WO2021238815A1 - 一种天线及使用方法、通信基站 - Google Patents

一种天线及使用方法、通信基站 Download PDF

Info

Publication number
WO2021238815A1
WO2021238815A1 PCT/CN2021/095324 CN2021095324W WO2021238815A1 WO 2021238815 A1 WO2021238815 A1 WO 2021238815A1 CN 2021095324 W CN2021095324 W CN 2021095324W WO 2021238815 A1 WO2021238815 A1 WO 2021238815A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
parasitic array
specified direction
array
parasitic
Prior art date
Application number
PCT/CN2021/095324
Other languages
English (en)
French (fr)
Inventor
任田昊
蔡梦
曾凌
曹萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21812284.4A priority Critical patent/EP4175072A4/en
Publication of WO2021238815A1 publication Critical patent/WO2021238815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2629Combination of a main antenna unit with an auxiliary antenna unit
    • H01Q3/2635Combination of a main antenna unit with an auxiliary antenna unit the auxiliary unit being composed of a plurality of antennas
    • H01Q3/2641Combination of a main antenna unit with an auxiliary antenna unit the auxiliary unit being composed of a plurality of antennas being secundary elements, e.g. reactively steered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna, a method of use, and a communication base station.
  • CCIC Co-Channel Interference Cancellation, Co-Channel Interference Cancellation
  • This application provides an antenna, a method of use, and a communication base station, which are used to improve co-frequency interference between antennas and improve the communication effect between communication base stations.
  • an antenna is provided, and the antenna is used for communication between communication base stations.
  • the antenna includes: a feed source, a parasitic array and a main reflector.
  • the main reflector is used to transmit the signal from the feed source, so that the signal emitted by the feed source can be extended to a larger area.
  • the parasitic array is used to form a null for the signal in the specified direction range.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • the antenna can adopt different forms of antenna.
  • the signal transmitting end of the feed of the antenna faces the main reflector, and the signal emitted by the feed can be directly reflected by the main reflector; or, the antenna further includes a radiation reflector nested in the main reflector, and the feed The signal emitting end of is facing the secondary reflecting plate, and the secondary reflecting plate is used to reflect the signal emitted by the feed source to the main reflecting plate.
  • the secondary reflector is fixedly connected to the feed, which can be understood as a hat-shaped structure formed at the transmitting end of the feed, and the signal emitted by the feed is reflected to the primary reflector through the secondary reflector. It is convenient to set up the secondary reflector.
  • the specified direction range is multiple
  • the parasitic array is a parasitic array with adjustable impedance
  • the parasitic array is used to control the signal in the multiple specified direction ranges
  • the parasitic array can achieve secondary shaping of the antenna signal in different areas, so that the parasitic array can be modified adaptively when the communication base station is in different positions.
  • it further includes a control device for controlling the parasitic array to form a null within one or part of the multiple specified direction ranges.
  • the adjustable control of the parasitic array is realized by the control device.
  • control device can be arranged in an indoor unit or an outdoor unit, wherein the indoor unit or the outdoor unit is connected to the feed source.
  • the parasitic array includes a plurality of metal patches arranged in an array, and in each column of the metal patches, adjacent metal patches are connected by an adjustable impedance device.
  • the parasitic array can be adjusted through adjustable impedance devices.
  • a row of metal patches can be arranged in different directions, for example, the arrangement direction of each row of metal patches is arranged from the edge of the side wall of the main reflector to the center of the main reflector, Or it is offset by a certain angle relative to the direction in which the side wall of the main reflector points to the center of the main reflector.
  • the parasitic array includes a dielectric layer, and the metal patch and the adjustable impedance device are arranged on the dielectric layer.
  • the control device when the antenna includes a control device, the control device is used to control the impedance value of the adjustable impedance device, and control the impedance value of the adjustable impedance device.
  • the parasitic matrix forms a null in one or part of the specified direction ranges of the plurality of specified direction ranges.
  • the parasitic array is adjustable through the control device.
  • control device is also used to control the impedance value of the adjustable impedance device, and control the parasitic array in the plurality of designated impedance values by controlling the impedance value of the adjustable impedance device.
  • No null is formed for the signal in one of the direction ranges or part of the specified direction range. The adaptability of the parasitic array is improved, and the influence of the parasitic array on the base station is reduced when the base station has no signal interference.
  • control device stores the correspondence between the multiple specified direction ranges and the weights of the parasitic array adjustable impedance device when the null is generated.
  • the parasitic array can be adjusted through the corresponding relationship.
  • the adjustable impedance device may be a varactor diode, a PIN tube, a MEMS switch, or the like. Realize the control of the parasitic array through different devices.
  • the parasitic array can also be a parasitic array with non-adjustable impedance. It can be realized that when it is in a specified direction range, a zero trap is formed in the specified direction range.
  • the parasitic array includes a plurality of metal patches arranged in an array, wherein in each column of the metal patches, adjacent metal patches are connected by impedance devices with non-adjustable impedance values.
  • the impedance device with non-adjustable impedance is one or a combination of capacitors, resistors, or inductors.
  • the parasitic array is fixedly connected to the main reflector through a bracket.
  • the main reflector is provided with an enclosure, and the enclosure is fixedly connected to the end of the main reflector away from the feed;
  • the bracket is arranged on the enclosure.
  • the stent is an adjustable stent.
  • the parasitic array can be adjusted to realize the nulling of the antenna in the range of different specified directions.
  • the bracket is a bracket that can be stretched in a first direction, wherein the first direction is parallel to the caliber surface of the main reflector.
  • the parasitic array can be adjusted to realize the nulling of the antenna in the range of different specified directions.
  • the stent is a three-dimensional adjustable stent.
  • the parasitic array can be adjusted to realize the nulling of the antenna in the range of different specified directions.
  • a method for using an antenna is provided.
  • the antenna is any one of the above-mentioned antennas, and the antenna includes the following steps:
  • the signal transmitted by the parasitic array to the antenna forms a null in the specified direction.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • the method further includes:
  • the parasitic array is a parasitic array with adjustable impedance
  • the position of the parasitic array is adjusted, and/or the impedance of the parasitic array is adjusted so that the signal emitted by the antenna forms a null in one or part of the specified directional range of the plurality of specified directional ranges.
  • the parasitic array can achieve secondary shaping of the antenna signal in different areas, so that the parasitic array can be modified adaptively when the communication base station is in different positions.
  • the adjustment of the impedance of the parasitic array causes the signal emitted by the antenna to form a null within one or part of the multiple specified direction ranges, specifically:
  • the possibility of the corresponding parasitic arrays when nulls are generated in one or part of the specified direction range is determined. Adjust the impedance value of the impedance device;
  • the method further includes:
  • the parasitic array is controlled not to form a null for the signal in the specified direction range. Improve the scope of application of the antenna.
  • a communication base station in a third aspect, includes: a base station body and the antenna according to any one of the above items arranged on the base station body.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • a communication system including a first base station, a second base station, and a third base station.
  • the first base station is used to send signals to the second base station and the third base station. Any one of the antennas.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • Figure 1 is a schematic diagram of a specific communication process
  • FIG. 2 is a schematic diagram of another specific communication process
  • FIG. 3a is a schematic structural diagram of an antenna provided by an embodiment of the application.
  • FIG. 3b is a schematic diagram of another structure of an antenna provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a parasitic array provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another antenna provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of another parasitic array provided by an embodiment of the application.
  • Figure 7 is a side view of another parasitic array provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another antenna provided by an embodiment of the application.
  • FIG. 9 is a mapping relationship between a control device and a parasitic array provided by an embodiment of the application.
  • Figure 10 to Figure 13 are the waveform simulation diagrams of the antenna in different working states.
  • FIG. 1 illustrates a schematic diagram of a specific communication process.
  • the first antenna 101 of base station 1 communicates with the second antenna 201 of base station 2 (the signal propagation direction is shown by the solid arrow), and the third antenna 102 of base station 1 communicates with The fourth antenna 301 of the base station 3 communicates (the signal propagation direction shown by the solid arrow), thereby forming multiple point-to-point communications.
  • point-to-point refers to the point-to-point fixed beam pointing between two base stations or two antennas.
  • the first antenna 101 of the base station 1 communicates with the second antenna 201 of the base station 2, and the third antenna 301 of the base station 3 communicates with the fourth antenna 401 of the base station 4.
  • the signal propagation direction shown by the dashed arrow as shown in FIG. 2 signal transmission may occur between the first antenna 101 and the fourth antenna 401, Signal transmission will cause interference to the signal between the third antenna 301 and the fourth antenna 401; signal transmission may occur between the second antenna 201 and the third antenna 301, and the signal between the second antenna 201 and the third antenna 301 The transmission may cause interference to the signal between the first antenna 101 and the second antenna 201.
  • the embodiment of the present application provides an antenna, which will be described in detail below with reference to the accompanying drawings and specific embodiments.
  • FIG. 3a illustrates a schematic diagram of the basic structure of an antenna provided by an embodiment of the present application.
  • the antenna includes a signal processing module 10, a feed source 20 and a radiation component 30.
  • the signal processing module 10 transmits the signal to the feed source 20, and the feed source 20 transmits it through the radiation component 30; when receiving the signal, the radiation component 30 receives external signals, and the signal is transmitted to the feed source 20 through the radiation component 30, It is then transmitted to the signal processing module 10 through the feed source 20.
  • the radiation assembly 30 includes a main reflector 31 and a sub reflector 32, and the sub reflector 32 and the main reflector 31 are used to cooperate with the signal emitted by the feed source 20 to emit.
  • the main reflector 31 and the auxiliary reflector 32 adopt a parabolic structure, and the feed source 20 is located at the center of the main reflector 31.
