WO2021238391A1 - 有机发光器件和显示面板 - Google Patents

有机发光器件和显示面板 Download PDF

Info

Publication number
WO2021238391A1
WO2021238391A1 PCT/CN2021/084011 CN2021084011W WO2021238391A1 WO 2021238391 A1 WO2021238391 A1 WO 2021238391A1 CN 2021084011 W CN2021084011 W CN 2021084011W WO 2021238391 A1 WO2021238391 A1 WO 2021238391A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
organic light
charge generation
type charge
electron transport
Prior art date
Application number
PCT/CN2021/084011
Other languages
English (en)
French (fr)
Inventor
姚纯亮
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2021238391A1 publication Critical patent/WO2021238391A1/zh
Priority to US17/715,622 priority Critical patent/US20220231252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]

Definitions

  • This application relates to the field of display technology, and in particular to an organic light emitting device and a display panel.
  • OLED Organic electroluminescent diodes
  • OLED Organic electroluminescent diodes
  • the lifetime of an organic light-emitting device is an important factor that determines the effect of the device.
  • a device with a laminated structure can greatly increase the life of a display device, as the number of layers increases, the operating voltage of the organic light-emitting device rises faster and the lifespan decreases.
  • the instability of the metal-doped charge generation layer will cause the device's operating voltage to rise faster, and affect the device's use effect.
  • an embodiment of the present application provides an organic light-emitting device, including: a plurality of stacked layers arranged between an anode and a cathode; , A first electron transport layer, an n-type charge generation layer and a p-type charge generation layer; the n-type charge generation layer includes a matrix, a first dopant and a second dopant, and the matrix is the first electron transport
  • the first dopant is a metal quinoline complex
  • the second dopant is selected from the group consisting of rare earth metals, alkali metals, alkaline earth metals and combinations thereof; or the matrix is the first electron-transporting organic substance
  • the first dopant is the metal quinoline complex
  • the second dopant is an n-type organic substance.
  • an embodiment of the present application provides a display panel including the organic light emitting device according to any one of the above embodiments.
  • the technical solution of the present application provides an organic light emitting device and a display panel.
  • the organic light emitting device includes a plurality of stacked layers between an anode and a cathode.
  • the plurality of stacked layers includes a first hole transport layer, a first light-emitting layer, a first electron transport layer, an n-type charge generation layer, and a p-type charge generation layer that are sequentially stacked.
  • the n-type charge generation layer includes a first electron-transporting organic substance as a matrix, a metal quinoline complex as a first dopant, and a rare earth metal and/or alkali metal and/or alkaline earth metal as a second dopant; or It includes a first electron-transporting organic substance as a host, a metal quinoline complex as a first dopant, and an n-type organic substance as a second dopant.
  • the present application reduces the driving voltage of the organic light-emitting device by doping the metal quinoline complex in the n-type charge generation layer, increases the life of the organic light-emitting device, and improves the stability of the organic light-emitting device.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of an organic light emitting device provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of an embodiment of the n-type charge generation layer of the organic light emitting device in FIG. 1.
  • FIG. 3 is a schematic cross-sectional structure diagram of an embodiment in which the first electron transporting organic substance, the metal quinoline complex, and the rare earth metal in the n-type charge generation layer of the organic light emitting device in FIG. 1 are non-uniformly distributed.
  • FIG. 4 is a schematic cross-sectional structure diagram of another embodiment in which the first electron transporting organic substance, the metal quinoline complex and the rare earth metal in the n-type charge generation layer of the organic light emitting device in FIG. 1 are non-uniformly distributed.
  • FIG. 5 is a schematic cross-sectional structure diagram of an embodiment in which the second electron-transporting organic substance and the metal quinoline complex in the first electron-transporting layer of the organic light-emitting device in FIG. 3 are non-uniformly distributed.
  • FIG. 6 is a schematic cross-sectional structure diagram of an embodiment in which the second electron-transporting organic substance and the metal quinoline complex are uniformly distributed in the first electron-transporting layer of the organic light-emitting device in FIG. 4.
  • FIG. 7A is a graph of current versus voltage in the comparative example of the organic light emitting device in FIG. 5 and Example 1.
  • FIG. 7A is a graph of current versus voltage in the comparative example of the organic light emitting device in FIG. 5 and Example 1.
  • FIG. 7B is a graph of the efficiency of the comparative example of the organic light emitting device in FIG. 5 and Example 1 as a function of brightness.
