abnormality determination unit 22.
  • FIG. 27 is a diagram showing a hardware configuration example of the abnormal device determination device.
  • the abnormality device determination device 1 includes a central processing device (Central Processing Unit: CPU) 2, a memory 3, an external storage device 4 such as a hard disk device (Hard Disk Drive: HDD), and a CD (Computer Disk) or DVD (Digital).
  • a reading device 6 that reads information from a portable storage medium 5 such as a Versail Disk), an input device 7 such as a keyboard, mouse, and bar code reader, an output device 8 such as a display, and a communication network such as the Internet.
  • This can be realized by a general computer provided with a communication device 9 that communicates with another computer via the computer, or a network system provided with a plurality of the computers.
  • the reading device 6 may be capable of not only reading but also writing to the portable storage medium 5.
  • the current acquisition unit 21, the abnormality determination unit 22, and the determination result display unit 23 included in the processing unit 20 load a predetermined program stored in the external storage device 4 into the memory 3 and execute it in the CPU 2.
  • the storage unit 10 can be realized by the CPU 2 using the memory 3 or the external storage device 4.
  • This predetermined program is downloaded from the portable storage medium 5 via the reading device 6 or from the network via the communication device 9 to the external storage device 4, and then loaded onto the memory 3 to be loaded into the CPU 2. May be executed by. Further, it may be directly loaded onto the memory 3 from the portable storage medium 5 via the reading device 6 or from the network via the communication device 9 and executed by the CPU 2.
  • FIG. 2 is a diagram showing an example of a power supply system circuit of a target device for determining an abnormal device.
  • Electric power is supplied from the switchboard 100 to each motor, which is a drive motor, in the robot unit 300 via the control box 200.
  • the robot unit 300 includes a plurality of drive motors, the rotation of each drive motor is transmitted to the speed reducer, and the operation shaft provided ahead thereof is operated.
  • the reducer is a mechanism that reduces the input rotation speed and instead increases the torque.
  • the control Box 200 includes a power supply circuit 210 and a control board 220, and the electric power supplied from the switchboard 100 is passed to the power supply circuit 210, passes through the control board 220, and is passed to each motor. Will be supplied.
  • the control board 220 can supply power to a plurality of power consuming devices.
  • the drive motor the first motor 321 and the second motor 322, the third motor 323, the fourth motor 324, the fifth motor 325, and the sixth motor 326 are mounted on the robot unit 300. ..
  • Each drive motor includes a first reduction gear 311, a second reduction gear 312, a third reduction gear 313, a fourth reduction gear 314, a fifth reduction gear 315, and a sixth reduction gear 316.
  • the speed reducers include a first working shaft 301, a second working shaft 302, a third working shaft 303, a fourth working shaft 304, a fifth working shaft 305, and a sixth working shaft 306. , Are connected respectively.
  • FIG. 3 shows an example of the current waveform for one manufacturing process for each motor.
  • the current waveform shown in the present invention describes a waveform obtained by extracting an envelope from an AC waveform, but an effective value may be used in addition to the envelope, or a torque current value converted from an AC component may be used. can.
  • the robot unit 300 operates by driving a motor connected to each operating axis according to the magnitude and frequency of the current output from the control board 220 according to a predetermined operation program. Therefore, it is known that these current waveforms are important physical quantities that reflect the deterioration state of the motor of each operating shaft of the robot, the speed reducer which is a mechanical component connected to the motor, and the operating shaft.
  • the current waveform 501 is a waveform of the current of the first motor 321 connected to the first operating shaft 301.
  • the current waveform 502, the current waveform 503, the current waveform 504, the current waveform 505, and the current waveform 506 are the current waveforms of the second motor 322 connected to the second operating shaft 302 and the third operating shaft 303, respectively.
  • FIG. 4 is a diagram showing an example of a total current waveform.
  • the total current waveform 601 is a current waveform flowing from the switchboard 100 to the control board 220 via the power supply circuit 210, and the total current waveform details 602 show the breakdown of each axis in the total current waveform 601.
  • the total current waveform 601 and the total current waveform details 602 are equal current waveforms, indicating that the total current of each operating shaft is equal to the total current, and is expressed by the following equation (1).
  • I w (t) is the total current at a certain time t
  • I i (t) is the current of each operating shaft at a certain time t (hereinafter referred to as the individual device current as a physical quantity including the state of the operating shaft, the reducer, and the motor).
  • i means the number of the operating axis.
  • FIG. 5 shows an example of the processing flow of the abnormal device determination device of the conventional technique in a flowchart format
  • FIG. 6 shows an example of the conventional technique and a block diagram of the abnormal device determination device according to the present invention.
  • FIG. 6A is a block diagram showing an example of a configuration related to learning of the abnormal device determination device 1
  • FIG. 6B is a block showing an example of a configuration related to the operation of the abnormal device determination device 1. It is a figure.
  • the current acquisition unit 21 included in the processing unit 20 of the abnormality device determination device 1 acquires the total current value from the total current sensor 701.
  • the total current sensor 701 is installed in the wiring between the switchboard 100 and the power supply circuit 210, or in the wiring between the power supply circuit 210 and the control board 220.
  • the current acquisition unit 21 acquires the current value of each axis (individual device) from the axis 1 current sensor 702 to the axis 6 current sensor 703.
  • the shaft 1 current sensor 702 to the shaft 6 current sensor 703 are installed in the wiring between the control board 220 and each motor, respectively.
  • the current acquisition unit 21 stores all the waveforms as the reference waveform in the reference waveform storage unit 11.
  • the stored reference waveform is a waveform such as the current waveform 501 to the current waveform 506, and it is necessary to satisfy the relationship that the total current of each operating shaft is equal to the total current.
  • the current acquisition unit 21 analyzes the correlation between the past failure record and the current data, calculates and sets an index (abnormality) and its threshold value for determining a failure (abnormality) using a predetermined algorithm.
  • the current acquisition unit 21 included in the processing unit 20 of the abnormal device determination device 1 acquires the total current value from the total current sensor 701 as in the case of learning.
  • the total current sensor 701 is installed in the wiring between the switchboard 100 and the power supply circuit 210, or in the wiring between the power supply circuit 210 and the control board 220, as in the case of learning.
  • the current acquisition unit 21 passes the acquired total current to the abnormality determination unit 22, and the abnormality determination unit 22 acquires the reference waveform from the reference waveform storage unit 11 and determines whether or not the total current corresponds to the abnormality.
  • the determination result display unit 23 determines that the abnormality is abnormal, the determination result display unit 23 identifies that fact and the abnormal operating axis, creates display information, and displays the information on a display or the like of the device determination device 1 (not shown).
  • the abnormality determination unit 22 estimates the current waveform of the target device for abnormality determination from the acquired total current waveform during operation. In this process, it is calculated based on the mathematical formula shown in the following formula (2). However, the subscript 0 in parentheses indicates that it is the current waveform at the time of learning, and the subscript t in parentheses indicates a certain time during operation. Further, the following equation (2) is an example when the abnormality detection target is the first operating axis.
  • the current waveform of the current target device that is, the individual device is calculated by subtracting the current waveform of the individual device other than the target at the time of learning from the total current of the current.
  • FIG. 7 is a diagram illustrating an operation current waveform acquired in an abnormality determination by the prior art.
  • FIG. 7A shows the acquired total current waveform 611
  • FIG. 7B shows an example of the current waveform 612 of the individual device 1 obtained by the above equation (2). ..
  • FIG. 8 shows an example of the current waveform for one manufacturing process for each motor during operation.
  • the example shown in FIG. 8 is basically the same as the example at the time of learning shown in FIG. 3, but the current waveform 511 of the first operating shaft 301 is different from the current waveform 501.
  • the current waveforms 512 to 516 during operation of the second operating shaft 302 to 306 are the same waveforms as the current waveforms 502 to 506 during learning, respectively.
  • the waveforms are different, the current waveform 511 of the first operating shaft 301 cannot be accurately acquired, and the abnormality determination cannot be said to be an accurate determination. That is, it can be said that the abnormality of a plurality of devices cannot be detected.
  • FIG. 5 is a flowchart showing an example of the flow of abnormality determination processing by the prior art. This flow is configured by steps S001 to S009, the processing at the time of learning is the processing of steps S001 to S003, and the processing at the time of operation is the processing of steps S004 to S009.
  • the current acquisition unit 21 acquires the total current and the current of each axis (individual device) (step S001). Specifically, the current acquisition unit 21 acquires the total current value from the total current sensor 701, and acquires the current value of each axis (individual device) from the shaft 1 current sensor 702 to the shaft 6 current sensor 703. ..
  • the current acquisition unit 21 stores the current waveform (individual current waveform at the time of learning) of each axis (step S002). Specifically, the current acquisition unit 21 stores the entire waveform as a reference waveform in the reference waveform storage unit 11.
  • the current acquisition unit 21 sets a threshold value of the degree of abnormality (correlation coefficient) for determining abnormality (step S003). Specifically, the current acquisition unit 21 analyzes the correlation between the past failure record and the current data, and calculates an index (abnormality) for determining a failure (abnormality) and its threshold value using a predetermined algorithm. Set. The above is the processing flow at the time of learning.
  • the current acquisition unit 21 acquires the total current waveform (total current during operation) for one process (step S004). Specifically, the current acquisition unit 21 acquires the total current value from the total current sensor 701.
  • the abnormality determination unit 22 removes from the acquired total operating current using the reference waveform of each axis that is not subject to abnormality detection (step S005). Specifically, the abnormality determination unit 22 acquires a reference waveform from the reference waveform storage unit 11 and subtracts it from the total current.
  • the abnormality determination unit 22 calculates the degree of abnormality of the extracted waveform as seen from the reference waveform (step S006). Specifically, the abnormality determination unit 22 calculates the correlation coefficient between the extracted waveform and the reference waveform at the time of learning, and calculates the degree of abnormality.
  • the abnormality determination unit 22 determines whether or not the degree of abnormality is equal to or higher than the threshold value (step S007). Specifically, the abnormality determination unit 22 determines whether or not the correlation coefficient calculated in step S006 is equal to or greater than the threshold value of the degree of abnormality set in step S003.
  • the abnormality determination unit 22 determines that the abnormality is normal, and controls to step S004 to proceed to the abnormality detection of the next process. Return (step S008).
  • the abnormality determination unit 22 determines that it is abnormal (step S009).
  • FIG. 9 is a diagram showing an example of the processing flow of the abnormality determination processing (first embodiment).
  • the current acquisition unit 21 sets a threshold value of the rate of change as the degree of abnormality to be determined as abnormal (step S103), which is different from the conventional technique. .. Specifically, the current acquisition unit 21 analyzes the correlation between the past failure record and the current data, sets the index for determining the failure (abnormality) as the rate of change of the current waveform, and uses a predetermined algorithm as the threshold value. Calculate and set.
  • the abnormality determination unit 22 performs multivariate analysis, for example, multiple regression analysis on the acquired total current during operation, and obtains the current waveform of each axis.
  • the rate of change is calculated (step S105). Specifically, first, it is assumed that all the operating axes (individual devices) have changed from the time of learning, and the abnormality determination unit 22 constructs the equation shown in the following equation (3). However, ⁇ 1 to ⁇ 6 are rate of change indicating the rate of change of the current waveform of each individual device, and are unknown at the time of this processing.
  • the rate of change ⁇ 1 to ⁇ 6 can be solved from the viewpoint of simultaneous equations. It is a feature of this embodiment that processing is performed using multiple regression analysis, which is a method for solving a plurality of unknowns, assuming that all individual devices are changed in this way. Further, in the present embodiment, the abnormality determination unit 22 is subjected to multiple regression analysis utilizing the fact that the sum of the products of the current supplied to the plurality of power consuming devices and the current change rate is equal to the current supplied to the control board. The current change rate is calculated.
  • the abnormality determination unit 22 determines that the abnormality is present, and the determination result display unit 23 determines the change rates ⁇ 1 to ⁇ 6. Is displayed on the display unit (step S109).
  • FIG. 10 is a diagram in which the individual device current waveform is estimated using the calculated rate of change.
  • the current waveform of each individual device is represented by the following equation (4).
  • the current waveform 523 of shaft 3 shown in FIG. 10 is different from the current waveform 513 during operation as shown in FIG. 8, and has a alpha 3 times the rate of change.
  • FIG. 11 is a diagram showing an example of a change rate display screen displayed by the determination result display unit.
  • the rate of change ⁇ i takes “1” as an initial value, and the current waveform at this time is equal to the learning current waveform shown in FIG. 3 and equal to the learning individual device waveform.
  • the display screen 800 includes a graph 801 showing the transition of the rate of change for each operating axis in process units.
  • the rate of change ⁇ ib described in each graph of FIG. 11 indicates the threshold value of the degree of abnormality set in step S103 in the flowchart of the first embodiment shown in FIG.
  • One plot of graph 801 in FIG. 11 shows one process, and one plot is generated for each process from step S004 to step S007 of the flowchart.
  • the abnormality determination unit 22 calculates the current change rate for each power consuming device by multivariate analysis using the current supplied to the control board acquired by the current acquisition unit 21 and the reference waveform, and the current change. When the rate exceeds the threshold value, it is determined that the power consumption device is abnormal. Further, the determination result display unit 23 displays the result of the determination by the abnormality determination unit 22.
  • the determination result display unit 23 can also obtain the effect that it is possible to observe how the transition is abnormal even if it is not determined to be abnormal.
  • FIGS. 12 to 14 a second embodiment according to the present invention will be described with reference to FIGS. 12 to 14.
  • the second embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
  • FIG. 12 is a diagram showing an example of the processing flow of the abnormality determination processing (second embodiment).
  • the processing at the time of learning is the same as that of the first embodiment.
  • the rate of change is calculated by multivariate analysis.
  • a time window is set and the total current waveform during operation and the reference waveform are used for a predetermined period.
  • a part of the data is cut out and multivariate analysis is performed multiple times. That is, the current change rate is calculated for each section in which the reference waveform is divided into a plurality of sections by a predetermined time window, and the abnormality is determined.
  • the number of equations (3) to be constructed in order to calculate the rate of change ⁇ 1 to ⁇ 6 in multivariate analysis is an unknown number ( ⁇ 1 to ⁇ ).
  • the number may be 6) or more.
  • the rate of change ⁇ i can be calculated only with the data for 6 seconds. That is, multiple regression analysis is possible if the number of consecutive samples is equal to or greater than the number of operating axes.
  • the data at the time of learning is the current waveform shown in FIG. 3, and the current waveform at the time of abnormality is the state shown in FIG.
  • the current waveform group shown in FIG. 13 is not acquired from the sensor, and is described here only for the sake of explanation.
  • the abnormality determination unit 22 first divides and extracts the total current waveform during operation in the minimum time width (time window) (step S205).
  • the minimum time width is 6 seconds, which can secure an unknown number of samples, but the minimum time width is not limited to this, and may be longer.
  • the abnormality determination unit 22 divides and extracts the total current waveform during learning by the minimum time width (time window) used in step S205 (step S206).
  • the abnormality determination unit 22 calculates the rate of change of each axis and each time current by multiple regression analysis (step S207). Specifically, the abnormality determination unit 22 calculates the rate of change specified from the sample in the set time window.
  • the rate of change is calculated by multiple regression analysis every 6 seconds, so that the in-process transition of the rate of change shown in FIG. 14 can be obtained.
  • the rate of change is calculated by shifting every second and acquiring data for 6 seconds, so a discrete but gentle curve like a sine wave is drawn. The smaller the number of samples, the more dynamic the reaction of the rate of change can be obtained.
  • FIG. 14 is a diagram showing an example of a change rate display screen displayed by the determination result display unit.
  • the display screen 810 includes a graph 811 showing the transition of the rate of change for each operating axis in time units. As shown in Graph 811, the rate of change increases only in the first half of the process on the first operating axis 301 and only in the second half of the process on the third operating axis 303, and it is possible to capture local abnormalities. ..
  • the abnormal state does not uniformly appear in the process, and even the abnormal state partially expressed in the process can be accurately captured.
  • the accuracy of abnormality detection can be dramatically improved.
  • FIGS. 15 and 16 a third embodiment according to the present invention will be described with reference to FIGS. 15 and 16.
  • the third embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
  • FIG. 15 is a diagram showing an example of the processing flow of the abnormality determination processing (third embodiment).
  • the processing at the time of learning is basically the same as that of the first embodiment.
  • the second threshold value is calculated to achieve an improvement in determination accuracy. That is, a threshold value (second threshold value) that serves as a predetermined detectability index is specified according to the reference waveform of the current supplied to the control board, and if the current change rate does not exceed the second threshold value, it is determined to be abnormal. By not doing so, erroneous judgment is prevented.
  • a second degree of abnormality threshold considering variation is set from the current waveform during learning as a process during learning (step S304).
  • the current of each individual device is estimated from the total current, if the total current varies, there is a concern that the estimation accuracy of the current of each individual device also varies.
  • the condition for avoiding this is that the amount of change in the current of each individual device becomes larger than the variation in the total current, which can be expressed by the following equation (5).
  • SI w (0) indicates the variation of the total current waveform during learning.
  • alpha ia can be expressed by Equation (6).
  • Equation (6) The ⁇ ia obtained by the equation (6) is determined to be abnormal when both the abnormality degree and the second abnormality degree threshold value are detected in the abnormality degree determination process during operation (step S307). Used in. That is, the quotient obtained by dividing the sum of the fluctuation amount of the reference waveform of the current supplied to the control board 220 and the current supplied to the power consuming device by the current supplied to the power consuming device is specified as the second abnormality degree threshold. can do.
  • FIG. 16 is a diagram showing an example of a change rate display screen displayed by the determination result display unit.
  • the display screen 820 includes a graph 821 showing the transition of the rate of change for each operating axis in process units.
  • the rate of change ⁇ ib described in each graph of FIG. 16 indicates the threshold value of the degree of abnormality set in step S103 in the flowchart of the third embodiment shown in FIG.
  • the rate of change ⁇ ia indicates the second abnormality degree threshold set in step S304 in the flowchart of the third embodiment shown in FIG.
  • One plot of graph 821 in FIG. 16 shows one process, and one plot is generated for each process of steps S004 to S307 of the flowchart.
  • the rate of change exceeds both the threshold value of the degree of abnormality and the threshold value of the second degree of abnormality, it is possible to determine that it is abnormal.
  • ⁇ ib is exceeded, but ⁇ ia is not yet exceeded. If ⁇ ia is not set, the third operating axis will be determined to be abnormal even at this point, but in reality it may be a false alarm due to variations in the total current.
  • the invention according to the present embodiment has the effect of reducing false alarms due to sudden events such as variations in total current.
  • the individual device is individually specified in advance. It is also possible to take measures to install a current sensor only for the device. That is, it is an index that can be used for optimizing the number of sensors, and it can be said that it also has the effect of appropriately reducing the number of sensors while maintaining accuracy.
  • the fourth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
  • FIG. 17 is a diagram showing an example of the processing flow of the abnormality determination processing (fourth embodiment).
  • measures are taken when the voltage supplied to each individual device is different.
  • the current acquisition unit 21 calculates the voltage ratio, which is the ratio between each individual device and the main power supply voltage, by multiple regression analysis (step S403), and stores the individual voltage ratio of each axis.
  • step S404 when the voltages supplied to the individual devices are different, the voltage ratio can be calculated without acquiring the voltage value.
  • FIG. 18 is a diagram showing the relationship between the total current waveform targeted for determining the abnormality in the fourth embodiment and the current waveform of each individual device.
  • FIG. 18A is a graph of the total current
  • FIG. 18B is an example of a graph in which the current waveforms of each individual device are stacked. Comparing FIGS. 18 (a) and 18 (b), the total current and the total current of each individual device do not match. This means that the total current cannot be expressed by simple addition of current waveforms because the voltage is different for each individual device.
  • the relational expression with current was established from the assumption that the total power is equal to the total power and the voltage is constant.
  • the relational expression that the total sum of the original electric powers is equal is used.
  • the voltage ratio k i is a physical quantity represented by the following formula (7).
  • V w indicates the voltage at the total current acquisition location
  • V i indicates the voltage at each individual device current acquisition location.
  • Equation (8) Build equation (8) at each time of learning during the current waveform, by performing a multiple regression analysis, it is possible to calculate each individual device voltage ratio k i.
  • FIG. 19 is a diagram in which the current waveform of an individual device is estimated using the calculated rate of change.
  • voltage k i calculated calculating each individual device current waveform, and the waveform 541 of the first operating shaft in FIG. 19 a waveform 542 of the second operating shaft, and a waveform 543 of the third working axis, A waveform 544 of the fourth operating axis, a waveform 545 of the fifth operating axis, and a waveform 546 of the sixth operating axis are obtained.
  • the vertical axis of each graph is the current x voltage ratio.
  • FIG. 20 is a diagram showing an example of the relationship between the total current waveform and the current waveform of each individual device.
  • FIG. 20A shows the acquired total current waveform
  • FIG. 20B shows an example of stacking graphs of current ⁇ voltage ratio of individual devices. Comparing FIG. 20 (a) and FIG. 20 (b), the sizes of the graphs are the same.
  • the mathematical formula used in the multiple regression analysis performed in S405 in the flowchart of FIG. 17 is shown as the following equation (9).
  • the voltage ratio can be calculated by using the equation (8) without adding a voltage sensor. It can also be applied to devices with different voltages for individual devices while maintaining accuracy. That is, it can be said that the range of applicable devices can be expanded.
  • the fifth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
  • FIG. 21 is a diagram showing an example of a power supply system circuit of the target device according to the fifth embodiment.
  • Other devices such as cooling fans 231 and 232 and the non-excited electromagnetic brake 330 are further added to the control board 220 with respect to the configurations of the first to fourth embodiments.
  • FIG. 22 is a diagram showing an example of the processing flow of the abnormality determination processing (fifth embodiment).
  • individual devices other than the main components and other devices that are difficult to measure even temporarily, such as during learning are collectively handled to measure the other devices alone. It is possible to judge abnormal equipment without doing it.
  • the processing flow of the abnormality determination process according to the fifth embodiment is the same as the processing flow of the abnormality determination process according to the fourth embodiment.
  • the current acquisition unit 21 calculates an individual voltage ratio and a constant for each axis by multiple regression analysis (step S503), and stores the current waveform using the constant (residual) as the current of other devices (step S503). Step S504).
  • the current of the individual device that is not measured when the individual voltage ratio k i is obtained is expressed by the constant I else (0) and calculated.
  • the following equation (10) shows the relational expression of the individual voltage ratio k i and the other individual equipment current I else (0).
  • I else (0) is a value including the current consumption of the cooling fans 231 and 232 of FIG. 21 and the non-excited electromagnetic brake 330.
  • the non-excited electromagnetic brake 330 is a brake generally applied to robots.
  • This brake has a feature that the brake is applied when the electric power is not supplied, and the brake is not applied when the electric power is supplied. Therefore, it has the characteristic of consuming a certain amount of electric power when energized, and the dotted line arrow in FIG. 21 indicates only the direction of action of the brake. Constructs simultaneous equations necessary for multiple regression analysis with the above equation (10) can be calculated and the voltage ratio k i, other individual device current I the else a (0).
  • FIG. 23 is a diagram showing an example of the relationship between the total current waveform and the graph in which the graphs of the current ⁇ voltage ratio of each individual device converted by the voltage ratio are stacked.
  • FIG. 23 (a) shows the total current at the time of learning
  • FIG. 23 (b) each individual device current ⁇ voltage ratio which is translated using the voltage ratio k i determined by the above equation (10) and the other individual equipment
  • the graph which piled up the current I else (0) is shown. Comparing FIG. 23 (a) and FIG. 23 (b), the sizes of both graphs are equal.
  • equation (11) the mathematical formula used in the multiple regression analysis in the flowchart of FIG. 22 is shown as equation (11).
  • FIGS. 24 to 26 a sixth embodiment according to the present invention will be described with reference to FIGS. 24 to 26.
  • the sixth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
  • FIG. 24 is a diagram showing a configuration example of an outline of the target device according to the sixth embodiment.
  • the target device according to the sixth embodiment is a numerically controlled metal processing machine 400 having 4-axis operation (X-axis 431, Y-axis 432, Z-axis 433, spindle shaft 434), and a tool replacement for replacing the tool 461 as an accessory.
  • a device (tool change shaft 475) is also attached.
  • FIG. 25 is a diagram showing a configuration example of an outline of a power supply system circuit of a numerically controlled metal processing machine.
  • the control device 401 includes a power supply circuit 410, a first control board 411, a second control board 412, and a third control board 413.
  • the power supply circuit 410 receives power from the switchboard 100.
  • Each control board is supplied with power from the power supply circuit 410.
  • An individual device is attached to each control board.
  • the first control board 411 includes a first motor 451, a first speed reducer 441 that decelerates its rotation, and a table X-axis 431 that slides in the X-axis direction by a force transmitted by the first speed reducer 441. Is attached. Further, on the first control board 411, a second motor 452, a second speed reducer 442 for decelerating the rotation thereof, and a table Y-axis 432 that slides in the Y-axis direction by the force transmitted by the second speed reducer 442. And is accompanied.
  • the second control board 412 is accompanied by a fourth motor 454, a fourth speed reducer 444 that decelerates its rotation, and a spindle shaft 434 that rotates by a force transmitted from the fourth speed reducer 444.
  • the third control board 413 is accompanied by a fifth motor 495, a fifth speed reducer 485 that decelerates its rotation, and a tool exchange shaft 475 that rotates by the force transmitted from the fifth speed reducer 485.
  • FIG. 26 is a diagram showing an example of the processing flow of the abnormality determination processing (sixth embodiment). In the sixth embodiment, even when the power supply is branched and supplied to the control board, it is possible to estimate the current of the individual device and determine the abnormality at each location.
  • the processing flow of the abnormality determination processing according to the sixth embodiment is the same as the processing flow of the abnormality determination processing according to the first embodiment.
  • the current acquisition unit 21 acquires the total current and the current of each control board and the accompanying individual device (step S601), and stores the current waveform of each control board and each individual device in the reference waveform storage unit 11. (Step S602).
  • the abnormality determination unit 22 calculates the rate of change of each control board current by multiple regression analysis after acquiring the total current waveform for one process (step S004) (step S605), and the calculated rate of change.
  • the current of each control board is calculated and acquired (step S606), and the rate of change of the current of each individual device is calculated by multiple regression analysis (step S607). That is, if there is a control board, recursive processing is performed as a nested structure.
  • the relationship between the control board and the individual device shown in the first to fifth embodiments is expanded, and the same relationship is further established between the plurality of control boards and the power supply circuit. Utilizing this, the rate of change of individual devices via the control board is estimated from the original current.
  • the current flowing through the wiring between the power distribution board 100 and the power supply circuit 410 is the total current I w (t)
  • the current flowing through the wiring between the power supply circuit 410 and each control board is the control board current ICi (t) .
  • the current flowing through the wiring between the control board 411 and the first to third motors is defined as the individual device current Ii (t) .
  • the current acquisition unit 21 acquires the waveform at the time of learning by the current sensor and stores it in the reference waveform storage unit 11 as I w (0) , ICi (0) , and I i (0), respectively.
  • the current acquisition unit 21 first acquires the total current I w (t) , performs multiple regression analysis using the equation shown in the following equation (12), and calculates each control board current change rate ⁇ Ci. ..
  • the current waveform of the individual device attached to the first control board 411 is estimated using the value of ⁇ C1 ⁇ IC1 (0).
  • the following equation (13) in which the total current I w (t) is replaced with ⁇ C1 ⁇ IC1 (0) is used.
  • the numerical control metal processing machine 400 As described above, according to the numerical control metal processing machine 400 according to the sixth embodiment, even a device of a power supply system circuit branched in multiple layers is in operation as long as the reference waveform of the target line can be acquired. It has the effect that abnormality determination can be performed while achieving sensor cost reduction.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the numerically controlled metal processing machine 400 may be another multi-axis controlled machine tool.
  • a nested structure having one layer of control boards is taken as an example, but the present invention is not limited to this, and a nested structure having a plurality of layers of control boards may be used.
  • each configuration, function, processing unit, processing means, etc. of the above-mentioned abnormal device determination device 1 may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like.
  • each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In reality, it may be considered that almost all configurations are connected to each other by a communication network, a bus, or the like.
  • the technique according to the present invention is not limited to the abnormal device determination device, and can be provided in various forms such as an abnormal device determination system, a server device, a computer-readable program, and an abnormal device determination service (method).

