WO2021239434A1 - Procédé et dispositif de commande d'un moteur à combustion interne - Google Patents

Procédé et dispositif de commande d'un moteur à combustion interne Download PDF

Info

Publication number
WO2021239434A1
WO2021239434A1 PCT/EP2021/062052 EP2021062052W WO2021239434A1 WO 2021239434 A1 WO2021239434 A1 WO 2021239434A1 EP 2021062052 W EP2021062052 W EP 2021062052W WO 2021239434 A1 WO2021239434 A1 WO 2021239434A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
ignition angle
temperature
combustion chamber
Prior art date
Application number
PCT/EP2021/062052
Other languages
German (de)
English (en)
Inventor
Peter Bloch
Alexander Eckhardt
Danny Jaeger
Rainer Ecker
Jens SCHLICHENMAIER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021239434A1 publication Critical patent/WO2021239434A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1521Digital data processing dependent on pinking with particular means during a transient phase, e.g. starting, acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention is based on a method and a device for controlling an internal combustion engine according to the preamble of the independent claims.
  • an ignition angle for triggering a combustion in the combustion chamber is determined.
  • a basic ignition angle is first determined from the static Basiczu states of the internal combustion engine.
  • a change in a temperature for example the intake air temperature of the internal combustion engine, can also be taken into account.
  • a basic ignition angle is corrected by further correction terms, for example from knock control.
  • the inventive method and the inventive device for controlling an internal combustion engine have the advantage that a dynamic correction contribution is taken into account, which was determined by modeling a combustion chamber temperature or piston temperature of the internal combustion engine.
  • a combustion chamber temperature or piston temperature has the advantage that dynamic processes, in particular processes that change from combustion process to combustion process in the internal combustion engine, can be taken into account particularly well.
  • an improved adaptation of the ignition angle can be adapted to the real operating conditions in the combustion chamber of the internal combustion engine. In dynamic operating states in which the real combustion chamber temperature or If the operating temperature is colder than in static operation, an earlier ignition angle and thus more efficient combustion can be guaranteed.
  • a later ignition angle can be used and in particular the occurrence of knocking events or early ignition events can be avoided. In this way, the efficiency of the combustion is improved, as a result of which lower consumption or greater dynamics of the internal combustion engine is achieved.
  • the control according to the invention is particularly simple in that, given current dynamic operating conditions, a comparison of the modeled combustion chamber temperature or piston temperature is compared with corresponding values in static operation.
  • a particularly simple modeling function in particular a map or several linked maps, can be used or a simple application to the respective internal combustion engine can take place.
  • a knock control contribution can also be used to calculate the ignition angle.
  • the dynamic correction contribution in the direction of an earlier ignition should only take place if the knock detection or knock control is activated.
  • suitable operating parameters for quasi-static contributions to determining the ignition angle can also be taken into account.
  • Typical operating parameters for a quasi-static change are, for example, the air temperature, the coolant temperature, the oil temperature, the fuel temperature or the fuel quality.
  • An additional safeguard with regard to the maximum permissible cylinder peak pressure / gradient can be achieved by limiting the ignition angle in the direction of earlier ignition. This also prevents the efficiency of the internal combustion engine from decreasing if the ignition is too early.
  • For the modeling of the combustion chamber temperature or the piston temperature it is necessary to determine the thermal time constants of the respective type of internal combustion engine in an application phase. In this application phase, a measurement of the combustion chamber temperature or the piston temperature is measured as a function of dynamically changing operating parameters. Based on these thermal time constants of the respective type of internal combustion engine can then the combustion chamber temperature or piston temperature can be modeled as a function of dynamically changing operating parameters.
  • Figure 1 is a schematic view of an internal combustion engine with a device for control and Vorrich
  • FIG. 1 steps of the method according to the invention.
  • FIG. 1 an internal combustion engine 1 with an engine controller 2 is shown schematically.
  • the internal combustion engine 1 has a cylinder 3 in which a piston 4 is located.
  • the space left free by the cylinder 3 above the piston 4 formed the combustion chamber 5, to which a mixture of air and fuel is fed through the air supply 6.
  • the fuel can also be injected directly into the combustion chamber.
  • the piston 4 is connected to a crankshaft by a connecting rod, whereby the up and down movement of the piston 4 in the cylinder 5 is converted into a rotary movement.
  • the combustion of the air-fuel mixture in the combustion chamber 5 is triggered by an ignition spark on the spark plug 8.
  • the spark plugs 8 are activated by the engine control 2, the additional devices required for this, such as an ignition coil, not being shown for reasons of simplicity.
  • the point in time at which the ignition spark is triggered is usually referred to as the ignition angle, ie as the angle is shown relative to the rotation of the crankshaft.
  • the combustion in the combustion chamber 5 can be optimized so that an optimal conversion of the heat generated by the combustion into mechanical work of the crankshaft is ensured.
  • the problem here is that the optimum ignition angle is very close to a critical operating point from which knocking occurs in the combustion chamber 5, which can destroy the internal combustion engine 1.
  • knocking can be detected by a knock sensor 9 which is attached to the outside of the cylinder 3.
  • the signal from the knock sensor 9 is passed to the Motorsteue tion 2 through a line not shown.
  • the optimal ignition angle for a combustion in the combustion chamber 5 depends in particular on the temperatures of the combustion chamber 5 or the piston 4.
  • the temperature of the combustion chamber 5 or the piston 4 will increase from combustion process to combustion process, but the temperature has a time offset compared to the temperature of a static operating state.
  • the temperature changes due to dynamic operation take place with typical time constants that result from a thermal loading capacity of the combustion chamber 5 or of the piston 4.
  • an application phase is therefore necessary in which the temperature of the combustion chamber 5 or the piston 4 is measured.
  • Dynamic operating states are then generated and the change in temperature in combustion chamber 5 or piston 4 is determined by measurement. With the time constants determined in this way, the temperature can then be modeled during operation of the internal combustion engine without sensors for measuring the temperature of the combustion chamber 5 or the piston 4 being provided during such operation.