  • FIG. 7C is a graph of the brightness of the comparative example of the organic light emitting device in FIG. 5 and Example 1 over time.
  • FIG. 7D is a graph of the voltage change with time of the comparative example of the organic light emitting device in FIG. 5 and Example 1.
  • FIG. 7D is a graph of the voltage change with time of the comparative example of the organic light emitting device in FIG. 5 and Example 1.
  • the n-type charge generation layer of an organic light-emitting device is composed of an electron-transporting organic substance and one or more of rare earth metals, alkali metals, and alkaline earth metals doped in the electron-transporting organic substance, wherein the n-type
  • the charge generation layer adjusts the stability of the organic light-emitting device through the selection of materials.
  • the selection of materials is limited, and the stability of the single-layer doped n-type charge generation layer is insufficient, which will cause the operating voltage of the organic light-emitting device to rise faster, reduce the life of the organic light-emitting device, and affect the use effect of the organic light-emitting device.
  • the present application forms the n-type charge generation layer by co-doping the metal quinoline complex, the first electron transporting organic substance and the rare earth metal, or the metal quinoline complex, the first electron transporting organic Substances and n-type organic materials are co-doped to form an n-type charge generation layer to reduce the energy level difference between the n-type charge generation layer and the light-emitting layer, thereby reducing the driving voltage of the organic light-emitting device and improving the organic
  • the life of the light-emitting device improves the stability of the organic light-emitting device.
  • the organic light emitting device includes a plurality of stacked layers between the anode 110 and the cathode 120.
  • the plurality of stacked layers includes a first hole transport layer 131 (HTL1), a first light-emitting layer 132 (EML1), a first electron transport layer 133 (ETL1), and an n-type charge generation layer 134 (N-CGL ) And the p-type charge generation layer 135 (P-CGL).
  • the n-type charge generation layer 134 includes a matrix, a first dopant, and a second dopant.
  • the matrix is the first electron-transporting organic substance N1, the first dopant is a metal quinoline complex N2, and the second dopant is selected from the group consisting of rare earth metal D, alkali metals, alkaline earth metals, and combinations thereof.
  • the matrix is the first electron-transporting organic substance N1, the first dopant is the metal quinoline complex N2, and the second dopant is the n-type organic substance.
  • the anode 110 may be a transparent electrode, a semi-transparent electrode, or the like.
  • the transparent electrode is formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the translucent electrode is made of transparent conductive materials such as indium tin oxide (ITO) or indium zinc oxide (IZO) and aluminum (Al), gold (Au), molybdenum (Mo), chromium (Cr), copper (Cu) Or LiF is formed by mixing opaque conductive materials.
  • the cathode 120 may be a light reflective electrode, which is formed of a light reflective metal material, such as aluminum (Al), gold (Au), molybdenum (Mo), chromium (Cr), copper (Cu), or LiF, etc., Or a multilayer structure with the above material characteristics.
  • a light reflective metal material such as aluminum (Al), gold (Au), molybdenum (Mo), chromium (Cr), copper (Cu), or LiF, etc.
  • the organic light emitting device has a back light emitting structure in which light is emitted downward.
  • the cathode 120 is a translucent electrode and the anode 110 is a light reflective electrode
  • the organic light emitting device has a top emission structure in which light is emitted upward.
  • both the cathode 120 and the anode 110 may be formed of transparent electrodes, so that the organic light emitting device has a double-sided light emitting structure in which light is emitted upward and downward.
  • the first light-emitting layer 132 includes a fluorescent or phosphorescent blue dopant and a host, which emits blue light. In another embodiment, the first light-emitting layer 132 includes a fluorescent or phosphorescent green dopant and a host, which emits green light. In another embodiment, the first light-emitting layer 132 includes a fluorescent or phosphorescent red dopant and a host, which emits red light.
  • the alkali metal is selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr).
  • the alkaline earth metal is selected from beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra).
  • the rare earth metal is selected from gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu).
  • the dopant used in an embodiment of the present application is Ytterbium (Yb).
  • the dopant in the present application may be one or a combination of one or more metals among alkali metals, alkaline earth metals, and rare earth metals.
  • the metal quinoline complex N2 can be lithium octaquinolate or aluminum octaquinoline.
  • the application does not impose specific restrictions on the metal quinoline complex, as long as the application can be realized.
  • the material of the first electron transporting organic substance N1 is selected from 2,9-dimethyl-4, 7-biphenyl-1, 10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthrene Bphen, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) and combinations thereof.
