WO2021240616A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021240616A1
WO2021240616A1 PCT/JP2020/020610 JP2020020610W WO2021240616A1 WO 2021240616 A1 WO2021240616 A1 WO 2021240616A1 JP 2020020610 W JP2020020610 W JP 2020020610W WO 2021240616 A1 WO2021240616 A1 WO 2021240616A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
compressor
flow path
control device
warning
Prior art date
Application number
PCT/JP2020/020610
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/020610 priority Critical patent/WO2021240616A1/en
Priority to JP2022527293A priority patent/JP7309064B2/en
Publication of WO2021240616A1 publication Critical patent/WO2021240616A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigeration cycle device in which a refrigerant circulates in a circulation flow path connecting a compressor, a condenser, a decompression device, and an evaporator.
  • Japanese Patent Application Laid-Open No. 62-66065 discloses a refrigerating cycle device capable of preventing liquid from returning to a compressor.
  • an electric coil that functions as a heater is arranged in a suction flow path connected to the suction port of the compressor, and temperature sensors are arranged at both ends of the electric coil.
  • the wetness of the refrigerant gas in the suction pipe is determined from the change in the detected value of the temperature sensor during the operation of the electric coil, and the opening of the expansion valve is adjusted according to the magnitude of the wetness of the refrigerant gas in the suction pipe.
  • the liquid is prevented from returning to the compressor by stopping the liquid.
  • control is performed to prevent liquid return based on the result of estimating the wetness in the suction flow path from the temperature difference between both ends of the electric coil during operation of the electric coil.
  • the relationship between the temperature difference between both ends of the electric coil and the wetness in the suction flow path can change depending on the flow rate of the refrigerant in the suction flow path (the amount of refrigerant flowing per unit time). That is, even if the wetness in the suction flow path is the same, if the refrigerant flow rate in the suction flow path is different, the temperature difference between both ends of the electric coil will be different, and the wetness in the suction flow path will be different. There is a concern that the estimation accuracy will decrease.
  • the above-mentioned Japanese Patent Application Laid-Open No. 62-66065 does not mention such a problem and its countermeasures.
  • the present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to accurately estimate the return of liquid to the compressor and warn the user.
  • the refrigeration cycle system includes a refrigerant circuit including a compressor and a suction flow path connected to a suction port of the compressor, a heater provided in the suction flow path, a warning device for outputting a warning to a user, and a warning device. It is equipped with a control device that controls a heater and a warning device.
  • the control device calculates the required heating amount using the rotation speed of the compressor, operates the heater so that the heating amount by the heater becomes the required heating amount, and is on the upstream side of the heater in the suction flow path while the heater is operating.
  • the warning device is made to output a warning.
  • the 1 which shows typically an example of the whole structure of a refrigerating cycle apparatus. It is a flowchart (the 1) which shows an example of the processing procedure of a control device. It is a figure which shows an example of the correspondence relation between the rotation speed of a compressor, and the required heating amount of a heater. It is a figure which shows the correspondence relationship between the inlet dryness and a sensor temperature difference ⁇ T. It is a figure (the 2) which shows typically an example of the whole structure of a refrigerating cycle apparatus. It is a flowchart (the 2) which shows an example of the processing procedure of a control device.
  • FIG. 1 is a diagram schematically showing an example of the overall configuration of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the refrigeration cycle device 1 includes a refrigerant circuit RC, temperature sensors 10 and 20, a heater 30, a power supply 40, a warning device 120, and a control device 100.
  • the refrigerant circuit RC circulates the refrigerant by connecting the compressor 2, the flow path switching device 3, the first heat exchanger 4, the decompression device 5, the second heat exchanger 6, and the receiver 7. It constitutes a circulation flow path.
  • a refrigerant with a phase change such as carbon dioxide and R410A circulates inside the refrigerant circuit RC.
  • the compressor 2 sucks in the low pressure refrigerant, compresses it, and discharges it as the high pressure refrigerant.
  • the compressor 2 discharges a refrigerant having a flow rate corresponding to the rotation speed.
  • the compressor 2 is, for example, an inverter compressor having a variable rotation speed (discharge flow rate).
  • the flow rate of the refrigerant circulating in the refrigeration cycle device 1 is controlled by adjusting the rotation speed (discharge flow rate) of the compressor 2.
  • the first heat exchanger 4 is a heat exchanger having a flow path through which the refrigerant flows. In the first heat exchanger 4, heat exchange is performed between the refrigerant flowing in the flow path and the air outside the flow path.
  • the decompression device 5 decompresses the high-pressure refrigerant.
  • a device provided with a valve body whose opening degree can be adjusted for example, an electronically controlled expansion valve can be used.
  • the second heat exchanger 6 is a heat exchanger having a flow path through which the refrigerant flows. In the second heat exchanger 6, heat exchange is performed between the refrigerant flowing in the flow path and the air outside the flow path.
  • the receiver 7 is a container for storing the refrigerant inside, and is installed on the suction side of the compressor 2.
  • An suction port to which a pipe through which the refrigerant flows is connected and a discharge port to which a pipe through which the refrigerant flows out are connected are provided on the upper portion of the receiver 7.
  • the refrigerant is gas-liquid separated in the receiver 7.
  • the gas-liquid separated gas refrigerant is sucked into the compressor 2.
  • the refrigeration cycle device 1 can be operated by switching between the cooling mode and the heating mode by switching the state of the flow path switching device 3.
  • the flow path switching device 3 is provided on the discharge side of the compressor 2.
  • the flow path switching device 3 is configured to switch the refrigerant discharged from the compressor 2 to either the first heat exchanger 4 or the second heat exchanger 6 and flow the refrigerant.
  • the discharge side of the compressor 2 is connected to the first heat exchanger 4
  • the suction side of the compressor 2 is connected to the second heat exchanger 6, and the refrigerant discharged from the compressor 2 is connected.
  • the discharge side of the compressor 2 is connected to the second heat exchanger 6, and the suction side of the compressor 2 is connected to the first heat exchanger 4.
  • the "second state” in which the refrigerant discharged from the compressor 2 flows through the second heat exchanger 6 is selectively controlled. Note that FIG. 1 shows an example in which the flow path switching device 3 is controlled to the “first state”.
  • the flow path switching device 3 is set to the first state, and the discharge side of the compressor 2 is connected to the first heat exchanger 4.
  • the first heat exchanger 4 functions as a condenser and the second heat exchanger 6 functions as an evaporator.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the first heat exchanger 4 via the flow path switching device 3.
  • the high-temperature and high-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 4, the temperature drops, and the refrigerant flows out of the first heat exchanger 4.
  • the refrigerant flowing out of the first heat exchanger 4 is decompressed by the decompression device 5, becomes a low-temperature low-pressure refrigerant, and flows into the second heat exchanger 6.
  • the low-temperature low-pressure refrigerant exchanges heat with the outside air in the second heat exchanger 6, the temperature rises, and the refrigerant flows out of the second heat exchanger 6.
  • the refrigerant flowing out of the second heat exchanger 6 flows into the receiver 7 via the flow path switching device 3, and is gas-liquid separated in the receiver 7.
  • the gas refrigerant in the receiver 7 is sucked into the compressor 2.
  • the flow path switching device 3 is set to the second state, and the discharge side of the compressor 2 is connected to the second heat exchanger 6.
  • the first heat exchanger 4 functions as an evaporator and the second heat exchanger 6 functions as a condenser.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the second heat exchanger 6 via the flow path switching device 3.
  • the high-temperature and high-pressure refrigerant exchanges heat with the water flowing through the outside air in the second heat exchanger 6, the temperature drops, and the refrigerant flows out of the second heat exchanger 6.
  • the refrigerant flowing out of the second heat exchanger 6 is decompressed by the decompression device 5, becomes a low-temperature low-pressure refrigerant, and flows into the first heat exchanger 4.
  • the low-temperature low-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 4, rises in temperature, and flows out of the first heat exchanger 4.
  • the refrigerant flowing out of the first heat exchanger 4 flows into the receiver 7 via the flow path switching device 3, and is gas-liquid separated in the receiver 7.
  • the gas refrigerant in the receiver 7 is sucked into the compressor 2.
  • the discharge port of the receiver 7 and the suction port of the compressor 2 are connected by a suction pipe (suction flow path) P1.
  • the refrigerant discharged from the receiver 7 is sucked into the compressor 2 via the suction pipe P1.
  • a heater 30 is provided on the suction pipe P1.
  • the heater 30 generates heat by the electric power supplied from the power source 40 to heat the suction pipe P1.
  • the amount of heating by the heater 30 (the amount of electric power supplied from the power source 40 to the heater 30) is adjusted by the control device 100 controlling the power source 40.
  • a temperature sensor (first temperature sensor) 10 is provided in a portion of the suction pipe P1 on the upstream side of the heater 30.
  • a second temperature sensor (second temperature sensor) 20 is provided in a portion of the suction pipe P1 on the downstream side of the heater 30. The detection results of the temperature sensors 10 and 20 are transmitted to the control device 100.
  • the warning device 120 outputs a warning to the user by using a warning lamp, a display, a speaker, and the like.
  • the content of the warning output by the warning device 120 is controlled in response to a command from the control device 100.
  • the control device 100 includes a CPU (Central Processing Unit), a memory, and input / output ports for inputting / outputting various signals.
  • the control device 100 is based on each device (compressor 2, flow path switching device) of the refrigerating cycle device 1 based on signals from each sensor (for example, temperature sensors 10, 20, etc.) and a program stored in a memory. 3.
  • the decompression device 5, the heater 30, the warning device 120, etc.) are controlled.
  • the control performed by the control device 100 is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
  • a receiver 7 for gas-liquid separation of the refrigerant is provided on the upstream side of the suction pipe P1 of the compressor 2. Then, in the normal state, the gas refrigerant in the receiver 7 is sucked into the compressor 2 via the suction pipe P1.