  • the control of an internal combustion engine 1 is shown schematically in FIG. In particular, the sequence in FIG. 2 determines an ignition angle at which the ignition spark is triggered.
  • a calculation block 22 is used to determine a Basic ignition angle 23 as a function of operating parameters 21.
  • the calculation block 22 is based on operating parameters 21 which are essentially independent of the ambient conditions of the internal combustion engine 1. Furthermore, the calculation block 22 only shows the static dependencies. All relationships between the operating parameters 21 and the basic ignition angle are determined for a static operating case, ie for an operation in which the operating parameters 21 change only very slowly or not at all.
  • Such operating parameters 21 are, for example, the load or speed of the internal combustion engine 1.
  • Further operating parameters 21 are, for example, the extent of exhaust gas recirculation, control of the air inlet valves and exhaust valves, a basic operating mode of the internal combustion engine 1 (for example normal operation or heating operation for a catalytic converter) and others. It is essential that these operating parameters 21 do not depend on the ambient conditions of the internal combustion engine 1.
  • the calculation block 22 can be designed particularly simply as a simple characteristic map, in which in the simplest case an individual input variable is linked to an output variable by an assignment table.
  • the basic ignition angle 23 thus represents a suitable ignition angle for static operation of the internal combustion engine 1.
  • a quasi-static ignition angle 41 is determined as a function of operating parameters 21 in a further calculation block 24.
  • the operating parameters 21 that are fed to the calculation block 24 are quasi-static operating parameters such as the temperature of the air that is fed to the internal combustion engine, the air pressure, the cooling water temperature, the oil temperature, the fuel temperature or the fuel quality. These quasi-static operating parameters 21 change only with a slow time constant and lead to a quasi-static firing angle 41.
  • the basic firing angle 23 and the quasi-static firing angle 41 are linked in logic block 25 to form a corrected basic firing angle 26.
  • a calculation block 42 the current combustion chamber temperature or piston temperature of the internal combustion engine is modeled as a function of dynamic see operating parameters 21 of the internal combustion engine.
  • the model stored in the calculation block 42 has been determined by the application described above on the internal combustion engine by measuring the piston temperature or the combustion chamber temperature and determining the time constants of the type of internal combustion engine.
  • the calculation block 42 supplies, on the one hand, a current combustion chamber temperature or piston temperature 44, which, above all, also takes into account a time profile of the operating parameters 21. In particular, it is taken into account how the corresponding temperature behaves over time when there is a change, in particular a major change, in the operating parameter 21.
  • the calculation block 42 also supplies a static combustion chamber temperature or piston temperature 45, only the current state of the operating parameters 21 being taken into account for this calculation.
  • a temperature is therefore specified which results when the internal combustion engine 1 is operated statically, ie uniformly with these operating parameters 21 over a longer period of time.
  • the current and the static combustion chamber temperature piston temperature 44, 45 are fed to a subtraction block 43 in which they are subtracted from one another.
  • the starting point of the subtraction block 43 is therefore the difference 46 between the current temperature below the static temperature of the combustion chamber or the piston.
  • This difference 46 then forms the input of the calculation block 29 in which a dynamic correction contribution 50 for the ignition angle is assigned to this difference.
  • the output of the calculation block 29 then becomes a multiplication block
  • a weighting factor 47 is calculated as a function of operating parameters 21. By means of this weighting factor 47, the influence of the dynamic correction contribution 50 can still be weighted as a function of the operating parameters 21.
  • the weighting factor 47 has a value range between 0 and 1 and is multiplied by the dynamic correction contribution 50.
  • the dynamic correction contribution 50 becomes a switch after this weighting
  • the switch 32 will forward the dynamic correction contribution 50 to a logic block 27 as a function of a signal 48 or not.
  • the input signal 48 indicates whether a knock control, ie a Evaluation of a knock sensor 9 to prevent knocking burns, whether it is activated or not. If knock control is not activated, for example because a knock sensor 9 is not ready for operation or because knock control is not permitted for certain operating areas, a dynamic correction should be made
  • logic block 27 the corrected basic ignition angle 26 and the dynamic correction contribution 50 are then combined to form a dynamically corrected ignition angle 51.
  • the linking of logic block 27 is simply an addition, i.e. the corrected basic ignition angle 26 and the dynamic correction contribution 50 are added in order to generate the dynamically corrected ignition angle 51.
  • the procedure described in this way enables an ignition angle to be determined that takes static operating conditions as well as quasi-static operating conditions and dynamic operating conditions into account.
  • the dynamic operating conditions are taken into account by a combustion chamber temperature or a piston temperature.
  • an additional calculation block 33 can be provided in which absolute limits for the ignition angle 51 are specified as a function of operating parameters 21 of the internal combustion engine. These limits are particularly important for an advance adjustment of the ignition angle.
  • the calculation block 33 thus contains data relating to an optimally advanced angle as a function of the operating parameters 21.
  • the calculation block 33 thus outputs an optimal ignition angle 52. Advancing the ignition angle 51 beyond this optimum ignition angle 52 of the calculation block 33 does not improve the combustion of the internal combustion engine 1. There is therefore a minimum selection in logic block 28 to the effect that the later ignition angle is selected. As a result of logic block 28, either the optimal ignition angle 52 (early limit) or the dynamically corrected ignition angle 51 is output.
  • the calculation of the dynamic correction contribution 50 shown in FIG. 2 is to be understood as an example of a calculation.
  • the weighting by the calculation block 30 can also take place using a different modeling 42, for example in that certain operating ranges of the internal combustion engine 1 are excluded for modeling.
  • a gradient of the temperature of the combustion chamber 5 or of the piston 4 could simply be used.
  • Many different ways of determining the dynamic correction contribution 50 can thus be found. It is essential that the dynamic correction contribution 50 is based on a modeling of the combustion chamber temperature or piston temperature based on real