  • n-type organic substance is selected from 2,9-dimethyl-4, 7-biphenyl-1, 10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthroline (Bphen), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) and combinations thereof.
  • BCP 10-phenanthroline
  • Bphen 4,7-diphenyl-1, 10-phenanthroline
  • TPBi 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene
  • the n-type organic substance and the first electron-transporting organic substance N1 are different kinds of materials.
  • the doping mass percentage of the metal quinoline complex in the n-type charge generation layer 134 is 10% to 30%, and the doping mass percentage of the second dopant in the n-type charge generation layer 134 is 1. % To 5%. In an embodiment, the doping mass percentage of the metal quinoline complex in the n-type charge generation layer 134 may be 20%, and the doping mass percentage of the second dopant in the n-type charge generation layer 134 may be 3%. .
  • the LUMO energy level difference between the n-type charge generation layer and the first electron transport layer is less than or equal to 0.3 eV.
  • the LUMO energy level difference between the n-type charge generation layer 134 and the first electron transport layer 133 is determined by the energy level difference of the material, and the LUMO energy level difference is less than or equal to 0.3 eV to reduce the electron transport process. Energy barrier, thereby reducing the driving voltage.
  • the first electron-transporting organic substance N1, the metal quinoline complex N2, and the rare earth metal D of the n-type charge generation layer 134 are arranged irregularly, although theoretically The doping of the three materials of one electron transporting organic substance N1, metal quinoline complex N2 and rare earth metal D is uniform. Since the doping of the metal quinoline complex N2 will reduce the LUMO energy level difference between the n-type charge generation layer 134 and the first electron transport layer 133, the electrons of the n-type charge generation layer 134 are transferred to the first electron.
  • the energy of the transmission layer 133 is smaller, thereby increasing the transmission rate, reducing the driving voltage of the organic light-emitting device, increasing the life of the organic light-emitting device, and improving the stability of the organic light-emitting device.
  • the organic light-emitting device further includes a second hole transport layer 136 (HTL2), a second light-emitting layer 137 (EML2), and a second electron transport layer 138 (ETL2) stacked in sequence.
  • the second hole transport layer 136 is disposed on the side of the p-type charge generation layer 135 away from the first electron transport layer 133.
  • the transmission of electrons and holes can be satisfied by multi-layer stacking, and the brightness of the light-emitting layer can be adjusted to meet product performance requirements.
  • the thickness of the n-type charge generation layer 134 is 10 nm to 30 nm. In an embodiment, the thickness of the n-type charge generation layer 134 may be 15 nanometers, 20 nanometers, or 25 nanometers.
  • the purpose of controlling the thickness of the n-type charge generation layer 134 is to prevent the increase in the operating voltage of the organic light emitting device as the thickness of the film layer increases, thereby reducing the lifetime of the device.
  • the p-type charge generation layer 135 includes a hole transport organic substance as a host and a p-type organic substance as a dopant.
  • a small amount of material for the hole transport layer may be doped into the p-type charge generation layer 135 to partially reduce the gap between the p-type charge generation layer 135 and the second hole transport layer 136. The barrier gap at the interface between them causes effective charge separation, reduces the driving voltage and increases the lifetime.
  • the n-type charge generation layer 134 is formed by co-doping the metal quinoline complex, the first electron transporting organic substance and the rare earth metal, or the metal quinoline complex, the first electron transporting organic substance and the n-type charge generation layer 134 are co-doped.
  • -Type organic substances are co-doped with three materials to form an n-type charge generation layer, thereby reducing the energy level difference with the light-emitting layer interface, reducing the driving voltage of the organic light-emitting device, increasing the life of the organic light-emitting device, and improving the stability of the organic light-emitting device sex.
  • the organic light emitting device includes a plurality of stacked layers between the anode 110 and the cathode 120.
  • the plurality of stacked layers includes a first hole transport layer 131 (HTL1), a first light-emitting layer 132 (EML1), a first electron transport layer 133 (ETL1), and an n-type charge generation layer 134 (N-CGL ) And the p-type charge generation layer 135 (P-CGL).
  • the n-type charge generation layer 134 includes a matrix, a first dopant, and a second dopant.
  • the matrix is the first electron-transporting organic substance N1, the first dopant is a metal quinoline complex N2, and the second dopant is selected from the group consisting of rare earth metal D, alkali metals, alkaline earth metals, and combinations thereof.
  • the matrix is the first electron-transporting organic substance N1, the first dopant is the metal quinoline complex N2, and the second dopant is the n-type organic substance.