  • the liquid refrigerant flows out from the receiver 7 to the suction pipe P1, and a liquid return occurs in which the liquid refrigerant sucked into the compressor 2 becomes excessive. obtain.
  • liquid return occurs, the lubricating oil in the sliding part of the compressor 2 is diluted, and as a result, the sliding part of the compressor 2 may not be properly lubricated. Therefore, the liquid return can be a cause of failure of the compressor 2. If the user does not notice that such liquid return has occurred, the user cannot take measures such as performing maintenance of the refrigerating cycle device 1.
  • the heater 30 and the temperature sensor 10 described above are used as devices for detecting (estimating) the liquid return to the compressor 2 and encouraging the user to perform maintenance or the like.
  • 20 is provided in the suction pipe P1 of the compressor 2, and a warning device 120 for outputting a warning to the user is provided.
  • Temperature difference between the heater upstream part (first part) arranged on the upstream side of the heater 30 and the heater downstream part (second part) arranged on the downstream part of the heater 30 (hereinafter, "temperature difference before and after the heater”). ") Is relatively large.
  • the control device 100 has a detection value of the temperature sensor 10 provided in the upstream portion of the heater and a detection value of the temperature sensor 20 provided in the downstream portion of the heater while the heater 30 is in operation.
  • the difference (hereinafter also referred to as “sensor temperature difference ⁇ T”) is calculated as the temperature difference before and after the heater described above, and when the sensor temperature difference ⁇ T is less than the reference value Tref, it is estimated that liquid return has occurred, and a warning device is used. Make 120 output a warning.
  • the reference value Tref is a fixed value stored in advance in the memory of the control device 100.
  • the temperature difference before and after the heater can change not only by the amount of heat generated by the heater 30 but also by the flow rate of the refrigerant in the suction pipe P1. Therefore, if the amount of heat generated by the heater 30 is set to a fixed value, the sensor temperature difference ⁇ T will fluctuate according to the flow rate of the refrigerant, and the liquid return estimated by comparing the sensor temperature difference ⁇ T with the reference value Tref (fixed value). The estimation accuracy of is reduced.
  • the control device 100 when the heater 30 is operated to estimate the liquid return, the temperature difference before and after the heater (sensor temperature difference ⁇ T) does not fluctuate according to the flow rate of the refrigerant in the suction pipe P1.
  • the amount of heat generated by the heater 30 is adjusted by using the rotation speed of the compressor 2. This makes it possible to accurately estimate the liquid return regardless of the flow rate of the refrigerant.
  • FIG. 2 is a flowchart showing an example of a processing procedure executed when the control device 100 estimates the liquid return and warns the user. This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) while the compressor 2 is in operation.
  • control device 100 calculates the required heating amount of the heater 30 using the rotation speed of the compressor 2 (step S10). As described above, this step is performed to adjust the required heating amount of the heater 30 so that the temperature difference before and after the heater (sensor temperature difference ⁇ T) does not fluctuate according to the flow rate of the refrigerant.
  • FIG. 3 is a diagram showing an example of the correspondence between the rotation speed of the compressor 2 and the required heating amount of the heater 30. As shown in FIG. 3, the higher the rotation speed of the compressor 2, the larger the required heating amount of the heater 30 is adjusted.
  • a map defining the correspondence relationship as shown in FIG. 3 is stored in the memory of the control device 100 in advance, and the control device 100 calculates the required heating amount corresponding to the rotation speed of the compressor 2 with reference to the map. do.
  • control device 100 operates the heater 30 so that the heating amount by the heater 30 becomes the required heating amount calculated in step S10 (step S12).
  • control device 100 calculates the above-mentioned sensor temperature difference ⁇ T (difference between the detected value of the temperature sensor 10 and the detected value of the temperature sensor 20) as the temperature difference before and after the heater while the heater 30 is in operation (step S14).
  • the control device 100 reads out the reference value Tref from the memory (step S16), and determines whether or not the sensor temperature difference ⁇ T calculated in step S14 is less than the reference value Tref (step S18).
  • the sensor temperature difference ⁇ T is not less than the reference value Tref (NO in step S18)
  • the control device 100 presumes that a large amount of liquid refrigerant is contained in the suction pipe P1 and liquid return occurs.
  • the “liquid back operation time” is counted up (step S20).
  • the “liquid back operation time” is an index showing the cumulative time of operation in a state where liquid return has occurred since the previous maintenance.
  • the liquid back operation time is stored in, for example, the memory of the control device 100.
  • the control device 100 determines whether or not the liquid back operation time exceeds the reference time (step S22). When the liquid back operation time does not exceed the reference time (NO in step S22), the control device 100 skips the subsequent processing and shifts the processing to the return.
  • the control device 100 When the liquid back operation time exceeds the reference time (YES in step S22), the control device 100 outputs a warning indicating that the liquid back operation time exceeds the reference time to the warning device 120 (step S24).
  • the warning output in step S24 may include content urging the user to undergo maintenance of the refrigeration cycle device 1.
  • the history of the liquid back operation time may be maintained even after the warning in step S24 so that the manufacturer or the contractor who maintains the refrigeration cycle apparatus 1 can make a diagnosis of the refrigeration cycle apparatus 1.
  • the compressor 2 is replaced with a new one at the time of maintenance, it is desirable to reset the liquid back operation time.
  • the control device 100 presumes that liquid return has occurred when the sensor temperature difference ⁇ T during operation of the heater 30 is less than the reference value Tref, and causes the warning device 120. Output a warning.
  • the amount of heating by the heater 30 is adjusted by using the rotation speed of the compressor 2 so that the sensor temperature difference ⁇ T does not fluctuate according to the flow rate of the refrigerant. This makes it possible to accurately estimate the liquid return regardless of the flow rate of the refrigerant.
  • the liquid back operation time which is the cumulative time for which the sensor temperature difference ⁇ T is determined to be less than the reference value Tref
  • the liquid back is performed.
  • a warning indicating that the operating time has exceeded the reference time is output to the warning device 120. The user who receives this warning can avoid a sudden failure of the compressor 2 by taking measures such as inspecting the refrigerating cycle device 1 and performing maintenance at an early stage.
  • Modification example 1 in determining whether or not the temperature difference before and after the heater is less than the reference value Tref, the sensor temperature difference ⁇ T is calculated as the temperature difference before and after the heater, and the sensor temperature difference ⁇ T is defined as the reference value Tref. I'm comparing.
  • the method for determining whether or not the temperature difference before and after the heater is less than the reference value Tref is not limited to this method.
  • FIG. 4 is a diagram showing the correspondence between the dryness (inlet dryness) of the inlet portion of the heater 30 in the suction pipe P1 and the temperature difference before and after the heater (sensor temperature difference ⁇ T).
  • the fact that the inlet dryness is less than the threshold value xin is equivalent to the fact that the temperature difference before and after the heater (sensor temperature difference ⁇ T) is less than the reference value Tref.
  • the inlet enthalpy of the heater upstream portion is calculated as the inlet dryness from the temperature and pressure of the outlet portion of the heater 30 in the suction pipe P1, the heating amount by the heater 30, the refrigerant flow rate, and the like, and the inlet enthalpy is the threshold.
  • FIG. 5 is a diagram schematically showing an example of the overall configuration of the refrigeration cycle apparatus 1A according to the second embodiment.
  • a sub-pipe P2 branching from the suction pipe P1 is added to the refrigeration cycle device 1 shown in FIG. 1, and a heater 30 and temperature sensors 10 and 20 are arranged in the sub-pipe P2. be. Since the other configurations and operations of the refrigerating cycle device 1A are the same as those of the refrigerating cycle device 1 shown in FIG. 1 above, the detailed description thereof will not be repeated here.
  • the auxiliary pipe P2 is formed so as to branch from the suction pipe P1 in the vicinity of the connection portion with the receiver 7 in the suction pipe P1 and join the suction pipe P1 in the vicinity of the connection portion with the compressor 2 in the suction pipe P1.
  • the cross section of the flow path of the auxiliary pipe P2 is smaller than the cross section of the flow path of the suction pipe (main pipe) P1.
  • the heater 30 and the temperature sensors 10 and 20 are arranged in the auxiliary pipe P2 instead of the suction pipe P1.
  • the control device 100 operates the heater 30 arranged in the auxiliary pipe P2 branching from the suction pipe P1 to execute the liquid return estimation process (process shown in the flowchart of FIG. 2 above). Therefore, as compared with the refrigeration cycle device 1 according to the above-described first embodiment in which the heater 30 arranged in the suction pipe P1 having no branch to the auxiliary pipe P2 is operated, the heater 30 is heated in the liquid return estimation process. The amount of refrigerant can be reduced. As a result, the power consumption of the heater 30 required for the liquid return estimation process can be reduced.
  • the cross section of the flow path of the auxiliary pipe P2 is smaller than the cross section of the flow path of the suction pipe (main pipe) P1. Therefore, the amount of the refrigerant to be heated by the heater 30 can be further reduced as compared with the case where the cross section of the flow path of the auxiliary pipe P2 is equal to or larger than the cross section of the flow path of the suction pipe (main pipe) P1. As a result, the power consumption of the heater 30 can be further reduced.
  • the cross section of the flow path of the auxiliary pipe P2 is not necessarily limited to be smaller than the cross section of the flow path of the suction pipe P1.
  • the cross section of the flow path of the auxiliary pipe P2 may be the same as the cross section of the flow path of the suction pipe P1.
  • Embodiment 3 In the flowchart of FIG. 2, the control device 100 according to the first embodiment described above always operates the heater 30 while the compressor 2 is operating. On the other hand, in the control device 100 according to the third embodiment, the temperature of the refrigerant discharged from the compressor 2 while the compressor 2 is operating (hereinafter, also referred to as “compressor 2 discharge temperature”) is set. When the temperature is lower than the reference temperature, the heater 30 is operated.
