WO2021240699A1 - 無線通信方法、無線通信システム、無線基地局、及び反射装置 - Google Patents

無線通信方法、無線通信システム、無線基地局、及び反射装置 Download PDF

Info

Publication number
WO2021240699A1
WO2021240699A1 PCT/JP2020/020991 JP2020020991W WO2021240699A1 WO 2021240699 A1 WO2021240699 A1 WO 2021240699A1 JP 2020020991 W JP2020020991 W JP 2020020991W WO 2021240699 A1 WO2021240699 A1 WO 2021240699A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection
measurement signal
base station
signal
radio base
Prior art date
Application number
PCT/JP2020/020991
Other languages
English (en)
French (fr)
Inventor
匡史 岩渕
智明 小川
友規 村上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/020991 priority Critical patent/WO2021240699A1/ja
Priority to US17/922,080 priority patent/US20230171624A1/en
Priority to JP2022527370A priority patent/JP7359301B2/ja
Publication of WO2021240699A1 publication Critical patent/WO2021240699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • H04B7/04026Intelligent reflective surfaces with codebook-based beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a technique for communicating between a wireless base station and a wireless terminal via a reflecting device.
  • high-speed and large-capacity communication is realized by using the 28 GHz band.
  • the wireless LAN standard IEEE802.11ad millimeter wave wireless LAN system
  • Radio waves in the high frequency band have the characteristics of being easily attenuated and difficult to diffract as compared with the low frequency band. Therefore, problems in the high frequency band include shortening of the transmission distance due to radio wave attenuation, deterioration of reception quality due to obstacles, and the like.
  • Beamforming using a multi-element antenna is effective for compensating for radio wave attenuation.
  • the beamforming gain can compensate for radio wave attenuation and extend the transmission distance.
  • the receiving station mainly receives radio waves intensively transmitted from the transmitting station in a specific direction. That is, the receiving station mainly receives the radio wave of one propagation path having high power. Therefore, the spatial multiplex is limited to 1 (or 2 due to the polarized multiplex), and it is difficult to obtain the spatial diversity effect.
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 2 By forming a plurality of propagation paths for one receiving station by using such a reflection device, it is possible to improve communication performance such as communication quality and spatial multiplicity.
  • Non-Patent Document 3 discloses a technique called "backscatter communication". Instead of creating a carrier wave on its own, the backscatter transmitter receives an RF signal that exists in the surrounding environment and transmits data by modulating and reflecting the received RF signal. More specifically, the backscatter transmitter modulates the received RF signal by switching the load impedance of the antenna at high speed as it reflects the received RF signal. This makes it possible to reflect the received RF signal while applying desired information to the received RF signal. The transmission rate differs between the original RF signal and the information applied in the backscatter transmitter. The backscatter receiver can extract the information applied in the backscatter transmitter based on the difference in its transmission rate. For example, the backscatter receiver smoothes the received RF signal, calculates a threshold, and then extracts the desired information by comparing the smoothed signal to the threshold.
  • the radio base station performs beamforming and transmits a signal by the transmitted beam.
  • the reflector reflects the signal transmitted from the radio base station.
  • the wireless terminal receives the signal reflected by the reflector.
  • the number of transmission direction candidates of the transmission beam in the radio base station is X (X is an integer of 1 or more). It is assumed that the number of reflecting devices is Y (Y is an integer of 1 or more). It is assumed that the number of reflection direction candidates in each reflecting device is Z (Z is an integer of 2 or more). In this case, the total number of propagation path candidates from the radio base station to the radio terminal via the reflector is represented by X ⁇ Y ⁇ Z (plural).
  • An appropriate one is selected from multiple propagation route candidates and used for wireless communication. For example, the one with the highest communication quality among a plurality of propagation route candidates is selected as an appropriate propagation route. Therefore, in order to select an appropriate one from a plurality of propagation route candidates, it is necessary to evaluate (acquire) the communication quality of all the propagation route candidates.
  • the method for evaluating the communication quality of one propagation route candidate is as follows.
  • the radio base station presets the reflection direction in the reflection device to one direction corresponding to the propagation path candidate. Then, the radio base station transmits the measurement signal for measuring the communication quality by the transmission beam corresponding to the propagation path candidate.
  • the reflecting device reflects the measurement signal incident on the reflecting device in one preset reflection direction.
  • the wireless terminal evaluates the communication quality of the propagation path candidate based on the reception state of the reflection measurement signal received from the reflection device.
  • the communication quality of all the propagation path candidates can be evaluated. Then, by comparing the communication qualities of all the propagation route candidates, an appropriate propagation route can be selected.
  • One object of the present invention is to provide a technique capable of shortening the time required for evaluating the communication quality between a radio base station and a radio terminal via a reflector.
  • the first aspect relates to a wireless communication method for communicating between a wireless base station and a wireless terminal via a reflecting device.
  • the radio base station forms a transmission beam and transmits a signal by the transmission beam.
  • the reflector reflects the signal transmitted from the radio base station.
  • the wireless terminal receives the signal reflected by the reflector.
  • the wireless communication method is (A) Measurement signal transmission processing for transmitting a measurement signal including a beam ID of a transmission beam, which is a signal for measuring the communication quality between a radio base station and a radio terminal, from the radio base station.
  • the measurement signal incident on the reflection device is reflected in a plurality of reflection directions to generate a plurality of reflection measurement signals, and the incident measurement signal is modulated at the time of reflection so that the reflection directions are different for each of the plurality of reflection directions.
  • Measurement signal reflection processing that applies ID information to each of multiple reflection measurement signals.
  • C In the wireless terminal, the reflection direction ID and the beam ID are acquired by demodulating the reflection measurement signal received from the reflection device, and each combination of the beam ID and the reflection direction ID is obtained based on the reception state of the received reflection measurement signal. Includes communication quality evaluation processing to evaluate communication quality.
  • the second aspect relates to wireless communication systems.
  • Wireless communication system A radio base station that forms a transmit beam and transmits signals by the transmit beam, A reflector that reflects the signal transmitted from the radio base station, It is equipped with a wireless terminal that receives the signal reflected by the reflector.
  • the radio base station performs measurement signal transmission processing for transmitting a measurement signal including a beam ID of a transmission beam, which is a signal for measuring the communication quality between the radio base station and the radio terminal.
  • the reflection device reflects the measurement signal incident on the reflection device in a plurality of reflection directions to generate a plurality of reflection measurement signals, and by modulating the incident measurement signal at the time of reflection, different reflections occur in each of the plurality of reflection directions.
  • a measurement signal reflection process is performed in which the information of the direction ID is applied to each of the plurality of reflection measurement signals.
  • the wireless terminal acquires the reflection direction ID and the beam ID by demodulating the reflection measurement signal received from the reflection device, and the communication quality is obtained for each combination of the beam ID and the reflection direction ID based on the reception state of the received reflection measurement signal. Perform communication quality evaluation processing.
  • the third aspect relates to a radio base station that communicates with a radio terminal.
  • the radio base station forms a transmission beam and transmits a signal by the transmission beam.
  • the reflector reflects the signal transmitted from the radio base station.
  • the wireless terminal receives the signal reflected by the reflector.
  • the radio base station performs measurement signal transmission processing for transmitting a measurement signal including a beam ID of a transmission beam, which is a signal for measuring the communication quality between the radio base station and the radio terminal.
  • the reflection device reflects the measurement signal incident on the reflection device in a plurality of reflection directions to generate a plurality of reflection measurement signals, and by modulating the incident measurement signal at the time of reflection, different reflections occur in each of the plurality of reflection directions.
  • a measurement signal reflection process is performed in which the information of the direction ID is applied to each of the plurality of reflection measurement signals.
  • the wireless terminal acquires the reflection direction ID and the beam ID by demodulating the reflection measurement signal received from the reflection device, and the communication quality is obtained for each combination of the beam ID and the reflection direction ID based on the reception state of the received reflection measurement signal. Perform communication quality evaluation processing.
  • the radio base station transmits a measurement signal including the beam ID and not including the reflection direction ID.
  • a fourth aspect relates to a reflector that reflects a signal transmitted from a radio base station.
  • the radio base station forms a transmission beam and transmits a signal by the transmission beam.
  • the wireless terminal receives the signal reflected by the reflector.
  • the radio base station performs measurement signal transmission processing for transmitting a measurement signal including a beam ID of a transmission beam, which is a signal for measuring the communication quality between the radio base station and the radio terminal.
  • the reflection device reflects the measurement signal incident on the reflection device in a plurality of reflection directions to generate a plurality of reflection measurement signals, and by modulating the incident measurement signal at the time of reflection, different reflections occur in each of the plurality of reflection directions.
  • a measurement signal reflection process is performed in which the information of the direction ID is applied to each of the plurality of reflection measurement signals.
  • the wireless terminal acquires the reflection direction ID and the beam ID by demodulating the reflection measurement signal received from the reflection device, and the communication quality is obtained for each combination of the beam ID and the reflection direction ID based on the reception state of the received reflection measurement signal. Perform communication quality evaluation processing.
  • a measurement signal including a beam ID of a transmission beam is transmitted from a radio base station.
  • the measurement signal incident on the reflector is reflected in a plurality of reflection directions.
  • information of the reflection direction ID different for each of the plurality of reflection directions is applied to each of the plurality of reflection measurement signals.
  • the communication quality is evaluated for each combination of the beam ID and the reflection direction ID based on the received reflection measurement signal.
  • the combination of the beam ID and the reflection direction ID corresponds to a propagation path candidate from the radio base station to the radio terminal via the reflection device.
  • FIG. 1 is a schematic diagram showing a basic configuration example of the wireless communication system 10 according to the embodiment of the present invention.
  • the wireless communication system 10 includes a wireless base station 100, a reflecting device 200, and a wireless terminal 300.
  • Wireless communication is performed between the wireless base station 100 and the wireless terminal 300.
  • wireless communication is performed in a high frequency band such as a millimeter wave band. Beamforming using a multi-element antenna is effective for compensating for radio wave attenuation in the high frequency band.
  • the reflector 200 (reflector, reflector) is configured to reflect the incident signal. Further, the reflection device 200 can dynamically control the reflection characteristics including the reflection direction of the signal.
  • the reflector 200 includes a metasurface reflector using a metasurface.
  • the reflection characteristics of the reflection device 200 can be controlled by the radio base station 100. Specifically, the radio base station 100 transmits the reflection control information CON to the reflection device 200 in order to control the reflection characteristics of the reflection device 200.
  • the reflection control information CON specifies the reflection direction and the number of reflection directions of the signal in the reflection device 200.
  • the reflection device 200 sets at least one reflection direction according to the reflection control information CON.
  • wireless communication is performed between the wireless base station 100 and the wireless terminal 300 by using the reflection device 200.
  • the radio base station 100 forms a transmission beam and transmits a signal by the transmission beam.
  • the reflection device 200 reflects the signal transmitted from the radio base station 100 in the set reflection direction.
  • the wireless terminal 300 receives the signal reflected by the reflector 200.
  • the propagation path here means a propagation path in which the wireless terminal 300 can receive the signal transmitted by the wireless base station 100 with a certain reception power or more.
  • a plurality of propagation paths may be formed via each of the plurality of reflecting devices 200. There may be a direct propagation path that does not pass through the reflector 200 as well as a propagation path that passes through the reflector 200. In any case, by using the reflection device 200, a plurality of propagation paths can be formed for one wireless terminal 300. By forming a plurality of propagation paths, it is possible to improve communication performance such as communication quality and spatial multiplicity.
  • the radio base station 100 may dynamically change the reflection direction in the reflection device 200 according to the movement of the radio terminal 300.
  • FIG. 2 is a conceptual diagram for explaining a communication quality evaluation method according to the present embodiment.
  • a "measurement signal MS" for measuring the communication quality is used.
  • the measurement signal MS may be a reference signal.
  • the radio base station 100 forms a transmission beam and transmits the measurement signal MS by the transmission beam.
  • the reflecting device 200 reflects the measurement signal MS incident on the reflecting device 200.
  • the measurement signal MS reflected by the reflection device 200 is hereinafter referred to as “reflection measurement signal RMS”.
  • the wireless terminal 300 receives the reflection measurement signal RMS from the reflection device 200. Then, the wireless terminal 300 evaluates the communication quality of the propagation path candidate based on the reception state of the received reflection measurement signal RMS.
  • the number of transmission direction candidates of the transmission beam in the radio base station 100 is X (X is an integer of 1 or more). It is assumed that the number of the reflecting devices 200 is Y (Y is an integer of 1 or more). It is assumed that the number of reflection direction candidates in each reflection device 200 is Z (Z is an integer of 2 or more).
  • the total number of propagation path candidates from the radio base station 100 to the radio terminal 300 via the reflection device 200 is represented by X ⁇ Y ⁇ Z (plural). In the example shown in FIG. 2, X is 4, Y is 2, Z is 4, and the total number of propagation path candidates is 32.
  • the number (Z) of reflection direction candidates in each reflection device 200 is the same, but the number (Z) may be different for each reflection device 200.
  • the beam ID is identification information that specifies the transmission direction of the transmission beam.