Abstract

The present invention detects an abnormality in given multiple power consumption devices from a total current waveform in a state where a sensing cost necessary during an operation is reduced. This abnormal device determination system is provided with: a storage unit that stores reference waveforms obtained by time-sequentially recording current supplied to power consumption devices which consume power during a normal operation and current supplied to a control board through which power is supplied to the multiple power consumption devices; a current acquisition unit that time-sequentially acquires the current supplied to the control board during an operation; an abnormality determination unit that calculates a current change rate for each of the power consumption devices by using the reference waveforms and the current which is supplied to the control board and is acquired by the current acquisition unit, and that determines an abnormality in the power consumption device; and a determination result display unit that displays the determination result of the abnormality determination unit.

Description

異常機器判定システムAbnormal device judgment system
 本発明は、異常機器判定システムに関する。本発明は2020年5月29日に出願された日本国特許の出願番号2020-093852の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to an abnormal device determination system. The present invention claims the priority of application number 2020-093852 of the Japanese patent filed on May 29, 2020, and for designated countries where incorporation by reference to the literature is permitted, the content described in the application is Incorporated into this application by reference.
 特許文献1には、複数の駆動機器が存在するプリンタの各駆動機器の異常を、予め取得済みの正常な状態の各駆動機器の電流値と、運用中に逐次取得する全体の消費電流から、各駆動機器の異常を判定する技術が開示されている。 Patent Document 1 describes an abnormality of each drive device of a printer having a plurality of drive devices from the current value of each drive device in a normal state that has been acquired in advance and the total current consumption that is sequentially acquired during operation. A technique for determining an abnormality in each drive device is disclosed.
特開2008-76292号JP-A-2008-76292
 上述した特許文献1では、複数の駆動機器で電流波形が変化した場合に、差し引きを利用して運用中総電流波形から各駆動機器の運用中電流波形を求めることは難しい。 In the above-mentioned Patent Document 1, when the current waveform changes in a plurality of drive devices, it is difficult to obtain the operating current waveform of each drive device from the total current waveform during operation by using subtraction.
 本発明の目的は、運用中に必要なセンシングコストを低減した状態で、任意かつ複数の電力消費装置の異常を総電流波形から検知することにある。 An object of the present invention is to detect an abnormality of an arbitrary and a plurality of power consuming devices from a total current waveform while reducing the sensing cost required during operation.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。 The present application includes a plurality of means for solving at least a part of the above problems, and examples thereof are as follows.
 本発明の一態様は、異常機器判定システムであって、正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、前記異常判定部が判定した結果を表示する判定結果表示部と、を備えることを特徴とする。 One aspect of the present invention is an abnormal device determination system, in which a current supplied to a power consuming device that consumes power during normal operation and a current supplied to a control board that supplies power to the plurality of the power consuming devices. A storage unit that stores a reference waveform in which each of these is recorded in time series, a current acquisition unit that acquires the current supplied to the control board in time series during operation, and the control acquired by the current acquisition unit. An abnormality determination unit that calculates the current change rate for each power consumption device using the current supplied to the substrate and the reference waveform to determine an abnormality in the power consumption device, and a result of determination by the abnormality determination unit. It is characterized by including a determination result display unit for displaying.
 本発明によれば、運用中に必要なセンシングコストを低減した状態で、任意かつ複数の電力消費装置の異常を総電流波形から検知することができる。 According to the present invention, it is possible to detect an abnormality of any and a plurality of power consuming devices from the total current waveform while reducing the sensing cost required during operation.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
異常機器判定装置と対象装置の例を示す図である。It is a figure which shows the example of the abnormality equipment determination apparatus and the target apparatus. 異常機器判定の対象装置の電源系回路の例を示す図である。It is a figure which shows the example of the power-source system circuit of the target device of abnormality device determination. モータごとの一製造プロセス分の電流の波形の例を示す。An example of the current waveform for one manufacturing process for each motor is shown. 総電流波形の例を示す図である。It is a figure which shows the example of the total current waveform. 異常判定処理の流れの例を示すフローチャートである。It is a flowchart which shows the example of the flow of abnormality determination processing. 異常機器判定装置の構成例を示すブロック図である。図6(a)は、学習時に関連する構成の例を示すブロック図であり、図6(b)は、運用時に関連する構成の例を示すブロック図である。It is a block diagram which shows the structural example of the abnormality equipment determination apparatus. FIG. 6A is a block diagram showing an example of a configuration related to learning, and FIG. 6B is a block diagram showing an example of a configuration related to operation. 運用時の電流波形を例示する図である。図7(a)は、取得された総電流波形を示し、図7(b)は、個別機器の電流波形を積み上げたグラフの例を示す。It is a figure which illustrates the current waveform at the time of operation. FIG. 7 (a) shows the acquired total current waveform, and FIG. 7 (b) shows an example of a graph in which the current waveforms of individual devices are stacked. 運用時のモータごとの一製造プロセス分の電流の波形の例を示す図である。It is a figure which shows the example of the waveform of the current for one manufacturing process for each motor at the time of operation. 異常判定処理(第一の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (first embodiment). 算出した変化率を用いて個別機器電流波形を推定した図である。It is a figure which estimated the individual device current waveform using the calculated rate of change. 判定結果表示部が表示する変化率の表示画面の例を示す図である。It is a figure which shows the example of the display screen of the change rate displayed by the determination result display part. 異常判定処理(第二の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (second embodiment). 異常時の個別機器電流波形を推定した図である。It is the figure which estimated the individual device current waveform at the time of abnormality. 判定結果表示部が表示する変化率の表示画面の例を示す図である。It is a figure which shows the example of the display screen of the change rate displayed by the determination result display part. 異常判定処理(第三の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (third embodiment). 判定結果表示部が表示する変化率の表示画面の例を示す図である。It is a figure which shows the example of the display screen of the change rate displayed by the determination result display part. 異常判定処理(第四の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (fourth embodiment). 総電流波形と各個別機器電流波形の関係性の例を示す図である。図18(a)は、取得された総電流波形を示し、図18(b)は、個別機器の電流波形を積み上げたグラフの例を示す。It is a figure which shows the example of the relationship between the total current waveform and the current waveform of each individual device. FIG. 18A shows the acquired total current waveform, and FIG. 18B shows an example of a graph in which the current waveforms of individual devices are stacked. 算出した変化率を用いて個別機器の電流波形を推定した図である。It is a figure which estimated the current waveform of an individual device using the calculated rate of change. 総電流波形と各個別機器電流波形の関係性の例を示す図である。図20(a)は、取得された総電流波形を示し、図20(b)は、個別機器の電流×電圧比のグラフを積み上げた例を示す。It is a figure which shows the example of the relationship between the total current waveform and the current waveform of each individual device. FIG. 20A shows the acquired total current waveform, and FIG. 20B shows an example of stacking graphs of current × voltage ratio of individual devices. 第五の実施例に係る対象装置の電源系回路の例を示す図である。It is a figure which shows the example of the power-source system circuit of the target apparatus which concerns on 5th Embodiment. 異常判定処理(第五の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (fifth embodiment). 総電流波形と各個別機器電流波形の関係性の例を示す図である。図23(a)は、取得された総電流波形を示し、図23(b)は、電圧比により換算した個別機器の電流×電圧比のグラフを積み上げた例を示す図である。It is a figure which shows the example of the relationship between the total current waveform and the current waveform of each individual device. FIG. 23 (a) shows the acquired total current waveform, and FIG. 23 (b) is a diagram showing an example of stacking graphs of current × voltage ratio of individual devices converted by voltage ratio. 第六の実施例に係る対象装置の概要の構成を示す図である。It is a figure which shows the structure of the outline of the target apparatus which concerns on 6th Embodiment. 数値制御金属加工機の電源系回路の概要の構成例を示す図である。It is a figure which shows the structural example of the outline of the power supply system circuit of a numerical control metal processing machine. 異常判定処理(第六の実施例)の処理フローの例を示す図である。It is a figure which shows the example of the processing flow of the abnormality determination processing (the sixth embodiment). 異常機器判定装置のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the abnormality equipment determination apparatus.
 以下の実施形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for convenience, the description will be divided into a plurality of sections or embodiments, but unless otherwise specified, they are not unrelated to each other, and one is the other. It is related to some or all modifications, details, supplementary explanations, etc.
 また、以下の実施形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when the number of elements (including the number, numerical value, quantity, range, etc.) is referred to, except when explicitly stated or when the number is clearly limited to a specific number in principle. , The number is not limited to the specific number, and may be more than or less than the specific number.
 さらに、以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Furthermore, it goes without saying that, in the following embodiments, the components (including element steps and the like) are not necessarily essential unless otherwise specified or clearly considered to be essential in principle. stomach.
 同様に、以下の実施形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when the shape, positional relationship, etc. of the components, etc. are referred to, the shape, etc. It shall include those that are close to or similar to. This also applies to the above numerical values and ranges.
 また、実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の各実施形態について図面を用いて説明する。 Further, in all the drawings for explaining the embodiment, the same members are in principle given the same reference numerals, and the repeated description thereof will be omitted. Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
 従来より、産業機器では、モータにより制御される機器が多く存在し、モータの実際の回転状態をエンコーダと呼ばれる検出器で取得し、モータへの制御入力値を変化させて高精度に制御する技術がある。このような実際の状態に合わせて制御入力値が変化する仕組みを利用し、制御入力値の中で特に電流値などを電流センサを用いて外部から取得し、モータの異常状態を判定する取り組みが行われている。 Conventionally, in industrial equipment, there are many devices controlled by motors, and the technology to acquire the actual rotation state of the motor with a detector called an encoder and change the control input value to the motor to control it with high accuracy. There is. Using such a mechanism that the control input value changes according to the actual state, an effort is being made to determine the abnormal state of the motor by acquiring the current value among the control input values from the outside using a current sensor. It is done.
 そのような技術では、モータから減速機などのギアを用いて回転を伝達する場合には、そのギアの異常状態も判定することができ得る。近年のロボットや工作機械などの産業機器では一つの機器内に複数の駆動部が存在し、それぞれをモータで制御していることも珍しくない。そのため、各駆動部について電流値を取得する手法により、駆動部ごとの異常を判定することが可能とも考えられる。 With such technology, when the rotation is transmitted from the motor using a gear such as a speed reducer, it is possible to determine the abnormal state of the gear. In recent industrial equipment such as robots and machine tools, it is not uncommon for multiple drive units to exist in one equipment and each to be controlled by a motor. Therefore, it may be possible to determine an abnormality for each drive unit by a method of acquiring a current value for each drive unit.
 しかしながら、複数搭載されたモータなどの駆動機器の異常を判定する際に、各駆動機器に電流センサ等のセンサを取り付けると、センサ単体コストに加えて、アナログのセンサデータをデジタル信号に変えるアナログ-デジタルコンバータや、デジタル信号を読み込むためのロギング装置が各駆動機器に必要になり、それらの装置コストも付随して必要となり、センシングコストが高くなってしまう。 However, if a sensor such as a current sensor is attached to each drive device when determining an abnormality in a drive device such as a plurality of mounted motors, in addition to the cost of the sensor itself, analog sensor data is converted into a digital signal. A digital converter and a logging device for reading a digital signal are required for each drive device, and the cost of those devices is also required, resulting in high sensing cost.
 上述の特許文献1に記載のシステムでは、運用前に学習フェーズを設けて、各駆動機器の電流を測定して記憶し、運用中は各駆動機器の消費電流の総和となる各駆動機器の大元に存在する制御基板の消費電流(以後総電流と呼称)のみをセンサで測定して異常を検出している。 In the system described in Patent Document 1 described above, a learning phase is provided before operation to measure and store the current of each drive device, and during operation, the total current consumption of each drive device is large. Only the current consumption of the original control board (hereinafter referred to as the total current) is measured by the sensor to detect the abnormality.
 このような技術では、対象の駆動機器の電流波形を算出する際には、運用中に測定した総電流から、対象の駆動機器を除く他の駆動機器の電流を差し引くことにより、対象の駆動機器の運用中の電流波形を得る。異常判定の際には、得られた対象の駆動機器の運用中電流波形と、記憶しておいた対象の駆動機器の電流波形とを比較して、判定を行う。 In such a technology, when calculating the current waveform of the target drive device, the target drive device is obtained by subtracting the currents of other drive devices other than the target drive device from the total current measured during operation. Obtain the current waveform during operation. At the time of abnormality determination, the determination is made by comparing the obtained operating current waveform of the target drive device with the stored current waveform of the target drive device.
 しかしながら、本手法では二つの欠点が存在する。一つ目は、複数の駆動機器で同時に電流波形が変化した場合に、差し引きを利用して運用中総電流波形から各駆動機器の運用中電流波形を求めることが困難であることである。二つ目は、一つの駆動機器で電流波形が変化するのみだとしても、最初に異常が発生する駆動機器しか対象にすることができないことである。 However, this method has two drawbacks. The first is that when the current waveforms of a plurality of drive devices change at the same time, it is difficult to obtain the operating current waveform of each drive device from the total current waveform during operation by using subtraction. The second is that even if only one drive device changes the current waveform, only the drive device in which the abnormality first occurs can be targeted.
 以下の実施例では、いずれも実際の装置が取りうる種々の構成についても対応しているため、異常機器判定システムとして高い汎用性を有することも優れた点である。 In the following examples, since all of them correspond to various configurations that can be taken by an actual device, it is also an excellent point that it has high versatility as an abnormal device determination system.
 図1は、異常機器判定装置と対象装置の例を示す図である。対象装置は、制御Box200と、ロボット部300とを含んで構成されている。対象装置の電源は配電盤100から取得されている。ロボット部300には、複数の稼働軸が存在し、第一稼働軸301、第二稼働軸302、第三稼働軸303、第四稼働軸304、第五稼働軸305、第六稼働軸306は、それぞれ矢印方向に回転運動をすることができる。それぞれの稼働軸は、正常動作時に電力を消費する電力消費装置であるといえる。制御Box200は、ロボット部300の動作を制御する。 FIG. 1 is a diagram showing an example of an abnormal device determination device and a target device. The target device includes a control Box 200 and a robot unit 300. The power supply of the target device is obtained from the switchboard 100. The robot unit 300 has a plurality of operating axes, and the first operating axis 301, the second operating axis 302, the third operating axis 303, the fourth operating axis 304, the fifth operating axis 305, and the sixth operating axis 306 are , Each can rotate in the direction of the arrow. It can be said that each operating axis is a power consuming device that consumes electric power during normal operation. The control Box 200 controls the operation of the robot unit 300.