  • a warning is output when the cumulative time (liquid back operation time) in which the sensor temperature difference ⁇ T is determined to be less than the reference value Tref exceeds the reference time.
  • the control device 100 according to the third embodiment outputs a warning when the sensor temperature difference ⁇ T is less than the reference value Tref.
  • FIG. 6 is a flowchart showing an example of a processing procedure executed by the control device 100 according to the third embodiment when estimating the liquid return and giving a warning to the user.
  • step S30 is added, steps S20 and S22 are deleted, and step S24 is changed to step S24a with respect to FIG. 2 described above. Since the other steps of FIG. 6 (steps with the same numbers as the steps shown in FIG. 2 above) have already been described, detailed explanations will not be repeated here.
  • the flowchart shown in FIG. 6 is also repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) while the compressor 2 is operating, as in the case of FIG. 2 described above.
  • the control device 100 determines whether or not the discharge temperature of the compressor 2 is lower than the reference temperature (step S30). It is assumed that the discharge temperature of the compressor 2 is detected by, for example, a temperature sensor (not shown) arranged on the discharge side of the compressor 2.
  • the control device 100 skips the subsequent processing and shifts the processing to the return. That is, even during the operation of the compressor 2, if the discharge temperature of the compressor 2 exceeds the reference temperature, the heater 30 is not operated. Therefore, the power consumption of the heater 30 can be reduced as compared with the case where the heater 30 is constantly operated while the compressor 2 is operating.
  • the liquid refrigerant may be contained on the discharge side of the compressor 2 and liquid return may occur, so that the control device In 100, the processing after step S10 is executed, and the liquid return estimation processing is performed.
  • control device 100 outputs a warning indicating that liquid return has occurred to the warning device 120 (step). S24a).
  • the control device 100 according to the third embodiment operates the heater 30 when the compressor 2 is in operation and the discharge temperature of the compressor 2 is lower than the reference temperature. In other words, the control device 100 according to the third embodiment does not operate the heater 30 even while the compressor 2 is operating, if the discharge temperature of the compressor 2 exceeds the reference temperature. Therefore, the power consumption of the heater 30 can be reduced as compared with the case where the heater 30 is constantly operated while the compressor 2 is operating.
  • control device 100 warns a warning indicating that liquid return has occurred when it is determined that the sensor temperature difference ⁇ T is less than the reference value Tref (YES in step S18). Output to 120. With such a warning, it is possible to inform the user in real time how often the liquid return occurs.
  • 1,1A refrigeration cycle device 2 compressor, 3 flow path switching device, 4 first heat exchanger, 5 decompression device, 6 second heat exchanger, 7 receiver, 10, 20 temperature sensor, 30 heater, 40 power supply, 100 control device, 120 warning device, P1 suction pipe, P2 sub pipe, RC refrigerant circuit.

Abstract

Provided is a refrigeration cycle system comprising: a refrigerant circuit which includes a compressor; a heater which is provided to an intake pipe of the compressor; two temperature sensors which are provided to the intake pipe at a part upstream of the heater and a part downstream of the heater, respectively; a warning device which outputs a warning; and a control device. The control device uses the rotation speed of the compressor to calculate the requested heating amount of the heater (step S10), and causes the heater to operate so that the amount of heating by the heater becomes the requested heating amount (step S12). The control device calculates the difference between values detected by the two temperature sensors during the operation of the heater as the sensor temperature difference ΔT (step S14). When a period (liquid floodback operation period) during which the sensor temperature difference ΔT is less than a reference value Tref has exceeded a reference period (step S22), the control device causes the warning device to output a warning (step S24).

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は、圧縮機、凝縮器、減圧装置、および蒸発器を接続する循環流路を冷媒が循環する冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device in which a refrigerant circulates in a circulation flow path connecting a compressor, a condenser, a decompression device, and an evaporator.
 冷凍サイクル装置において、圧縮機に吸入される液冷媒が過多となる液戻りが生じた場合、圧縮機の摺動部の潤滑油が希釈され、その影響で圧縮機の摺動部が適切に潤滑されなくなる可能性がある。そのため、液戻りは、圧縮機の故障要因となり得る。 In the refrigeration cycle device, when liquid return occurs in which the amount of liquid refrigerant sucked into the compressor becomes excessive, the lubricating oil in the sliding part of the compressor is diluted, and as a result, the sliding part of the compressor is properly lubricated. It may not be done. Therefore, the liquid return can be a cause of failure of the compressor.
 たとえば、特開昭62-66065号公報には、圧縮機への液戻りを防止可能な冷凍サイクル装置が開示されている。この冷凍サイクル装置においては、圧縮機の吸入口に接続される吸入流路内にヒータとして機能する電気コイルが配置されるとともに、電気コイルの両端部に温度センサが配置される。電気コイルの稼働中における温度センサの検出値の変化から吸入管内の冷媒ガスの湿り度を判定し、吸入管内の冷媒ガスの湿り度の大きさに応じて膨張弁の開度調整、冷凍サイクルの停止等を行なうことによって、圧縮機への液戻りを防止している。 For example, Japanese Patent Application Laid-Open No. 62-66065 discloses a refrigerating cycle device capable of preventing liquid from returning to a compressor. In this refrigeration cycle device, an electric coil that functions as a heater is arranged in a suction flow path connected to the suction port of the compressor, and temperature sensors are arranged at both ends of the electric coil. The wetness of the refrigerant gas in the suction pipe is determined from the change in the detected value of the temperature sensor during the operation of the electric coil, and the opening of the expansion valve is adjusted according to the magnitude of the wetness of the refrigerant gas in the suction pipe. The liquid is prevented from returning to the compressor by stopping the liquid.
特開昭62-66065号公報Japanese Unexamined Patent Publication No. 62-66065
 上述の特開昭62-66065号公報においては、電気コイルの稼働中における電気コイルの両端温度差から吸入流路内の湿り度を推定した結果に基づいて、液戻りを防止する制御を行なう。 In the above-mentioned Japanese Patent Application Laid-Open No. 62-66065, control is performed to prevent liquid return based on the result of estimating the wetness in the suction flow path from the temperature difference between both ends of the electric coil during operation of the electric coil.
 しかしながら、電気コイルの両端温度差と吸入流路内の湿り度との関係は、吸入流路内の冷媒流量(単位時間あたりに流れる冷媒の量)によって変化し得る。すなわち、仮に、吸入流路内の湿り度が同じであっても、吸入流路内の冷媒流量が異なる場合には、電気コイルの両端温度差も異なる値となり、吸入流路内の湿り度の推定精度が低下することが懸念される。しかしながら、上述の特開昭62-66065号公報においては、このような課題およびその対策について何ら言及されていない。 However, the relationship between the temperature difference between both ends of the electric coil and the wetness in the suction flow path can change depending on the flow rate of the refrigerant in the suction flow path (the amount of refrigerant flowing per unit time). That is, even if the wetness in the suction flow path is the same, if the refrigerant flow rate in the suction flow path is different, the temperature difference between both ends of the electric coil will be different, and the wetness in the suction flow path will be different. There is a concern that the estimation accuracy will decrease. However, the above-mentioned Japanese Patent Application Laid-Open No. 62-66065 does not mention such a problem and its countermeasures.
 また、上述の特開昭62-66065号公報においては、液戻りを防止する制御を行なうに過ぎないため、使用者は、液戻りが生じていることに気付かず、冷凍サイクル装置のメンテナンスを行なうなどの対策を講じることができない。 Further, in the above-mentioned Japanese Patent Application Laid-Open No. 62-66065, since the control for preventing the liquid return is merely performed, the user does not notice that the liquid return has occurred and performs the maintenance of the refrigeration cycle device. It is not possible to take measures such as.
 本開示は、上述の課題を解決するためになされたものであって、その目的は、圧縮機への液戻りを精度よく推定して、ユーザに警告することである。 The present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to accurately estimate the return of liquid to the compressor and warn the user.
 本開示による冷凍サイクルシステムは、圧縮機と圧縮機の吸入口に接続される吸入流路とを含む冷媒回路と、吸入流路に設けられるヒータと、使用者に対する警告を出力する警告装置と、ヒータおよび警告装置を制御する制御装置とを備える。制御装置は、圧縮機の回転速度を用いて要求加熱量を算出し、ヒータによる加熱量が要求加熱量となるようにヒータを稼働させ、ヒータの稼働中において吸入流路におけるヒータよりも上流側に配置される第1部分とヒータよりも下流側に配置される第2部分との温度差が基準値未満である場合に警告装置に警告を出力させる。 The refrigeration cycle system according to the present disclosure includes a refrigerant circuit including a compressor and a suction flow path connected to a suction port of the compressor, a heater provided in the suction flow path, a warning device for outputting a warning to a user, and a warning device. It is equipped with a control device that controls a heater and a warning device. The control device calculates the required heating amount using the rotation speed of the compressor, operates the heater so that the heating amount by the heater becomes the required heating amount, and is on the upstream side of the heater in the suction flow path while the heater is operating. When the temperature difference between the first portion arranged in the heater and the second portion arranged on the downstream side of the heater is less than the reference value, the warning device is made to output a warning.
 本開示によれば、圧縮機への液戻りを精度よく推定して、ユーザに警告することができる。 According to the present disclosure, it is possible to accurately estimate the liquid return to the compressor and warn the user.