  • the auxiliary reflection plate 32 is nested in the main reflection plate 31, and the outer arc surface of the auxiliary reflection plate 32 faces the feed source 20.
  • the signal transmitting end of the feed source 20 faces the sub-reflective plate 32, the sub-reflective plate 32 is used to reflect the signal emitted by the feed source to the main reflector 31, and the main reflector 31 is used to transmit the signal of the feed source 20.
  • the feed source and the secondary reflector can be an integral structure, or the feed source and the secondary reflector are connected through a connector.
  • the signal emitted by the feed is reflected by the secondary reflector to the main reflector.
  • the secondary reflector is a hat-shaped structure at the transmitting end of the feed.
  • the secondary reflector 32 When the antenna is used as a transmitting antenna, the secondary reflector 32 is used to reflect the signal emitted by the feed source 20 to the main reflector 31, and the main reflector 31 is used to transmit the signal reflected by the secondary reflector 32 to the main reflector 31, so that the feeder The signal emitted by the source 20 can be extended to a larger area.
  • the antenna When the antenna is used as a receiving antenna, the external signal is reflected by the main reflector 31 to the secondary reflector 32, and then reflected by the secondary reflector 32 to the feed source 20.
  • the aforementioned external signals are signals transmitted by other antennas or base stations.
  • the main reflector 31 and the auxiliary reflector 32 are an axisymmetric structure, and the main reflector 31 and the auxiliary reflector 32 are arranged coaxially to make the signal reflected by the antenna uniform, wherein the above-mentioned axis is optional Is the axis of the feed source 20.
  • the main reflector 31 is provided with an enclosure 60, and the enclosure 60 is fixedly connected to the end of the main reflector 31 away from the feed source 20.
  • the main reflector plate 31 and the enclosure plate 60 can be fixedly connected by fasteners, threaded connectors (screws or bolts), etc., or fixedly connected by bonding or welding, or the enclosure plate 60 and the reflector plate are integrated Forming, such as direct forming by die casting.
  • the antenna further includes a radome 50, the radome 50 is fixedly connected to the enclosure 60, and the feed 20 and the secondary reflector 32 are enclosed in the space enclosed by the main reflector 31 and the radome 50.
  • the antenna further includes a parasitic array 40, and the parasitic array 40 is fixed in the radome 50.
  • the parasitic array 40 can also be fixed outside the radome 50, for example, the parasitic array 40 is fixedly connected to the main reflector 31 through a bracket.
  • the parasitic array 40 is used to form a null for the signal emitted by the feed source 20 within a specified direction range.
  • the parasitic array 40 is used to perform secondary shaping of the antenna.
  • the so-called secondary shaping refers to the modification of the antenna pattern by the parasitic array, so that the antenna pattern is shaped into a new shape.
  • the above-mentioned parasitic array 40 is used to perform secondary shaping of the signal emitted by the feed source 20, including but not limited to, performing secondary shaping of the signal between the feed source 20 and the secondary reflector 32; or secondary shaping the signal from the secondary reflector 32 to the main reflector.
  • the signal between the reflecting plates 31 is subjected to secondary shaping; or the signal reflected by the main reflecting plate 31 is subjected to secondary shaping.
  • Nulls indicate that there is a significant decrease in gain in a certain angle or a certain angle direction on the antenna pattern.
  • the index requirements for gain reduction are related to the main lobe gain and the anti-interference ability of the entire system.
  • the parasitic array is used to form a null for the signal in a specified direction range, and the nulling feature of the antenna pattern can be used to achieve interference suppression to the null point (or direction).
  • the above-mentioned zero point (or direction) is the position where the zero point is generated.
  • the antenna provided by the embodiment of the present application is not only limited to the antenna shown in FIG. 3a, but other antennas may also be used.
  • the part numbers in FIG. 3b may refer to the same reference numbers in FIG. 3a.
  • the antenna only includes the feed 20 and the main reflector 31.
  • the main reflector 31 is used to transmit the signal from the feed 20; the signal transmitting end of the feed 20 faces the main reflector 31, and the signal emitted by the feed 20 is directly It is reflected by the main reflection plate 31.
  • the direction a and direction b are defined.
  • the direction a is the direction in which the edge of the side wall of the main reflector 31 points to the center of the main reflector 31, the direction b is perpendicular to the direction a, and the plane where the directions a and b are parallel to The aperture surface of the main reflector 31.
  • two parasitic arrays 40 are provided for generating nulls in different designated directions and ranges. It should be understood that in the embodiment of this application, the number of parasitic arrays 40 is not specifically limited, and it can be based on actual conditions. The number of parasitic arrays 40 needs to be set. For example, the number of parasitic arrays 40 is one, two, three, and other different numbers. For example, a parasitic array 40 is set in an area where the antenna may generate interference signals.
  • the parasitic array 40 may be a non-adjustable parasitic array. As shown in the structure shown in FIG. 4, the parasitic array 40 includes a plurality of metal patches 42 arranged in an array. The metal patches 42 arranged in the array are arranged in rows along the direction a and in columns along the direction b. The metal patches 42 in each column They are arranged in a row along the direction a, as shown at 44 in FIG. 4. In each column of metal patches 42, adjacent metal patches 42 are connected by impedance devices 43a.
  • the metal patches 42 are connected by a fixed-value impedance device, such as a capacitor, an inductor, a resistor, or a combined device composed of one or more of an inductor, a resistor, or a capacitor. .
  • a fixed-value impedance device such as a capacitor, an inductor, a resistor, or a combined device composed of one or more of an inductor, a resistor, or a capacitor.
  • the parasitic array 40 When the parasitic array 40 is working, when the signal (electromagnetic wave) reflected by the main reflector 31 hits the parasitic array 40, it will stimulate the surface current in the parasitic array 40.
  • the surface can be adjusted by designing the size, spacing and impedance device of the metal patch 42 The current will affect the radiated pattern again, and realize the control of the beam, so that the antenna produces a null point in the specified direction range and reduces the signal propagation effect in this area.
  • the arrangement direction of the metal patches 42 in each column can be offset by a certain angle along the direction a, such as different angles such as 1°, 3°, 5°, and 10°.
  • the metal patch 42 can be a rectangular metal patch.
  • the specific shape of the metal patch 42 is not specifically limited in this application, and metal stickers of different shapes such as oval and circular shapes can also be used. piece.
  • the parasitic array 40 further includes a dielectric layer 41, and the metal patch 42 and the impedance device 43 a are disposed on the dielectric layer 41.
  • the dielectric layer 41 is made of a signal-permeable and insulating material.
  • it can be made of common materials such as plastics and fibers, which is not specifically limited in this application.
  • the parasitic array 40 can be integrated by processing metal patterns on the dielectric layer 41 and then welding impedance elements, or can be made into a monolithic integrated form, that is, all components are processed in an integrated manner.
  • the surface current generated by the parasitic array 40 is related to the size of the metal patches 42 in the parasitic array 40, the spacing between the metal patches 42, the impedance value of the impedance device 43a, and the position of the parasitic array 40.
  • the parameters of the parasitic array 40 include: the size and spacing of the metal patch 42 unit, the value of the interconnection impedance (impedance device), the position in the antenna, and so on.
  • the parasitic array 40 is a parasitic array with non-adjustable impedance, the nulling of the antenna can be achieved through the parasitic array in a certain specified direction range.
  • the antenna is used as a transmitting antenna as an example.
  • the principle is the same, except that the direction of signal transmission is different.
  • the antenna signal is secondarily shaped in a specified direction range through the parasitic array, so that the antenna forms a null in the specified direction range, which changes the antenna pattern, and then
  • the problem of mutual interference between communication base stations can be avoided, and the communication effect between communication base stations can be improved; in addition, the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • the reference numerals in FIG. 5 can refer to the same reference numerals in FIG. 3a.
  • Fig. 5 illustrates another way to adjust the null.
  • the parasitic array 40 is a parasitic array with adjustable impedance.
  • the parasitic array 40 may be a parasitic array with adjustable impedance, and the parasitic array 40 forms a null for the signal in one or part of the specified direction ranges of the multiple specified direction ranges.
  • the parasitic array 40 can be specifically controlled by a control device.
  • the control device can be used to control the parasitic array 40 to feed the source in a certain specified direction range or part of the specified direction range.
  • the transmitted signal undergoes secondary shaping and forms a null.
  • the control device can be used to control the parasitic array 40 not to perform secondary shaping of the signal emitted by the feed source 20 in the specified direction range.
  • the above-mentioned partial designated direction ranges include but are not limited to two or three designated direction ranges.
  • the control device may be provided in the signal processing module 10, and the signal processing module 10 may be an indoor unit, an outdoor unit or an all-outdoor unit.
  • the indoor unit, an outdoor unit or an all-outdoor unit is connected to the feed source 20 to control
  • the device can be a control circuit in an indoor unit or an outdoor unit or an all-outdoor unit.
  • indoor unit The main function is to complete service access, multiplexing, modulation and demodulation, etc., and convert service signals into modulated intermediate frequency analog signals indoors.
  • Outdoor unit The main function is to complete the frequency conversion and amplification of the signal, to realize the signal conversion between the intermediate frequency and the radio frequency, to complete the frequency conversion between the radio frequency and the intermediate frequency signal outdoors and to send the signal to the required power.
  • it can also be an all-outdoor unit, all-outdoor unit: an integrated all-outdoor unit, including IDU (Indoor Unit, indoor unit) and ODU (Outdoor Unit, outdoor unit) functions.
  • the parasitic array 40 includes a plurality of metal patches 42 arranged in an array.
  • the metal patches 42 arranged in the array are arranged in rows along the direction a and in columns along the direction b.
  • the metal patches 42 in each column are along the first direction (direction b) They are arranged in a row, as shown by reference number 43 in FIG. 6, and in each row of metal patches 42, adjacent metal patches 42 are connected by an adjustable impedance device 43b.
  • the adjustable impedance device 43b may be a varactor diode, a PIN tube, a MEMS switch, or the like.
  • the arrangement direction of the metal patches 42 in each column can be offset by a certain angle along the direction a, such as different angles such as 1°, 3°, 5°, and 10°.
  • the metal patch 42 can be a rectangular metal patch.
  • the specific shape of the metal patch 42 is not specifically limited in this application, and metal stickers of different shapes such as oval and circular shapes can also be used. piece.
  • the parasitic array 40 further includes a dielectric layer 41, and the metal patch 42 and the adjustable impedance device 43 b are arranged on the dielectric layer 41.
  • the dielectric layer 41 is made of materials that can penetrate signals and are insulated. For example, it can be made of common materials such as plastics and fibers, and is not specifically limited in this application.