  • the first electron transport layer 133 includes a second electron transport organic substance N3 as a host and a metal quinoline complex N2 as a dopant.
  • the material of the second electron transporting organic substance is selected from 2,9-dimethyl-4, 7-biphenyl-1, 10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthroline Bphen, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) and combinations thereof.
  • the first electron-transporting organic substance and the second electron-transporting organic substance can be the same material or different kinds of materials. The choice is made according to the needs of the organic light-emitting device. There are no specific restrictions on the material of the substance.
  • the difference between the LUMO energy levels of the first electron-transporting organic substance and the second electron-transporting organic substance is less than or equal to 0.3 eV.
  • a certain LUMO energy level difference can meet the needs of organic light-emitting devices.
  • the doping mass percentage of the metal quinoline complex in the first electron transport layer 133 is 30% to 50%, for example, the doping mass percentage is 35%, 40%, 45%, or 50%.
  • the doping mass percentage should not exceed 50%, but the increase in the doping ratio is conducive to reducing the energy level difference between the layers, increasing the contact force of the interface, and improving the electron transmission rate.
  • the first electron-transporting organic substance N1, the metal quinoline complex N2 and the rare earth metal D of the n-type charge generation layer 134 are irregularly arranged, that is, non-uniformly distributed.
  • the doping of the three materials of the first electron transporting organic substance N1, the metal quinoline complex N2 and the rare earth metal D is uniform.
  • the second electron-transporting organic substance N3 and the metal quinoline complex N2 of the first electron-transporting layer 133 may also be arranged irregularly, that is, non-uniformly distributed.
  • the metal quinoline complex is distributed near the interface between the two layers in both the n-type charge generation layer 134 and the first electron transport layer 133.
  • Both the n-type charge generation layer 134 and the first electron transport layer 133 are doped with a small amount of metal quinoline complex N2 to partially reduce the interface between the n-type charge generation layer 134 and the first electron transport layer 133 And cause effective charge separation, and increase the contact force between the n-type charge generation layer 134 and the first electron transport layer 133, improve the electron transport capacity, reduce the driving voltage drop, and help improve The life of the organic light-emitting device maintains the stability of the organic light-emitting device.
  • This application improves the interface contact between the n-type charge generation layer 134 and the first electron transport layer 133 by doping the metal quinoline complex N2 into the n-type charge generation layer 134 and the first electron transport layer 133, respectively.
  • the electron transport capability is increased, the energy level difference between the interface and the first electron transport layer 133 is reduced, the driving voltage of the organic light-emitting device is reduced, the life of the organic light-emitting device is increased, and the stability of the organic light-emitting device is improved.
  • Table 1 The data shown in Table 1 are related test data of Comparative Example, Example 1 and Example 2 under the condition of the first electron transport layer 133 (ETL1) doped with 50% octaquinolate lithium. Wherein N2 represents lithium octaquinolate.
  • the n-type charge generation layer 134 (N-CGL) is doped with metal quinoline complex N2, and the doped mass percentage of metal quinoline complex N2 Respectively 0%, 20%, 50%, and then perform performance testing under the condition of brightness 750nits.
  • the initial voltages of the metal quinoline complex N2 doped with mass percentages of 0%, 20% and 50% are 8.19V, 8.03V and 8.25V, respectively. The smaller the initial voltage value, the smaller the power consumption of the organic light-emitting device, and the better the performance of the device.
  • the efficiency (Efficiency, Eff) of the metal quinoline complex N2 doped with mass percentages of 0%, 20% and 50% are 8.9 cd/A, 8.8 cd/A and 8.1 cd/A.
  • the greater the efficiency value the smaller the voltage of the organic light-emitting device, the smaller the current, the smaller the current, the lower the power consumption, and the better the device performance.
  • the decay time of the device life (Life Time referred to as LT) is 20h, and other conditions remain unchanged, when the doped mass percentage of the metal quinoline complex N2 is 0%, 20%, and 50%, the life decays to 98.6%, 99.4% and 99.3%.
  • the voltage difference ( ⁇ V) is the difference between the voltage V and the voltage V1 after the lifetime has decayed for 20 hours. The smaller the voltage difference, the longer the life of the device and the longer the use time. Therefore, by combining all the conditions in Table 1, it can be clearly obtained that when the first electron transport layer 133 (ETL1) is doped with 50% lithium octahydroxyquinolate (LiQ), the doped 20% octahydroxyquinol In the case of the n-type charge generation layer 134 (N-CGL) of lithium lithiation, the performance of the device is better than that of the device of the comparative example.