 異常機器判定装置1は、対象装置の制御Box200と接続される。異常機器判定装置1は、記憶部10と、処理部20と、を備える。記憶部10には、基準となる波形を記憶する基準波形記憶部11が格納される。より具体的には、記憶部10は、電力消費装置に供給される電流と、複数の電力消費装置に電力を供給する制御基板に供給される電流と、のそれぞれを時系列に記録した基準波形を記憶する。 The abnormal device determination device 1 is connected to the control Box 200 of the target device. The abnormality device determination device 1 includes a storage unit 10 and a processing unit 20. The storage unit 10 stores a reference waveform storage unit 11 that stores a reference waveform. More specifically, the storage unit 10 records a reference waveform in which each of the current supplied to the power consuming device and the current supplied to the control board that supplies power to the plurality of power consuming devices is recorded in time series. Remember.
 処理部20には、電流取得部21と、異常判定部22と、判定結果表示部23と、が含まれる。電流取得部21は、後述する電流センサを介して、制御基板220に供給される電流を時系列に取得する。異常判定部22は、取得した電流値の異常の有無を判定する。判定結果表示部23は、異常判定部22が判定した結果を表示する。 The processing unit 20 includes a current acquisition unit 21, an abnormality determination unit 22, and a determination result display unit 23. The current acquisition unit 21 acquires the current supplied to the control board 220 in time series via a current sensor described later. The abnormality determination unit 22 determines whether or not the acquired current value is abnormal. The determination result display unit 23 displays the result determined by the abnormality determination unit 22.
 図27は、異常機器判定装置のハードウェア構成例を示す図である。異常機器判定装置1は、中央処理装置(Central Processing Unit:CPU)2と、メモリ3と、ハードディスク装置(Hard Disk Drive:HDD)などの外部記憶装置4と、CD(Compact Disk)やDVD(Digital Versatile Disk)などの可搬性を有する記憶媒体5に対して情報を読む読取装置6と、キーボードやマウス、バーコードリーダなどの入力装置7と、ディスプレイなどの出力装置8と、インターネットなどの通信ネットワークを介して他のコンピュータと通信する通信装置9とを備えた一般的なコンピュータ、あるいはこのコンピュータを複数備えたネットワークシステムにより実現できる。なお、読取装置6は、可搬性を有する記憶媒体5の読取だけでなく、書き込みも可能なものであっても良いことは言うまでもない。 FIG. 27 is a diagram showing a hardware configuration example of the abnormal device determination device. The abnormality device determination device 1 includes a central processing device (Central Processing Unit: CPU) 2, a memory 3, an external storage device 4 such as a hard disk device (Hard Disk Drive: HDD), and a CD (Computer Disk) or DVD (Digital). A reading device 6 that reads information from a portable storage medium 5 such as a Versail Disk), an input device 7 such as a keyboard, mouse, and bar code reader, an output device 8 such as a display, and a communication network such as the Internet. This can be realized by a general computer provided with a communication device 9 that communicates with another computer via the computer, or a network system provided with a plurality of the computers. Needless to say, the reading device 6 may be capable of not only reading but also writing to the portable storage medium 5.
 例えば、処理部20に含まれる電流取得部21と、異常判定部22と、判定結果表示部23とは、外部記憶装置4に記憶されている所定のプログラムをメモリ3にロードしてCPU2で実行することで実現可能であり、記憶部10は、CPU2がメモリ3または外部記憶装置4を利用することにより実現可能である。 For example, the current acquisition unit 21, the abnormality determination unit 22, and the determination result display unit 23 included in the processing unit 20 load a predetermined program stored in the external storage device 4 into the memory 3 and execute it in the CPU 2. This is feasible, and the storage unit 10 can be realized by the CPU 2 using the memory 3 or the external storage device 4.
 この所定のプログラムは、読取装置6を介して可搬性を有する記憶媒体5から、あるいは、通信装置9を介してネットワークから、外部記憶装置4にダウンロードされ、それから、メモリ3上にロードされてCPU2により実行されるようにしてもよい。また、読取装置6を介して可搬性を有する記憶媒体5から、あるいは、通信装置9を介してネットワークから、メモリ3上に直接ロードされ、CPU2により実行されるようにしてもよい。 This predetermined program is downloaded from the portable storage medium 5 via the reading device 6 or from the network via the communication device 9 to the external storage device 4, and then loaded onto the memory 3 to be loaded into the CPU 2. May be executed by. Further, it may be directly loaded onto the memory 3 from the portable storage medium 5 via the reading device 6 or from the network via the communication device 9 and executed by the CPU 2.
 図2は、異常機器判定の対象装置の電源系回路の例を示す図である。配電盤100から制御Box200内を経由して、ロボット部300内の駆動用モータである各モータに電力が供給される。ロボット部300には、複数の駆動用モータが含まれ、それぞれの駆動用モータの回転は減速機に伝えられ、さらにその先に設けられた稼働軸を動作させる。減速機は、入力された回転速度を減少させて代わりにトルクを増大させる機構である。 FIG. 2 is a diagram showing an example of a power supply system circuit of a target device for determining an abnormal device. Electric power is supplied from the switchboard 100 to each motor, which is a drive motor, in the robot unit 300 via the control box 200. The robot unit 300 includes a plurality of drive motors, the rotation of each drive motor is transmitted to the speed reducer, and the operation shaft provided ahead thereof is operated. The reducer is a mechanism that reduces the input rotation speed and instead increases the torque.
 図2の例では、制御Box200には、電源回路210と、制御基板220と、が含まれ、配電盤100から供給される電力は電源回路210に受け渡されて制御基板220を通り、各モータに供給される。制御基板220は、複数の電力消費装置に電力を供給することができる。駆動用モータは、第一モータ321と、第二モータ322と、第三モータ323と、第四モータ324と、第五モータ325と、第六モータ326と、がロボット部300に搭載されている。 In the example of FIG. 2, the control Box 200 includes a power supply circuit 210 and a control board 220, and the electric power supplied from the switchboard 100 is passed to the power supply circuit 210, passes through the control board 220, and is passed to each motor. Will be supplied. The control board 220 can supply power to a plurality of power consuming devices. As the drive motor, the first motor 321 and the second motor 322, the third motor 323, the fourth motor 324, the fifth motor 325, and the sixth motor 326 are mounted on the robot unit 300. ..
 それぞれの駆動用モータには、第一減速機311と、第二減速機312と、第三減速機313と、第四減速機314と、第五減速機315と、第六減速機316と、がそれぞれ接続されている。また、それぞれの減速機には、第一稼働軸301と、第二稼働軸302と、第三稼働軸303と、第四稼働軸304と、第五稼働軸305と、第六稼働軸306と、がそれぞれ接続されている。 Each drive motor includes a first reduction gear 311, a second reduction gear 312, a third reduction gear 313, a fourth reduction gear 314, a fifth reduction gear 315, and a sixth reduction gear 316. Are connected respectively. Further, the speed reducers include a first working shaft 301, a second working shaft 302, a third working shaft 303, a fourth working shaft 304, a fifth working shaft 305, and a sixth working shaft 306. , Are connected respectively.
 図3は、モータごとの一製造プロセス分の電流の波形の例を示す。本発明で示される電流波形は、交流波形から包絡線を抽出した波形を記載しているが、包絡線以外にも実効値を用いたり、交流成分から変換されたトルク電流値等を用いることもできる。ロボット部300は、所定の動作プログラムに応じて制御基板220から出力される電流の大きさや周波数によって各稼働軸につながるモータが駆動されて動作する。故に、これらの電流波形は、ロボットの各稼働軸のモータやモータにつながる機械的部品である減速機や稼働軸の劣化状態を反映する重要な物理量であることが知られている。 FIG. 3 shows an example of the current waveform for one manufacturing process for each motor. The current waveform shown in the present invention describes a waveform obtained by extracting an envelope from an AC waveform, but an effective value may be used in addition to the envelope, or a torque current value converted from an AC component may be used. can. The robot unit 300 operates by driving a motor connected to each operating axis according to the magnitude and frequency of the current output from the control board 220 according to a predetermined operation program. Therefore, it is known that these current waveforms are important physical quantities that reflect the deterioration state of the motor of each operating shaft of the robot, the speed reducer which is a mechanical component connected to the motor, and the operating shaft.
 電流波形501は、第一稼働軸301につながる第一モータ321の電流の波形である。同様に、電流波形502、電流波形503、電流波形504、電流波形505、電流波形506は、それぞれ、第二稼働軸302につながる第二モータ322の電流の波形、第三稼働軸303につながる第三モータ323の電流の波形、第四稼働軸304につながる第四モータ324の電流の波形、第五稼働軸305につながる第五モータ325の電流の波形、第六稼働軸306につながる第六モータ326の電流の波形である。 The current waveform 501 is a waveform of the current of the first motor 321 connected to the first operating shaft 301. Similarly, the current waveform 502, the current waveform 503, the current waveform 504, the current waveform 505, and the current waveform 506 are the current waveforms of the second motor 322 connected to the second operating shaft 302 and the third operating shaft 303, respectively. The current waveform of the three motors 323, the current waveform of the fourth motor 324 connected to the fourth operating shaft 304, the current waveform of the fifth motor 325 connected to the fifth operating shaft 305, and the sixth motor connected to the sixth operating shaft 306. It is the waveform of the current of 326.
 図4は、総電流波形の例を示す図である。総電流波形601は、配電盤100から電源回路210を経由して制御基板220に流れる電流波形であり、総電流波形詳細602は、総電流波形601内の各軸の内訳を示す。 FIG. 4 is a diagram showing an example of a total current waveform. The total current waveform 601 is a current waveform flowing from the switchboard 100 to the control board 220 via the power supply circuit 210, and the total current waveform details 602 show the breakdown of each axis in the total current waveform 601.
 総電流波形601と総電流波形詳細602とは、等しい電流波形であり、各稼働軸の電流の総和が総電流と等しいことを示しており、下式(1)のように表される。但し、Iw(t)はある時刻tにおける総電流、Ii(t)はある時刻tにおける各稼働軸電流(以後稼働軸や減速機、モータの状態を含む物理量として個別機器電流と称す)を示し、iは稼働軸の番号を意味する。 The total current waveform 601 and the total current waveform details 602 are equal current waveforms, indicating that the total current of each operating shaft is equal to the total current, and is expressed by the following equation (1). However, I w (t) is the total current at a certain time t, and I i (t) is the current of each operating shaft at a certain time t (hereinafter referred to as the individual device current as a physical quantity including the state of the operating shaft, the reducer, and the motor). , And i means the number of the operating axis.
Figure JPOXMLDOC01-appb-M000001
・・・(1)
ここまで、電流に関して着目しているが、電流のみに着目できる条件は各箇所で電圧が一定であり、電流と電力が比例関係にあることである。従来の例及び後述する本発明に係る第一~第三の実施例では、電圧が一定であるとの条件が前提として用いられている。
Figure JPOXMLDOC01-appb-M000001
... (1)
So far, we have focused on the current, but the condition that we can focus only on the current is that the voltage is constant at each location and the current and electric power are in a proportional relationship. In the conventional example and the first to third embodiments according to the present invention described later, the condition that the voltage is constant is used as a premise.
 <従来技術の例>続いて、従来の技術による異常機器判定装置の構成例について対比のために図5~図8を用いて説明する。図5にて従来の技術の異常機器判定装置の処理の流れの例をフローチャート形式で示し、図6にて従来の技術の例および本発明に係る異常機器判定装置のブロック図を示す。 <Example of the conventional technique> Next, a configuration example of the abnormal device determination device by the conventional technique will be described with reference to FIGS. 5 to 8 for comparison. FIG. 5 shows an example of the processing flow of the abnormal device determination device of the conventional technique in a flowchart format, and FIG. 6 shows an example of the conventional technique and a block diagram of the abnormal device determination device according to the present invention.
 図6(a)は、異常機器判定装置1の学習時に関連する構成の例を示すブロック図であり、図6(b)は、異常機器判定装置1の運用時に関連する構成の例を示すブロック図である。学習時には、異常機器判定装置1の処理部20に含まれる電流取得部21は、総電流用センサ701から総電流値を取得する。総電流用センサ701は、配電盤100と電源回路210の間の配線、もしくは電源回路210と制御基板220の間の配線に設置される。 FIG. 6A is a block diagram showing an example of a configuration related to learning of the abnormal device determination device 1, and FIG. 6B is a block showing an example of a configuration related to the operation of the abnormal device determination device 1. It is a figure. At the time of learning, the current acquisition unit 21 included in the processing unit 20 of the abnormality device determination device 1 acquires the total current value from the total current sensor 701. The total current sensor 701 is installed in the wiring between the switchboard 100 and the power supply circuit 210, or in the wiring between the power supply circuit 210 and the control board 220.
 また、学習時には、電流取得部21は、軸1電流用センサ702乃至軸6電流用センサ703から各軸(個別機器)の電流値を取得する。軸1電流用センサ702乃至軸6電流用センサ703は、それぞれ、制御基板220と各モータ間の間の配線に設置される。 At the time of learning, the current acquisition unit 21 acquires the current value of each axis (individual device) from the axis 1 current sensor 702 to the axis 6 current sensor 703. The shaft 1 current sensor 702 to the shaft 6 current sensor 703 are installed in the wiring between the control board 220 and each motor, respectively.
 電流取得部21により電流値が取得されると、電流取得部21は基準波形記憶部11に全波形を基準波形として記憶させる。記憶される基準波形は、電流波形501乃至電流波形506のような波形であり、各稼働軸の電流の総和が総電流と等しいという関係も満たすことが必要である。 When the current value is acquired by the current acquisition unit 21, the current acquisition unit 21 stores all the waveforms as the reference waveform in the reference waveform storage unit 11. The stored reference waveform is a waveform such as the current waveform 501 to the current waveform 506, and it is necessary to satisfy the relationship that the total current of each operating shaft is equal to the total current.
 電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標(異常度)とその閾値を所定のアルゴリズムを用いて演算し設定する。 The current acquisition unit 21 analyzes the correlation between the past failure record and the current data, calculates and sets an index (abnormality) and its threshold value for determining a failure (abnormality) using a predetermined algorithm.
 運用時には、異常機器判定装置1の処理部20に含まれる電流取得部21は、学習時と同様に総電流用センサ701から総電流値を取得する。総電流用センサ701は、学習時と同様に、配電盤100と電源回路210の間の配線、もしくは電源回路210と制御基板220の間の配線に設置される。 During operation, the current acquisition unit 21 included in the processing unit 20 of the abnormal device determination device 1 acquires the total current value from the total current sensor 701 as in the case of learning. The total current sensor 701 is installed in the wiring between the switchboard 100 and the power supply circuit 210, or in the wiring between the power supply circuit 210 and the control board 220, as in the case of learning.
 そして、電流取得部21は、取得した総電流を異常判定部22に受け渡し、異常判定部22は基準波形記憶部11から基準波形を取得して総電流が異常に相当するか否か判定する。判定結果表示部23は、異常判定部22が異常と判定すると、その旨および異常な稼働軸を特定して表示情報を作成し、図示しない機器判定装置1のディスプレイ等に表示する。 Then, the current acquisition unit 21 passes the acquired total current to the abnormality determination unit 22, and the abnormality determination unit 22 acquires the reference waveform from the reference waveform storage unit 11 and determines whether or not the total current corresponds to the abnormality. When the determination result display unit 23 determines that the abnormality is abnormal, the determination result display unit 23 identifies that fact and the abnormal operating axis, creates display information, and displays the information on a display or the like of the device determination device 1 (not shown).
 ここで、従来の技術による運用時の処理では、異常判定部22は、取得した運用中の総電流波形から異常判定を行う対象機器の電流波形を推定することとなる。この処理では、下式(2)に示される数式を元に算出する。但し、括弧内添え字0は学習時の電流波形であることを示し、括弧内添え字tは運用時のある時刻を示している。また、下式(2)は、異常の検知対象を第一稼働軸とした場合の例である。 Here, in the processing during operation by the conventional technique, the abnormality determination unit 22 estimates the current waveform of the target device for abnormality determination from the acquired total current waveform during operation. In this process, it is calculated based on the mathematical formula shown in the following formula (2). However, the subscript 0 in parentheses indicates that it is the current waveform at the time of learning, and the subscript t in parentheses indicates a certain time during operation. Further, the following equation (2) is an example when the abnormality detection target is the first operating axis.
Figure JPOXMLDOC01-appb-M000002
・・・(2)
すなわち、従来技術による異常判定時には、カレントの総電流から学習時の対象以外の個別機器の電流波形を差し引くことにより、カレントの対象機器、すなわち個別機器の電流波形を算出する。
Figure JPOXMLDOC01-appb-M000002
... (2)
That is, at the time of abnormality determination by the prior art, the current waveform of the current target device, that is, the individual device is calculated by subtracting the current waveform of the individual device other than the target at the time of learning from the total current of the current.
 図7は、従来技術による異常判定において取得された運用時の電流波形を例示する図である。図7(a)では、取得された総電流波形611が示されており、図7(b)では、上式(2)で求められた個別機器1の電流波形612の例が示されている。 FIG. 7 is a diagram illustrating an operation current waveform acquired in an abnormality determination by the prior art. FIG. 7A shows the acquired total current waveform 611, and FIG. 7B shows an example of the current waveform 612 of the individual device 1 obtained by the above equation (2). ..