  • the parasitic array 40 can be integrated by mixing metal patterns on the dielectric layer 41 and then soldering impedance elements, or it can be made into a monolithic integration The form of integrated processing of all components.
  • the surface current generated by the parasitic array 40 is related to the size of the metal patches 42 in the parasitic array 40, the spacing between the metal patches 42, the impedance value of the impedance device, and the position of the parasitic array 40.
  • the Maxwell equation of space (an existing mature technology) can be solved to obtain different null states that can be generated under different parameters of the parasitic array 40.
  • the parameters of the parasitic array 40 include: the size and spacing of the metal patch 42 unit, the value of the interconnection impedance, and the position in the antenna.
  • the parasitic array 40 is a parasitic array with adjustable impedance, the zero point can be adjusted by adjusting the impedance value of the adjustable impedance device 43b.
  • the impedance value of the adjustable impedance device 43b can be adjusted by a control device.
  • the control device is used to control the impedance value of the adjustable impedance device 43b and control the impedance value of the adjustable impedance device 43b.
  • the parasitic array 40 is controlled to form a null for the signal emitted by the feed source 20 in one or a part of the specified direction range of the plurality of specified direction ranges.
  • the control device is also used to control the impedance value of the adjustable impedance device 43b, and by controlling the impedance value of the adjustable impedance device to control the parasitic array 40 to not transmit to the feed source 20 in one or part of the specified direction ranges.
  • the signal forms a null.
  • control device can realize the "transparency" of the parasitic array 40 or generate a null by controlling the adjustable impedance device 43b.
  • transparent means that the parasitic array 40 does not perform secondary shaping of the signal emitted by the feed 20, the signal emitted by the main reflector 31 can directly penetrate the parasitic array 40, and the parasitic array 40 does not perform secondary shaping of the antenna.
  • FIG. 8 shows a schematic structural diagram of another antenna.
  • the parasitic array 40 in FIG. 8 may adopt the parasitic array shown in FIG. 4 or FIG. 7, and the specific structure of the parasitic array will not be described in detail here.
  • Each parasitic array 40 is fixedly connected to the main reflector 31 through a bracket 70.
  • the parasitic array 40 can be arranged at different positions of the antenna, such as inside or outside the radome.
  • the parasitic array can also be supported by the bracket 70.
  • the radome is provided with a cavity for accommodating the parasitic array 40 and the radome.
  • the parasitic array 40 is located outside the radome, refer to the structure shown in FIG. 8.
  • the bracket 70 is located in the space enclosed by the enclosure 60 and is fixed on the enclosure 60. Fixed connection. Among them, the connection between the bracket 70 and the enclosure 60 and the parasitic array 40 can be connected by threaded connectors (bolts or screws) or connectors such as buckles, or the connection between the bracket 70 and the enclosure 60 and the parasitic array 40 can also be It can be connected by bonding, welding, etc.
  • the bracket 70 is an adjustable bracket to adjust the position of the parasitic array 40.
  • the bracket 70 is a bracket that can be expanded and contracted in a first direction (direction a), and the first direction is parallel to the caliber surface of the main reflector 31.
  • the bracket 70 can be an electric telescopic rod, an air cylinder, a hydraulic cylinder, etc. Set the structure of the direction expansion and contraction.
  • the bracket 70 When the bracket 70 is extended, the parasitic array 40 can be adjusted to a position close to the center of the main reflector 31.
  • the bracket 70 is retracted, the parasitic array 40 can be adjusted to a position close to the enclosure 60. By adjusting the position of the parasitic array 40, Adjust the area where the antenna produces nulls.
  • the position of the parasitic array 40 can be adjusted to change the antenna null area. Thereby reducing the interference between the base stations and improving the communication effect between the base stations.
  • the bracket 70 is a three-dimensional adjustable bracket, and the bracket 70 can expand and contract in the direction a, the direction b, and the direction z perpendicular to the direction a and the direction b, which further improves the adjustment of the parasitic array 40 Flexibility, so as to realize the nulling of antennas in different designated directions and improve the communication effect between antennas.
  • the above-mentioned bracket 70 can adopt a known structure, such as a bracket assembly composed of three telescopic rods, or other known brackets that can be adjusted in three-dimensional directions, which can be applied in the embodiments of the present application.
  • the stent 70 can also be controlled by the control device.
  • the control device specifically controls the adjustable impedance device 43b, it is realized through the internally stored mapping relationship.
  • the control device stores multiple designated directions. Correspondence between the range and the weight of the adjustable impedance of the parasitic array.
  • the corresponding relationship finally externally presents a mapping table with different zero points and different weights. The process of establishing the mapping relationship can be referred to as shown in FIG. 9. This will be described in detail below with reference to FIG. 9.
  • this application selects a main parameter as the adjustment object.
  • One is the impedance adjustment of the adjustable impedance device 43b by the control device.
  • the DC level controls the impedance value of the adjustable impedance device 43b;
  • the second is the control of the position of the parasitic array 40 by the bracket 70 (optional).
  • the impedance values under different DC bias voltages can be obtained according to the manual of the selected adjustable impedance device 43b.
  • the bracket 70 can adjust the position and spatial placement angle of the parasitic array 40.
  • Using a set of weights (interconnection impedance value and spatial position), and other fixed parameters can establish an overall electromagnetic model .
  • the direction map and the null state under this weight are obtained.
  • the parasitic array 40 is transparent to electromagnetic waves and will not cancel the electromagnetic waves.
  • the “transparent” weight When there is no interference when the antenna is in use, the “transparent” weight can be activated. At this time, the parasitic array 40 is transparent to electromagnetic waves and has very little influence on the main lobe of the antenna signal. When the antenna has interference, the "null" weight can be activated through the control device, the main lobe of the antenna signal drops a little, and the null effect is obviously improved. The position of the null point is related to the choice of weight.
  • an embodiment of the present application also provides a method for using an antenna.
  • the antenna may be any one of the above-mentioned antennas, and the method includes the following steps:
  • Step 1 Make sure that the antenna produces interference in the specified direction range
  • the range of possible interference between communication base stations can be determined by the position of the communication base station when it is set up, or when the base station is in use, it is detected that interference occurs in a certain range through the transmitted or received signal.
  • step one is optional. During specific settings, you can choose whether to perform step one according to your needs.
  • the signal transmitted by the parasitic array to the antenna forms a null in the specified direction.
  • the parasitic array that can produce null signals within the designated directional range can be adjusted to be directly installed on the antenna.
  • the parasitic array is a parasitic array with adjustable impedance
  • one or part of the above-mentioned specified direction range is a range of multiple specified direction ranges where interference may exist, and the determined antenna will cause interference when in use.
  • the position of the parasitic array can be adjusted, or the impedance of the parasitic array can be adjusted, or the position and impedance value of the parasitic array can be adjusted at the same time.
  • the direction map and the null state under this weight are obtained. Then, repeat the process to obtain the null state under different weights. Finally, the obtained results are screened, and the zero trap state and the corresponding weight value that meet the requirements are selected, and the mapping relationship between the weight value and the zero trap point has been established. Through the corresponding relationship, it is convenient to adjust the impedance value of the parasitic array.
  • the above method also includes finding the "transparency weights" at the same time when seeking Maxwell's equations, that is, when there is a set of weights, the parasitic array is transparent to electromagnetic waves and will not cancel electromagnetic waves. effect.
  • the parasitic array is controlled not to form a null for the signal in the specified direction range.
  • the communication base station when used, interference will occur in a specified direction.
  • the above-mentioned "transparency weight" can be used to cancel the parasitic array.
  • the specified direction range produces nulls on the signal.
  • the antenna provided by the embodiment of the present application uses the parasitic array to secondarily shape the antenna signal in the specified direction range, so that the antenna forms a null in the specified direction range, which changes the antenna pattern, and then
  • the problem of mutual interference between communication base stations can be avoided, and the communication effect between communication base stations can be improved; in addition, the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • the solid line in FIG. 10 shows the waveform diagram of the antenna when there is no parasitic array. At this time, it is the waveform diagram of the antenna working when there is no parasitic array.
  • Fig. 11 shows a simulation diagram of an antenna including a parasitic array. The dotted line in Fig. 11 represents a waveform passing through the parasitic array, and Fig. 10 is a waveform diagram of the antenna when the parasitic array adopts a transparent weight. Comparing Fig. 10 and Fig.
  • FIG. 12 shows a simulation diagram when the control device applies a null weight value of 1
  • FIG. 13 shows a simulation diagram when the control device applies a null weight value of 2.
  • the antenna produces obvious nulling points within 30°.
  • the simulation results show that the main lobe drops ⁇ 1dB, and the nulling effect improves> 30dB. Null point of main lobe ⁇ -70dB, (taking small-aperture antenna as an example for simulation). And different weights correspond to different null states.
  • the antenna provided by this application can adjust the null of the antenna through the parasitic array.
  • the position of the parasitic array or the interconnection impedance value can be controlled to adjust the antenna to achieve null in the required area, thereby reducing the interference between the antennas.
  • the adjustment can be done only through the antenna itself, which improves the freedom of base station setting.
  • This application also provides a communication base station, which may refer to base station 1, base station 2, or base station 3, and base station 4 in FIG. 1 and FIG. 2.
  • the communication base station includes: a base station body and any one of the above-mentioned antennas arranged on the base station body.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.
  • the communication system includes a first base station, a second base station, and a third base station.
  • the first base station is used to send signals to the second base station and the third base station.
  • the first base station is provided with any one of the above-mentioned antennas.
  • the antenna forms a null in the specified direction range, which changes the antenna pattern, thereby avoiding the problem of mutual interference between communication base stations and improving the communication base station.
  • the above-mentioned changes do not need to refer to other antennas, and the interference can be improved by adjusting only one antenna.