冷凍サイクル装置の全体構成の一例を模式的に示す図(その1)である。It is a figure (the 1) which shows typically an example of the whole structure of a refrigerating cycle apparatus. 制御装置の処理手順の一例を示すフローチャート(その1)である。It is a flowchart (the 1) which shows an example of the processing procedure of a control device. 圧縮機の回転速度とヒータの要求加熱量との対応関係の一例を示す図である。It is a figure which shows an example of the correspondence relation between the rotation speed of a compressor, and the required heating amount of a heater. 入口乾き度とセンサ温度差ΔTとの対応関係を示す図である。It is a figure which shows the correspondence relationship between the inlet dryness and a sensor temperature difference ΔT. 冷凍サイクル装置の全体構成の一例を模式的に示す図(その2)である。It is a figure (the 2) which shows typically an example of the whole structure of a refrigerating cycle apparatus. 制御装置の処理手順の一例を示すフローチャート(その2)である。It is a flowchart (the 2) which shows an example of the processing procedure of a control device.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 [構成の説明]
 図1は、本実施の形態1による冷凍サイクル装置1の全体構成の一例を模式的に示す図である。冷凍サイクル装置1は、冷媒回路RCと、温度センサ10,20と、ヒータ30と、電源40と、警告装置120と、制御装置100とを備える。
Embodiment 1.
[Description of configuration]
FIG. 1 is a diagram schematically showing an example of the overall configuration of the refrigeration cycle apparatus 1 according to the first embodiment. The refrigeration cycle device 1 includes a refrigerant circuit RC, temperature sensors 10 and 20, a heater 30, a power supply 40, a warning device 120, and a control device 100.
 冷媒回路RCは、圧縮機2と、流路切替装置3と、第1熱交換器4と、減圧装置5と、第2熱交換器6と、レシーバ7とを接続することにより、冷媒が循環する循環流路を構成している。冷媒回路RCの内部には、二酸化炭素やR410A等の相変化を伴う冷媒が循環する。 The refrigerant circuit RC circulates the refrigerant by connecting the compressor 2, the flow path switching device 3, the first heat exchanger 4, the decompression device 5, the second heat exchanger 6, and the receiver 7. It constitutes a circulation flow path. A refrigerant with a phase change such as carbon dioxide and R410A circulates inside the refrigerant circuit RC.
 圧縮機2は、低圧冷媒を吸入して圧縮し、高圧冷媒として吐出する。圧縮機2は、回転速度に応じた流量の冷媒を吐出する。圧縮機2は、回転速度(吐出流量)が可変な、例えばインバータ圧縮機である。冷凍サイクル装置1内を循環する冷媒流量は、圧縮機2の回転速度(吐出流量)を調整することにより制御される。 The compressor 2 sucks in the low pressure refrigerant, compresses it, and discharges it as the high pressure refrigerant. The compressor 2 discharges a refrigerant having a flow rate corresponding to the rotation speed. The compressor 2 is, for example, an inverter compressor having a variable rotation speed (discharge flow rate). The flow rate of the refrigerant circulating in the refrigeration cycle device 1 is controlled by adjusting the rotation speed (discharge flow rate) of the compressor 2.
 第1熱交換器4は、冷媒が流れる流路を有する熱交換器である。第1熱交換器4では、流路を流れる冷媒と、流路の外部の空気との間で熱交換が行われる。 The first heat exchanger 4 is a heat exchanger having a flow path through which the refrigerant flows. In the first heat exchanger 4, heat exchange is performed between the refrigerant flowing in the flow path and the air outside the flow path.
 減圧装置5は、高圧冷媒を減圧する。減圧装置5としては、開度を調整可能な弁体を備えた装置、例えば電子制御式膨張弁を用いることができる。 The decompression device 5 decompresses the high-pressure refrigerant. As the pressure reducing device 5, a device provided with a valve body whose opening degree can be adjusted, for example, an electronically controlled expansion valve can be used.
 第2熱交換器6は、冷媒が流れる流路を有する熱交換器である。第2熱交換器6では、流路を流れる冷媒と、流路の外部の空気との間で熱交換が行われる。 The second heat exchanger 6 is a heat exchanger having a flow path through which the refrigerant flows. In the second heat exchanger 6, heat exchange is performed between the refrigerant flowing in the flow path and the air outside the flow path.
 レシーバ7は、内部に冷媒を貯留する容器であり、圧縮機2の吸入側に設置されている。レシーバ7の上部には、冷媒が流入する配管が接続される吸入口と、冷媒が流出する配管が接続される吐出口とが設けられる。レシーバ7内において冷媒が気液分離される。気液分離されたガス冷媒は、圧縮機2に吸入される。 The receiver 7 is a container for storing the refrigerant inside, and is installed on the suction side of the compressor 2. An suction port to which a pipe through which the refrigerant flows is connected and a discharge port to which a pipe through which the refrigerant flows out are connected are provided on the upper portion of the receiver 7. The refrigerant is gas-liquid separated in the receiver 7. The gas-liquid separated gas refrigerant is sucked into the compressor 2.
 冷凍サイクル装置1は、流路切替装置3の状態を切り替えることによって、冷房モードと暖房モードとを切り替えて運転できる。 The refrigeration cycle device 1 can be operated by switching between the cooling mode and the heating mode by switching the state of the flow path switching device 3.
 流路切替装置3は、圧縮機2の吐出側に設けられている。流路切替装置3は、圧縮機2から吐出された冷媒を第1熱交換器4および第2熱交換器6のいずれかに切り替えて流すように構成されている。流路切替装置3は、圧縮機2の吐出側を第1熱交換器4に接続するとともに圧縮機2の吸入側を第2熱交換器6に接続して、圧縮機2から吐出された冷媒を第1熱交換器4に流す「第1状態」と、圧縮機2の吐出側を第2熱交換器6に接続するとともに圧縮機2の吸入側を第1熱交換器4に接続して、圧縮機2から吐出された冷媒を第2熱交換器6に流す「第2状態」と、のいずれかに選択的に制御される。なお、図1には、流路切替装置3が「第1状態」に制御されている例が示されている。 The flow path switching device 3 is provided on the discharge side of the compressor 2. The flow path switching device 3 is configured to switch the refrigerant discharged from the compressor 2 to either the first heat exchanger 4 or the second heat exchanger 6 and flow the refrigerant. In the flow path switching device 3, the discharge side of the compressor 2 is connected to the first heat exchanger 4, the suction side of the compressor 2 is connected to the second heat exchanger 6, and the refrigerant discharged from the compressor 2 is connected. In the "first state", the discharge side of the compressor 2 is connected to the second heat exchanger 6, and the suction side of the compressor 2 is connected to the first heat exchanger 4. , The "second state" in which the refrigerant discharged from the compressor 2 flows through the second heat exchanger 6 is selectively controlled. Note that FIG. 1 shows an example in which the flow path switching device 3 is controlled to the “first state”.
 冷房モードでは、流路切替装置3が第1状態とされ、圧縮機2の吐出側が第1熱交換器4に接続される。冷房モードでは、第1熱交換器4は凝縮器として機能するとともに、第2熱交換器6は蒸発器として機能する。冷房モードにおいては、圧縮機2から吐出された高温高圧の冷媒は、流路切替装置3を介して第1熱交換器4に流入する。高温高圧の冷媒は、第1熱交換器4において外気と熱交換し、温度低下して第1熱交換器4から流出する。第1熱交換器4から流出した冷媒は、減圧装置5で減圧され、低温低圧の冷媒となって第2熱交換器6に流入する。低温低圧の冷媒は、第2熱交換器6において外気と熱交換し、温度上昇して第2熱交換器6から流出する。第2熱交換器6を流出した冷媒は、流路切替装置3を介してレシーバ7に流入し、レシーバ7内において気液分離される。レシーバ7内のガス冷媒は、圧縮機2に吸入される。 In the cooling mode, the flow path switching device 3 is set to the first state, and the discharge side of the compressor 2 is connected to the first heat exchanger 4. In the cooling mode, the first heat exchanger 4 functions as a condenser and the second heat exchanger 6 functions as an evaporator. In the cooling mode, the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the first heat exchanger 4 via the flow path switching device 3. The high-temperature and high-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 4, the temperature drops, and the refrigerant flows out of the first heat exchanger 4. The refrigerant flowing out of the first heat exchanger 4 is decompressed by the decompression device 5, becomes a low-temperature low-pressure refrigerant, and flows into the second heat exchanger 6. The low-temperature low-pressure refrigerant exchanges heat with the outside air in the second heat exchanger 6, the temperature rises, and the refrigerant flows out of the second heat exchanger 6. The refrigerant flowing out of the second heat exchanger 6 flows into the receiver 7 via the flow path switching device 3, and is gas-liquid separated in the receiver 7. The gas refrigerant in the receiver 7 is sucked into the compressor 2.
 暖房モードでは、流路切替装置3が第2状態とされ、圧縮機2の吐出側が第2熱交換器6に接続される。暖房モードでは、第1熱交換器4は蒸発器として機能するとともに、第2熱交換器6は凝縮器として機能する。暖房モードにおいては、圧縮機2から吐出された高温高圧の冷媒は、流路切替装置3を介して第2熱交換器6に流入する。高温高圧の冷媒は、第2熱交換器6において外気を流れる水と熱交換し、温度低下して第2熱交換器6から流出する。第2熱交換器6から流出した冷媒は、減圧装置5で減圧され、低温低圧の冷媒となって第1熱交換器4に流入する。低温低圧の冷媒は、第1熱交換器4において外気と熱交換し、温度上昇して第1熱交換器4から流出する。第1熱交換器4を流出した冷媒は、流路切替装置3を介してレシーバ7に流入し、レシーバ7内において気液分離される。レシーバ7内のガス冷媒は、圧縮機2に吸入される。 In the heating mode, the flow path switching device 3 is set to the second state, and the discharge side of the compressor 2 is connected to the second heat exchanger 6. In the heating mode, the first heat exchanger 4 functions as an evaporator and the second heat exchanger 6 functions as a condenser. In the heating mode, the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the second heat exchanger 6 via the flow path switching device 3. The high-temperature and high-pressure refrigerant exchanges heat with the water flowing through the outside air in the second heat exchanger 6, the temperature drops, and the refrigerant flows out of the second heat exchanger 6. The refrigerant flowing out of the second heat exchanger 6 is decompressed by the decompression device 5, becomes a low-temperature low-pressure refrigerant, and flows into the first heat exchanger 4. The low-temperature low-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 4, rises in temperature, and flows out of the first heat exchanger 4. The refrigerant flowing out of the first heat exchanger 4 flows into the receiver 7 via the flow path switching device 3, and is gas-liquid separated in the receiver 7. The gas refrigerant in the receiver 7 is sucked into the compressor 2.