 図8は、運用時のモータごとの一製造プロセス分の電流の波形の例を示す。図8に示された例は、図3において示された学習時の例と基本的に同じであるが、第一稼働軸301の電流波形511が電流波形501とは異なる。この場合に、従来技術により異常を検出するためには、第二稼働軸302~第六稼働軸306の運用時の電流波形512~516が学習時の電流波形502~506とそれぞれ同じ波形である必要がある。波形が異なる場合には、第一稼働軸301の電流波形511を正確に取得できず、異常判定も正確な判定とは言えなくなる。つまり、複数機器の異常を検出することができないといえる。 FIG. 8 shows an example of the current waveform for one manufacturing process for each motor during operation. The example shown in FIG. 8 is basically the same as the example at the time of learning shown in FIG. 3, but the current waveform 511 of the first operating shaft 301 is different from the current waveform 501. In this case, in order to detect an abnormality by the conventional technique, the current waveforms 512 to 516 during operation of the second operating shaft 302 to 306 are the same waveforms as the current waveforms 502 to 506 during learning, respectively. There is a need. If the waveforms are different, the current waveform 511 of the first operating shaft 301 cannot be accurately acquired, and the abnormality determination cannot be said to be an accurate determination. That is, it can be said that the abnormality of a plurality of devices cannot be detected.
 図5は、従来技術による異常判定処理の流れの例を示すフローチャートである。このフローは、ステップS001~S009により構成され、学習時の処理がステップS001~S003の処理であり、運用時の処理がステップS004~S009の処理である。 FIG. 5 is a flowchart showing an example of the flow of abnormality determination processing by the prior art. This flow is configured by steps S001 to S009, the processing at the time of learning is the processing of steps S001 to S003, and the processing at the time of operation is the processing of steps S004 to S009.
 まず、電流取得部21は、総電流と各軸(個別機器)の電流を取得する(ステップS001)。具体的には、電流取得部21は、総電流用センサ701から総電流値を取得し、軸1電流用センサ702乃至軸6電流用センサ703から各軸(個別機器)の電流値を取得する。 First, the current acquisition unit 21 acquires the total current and the current of each axis (individual device) (step S001). Specifically, the current acquisition unit 21 acquires the total current value from the total current sensor 701, and acquires the current value of each axis (individual device) from the shaft 1 current sensor 702 to the shaft 6 current sensor 703. ..
 そして、電流取得部21は、各軸の電流波形(学習時個別電流波形)を記憶させる(ステップS002)。具体的には、電流取得部21は、基準波形記憶部11に全波形を基準波形として記憶させる。 Then, the current acquisition unit 21 stores the current waveform (individual current waveform at the time of learning) of each axis (step S002). Specifically, the current acquisition unit 21 stores the entire waveform as a reference waveform in the reference waveform storage unit 11.
 そして、電流取得部21は、異常と判定する異常度(相関係数)の閾値を設定する(ステップS003)。具体的には、電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標(異常度)とその閾値を所定のアルゴリズムを用いて演算し設定する。ここまでが、学習時の処理フローである。 Then, the current acquisition unit 21 sets a threshold value of the degree of abnormality (correlation coefficient) for determining abnormality (step S003). Specifically, the current acquisition unit 21 analyzes the correlation between the past failure record and the current data, and calculates an index (abnormality) for determining a failure (abnormality) and its threshold value using a predetermined algorithm. Set. The above is the processing flow at the time of learning.
 次に、電流取得部21は、1プロセス分総電流波形(運用時総電流)を取得する(ステップS004)。具体的には、電流取得部21は、総電流用センサ701から総電流値を取得する。 Next, the current acquisition unit 21 acquires the total current waveform (total current during operation) for one process (step S004). Specifically, the current acquisition unit 21 acquires the total current value from the total current sensor 701.
 そして、異常判定部22は、取得した運用時総電流から、異常検知対象外の各軸の基準波形を用いて除去する(ステップS005)。具体的には、異常判定部22は、基準波形記憶部11から基準波形を取得して、総電流から差し引く。 Then, the abnormality determination unit 22 removes from the acquired total operating current using the reference waveform of each axis that is not subject to abnormality detection (step S005). Specifically, the abnormality determination unit 22 acquires a reference waveform from the reference waveform storage unit 11 and subtracts it from the total current.
 そして、異常判定部22は、基準波形から見た抽出波形の異常度を算出する(ステップS006)。具体的には、異常判定部22は、抽出した波形と学習時の基準波形との相関係数を算出して、異常度を算出する。 Then, the abnormality determination unit 22 calculates the degree of abnormality of the extracted waveform as seen from the reference waveform (step S006). Specifically, the abnormality determination unit 22 calculates the correlation coefficient between the extracted waveform and the reference waveform at the time of learning, and calculates the degree of abnormality.
 そして、異常判定部22は、異常度が閾値以上であるか否か判定する(ステップS007)。具体的には、異常判定部22は、ステップS006において算出した相関係数が、ステップS003において設定した異常度の閾値以上であるか否か判定する。 Then, the abnormality determination unit 22 determines whether or not the degree of abnormality is equal to or higher than the threshold value (step S007). Specifically, the abnormality determination unit 22 determines whether or not the correlation coefficient calculated in step S006 is equal to or greater than the threshold value of the degree of abnormality set in step S003.
 異常度が閾値以上ではない場合(ステップS007にて「No」の場合)には、異常判定部22は、正常と判定して、次プロセスの異常検知に処理を進めるためにステップS004へ制御を戻す(ステップS008)。 When the degree of abnormality is not equal to or higher than the threshold value (when "No" in step S007), the abnormality determination unit 22 determines that the abnormality is normal, and controls to step S004 to proceed to the abnormality detection of the next process. Return (step S008).
 異常度が閾値以上である場合(ステップS007にて「Yes」の場合)には、異常判定部22は異常と判定する(ステップS009)。 When the degree of abnormality is equal to or higher than the threshold value (when "Yes" in step S007), the abnormality determination unit 22 determines that it is abnormal (step S009).
 以上が、異常判定処理(従来技術)の処理内容の例である。 The above is an example of the processing content of the abnormality determination processing (conventional technology).
 <第一の実施例>次に、図9~図11を用いて、本発明に係る第一の実施例を説明する。第一の実施例では、上記の従来技術と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <First Example> Next, the first embodiment according to the present invention will be described with reference to FIGS. 9 to 11. In the first embodiment, the configuration is basically the same as that of the above-mentioned prior art, but there are differences. Hereinafter, the difference will be mainly described.
 図9は、異常判定処理(第一の実施例)の処理フローの例を示す図である。学習時の処理では、各軸の電流波形を記憶した後、電流取得部21は、異常と判定する異常度として、変化率の閾値を設定する(ステップS103)点で従来技術との相違がある。具体的には、電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標を電流波形の変化率として、その閾値を所定のアルゴリズムを用いて演算し設定する。 FIG. 9 is a diagram showing an example of the processing flow of the abnormality determination processing (first embodiment). In the processing at the time of learning, after storing the current waveform of each axis, the current acquisition unit 21 sets a threshold value of the rate of change as the degree of abnormality to be determined as abnormal (step S103), which is different from the conventional technique. .. Specifically, the current acquisition unit 21 analyzes the correlation between the past failure record and the current data, sets the index for determining the failure (abnormality) as the rate of change of the current waveform, and uses a predetermined algorithm as the threshold value. Calculate and set.
 そして、運用時の処理では、1プロセス分の総電流波形を取得した後、異常判定部22は、取得した運用時総電流について多変量解析、例えば重回帰分析を行い、各軸の電流波形の変化率を算出する(ステップS105)。具体的には、まずすべての稼働軸(個別機器)が、学習時から変化していると仮定し、異常判定部22は、下式(3)に示される式を構築する。但し、α~αは各個別機器の電流波形の変化した割合を示す変化率であり、この処理時点では未知数である。 Then, in the processing during operation, after acquiring the total current waveform for one process, the abnormality determination unit 22 performs multivariate analysis, for example, multiple regression analysis on the acquired total current during operation, and obtains the current waveform of each axis. The rate of change is calculated (step S105). Specifically, first, it is assumed that all the operating axes (individual devices) have changed from the time of learning, and the abnormality determination unit 22 constructs the equation shown in the following equation (3). However, α 1 to α 6 are rate of change indicating the rate of change of the current waveform of each individual device, and are unknown at the time of this processing.
Figure JPOXMLDOC01-appb-M000003
・・・式(3)
 上式(3)では、未知数が6つ(α~α)存在する。本実施例で対象とする異常は、この未知数が一つのプロセス内で変化しない値であることを条件としている。すなわち、異常時には波形全体がα倍になるという条件である。本条件であれば、プロセス内の各時刻に上式(3)が成り立つ。そのため例えば、図3に示されるような15秒間のプロセスで、電流値が1秒毎に取得されているとすれば、上式(3)はtの値を異ならせて15個作成することが可能である。
Figure JPOXMLDOC01-appb-M000003
... formula (3)
In the above equation (3), there are six unknowns (α 1 to α 6 ). The anomaly targeted in this embodiment is conditioned on the condition that this unknown is a value that does not change within one process. That is, it is a condition that the entire waveform becomes α i times in the event of an abnormality. Under this condition, the above equation (3) holds at each time in the process. Therefore, for example, if the current value is acquired every second in the process for 15 seconds as shown in FIG. 3, the above equation (3) can create 15 pieces with different values of t. It is possible.
 6つの未知変化率に対して15個の式が存在するため、連立方程式の観点から変化率α~αは求解可能であると言える。このように全個別機器が変化していると仮定し、複数の未知数を求解する手法である重回帰分析を用いて処理を行うことが本実施例の特徴である。また、本実施例では、異常判定部22は、複数の電力消費装置に供給される電流と電流変化率の積の総和が制御基板に供給される電流に等しくなることを利用した重回帰分析により電流変化率を算出している。 Since there are 15 equations for 6 unknown rate of change, it can be said that the rate of change α 1 to α 6 can be solved from the viewpoint of simultaneous equations. It is a feature of this embodiment that processing is performed using multiple regression analysis, which is a method for solving a plurality of unknowns, assuming that all individual devices are changed in this way. Further, in the present embodiment, the abnormality determination unit 22 is subjected to multiple regression analysis utilizing the fact that the sum of the products of the current supplied to the plurality of power consuming devices and the current change rate is equal to the current supplied to the control board. The current change rate is calculated.
 異常度(変化率)が閾値以上である場合(ステップS007において「Yes」の場合)には、異常判定部22は、異常と判定し、判定結果表示部23は、変化率α~αを表示部に表示する(ステップS109)。 When the degree of abnormality (rate of change) is equal to or higher than the threshold value (when “Yes” in step S007), the abnormality determination unit 22 determines that the abnormality is present, and the determination result display unit 23 determines the change rates α 1 to α 6. Is displayed on the display unit (step S109).
 図10は、算出した変化率を用いて個別機器電流波形を推定した図である。各個別機器電流波形は下式(4)で表される。 FIG. 10 is a diagram in which the individual device current waveform is estimated using the calculated rate of change. The current waveform of each individual device is represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
・・・式(4)
具体的には、図10で示す軸3の電流波形523は、図8に示した運用時の電流波形513に比して、α倍の変化率となっている。
Figure JPOXMLDOC01-appb-M000004
... Equation (4)
Specifically, the current waveform 523 of shaft 3 shown in FIG. 10 is different from the current waveform 513 during operation as shown in FIG. 8, and has a alpha 3 times the rate of change.
 図11は、判定結果表示部が表示する変化率の表示画面の例を示す図である。変化率αは初期値として「1」を取ることになり、この時の電流波形は図3に示した学習時電流波形と等しく、学習時個別機器波形と等しい。 FIG. 11 is a diagram showing an example of a change rate display screen displayed by the determination result display unit. The rate of change α i takes “1” as an initial value, and the current waveform at this time is equal to the learning current waveform shown in FIG. 3 and equal to the learning individual device waveform.
 表示画面800には、各稼働軸ごとに変化率の推移をプロセス単位で示すグラフ801が含められている。ここで、図11の各グラフ内に記載されている変化率αibは、図9に示した第一の実施例のフローチャート内のステップS103において設定された異常度の閾値を示している。図11内のグラフ801の1プロットはプロセス1つ分を示しており、フローチャートのステップS004~ステップS007の処理ごとに一つプロットが生成される。 The display screen 800 includes a graph 801 showing the transition of the rate of change for each operating axis in process units. Here, the rate of change α ib described in each graph of FIG. 11 indicates the threshold value of the degree of abnormality set in step S103 in the flowchart of the first embodiment shown in FIG. One plot of graph 801 in FIG. 11 shows one process, and one plot is generated for each process from step S004 to step S007 of the flowchart.
 まとめると、異常判定部22は、電流取得部21が取得した制御基板に供給される電流と、基準波形と、を用いて電力消費装置ごとの電流変化率を多変量解析により算出し、電流変化率が閾値を超過すると電力消費装置の異常であると判定する。また、判定結果表示部23は、異常判定部22が判定した結果を表示する。 In summary, the abnormality determination unit 22 calculates the current change rate for each power consuming device by multivariate analysis using the current supplied to the control board acquired by the current acquisition unit 21 and the reference waveform, and the current change. When the rate exceeds the threshold value, it is determined that the power consumption device is abnormal. Further, the determination result display unit 23 displays the result of the determination by the abnormality determination unit 22.
 本実施例では図11に示される通り、多変量解析により軸1と軸3が同時に変化している様子を捉えることができており、従来の技術では対象とできなかった、複数機器の異常判定が可能となるという効果が得られている。また、判定結果表示部23により、異常と判定されていなくとも異常に遷移していく様子を観察することも可能という効果も得られる。以上が、本発明に係る第一の実施例である。 In this embodiment, as shown in FIG. 11, it is possible to capture how the axis 1 and the axis 3 are changing at the same time by multivariate analysis, and it is possible to determine an abnormality of a plurality of devices, which could not be targeted by the conventional technology. The effect that is possible is obtained. In addition, the determination result display unit 23 can also obtain the effect that it is possible to observe how the transition is abnormal even if it is not determined to be abnormal. The above is the first embodiment of the present invention.
 <第二の実施例>次に、図12~図14を用いて、本発明に係る第二の実施例を説明する。第二の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <Second Example> Next, a second embodiment according to the present invention will be described with reference to FIGS. 12 to 14. The second embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
 図12は、異常判定処理(第二の実施例)の処理フローの例を示す図である。学習時の処理は、第一の実施例と同様である。運用時の処理においては、1プロセス分総電流波形を取得した後、多変量解析により変化率を算出するが、その処理において、時間窓を設定して運用時総電流波形および基準波形から所定期間の一部のデータを切り出して、複数回の多変量解析を行う点に相違がある。つまり、基準波形を所定の時間窓で複数に区切った区間ごとに電流変化率を算出して異常を判定する。 FIG. 12 is a diagram showing an example of the processing flow of the abnormality determination processing (second embodiment). The processing at the time of learning is the same as that of the first embodiment. In the processing during operation, after acquiring the total current waveform for one process, the rate of change is calculated by multivariate analysis. In that processing, a time window is set and the total current waveform during operation and the reference waveform are used for a predetermined period. There is a difference in that a part of the data is cut out and multivariate analysis is performed multiple times. That is, the current change rate is calculated for each section in which the reference waveform is divided into a plurality of sections by a predetermined time window, and the abnormality is determined.
 第一の実施例において説明したとおり、多変量解析(重回帰分析)で変化率α~αを算出するために構築すべき式(3)の個数は、未知数の数(α~αの場合、6個)以上であればよく、例えば15秒間のプロセスで1秒毎に電流値が記録されていれば、6秒間分のデータのみで変化率αを算出することができる。つまり、連続するサンプル数が稼働軸の数以上であれば重回帰分析が可能である。 As explained in the first embodiment, the number of equations (3) to be constructed in order to calculate the rate of change α 1 to α 6 in multivariate analysis (multiple regression analysis) is an unknown number (α 1 to α). In the case of 6, the number may be 6) or more. For example, if the current value is recorded every 1 second in the process for 15 seconds, the rate of change α i can be calculated only with the data for 6 seconds. That is, multiple regression analysis is possible if the number of consecutive samples is equal to or greater than the number of operating axes.
 第二の実施例では、学習時のデータが図3に示される電流波形であり、異常時の電流波形が図13に示される状態であるとする。但し、実際の処理では図13に示す電流波形群はセンサからは取得されず、ここでは説明のためにのみ記載している。 In the second embodiment, it is assumed that the data at the time of learning is the current waveform shown in FIG. 3, and the current waveform at the time of abnormality is the state shown in FIG. However, in the actual processing, the current waveform group shown in FIG. 13 is not acquired from the sensor, and is described here only for the sake of explanation.