Abstract

本申请提供了一种天线及使用方法、通信基站,该天线包括:馈源、寄生阵以及主反射板。该主反射板用于发射来自该馈源的信号;该寄生阵用于对该信号在指定方向范围内形成零陷。在使用时,通过寄生阵可在指定方向范围对馈源发射的信号进行二次赋形,并形成零陷。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。

Description

一种天线及使用方法、通信基站
相关申请的交叉引用
本申请要求在2020年05月29日提交中国专利局、申请号为202010476362.3、申请名称为“一种天线及使用方法、通信基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种天线及使用方法、通信基站。
背景技术
近年来,随着微波回传站点越来越密,需要避免同频干扰问题,如在一个基站与多个基站通信时,该基站作为主基站,该基站在与上述多个基站通信时,基站a发射的信号可能在基站b产生干扰。现有技术中解决干扰的问题是采用CCIC(Co-Channel Interference Cancellation,同频干扰抵消)技术,CCIC技术指的是将两面天线(基站a和基站b)共同参考比对后,通过预编码实现一定的干扰抵消,但是上述方式解决干扰的效果有限,受到很大的局限性。
发明内容
本申请提供了一种天线及使用方法、通信基站,用于改善天线之间的同频干扰,提高通信基站之间的通信效果。
第一方面,提供了一种天线,该天线用于通信基站之间的通信。该天线包括:馈源、寄生阵以及主反射板。所述主反射板用于发射来自所述馈源的信号,从而使得馈源发射的信号可扩展到较大的区域中。而寄生阵用于对所述信号在指定方向范围内形成零陷。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
在一个具体的可实施方案中,天线可采用不同形式的天线。示例的,天线的馈源的信号发射端朝向主反射板,馈源发射的信号可直接通过所述主反射板反射;或者,天线还包括嵌套在主反射板内的辐射反射板,馈源的信号发射端朝向副反射板,所述副反射板用于反射所述馈源发射的信号到所述主反射板。
在一个具体可实施方案中,副反射板与馈源固定连接,可理解为形成在馈源的发射端的一个帽子形结构,馈源发射的信号通过副反射板反射到主反射板。方便了副反射板设置。
在一个具体的可实施方案中,所述指定方向范围为多个,所述寄生阵为阻抗可调的寄生阵,且所述寄生阵用于对所述信号在所述多个指定方向范围中的一个或者部分指定方向范围形成零陷。通过采用指定方向范围为多个,寄生阵可在不同区域均可实现对天线信号的二次赋形,从而可以在通信基站处于不同的位置时,可以适应性修改寄生阵。
在一个具体的可实施方案中,还包括控制装置,所述控制装置用于控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。通过控制装置实现对寄生阵的可调控制。
在一个具体的可实施方案中,控制装置可设置在室内单元或室外单元,其中,室内单元或室外单元与馈源连接。
在一个具体的可实施方案中,所述寄生阵包括多个阵列排列的金属贴片,每列金属贴片中,相邻的金属贴片之间通过可调阻抗器件连接。通过可调阻抗器件实现寄生阵可调。
在一个具体的可实施方案中,一列金属贴片可沿不同方向排列,如每列金属贴片的排列方向由所述主反射板的侧壁的边沿指向所述主反射板的中心方向排列,或者相对所述主反射板的侧壁指向所述主反射板的中心的方向偏移一定的角度。
在一个具体的可实施方案中,所述寄生阵包括介质层,所述金属贴片及可调阻抗器件设置在所述介质层。
在一个具体的可实施方案中,在所述天线包含控制装置时,所述控制装置用于控制所述可调阻抗器件的阻抗值,并通过控制所述可调阻抗器件的阻抗值控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。通过控制装置控制寄生阵可调。
在一个具体的可实施方案中,所述控制装置还用于控制所述可调阻抗器件的阻抗值,并通过控制所述可调阻抗器件的阻抗值控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内不对所述信号形成零陷。提高了寄生阵的适应性,在基站没有信号干扰时,降低寄生阵对基站的影响。
在一个具体的可实施方案中,所述控制装置内存储有所述多个指定方向范围与所述寄生阵可调阻抗器件在产生零陷时的权值之间的对应关系。通过对应关系可以控制寄生阵可调。
在一个具体的可实施方案中,所述可调阻抗器件可为变容二极管、PIN管或MEMS开关等。通过不同的器件实现对寄生阵的控制。
在一个具体的可实施方案中,寄生阵还可为阻抗不可调的寄生阵。可实现在一个指定方向范围内时,在该指定方向范围内形成零陷。
在一个具体的可实施方案中,所述寄生阵包括多个阵列排列的金属贴片,其中,每列金属贴片中,相邻的金属贴片之间通过阻抗值不可调的阻抗器件连接。
在一个具体的可实施方案中,阻抗值不可调的阻抗器件为电容、电阻或者电感中的一种或几种的组合件。
在一个具体的可实施方案中,所述寄生阵通过支架与所述主反射板固定连接。
在一个具体的可实施方案中,所述主反射板设置有围板,所述围板与所述主反射板远离所述馈源的端部固定连接;
所述支架设置在所述围板。
在一个具体的可实施方案中,所述支架为可调支架。从而可调整寄生阵在不同指定方向范围实现天线的零陷。
在一个具体的可实施方案中,所述支架为可在第一方向伸缩的支架,其中,所述第一方向平行于所述主反射板的口径面。从而可调整寄生阵在不同指定方向范围实现天线的零陷。
在一个具体的可实施方案中,所述支架为三维可调支架。从而可调整寄生阵在不同指定方向范围实现天线的零陷。
第二方面,提供了一种天线的使用方法,该天线为上述任一项所述的天线,该天线包括以下步骤:
确定天线在指定方向范围产生干扰;
通过寄生阵对天线发射的信号在指定方向范围内形成零陷。
通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
在一个具体的可实施方案中,所述方法还包括:
在所述指定方向范围为多个时,所述寄生阵为阻抗可调的寄生阵;
调整所述寄生阵的位置,和/或调整所述寄生阵的阻抗使所述天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。通过采用指定方向范围为多个,寄生阵可在不同区域均可实现对天线信号的二次赋形,从而可以在通信基站处于不同的位置时,可以适应性修改寄生阵。
在一个具体的可实施方案中,所述调整所述寄生阵的阻抗使所述天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷,具体为:
根据存储的多个指定方向范围与所述寄生阵的可调阻抗器件在产生零陷时的权值之间的对应关系,确定一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值;
根据确定的该一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值,调整寄生阵的可调阻抗器件的阻抗。通过对应关系,方便调整寄生阵的阻抗值。
在一个具体的可实施方案中,所述方法还包括:
在所述天线在所述多个指定方向范围中的一个或部分指定方向范围内无干扰时,控制所述寄生阵在该指定方向范围不对所述信号形成零陷。提高了天线的适用范围。
第三方面,提供了一种通信基站,该通信基站包括:包括基站本体以及设置在所述基站本体上的上述任一项所述的天线。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
第四方面,提供了一种通信系统,包括第一基站、第二基站及第三基站,其中,第一基站用于给第二基站及第三基站发送信号,其中,第一基站设置有上述任一项所述的天线。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
附图说明
图1为一种具体通信过程的示意图;
图2为另一种具体通信过程的示意图;
图3a为本申请实施例的提供的天线的结构示意图;
图3b为本申请实施例提供的天线的另一结构示意图;
图4为本申请实施例的提供的一种寄生阵的结构示意图;
图5为本申请实施例的提供的另一种天线的结构示意图;
图6为本申请实施例的提供的另一种寄生阵的结构示意图;
图7为本申请实施例的提供的另一种寄生阵的侧视图;
图8为本申请实施例的提供的另一种天线的结构示意图;
图9为本申请实施例的提供的控制装置与寄生阵的映射关系;
图10~图13为天线在不同工作状态的波形仿真图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