 レシーバ7の吐出口と圧縮機2の吸入口とは、吸入配管(吸入流路)P1によって接続される。レシーバ7から吐出された冷媒は、吸入配管P1を介して圧縮機2に吸入される。 The discharge port of the receiver 7 and the suction port of the compressor 2 are connected by a suction pipe (suction flow path) P1. The refrigerant discharged from the receiver 7 is sucked into the compressor 2 via the suction pipe P1.
 吸入配管P1には、ヒータ30が設けられる。ヒータ30は、電源40からの供給される電力によって熱を発生して吸入配管P1を加熱する。ヒータ30による加熱量(電源40からヒータ30に供給される電力量)は、制御装置100が電源40を制御することによって調整される。 A heater 30 is provided on the suction pipe P1. The heater 30 generates heat by the electric power supplied from the power source 40 to heat the suction pipe P1. The amount of heating by the heater 30 (the amount of electric power supplied from the power source 40 to the heater 30) is adjusted by the control device 100 controlling the power source 40.
 吸入配管P1におけるヒータ30よりも上流側の部分には、温度センサ(第1温度センサ)10が設けられる。吸入配管P1におけるヒータ30よりも下流側の部分には、第2温度センサ(第2温度センサ)20が設けられる。温度センサ10,20の検出結果は、制御装置100に送信される。 A temperature sensor (first temperature sensor) 10 is provided in a portion of the suction pipe P1 on the upstream side of the heater 30. A second temperature sensor (second temperature sensor) 20 is provided in a portion of the suction pipe P1 on the downstream side of the heater 30. The detection results of the temperature sensors 10 and 20 are transmitted to the control device 100.
 警告装置120は、警告ランプ、ディスプレイ、スピーカなどを用いて、使用者に対する警告を出力する。警告装置120が出力する警告の内容は、制御装置100からの指令に応じて制御される。 The warning device 120 outputs a warning to the user by using a warning lamp, a display, a speaker, and the like. The content of the warning output by the warning device 120 is controlled in response to a command from the control device 100.
 制御装置100は、CPU(Central Processing Unit)と、メモリと、各種信号を入出力するための入出力ポートとを含んで構成される。制御装置100は、各センサ(たとえば温度センサ10,20など)および機器からの信号、並びにメモリに格納されたプログラムなどに基づいて、冷凍サイクル装置1の各機器(圧縮機2、流路切替装置3、減圧装置5、ヒータ30および警告装置120など)の制御を行なう。なお、制御装置100が行なう制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit), a memory, and input / output ports for inputting / outputting various signals. The control device 100 is based on each device (compressor 2, flow path switching device) of the refrigerating cycle device 1 based on signals from each sensor (for example, temperature sensors 10, 20, etc.) and a program stored in a memory. 3. The decompression device 5, the heater 30, the warning device 120, etc.) are controlled. The control performed by the control device 100 is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
 [圧縮機への液戻りの推定と使用者への警告]
 冷凍サイクル装置1においては、圧縮機2の吸入配管P1よりも上流側に、冷媒の気液分離を行なうレシーバ7が設けられる。そして、通常時においては、レシーバ7内のガス冷媒が吸入配管P1を介して圧縮機2に吸入される。
[Estimation of liquid return to the compressor and warning to the user]
In the refrigeration cycle device 1, a receiver 7 for gas-liquid separation of the refrigerant is provided on the upstream side of the suction pipe P1 of the compressor 2. Then, in the normal state, the gas refrigerant in the receiver 7 is sucked into the compressor 2 via the suction pipe P1.
 しかしながら、たとえばレシーバ7内に液冷媒が満充填されているような状況においては、レシーバ7から吸入配管P1に液冷媒が流れ出し、圧縮機2に吸入される液冷媒が過多となる液戻りが生じ得る。 However, for example, in a situation where the receiver 7 is fully filled with the liquid refrigerant, the liquid refrigerant flows out from the receiver 7 to the suction pipe P1, and a liquid return occurs in which the liquid refrigerant sucked into the compressor 2 becomes excessive. obtain.
 液戻りが生じると、圧縮機2の摺動部の潤滑油が希釈され、その影響で圧縮機2の摺動部が適切に潤滑されなくなる可能性がある。そのため、液戻りは、圧縮機2の故障要因となり得る。このような液戻りが生じていることに使用者が気付かない場合には、使用者は、冷凍サイクル装置1のメンテナンスを行なうなどの対策を講じることができない。 When liquid return occurs, the lubricating oil in the sliding part of the compressor 2 is diluted, and as a result, the sliding part of the compressor 2 may not be properly lubricated. Therefore, the liquid return can be a cause of failure of the compressor 2. If the user does not notice that such liquid return has occurred, the user cannot take measures such as performing maintenance of the refrigerating cycle device 1.
 そこで、本実施の形態1による冷凍サイクル装置1には、圧縮機2への液戻りを検出(推定)して使用者にメンテナンス等を促すための装置として、上述のヒータ30および温度センサ10,20が圧縮機2の吸入配管P1に設けられるとともに、使用者に対する警告を出力する警告装置120が設けられる。 Therefore, in the refrigerating cycle device 1 according to the first embodiment, the heater 30 and the temperature sensor 10 described above are used as devices for detecting (estimating) the liquid return to the compressor 2 and encouraging the user to perform maintenance or the like. 20 is provided in the suction pipe P1 of the compressor 2, and a warning device 120 for outputting a warning to the user is provided.
 ヒータ30の稼働中において吸入配管P1に液冷媒がない場合、ヒータ30が発生した熱は吸入配管P1内のガス冷媒に伝達されヒータ30よりも下流側の温度が高くなるため、吸入配管P1におけるヒータ30よりも上流側に配置されるヒータ上流部分(第1部分)とヒータ30よりも下流側の部分に配置されるヒータ下流部分(第2部分)との温度差(以下「ヒータ前後温度差」ともいう)は比較的大きくなる。一方、ヒータ30の稼働中において吸入配管P1に液冷媒が存在する場合、ヒータ30が発生した熱の一部がガス冷媒だけでなく液冷媒にも伝達され、液冷媒の量が多いほど、ヒータ30よりも下流側の温度上昇が抑制されるため、ヒータ前後温度差は小さくなる。 When there is no liquid refrigerant in the suction pipe P1 while the heater 30 is in operation, the heat generated by the heater 30 is transmitted to the gas refrigerant in the suction pipe P1 and the temperature on the downstream side of the heater 30 becomes higher. Temperature difference between the heater upstream part (first part) arranged on the upstream side of the heater 30 and the heater downstream part (second part) arranged on the downstream part of the heater 30 (hereinafter, "temperature difference before and after the heater"). ") Is relatively large. On the other hand, when the liquid refrigerant is present in the suction pipe P1 while the heater 30 is in operation, a part of the heat generated by the heater 30 is transferred not only to the gas refrigerant but also to the liquid refrigerant, and the larger the amount of the liquid refrigerant, the more the heater. Since the temperature rise on the downstream side of 30 is suppressed, the temperature difference before and after the heater becomes small.
 この点に鑑み、本実施の形態1による制御装置100は、ヒータ30の稼働中において、ヒータ上流部分に設けられる温度センサ10の検出値とヒータ下流部分に設けられる温度センサ20の検出値との差(以下「センサ温度差ΔT」ともいう)を上述のヒータ前後温度差として算出し、センサ温度差ΔTが基準値Tref未満である場合に、液戻りが生じていると推定して、警告装置120に警告を出力させる。なお、基準値Trefは、制御装置100のメモリに予め記憶されている固定値である。 In view of this point, the control device 100 according to the first embodiment has a detection value of the temperature sensor 10 provided in the upstream portion of the heater and a detection value of the temperature sensor 20 provided in the downstream portion of the heater while the heater 30 is in operation. The difference (hereinafter also referred to as “sensor temperature difference ΔT”) is calculated as the temperature difference before and after the heater described above, and when the sensor temperature difference ΔT is less than the reference value Tref, it is estimated that liquid return has occurred, and a warning device is used. Make 120 output a warning. The reference value Tref is a fixed value stored in advance in the memory of the control device 100.
 ここで、ヒータ前後温度差(センサ温度差ΔT)は、ヒータ30による加熱量だけでなく、吸入配管P1内の冷媒流量によって変化し得る。したがって、仮にヒータ30による加熱量を固定値とすると、センサ温度差ΔTが冷媒流量に応じて変動してしまい、センサ温度差ΔTと基準値Tref(固定値)との比較によって推定される液戻りの推定精度が低下し得る。 Here, the temperature difference before and after the heater (sensor temperature difference ΔT) can change not only by the amount of heat generated by the heater 30 but also by the flow rate of the refrigerant in the suction pipe P1. Therefore, if the amount of heat generated by the heater 30 is set to a fixed value, the sensor temperature difference ΔT will fluctuate according to the flow rate of the refrigerant, and the liquid return estimated by comparing the sensor temperature difference ΔT with the reference value Tref (fixed value). The estimation accuracy of is reduced.
 そこで、本実施の形態による制御装置100は、液戻りを推定するためにヒータ30を稼働させる際、ヒータ前後温度差(センサ温度差ΔT)が吸入配管P1内の冷媒流量に応じては変動しないように、圧縮機2の回転速度を用いてヒータ30による加熱量を調整する。これにより、冷媒流量に依らずに液戻りを精度よく推定することができる。 Therefore, in the control device 100 according to the present embodiment, when the heater 30 is operated to estimate the liquid return, the temperature difference before and after the heater (sensor temperature difference ΔT) does not fluctuate according to the flow rate of the refrigerant in the suction pipe P1. As described above, the amount of heat generated by the heater 30 is adjusted by using the rotation speed of the compressor 2. This makes it possible to accurately estimate the liquid return regardless of the flow rate of the refrigerant.