  • the beam ID is different for each transmission direction (transmission direction candidate).
  • # B1 to # B4 are assigned as beam IDs to each of the four transmission directions (transmission direction candidates).
  • the reflection direction ID is identification information for specifying the reflection direction in the reflection device 200.
  • the reflection direction ID is different for each reflection direction (reflection direction candidate).
  • the reflection direction ID may include both the identification information that identifies the reflection device 200 and the identification information that specifies the reflection direction in the reflection device 200.
  • # AR1 to # AR4 are assigned as reflection direction IDs to each of the four reflection directions (reflection direction candidates) in the reflection device 200-A.
  • # BR1 to #BR4 are assigned as reflection direction IDs to each of the four reflection directions (reflection direction candidates) in the reflection device 200-B.
  • One propagation path corresponds to a combination of one beam ID and one reflection direction ID. Determining an appropriate propagation path corresponds to determining an appropriate combination of beam ID and reflection direction ID. In order to determine an appropriate combination of the beam ID and the reflection direction ID, it is necessary to evaluate the communication quality for each combination of the beam ID and the reflection direction ID.
  • the total number of combinations of beam ID and reflection direction ID that is, the total number of propagation path candidates is X ⁇ Y ⁇ Z (plural) as described above. How to efficiently evaluate the communication quality of all propagation path candidates using the above-mentioned measurement signal MS will be described with reference to comparative examples.
  • FIG. 3 is a sequence diagram showing a process related to the communication quality evaluation according to the comparative example.
  • the radio base station 100 presets the reflection direction in the selected reflection device 200. Specifically, the radio base station 100 transmits the reflection control information CON that specifies the reflection direction ID (# AR1) to the selected reflection device 200-A. The reflection device 200-A sets the reflection direction corresponding to the reflection direction ID (# AR1) according to the reflection control information CON.
  • the radio base station 100 transmits the measurement signal MS by the transmission beam corresponding to the beam ID (# B1).
  • the measurement signal MS includes information on both the beam ID (# B1) and the reflection direction ID (# AR1).
  • the reflection device 200-A reflects the incident measurement signal MS in one preset reflection direction.
  • the radio terminal 300 receives the reflection measurement signal RMS from the reflection device 200-A, the wireless terminal 300 acquires the information of the beam ID (# B1) and the reflection direction ID (# AR1) from the received reflection measurement signal RMS. Then, the wireless terminal 300 evaluates the communication quality regarding the combination of the beam ID (# B1) and the reflection direction ID (# AR1) based on the reception state of the received reflection measurement signal RMS.
  • the above series of processes is repeated for all combinations of beam ID and reflection direction ID. That is, the above series of processes is repeated X ⁇ Y ⁇ Z times. In the case of the example shown in FIG. 2, since there are 32 combinations, the above series of processes are repeated 32 times. Thereby, the communication quality for all combinations of the beam ID and the reflection direction ID can be obtained.
  • the wireless terminal 300 determines an appropriate combination of the beam ID and the reflection direction ID based on all the obtained communication qualities. That is, the radio terminal 300 determines an appropriate propagation path between the radio base station 100 and the radio terminal 300. For example, the wireless terminal 300 selects a propagation path that provides the highest communication quality as the optimum propagation path. The radio terminal 300 feeds back the feedback signal FB indicating the combination of the determined beam ID and the reflection direction ID to the radio base station 100. Then, the radio base station 100 controls the communication of the data signal DAT between the radio base station 100 and the radio terminal 300 based on the feedback signal FB. That is, the radio base station 100 sets the reflection direction in the reflection device 200 according to the reflection direction ID, and transmits the data signal DAT by the transmission beam corresponding to the beam ID.
  • FIG. 4 is a sequence diagram showing processing related to communication quality evaluation according to the present embodiment.
  • the reflection device 200 simultaneously reflects the incident measurement signal MS in a plurality of reflection directions. Therefore, the radio base station 100 controls each reflection device 200 so as to reflect the measurement signal MS in a plurality of reflection directions. Specifically, the radio base station 100 transmits a reflection control information CON that specifies a plurality of reflection directions (or a plurality of reflection direction IDs) to each reflection device 200. A plurality of different reflection direction IDs are assigned to the plurality of reflection directions. For example, the reflection device 200-A sets a plurality of reflection directions corresponding to a plurality of reflection direction IDs (# AR1 to # AR4) according to the reflection control information CON. Similarly, the reflection device 200-B sets a plurality of reflection directions corresponding to the plurality of reflection direction IDs (# BR1 to #BR4) according to the reflection control information CON.
  • the radio base station 100 transmits the measurement signal MS by the transmission beam corresponding to one beam ID (for example, # B1).
  • the measurement signal MS includes the information of the beam ID (# B1), but does not include the information of the reflection direction ID.
  • the reflection device 200-A When the measurement signal MS is incident, the reflection device 200-A simultaneously reflects the incident measurement signal MS in a plurality of preset reflection directions. That is, the reflection device 200-A generates a plurality of reflection measurement signal RMS by reflecting a single measurement signal MS incident on the reflection device 200-A in a plurality of reflection directions.
  • the reflection device 200-B simultaneously reflects the incident measurement signal MS in a plurality of preset reflection directions. That is, the reflection device 200-B generates a plurality of reflection measurement signal RMS by reflecting a single measurement signal MS incident on the reflection device 200-B in a plurality of reflection directions.
  • each reflection device 200 the information of the reflection direction ID corresponding to each reflection direction is applied to the plurality of reflection measurement signals RMS. Specifically, each reflection device 200 applies information of a reflection direction ID different for each reflection direction to each of the plurality of reflection measurement signals RMS by modulating the incident measurement signal MS at the time of reflection. For example, the reflection device 200-A applies the information of the reflection direction IDs (# AR1 to # AR4) to each of the plurality of reflection measurement signals RMS. Further, the reflection device 200-B applies the information of the reflection direction IDs (# BR1 to #BR4) to each of the plurality of reflection measurement signals RMS.
  • Non-Patent Document 3 In order to modulate the measurement signal MS and apply the information of the reflection direction ID, for example, the technique of "backscatter communication" disclosed in Non-Patent Document 3 is used. Backscattering modulates the amplitude and phase of an incident RF signal by switching the load impedance at high speed, and applies new information. By applying this backscattering to the incident measurement signal MS, each reflection device 200 can modulate the incident measurement signal MS and apply the information of the reflection direction ID.
  • the reflection device 200 reflects the measurement signal MS while applying the information of the reflection direction ID, and generates the reflection measurement signal RMS to which the information of the reflection direction ID is applied.
  • the wireless terminal 300 When the wireless terminal 300 receives the reflection measurement signal RMS from the reflection device 200, the wireless terminal 300 acquires the reflection direction ID and the beam ID by demodulating the received reflection measurement signal RMS. Then, the wireless terminal 300 evaluates the communication quality for each combination of the beam ID and the reflection direction ID based on the reception state of the received reflection measurement signal RMS.
  • the reflection direction ID applied by backscattering can be extracted by the method disclosed in Non-Patent Document 3. Specifically, the transmission rate differs between the original measurement signal MS and the information of the reflection direction ID applied by backscattering.
  • the wireless terminal 300 can extract information on the reflection direction ID applied by backscattering based on the difference in the transmission rate. For example, the wireless terminal 300 smoothes the received reflection measurement signal RMS, calculates a threshold value, and then extracts information on the reflection direction ID by comparing the smoothed signal with the threshold value.
  • the present embodiment by transmitting a single measurement signal MS corresponding to a single beam ID (transmission direction candidate), it is related to the single beam ID. It is possible to evaluate the communication quality of multiple propagation route candidates at once. Then, by repeating the same process for all beam IDs (transmission direction candidates), the communication quality of all propagation path candidates can be efficiently evaluated.
  • the same process since the number of transmission direction candidates (X) is 4, the same process may be repeated four times. That is, the number of times the process is repeated is reduced to 1/8 of the case of the above comparative example. Therefore, the time required to evaluate the communication quality is shortened. Further, since the number of transmissions of the measurement signal MS is reduced, the amount of radio resources used is reduced and the frequency utilization efficiency is improved.
  • the number of times the process is repeated depends only on the number of transmission direction candidates (X), and does not depend on the number of reflection devices 200 (Y) and the number of reflection direction candidates (Z). Please note. Even if the number (Y) of the reflecting devices 200 increases, the number of times the process is repeated does not change. Even if the number of reflection direction candidates (Z) increases, the number of times the process is repeated does not change. This is preferable from the viewpoint of expanding the use of the reflecting device 200.
  • the reflection direction in the reflection device 200 for communication quality evaluation needs to be set only once at the beginning. This is because it is not necessary to switch the reflection direction after the plurality of reflection directions are initially set in each reflection device 200.
  • the number of times the reflection direction is set using the reflection control information CON is significantly reduced. This not only shortens the time required for evaluating the communication quality, but also contributes to the reduction of the processing load of the radio base station 100.
  • the time required to evaluate the communication quality between the radio base station 100 and the radio terminal 300 via the reflector 200 is shortened. Since the time required to evaluate the communication quality is shortened, the time required to determine the propagation path between the radio base station 100 and the radio terminal 300 is shortened. Since the time required to determine the propagation path is shortened, the communication of the data signal DAT can be started at an early stage. This is preferable from the viewpoint of communication characteristics in a situation where the wireless terminal 300 is moving.
  • the beam ID needs to be added to the measurement signal MS for measuring the communication quality, and it is not necessary to add the reflection direction ID. This is because the information of the reflection direction ID is applied to the reflection measurement signal RMS in the reflection device 200. Since the measurement signal MS does not include the information of the reflection direction ID, the overhead of the measurement signal MS and the overhead of the transmission processing of the measurement signal MS are reduced. Further, since the overhead of the measurement signal MS is reduced, the amount of radio resources used is reduced and the frequency utilization efficiency is improved.
  • the plurality of reflection directions used for communication quality evaluation may be fixed. In this case, it is not necessary to transmit the reflection control information CON for the communication quality evaluation shown in FIG.
  • the reflection device 200 assigns a plurality of reflection direction IDs to each of the plurality of reflection directions in advance. Others are the same as in the case of the above-described embodiment. Since it is not necessary to transmit the reflection control information CON for the communication quality evaluation, the processing time and the processing load are further reduced.
  • the reflection direction ID includes only the identification information for specifying the reflection direction, and may not include the identification information for specifying the reflection device 200.
  • the measurement signal MS transmitted from the radio base station 100 includes the beam ID and the identification information for identifying the reflecting device 200.
  • the radio base station 100 transmits a measurement signal MS for each combination of the beam ID and the reflection device 200.
  • the number of times the process is repeated in this case is X ⁇ Y. Even in this case, at least the effect can be obtained as compared with the above comparative example.
  • FIG. 5 is a flowchart schematically showing processing related to communication quality evaluation according to the present embodiment.
  • step S10 the radio base station 100 and the reflection device 200 perform "reflection setting processing". Specifically, the radio base station 100 transmits a reflection control information CON that specifies a plurality of reflection directions to the reflection device 200. The reflection device 200 sets a plurality of reflection directions according to the reflection control information CON. A plurality of different reflection direction IDs are assigned to the plurality of reflection directions. In the case of the above-mentioned first modification, step S10 is omitted.
  • the radio base station 100 performs "measurement signal transmission processing". Specifically, the radio base station 100 forms a transmission beam and transmits a measurement signal MS by the transmission beam.
  • the measurement signal MS includes information on the beam ID, but does not include information on the reflection direction ID.
  • the reflection device 200 performs "measurement signal reflection processing". Specifically, the reflection device 200 generates a plurality of reflection measurement signal RMS by simultaneously reflecting a single measurement signal MS incident on the reflection device 200 in a plurality of reflection directions. At the time of this reflection, the reflection device 200 applies information of a reflection direction ID different for each of the plurality of reflection directions to each of the plurality of reflection measurement signals RMS by modulating the incident single measurement signal MS. For example, the reflector 200 modulates the incident single measurement signal MS by applying backscattering to the incident single measurement signal MS.
  • step S300 the wireless terminal 300 performs "communication quality evaluation processing". Specifically, the wireless terminal 300 acquires the reflection direction ID and the beam ID by demodulating the reflection measurement signal RMS received from the reflection device 200. Then, the wireless terminal 300 evaluates the communication quality for each combination of the beam ID and the reflection direction ID based on the reception state of the received reflection measurement signal RMS.
  • Steps S100 to S300 are repeatedly executed for each beam ID (transmission direction candidate). It is not necessary to repeat step S10 (reflection setting process). After the communication quality evaluation process for all beam IDs (transmission direction candidates) is completed, the process proceeds to step S400.
  • step S400 the wireless terminal 300 performs "propagation route determination processing". Specifically, the wireless terminal 300 determines an appropriate combination of the beam ID and the reflection direction ID based on all the obtained communication qualities. That is, the radio terminal 300 determines an appropriate propagation path between the radio base station 100 and the radio terminal 300. The radio terminal 300 feeds back the feedback signal FB indicating the combination of the determined beam ID and the reflection direction ID to the radio base station 100 (see FIG. 4).