首先说明一下本申请实施例提供的应用场景,本申请实施例提供的天线应用于通信基站的通信过程中,如天线可应用于E-band微波回传的基站,或者Dband等更高频段的回传站点,或者传统微波回传站点。如图1中示例出一种具体通信过程的示意图,基站1的第一天线101与基站2的第二天线201通信(实线箭头所示的信号传播方向),基站1的第三天线102与基站3的第四天线301通信(实线箭头所示的信号传播方向),从而形成多个点对点的通信。其中,点对点指代的是两个基站或两个天线之间点对点固定波束指向,基站或天线之间不做扫描,只做定向的传输信号。在基站1、基站2及基站3在同一个波段下进行通信时,可能会存在同频的干扰情况。如图1中所示的虚线箭头所示的信号传播方向,第一天线101与第四天线301之间可能会出现信号传输,第一天线101和第四天线301之间的信号传输会对第三天线102和第四天线301之间的信号造成干扰;第二天线201与第三天线102之间可能会出现信号传输,第二天线201和第三天线102之间的信号传输会对第一天线101和第二天线201之间的信号造成干扰。
如图2所示的另一种通信过程的示意图,基站1的第一天线101与基站2的第二天线201通信,基站3的第三天线301与基站4的第四天线401通信,但是在同频传输时,如图2中所示的虚线箭头所示的信号传播方向,第一天线101与第四天线401之间可能会出现信号传输,第一天线101和第四天线401之间的信号传输会对第三天线301和第四天线401之间的信号造成干扰;第二天线201与第三天线301之间可能会出现信号传输,第二天线201和第三天线301之间的信号传输会对第一天线101和第二天线201之间的信号造成干扰。
为避免出现基站之间的同频干扰,本申请实施例提供了一种天线,下面结合附图以及具体的实施例对其进行详细的说明。
如图3a所示,图3a示例出了本申请实施例提供的天线的基本结构示意图。天线包括信号处理模块10、馈源20以及辐射组件30。在发射信号时,信号处理模块10将信号传送到馈源20,馈源20通过辐射组件30发射出去;在接收信号时,辐射组件30接收外界信号,信号通过辐射组件30传送到馈源20,再通过馈源20传送到信号处理模块10。
辐射组件30包括主反射板31和副反射板32,副反射板32和主反射板31用于配合将 馈源20发射的信号发射出去。示例性的,主反射板31和副反射板32采用抛物面结构,馈源20位于主反射板31的中心位置。副反射板32嵌套在主反射板31内,且副反射板32的外弧面朝向馈源20。馈源20的信号发射端朝向副反射板32,副反射板32用于反射馈源发射的信号到主反射板31,主反射板31用于发射馈源20的信号。
在一个可选的方案中,馈源可与副反射板为一体结构,或者馈源与副反射板通过连接件连接。馈源发射的信号通过副反射板反射到主反射板。例如,副反射板为在馈源的发射端的一个帽子形结构。
当天线作为发射天线时,副反射板32用于将馈源20发射的信号反射到主反射板31,主反射板31用于发射副反射板32反射到主反射板31的信号,从而使得馈源20发射的信号可扩展到较大的区域中。当天线作为接收天线时,外界信号通过主反射板31反射到副反射板32,再通过副反射板32反射到馈源20。上述的外界信号为其他天线或基站发射的信号。
在一个可选的方案中,主反射板31和副反射板32为轴对称结构,且主反射板31和副反射板32共轴设置,以使得天线反射的信号均匀,其中,上述轴线可选为馈源20的轴线。
在一个可选的方案中,主反射板31设置有围板60,围板60与主反射板31远离馈源20的端部固定连接。示例性的,主反射板31与围板60可通过卡扣、螺纹连接件(螺钉或螺栓)等连接件固定连接,或者通过粘接、焊接的方式固定连接,或者围板60与反射板一体成型,如通过压铸的方式直接成型。
在一个可选的方案中,天线还包括天线罩50,天线罩50与围板60固定连接,将馈源20及副反射板32围在主反射板31与天线罩50围成的空间内。
在一个可选的方案中,天线还包括寄生阵40,寄生阵40固定在天线罩50内。当然,寄生阵40还可固定在天线罩50外,如寄生阵40通过支架与主反射板31固定连接。
寄生阵40用于对馈源20发射的信号在指定方向范围内形成零陷。具体实现时,寄生阵40用于对天线进行二次赋形,所谓二次赋形指代的是寄生阵对天线的方向图进行修改,使得天线的方向图赋性成新的形状。上述寄生阵40用于对馈源20发射的信号进行二次赋形包含但不限定,对馈源20到副反射板32之间的信号进行二次赋形;或者对副反射板32到主反射板31之间的信号进行二次赋形;或者对主反射板31反射后的信号进行二次赋形。零陷表示天线方向图上在某个或某段角度方向内出现了明显的增益下降。例如,对增益下降的指标要求与主瓣增益和整个系统的抗干扰能力有关。在本实施例的方案中,寄生阵用于对信号在指定方向范围内形成零陷,利用天线方向图的零陷特点,可以实现对该零陷点(或方向)的干扰抑制。上述零陷点(或方向)为产生零陷的位置。
本申请实施例提供的天线不仅限定图3a所示的天线,还可采用其他的天线。如图3a所示的天线,图3b中的部分标号可参考图3a中的相同标号。图3b中,天线仅包含馈源20和主反射板31,主反射板31用于发射来自馈源20的信号;馈源20的信号发射端朝向主反射板31,馈源20发射的信号直接通过主反射板31反射。
为方便理解寄生阵40,下面结合图3a及图4说明一下寄生阵40的结构。
为方便描述,定义了方向a以及方向b,方向a为主反射板31的侧壁的边沿指向主反射板31的中心的方向,方向b垂直于方向a,方向a与方向b所在平面平行于主反射板31的口径面。在图3a中寄生阵40设置了两个,用于在不同指定方向范围分别产生零陷,应 当理解的是,在本申请实施例中,并不具体限定寄生阵40的个数,可以根据实际需要设定寄生阵40的个数,如寄生阵40的个数为一个、两个、三个等不同的个数。例如,在天线可能产生干扰信号的区域设置寄生阵40。
在一个可选的方案中,寄生阵40可为不可调的寄生阵。如图4所示的结构,寄生阵40包括多个阵列排列的金属贴片42,阵列排列的金属贴片42沿方向a排列成行,沿方向b排列成列,每列中的金属贴片42沿方向a排列成一列,如图4中的标号44。每列金属贴片42中,相邻的金属贴片42之间通过阻抗器件43a连接。示例性的,每列金属贴片42中,金属贴片42之间通过固定值的阻抗器件连接,如电容、电感、电阻或者电感、电阻或电容中的一种或多种器件组成的组合器件。
在寄生阵40工作时,主反射板31反射的信号(电磁波)打到寄生阵40时,会在寄生阵40激励起表面电流,通过设计金属贴片42的大小、间距以及阻抗器件可以调节表面电流,从而对再次辐射出的方向图造成影响,实现对波束的控制,使得天线在指定方向范围产生零陷点,降低在该区域的信号传播效果。
在一个可选的方案中,每列金属贴片42的排列方向可沿方向a偏移一定角度,如偏移1°、3°、5°、10°等不同的角度。
在一个可选的方案中,金属贴片42可为矩形的金属贴片,当然在本申请中不具体限定金属贴片42的具体形状,还可采用椭圆形、圆形等不同形状的金属贴片。
在一个可选的方案中,寄生阵40还包括介质层41,金属贴片42及阻抗器件43a设置在介质层41。介质层41采用可穿透信号、且绝缘的材料制备而成,如可采用塑料、纤维等常见的材料制备而成,在本申请中不做具体限定。在制备寄生阵40时,寄生阵40可通过混合集成的方式,在介质层41上加工金属图形后焊接阻抗元件,也可制作成单片集成的形式,即所有部件一体化加工。
寄生阵40产生的表面电流与寄生阵40中金属贴片42的尺寸、金属贴片42之间的间距、阻抗器件43a的阻抗值以及寄生阵40的位置相关,在具体设置上述部件时,可通过求解空间的麦克斯韦方程,得到寄生阵40不同参数下可产生的不同零陷状态。寄生阵40的参数有:金属贴片42单元的尺寸和间距、互联阻抗(阻抗器件)的值、在天线中的位置等。在寄生阵40为阻抗不可调的寄生阵时,可通过寄生阵在某一个指定方向范围实现天线的零陷。
在上述描述中,以天线作为发射天线为例进行的说明,在天线作为接收天线时,原理相同,仅仅为信号传输的方向不同。
通过上述描述可看出,本申请公开的技术方案中,通过寄生阵在指定方向范围对天线信号进行二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
如图5所示的另一种天线的结构,图5中的标号可参考图3a中的相同标号。图5示例出了另外一种实现调整零陷的方式,图5中所示天线与图3a所示天线的区别在于寄生阵40为阻抗可调的寄生阵。在指定方向范围为多个时,寄生阵40可为阻抗可调的寄生阵,寄生阵40对所述信号在多个指定方向范围中的一个或者部分指定方向范围形成零陷。寄生阵40具体可通过控制装置进行控制,如在需要在某一个或者部分指定方向范围内实现零陷时,控制装置可用于控制寄生阵40在某一指定方向范围或部分指定方向范围对馈源 20发射的信号进行二次赋形,并形成零陷。如在该区域不需要零陷时,控制装置可用于控制寄生阵40在该指定方向范围不对馈源20发射的信号进行二次赋形。上述的部分指定方向范围包含但不限定两个或者三个指定方向范围。