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

L'invention concerne un procédé de commande d'un moteur à combustion interne (1), dans lequel un angle d'allumage permettant de déclencher la combustion dans une chambre de combustion du moteur à combustion interne est déterminé, un angle d'allumage fondamental (23) étant déterminé en premier lieu parmi des états de fonctionnement (21) du moteur à combustion interne, et la dépendance de l'angle d'allumage fondamental aux états de fonctionnement a été déterminée dans une opération statique du moteur à combustion interne. Pour l'angle d'allumage, un facteur de correction dynamique (50) est pris en compte ainsi que l'angle d'allumage fondamental (23), et le facteur de correction dynamique (50) est déterminé par modélisation d'une température de chambre de combustion ou d'une température de piston du moteur à combustion interne (1).
PCT/EP2021/062052 2020-05-29 2021-05-06 Procédé et dispositif de commande d'un moteur à combustion interne WO2021239434A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020206791.0 2020-05-29
DE102020206791.0A DE102020206791A1 (de) 2020-05-29 2020-05-29 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2021239434A1 true WO2021239434A1 (fr) 2021-12-02

Family

ID=75904911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/062052 WO2021239434A1 (fr) 2020-05-29 2021-05-06 Procédé et dispositif de commande d'un moteur à combustion interne

Country Status (2)