 図2は、制御装置100が液戻りの推定と使用者への警告を行なう際に実行する処理手順の一例を示すフローチャートである。このフローチャートは、圧縮機2の作動中において、予め定められた条件が成立する毎(たとえば予め定められた周期毎)に繰り返し実行される。 FIG. 2 is a flowchart showing an example of a processing procedure executed when the control device 100 estimates the liquid return and warns the user. This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) while the compressor 2 is in operation.
 まず、制御装置100は、圧縮機2の回転速度を用いて、ヒータ30の要求加熱量を算出する(ステップS10)。このステップは、上述のように、ヒータ前後温度差(センサ温度差ΔT)が冷媒流量に応じては変動しないように、ヒータ30の要求加熱量を調整するために行なわれる。 First, the control device 100 calculates the required heating amount of the heater 30 using the rotation speed of the compressor 2 (step S10). As described above, this step is performed to adjust the required heating amount of the heater 30 so that the temperature difference before and after the heater (sensor temperature difference ΔT) does not fluctuate according to the flow rate of the refrigerant.
 図3は、圧縮機2の回転速度とヒータ30の要求加熱量との対応関係の一例を示す図である。図3に示すように、圧縮機2の回転速度が高いほど、ヒータ30の要求加熱量は大きい値になるように調整される。図3に示すような対応関係を規定するマップが予め制御装置100のメモリに記憶されており、制御装置100は、当該マップを参照して圧縮機2の回転速度に対応する要求加熱量を算出する。 FIG. 3 is a diagram showing an example of the correspondence between the rotation speed of the compressor 2 and the required heating amount of the heater 30. As shown in FIG. 3, the higher the rotation speed of the compressor 2, the larger the required heating amount of the heater 30 is adjusted. A map defining the correspondence relationship as shown in FIG. 3 is stored in the memory of the control device 100 in advance, and the control device 100 calculates the required heating amount corresponding to the rotation speed of the compressor 2 with reference to the map. do.
 図2に戻って、制御装置100は、ヒータ30による加熱量がステップS10で算出された要求加熱量となるようにヒータ30を稼働させる(ステップS12)。 Returning to FIG. 2, the control device 100 operates the heater 30 so that the heating amount by the heater 30 becomes the required heating amount calculated in step S10 (step S12).
 次いで、制御装置100は、ヒータ30の稼働中において上述のセンサ温度差ΔT(温度センサ10の検出値と温度センサ20の検出値との差)をヒータ前後温度差として算出する(ステップS14)。 Next, the control device 100 calculates the above-mentioned sensor temperature difference ΔT (difference between the detected value of the temperature sensor 10 and the detected value of the temperature sensor 20) as the temperature difference before and after the heater while the heater 30 is in operation (step S14).
 次いで、制御装置100は、メモリから基準値Trefを読み出し(ステップS16)、ステップS14で算出されたセンサ温度差ΔTが基準値Tref未満であるか否かを判定する(ステップS18)。センサ温度差ΔTが基準値Tref未満ではない場合(ステップS18においてNO)、吸入配管P1内に液冷媒はほとんど含まれておらず液戻りは生じていないと推定されるため、制御装置100は、以降の処理をスキップしてリターンへと処理を移す。 Next, the control device 100 reads out the reference value Tref from the memory (step S16), and determines whether or not the sensor temperature difference ΔT calculated in step S14 is less than the reference value Tref (step S18). When the sensor temperature difference ΔT is not less than the reference value Tref (NO in step S18), it is presumed that the suction pipe P1 contains almost no liquid refrigerant and no liquid return occurs. The subsequent processing is skipped and the processing is moved to the return.
 一方、センサ温度差ΔTが基準値Tref未満である場合(ステップS18においてYES)、制御装置100は、吸入配管P1内に多くの液冷媒が含まれており液戻りが生じていると推定し、「液バック運転時間」をカウントアップする(ステップS20)。「液バック運転時間」は、前回のメンテナンスを受けた以降において、液戻りが生じている状態で運転されている累積時間を表わす指標である。液バック運転時間は、たとえば制御装置100のメモリに記憶されている。 On the other hand, when the sensor temperature difference ΔT is less than the reference value Tref (YES in step S18), the control device 100 presumes that a large amount of liquid refrigerant is contained in the suction pipe P1 and liquid return occurs. The "liquid back operation time" is counted up (step S20). The "liquid back operation time" is an index showing the cumulative time of operation in a state where liquid return has occurred since the previous maintenance. The liquid back operation time is stored in, for example, the memory of the control device 100.
 制御装置100は、液バック運転時間が基準時間を超えたか否かを判定する(ステップS22)。液バック運転時間が基準時間を超えていない場合(ステップS22においてNO)、制御装置100は、以降の処理をスキップしてリターンへと処理を移す。 The control device 100 determines whether or not the liquid back operation time exceeds the reference time (step S22). When the liquid back operation time does not exceed the reference time (NO in step S22), the control device 100 skips the subsequent processing and shifts the processing to the return.
 液バック運転時間が基準時間を超えた場合(ステップS22においてYES)、制御装置100は、液バック運転時間が基準時間を超えたことを示す警告を警告装置120に出力させる(ステップS24)。ステップS24で出力される警告には、冷凍サイクル装置1のメンテナンスを受けるように使用者に促す内容が含まれていてもよい。 When the liquid back operation time exceeds the reference time (YES in step S22), the control device 100 outputs a warning indicating that the liquid back operation time exceeds the reference time to the warning device 120 (step S24). The warning output in step S24 may include content urging the user to undergo maintenance of the refrigeration cycle device 1.
 また、冷凍サイクル装置1のメンテナンスを行なうメーカーあるいは施工業者が冷凍サイクル装置1の診断を行なえるように、液バック運転時間の履歴は、ステップS24における警告後においても維持するようにしてもよい。ただし、メンテナンス時に圧縮機2が新品に交換された場合には、液バック運転時間をリセットすることが望ましい。 Further, the history of the liquid back operation time may be maintained even after the warning in step S24 so that the manufacturer or the contractor who maintains the refrigeration cycle apparatus 1 can make a diagnosis of the refrigeration cycle apparatus 1. However, if the compressor 2 is replaced with a new one at the time of maintenance, it is desirable to reset the liquid back operation time.
 以上のように、本実施の形態による制御装置100は、ヒータ30の稼働中におけるセンサ温度差ΔTが基準値Tref未満である場合に、液戻りが生じていると推定して、警告装置120に警告を出力させる。この際、センサ温度差ΔTが冷媒流量に応じては変動しないように、圧縮機2の回転速度を用いてヒータ30による加熱量を調整する。これにより、冷媒流量に依らずに液戻りを精度よく推定することができる。 As described above, the control device 100 according to the present embodiment presumes that liquid return has occurred when the sensor temperature difference ΔT during operation of the heater 30 is less than the reference value Tref, and causes the warning device 120. Output a warning. At this time, the amount of heating by the heater 30 is adjusted by using the rotation speed of the compressor 2 so that the sensor temperature difference ΔT does not fluctuate according to the flow rate of the refrigerant. This makes it possible to accurately estimate the liquid return regardless of the flow rate of the refrigerant.
 さらに、本実施の形態による制御装置100は、センサ温度差ΔTが基準値Tref未満であると判定されている累積時間である「液バック運転時間」が基準時間を超えた場合には、液バック運転時間が基準時間を超えたことを示す警告を警告装置120に出力させる。この警告を受けた使用者は、冷凍サイクル装置1の点検を行ってメンテナンスを行うなどの対策を早期に講じることによって、圧縮機2の突発的な故障を未然に回避することができる。 Further, in the control device 100 according to the present embodiment, when the "liquid back operation time", which is the cumulative time for which the sensor temperature difference ΔT is determined to be less than the reference value Tref, exceeds the reference time, the liquid back is performed. A warning indicating that the operating time has exceeded the reference time is output to the warning device 120. The user who receives this warning can avoid a sudden failure of the compressor 2 by taking measures such as inspecting the refrigerating cycle device 1 and performing maintenance at an early stage.
 変形例1.
 上述の実施の形態1においては、ヒータ前後温度差が基準値Tref未満であるか否かを判定するにあたり、センサ温度差ΔTをヒータ前後温度差として算出し、センサ温度差ΔTを基準値Trefと比較している。しかしながら、ヒータ前後温度差が基準値Tref未満であるか否かを判定する手法は、この方法に限定されるものではない。
Modification example 1.
In the above-described first embodiment, in determining whether or not the temperature difference before and after the heater is less than the reference value Tref, the sensor temperature difference ΔT is calculated as the temperature difference before and after the heater, and the sensor temperature difference ΔT is defined as the reference value Tref. I'm comparing. However, the method for determining whether or not the temperature difference before and after the heater is less than the reference value Tref is not limited to this method.
 図4は、吸入配管P1におけるヒータ30の入口部分の乾き度(入口乾き度)とヒータ前後温度差(センサ温度差ΔT)との対応関係を示す図である。この図4から理解できるように、入口乾き度がしきい値xin未満であることは、ヒータ前後温度差(センサ温度差ΔT)が基準値Tref未満であることと等価である。この点に鑑み、たとえば吸入配管P1におけるヒータ30の出口部分の温度および圧力、ヒータ30による加熱量、冷媒流量などから、ヒータ上流部分の入口エンタルピを入口乾き度として算出し、入口エンタルピがしきい値xinに対応する値未満である場合に、ヒータ前後温度差が基準値Tref未満であると判定するようにしてもよい。 FIG. 4 is a diagram showing the correspondence between the dryness (inlet dryness) of the inlet portion of the heater 30 in the suction pipe P1 and the temperature difference before and after the heater (sensor temperature difference ΔT). As can be understood from FIG. 4, the fact that the inlet dryness is less than the threshold value xin is equivalent to the fact that the temperature difference before and after the heater (sensor temperature difference ΔT) is less than the reference value Tref. In view of this point, for example, the inlet enthalpy of the heater upstream portion is calculated as the inlet dryness from the temperature and pressure of the outlet portion of the heater 30 in the suction pipe P1, the heating amount by the heater 30, the refrigerant flow rate, and the like, and the inlet enthalpy is the threshold. When it is less than the value corresponding to the value xin, it may be determined that the temperature difference before and after the heater is less than the reference value Tref.