 具体的には、異常判定部22は、まず、最小時間幅(時間窓)で運用時総電流波形を分割して抽出する(ステップS205)。最小時間幅は、上記の例では未知数の数のサンプルを確保できる6秒となるが、これに限られず、それ以上であってもよい。そして、異常判定部22は、ステップS205にて用いた最小時間幅(時間窓)で学習時総電流波形を分割して抽出する(ステップS206)。 Specifically, the abnormality determination unit 22 first divides and extracts the total current waveform during operation in the minimum time width (time window) (step S205). In the above example, the minimum time width is 6 seconds, which can secure an unknown number of samples, but the minimum time width is not limited to this, and may be longer. Then, the abnormality determination unit 22 divides and extracts the total current waveform during learning by the minimum time width (time window) used in step S205 (step S206).
 そして、異常判定部22は、重回帰分析で、各軸・各時間電流の変化率を算出する(ステップS207)。具体的には、異常判定部22は、設定された時間窓内におけるサンプルから特定される変化率を算出する。 Then, the abnormality determination unit 22 calculates the rate of change of each axis and each time current by multiple regression analysis (step S207). Specifically, the abnormality determination unit 22 calculates the rate of change specified from the sample in the set time window.
 上記ステップS205~S207の処理によれば、6秒毎に変化率を重回帰分析で算出するため、図14に示される変化率のプロセス内推移を取得することができる。変化率は、1秒ごとにずらして6秒間分のデータを取得して算出するため、離散的ではあるが正弦波のようななだらかなカーブを描く。サンプル数が少ない程、よりダイナミックな変化率の反応を得られる。 According to the processes of steps S205 to S207 above, the rate of change is calculated by multiple regression analysis every 6 seconds, so that the in-process transition of the rate of change shown in FIG. 14 can be obtained. The rate of change is calculated by shifting every second and acquiring data for 6 seconds, so a discrete but gentle curve like a sine wave is drawn. The smaller the number of samples, the more dynamic the reaction of the rate of change can be obtained.
 図14は、判定結果表示部が表示する変化率の表示画面の例を示す図である。表示画面810には、各稼働軸ごとに変化率の推移を時間単位で示すグラフ811が含められている。グラフ811に示される通り、第一稼働軸301ではプロセス内の前半のみ、第三稼働軸303ではプロセス内の後半のみで変化率が上昇しており、局所的な異常を捉えることができている。 FIG. 14 is a diagram showing an example of a change rate display screen displayed by the determination result display unit. The display screen 810 includes a graph 811 showing the transition of the rate of change for each operating axis in time units. As shown in Graph 811, the rate of change increases only in the first half of the process on the first operating axis 301 and only in the second half of the process on the third operating axis 303, and it is possible to capture local abnormalities. ..
 第二の実施例に係る発明によれば、プロセス内で一様に異常状態が発現せず、プロセス内で部分的に発現する異常状態であっても精度よく捉えることができる。特に、一プロセスにかかる時間が長い場合には、異常の検出精度を飛躍的に高めることができる。 According to the invention according to the second embodiment, the abnormal state does not uniformly appear in the process, and even the abnormal state partially expressed in the process can be accurately captured. In particular, when the time required for one process is long, the accuracy of abnormality detection can be dramatically improved.
 <第三の実施例>次に、図15、図16を用いて、本発明に係る第三の実施例を説明する。第三の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <Third Example> Next, a third embodiment according to the present invention will be described with reference to FIGS. 15 and 16. The third embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
 図15は、異常判定処理(第三の実施例)の処理フローの例を示す図である。学習時の処理は、第一の実施例と基本的に同様であるが、異常と判定する異常度の閾値以外にも、学習時の電流波形のバラつきから、異常と判定すべきでない異常度の第二の閾値を算出し、判定精度の向上を達成するようにしている。つまり、制御基板に供給される電流の基準波形に応じて所定の検出可否指標となる閾値(第二の閾値)を特定し、電流変化率が第二の閾値を超えない場合には異常と判定しないことで、誤判定を防止する。 FIG. 15 is a diagram showing an example of the processing flow of the abnormality determination processing (third embodiment). The processing at the time of learning is basically the same as that of the first embodiment. The second threshold value is calculated to achieve an improvement in determination accuracy. That is, a threshold value (second threshold value) that serves as a predetermined detectability index is specified according to the reference waveform of the current supplied to the control board, and if the current change rate does not exceed the second threshold value, it is determined to be abnormal. By not doing so, erroneous judgment is prevented.
 具体的には、異常度の閾値設定をステップS103にて行った後、学習時の処理として、学習時電流波形からバラつき考慮の第二の異常度閾値を設定する(ステップS304)。本発明では総電流から各個別機器電流を推定するものであるため、総電流にバラつきが発生した場合、各個別機器電流の推定精度にもバラつきが生じる懸念がある。これを回避するための条件は、各個別機器電流の変化量が、総電流のバラつきよりも大きくなるということであり、下式(5)で示すことができる。但し、SIw(0)は学習時総電流波形のバラつきを示す。 Specifically, after setting the threshold value of the degree of abnormality in step S103, a second degree of abnormality threshold considering variation is set from the current waveform during learning as a process during learning (step S304). In the present invention, since the current of each individual device is estimated from the total current, if the total current varies, there is a concern that the estimation accuracy of the current of each individual device also varies. The condition for avoiding this is that the amount of change in the current of each individual device becomes larger than the variation in the total current, which can be expressed by the following equation (5). However, SI w (0) indicates the variation of the total current waveform during learning.
Figure JPOXMLDOC01-appb-M000005
・・・式(5)
Figure JPOXMLDOC01-appb-M000005
... Equation (5)
 上式(5)を変形し、バラつきを考慮した異常度閾値をαiaとすると、αiaは式(6)で表すことができる。 Deforming the above equation (5), when the abnormality degree threshold in consideration of the variation and alpha ia, alpha ia can be expressed by Equation (6).
Figure JPOXMLDOC01-appb-M000006
・・・式(6)
式(6)によって求められたαiaは、運用時の異常度の判定処理において、異常度と第二の異常度閾値との両方の超過が検出されると異常と判定する処理(ステップS307)において用いられる。つまり、制御基板220に供給される電流の基準波形の変動量と電力消費装置に供給される電流の和を該電力消費装置に供給される電流で除した商を第二の異常度閾値として特定することができる。
Figure JPOXMLDOC01-appb-M000006
... Equation (6)
The α ia obtained by the equation (6) is determined to be abnormal when both the abnormality degree and the second abnormality degree threshold value are detected in the abnormality degree determination process during operation (step S307). Used in. That is, the quotient obtained by dividing the sum of the fluctuation amount of the reference waveform of the current supplied to the control board 220 and the current supplied to the power consuming device by the current supplied to the power consuming device is specified as the second abnormality degree threshold. can do.
 図16は、判定結果表示部が表示する変化率の表示画面の例を示す図である。表示画面820には、各稼働軸ごとに変化率の推移をプロセス単位で示すグラフ821が含められている。ここで、図16の各グラフ内に記載されている変化率αibは、図15に示した第三の実施例のフローチャート内のステップS103において設定された異常度の閾値を示している。変化率αiaは、図15に示した第三の実施例のフローチャート内のステップS304において設定された第二の異常度閾値を示している。図16内のグラフ821の1プロットはプロセス1つ分を示しており、フローチャートのステップS004~ステップS307の処理ごとに一つプロットが生成される。 FIG. 16 is a diagram showing an example of a change rate display screen displayed by the determination result display unit. The display screen 820 includes a graph 821 showing the transition of the rate of change for each operating axis in process units. Here, the rate of change α ib described in each graph of FIG. 16 indicates the threshold value of the degree of abnormality set in step S103 in the flowchart of the third embodiment shown in FIG. The rate of change α ia indicates the second abnormality degree threshold set in step S304 in the flowchart of the third embodiment shown in FIG. One plot of graph 821 in FIG. 16 shows one process, and one plot is generated for each process of steps S004 to S307 of the flowchart.
 例えば、第一稼働軸に関して、変化率が異常度の閾値と第二の異常度閾値両方の閾値を超過しているため、異常と判定することが可能である。しかし、軸3に関して言えば、αibは超えているが、αiaはまだ超えていない状態である。もしαiaが設定されていない場合、この時点でも第三の稼働軸は異常と判定されてしまうことになるが、実際には総電流のバラつきによる誤報である可能性がある。本実施例に係る発明においては、そのような総電流のバラつき等の突発的な事象による誤報を低減する効果を有する。 For example, with respect to the first operating axis, since the rate of change exceeds both the threshold value of the degree of abnormality and the threshold value of the second degree of abnormality, it is possible to determine that it is abnormal. However, as for the axis 3, α ib is exceeded, but α ia is not yet exceeded. If α ia is not set, the third operating axis will be determined to be abnormal even at this point, but in reality it may be a false alarm due to variations in the total current. The invention according to the present embodiment has the effect of reducing false alarms due to sudden events such as variations in total current.
 また、第三の実施例に係る発明が奏するさらなる効果として、総電流バラつきに対して、個別機器電流が小さく、異常が発生してもバラつき内に埋もれていると懸念される場合、予めその個別機器だけ電流センサを設置するように対策することも可能となる。すなわち、センサ数の適正化にも用いることができる指標であり、精度を維持したまま、センサ数を適正に低減できる効果も奏するといえる。 Further, as a further effect of the invention according to the third embodiment, if there is a concern that the individual device current is small with respect to the total current variation and that even if an abnormality occurs, it is buried in the variation, the individual device is individually specified in advance. It is also possible to take measures to install a current sensor only for the device. That is, it is an index that can be used for optimizing the number of sensors, and it can be said that it also has the effect of appropriately reducing the number of sensors while maintaining accuracy.
 <第四の実施例>次に、図17~図20を用いて、本発明に係る第四の実施例を説明する。第四の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <Fourth Example> Next, a fourth embodiment according to the present invention will be described with reference to FIGS. 17 to 20. The fourth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
 図17は、異常判定処理(第四の実施例)の処理フローの例を示す図である。第四の実施例では、各個別機器に供給される電圧が異なる場合の対策が盛り込まれている。具体的には、電流取得部21は、学習時に、重回帰分析により各個別機器と大元の電源電圧の比である電圧比を算出(ステップS403)し、各軸の個別電圧比を記憶しておく(ステップS404)ことで、個別機器に供給される電圧が異なる場合に、電圧値を取得することなく電圧比を算出することができる。 FIG. 17 is a diagram showing an example of the processing flow of the abnormality determination processing (fourth embodiment). In the fourth embodiment, measures are taken when the voltage supplied to each individual device is different. Specifically, at the time of learning, the current acquisition unit 21 calculates the voltage ratio, which is the ratio between each individual device and the main power supply voltage, by multiple regression analysis (step S403), and stores the individual voltage ratio of each axis. By setting (step S404), when the voltages supplied to the individual devices are different, the voltage ratio can be calculated without acquiring the voltage value.
 図18は、第四の実施例にて異常を判定する対象としている総電流波形と各個別機器電流波形の関係性を示す図である。図18(a)は総電流のグラフであり、図18(b)は各個別機器電流波形を積み上げたグラフの例である。図18(a)と図18(b)とを比較すると、総電流と各個別機器電流の総和が一致していない。これは、電圧が各個別機器で異なるために、単純な電流波形の足し算では総電流を表すことができないことを意味している。 FIG. 18 is a diagram showing the relationship between the total current waveform targeted for determining the abnormality in the fourth embodiment and the current waveform of each individual device. FIG. 18A is a graph of the total current, and FIG. 18B is an example of a graph in which the current waveforms of each individual device are stacked. Comparing FIGS. 18 (a) and 18 (b), the total current and the total current of each individual device do not match. This means that the total current cannot be expressed by simple addition of current waveforms because the voltage is different for each individual device.
 第一の実施例では、そもそも電力の総和が総電力に等しく、電圧が一定であるとの仮定から電流での関係式が成り立っていた。本実施例では本来の電力の総和が等しいという関係式を用いる。ここで、先述した電圧比を求める手法を説明する。電圧比kは下式(7)で示される物理量である。但し、Vは総電流取得箇所における電圧を示し、Vは各個別機器電流取得箇所における電圧を示している。 In the first embodiment, the relational expression with current was established from the assumption that the total power is equal to the total power and the voltage is constant. In this embodiment, the relational expression that the total sum of the original electric powers is equal is used. Here, the method for obtaining the voltage ratio described above will be described. The voltage ratio k i is a physical quantity represented by the following formula (7). However, V w indicates the voltage at the total current acquisition location, and V i indicates the voltage at each individual device current acquisition location.
Figure JPOXMLDOC01-appb-M000007
・・・式(7)
Figure JPOXMLDOC01-appb-M000007
... formula (7)
 上式(7)の関係を用いて、各個別機器電圧比と電流の関係は式(8)で示される。 Using the relationship of the above equation (7), the relationship between the voltage ratio of each individual device and the current is shown by the equation (8).
Figure JPOXMLDOC01-appb-M000008
・・・式(8)
式(8)を学習時電流波形の各時刻で構築して、重回帰分析を行うことにより、各個別機器電圧比kを算出することが可能である。
Figure JPOXMLDOC01-appb-M000008
... Equation (8)
Build equation (8) at each time of learning during the current waveform, by performing a multiple regression analysis, it is possible to calculate each individual device voltage ratio k i.
 図19は、算出した変化率を用いて個別機器の電流波形を推定した図である。算出した各個別機器電圧kを用いて各個別機器電流波形を算出すると、図19の第一稼働軸の波形541と、第二稼働軸の波形542と、第三稼働軸の波形543と、第四稼働軸の波形544と、第五稼働軸の波形545と、第六稼働軸の波形546と、が得られる。それぞれのグラフの縦軸は、電流×電圧比となっている。 FIG. 19 is a diagram in which the current waveform of an individual device is estimated using the calculated rate of change. When using the individual devices voltage k i calculated calculating each individual device current waveform, and the waveform 541 of the first operating shaft in FIG. 19, a waveform 542 of the second operating shaft, and a waveform 543 of the third working axis, A waveform 544 of the fourth operating axis, a waveform 545 of the fifth operating axis, and a waveform 546 of the sixth operating axis are obtained. The vertical axis of each graph is the current x voltage ratio.
 図20は、総電流波形と各個別機器電流波形の関係性の例を示す図である。図20(a)は、取得された総電流波形を示し、図20(b)は、個別機器の電流×電圧比のグラフを積み上げた例を示す。図20(a)と、図20(b)とを比較すると、グラフの大きさが等しくなっている。ここで、図17のフローチャート内のS405で実施する重回帰分析で用いられる数式を、下式(9)として示す。 FIG. 20 is a diagram showing an example of the relationship between the total current waveform and the current waveform of each individual device. FIG. 20A shows the acquired total current waveform, and FIG. 20B shows an example of stacking graphs of current × voltage ratio of individual devices. Comparing FIG. 20 (a) and FIG. 20 (b), the sizes of the graphs are the same. Here, the mathematical formula used in the multiple regression analysis performed in S405 in the flowchart of FIG. 17 is shown as the following equation (9).
Figure JPOXMLDOC01-appb-M000009
・・・式(9)
上式(9)を用いるタイミングでは、すでに各個別機器電圧比kが算出済みのため、問題なく重回帰分析を実行することができる。
Figure JPOXMLDOC01-appb-M000009
... formula (9)
The timing using the above equation (9), already the individual devices voltage ratio k i for already calculated, it is possible to perform a multiple regression analysis with no problem.
 このように、第四の実施例によれば、各個別機器の電圧が等しいかどうか不明な場合でも、式(8)を用いることで電圧センサの追加無しで電圧比を算出することができるため、精度を維持したまま、個別機器の電圧が異なる装置にも適用できる。つまり、適用可能な装置の幅を広げることができるといえる。 As described above, according to the fourth embodiment, even when it is unclear whether the voltages of the individual devices are equal or not, the voltage ratio can be calculated by using the equation (8) without adding a voltage sensor. It can also be applied to devices with different voltages for individual devices while maintaining accuracy. That is, it can be said that the range of applicable devices can be expanded.
 <第五の実施例>次に、図21~図23を用いて、本発明に係る第五の実施例を説明する。第五の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <Fifth Example> Next, a fifth embodiment according to the present invention will be described with reference to FIGS. 21 to 23. The fifth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
 図21は、第五の実施例に係る対象装置の電源系回路の例を示す図である。第一~第四の実施例の構成に対して、制御基板220にはさらに冷却ファン231、232や無励磁電磁ブレーキ330等のその他の機器(構成要素)が追加されている。 FIG. 21 is a diagram showing an example of a power supply system circuit of the target device according to the fifth embodiment. Other devices (components) such as cooling fans 231 and 232 and the non-excited electromagnetic brake 330 are further added to the control board 220 with respect to the configurations of the first to fourth embodiments.
 図22は、異常判定処理(第五の実施例)の処理フローの例を示す図である。第五の実施例では、主要な構成要素以外の個別機器や学習時等の一時的であっても測定が難しいその他の機器を集合的に纏めて扱うことにより、その他の機器単体での測定を行うことなく異常機器判定を可能としている。 FIG. 22 is a diagram showing an example of the processing flow of the abnormality determination processing (fifth embodiment). In the fifth embodiment, individual devices other than the main components and other devices that are difficult to measure even temporarily, such as during learning, are collectively handled to measure the other devices alone. It is possible to judge abnormal equipment without doing it.