  • the propagation route determination process may be performed by the wireless base station 100 instead of the wireless terminal 300.
  • the feedback signal FB fed back from the wireless terminal 300 to the wireless base station 100 indicates the communication quality for each combination of the beam ID and the reflection direction ID.
  • the radio base station 100 determines an appropriate combination of beam ID and reflection direction ID, that is, an appropriate propagation path, based on the feedback signal FB.
  • the radio base station 100 performs "data communication processing". Specifically, the radio base station 100 controls the communication of the data signal DAT between the radio base station 100 and the radio terminal 300 based on the propagation path determined in step S400. More specifically, the radio base station 100 transmits the reflection control information CON to the reflection device 200 specified by the reflection direction ID.
  • the reflection control information CON includes a reflection direction specified by the reflection direction ID.
  • the reflection device 200 sets the reflection direction corresponding to the reflection direction ID according to the reflection control information CON. Then, the radio base station 100 transmits the data signal DAT by the transmission beam corresponding to the beam ID.
  • FIG. 6 is a block diagram showing a configuration example of the radio base station 100 according to the present embodiment.
  • the radio base station 100 includes an antenna unit 110, a radio unit 120, a control unit 130, and a communication unit 140.
  • the antenna unit 110 transmits and receives radio waves.
  • the antenna unit 110 outputs the received signal to the radio unit 120, and also transmits the signal input from the radio unit 120.
  • the type of antenna is arbitrary.
  • the antenna unit 110 may have a plurality of antenna elements and a variable phase shifter, and perform analog beamforming.
  • the wireless unit 120 includes a transmitter / receiver and performs transmission / reception processing according to the communication method between the wireless base station 100 and the wireless terminal 300.
  • the radio unit 120 forms a transmission beam corresponding to the beam ID, and transmits the measurement signal MS and the data signal DAT input from the control unit 130.
  • the radio unit 120 receives the feedback signal FB transmitted from the radio terminal 300, and acquires the beam ID and the reflection direction ID included in the feedback signal FB.
  • the radio unit 120 sends the acquired beam ID and reflection direction ID information to the control unit 130.
  • the radio unit 120 also communicates with a higher-level network of the radio base station 100.
  • the control unit 130 performs various information processing.
  • the control unit 130 manages the wireless terminal 300, the beam ID, and the reflection direction ID in association with each other.
  • the control unit 130 In the measurement signal transmission process (step S100), the control unit 130 generates the measurement signal MS and outputs the measurement signal MS to the wireless unit 120.
  • the measurement signal MS includes information on the beam ID, known information on the wireless terminal 300, and the like. In order to improve the demodulation accuracy, the measurement signal MS may include a preamble portion for channel estimation.
  • the control unit 130 In the data communication process (step S500), the control unit 130 generates a data signal DAT and outputs the data signal DAT to the radio unit 120.
  • the control unit 130 manages and controls the reflection device 200 and the reflection characteristics.
  • the control unit 130 In the reflection setting process (step S10) and the data communication process (step S500), the control unit 130 generates a reflection control information CON for controlling the reflection characteristic, and outputs the reflection control information CON to the communication unit 140.
  • the reflection control information CON specifies the number N of reflection directions and the reflection direction (or reflection direction ID) in the reflection device 200.
  • the number N in the reflection direction is 1 or more.
  • two or more reflection direction numbers N are specified.
  • the two or more reflection directions may be arbitrary.
  • the two or more reflection directions include the reflection direction corresponding to the reflection direction ID currently associated with the wireless terminal 300.
  • the number of reflection directions N may be set to 2 or more.
  • the function of the control unit 130 is realized by a controller that performs various information processing.
  • the controller includes a processor 131 and a storage device 132.
  • Various information and control programs are stored in the storage device 132. Examples of the storage device 132 include a volatile memory and a non-volatile memory.
  • the function of the control unit 130 is realized by the processor 131 executing the control program stored in the storage device 132.
  • the control program may be recorded on a computer-readable recording medium.
  • the controller may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array).
  • the communication unit 140 transmits the reflection control information CON input from the control unit 130 to the reflection device 200.
  • the communication method is arbitrary.
  • the communication method is wired communication such as optical communication.
  • the communication method may be the same as the radio communication method between the radio base station 100 and the radio terminal 300 (the frequency bands may be the same or different). In this case, the communication unit 140 and the wireless unit 120 may be common.
  • FIG. 7 is a block diagram showing a configuration example of the reflection device 200 according to the present embodiment.
  • the reflection device 200 includes a plurality of reflection units 210-1 to 210-m (m is an integer of 2 or more), a communication unit 220, and a control unit 230.
  • the reflection information modulation unit 212-i applies the information of the designated reflection direction ID to the measurement signal MS by modulating the measurement signal MS incident on the reflection element 211-i. do.
  • the information of the reflection direction ID is notified from the control unit 230.
  • the modulation method is arbitrary.
  • the modulation method can be selected from ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying), PSK (Phase Shift Keying), and QAM (Quadrature Amplitude Modulation).
  • the reflection information modulation unit 212-i modulates the measurement signal MS by applying backscattering that switches the load impedance at high speed to the measurement signal MS, and applies the information of the reflection direction ID. It is not always necessary to operate the reflection information modulation unit 212-i for signals other than the measurement signal MS.
  • the phase conversion unit 213-i includes a variable phase shifter.
  • the phase conversion unit 213-i converts the phase of the reflected signal so that the specified reflection direction is realized.
  • the phase amount information is notified from the control unit 230.
  • the phase conversion unit 213-i multiplies the notified phase amount by the reflected signal, and then outputs the reflected signal to the reflecting element 211-i.
  • the communication unit 220 receives the reflection control information CON transmitted from the radio base station 100.
  • the communication method is the same as the communication method of the communication unit 140 in the radio base station 100.
  • the communication unit 220 sends the received reflection control information CON to the control unit 230.
  • the control unit 230 performs various information processing. For example, in the reflection setting process (step S10) and the data communication process (step S500), the control unit 230 generates the reflection group information GRP from the reflection control information CON. As described above, the reflection control information CON includes the number N of reflection directions and the reflection direction (or reflection direction ID). The control unit 230 divides a plurality of reflection units 210-1 to 210-m into N groups. Then, the control unit 230 assigns different reflection directions and reflection direction IDs to each of the N groups. FIG. 8 shows an example of the reflection group information GRP. The reflection group information GRP indicates the reflection unit number, the reflection direction, and the reflection direction ID that specify the reflection unit 210 for each group. The reflection group information GRP is updated each time the reflection control information CON is notified.
  • the control unit 230 refers to the reflection group information GRP and recognizes the reflection direction ID assigned to each group and the reflection unit 210 constituting each group. Then, the control unit 230 notifies the reflection information modulation unit 212 of the reflection unit 210 of the information of the reflection direction ID assigned to each group.
  • control unit 230 refers to the reflection group information GRP and recognizes the reflection direction assigned to each group and the reflection unit 210 constituting each group.
  • the control unit 230 calculates the amount of phase to be multiplied by the phase conversion unit 213 of the reflection unit 210 of each group so that the assigned reflection direction is realized. In the calculation of the phase amount, the arrangement of the reflecting element 211 in each group is also taken into consideration. Then, the control unit 230 notifies the phase conversion unit 213 of the reflection unit 210 of the calculated phase amount information for each group.
  • the function of the control unit 230 is realized by a controller that performs various information processing.
  • the controller includes a processor 231 and a storage device 232.
  • Various information and control programs are stored in the storage device 232. Examples of the storage device 232 include a volatile memory and a non-volatile memory.
  • the function of the control unit 230 is realized by the processor 231 executing the control program stored in the storage device 232.
  • the control program may be recorded on a computer-readable recording medium.
  • the controller may be realized by using hardware such as ASIC, PLD, FPGA and the like.
  • FIG. 9 is a block diagram showing a configuration example of the wireless terminal 300 according to the present embodiment.
  • the wireless terminal 300 includes an antenna unit 310, a wireless unit 320, a reflection information demodulation unit 330, a communication quality calculation unit 340, and a control unit 350.
  • the antenna unit 310 transmits and receives radio waves.
  • the antenna unit 310 outputs the received signal to the radio unit 320, and also transmits the signal input from the radio unit 320.
  • the type of antenna is arbitrary.
  • the antenna unit 310 may have a plurality of antenna elements and a variable phase shifter, and perform analog beamforming.
  • the wireless unit 320 includes a transmitter / receiver and performs transmission / reception processing according to the communication method between the wireless base station 100 and the wireless terminal 300. For example, in the data communication process (step S500), the radio unit 320 receives the data signal DAT transmitted from the radio base station 100 and outputs the data signal DAT to the control unit 350. Further, in the propagation route determination process (step S400), the radio unit 320 performs a transmission process for transmitting the feedback signal FB output from the control unit 350. Further, in the communication quality evaluation process (step S300), the radio unit 320 receives the reflection measurement signal RMS, acquires the beam ID by demodulating the received reflection measurement signal RMS, and obtains the beam ID information in the control unit 350. Output to.
  • step S500 the radio unit 320 receives the data signal DAT transmitted from the radio base station 100 and outputs the data signal DAT to the control unit 350. Further, in the propagation route determination process (step S400), the radio unit 320 performs a transmission process for transmitting the feedback signal
  • the reflection information demodulation unit 330 receives the reflection measurement signal RMS via the antenna unit 310.
  • the reflection information demodulation unit 330 acquires the reflection direction ID applied by the reflection device 200 by demodulating the received reflection measurement signal RMS.
  • the demodulation method corresponds to the modulation method in the reflection information modulation unit 212 of the reflection device 200.
  • the reflection direction ID applied by backscattering can be obtained by the method disclosed in Non-Patent Document 3.
  • the reflection information demodulation unit 330 smoothes the received reflection measurement signal RMS, calculates a threshold value, and then acquires information on the reflection direction ID by comparing the smoothed signal with the threshold value.
  • Such a reflection information demodulation unit 330 can be realized by a simple analog circuit using a capacitor or a comparator.
  • the communication quality calculation unit 340 receives the reflection measurement signal RMS via the antenna unit 310.
  • the communication quality calculation unit 340 calculates the communication quality based on the received reflection measurement signal RMS.
  • the communication quality is represented by parameters such as RSSI (Received Signal Strength Indicator), RSRP (Reference Signal Received Power), SINR (Signal to Interference plus Noise Ratio), and error rate.
  • the communication quality calculation unit 340 may rank the communication quality. For example, when RSRP is equal to or higher than the first threshold value and the error rate is lower than the second threshold value, the communication quality is rank 1 (high quality).
  • the communication quality is rank 2 (medium quality). If the RSRP is less than the first threshold and the error rate is less than the second threshold, the communication quality is rank 3 (medium quality). If the RSRP is less than the first threshold and the error rate is greater than or equal to the second threshold, the communication quality is rank 4 (low quality).
  • the communication quality calculation unit 340 outputs the acquired communication quality information to the control unit 350.
  • the control unit 350 performs various information processing. For example, in the communication quality evaluation process (step S300), the control unit 350 receives the beam ID, the reflection direction ID, and the communication quality information, and generates the communication quality information QLC.
  • FIG. 10 shows an example of communication quality information QLC.
  • the communication quality information QLC indicates the communication quality for each combination of the beam ID and the reflection direction ID.
  • the control unit 350 determines an appropriate combination of the beam ID and the reflection direction ID based on the communication quality information QLC. That is, the control unit 350 determines an appropriate propagation path between the radio base station 100 and the radio terminal 300. For example, the control unit 350 determines the combination of the beam ID and the reflection direction ID having the highest communication quality within a certain period. Then, the control unit 350 outputs a feedback signal FB indicating the combination of the determined beam ID and the reflection direction ID to the radio unit 320.
  • control unit 350 may extract all combinations whose communication quality is equal to or higher than a predetermined threshold value as use candidates. In this case, the control unit 350 determines whether or not the previous combination is included in the use candidates. When the previous combination is included in the use candidates, the control unit 350 preferentially selects the previous combination. In the case of this example, frequent switching of the transmission beam and the reflection direction is suppressed. As a result, more stable communication is provided.
  • the control unit 350 determines whether or not the previous combination is included in the plurality of combinations. When the previous combination is included in a plurality of combinations, the control unit 350 preferentially selects the previous combination. Also in this example, frequent switching of the transmission beam and the reflection direction is suppressed. As a result, more stable communication is provided.
  • the function of the control unit 350 is realized by a controller that performs various information processing.
  • the controller includes a processor 351 and a storage device 352.
  • Various information and control programs are stored in the storage device 352. Examples of the storage device 352 include a volatile memory and a non-volatile memory.
  • the function of the control unit 350 is realized by the processor 351 executing the control program stored in the storage device 352.
  • the control program may be recorded on a computer-readable recording medium.
  • the controller may be realized by using hardware such as ASIC, PLD, FPGA and the like.
  • Wireless communication system 100 Wireless base station 200
  • Wireless terminal CON Reflection control information
  • DAT data signal FB feedback signal
  • GRP reflection group information MS measurement signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