在一个可选的方案中,控制装置可设置在信号处理模块10,信号处理模块10可以为室内单元、室外单元或者全室外单元,室内单元、室外单元或全室外单元与馈源20连接,控制装置可为室内单元或室外单元或全室外单元中的控制电路。其中,室内单元:主要功能是完成业务接入、复接和调制解调等,在室内将业务信号转换为调制中频模拟信号。室外单元:主要功能是完成信号的变频和放大,实现中频、射频之间信号的转换,在室外完成射频和中频信号间的频率转换以及将信号发大到需要的功率。或者还可为全室外单元,全室外单元:一体化的全室外单元,包含IDU(In Door Unit,室内单元)和ODU(Out Door Unit,室外单元)的功能。
一并参考图6,图6示出了具体的寄生阵40的结构示意图。寄生阵40包括多个阵列排列的金属贴片42,阵列排列的金属贴片42沿方向a排列成行,沿方向b排列成列,每列中的金属贴片42沿第一方向(方向b)排列成一列,如图6中的标号43,且每列金属贴片42中,相邻的金属贴片42之间通过可调阻抗器件43b连接。示例性的,可调阻抗器件43b可为变容二极管、PIN管或MEMS开关等。
在一个可选的方案中,每列金属贴片42的排列方向可沿方向a偏移一定角度,如偏移1°、3°、5°、10°等不同的角度。
在一个可选的方案中,金属贴片42可为矩形的金属贴片,当然在本申请中不具体限定金属贴片42的具体形状,还可采用椭圆形、圆形等不同形状的金属贴片。
在一个可选的方案中,寄生阵40还包括介质层41,金属贴片42及可调阻抗器件43b设置在介质层41。该介质层41采用可穿透信号、且绝缘的材料制备而成,如可采用塑料、纤维等常见的材料制备而成,在本申请中不做具体限定。结合图7所示的寄生阵40的侧视图,在制备寄生阵40时,寄生阵40可通过混合集成的方式,在介质层41上加工金属图形后焊接阻抗元件,也可制作成单片集成的形式,即所有部件一体化加工。
在寄生阵40工作时,主反射板31发射的信号(电磁波)打到寄生阵40时,会在寄生阵40激励起表面电流,通过设计金属贴片42的大小、间距以及可调阻抗器件43b可以调节表面电流,从而对再次辐射出的方向图造成影响,实现对波束的控制,使得天线在指定方向范围产生零陷,降低在该区域的信号传播效果。由上述描述可看出,寄生阵40产生的表面电流与寄生阵40中金属贴片42的尺寸、金属贴片42之间的间距、阻抗器件的阻抗值以及寄生阵40的位置相关,在具体设置上述部件时,可通过求解空间的麦克斯韦方程(已有的成熟技术),得到寄生阵40不同参数下可产生的不同零陷状态。寄生阵40的参数有:金属贴片42单元的尺寸和间距、互联阻抗的值、在天线中的位置等。在寄生阵40为阻抗可调的寄生阵时,可通过调整可调阻抗器件43b的阻抗值来实现零陷点可调。
在一个可选的方案中,可通过控制装置实现对可调阻抗器件43b的阻抗值的调整,控制装置用于控制可调阻抗器件43b的阻抗值,并通过控制可调阻抗器件43b的阻抗值控制寄生阵40在所述多个指定方向范围中的一个或部分指定方向范围对馈源20发射的信号形成零陷。控制装置还用于控制可调阻抗器件43b的阻抗值,并通过控制可调阻抗器件的阻抗值控制寄生阵40在所述多个指定方向范围中的一个或部分指定方向范围不对馈源20发射的信号形成零陷。通过上述描述可看出,控制装置可通过控制可调阻抗器件43b实现寄 生阵40的“透明”或者产生零陷。上述“透明”指寄生阵40不对馈源20发射的信号进行二次赋形,主反射板31发射的信号可直接穿透寄生阵40,寄生阵40不会对天线进行二次赋形。
图8示出了另一种天线的结构示意图。图8中的寄生阵40可采用如图4或者图7中所示的寄生阵,在此不再详细赘述寄生阵的具体结构。每个寄生阵40通过支架70与主反射板31固定连接。寄生阵40可设置在天线的不同位置,如天线罩内或天线罩外。在寄生阵40位于天线罩时,也可通过支架70支撑寄生阵,此时,天线罩内设置有用于容纳寄生阵40及天线罩的腔体。在寄生阵40位于天线罩外时,可参考图8所示的结构,支架70位于围板60围成的空间内并固定在围板60上,支架70远离围板60的一端与寄生阵40固定连接。其中,支架70与围板60、寄生阵40之间的连接可以采用螺纹连接件(螺栓或螺钉)或者卡扣等连接件连接,或者支架70与围板60、寄生阵40之间的连接还可采用粘接、焊接等方式连接。
在一个可选的方案中,支架70为可调支架,以调整寄生阵40所在的位置。示例性的,支架70为可在第一方向(方向a)伸缩的支架,第一方向平行于主反射板31的口径面,如支架70可为电动伸缩杆、气缸、液压缸等常见可在设定方向伸缩的结构。当支架70伸出时,寄生阵40可调整到靠近主反射板31中心的位置,当支架70收缩时,寄生阵40可调整到靠近围板60的位置,通过调整寄生阵40的位置,可调整天线产生零陷的区域。如在基站设置时,当基站的位置发生改变,或者在设置基站之前不确定基站之间相对位置时,可在基站设置好后,通过调整寄生阵40的位置来改变天线产生零陷的区域,从而降低基站之间的干扰,改善基站之间的通信效果。
在一个可选的方案中,支架70为三维可调支架,支架70可在方向a、方向b、以及垂直于方向a及方向b的方向z上伸缩,进一步的提高了寄生阵40调整时的灵活性,从而在不同指定方向范围实现天线的零陷,改善天线之间的通信效果。上述支架70可采用已知的结构,如三个伸缩杆组成的支架组件,或者其他已知的可在三维方向调整的支架,均可应用在本申请实施例中。
在支架70为可调支架时,支架70也可通过控制装置控制,此时,控制装置具体控制可调阻抗器件43b时,通过内部存储的映射关系来实现,控制装置内存储有多个指定方向范围与寄生阵的可调阻抗的权值之间的对应关系。该对应关系最终外部呈现的是不同零陷点与不同权值的映射表格。该映射关系的建立过程可参考图9中所示。下面结合图9详细进行说明。
首先,虽然本申请中天线实现零陷的可调参数众多,示例性的,本申请选择了个主要参数作为调整对象,一是控制装置对可调阻抗器件43b的阻抗调整,控制装置通过产生的直流电平控制可调阻抗器件43b的阻抗值;二是支架70对寄生阵40位置的控制(可选)。
其次,对于控制装置产生的不同的直流偏压,根据所选用的可调阻抗器件43b的使用手册,可以得到不同直流偏压下的阻抗值。同时支架70可以对寄生阵40的位置及空间摆放角度进行调整。利用一组权值(互联阻抗值和空间位置),并配合其他固定参数(寄生阵40的介质材料、金属贴片42的大小和间距、抛物面天线本身的结构等)可以建立起整体的电磁模型。通过求解空间麦克斯韦方程组(现有的成熟技术),得到方向图和此权值下的零陷状态。
然后,重复该过程,得到不同权值下的零陷状态。同时找到“透明权值”,即存在一 组权值下,寄生阵40对电磁波是透明的,不会对电磁波产生抵消的作用。
最后,对得到的结果进行筛选,选出满足要求的零陷状态以及对应的权值,至此完成了权值与零陷点的映射关系建立。
在天线使用时无干扰时,可启动“透明”权值,此时寄生阵40相对于电磁波是透明的,对天线信号的主瓣的影响十分小。当天线有干扰时,可通过控制装置启动“零陷”权值,天线信号的主瓣下降少许,零陷效果明显提升,零陷点的位置和权值的选择有关。
为方便理解上述工作原理,本申请实施例还提供了一种天线的使用方法。该天线可为上述任一项所述的天线,该方法包括以下步骤:
步骤一:确定天线在指定方向范围产生干扰;
具体的,可通过通信基站在设置时的位置,确定通信基站之间可能产生的干扰的范围,或者在基站使用时,通过发射或者接收到的信号检测到在某一范围产生干扰。其中,步骤一为可选步骤,在具体设置时,可根据需选择是否要执行步骤一。
步骤二:
通过寄生阵对天线发射的信号在指定方向范围内形成零陷。
具体的,在通信基站上的天线的产生干扰的指定方向范围为固定时,可调整在该指定方向范围内可对信号产生零陷的寄生阵直接安装到天线。
在通信基站上的天线产生的指定方向范围为不固定时,即在通信基站在装配时,不确定在哪个指定方向范围会产生干扰,产生干扰的区域有多个。则可采用如下方式:
1)在指定方向范围为多个时,寄生阵为阻抗可调的寄生阵;
2)调整寄生阵的位置,和/或调整寄生阵的阻抗使天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。
具体的,上述某一个或部分指定方向范围为多个可能存在干扰的指定方向范围中,确定的天线在使用时会产生干扰的范围。在具体调整时,可通过调整寄生阵的位置,或者调整寄生阵的阻抗,或者同时调整寄生阵的位置以及阻抗值。
以仅调整寄生阵的阻抗使天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷为例,在具体调整时:
根据存储的多个指定方向范围与寄生阵的可调阻抗器件在产生零陷时的权值之间的对应关系,确定该一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值;