 基本的には、第五の実施例に係る異常判定処理の処理フローは、第四の実施例に係る異常判定処理の処理フローと同様である。ただし、学習時において、電流取得部21は、重回帰分析により軸毎に個別電圧比と定数を算出し(ステップS503)、定数(残差)をその他の機器の電流として電流波形を記憶させる(ステップS504)ものである。 Basically, the processing flow of the abnormality determination process according to the fifth embodiment is the same as the processing flow of the abnormality determination process according to the fourth embodiment. However, at the time of learning, the current acquisition unit 21 calculates an individual voltage ratio and a constant for each axis by multiple regression analysis (step S503), and stores the current waveform using the constant (residual) as the current of other devices (step S503). Step S504).
 すなわち、第五の実施例に係る異常判定処理では、個別電圧比kiを求める際に測定していない個別機器の電流を定数Ielse(0)で表現し、算出している。下式(10)に個別電圧比ki及びその他個別機器電流Ielse(0)の関係式を示す。 That is, in the abnormality determination process according to the fifth embodiment, the current of the individual device that is not measured when the individual voltage ratio k i is obtained is expressed by the constant I else (0) and calculated. The following equation (10) shows the relational expression of the individual voltage ratio k i and the other individual equipment current I else (0).
Figure JPOXMLDOC01-appb-M000010
・・・式(10)
ここで、Ielse(0)は、図21の冷却ファン231、232や無励磁電磁ブレーキ330の消費電流を含む値である。
Figure JPOXMLDOC01-appb-M000010
... formula (10)
Here, I else (0) is a value including the current consumption of the cooling fans 231 and 232 of FIG. 21 and the non-excited electromagnetic brake 330.
 無励磁電磁ブレーキ330は、ロボットに一般に適用されているブレーキである。このブレーキは電力が供給されていないときはブレーキがかかった状態であり、電力が供給されると、ブレーキを掛けないという特徴がある。ゆえに通電時は一定の電力を消費するという特徴を有するものであり、図21内の点線矢印はブレーキの作用方向のみを示したものである。上式(10)で重回帰分析に必要な連立方程式を構築し、電圧比kと、その他個別機器電流Ielse(0)を算出することができる。 The non-excited electromagnetic brake 330 is a brake generally applied to robots. This brake has a feature that the brake is applied when the electric power is not supplied, and the brake is not applied when the electric power is supplied. Therefore, it has the characteristic of consuming a certain amount of electric power when energized, and the dotted line arrow in FIG. 21 indicates only the direction of action of the brake. Constructs simultaneous equations necessary for multiple regression analysis with the above equation (10) can be calculated and the voltage ratio k i, other individual device current I the else a (0).
 図23は、総電流波形と、電圧比により換算した各個別機器の電流×電圧比のグラフを積み上げたグラフの関係性の例を示す図である。図23(a)は、学習時の総電流を示し、図23(b)は、上式(10)で求めた電圧比kを用いて換算した各個別機器電流×電圧比とその他個別機器電流Ielse(0)を積み上げたグラフを示す。図23(a)と図23(b)を比較すると、双方のグラフの大きさが等しくなっている。 FIG. 23 is a diagram showing an example of the relationship between the total current waveform and the graph in which the graphs of the current × voltage ratio of each individual device converted by the voltage ratio are stacked. FIG. 23 (a) shows the total current at the time of learning, FIG. 23 (b), each individual device current × voltage ratio which is translated using the voltage ratio k i determined by the above equation (10) and the other individual equipment The graph which piled up the current I else (0) is shown. Comparing FIG. 23 (a) and FIG. 23 (b), the sizes of both graphs are equal.
 ここで、図22のフローチャート内の重回帰分析で用いられる数式を式(11)として示す。 Here, the mathematical formula used in the multiple regression analysis in the flowchart of FIG. 22 is shown as equation (11).
Figure JPOXMLDOC01-appb-M000011
・・・式(11)
式(11)を用いるタイミングではすでに各個別機器電圧比kが算出済みのため、問題なく重回帰分析を実行することができ、分解能は劣るが、その他個別機器電流変化率αelseを用いて、その他個別機器の異常も検知することが可能である。つまり、電流取得部21は、基準波形が記憶部10に記憶されておらず制御基板220から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなして電圧比と変化率を算出することができる。
Figure JPOXMLDOC01-appb-M000011
... Equation (11)
Because of formula (11) already each individual device voltage ratio k i is already calculated at the timing of using, it is possible to perform a multiple regression analysis with no problem, but resolution is poor, using the other discrete equipment current change rate alpha the else , It is also possible to detect abnormalities in other individual devices. That is, the current acquisition unit 21 collectively considers the power consuming device whose reference waveform is not stored in the storage unit 10 and receives power from the control board 220 as the power consuming device, and calculates the voltage ratio and the rate of change. can do.
 本実施例によれば、主要な機器以外に多数の個別機器を含む場合でも精度よく異常を判定することが可能となる効果を有する。また、その他個別機器が一つのプロセス内で変化する場合であっても、同プロセスの複数の波形を利用して平均値を用いることにより、上式(10)、(11)の使用が可能となり、同様の効果を奏することができる。 According to this embodiment, there is an effect that it is possible to accurately determine an abnormality even when a large number of individual devices are included in addition to the main devices. In addition, even when other individual devices change within one process, the above equations (10) and (11) can be used by using the average value using multiple waveforms of the same process. , Can produce the same effect.
 <第六の実施例>次に、図24~図26を用いて、本発明に係る第六の実施例を説明する。第六の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。 <Sixth Example> Next, a sixth embodiment according to the present invention will be described with reference to FIGS. 24 to 26. The sixth embodiment has basically the same configuration as the first embodiment described above, but there are differences. Hereinafter, the difference will be mainly described.
 図24は、第六の実施例に係る対象装置の概要の構成例を示す図である。第六の実施例に係る対象装置は、4軸動作(X軸431、Y軸432、Z軸433、スピンドル軸434)の数値制御金属加工機400であり、付属として工具461を交換する工具交換器(工具交換軸475)も付随しているものである。 FIG. 24 is a diagram showing a configuration example of an outline of the target device according to the sixth embodiment. The target device according to the sixth embodiment is a numerically controlled metal processing machine 400 having 4-axis operation (X-axis 431, Y-axis 432, Z-axis 433, spindle shaft 434), and a tool replacement for replacing the tool 461 as an accessory. A device (tool change shaft 475) is also attached.
 図25は、数値制御金属加工機の電源系回路の概要の構成例を示す図である。制御装置401には、電源回路410と、第一制御基板411と、第二制御基板412と、第三制御基板413と、が含まれる。電源回路410は、配電盤100から電力の供給を受ける。各制御基板は、電源回路410から電力が供給される。そして、制御基板それぞれに個別機器が付随している。 FIG. 25 is a diagram showing a configuration example of an outline of a power supply system circuit of a numerically controlled metal processing machine. The control device 401 includes a power supply circuit 410, a first control board 411, a second control board 412, and a third control board 413. The power supply circuit 410 receives power from the switchboard 100. Each control board is supplied with power from the power supply circuit 410. An individual device is attached to each control board.
 第一制御基板411には、第一モータ451と、その回転を減速する第一減速機441と、第一減速機441により伝達された力によりX軸方向にスライド動作するテーブルX軸431と、が付随する。また、第一制御基板411には、第二モータ452と、その回転を減速する第二減速機442と、第二減速機442により伝達された力によりY軸方向にスライド動作するテーブルY軸432と、が付随する。また、第一制御基板411には、第三モータ453と、その回転を減速する第三減速機443と、第三減速機443により伝達された力によりZ軸方向にスライド動作する工具Z軸433と、が付随する。 The first control board 411 includes a first motor 451, a first speed reducer 441 that decelerates its rotation, and a table X-axis 431 that slides in the X-axis direction by a force transmitted by the first speed reducer 441. Is attached. Further, on the first control board 411, a second motor 452, a second speed reducer 442 for decelerating the rotation thereof, and a table Y-axis 432 that slides in the Y-axis direction by the force transmitted by the second speed reducer 442. And is accompanied. Further, on the first control board 411, a third motor 453, a third speed reducer 443 that reduces the rotation thereof, and a tool Z-axis 433 that slides in the Z-axis direction by the force transmitted by the third speed reducer 443. And is accompanied.
 第二制御基板412には、第四モータ454と、その回転を減速する第四減速機444と、第四減速機444より伝達された力により回転動作するスピンドル軸434と、が付随する。 The second control board 412 is accompanied by a fourth motor 454, a fourth speed reducer 444 that decelerates its rotation, and a spindle shaft 434 that rotates by a force transmitted from the fourth speed reducer 444.
 第三制御基板413には、第五モータ495と、その回転を減速する第五減速機485と、第五減速機485より伝達された力により回転動作する工具交換軸475と、が付随する。 The third control board 413 is accompanied by a fifth motor 495, a fifth speed reducer 485 that decelerates its rotation, and a tool exchange shaft 475 that rotates by the force transmitted from the fifth speed reducer 485.
 図26は、異常判定処理(第六の実施例)の処理フローの例を示す図である。第六の実施例では、電源が枝分かれして制御基板へ供給されている場合でも、各箇所で個別機器の電流推定並びに異常判定を可能としている。 FIG. 26 is a diagram showing an example of the processing flow of the abnormality determination processing (sixth embodiment). In the sixth embodiment, even when the power supply is branched and supplied to the control board, it is possible to estimate the current of the individual device and determine the abnormality at each location.
 基本的には、第六の実施例に係る異常判定処理の処理フローは、第一の実施例に係る異常判定処理の処理フローと同様である。ただし、学習時において、電流取得部21は、総電流と各制御基板、付随個別機器の電流を取得し(ステップS601)、各制御基板、各個別機器の電流波形を基準波形記憶部11に記憶させる(ステップS602)。そして、運用時において、異常判定部22は、1プロセス分の総電流波形取得(ステップS004)後に、重回帰分析で、各制御基板電流の変化率を算出し(ステップS605)、算出した変化率で各制御基板電流を算出、取得し(ステップS606)、重回帰分析で、各個別機器電流の変化率を算出する(ステップS607)。つまり、制御基板があると入れ子構造として再帰処理を行う。 Basically, the processing flow of the abnormality determination processing according to the sixth embodiment is the same as the processing flow of the abnormality determination processing according to the first embodiment. However, at the time of learning, the current acquisition unit 21 acquires the total current and the current of each control board and the accompanying individual device (step S601), and stores the current waveform of each control board and each individual device in the reference waveform storage unit 11. (Step S602). Then, during operation, the abnormality determination unit 22 calculates the rate of change of each control board current by multiple regression analysis after acquiring the total current waveform for one process (step S004) (step S605), and the calculated rate of change. The current of each control board is calculated and acquired (step S606), and the rate of change of the current of each individual device is calculated by multiple regression analysis (step S607). That is, if there is a control board, recursive processing is performed as a nested structure.
 すなわち、第六の実施例では、上記の第一~第五の実施例で示されていた制御基板と個別機器の関係性を拡張し、さらに複数の制御基板と電源回路の間でも同関係を活用して、大元の電流から制御基板を経由した個別機器の変化率を推定している。 That is, in the sixth embodiment, the relationship between the control board and the individual device shown in the first to fifth embodiments is expanded, and the same relationship is further established between the plurality of control boards and the power supply circuit. Utilizing this, the rate of change of individual devices via the control board is estimated from the original current.
 ここで、電源回路410から第一制御基板411を経由したテーブルX軸431、テーブルY軸432、工具Z軸433の電流波形推定の流れを具体的に説明する。 Here, the flow of current waveform estimation of the table X-axis 431, the table Y-axis 432, and the tool Z-axis 433 from the power supply circuit 410 via the first control board 411 will be specifically described.
 図25において、配電盤100と電源回路410間の配線を流れる電流を総電流Iw(t)、電源回路410と各制御基板間の配線を流れる電流を各制御基板電流ICi(t)、第一制御基板411と第一~第三モータ間の配線を流れる電流を個別機器電流Ii(t)とする。これらについて、電流取得部21は、学習時の波形を電流センサにより取得し、それぞれIw(0)、ICi(0)、Ii(0)として基準波形記憶部11に記憶させる。 In FIG. 25, the current flowing through the wiring between the power distribution board 100 and the power supply circuit 410 is the total current I w (t) , and the current flowing through the wiring between the power supply circuit 410 and each control board is the control board current ICi (t) . (1) The current flowing through the wiring between the control board 411 and the first to third motors is defined as the individual device current Ii (t) . Regarding these, the current acquisition unit 21 acquires the waveform at the time of learning by the current sensor and stores it in the reference waveform storage unit 11 as I w (0) , ICi (0) , and I i (0), respectively.
 運用時は、電流取得部21は、まず総電流Iw(t)を取得し、下式(12)で示す式を用いて重回帰分析を行い、各制御基板電流変化率αCiを算出する。 During operation, the current acquisition unit 21 first acquires the total current I w (t) , performs multiple regression analysis using the equation shown in the following equation (12), and calculates each control board current change rate α Ci. ..
Figure JPOXMLDOC01-appb-M000012
・・・式(12)
Figure JPOXMLDOC01-appb-M000012
... formula (12)
 続いて、αC1×IC1(0)の値を用いて、第一制御基板411に付随する個別機器の電流波形を推定する。推定には総電流Iw(t)をαC1×IC1(0)で置き換えた下式(13)を用いる。 Subsequently, the current waveform of the individual device attached to the first control board 411 is estimated using the value of α C1 × IC1 (0). For the estimation, the following equation (13) in which the total current I w (t) is replaced with α C1 × IC1 (0) is used.
Figure JPOXMLDOC01-appb-M000013
・・・式(13)
上式(13)からテーブルX軸431、テーブルY軸432、工具Z軸433の電流波形の変化率α~αが算出できるため、第一制御基板411に付随する個別機器の異常度を算出することができる。
Figure JPOXMLDOC01-appb-M000013
... formula (13)
Since the rate of change α 1 to α 3 of the current waveforms of the table X-axis 431, the table Y-axis 432, and the tool Z-axis 433 can be calculated from the above equation (13), the degree of abnormality of the individual device attached to the first control board 411 can be calculated. Can be calculated.
 このように、第六の実施例に係る数値制御金属加工機400によれば、多層で枝分かれした電源系回路の装置であっても、対象とするラインの基準波形を取得さえできれば、運用中のセンサコスト低減を達成しつつ異常判定が実施可能であるという効果を有する。 As described above, according to the numerical control metal processing machine 400 according to the sixth embodiment, even a device of a power supply system circuit branched in multiple layers is in operation as long as the reference waveform of the target line can be acquired. It has the effect that abnormality determination can be performed while achieving sensor cost reduction.
 なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、数値制御金属加工機400は、その他の多軸制御による工作機械であってもよい。また、上記の第六の実施例では制御基板が一層ある入れ子構造を例としているが、これに限られず、制御基板が複数層ある入れ子構造であってもよい。 The present invention is not limited to the above embodiment, and includes various modifications. For example, the numerically controlled metal processing machine 400 may be another multi-axis controlled machine tool. Further, in the sixth embodiment described above, a nested structure having one layer of control boards is taken as an example, but the present invention is not limited to this, and a nested structure having a plurality of layers of control boards may be used.
 また、多変量解析の例として重回帰分析を行っているが、これに限られず、主成分分析等、他の分析手法を行うようにしてもよい。 Although multiple regression analysis is performed as an example of multivariate analysis, it is not limited to this, and other analysis methods such as principal component analysis may be performed.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。 Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
 また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.
 また、上記の異常機器判定装置1の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each configuration, function, processing unit, processing means, etc. of the above-mentioned abnormal device determination device 1 may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が通信ネットワーク、バス等により相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In reality, it may be considered that almost all configurations are connected to each other by a communication network, a bus, or the like.
 本発明に係る技術は、異常機器判定装置に限られず、異常機器判定システム、サーバー装置、コンピュータ読み取り可能なプログラム、異常機器判定サービス(方法)などの様々な態様で提供できる。 The technique according to the present invention is not limited to the abnormal device determination device, and can be provided in various forms such as an abnormal device determination system, a server device, a computer-readable program, and an abnormal device determination service (method).
 1・・・異常機器判定装置、10・・・記憶部、11・・・基準波形記憶部、20・・・処理部、21・・・電流取得部、22・・・異常判定部、23・・・判定結果表示部、100・・・配電盤、200・・・制御Box、300・・・ロボット部、301・・・第一稼働軸、302・・・第二稼働軸、303・・・第三稼働軸、304・・・第四稼働軸、305・・・第五稼働軸、306・・・第六稼働軸。 1 ... Abnormal device determination device, 10 ... Storage unit, 11 ... Reference waveform storage unit, 20 ... Processing unit, 21 ... Current acquisition unit, 22 ... Abnormality determination unit, 23. Judgment result display unit, 100 ... switchboard, 200 ... control Box, 300 ... robot unit, 301 ... first operating axis, 302 ... second operating axis, 303 ... Three operating axes, 304 ... 4th operating axis, 305 ... 5th operating axis, 306 ... 6th operating axis.