反射装置を経由して無線基地局と無線端末との間で通信が行われる。無線基地局は、無線基地局と無線端末との間の通信品質を測定するための信号であって送信ビームのビームIDを含む測定信号を送信する。反射装置は、反射装置に入射した測定信号を複数の反射方向に反射することによって、複数の反射測定信号を生成する。また、反射装置は、入射した測定信号を反射時に変調することによって、複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号のそれぞれに印加する。無線端末は、反射装置から受信した反射測定信号を復調することによって、反射方向IDとビームIDを取得する。そして、無線端末は、受信した反射測定信号の受信状態に基づいて、ビームIDと反射方向IDの組み合わせ毎に通信品質を評価する。

Description

無線通信方法、無線通信システム、無線基地局、及び反射装置
 本発明は、反射装置を経由して無線基地局と無線端末との間で通信を行う技術に関する。
 無線アクセスの高速・大容量化を実現するため、広帯域幅を確保可能な高周波数帯を活用することが注目されている。例えば、第5世代移動通信システムでは、28GHz帯を利用して高速・大容量通信を実現している。他の例として、無線LAN規格であるIEEE802.11ad(ミリ波無線LANシステム)では、60GHz帯を利用して高速・大容量通信を実現している。
 高周波数帯の電波は、低周波数帯と比較して、減衰しやすく、また、回折しづらいという特性を有する。そのため、高周波数帯における課題としては、電波減衰により伝送距離が短くなること、障害物等によって受信品質が劣化すること、等が挙げられる。
 電波減衰を補償するためには、多素子アンテナを用いたビームフォーミングが有効である。ビームフォーミング利得により、電波減衰を補償し、伝送距離を延ばすことができる。但し、ビームフォーミングの場合、受信局は、送信局から特定の方向に向けて集中的に送信された電波を主に受信する。つまり、受信局は、電力の高い1つの伝搬経路の電波を主に受信する。よって、空間多重数は1(もしくは、偏波多重により2)に留まり、また、空間ダイバーシチ効果も得られにくい。
 一方、障害物等に起因する受信品質の劣化を抑制するためには、多数の送信点を設けることが考えられる。例えば、多数の送信アンテナを異なる場所に設置することにより、見通し外環境となるエリアを小さくし、受信品質を改善することができる。また、それにより、上述のビームフォーミングにおける課題を解決することも可能である。しかしながら、多数の送信アンテナを異なる場所に設置することは、ネットワークコストや設置場所の増加を招く。
 多数の送信点を設けるという観点から言えば、より低コスト且つ設置規模の小さい反射装置(反射板、リフレクタ)を利用することも有効である。特に、近年、反射方向等の反射特性を動的に制御可能なメタサーフェス反射板等も開発されている(非特許文献1、非特許文献2、参照)。そのような反射装置を利用して1つの受信局に対して複数の伝搬経路を形成することによって、通信品質や空間多重性といった通信性能を向上させることが可能となる。
 非特許文献3は、「バックスキャッタ通信(backscatter communication)」と呼ばれる技術を開示している。バックスキャッタ送信器は、自ら搬送波を作り出す代わりに、周囲環境に存在するRF信号を受信し、受信RF信号を変調して反射することによってデータを伝送する。より詳細には、バックスキャッタ送信器は、受信RF信号を反射する際に、アンテナの負荷インピーダンスを高速に切り替えることによって受信RF信号を変調する。これにより、受信RF信号に所望の情報を印加しながら受信RF信号を反射することが可能となる。元のRF信号とバックスキャッタ送信器において印加される情報とでは、伝送レートが異なる。バックスキャッタ受信器は、その伝送レートの差異に基づいて、バックスキャッタ送信器において印加された情報を抽出することができる。例えば、バックスキャッタ受信器は、受信RF信号を平滑化し、閾値を計算し、その後、平滑化信号を閾値と比較することにより所望の情報を抽出する。
C. Liaskos, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "Using any Surface to Realize a New Paradigm for Wireless Communications," Communications of the ACM, Vol.61, No.11, Nov. 2018. E. Baser, M. D. Renzo, J. D. Rosny, M. Debbah, M-S Alouini, and R. Zhang, "Wireless Communications Through Reconfigurable Intelligent Surfaces," IEEE Access, Vol.7, Aug. 2019. N. V. Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, "Ambient Backscatter Communications: A Contemporary Survey," IEEE Communications Surveys and Tutorials, Vol. 20, Issue 4, May 2018.
 反射装置を利用して無線基地局と無線端末との間で通信を行うことを考える。無線基地局は、ビームフォーミングを行い、送信ビームによって信号を送信する。反射装置は、無線基地局から送信された信号を反射する。無線端末は、反射装置によって反射された信号を受信する。
 ここで、無線基地局における送信ビームの送信方向候補の数はXであるとする(Xは1以上の整数)。反射装置の数はYであるとする(Yは1以上の整数)。各反射装置における反射方向候補の数はZであるとする(Zは2以上の整数)。この場合、反射装置を経由した無線基地局から無線端末への伝搬経路候補の総数は、X×Y×Z(複数)で表される。
 複数の伝搬経路候補の中から適切なものが選択され、無線通信に使用される。例えば、複数の伝搬経路候補のうち最も通信品質の高いものが適切な伝搬経路として選択される。従って、複数の伝搬経路候補の中から適切なものを選択するためには、全ての伝搬経路候補の通信品質を評価(取得)する必要がある。
 ある1つの伝搬経路候補の通信品質を評価するための手法は、次の通りである。無線基地局は、反射装置における反射方向を、伝搬経路候補に対応する1つの方向に予め設定する。そして、無線基地局は、通信品質を測定するための測定信号を、伝搬経路候補に対応する送信ビームによって送信する。反射装置は、反射装置に入射した測定信号を、予め設定された1つの反射方向に反射する。無線端末は、反射装置から受信した反射測定信号の受信状態に基づいて、伝搬経路候補の通信品質を評価する。
 上記の一連の処理を複数の伝搬経路候補の全てについて繰り返すことによって、すなわち、X×Y×Z回繰り返すことによって、全ての伝搬経路候補の通信品質を評価することができる。そして、全ての伝搬経路候補の通信品質を比較することによって、適切な伝搬経路を選択することができる。
 しかしながら、通信品質評価のための上記一連の処理をX×Y×Z回繰り返すためには、長い時間がかかる。通信品質評価に要する時間の増大は、適切な伝搬経路の決定に要する時間の増大、ひいては、無線基地局と無線端末との間の通信の開始の遅れを招く。無線端末が移動する状況下では、これらのことは、通信特性の劣化を招く。
 本発明の1つの目的は、反射装置を経由した無線基地局と無線端末との間の通信品質を評価するために要する時間を短縮することができる技術を提供することにある。
 第1の観点は、反射装置を経由して無線基地局と無線端末との間で通信を行う無線通信方法に関連する。
 無線基地局は、送信ビームを形成し、送信ビームによって信号を送信する。
 反射装置は、無線基地局から送信された信号を反射する。
 無線端末は、反射装置によって反射された信号を受信する。
 無線通信方法は、
 (A)無線基地局と無線端末との間の通信品質を測定するための信号であって送信ビームのビームIDを含む測定信号を、無線基地局から送信する測定信号送信処理と、
 (B)反射装置に入射した測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、入射した測定信号を反射時に変調することによって複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号のそれぞれに印加する測定信号反射処理と、
 (C)無線端末において、反射装置から受信した反射測定信号を復調することによって反射方向IDとビームIDを取得し、受信した反射測定信号の受信状態に基づいてビームIDと反射方向IDの組み合わせ毎に通信品質を評価する通信品質評価処理と
 を含む。
 第2の観点は、無線通信システムに関連する。
 無線通信システムは、
 送信ビームを形成し、送信ビームによって信号を送信する無線基地局と、
 無線基地局から送信された信号を反射する反射装置と、
 反射装置によって反射された信号を受信する無線端末と
 を備える。
 無線基地局は、無線基地局と無線端末との間の通信品質を測定するための信号であって送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行う。
 反射装置は、反射装置に入射した測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、入射した測定信号を反射時に変調することによって複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号のそれぞれに印加する測定信号反射処理を行う。
 無線端末は、反射装置から受信した反射測定信号を復調することによって反射方向IDとビームIDを取得し、受信した反射測定信号の受信状態に基づいてビームIDと反射方向IDの組み合わせ毎に通信品質を評価する通信品質評価処理を行う。
 第3の観点は、無線端末と通信を行う無線基地局に関連する。
 無線基地局は、送信ビームを形成し、送信ビームによって信号を送信する。
 反射装置は、無線基地局から送信された信号を反射する。
 無線端末は、反射装置によって反射された信号を受信する。
 無線基地局は、無線基地局と無線端末との間の通信品質を測定するための信号であって送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行う。
 反射装置は、反射装置に入射した測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、入射した測定信号を反射時に変調することによって複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号のそれぞれに印加する測定信号反射処理を行う。
 無線端末は、反射装置から受信した反射測定信号を復調することによって反射方向IDとビームIDを取得し、受信した反射測定信号の受信状態に基づいてビームIDと反射方向IDの組み合わせ毎に通信品質を評価する通信品質評価処理を行う。
 測定信号送信処理において、無線基地局は、ビームIDを含み反射方向IDを含まない測定信号を送信する。
 第4の観点は、無線基地局から送信される信号を反射する反射装置に関連する。
 無線基地局は、送信ビームを形成し、送信ビームによって信号を送信する。
 無線端末は、反射装置によって反射された信号を受信する。
 無線基地局は、無線基地局と無線端末との間の通信品質を測定するための信号であって送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行う。
 反射装置は、反射装置に入射した測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、入射した測定信号を反射時に変調することによって複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号のそれぞれに印加する測定信号反射処理を行う。
 無線端末は、反射装置から受信した反射測定信号を復調することによって反射方向IDとビームIDを取得し、受信した反射測定信号の受信状態に基づいてビームIDと反射方向IDの組み合わせ毎に通信品質を評価する通信品質評価処理を行う。