 実施の形態2.
 図5は、本実施の形態2による冷凍サイクル装置1Aの全体構成の一例を模式的に示す図である。冷凍サイクル装置1Aは、上述の図1に示す冷凍サイクル装置1に対して吸入配管P1から分岐する副配管P2を追加し、この副配管P2にヒータ30および温度センサ10,20を配置したものである。冷凍サイクル装置1Aのその他の構成および動作は、上述の図1に示す冷凍サイクル装置1と同じであるため、ここでの詳細な説明は繰返さない。
Embodiment 2.
FIG. 5 is a diagram schematically showing an example of the overall configuration of the refrigeration cycle apparatus 1A according to the second embodiment. In the refrigeration cycle device 1A, a sub-pipe P2 branching from the suction pipe P1 is added to the refrigeration cycle device 1 shown in FIG. 1, and a heater 30 and temperature sensors 10 and 20 are arranged in the sub-pipe P2. be. Since the other configurations and operations of the refrigerating cycle device 1A are the same as those of the refrigerating cycle device 1 shown in FIG. 1 above, the detailed description thereof will not be repeated here.
 副配管P2は、吸入配管P1におけるレシーバ7との接続部近傍で吸入配管P1から分岐し、吸入配管P1における圧縮機2との接続部近傍で吸入配管P1に合流するように形成される。副配管P2の流路断面は、吸入配管(主配管)P1の流路断面よりも小さい。ヒータ30および温度センサ10,20は、吸入配管P1ではなく、副配管P2に配置される。 The auxiliary pipe P2 is formed so as to branch from the suction pipe P1 in the vicinity of the connection portion with the receiver 7 in the suction pipe P1 and join the suction pipe P1 in the vicinity of the connection portion with the compressor 2 in the suction pipe P1. The cross section of the flow path of the auxiliary pipe P2 is smaller than the cross section of the flow path of the suction pipe (main pipe) P1. The heater 30 and the temperature sensors 10 and 20 are arranged in the auxiliary pipe P2 instead of the suction pipe P1.
 本実施の形態2による制御装置100は、吸入配管P1から分岐する副配管P2に配置されたヒータ30を稼働させて液戻りの推定処理(上述の図2のフローチャートに示す処理)を実行する。そのため、副配管P2への分岐がない吸入配管P1に配置されたヒータ30を稼働させる上述の実施の形態1による冷凍サイクル装置1に比べて、液戻りの推定処理においてヒータ30の加熱対象となる冷媒の量を少なくすることができる。これにより、液戻りの推定処理に要するヒータ30の消費電力を低減することができる。 The control device 100 according to the second embodiment operates the heater 30 arranged in the auxiliary pipe P2 branching from the suction pipe P1 to execute the liquid return estimation process (process shown in the flowchart of FIG. 2 above). Therefore, as compared with the refrigeration cycle device 1 according to the above-described first embodiment in which the heater 30 arranged in the suction pipe P1 having no branch to the auxiliary pipe P2 is operated, the heater 30 is heated in the liquid return estimation process. The amount of refrigerant can be reduced. As a result, the power consumption of the heater 30 required for the liquid return estimation process can be reduced.
 さらに、本実施の形態2においては、副配管P2の流路断面は、吸入配管(主配管)P1の流路断面よりも小さい。そのため、副配管P2の流路断面が吸入配管(主配管)P1の流路断面以上である場合に比べて、ヒータ30の加熱対象となる冷媒の量をより少なくすることができる。これにより、ヒータ30の消費電力をより低減することができる。 Further, in the second embodiment, the cross section of the flow path of the auxiliary pipe P2 is smaller than the cross section of the flow path of the suction pipe (main pipe) P1. Therefore, the amount of the refrigerant to be heated by the heater 30 can be further reduced as compared with the case where the cross section of the flow path of the auxiliary pipe P2 is equal to or larger than the cross section of the flow path of the suction pipe (main pipe) P1. As a result, the power consumption of the heater 30 can be further reduced.
 なお、副配管P2の流路断面は必ずしも吸入配管P1の流路断面よりも小さいことに限定されない。たとえば、副配管P2の流路断面が吸入配管P1の流路断面と同じであってもよい。 The cross section of the flow path of the auxiliary pipe P2 is not necessarily limited to be smaller than the cross section of the flow path of the suction pipe P1. For example, the cross section of the flow path of the auxiliary pipe P2 may be the same as the cross section of the flow path of the suction pipe P1.
 実施の形態3.
 上述の実施の形態1による制御装置100は、図2のフローチャートにおいて、圧縮機2の作動中にヒータ30を常時稼働させる。これに対し、本実施の形態3による制御装置100は、圧縮機2の作動中であって、かつ圧縮機2から吐出される冷媒の温度(以下「圧縮機2の吐出温度」ともいう)が基準温度よりも低い場合に、ヒータ30を稼働させる。
Embodiment 3.
In the flowchart of FIG. 2, the control device 100 according to the first embodiment described above always operates the heater 30 while the compressor 2 is operating. On the other hand, in the control device 100 according to the third embodiment, the temperature of the refrigerant discharged from the compressor 2 while the compressor 2 is operating (hereinafter, also referred to as “compressor 2 discharge temperature”) is set. When the temperature is lower than the reference temperature, the heater 30 is operated.
 また、上述の図2のフローチャートにおいては、センサ温度差ΔTが基準値Tref未満であると判定されている累積時間(液バック運転時間)が基準時間を超えた場合に警告を出力する。これに対し、本実施の形態3による制御装置100は、センサ温度差ΔTが基準値Tref未満である場合に警告を出力する。 Further, in the flowchart of FIG. 2 described above, a warning is output when the cumulative time (liquid back operation time) in which the sensor temperature difference ΔT is determined to be less than the reference value Tref exceeds the reference time. On the other hand, the control device 100 according to the third embodiment outputs a warning when the sensor temperature difference ΔT is less than the reference value Tref.
 図6は、本実施の形態3による制御装置100が液戻りの推定と使用者への警告を行なう際に実行する処理手順の一例を示すフローチャートである。このフローチャートは、上述の図2に対して、ステップS30を追加し、ステップS20,S22を削除し、さらにステップS24をステップS24aに変更したものである。図6のその他のステップ(上述の図2に示したステップと同じ番号を付しているステップ)については、既に説明したため詳細な説明はここでは繰返さない。 FIG. 6 is a flowchart showing an example of a processing procedure executed by the control device 100 according to the third embodiment when estimating the liquid return and giving a warning to the user. In this flowchart, step S30 is added, steps S20 and S22 are deleted, and step S24 is changed to step S24a with respect to FIG. 2 described above. Since the other steps of FIG. 6 (steps with the same numbers as the steps shown in FIG. 2 above) have already been described, detailed explanations will not be repeated here.
 図6に示すフローチャートも、上述の図2と同様、圧縮機2の作動中において、予め定められた条件が成立する毎(たとえば予め定められた周期毎)に繰り返し実行される。 The flowchart shown in FIG. 6 is also repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) while the compressor 2 is operating, as in the case of FIG. 2 described above.
 まず、制御装置100は、圧縮機2の吐出温度が基準温度未満であるか否かを判定する(ステップS30)。なお、圧縮機2の吐出温度は、たとえば圧縮機2の吐出側に配置された図示しない温度センサによって検出されることが想定される。 First, the control device 100 determines whether or not the discharge temperature of the compressor 2 is lower than the reference temperature (step S30). It is assumed that the discharge temperature of the compressor 2 is detected by, for example, a temperature sensor (not shown) arranged on the discharge side of the compressor 2.
 そして、圧縮機2の吐出温度が基準温度を超えている場合(ステップS30においてNO)、圧縮機2の吐出側にはガス冷媒が多く含まれており液戻りが生じている可能性は低いため、制御装置100は、以降の処理をスキップしてリターンへと処理を移す。すなわち、圧縮機2の作動中であっても、圧縮機2の吐出温度が基準温度を超えている場合には、ヒータ30は稼働されない。そのため、圧縮機2の作動中においてヒータ30を常時稼働する場合に比べて、ヒータ30の消費電力を低減することができる。 When the discharge temperature of the compressor 2 exceeds the reference temperature (NO in step S30), the discharge side of the compressor 2 contains a large amount of gas refrigerant, and it is unlikely that liquid return has occurred. , The control device 100 skips the subsequent processing and shifts the processing to the return. That is, even during the operation of the compressor 2, if the discharge temperature of the compressor 2 exceeds the reference temperature, the heater 30 is not operated. Therefore, the power consumption of the heater 30 can be reduced as compared with the case where the heater 30 is constantly operated while the compressor 2 is operating.
 一方、圧縮機2の吐出温度が基準温度未満である場合(ステップS30においてYES)、圧縮機2の吐出側に液冷媒が含まれており液戻りが生じている可能性があるため、制御装置100は、ステップS10以降の処理を実行し、液戻りの推定処理を行なう。 On the other hand, when the discharge temperature of the compressor 2 is lower than the reference temperature (YES in step S30), the liquid refrigerant may be contained on the discharge side of the compressor 2 and liquid return may occur, so that the control device In 100, the processing after step S10 is executed, and the liquid return estimation processing is performed.