Claims (16)

  1.  正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
     運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
     前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
     前記異常判定部が判定した結果を表示する判定結果表示部と、
     を備えることを特徴とする異常機器判定システム。
    Stores a reference waveform in which the current supplied to the power consuming device that consumes power during normal operation and the current supplied to the control board that supplies power to the plurality of power consuming devices are recorded in chronological order. With the memory
    A current acquisition unit that acquires the current supplied to the control board in chronological order during operation,
    An abnormality determination unit that calculates the current change rate for each power consuming device using the current supplied to the control board acquired by the current acquisition unit and the reference waveform, and determines an abnormality in the power consuming device. ,
    A determination result display unit that displays the result of the determination by the abnormality determination unit, and
    An abnormal device determination system characterized by being equipped with.
  2.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記電流変化率を用いて複数の前記電力消費装置の異常を判定する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit determines an abnormality of a plurality of the power consuming devices by using the current change rate.
    An abnormal device judgment system characterized by this.
  3.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、多変量解析により前記電流変化率を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit calculates the current change rate by multivariate analysis.
    An abnormal device judgment system characterized by this.
  4.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記複数の電力消費装置に供給される電流と前記電流変化率の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit performs the current change rate by multiple regression analysis utilizing the fact that the sum of the products of the current supplied to the plurality of power consuming devices and the current change rate is equal to the current supplied to the control board. To calculate,
    An abnormal device judgment system characterized by this.
  5.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記複数の電力消費装置に供給される電流と前記電流変化率の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出し、
     前記重回帰分析においては、前記基準波形を所定の時間窓で複数に区切った区間ごとに前記電流変化率を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit performs the current change rate by multiple regression analysis utilizing the fact that the sum of the products of the current supplied to the plurality of power consuming devices and the current change rate is equal to the current supplied to the control board. Is calculated,
    In the multiple regression analysis, the current change rate is calculated for each section in which the reference waveform is divided into a plurality of sections by a predetermined time window.
    An abnormal device judgment system characterized by this.
  6.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記電流変化率が所定の閾値を超過すると前記電力消費装置が異常であると判定する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit determines that the power consuming device is abnormal when the current change rate exceeds a predetermined threshold value.
    An abnormal device judgment system characterized by this.
  7.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記制御基板に供給される電流の前記基準波形に応じて所定の検出可否指標となる閾値を特定し、前記電流変化率が前記閾値を超えない場合には異常と判定しない、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit specifies a threshold value as a predetermined detectability index according to the reference waveform of the current supplied to the control board, and does not determine that the abnormality is abnormal if the current change rate does not exceed the threshold value. ,
    An abnormal device judgment system characterized by this.
  8.  請求項1に記載の異常機器判定システムであって、
     前記異常判定部は、前記制御基板に供給される電流の前記基準波形の変動量と前記電力消費装置に供給される電流の和を該電力消費装置に供給される電流で除した商を閾値として特定し、前記電流変化率が前記閾値を超えない場合には異常と判定しない、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The abnormality determination unit uses a quotient obtained by dividing the sum of the fluctuation amount of the reference waveform of the current supplied to the control board and the current supplied to the power consuming device by the current supplied to the power consuming device as a threshold value. If the current change rate does not exceed the threshold value, it is not determined to be abnormal.
    An abnormal device judgment system characterized by this.
  9.  請求項1に記載の異常機器判定システムであって、
     前記電流取得部は、前記制御基板に供給される電流の前記基準波形と前記電力消費装置に供給される電流の前記基準波形を用いて前記電力消費装置ごとの電圧比を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The current acquisition unit calculates a voltage ratio for each power consuming device using the reference waveform of the current supplied to the control board and the reference waveform of the current supplied to the power consuming device.
    An abnormal device judgment system characterized by this.
  10.  請求項1に記載の異常機器判定システムであって、
     前記電流取得部は、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The current acquisition unit utilizes the fact that the sum of the products of the reference waveform of the current supplied to the power consuming device and the voltage ratio of each power consuming device is equal to the current supplied to the control board. The voltage ratio for each power consuming device is calculated by the multiple regression analysis.
    An abnormal device judgment system characterized by this.
  11.  請求項1に記載の異常機器判定システムであって、
     前記電流取得部は、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出し、
     前記異常判定部は、前記複数の電力消費装置に供給される電流と、前記電流変化率と、前記電力消費装置ごとの電圧比との積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The current acquisition unit utilizes the fact that the sum of the products of the reference waveform of the current supplied to the power consuming device and the voltage ratio of each power consuming device is equal to the current supplied to the control board. The voltage ratio for each power consuming device was calculated by the multiple regression analysis.
    In the abnormality determination unit, the sum of the products of the current supplied to the plurality of power consuming devices, the current change rate, and the voltage ratio of each power consuming device becomes equal to the current supplied to the control board. The current rate of change is calculated by multiple regression analysis utilizing the fact that the current change rate is calculated.
    An abnormal device judgment system characterized by this.
  12.  請求項1に記載の異常機器判定システムであって、
     前記電流取得部は、前記基準波形が前記記憶部に記憶されておらず前記制御基板から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなし、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The current acquisition unit collectively regards a power consuming device whose reference waveform is not stored in the storage unit and receives power supplied from the control board as a power consuming device, and supplies the power consuming device to the power consuming device. The voltage ratio for each power consuming device is obtained by multiple regression analysis utilizing the fact that the sum of the products of the reference waveform of the current and the voltage ratio for each power consuming device is equal to the current supplied to the control board. calculate,
    An abnormal device judgment system characterized by this.
  13.  請求項1に記載の異常機器判定システムであって、
     前記電流取得部は、前記基準波形が前記記憶部に記憶されておらず、前記制御基板から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなし、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出し、
     前記異常判定部は、前記複数の電力消費装置に供給される電流と、前記電流変化率と、前記電力消費装置ごとの電圧比との積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The current acquisition unit collectively regards a power consuming device whose reference waveform is not stored in the storage unit and receives power supplied from the control board as a power consuming device, and supplies the power consuming device to the power consuming device. The voltage ratio for each power consuming device by multiple regression analysis utilizing the fact that the sum of the products of the reference waveform of the current and the voltage ratio for each power consuming device is equal to the current supplied to the control board. Is calculated,
    In the abnormality determination unit, the sum of the products of the current supplied to the plurality of power consuming devices, the current change rate, and the voltage ratio of each power consuming device becomes equal to the current supplied to the control board. The current change rate is calculated by multiple regression analysis utilizing the fact that the current change rate is calculated.
    An abnormal device judgment system characterized by this.
  14.  請求項1に記載の異常機器判定システムであって、
     前記電力消費装置は、ロボットの稼働軸を動作させる駆動用モータである、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The power consuming device is a drive motor that operates the operating shaft of the robot.
    An abnormal device judgment system characterized by this.
  15.  請求項1に記載の異常機器判定システムであって、
     前記電力消費装置は、ロボットの稼働軸を動作させる駆動用モータであり、
     前記異常は、前記駆動用モータの異常と、該駆動用モータの電流波形に影響を与える他の装置の異常も含む、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The power consuming device is a drive motor that operates the operating shaft of the robot.
    The abnormality includes an abnormality of the drive motor and an abnormality of another device that affects the current waveform of the drive motor.
    An abnormal device judgment system characterized by this.
  16.  請求項1に記載の異常機器判定システムであって、
     一つまたは複数の前記電力消費装置は、一つまたは複数の他の電力消費装置に電力を供給する前記制御基板を備えるものであり、
     前記記憶部は、前記他の電力消費装置に供給される電流を時系列に記録した基準波形を記憶し、
     前記異常判定部は、前記他の電力消費装置についても前記電流変化率を算出し前記電力消費装置の異常を判定する、
     ことを特徴とする異常機器判定システム。
    The abnormality device determination system according to claim 1.
    The one or more power consuming devices include the control board that supplies power to one or more other power consuming devices.
    The storage unit stores a reference waveform in which the current supplied to the other power consuming device is recorded in time series.
    The abnormality determination unit calculates the current change rate for the other power consuming device and determines the abnormality of the power consuming device.
    An abnormal device judgment system characterized by this.
PCT/JP2021/010875 2020-05-29 2021-03-17 Abnormal device determination system WO2021240959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180031565.4A CN115461690A (en) 2020-05-29 2021-03-17 Abnormal equipment judging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093852 2020-05-29
JP2020093852A JP2021189706A (en) 2020-05-29 2020-05-29 Abnormal apparatus determination system