 本発明によれば、送信ビームのビームIDを含む測定信号が無線基地局から送信される。反射装置に入射した測定信号は、複数の反射方向に反射される。この反射時、複数の反射方向毎に異なる反射方向IDの情報が、複数の反射測定信号のそれぞれに印加される。無線端末では、受信した反射測定信号に基づいて、ビームIDと反射方向IDの組み合わせ毎に通信品質が評価される。ビームIDと反射方向IDの組み合わせは、反射装置を経由した無線基地局から無線端末への伝搬経路候補に相当する。反射装置において単一の測定信号から複数の反射測定信号が生成されるため、単一の測定信号を送信することによって、複数の伝搬経路候補の通信品質を一括して評価することが可能となる。従って、通信品質を評価するために要する時間が短縮される。また、測定信号の送信回数が削減されるため、無線リソースの使用量が削減され、周波数利用効率が向上する。
本発明の実施の形態に係る無線通信システムの基本構成例を示す概略図である。 本発明の実施の形態に係る無線基地局と無線端末との間の通信品質の評価方法を説明するための概念図である。 比較例に係る通信品質評価に関連する処理を示すシーケンス図である。 本発明の実施の形態に係る通信品質評価に関連する処理を示すシーケンス図である。 本発明の実施の形態に係る通信品質評価に関連する処理を要約的に示すフローチャートである。 本発明の実施の形態に係る無線基地局の構成例を示すブロック図である。 本発明の実施の形態に係る反射装置の構成例を示すブロック図である。 本発明の実施の形態に係る反射グループ情報の一例を示す概念図である。 本発明の実施の形態に係る無線端末の構成例を示すブロック図である。 本発明の実施の形態に係る通信品質情報の一例を示す概念図である。
 添付図面を参照して、本発明の実施の形態を説明する。
 1.無線通信システムの基本構成
 図1は、本発明の実施の形態に係る無線通信システム10の基本構成例を示す概略図である。無線通信システム10は、無線基地局100、反射装置200、及び無線端末300を含んでいる。無線基地局100と無線端末300との間で無線通信が行われる。例えば、ミリ波帯等の高周波数帯で無線通信が行われる。高周波数帯での電波減衰を補償するためには、多素子アンテナを用いたビームフォーミングが有効である。
 反射装置200(反射板、リフレクタ)は、入射した信号を反射するように構成されている。また、反射装置200は、信号の反射方向を含む反射特性を動的に制御可能である。例えば、反射装置200は、メタサーフェスを利用したメタサーフェス反射板を含んでいる。
 反射装置200の反射特性は、無線基地局100によって制御可能である。具体的には、無線基地局100は、反射装置200の反射特性を制御するため反射制御情報CONを反射装置200に送信する。例えば、反射制御情報CONは、反射装置200における信号の反射方向と反射方向数を指定する。反射装置200は、反射制御情報CONに従って、少なくとも1つの反射方向を設定する。
 本実施の形態によれば、この反射装置200を利用して無線基地局100と無線端末300との間の無線通信が行われる。例えば、無線基地局100は、送信ビームを形成し、送信ビームによって信号を送信する。反射装置200は、無線基地局100から送信された信号を、設定された反射方向に反射する。無線端末300は、反射装置200によって反射された信号を受信する。このように、反射装置200を利用することによって、反射装置200を経由した無線基地局100から無線端末300への伝搬経路が形成される。尚、ここでの伝搬経路とは、無線基地局100が送信した信号を無線端末300が一定の受信電力以上で受信することができる伝搬経路を意味する。
 複数の反射装置200が設置されている場合、複数の反射装置200のそれぞれを経由する複数の伝搬経路が形成されてもよい。反射装置200を経由した伝搬経路だけでなく、反射装置200を経由しない直接伝搬経路が存在していてもよい。いずれにせよ、反射装置200を利用することによって、1つの無線端末300に対して複数の伝搬経路を形成することができる。複数の伝搬経路を形成することによって、通信品質や空間多重性といった通信性能を向上させることが可能となる。
 無線端末300の移動に伴って、反射装置200を経由した最適な伝搬経路も変化し得る。従って、無線基地局100は、無線端末300の移動に応じて、反射装置200における反射方向を動的に変化させてもよい。
 2.通信品質評価
 2-1.概要
 反射装置200を経由した無線基地局100から無線端末300への伝搬経路には、複数の候補が存在し得る。それら複数の伝搬経路候補の中から適切なものが選択され、無線通信に使用される。例えば、複数の伝搬経路候補のうち最も通信品質の高いものが適切な伝搬経路として選択される。従って、複数の伝搬経路候補の中から適切なものを選択するためには、全ての伝搬経路候補の通信品質を評価(取得)する必要がある。
 図2は、本実施の形態に係る通信品質の評価方法を説明するための概念図である。通信品質評価には、通信品質を測定するための「測定信号MS」が利用される。測定信号MSは、参照信号であってもよい。無線基地局100は、送信ビームを形成し、送信ビームによって測定信号MSを送信する。反射装置200は、反射装置200に入射した測定信号MSを反射する。便宜上、反射装置200によって反射された測定信号MSを、以下「反射測定信号RMS」と呼ぶ。無線端末300は、反射装置200から反射測定信号RMSを受信する。そして、無線端末300は、受信した反射測定信号RMSの受信状態に基づいて、伝搬経路候補の通信品質を評価する。
 伝搬経路候補は複数存在する。より詳細には、無線基地局100における送信ビームの送信方向候補の数はXであるとする(Xは1以上の整数)。反射装置200の数はYであるとする(Yは1以上の整数)。各反射装置200における反射方向候補の数はZであるとする(Zは2以上の整数)。この場合、反射装置200を経由した無線基地局100から無線端末300への伝搬経路候補の総数は、X×Y×Z(複数)で表される。図2に示される例では、Xは4であり、Yは2であり、Zは4であり、伝搬経路候補の総数は32である。尚、ここでは、簡単のため、各反射装置200における反射方向候補の数(Z)が同じである場合を考えるが、数(Z)は反射装置200毎に異なっていてもよい。
 ビームIDは、送信ビームの送信方向を特定する識別情報である。ビームIDは、送信方向(送信方向候補)毎に異なる。図2に示される例では、4つの送信方向(送信方向候補)のそれぞれに、ビームIDとして#B1~#B4が割り当てられている。
 反射方向IDは、反射装置200における反射方向を特定する識別情報である。反射方向IDは、反射方向(反射方向候補)毎に異なる。反射方向IDは、反射装置200を特定する識別情報と当該反射装置200における反射方向を特定する識別情報の両方を含んでいてもよい。図2に示される例では、反射装置200-Aにおける4つの反射方向(反射方向候補)のそれぞれに、反射方向IDとして#AR1~#AR4が割り当てられている。同様に、反射装置200-Bにおける4つの反射方向(反射方向候補)のそれぞれに、反射方向IDとして#BR1~#BR4が割り当てられている。
 1つの伝搬経路(伝搬経路候補)は、1つのビームIDと1つの反射方向IDの組み合わせに相当する。適切な伝搬経路を決定することは、ビームIDと反射方向IDの適切な組み合わせを決定することに相当する。ビームIDと反射方向IDの適切な組み合わせを決定するためには、ビームIDと反射方向IDの組み合わせ毎に通信品質を評価する必要がある。
 ビームIDと反射方向IDの組み合わせの総数、すなわち、伝搬経路候補の総数は、上述の通りX×Y×Z(複数)である。上述の測定信号MSを用いて全ての伝搬経路候補の通信品質を如何に効率的に評価するかについて、比較例も交えて説明する。
 2-2.比較例に係る通信品質評価に関連する処理
 まず、比較例について説明する。図3は、比較例に係る通信品質評価に関連する処理を示すシーケンス図である。
 まず、無線基地局100は、通信品質評価の対象となる1つの伝搬経路候補(すなわち、1つの送信方向候補、1つの反射装置200、及び1つの反射方向候補)を選択する。言い換えれば、無線基地局100は、ビームIDと反射方向IDの1つの組み合わせを選択する。例えば、無線基地局100は、ビームID=#B1と、反射方向ID=#AR1を選択する。
 続いて、無線基地局100は、選択した反射装置200における反射方向を予め設定する。具体的には、無線基地局100は、反射方向ID(#AR1)を指定する反射制御情報CONを、選択した反射装置200-Aに送信する。反射装置200-Aは、その反射制御情報CONに従って、反射方向ID(#AR1)に対応する反射方向を設定する。
 続いて、無線基地局100は、ビームID(#B1)に対応する送信ビームによって測定信号MSを送信する。その測定信号MSは、ビームID(#B1)と反射方向ID(#AR1)の両方の情報を含んでいる。反射装置200-Aは、測定信号MSが入射した場合、入射した測定信号MSを予め設定された1つの反射方向に反射する。無線端末300は、反射装置200-Aから反射測定信号RMSを受信した場合、受信した反射測定信号RMSからビームID(#B1)と反射方向ID(#AR1)の情報を取得する。そして、無線端末300は、受信した反射測定信号RMSの受信状態に基づいて、ビームID(#B1)と反射方向ID(#AR1)の組み合わせに関する通信品質を評価する。
 上記の一連の処理が、ビームIDと反射方向IDの全ての組み合わせについて繰り返される。すなわち、上記の一連の処理が、X×Y×Z回繰り返される。図2で示された例の場合、組み合わせパターンは32通りであるため、上記の一連の処理が32回繰り返される。それにより、ビームIDと反射方向IDの全ての組み合わせに対する通信品質が得られる。
 無線端末300は、得られた全ての通信品質に基づいて、ビームIDと反射方向IDの適切な組み合わせを決定する。すなわち、無線端末300は、無線基地局100と無線端末300との間の適切な伝搬経路を決定する。例えば、無線端末300は、最高の通信品質が得られる伝搬経路を最適な伝搬経路として選択する。無線端末300は、決定したビームIDと反射方向IDの組み合わせを示すフィードバック信号FBを、無線基地局100にフィードバックする。そして、無線基地局100は、フィードバック信号FBに基づいて、無線基地局100と無線端末300との間のデータ信号DATの通信を制御する。つまり、無線基地局100は、反射方向IDに従って反射装置200における反射方向を設定し、ビームIDに対応する送信ビームによってデータ信号DATを送信する。
 しかしながら、通信品質評価のための上記一連の処理をX×Y×Z回繰り返すためには、長い時間がかかる。特に、反射装置200の数(Y)及び反射方向候補の数(Z)の増大は、繰り返し回数の増大に直結しており、通信品質評価に要する時間の増大を招く。通信品質評価に要する時間の増大は、無線基地局100と無線端末300との間の伝搬経路の決定に要する時間の増大を招く。伝搬経路の決定に要する時間の増大は、データ信号DATの通信の開始の遅れを招く。無線端末300が移動する状況下では、これらのことは、通信特性の劣化を招く。
 また、通信品質を測定するための測定信号MSの送信回数が増えるにつれて、通信品質評価のための無線リソース使用量が増加する。このことは、周波数利用効率の低下につながる。
 また、比較例の場合、通信品質を測定するための測定信号MSに、ビームIDと反射方向IDの両方の情報を付加する必要がある。このことは、測定信号MSのオーバーヘッドの増大、及び、測定信号MSの送信処理にかかるオーバーヘッドの増大を招く。また、測定信号MSのオーバーヘッドが増加すると、無線リソース使用量が増加し、周波数利用効率が低下する。
 2-3.本実施の形態に係る通信品質評価に関連する処理
 図4は、本実施の形態に係る通信品質評価に関連する処理を示すシーケンス図である。
 本実施の形態によれば、反射装置200は、入射する測定信号MSを複数の反射方向に同時に反射する。そのために、無線基地局100は、測定信号MSを複数の反射方向に反射するように各反射装置200を制御する。具体的には、無線基地局100は、複数の反射方向(あるいは複数の反射方向ID)を指定する反射制御情報CONを、各反射装置200に送信する。複数の反射方向には、それぞれ異なる複数の反射方向IDが割り当てられる。例えば、反射装置200-Aは、反射制御情報CONに従って、複数の反射方向ID(#AR1~#AR4)に対応する複数の反射方向を設定する。同様に、反射装置200-Bは、反射制御情報CONに従って、複数の反射方向ID(#BR1~#BR4)に対応する複数の反射方向を設定する。