根据确定的该一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值,调整寄生阵的可调阻抗器件的阻抗。
具体可参考关于图9的相关描述。通过求解空间麦克斯韦方程组,得到方向图和此权值下的零陷状态。然后,重复该过程,得到不同权值下的零陷状态。最后,对得到的结果进行筛选,选出满足要求的零陷状态以及对应的权值,至此完成了权值与零陷点的映射关系建立。通过对应关系,方便调整寄生阵的阻抗值。
在一个可选的方案中,上述方法还包括在求麦克斯韦方程组时,同时找到“透明权值”,即存在一组权值下,寄生阵对电磁波是透明的,不会对电磁波产生抵消的作用。在天线在所述多个指定方向范围中的一个或部分指定方向范围内无干扰时,控制寄生阵在该指定方向范围不对信号形成零陷。如在以下场景下,在通信基站使用时,在一指定方向范围会产生干扰,但是由于后期通信基站设置位置改动,或者产生干扰的信号消失,可通过上述“透 明权值”,取消寄生阵在指定方向范围对信号产生零陷。
通过上述描述可看出,本申请实施例提供的天线,通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
为方便理解本申请的寄生阵的效果,下面结合附图10~图13的仿真图对其进行说明。首先参考图10,图10中的实线示出了天线在没有寄生阵时的波形图,此时为天线在没有寄生阵时工作的波形图。图11示出了天线包含寄生阵的仿真图,图11中的虚线表示穿过寄生阵的波形,在图10中为寄生阵采用透明权值时天线的波形图。对比图10及图11可看出,在寄生阵采用透明权值时,对主瓣的影响<0.3dB,对天线的主瓣几乎形没有任何的影响。参考图12及图13,图12示出了控制装置施加上零陷权值1时的仿真图,图13示出了控制装置施加上零陷权值2时的仿真图。由图12及图13可以看出,在施加上零陷权值时,天线在30°内产生了明显的零陷点,仿真结果表明:主瓣下降≤1dB,零陷效果提升>30dB,相对主瓣零陷点<-70dB,(以小口径天线为例仿真)。并且不同的权值对应不同的零陷状态。
通过上述描述可看出,本申请提供的天线,通过寄生阵可调整天线的零陷。在天线应用到图1及图2的场景时,可通过控制寄生阵的位置或者互联阻抗值调整天线在所需的区域实现零陷,进而降低天线之间的干扰。并且在调整时,无需提供其他基站位置的参考,仅仅通过天线自身即可调整,提高了基站设置的自由性。
本申请还提供了一种通信基站,可参考图1及图2中的基站1、基站2或基站3、基站4。该通信基站包括:基站本体以及设置在基站本体上的上述任一项的天线。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
本申请还提供了一种通信系统,可参考图1或图2,通信系统包括第一基站、第二基站及第三基站,其中,第一基站用于给第二基站及第三基站发送信号,其中,第一基站设置有上述任一项的天线。通过寄生阵在指定方向范围对天线信号的二次赋形,使得天线在该指定方向范围形成零陷,改变了天线的方向图,进而可避免通信基站之间相互干扰的问题,改善通信基站之间的通信效果;另外上述改变无需参考其他的天线,仅可通过调整一个天线即可实现改善干扰的情况。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种天线,其特征在于,包括:馈源、寄生阵以及主反射板;
    所述主反射板用于发射来自所述馈源的信号;
    所述寄生阵用于对所述信号在指定方向范围内形成零陷。
  2. 根据权利要求1所述的天线,其特征在于,
    所述馈源的信号发射端朝向所述主反射板,所述馈源发射的信号直接通过所述主反射板反射;或,
    所述天线还包括嵌套在所述主反射板内的副反射板,所述馈源的信号发射端朝向所述副反射板,所述副反射板用于反射所述馈源发射的信号到所述主反射板。
  3. 根据权利要求1或2所述的天线,其特征在于,所述指定方向范围为多个,所述寄生阵为阻抗可调的寄生阵,且所述寄生阵用于对所述信号在所述多个指定方向范围中的一个或者部分指定方向范围形成零陷。
  4. 根据权利要求3所述的天线,其特征在于,还包括控制装置,所述控制装置用于控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。
  5. 根据权利要求3或4所述的天线,其特征在于,所述寄生阵包括多个阵列排列的金属贴片,其中,
    每列金属贴片中,相邻的金属贴片之间通过可调阻抗器件连接。
  6. 根据权利要求5所述的天线,其特征在于,每列金属贴片的排列方向由所述主反射板的侧壁的边沿指向所述主反射板的中心方向排列。
  7. 根据权利要求5或6所述的天线,其特征在于,在所述天线包含控制装置时,所述控制装置用于控制所述可调阻抗器件的阻抗值,并通过控制所述可调阻抗器件的阻抗值控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。
  8. 根据权利要求5~7任一项所述的天线,其特征在于,所述控制装置还用于控制所述可调阻抗器件的阻抗值,并通过控制所述可调阻抗器件的阻抗值控制所述寄生阵在所述多个指定方向范围中的一个或部分指定方向范围内不对所述信号形成零陷。
  9. 根据权利要求7或8所述的天线,其特征在于,所述控制装置内存储有所述多个指定方向范围与所述寄生阵的可调阻抗器件在产生零陷时的权值之间的对应关系。
  10. 根据权利要求5~9任一项所述的天线,其特征在于,所述可调阻抗器件可为变容二极管、PIN管或MEMS开关。
  11. 根据权利要求1或2所述的天线,其特征在于,所述寄生阵为阻抗不可调的寄生阵。
  12. 根据权利要求11所述的天线,其特征在于,所述寄生阵包括多个阵列排列的金属贴片,其中,
    每列金属贴片中,相邻的金属贴片之间通过阻抗值不可调的阻抗器件连接。
  13. 根据权利要求1~12任一项所述的天线,其特征在于,所述寄生阵通过支架与所述主反射板固定连接。
  14. 根据权利要求13所述的天线,其特征在于,所述主反射板设置有围板,所述围板与所述主反射板远离所述馈源的端部固定连接;
    所述支架设置在所述围板。
  15. 根据权利要求13或14所述的天线,其特征在于,所述支架为可调支架。
  16. 根据权利要求15所述的天线,其特征在于,所述支架为可在第一方向伸缩的支架,其中,所述第一方向平行于所述主反射板的口径面。
  17. 一种天线的使用方法,其特征在于,包括以下步骤:
    确定天线在指定方向范围产生干扰;
    通过寄生阵对天线发射的信号在指定方向范围内形成零陷。
  18. 根据权利要求17所述的使用方法,其特征在于,所述方法还包括:
    在所述指定方向范围为多个时,所述寄生阵为阻抗可调的寄生阵;
    调整所述寄生阵的位置,和/或调整所述寄生阵的阻抗使所述天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷。
  19. 根据权利要求18所述的使用方法,其特征在于,所述调整所述寄生阵的阻抗使所述天线发射的信号在所述多个指定方向范围中的一个或部分指定方向范围内形成零陷,具体为:
    根据存储的多个指定方向范围与所述寄生阵的可调阻抗器件在产生零陷时的权值之间的对应关系,确定该一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值;
    根据确定的该一个或部分指定方向范围内产生零陷时对应的寄生阵的可调阻抗器件的阻抗值,调整寄生阵的可调阻抗器件的阻抗。
  20. 根据权利要求18或19所述的使用方法,其特征在于,所述方法还包括:
    在所述天线在所述多个指定方向范围中的一个或部分指定方向范围内无干扰时,控制所述寄生阵在该指定方向范围不对所述信号形成零陷。
  21. 一种通信基站,其特征在于,包括:基站本体以及设置在所述基站本体上的根据权利要求1~16任一项所述的天线。
PCT/CN2021/095324 2020-05-29 2021-05-21 一种天线及使用方法、通信基站 WO2021238815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21812284.4A EP4175072A4 (en) 2020-05-29 2021-05-21 ANTENNA, METHOD OF USE, AND COMMUNICATION BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010476362.3 2020-05-29
CN202010476362.3A CN113745848B (zh) 2020-05-29 2020-05-29 一种天线及使用方法、通信基站