Country Link
DE (1) DE102020206791A1 (fr)
WO (1) WO2021239434A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150300A (en) * 1989-02-23 1992-09-22 Mitsubishi Jidosha Kogyo K.K. Ignition timing controller for spark-ignition internal combustion engine using estimated cylinder wall temperature
EP0790407A2 (fr) * 1996-02-16 1997-08-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Appareil et méthode pour contrÔler le temps d'allumage d'un moteur à combustion interne à injection dans le cylindre
EP3284934A1 (fr) * 2015-04-16 2018-02-21 Nissan Motor Co., Ltd. Appareil de commande de moteur et procédé de commande de moteur
WO2019163459A1 (fr) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Dispositif et procédé de commande de moteur à combustion interne
US20190285008A1 (en) * 2016-10-17 2019-09-19 Hitachi Automotive Systems, Ltd. Internal combustion engine control device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150300A (en) * 1989-02-23 1992-09-22 Mitsubishi Jidosha Kogyo K.K. Ignition timing controller for spark-ignition internal combustion engine using estimated cylinder wall temperature
EP0790407A2 (fr) * 1996-02-16 1997-08-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Appareil et méthode pour contrÔler le temps d'allumage d'un moteur à combustion interne à injection dans le cylindre
EP3284934A1 (fr) * 2015-04-16 2018-02-21 Nissan Motor Co., Ltd. Appareil de commande de moteur et procédé de commande de moteur
US20190285008A1 (en) * 2016-10-17 2019-09-19 Hitachi Automotive Systems, Ltd. Internal combustion engine control device and method
WO2019163459A1 (fr) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Dispositif et procédé de commande de moteur à combustion interne

Also Published As

Publication number Publication date
DE102020206791A1 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
DE102008006731B4 (de) Verfahren und Vorrichtung zum Bestimmen des Drucks in einem ungezündeten Zylinder
DE102009047829B4 (de) Verfahren zum Schätzen der NOx-Erzeugung in einem Verbrennungsprozess eines Viertaktverbrennungsmotors
AT513359B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE112009001445B4 (de) Kraftstoffsystem-Einspritzzeiteinstellungsdiagnose durch Analysieren des Zylinderdrucksignals
WO1999015872A2 (fr) Procede d'evaluation de la courbe de la pression dans une chambre de combustion
DE112005003527T5 (de) Verfahren für die Schätzung von Verbrennungsparametern
EP1716331B1 (fr) Procede de synchronisation des cylindres en termes de quantites d'injection de carburant dans un moteur thermique
DE102008002261A1 (de) Verfahren und Vorrichtung zur Ermittlung eines oder mehrerer Brennbeginne in einem Zylinder eines Verbrennungsmotors aus einem bereitgestellten Zylinderdruckverlauf
DE102006001271B4 (de) System zur Bestimmung des Verbrennungsbeginns bei einer Brennkraftmaschine
DE102011100291A1 (de) Verfahren zur Steuerung der Zeiteinstellung einer Mehrfacheinspritzung
EP2698520A1 (fr) Procédé destiné au fonctionnement d'un moteur à combustion interne
EP3786436B1 (fr) Procédé de diagnostic des ratés de combustion d'un moteur à combustion interne
DE102008004360A1 (de) Verfahren und Vorrichtung zum Steuern eines selbstzündenden Verbrennungsmotors
DE19520605C1 (de) Verfahren und Einrichtung zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor
DE102008004221A1 (de) Bestimmung einer während des Betriebs einer Brennkraftmaschine auftretenden NOx- und Rußemission
DE102016208980A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
EP1639253A1 (fr) Procede de controle du recyclage des gaz d'echappement d'un moteur a combustion interne
DE112015002437T5 (de) Ventilfehlerdetektion
DE19706750A1 (de) Verfahren zur Gemischsteuerung bei einem Verbrennungsmotor sowie Vorrichtung zu dessen Durchführung
WO2007071499A1 (fr) Procédé de commande d'un moteur à combustion interne
DE102013206286A1 (de) Verfahren und Vorrichtung zum Bestimmen eines Zündwinkels in einem Motorsteuergerät
DE102009045792A1 (de) Verfahren und Steuergerät zum Abgleichen von Abgassondensignalen beim Betrieb eines Verbrennungsmotors mit variabler Spülrate
DE102009037254A1 (de) Verfahren und Vorrichtung zum Steuern des Beriebs einer Brennkraftmaschine
EP2162802A1 (fr) Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne
DE102007058227A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Steuer- oder Regeleinrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21725086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21725086

Country of ref document: EP

Kind code of ref document: A1