 続いて、無線基地局100は、1つビームID(例えば#B1)に対応する送信ビームによって測定信号MSを送信する。本実施の形態によれば、その測定信号MSは、ビームID(#B1)の情報を含んでいるが、反射方向IDの情報は含んでいない。
 反射装置200-Aは、測定信号MSが入射した場合、入射した測定信号MSを予め設定された複数の反射方向に同時に反射する。つまり、反射装置200-Aは、反射装置200-Aに入射した単一の測定信号MSを複数の反射方向に反射することによって、複数の反射測定信号RMSを生成する。同様に、反射装置200-Bは、測定信号MSが入射した場合、入射した測定信号MSを予め設定された複数の反射方向に同時に反射する。つまり、反射装置200-Bは、反射装置200-Bに入射した単一の測定信号MSを複数の反射方向に反射することによって、複数の反射測定信号RMSを生成する。
 更に、本実施の形態によれば、各反射装置200において、複数の反射測定信号RMSに、それぞれの反射方向に対応する反射方向IDの情報が印加される。具体的には、各反射装置200は、入射した測定信号MSを反射時に変調することによって、反射方向毎に異なる反射方向IDの情報を複数の反射測定信号RMSのそれぞれに印加する。例えば、反射装置200-Aは、反射方向ID(#AR1~#AR4)の情報を複数の反射測定信号RMSのそれぞれに印加する。また、反射装置200-Bは、反射方向ID(#BR1~#BR4)の情報を複数の反射測定信号RMSのそれぞれに印加する。
 測定信号MSを変調して反射方向IDの情報を印加するために、例えば、非特許文献3に開示されている「バックスキャッタ通信」の技術が利用される。バックスキャッタリングは、負荷インピーダンスを高速に切り替えることによって、入射RF信号の振幅や位相を変調し、新たな情報を印加する。各反射装置200は、入射した測定信号MSにこのバックスキャッタリングを適用することによって、入射した測定信号MSを変調し、反射方向IDの情報を印加することができる。
 このように、本実施の形態に係る反射装置200は、反射方向IDの情報を印加しながら測定信号MSを反射し、反射方向IDの情報が印加された反射測定信号RMSを生成する。
 無線端末300は、反射装置200から反射測定信号RMSを受信した場合、受信した反射測定信号RMSを復調することによって、反射方向IDとビームIDを取得する。そして、無線端末300は、受信した反射測定信号RMSの受信状態に基づいて、ビームIDと反射方向IDの組み合わせ毎に通信品質を評価する。
 バックスキャッタリングによって印加された反射方向IDは、非特許文献3に開示されている手法によって抽出可能である。具体的には、元の測定信号MSとバックスキャッタリングによって印加される反射方向IDの情報とでは、伝送レートが異なる。無線端末300は、その伝送レートの差異に基づき、バックスキャッタリングによって印加された反射方向IDの情報を抽出することができる。例えば、無線端末300は、受信した反射測定信号RMSを平滑化し、閾値を計算し、その後、平滑化信号を閾値と比較することにより反射方向IDの情報を抽出する。
 以上に説明されたように、本実施の形態によれば、単一のビームID(送信方向候補)に対応する単一の測定信号MSを送信することによって、その単一のビームIDに関連する複数の伝搬経路候補の通信品質を一括して評価することができる。そして、全てのビームID(送信方向候補)について同じ処理を繰り返すことによって、全ての伝搬経路候補の通信品質を効率的に評価することができる。図2で示された例の場合、送信方向候補の数(X)は4であるため、同じ処理を4回繰り返すだけでよい。つまり、処理の繰り返し回数は、上記の比較例の場合の1/8に低減される。従って、通信品質を評価するために要する時間が短縮される。また、測定信号MSの送信回数が削減されるため、無線リソースの使用量が削減され、周波数利用効率が向上する。
 本実施の形態では、処理の繰り返し回数は、送信方向候補の数(X)だけに依存しており、反射装置200の数(Y)及び反射方向候補の数(Z)には依存しないことに留意されたい。反射装置200の数(Y)が増えても、処理の繰り返し回数は変わらない。反射方向候補の数(Z)が増えても、処理の繰り返し回数は変わらない。このことは、反射装置200の利用拡大の観点から好適である。
 また、本実施の形態によれば、通信品質評価のための反射装置200における反射方向の設定は、最初の1回だけでよい。最初に各反射装置200において複数の反射方向が設定された後は、反射方向の切り替えが不要であるためである。図3と図4との対比から明らかなように、反射制御情報CONを用いた反射方向の設定回数は顕著に削減されている。このことは、通信品質を評価するために要する時間の短縮だけでなく、無線基地局100の処理負荷の軽減にも寄与する。
 上述の通り、本実施の形態によれば、反射装置200を経由した無線基地局100と無線端末300との間の通信品質を評価するために要する時間が短縮される。通信品質を評価するために要する時間が短縮されるため、無線基地局100と無線端末300との間の伝搬経路の決定に要する時間が短縮される。伝搬経路の決定に要する時間が短縮されるため、データ信号DATの通信を早期に開始することができる。このことは、無線端末300が移動する状況下での通信特性の観点から好ましい。
 更に、本実施の形態によれば、通信品質を測定するための測定信号MSに、ビームIDだけを付加すればよく、反射方向IDを付加する必要はない。反射方向IDの情報は、反射装置200において反射測定信号RMSに印加されるからである。測定信号MSが反射方向IDの情報を含まないため、測定信号MSのオーバーヘッド、及び、測定信号MSの送信処理にかかるオーバーヘッドが低減される。また、測定信号MSのオーバーヘッドが低減されるため、無線リソースの使用量が削減され、周波数利用効率が向上する。
 2-4.変形例
 2-4-1.第1の変形例
 通信品質評価のために用いられる複数の反射方向は、固定されていてもよい。この場合、図4で示された通信品質評価のための反射制御情報CONを送信する必要もなくなる。反射装置200は、あらかじめ、複数の反射方向のそれぞれに複数の反射方向IDを割り当てる。その他は、上述の実施の形態の場合と同様である。通信品質評価のために反射制御情報CONを送信する必要がなくなるため、処理時間及び処理負荷が更に軽減される。
 2-4-2.第2の変形例
 反射方向IDは、反射方向を特定する識別情報だけを含み、反射装置200を特定する識別情報を含んでいなくてもよい。この場合、無線基地局100から送信される測定信号MSに、ビームIDと反射装置200を特定する識別情報が含まれる。無線基地局100は、ビームIDと反射装置200の組み合わせ毎に、測定信号MSを送信する。この場合の処理の繰り返し回数は、X×Yとなる。この場合であっても、上記の比較例と比較して、少なくとも効果は得られる。
 2-5.処理フロー
 図5は、本実施の形態に係る通信品質評価に関連する処理を要約的に示すフローチャートである。
 ステップS10において、無線基地局100及び反射装置200は、「反射設定処理」を行う。具体的には、無線基地局100は、複数の反射方向を指定する反射制御情報CONを、反射装置200に送信する。反射装置200は、その反射制御情報CONに従って、複数の反射方向を設定する。複数の反射方向には、それぞれ異なる複数の反射方向IDが割り当てられる。尚、上述の第1の変形例の場合、ステップS10は省略される。
 ステップS100において、無線基地局100は、「測定信号送信処理」を行う。具体的には、無線基地局100は、送信ビームを形成し、その送信ビームによって測定信号MSを送信する。測定信号MSは、ビームIDの情報を含んでいるが、反射方向IDの情報は含んでいない。
 ステップS200において、反射装置200は、「測定信号反射処理」を行う。具体的には、反射装置200は、反射装置200に入射した単一の測定信号MSを複数の反射方向に同時に反射することによって、複数の反射測定信号RMSを生成する。この反射時、反射装置200は、入射した単一の測定信号MSを変調することによって、複数の反射方向毎に異なる反射方向IDの情報を複数の反射測定信号RMSのそれぞれに印加する。例えば、反射装置200は、入射した単一の測定信号MSにバックスキャッタリングを適用することによって、入射した単一の測定信号MSを変調する。
 ステップS300において、無線端末300は、「通信品質評価処理」を行う。具体的には、無線端末300は、反射装置200から受信した反射測定信号RMSを復調することによって、反射方向IDとビームIDを取得する。そして、無線端末300は、受信した反射測定信号RMSの受信状態に基づいて、ビームIDと反射方向IDの組み合わせ毎に通信品質を評価する。
 ステップS100~S300は、ビームID(送信方向候補)毎に繰り返し実行される。ステップS10(反射設定処理)を繰り返す必要はない。全てのビームID(送信方向候補)に関する通信品質評価処理が完了した後、処理は、ステップS400に進む。
 ステップS400において、無線端末300は、「伝搬経路決定処理」を行う。具体的には、無線端末300は、得られた全ての通信品質に基づいて、ビームIDと反射方向IDの適切な組み合わせを決定する。すなわち、無線端末300は、無線基地局100と無線端末300との間の適切な伝搬経路を決定する。無線端末300は、決定したビームIDと反射方向IDの組み合わせを示すフィードバック信号FBを、無線基地局100にフィードバックする(図4参照)。
 変形例として、伝搬経路決定処理は、無線端末300の代わりに無線基地局100によって行われてもよい。その場合、無線端末300から無線基地局100にフィードバックされるフィードバック信号FBは、ビームIDと反射方向IDの組み合わせ毎の通信品質を示す。無線基地局100は、そのフィードバック信号FBに基づいて、ビームIDと反射方向IDの適切な組み合わせを決定する、すなわち、適切な伝搬経路を決定する。
 ステップS500において、無線基地局100は、「データ通信処理」を行う。具体的には、無線基地局100は、ステップS400において決定された伝搬経路に基づいて、無線基地局100と無線端末300との間のデータ信号DATの通信を制御する。より詳細には、無線基地局100は、反射方向IDで特定される反射装置200に反射制御情報CONを送信する。反射制御情報CONは、反射方向IDで特定される反射方向を含んでいる。反射装置200は、反射制御情報CONに従って、反射方向IDに対応する反射方向を設定する。そして、無線基地局100は、ビームIDに対応する送信ビームによってデータ信号DATを送信する。
 以上の処理により、本実施の形態に係る上述の優れた効果が得られる。
 3.無線通信システムの構成例
 以下、本実施の形態に係る無線通信システム10の構成例について説明する。
 3-1.無線基地局100
 図6は、本実施の形態に係る無線基地局100の構成例を示すブロック図である。無線基地局100は、アンテナ部110、無線部120、制御部130、及び通信部140を備えている。
 アンテナ部110は、電波を送受信する。アンテナ部110は、受信信号を無線部120に出力し、また、無線部120から入力される信号を送信する。アンテナの種別は任意である。例えば、アンテナ部110は、複数のアンテナ素子と可変移相器を有し、アナログビームフォーミングを行ってもよい。
 無線部120は、送受信機を含み、無線基地局100と無線端末300との間の通信方式に応じて送受信処理を行う。例えば、無線部120は、ビームIDに対応した送信ビームを形成し、制御部130から入力される測定信号MSやデータ信号DATを送信する。また、伝搬経路決定処理(ステップS400)において、無線部120は、無線端末300から送信されたフィードバック信号FBを受信し、フィードバック信号FBに含まれるビームIDと反射方向IDを取得する。無線部120は、取得したビームIDと反射方向IDの情報を制御部130に送る。また、無線部120は、無線基地局100の上位のネットワークとの通信も行う。
 制御部130は、各種情報処理を行う。例えば、制御部130は、無線端末300、ビームID、及び反射方向IDを互いに関連付けて管理する。
 測定信号送信処理(ステップS100)において、制御部130は、測定信号MSを生成し、測定信号MSを無線部120に出力する。測定信号MSは、ビームIDの情報、無線端末300の既知情報、等を含む。復調精度を高めるために、測定信号MSは、チャネル推定用のプリアンブル部を含んでいてもよい。データ通信処理(ステップS500)において、制御部130は、データ信号DATを生成し、データ信号DATを無線部120に出力する。