Publications (1)

Publication Number Publication Date
WO2021240959A1 true WO2021240959A1 (en) 2021-12-02

Family

ID=78723310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010875 WO2021240959A1 (en) 2020-05-29 2021-03-17 Abnormal device determination system

Country Status (3)

Country Link
JP (1) JP2021189706A (en)
CN (1) CN115461690A (en)
WO (1) WO2021240959A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150981A (en) * 1992-11-06 1994-05-31 Kyushu Denki Seizo Kk Residual capacity meter for battery
JPH10254539A (en) * 1997-03-10 1998-09-25 Nissan Motor Co Ltd Abnormality diagnostic method for driving system of machine device
JP2019067240A (en) * 2017-10-03 2019-04-25 川崎重工業株式会社 Estimation method for part where abnormality occurs and program for estimating part where abnormality occurs
JP2019125230A (en) * 2018-01-18 2019-07-25 ファナック株式会社 Abnormality detection parameter adjustment display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150981A (en) * 1992-11-06 1994-05-31 Kyushu Denki Seizo Kk Residual capacity meter for battery
JPH10254539A (en) * 1997-03-10 1998-09-25 Nissan Motor Co Ltd Abnormality diagnostic method for driving system of machine device
JP2019067240A (en) * 2017-10-03 2019-04-25 川崎重工業株式会社 Estimation method for part where abnormality occurs and program for estimating part where abnormality occurs
JP2019125230A (en) * 2018-01-18 2019-07-25 ファナック株式会社 Abnormality detection parameter adjustment display device

Also Published As

Publication number Publication date
CN115461690A (en) 2022-12-09
JP2021189706A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP5014391B2 (en) Numerical control device having a function of determining a machine abnormality based on signals from a plurality of sensors
JP5991042B2 (en) Anomaly monitoring system and anomaly monitoring method
JP5901140B2 (en) Methods, computer programs, and systems for interpolating sensor data for high system availability.
CN111148609B (en) Method for estimating abnormal site and recording medium for recording program for executing estimation of abnormal site
CN111164526A (en) Abnormality determination system, motor control device, and abnormality determination device
US11436693B2 (en) Machine learning device and machine learning method for learning correlation between shipment inspection information and operation alarm information for object
WO2015092853A1 (en) Numerical control apparatus and logging method
CN113574358B (en) Abnormality detection device and abnormality detection method
JPH09225781A (en) Method for estimating thermal displacement of machine tool
WO2008127539A1 (en) Machine condition monitoring using discontinuity detection
WO2008127535A1 (en) Machine condition monitoring using pattern rules
US11009431B2 (en) Failure mode specifying system, failure mode specifying method, and program
WO2021240959A1 (en) Abnormal device determination system
JP7036261B1 (en) Anomaly detection device, program, anomaly detection method, and manufacturing method
JP2014219911A (en) Simulation device and simulation program
JP3759881B2 (en) Process diagnosis monitoring system
Tsai et al. Design of a torque observer for detecting abnormal load
CN110096029A (en) Thermal displacement correction device
JP2011506987A (en) Method for analyzing energy consumption of mechanical device and mechanical device
JP5435650B2 (en) Electronic device, inspection method for electronic device, and heating element inspection method
JP6616347B2 (en) Management system
WO2023047545A1 (en) Additional learning data selection device and computer-readable recording medium
WO2023163156A1 (en) Computation device and anomaly detection device
CN115146793A (en) Abnormality determination system and abnormality determination method
CN107866738B (en) Control device, computer-readable storage medium, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812061

Country of ref document: EP

Kind code of ref document: A1