Publications (1)

Publication Number Publication Date
WO2021238815A1 true WO2021238815A1 (zh) 2021-12-02

Family

ID=78724702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095324 WO2021238815A1 (zh) 2020-05-29 2021-05-21 一种天线及使用方法、通信基站

Country Status (3)

Country Link
EP (1) EP4175072A4 (zh)
CN (1) CN113745848B (zh)
WO (1) WO2021238815A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233523A1 (de) * 2002-07-23 2004-02-05 S.M.S., Smart Microwave Sensors Gmbh Sensor zum Aussenden und Empfangen von elektromagnetischen Signalen
CN102769211A (zh) * 2011-04-30 2012-11-07 深圳光启高等理工研究院 基站定向天线
CN103392263A (zh) * 2012-12-26 2013-11-13 华为技术有限公司 一种天线系统
CN111052503A (zh) * 2017-04-10 2020-04-21 维尔塞特公司 适应卫星通信的覆盖区域调整

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673943A (en) * 1984-09-25 1987-06-16 The United States Of America As Represented By The Secretary Of The Air Force Integrated defense communications system antijamming antenna system
US4725847A (en) * 1986-06-04 1988-02-16 The United States Of America As Represented By The Secretary Of The Air Force Reflector antenna having sidelobe nulling assembly with metallic gratings
US6091371A (en) * 1997-10-03 2000-07-18 Motorola, Inc. Electronic scanning reflector antenna and method for using same
US6876337B2 (en) * 2001-07-30 2005-04-05 Toyon Research Corporation Small controlled parasitic antenna system and method for controlling same to optimally improve signal quality
US7245269B2 (en) * 2003-05-12 2007-07-17 Hrl Laboratories, Llc Adaptive beam forming antenna system using a tunable impedance surface
FR2889770B1 (fr) * 2005-08-12 2014-05-02 Itt Mfg Enterprises Inc Procedes et appareils pour realiser de maniere adaptative la suppression algebrique de signaux parasites
US8988289B2 (en) * 2008-03-05 2015-03-24 Ethertronics, Inc. Antenna system for interference supression
US8880059B2 (en) * 2009-08-06 2014-11-04 Truepath Technologies, Llc System and methods for media access control optimization for long range wireless communication
CN102195123A (zh) * 2011-03-25 2011-09-21 上海磁浮交通发展有限公司 二次波束赋形的高功率圆极化基站天线
CN203589220U (zh) * 2013-11-22 2014-05-07 深圳光启创新技术有限公司 天线
CN203589218U (zh) * 2013-11-26 2014-05-07 深圳光启创新技术有限公司 天线
CN104681927A (zh) * 2013-11-27 2015-06-03 深圳光启创新技术有限公司 天线
US9711852B2 (en) * 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9793605B1 (en) * 2014-06-02 2017-10-17 Ethertronics, Inc. Modal antenna array for interference mitigation
CN104868238B (zh) * 2015-04-20 2017-10-17 电子科技大学 基于开口谐振环的方向图可重构天线
US10056689B2 (en) * 2015-06-09 2018-08-21 Electronics And Telecommunications Research Institute Electronically steerable parasitic radiator antenna and beam forming apparatus
CN105846051A (zh) * 2016-05-13 2016-08-10 深圳三星通信技术研究有限公司 一种降低基站天线高度的方法及基站天线
WO2018098698A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种反射阵天线及通信设备
CN107275766B (zh) * 2017-05-23 2020-04-17 西安电子科技大学 一种基于非均匀周期结构加载的宽带表面波天线
CN107275803B (zh) * 2017-05-31 2021-06-15 西安华讯天基通信技术有限公司 一种毫米波透镜反射式智能天线装置
US10573963B1 (en) * 2017-09-15 2020-02-25 Hrl Laboratories, Llc Adaptive nulling metasurface retrofit
CN107732462A (zh) * 2017-11-24 2018-02-23 中国科学院云南天文台 一种射电天文望远镜系统
CN108899654A (zh) * 2018-06-05 2018-11-27 大连理工大学 基于擦边波束的高轨航天器gnss接收机天线
CN208596783U (zh) * 2018-08-10 2019-03-12 深圳市大疆创新科技有限公司 无人机
CN109509978A (zh) * 2018-12-21 2019-03-22 海宁利伊电子科技有限公司 高性能移动通信天线罩
CN110571531B (zh) * 2019-09-27 2021-07-30 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233523A1 (de) * 2002-07-23 2004-02-05 S.M.S., Smart Microwave Sensors Gmbh Sensor zum Aussenden und Empfangen von elektromagnetischen Signalen
CN102769211A (zh) * 2011-04-30 2012-11-07 深圳光启高等理工研究院 基站定向天线
CN103392263A (zh) * 2012-12-26 2013-11-13 华为技术有限公司 一种天线系统
CN111052503A (zh) * 2017-04-10 2020-04-21 维尔塞特公司 适应卫星通信的覆盖区域调整

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175072A4 *

Also Published As

Publication number Publication date
CN113745848B (zh) 2024-03-01
EP4175072A1 (en) 2023-05-03
CN113745848A (zh) 2021-12-03
EP4175072A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
Ala-Laurinaho et al. 2-D beam-steerable integrated lens antenna system for 5G $ E $-band access and backhaul
JP4095103B2 (ja) 無線アプリケーションのための高利得アンテナ
US6934511B1 (en) Integrated repeater
US5710569A (en) Antenna system having a choke reflector for minimizing sideward radiation
WO2006015121A2 (en) Multi-mode input impedance matching for smart antennas and associated methods
US8362967B2 (en) Low power multi-beam active array for cellular communications
CN106159461B (zh) 天线阵列系统及控制方法
US9667277B2 (en) Apparatus for tuning voltage standing wave ratio of base station system in wireless communication network
KR20220011188A (ko) 향상된 무선 애플리케이션을 위한 메타 구조 기반 반사어레이
CN110139287B (zh) 一种毫米波室内无源覆盖方法
CN109167162A (zh) 一种宽带相控阵天线单元及其辐射方法
WO2021238815A1 (zh) 一种天线及使用方法、通信基站
WO2022077423A1 (zh) 一种阵列天线系统
CN109390669A (zh) 一种双频天线
CN110233359B (zh) 一种基于3d打印技术的反射面天线
US20230092632A1 (en) Antenna apparatus and radio communications device
WO2020061865A1 (zh) 天线和终端
Artemenko et al. Multiple-feed integrated lens antenna with continuous scanning range
US20220158363A1 (en) Active redirection devices for wireless applications
RU2806243C1 (ru) Антенна, способ ее применения и базовая станция связи
CN110300416B (zh) 毫米波室内无源覆盖方法
CN208460992U (zh) 一种基于井回形的定向平面反射阵列天线
JP4243208B2 (ja) アレーアンテナ装置
KR20210073827A (ko) 기생 링 구조를 이용한 광각 배열 안테나
JP3440297B2 (ja) フェーズドアレイアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021812284

Country of ref document: EP

Effective date: 20221214

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 522441503

Country of ref document: SA