 また、制御部130は、反射装置200及び反射特性の管理及び制御を行う。反射設定処理(ステップS10)及びデータ通信処理(ステップS500)において、制御部130は、反射特性を制御するための反射制御情報CONを生成し、反射制御情報CONを通信部140に出力する。反射制御情報CONは、反射装置200における反射方向数N及び反射方向(あるいは反射方向ID)を指定する。反射方向数Nは1以上である。通信品質評価時の反射設定処理(ステップS10)においては、2以上の反射方向数Nが指定される。2以上の反射方向は、任意であってもよい。好適には、2以上の反射方向は、無線端末300に現在関連づけられている反射方向IDに対応する反射方向を含む。データ通信処理(ステップS500)において、無線端末300の移動を想定し、反射方向数Nは2以上に設定されてもよい。
 制御部130の機能は、各種情報処理を行うコントローラにより実現される。コントローラは、プロセッサ131及び記憶装置132を含む。記憶装置132には、各種情報及び制御プログラムが格納される。記憶装置132としては、揮発性メモリや不揮発性メモリが例示される。プロセッサ131が記憶装置132に格納された制御プログラムを実行することにより、制御部130の機能が実現される。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コントローラは、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。
 通信部140は、制御部130から入力される反射制御情報CONを反射装置200に送信する。通信方式は任意である。例えば、通信方式は、光通信等の有線通信である。他の例として、通信方式は、無線基地局100と無線端末300との間の無線通信方式と同じであってもよい(周波数帯は同一であってもよいし、異なっていてもよい)。この場合、通信部140と無線部120は共通であってもよい。
 3-2.反射装置200
 図7は、本実施の形態に係る反射装置200の構成例を示すブロック図である。反射装置200は、複数の反射部210-1~210-m(mは2以上の整数)、通信部220、及び制御部230を備えている。
 各反射部210-i(i=1~m)は、無線基地局100あるいは無線端末300から送信された電波を反射する。より詳細には、各反射部210-iは、反射素子211-i、反射情報変調部212-i、及び位相変換部213-iを含んでいる。反射素子211-iに入射した信号は、反射情報変調部212-i及び位相変換部213-iを経由して反射される。
 測定信号反射処理(ステップ200)において、反射情報変調部212-iは、反射素子211-iに入射した測定信号MSを変調することによって、指定された反射方向IDの情報を測定信号MSに印加する。反射方向IDの情報は、制御部230から通知される。変調方式は任意である。例えば、変調方式は、ASK(Amplitude Shift Keying)、FSK(Frequency Shift Keying)、PSK(Phase Shift Keying)、及びQAM(Quadrature Amplitude Modulation)の中から選択可能である。例えば、反射情報変調部212-iは、負荷インピーダンスを高速に切り替えるバックスキャッタリングを測定信号MSに適用することによって、測定信号MSを変調し、反射方向IDの情報を印加する。尚、測定信号MS以外の信号に対しては、反射情報変調部212-iを動作させる必要は必ずしもない。
 位相変換部213-iは、可変移相器を含んでいる。位相変換部213-iは、指定された反射方向が実現されるように、反射信号の位相を変換する。位相量の情報は、制御部230から通知される。位相変換部213-iは、通知された位相量を反射信号に乗算した後、反射信号を反射素子211-iに出力する。
 通信部220は、無線基地局100から送信される反射制御情報CONを受信する。通信方式は、無線基地局100における通信部140の通信方式と同じである。通信部220は、受信した反射制御情報CONを制御部230に送る。
 制御部230は、各種情報処理を行う。例えば、反射設定処理(ステップS10)及びデータ通信処理(ステップS500)において、制御部230は、反射制御情報CONから反射グループ情報GRPを生成する。上述の通り、反射制御情報CONは、反射方向数N及び反射方向(あるいは反射方向ID)を含んでいる。制御部230は、複数の反射部210-1~210-mをNグループに分割する。そして、制御部230は、Nグループのそれぞれに、異なる反射方向と反射方向IDを割り当てる。図8は、反射グループ情報GRPの一例を示している。反射グループ情報GRPは、グループ毎に、反射部210を特定する反射部番号、反射方向、及び反射方向IDを示す。反射制御情報CONが通知されるたびに、反射グループ情報GRPは更新される。
 制御部230は、反射グループ情報GRPを参照して、各グループに割り当てられた反射方向IDと、各グループを構成する反射部210を認識する。そして、制御部230は、グループ毎に、割り当てられた反射方向IDの情報を反射部210の反射情報変調部212に通知する。
 また、制御部230は、反射グループ情報GRPを参照して、各グループに割り当てられた反射方向と、各グループを構成する反射部210を認識する。制御部230は、割り当てられた反射方向が実現されるように、各グループの反射部210の位相変換部213において乗算される位相量を算出する。位相量の算出では、各グループにおける反射素子211の配置も考慮される。そして、制御部230は、グループ毎に、算出した位相量の情報を反射部210の位相変換部213に通知する。
 制御部230の機能は、各種情報処理を行うコントローラにより実現される。コントローラは、プロセッサ231及び記憶装置232を含む。記憶装置232には、各種情報及び制御プログラムが格納される。記憶装置232としては、揮発性メモリや不揮発性メモリが例示される。プロセッサ231が記憶装置232に格納された制御プログラムを実行することにより、制御部230の機能が実現される。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コントローラは、ASIC、PLD、FPGA等のハードウェアを用いて実現されてもよい。
 3-3.無線端末300
 図9は、本実施の形態に係る無線端末300の構成例を示すブロック図である。無線端末300は、アンテナ部310、無線部320、反射情報復調部330、通信品質算出部340、及び制御部350を備えている。
 アンテナ部310は、電波を送受信する。アンテナ部310は、受信信号を無線部320に出力し、また、無線部320から入力される信号を送信する。アンテナの種別は任意である。例えば、アンテナ部310は、複数のアンテナ素子と可変移相器を有し、アナログビームフォーミングを行ってもよい。
 無線部320は、送受信機を含み、無線基地局100と無線端末300との間の通信方式に応じて送受信処理を行う。例えば、データ通信処理(ステップS500)において、無線部320は、無線基地局100から送信されるデータ信号DATを受信し、データ信号DATを制御部350に出力する。また、伝搬経路決定処理(ステップS400)において、無線部320は、制御部350から出力されるフィードバック信号FBを送信する送信処理を行う。更に、通信品質評価処理(ステップS300)において、無線部320は、反射測定信号RMSを受信し、受信した反射測定信号RMSを復調することによってビームIDを取得し、ビームIDの情報を制御部350に出力する。
 通信品質評価処理(ステップS300)において、反射情報復調部330は、アンテナ部310を介して反射測定信号RMSを受信する。反射情報復調部330は、受信した反射測定信号RMSを復調することによって、反射装置200において印加された反射方向IDを取得する。復調方式は、反射装置200の反射情報変調部212における変調方式に対応する。バックスキャッタリングによって印加された反射方向IDは、非特許文献3に開示されている手法によって取得可能である。例えば、反射情報復調部330は、受信した反射測定信号RMSを平滑化し、閾値を計算し、その後、平滑化信号を閾値と比較することにより反射方向IDの情報を取得する。このような反射情報復調部330は、キャパシタやコンパレータを用いた単純なアナログ回路によって実現可能である。
 通信品質評価処理(ステップS300)において、通信品質算出部340は、アンテナ部310を介して反射測定信号RMSを受信する。通信品質算出部340は、受信した反射測定信号RMSに基づいて、通信品質を算出する。例えば、通信品質は、RSSI(Received Signal Strength Indicator)、RSRP(Reference Signal Received Power)、SINR(Signal to Interference plus Noise Ratio)、誤り率、等のパラメータによって表される。更に、通信品質算出部340は、通信品質をランク分けしてもよい。例えば、RSRPが第1閾値以上であり、誤り率が第2閾値未満である場合、通信品質はランク1(高品質)である。RSRPが第1閾値以上であり、誤り率が第2閾値以上である場合、通信品質はランク2(中品質)である。RSRPが第1閾値未満であり、誤り率が第2閾値未満である場合、通信品質はランク3(中品質)である。RSRPが第1閾値未満であり、誤り率が第2閾値以上である場合、通信品質はランク4(低品質)である。通信品質算出部340は、取得した通信品質の情報を制御部350に出力する。
 制御部350は、各種情報処理を行う。例えば、通信品質評価処理(ステップS300)において、制御部350は、ビームID、反射方向ID、及び通信品質の情報を受け取り、通信品質情報QLCを生成する。図10は、通信品質情報QLCの一例を示している。通信品質情報QLCは、ビームIDと反射方向IDの組み合わせ毎に通信品質を示している。
 更に、伝搬経路決定処理(ステップS400)において、制御部350は、通信品質情報QLCに基づいて、ビームIDと反射方向IDの適切な組み合わせを決定する。すなわち、制御部350は、無線基地局100と無線端末300との間の適切な伝搬経路を決定する。例えば、制御部350は、一定期間内で最も通信品質が高いビームIDと反射方向IDの組み合わせを決定する。そして、制御部350は、決定したビームIDと反射方向IDの組み合わせを示すフィードバック信号FBを無線部320に出力する。
 他の例として、制御部350は、通信品質が所定の閾値以上となる全ての組み合わせを使用候補として抽出してもよい。この場合、制御部350は、前回の組み合わせが使用候補に含まれるか否かを判定する。前回の組み合わせが使用候補に含まれる場合、制御部350は、前回の組み合わせを優先的に選択する。本例の場合、送信ビームや反射方向の頻繁な切り替えが抑制される。結果として、より安定的な通信が提供される。
 更に他の例として、複数の組み合わせの通信品質が同程度に高い場合を考える。複数の通信品質が同程度とは、複数の通信品質が所定の範囲内に収まっていることを意味する。制御部350は、前回の組み合わせが複数の組み合わせに含まれるか否かを判定する。前回の組み合わせが複数の組み合わせに含まれる場合、制御部350は、前回の組み合わせを優先的に選択する。本例においても、送信ビームや反射方向の頻繁な切り替えが抑制される。結果として、より安定的な通信が提供される。
 制御部350の機能は、各種情報処理を行うコントローラにより実現される。コントローラは、プロセッサ351及び記憶装置352を含む。記憶装置352には、各種情報及び制御プログラムが格納される。記憶装置352としては、揮発性メモリや不揮発性メモリが例示される。プロセッサ351が記憶装置352に格納された制御プログラムを実行することにより、制御部350の機能が実現される。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コントローラは、ASIC、PLD、FPGA等のハードウェアを用いて実現されてもよい。
  10  無線通信システム
 100  無線基地局
 200  反射装置
 300  無線端末
 CON  反射制御情報
 DAT  データ信号
  FB  フィードバック信号
 GRP  反射グループ情報
  MS  測定信号
 RMS  反射測定信号
 