 さらに、制御装置100は、センサ温度差ΔTが基準値Tref未満である(ステップS18においてYES)と判定された場合に、液戻りが生じていることを示す警告を警告装置120に出力させる(ステップS24a)。 Further, when it is determined that the sensor temperature difference ΔT is less than the reference value Tref (YES in step S18), the control device 100 outputs a warning indicating that liquid return has occurred to the warning device 120 (step). S24a).
 以上のように、本実施の形態3による制御装置100は、圧縮機2の作動中であって、かつ圧縮機2の吐出温度が基準温度未満である場合に、ヒータ30を稼働させる。言い換えれば、本実施の形態3による制御装置100は、圧縮機2の作動中であっても、圧縮機2の吐出温度が基準温度を超えている場合には、ヒータ30を稼働しない。そのため、圧縮機2の作動中においてヒータ30を常時稼働する場合に比べて、ヒータ30の消費電力を低減することができる。 As described above, the control device 100 according to the third embodiment operates the heater 30 when the compressor 2 is in operation and the discharge temperature of the compressor 2 is lower than the reference temperature. In other words, the control device 100 according to the third embodiment does not operate the heater 30 even while the compressor 2 is operating, if the discharge temperature of the compressor 2 exceeds the reference temperature. Therefore, the power consumption of the heater 30 can be reduced as compared with the case where the heater 30 is constantly operated while the compressor 2 is operating.
 さらに、本実施の形態3による制御装置100は、センサ温度差ΔTが基準値Tref未満である(ステップS18においてYES)と判定された時点で、液戻りが生じていることを示す警告を警告装置120に出力させる。このような警告によって、液戻りがどの程度の頻度で生じているのかを使用者にリアルタイムで知らせることができる。 Further, the control device 100 according to the third embodiment warns a warning indicating that liquid return has occurred when it is determined that the sensor temperature difference ΔT is less than the reference value Tref (YES in step S18). Output to 120. With such a warning, it is possible to inform the user in real time how often the liquid return occurs.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of this disclosure is set forth by the claims rather than the description above and is intended to include all modifications within the meaning and scope of the claims.
 1,1A 冷凍サイクル装置、2 圧縮機、3 流路切替装置、4 第1熱交換器、5 減圧装置、6 第2熱交換器、7 レシーバ、10,20 温度センサ、30 ヒータ、40 電源、100 制御装置、120 警告装置、P1 吸入配管、P2 副配管、RC 冷媒回路。 1,1A refrigeration cycle device, 2 compressor, 3 flow path switching device, 4 first heat exchanger, 5 decompression device, 6 second heat exchanger, 7 receiver, 10, 20 temperature sensor, 30 heater, 40 power supply, 100 control device, 120 warning device, P1 suction pipe, P2 sub pipe, RC refrigerant circuit.

Claims (7)

  1.  圧縮機と前記圧縮機の吸入口に接続される吸入流路とを含む冷媒回路と、
     前記吸入流路に設けられるヒータと、
     使用者に対する警告を出力する警告装置と、
     前記ヒータおよび前記警告装置を制御する制御装置とを備え、
     前記制御装置は、
      前記圧縮機の回転速度を用いて要求加熱量を算出し、
      前記ヒータによる加熱量が前記要求加熱量となるように前記ヒータを稼働させ、
      前記ヒータの稼働中において前記吸入流路における前記ヒータよりも上流側に配置される第1部分と前記ヒータよりも下流側に配置される第2部分との温度差が基準値未満である場合に前記警告装置に前記警告を出力させる、冷凍サイクル装置。
    A refrigerant circuit including a compressor and a suction flow path connected to a suction port of the compressor,
    The heater provided in the suction flow path and
    A warning device that outputs a warning to the user and
    The heater and the control device for controlling the warning device are provided.
    The control device is
    The required heating amount is calculated using the rotation speed of the compressor.
    The heater is operated so that the heating amount by the heater becomes the required heating amount.
    When the temperature difference between the first portion arranged on the upstream side of the heater and the second portion arranged on the downstream side of the heater in the suction flow path during operation of the heater is less than the reference value. A refrigeration cycle device that causes the warning device to output the warning.
  2.  前記制御装置は、前記ヒータを稼働させる際、前記圧縮機の回転速度が高いほど前記ヒータによる加熱量が大きくなるように前記ヒータを稼働させる、請求項1に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 1, wherein the control device operates the heater so that the higher the rotation speed of the compressor, the larger the amount of heat generated by the heater.
  3.  前記吸入流路は、主流路と、前記主流路から分岐される副流路とを備え、
     前記ヒータは、前記副流路に設けられる、請求項1または2に記載の冷凍サイクル装置。
    The suction flow path includes a main flow path and a sub-flow path branched from the main flow path.
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the heater is provided in the sub-channel.
  4.  前記副流路の流路断面は、前記主流路の流路断面によりも小さい、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 3, wherein the cross section of the sub-flow path is smaller than the cross section of the main flow path.
  5.  前記制御装置は、前記ヒータの稼働中において前記温度差が前記基準値未満である場合であって、かつ前記温度差が前記基準値未満である時間が基準時間を超える場合に、前記警告装置に前記警告を出力させる、請求項1~4のいずれか1項に記載の冷凍サイクル装置。 The control device provides the warning device when the temperature difference is less than the reference value and the time when the temperature difference is less than the reference value exceeds the reference time while the heater is in operation. The refrigerating cycle apparatus according to any one of claims 1 to 4, which outputs the warning.
  6.  前記制御装置は、前記圧縮機の作動中であって、かつ前記圧縮機から吐出される冷媒の温度が基準温度未満である場合に、前記ヒータを稼働させる、請求項1~5のいずれかに記載の冷凍サイクル装置。 The control device according to any one of claims 1 to 5, wherein the heater is operated when the compressor is in operation and the temperature of the refrigerant discharged from the compressor is lower than the reference temperature. The refrigeration cycle device described.
  7.  前記第1部分に設けられる第1温度センサと、
     前記第2部分に設けられる第2温度センサとをさらに備え、
     前記制御装置は、前記ヒータの稼働中における前記第1温度センサの検出値と前記第2温度センサの検出値とを用いて前記温度差を算出する、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
    The first temperature sensor provided in the first part and
    Further provided with a second temperature sensor provided in the second portion,
    The control device calculates the temperature difference using the detection value of the first temperature sensor and the detection value of the second temperature sensor while the heater is in operation, according to any one of claims 1 to 6. The refrigeration cycle device described.
PCT/JP2020/020610 2020-05-25 2020-05-25 Refrigeration cycle device WO2021240616A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/020610 WO2021240616A1 (en) 2020-05-25 2020-05-25 Refrigeration cycle device
JP2022527293A JP7309064B2 (en) 2020-05-25 2020-05-25 refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020610 WO2021240616A1 (en) 2020-05-25 2020-05-25 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021240616A1 true WO2021240616A1 (en) 2021-12-02

Family

ID=78723037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020610 WO2021240616A1 (en) 2020-05-25 2020-05-25 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7309064B2 (en)
WO (1) WO2021240616A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169461A (en) * 1986-12-27 1988-07-13 三菱電機株式会社 Air conditioner
JPH05113252A (en) * 1991-10-21 1993-05-07 Toshiba Corp Refrigerating cycle
JPH08240349A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Refrigerator
JP2007051821A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air-conditioner
JP2007255736A (en) * 2006-03-20 2007-10-04 Daikin Ind Ltd Refrigerant heating device and heating control method
WO2010106804A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioner
WO2015186257A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Cooling device, light source device provided with cooling device, and projection-type image display device provided with light source device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157372A1 (en) 2008-06-23 2009-12-30 八幡 貞男 Heat insulation-exhibiting container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169461A (en) * 1986-12-27 1988-07-13 三菱電機株式会社 Air conditioner
JPH05113252A (en) * 1991-10-21 1993-05-07 Toshiba Corp Refrigerating cycle
JPH08240349A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Refrigerator
JP2007051821A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air-conditioner
JP2007255736A (en) * 2006-03-20 2007-10-04 Daikin Ind Ltd Refrigerant heating device and heating control method
WO2010106804A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioner
WO2015186257A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Cooling device, light source device provided with cooling device, and projection-type image display device provided with light source device

Also Published As

Publication number Publication date
JPWO2021240616A1 (en) 2021-12-02
JP7309064B2 (en) 2023-07-14

Similar Documents

Publication Publication Date Title
JP5976333B2 (en) Air conditioner and four-way valve control method for air conditioner
US10816248B2 (en) Refrigeration cycle apparatus
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
JPH05106922A (en) Control system for refrigerating equipment
JP6444577B1 (en) Air conditioner
JP2014115011A (en) Air conditioner
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US20210025627A1 (en) Air-conditioning apparatus
WO2020035993A1 (en) Control device, refrigerator, control method, and abnormality detection method
JP6422590B2 (en) Heat source system
JP2010127586A (en) Refrigerating cycle device
WO2021240616A1 (en) Refrigeration cycle device
US11300339B2 (en) Method for optimizing pressure equalization in refrigeration equipment
US11959676B2 (en) Method for controlling a vapour compression system at a reduced suction pressure
JP6076583B2 (en) heat pump
US11774151B1 (en) Heat pump reversing valve fault detection system
JP6832732B2 (en) Refrigeration system
JP2018162924A (en) Air conditioner
AU2018411936B2 (en) Hot water supply apparatus
KR20210094213A (en) An air conditioning apparatus
JP2010112682A (en) Heat pump cycle device
JP7475043B2 (en) Temperature control system and control method thereof
JP2010023582A (en) Refrigeration cycle device
JP6184156B2 (en) Refrigeration cycle equipment
JP7280519B2 (en) Refrigeration equipment inspection method and inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937697

Country of ref document: EP

Kind code of ref document: A1