Claims (8)

  1.  反射装置を経由して無線基地局と無線端末との間で通信を行う無線通信方法であって、
     前記無線基地局は、送信ビームを形成し、前記送信ビームによって信号を送信し、
     前記反射装置は、前記無線基地局から送信された前記信号を反射し、
     前記無線端末は、前記反射装置によって反射された前記信号を受信し、
     前記無線通信方法は、
     前記無線基地局と前記無線端末との間の通信品質を測定するための信号であって前記送信ビームのビームIDを含む測定信号を、前記無線基地局から送信する測定信号送信処理と、
     前記反射装置に入射した前記測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、前記入射した測定信号を反射時に変調することによって前記複数の反射方向毎に異なる反射方向IDの情報を前記複数の反射測定信号のそれぞれに印加する測定信号反射処理と、
     前記無線端末において、前記反射装置から受信した反射測定信号を復調することによって前記反射方向IDと前記ビームIDを取得し、前記受信した反射測定信号の受信状態に基づいて前記ビームIDと前記反射方向IDの組み合わせ毎に前記通信品質を評価する通信品質評価処理と
     を含む
     無線通信方法。
  2.  請求項1に記載の無線通信方法であって、
     前記測定信号反射処理は、前記入射した測定信号にバックスキャッタリングを適用することによって、前記入射した測定信号を変調する
     無線通信方法。
  3.  請求項1又は2に記載の無線通信方法であって、
     前記測定信号は、前記ビームIDを含み、前記反射方向IDを含まない
     無線通信方法。
  4.  請求項1乃至3のいずれか一項に記載の無線通信方法であって、
     前記反射装置の数は1以上であり、
     前記反射方向IDは、前記反射装置を特定する情報と反射方向を特定する情報を含む
     無線通信方法。
  5.  請求項1乃至4のいずれか一項に記載の無線通信方法であって、
     前記送信ビームの送信方向候補の数は1以上であり、
     前記ビームIDは、前記送信方向候補毎に異なり、
     前記無線通信方法は、更に、
     前記送信方向候補毎に、前記測定信号送信処理、前記測定信号反射処理、及び前記通信品質評価処理を行うことと、
     前記1以上の送信方向候補の全てに関する前記通信品質評価処理が完了した後、前記通信品質に基づいて前記ビームIDと前記反射方向IDの組み合わせを決定することによって、前記無線基地局と前記無線端末との間の伝搬経路を決定することと、
     前記決定された伝搬経路に基づいて、前記無線基地局と前記無線端末との間の通信を制御することと
     を含む
     無線通信方法。
  6.  送信ビームを形成し、前記送信ビームによって信号を送信する無線基地局と、
     前記無線基地局から送信された前記信号を反射する反射装置と、
     前記反射装置によって反射された前記信号を受信する無線端末と
     を備え、
     前記無線基地局は、前記無線基地局と前記無線端末との間の通信品質を測定するための信号であって前記送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行い、
     前記反射装置は、前記反射装置に入射した前記測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、前記入射した測定信号を反射時に変調することによって前記複数の反射方向毎に異なる反射方向IDの情報を前記複数の反射測定信号のそれぞれに印加する測定信号反射処理を行い、
     前記無線端末は、前記反射装置から受信した反射測定信号を復調することによって前記反射方向IDと前記ビームIDを取得し、前記受信した反射測定信号の受信状態に基づいて前記ビームIDと前記反射方向IDの組み合わせ毎に前記通信品質を評価する通信品質評価処理を行う
     無線通信システム。
  7.  無線端末と通信を行う無線基地局であって、
     前記無線基地局は、送信ビームを形成し、前記送信ビームによって信号を送信し、
     反射装置は、前記無線基地局から送信された前記信号を反射し、
     前記無線端末は、前記反射装置によって反射された前記信号を受信し、
     前記無線基地局は、前記無線基地局と前記無線端末との間の通信品質を測定するための信号であって前記送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行い、
     前記反射装置は、前記反射装置に入射した前記測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、前記入射した測定信号を反射時に変調することによって前記複数の反射方向毎に異なる反射方向IDの情報を前記複数の反射測定信号のそれぞれに印加する測定信号反射処理を行い、
     前記無線端末は、前記反射装置から受信した反射測定信号を復調することによって前記反射方向IDと前記ビームIDを取得し、前記受信した反射測定信号の受信状態に基づいて前記ビームIDと前記反射方向IDの組み合わせ毎に前記通信品質を評価する通信品質評価処理を行い、
     前記測定信号送信処理において、前記無線基地局は、前記ビームIDを含み前記反射方向IDを含まない前記測定信号を送信する
     無線基地局。
  8.  無線基地局から送信される信号を反射する反射装置であって、
     前記無線基地局は、送信ビームを形成し、前記送信ビームによって前記信号を送信し、
     無線端末は、前記反射装置によって反射された前記信号を受信し、
     前記無線基地局は、前記無線基地局と前記無線端末との間の通信品質を測定するための信号であって前記送信ビームのビームIDを含む測定信号を送信する測定信号送信処理を行い、
     前記反射装置は、前記反射装置に入射した前記測定信号を複数の反射方向に反射して複数の反射測定信号を生成し、且つ、前記入射した測定信号を反射時に変調することによって前記複数の反射方向毎に異なる反射方向IDの情報を前記複数の反射測定信号のそれぞれに印加する測定信号反射処理を行い、
     前記無線端末は、前記反射装置から受信した反射測定信号を復調することによって前記反射方向IDと前記ビームIDを取得し、前記受信した反射測定信号の受信状態に基づいて前記ビームIDと前記反射方向IDの組み合わせ毎に前記通信品質を評価する通信品質評価処理を行う
     反射装置。
     
PCT/JP2020/020991 2020-05-27 2020-05-27 無線通信方法、無線通信システム、無線基地局、及び反射装置 WO2021240699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/020991 WO2021240699A1 (ja) 2020-05-27 2020-05-27 無線通信方法、無線通信システム、無線基地局、及び反射装置
US17/922,080 US20230171624A1 (en) 2020-05-27 2020-05-27 Radio communication method, radio communication system, radio base station, and reflector
JP2022527370A JP7359301B2 (ja) 2020-05-27 2020-05-27 無線通信方法、無線通信システム、無線基地局、及び反射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020991 WO2021240699A1 (ja) 2020-05-27 2020-05-27 無線通信方法、無線通信システム、無線基地局、及び反射装置

Publications (1)

Publication Number Publication Date
WO2021240699A1 true WO2021240699A1 (ja) 2021-12-02

Family

ID=78723144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020991 WO2021240699A1 (ja) 2020-05-27 2020-05-27 無線通信方法、無線通信システム、無線基地局、及び反射装置

Country Status (3)

Country Link
US (1) US20230171624A1 (ja)
JP (1) JP7359301B2 (ja)
WO (1) WO2021240699A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249820A1 (ja) * 2021-05-27 2022-12-01 京セラ株式会社 通信制御方法、無線端末、基地局、及びris装置
WO2022249821A1 (ja) * 2021-05-27 2022-12-01 京セラ株式会社 通信制御方法、無線端末、及び基地局

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211515A (ja) * 2010-03-30 2011-10-20 Ntt Docomo Inc 反射板装置、無線基地局及び無線通信方法
US20190174337A1 (en) * 2016-06-27 2019-06-06 Nokia Technologies Oy Method, apparatus, and computer program product for improving reliability in wireless communication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069743B1 (fr) 2017-07-28 2021-12-10 Greenerwave Point d'acces de reseau de communication, reseau de communication, et procede de communication sans fil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211515A (ja) * 2010-03-30 2011-10-20 Ntt Docomo Inc 反射板装置、無線基地局及び無線通信方法
US20190174337A1 (en) * 2016-06-27 2019-06-06 Nokia Technologies Oy Method, apparatus, and computer program product for improving reliability in wireless communication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249820A1 (ja) * 2021-05-27 2022-12-01 京セラ株式会社 通信制御方法、無線端末、基地局、及びris装置
WO2022249821A1 (ja) * 2021-05-27 2022-12-01 京セラ株式会社 通信制御方法、無線端末、及び基地局

Also Published As

Publication number Publication date
JP7359301B2 (ja) 2023-10-11
JPWO2021240699A1 (ja) 2021-12-02
US20230171624A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
RU2662450C1 (ru) Эффективное сканирование луча для высокочастотных беспроводных сетей
US9571171B2 (en) Apparatus and method for adaptive beam-forming in wireless communication system
US9591645B2 (en) Method and apparatus for operating control channels for beamforming-based wireless communication
US10057025B2 (en) Apparatus and method for determining beam in wireless communication system
US9661592B2 (en) Uplink power control method and apparatus in a beam-forming based wireless communication system
EP2845328B1 (en) Method and apparatus for beamforming in wireless communication system
US9603156B2 (en) Apparatus and method for transmission/reception in radio communication system
CA2541600C (en) Apparatus and method of multiple antenna transmitter beamforming of high data rate wideband packetized wireless communication signals
CN114616766A (zh) 终端接收波束管理的方法和装置
KR101772040B1 (ko) 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치
US20040235433A1 (en) Determining transmit diversity order and branches
JP4367659B2 (ja) 無線通信機
WO2021240699A1 (ja) 無線通信方法、無線通信システム、無線基地局、及び反射装置
CN110692204A (zh) 无线电通信网络中的到达角估计
US10998942B2 (en) Hybrid beam forming-based open-loop MIMO transmission method and apparatus therefor
US11363600B2 (en) Beam assignment in a communications network
US20230209510A1 (en) Radio communication method, radio communication system, radio base station, and repeater
US20230412237A1 (en) Polarization based beam selection process
JP4260653B2 (ja) 空間多重伝送用送信装置
RU2804691C1 (ru) Сегментация поверхность-образующих элементов и группирование узлов для интеллектуальных отражающих устройств
WO2023181216A1 (ja) 通信制御装置、通信システム、方法、及び非一時的なコンピュータ可読媒体
KR20070083048A (ko) 통신 시스템에서 신호 송신 장치 및 방법
WO2024102038A1 (en) Initiation of channel information acquisition procedure in a d-mimo network
JP2008011384A (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938082

Country of ref document: EP

Kind code of ref document: A1