  • FIG. 7A shows the comparison example obtained by combining Table 1 with the organic compound of Example 1 when the brightness is 750 nits and the first electron transport layer 133 (ETL1) is doped with 50% lithium octaquinolate (LiQ).
  • ETL1 first electron transport layer 133
  • LiQ lithium octaquinolate
  • FIG. 7B shows the comparison of the comparative example obtained in Table 1 and Example 1 when the brightness is 750nits and the doping mass percentage of the first electron transport layer 133 (ETL1) is 50% lithium quinolate (LiQ)
  • ETL1 first electron transport layer 133
  • LiQ lithium quinolate
  • Fig. 7C shows the comparison of Table 1 and Example 1 when the brightness is 750nits and the doping mass percentage of the first electron transport layer 133 (ETL1) is 50% octaquinolate lithium (LiQ)
  • ETL1 first electron transport layer 133
  • LiQ octaquinolate lithium
  • Fig. 7D shows the comparison of Table 1 and Example 1 when the brightness is 750nits and the doping mass percentage of the first electron transport layer 133 (ETL1) is 50% lithium quinolate (LiQ)
  • ETL1 first electron transport layer 133
  • LiQ lithium quinolate
  • the present application also provides a display panel, which can be used in mobile phones, tablet computers and the like.
  • the display panel includes the organic light emitting device of any of the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请的技术方案提供一种有机发光器件和显示面板,该有机发光器件包括在阳极和阴极之间的多个叠层;多个叠层包括依次层叠设置的第一空穴传输层、第一发光层、第一电子传输层、n-型电荷发生层和p-型电荷发生层、第二空穴传输层、第二发光层、第二电子传输层;n-型电荷发生层包括作为基质的第一电子传输有机物质,以及第一掺质的金属喹啉配合物和作为第二掺质的稀土金属和/或碱金属和/或碱土金属;或者作为基质的第一电子传输有机物质,以及作为第一掺质的金属喹啉配合物和作为第二掺质的n-型有机物质。

Description

有机发光器件和显示面板
相关申请
本申请要求于2020年05月27日提交中国国家知识产权局、申请号为202010462196.1、发明名称为“有机发光器件和显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种有机发光器件和显示面板。
背景技术
有机电致发光二极管(OLED)具有高响应速度、高色纯度、宽视角、可折叠性、低能耗等优点,在显示领域得到了商业化应用。有机发光器件的寿命是决定器件使用效果的一大重要因素。首先,虽然叠层结构的器件能够大幅度提升显示器件的寿命,但随着膜层数量的增加,有机发光器件工作电压上升加快,寿命降低。其次,金属掺杂的电荷生成层的不稳定性会导致器件工作电压上升加快,影响器件使用效果。
发明内容
第一方面,本申请实施例提供一种有机发光器件,包括:设于阳极和阴极之间的多个叠层;多个叠层包括依次层叠设置的第一空穴传输层、第一发光层、第一电子传输层、n-型电荷发生层和p-型电荷发生层;所述n-型电荷发生层包括基质、第一掺质和第二掺质,所述基质为第一电子传输有机物质,所述第一掺质为金属喹啉配合物,所述第二掺质选自稀土金属、碱金属、碱土金属及其组合;或者所述基质为所述第一电子传输有机物质,所述第一掺质为所述金属喹啉配合物,所述第二掺质为n-型有机物质。
第二方面,本申请一实施例提供一种显示面板,包括根据上述任一项实施例所述的有机发光器件。
本申请的技术方案提供一种有机发光器件和显示面板,该有机发光器件包括在阳极和阴极之间的多个叠层。多个叠层包括依次层叠设置的第一空穴传输层、第一发光层、第一电子传输层、n-型电荷发生层和p-型电荷发生层。n-型电荷发生层包括作为基质的第一电子传输有机物质,以及作为第一掺质的金属喹啉配合物和作为第二掺质的稀土金属和/或碱金属和/或碱土金属;或者包括作为基质的第一电子传输有机物质,以及作为第一掺质的金属喹啉配合物和作为第二掺质的n-型有机物质。本申请通过对n-型电荷发生层中掺杂金属喹啉配合物,降低了有机发光器件的驱动电压,提高了有机发光器件的寿命,改善了有机 发光器件的稳定性。
附图说明
图1是本申请一实施例提供的有机发光器件的剖面结构示意图。
图2是图1中的有机发光器件的n-型电荷发生层的一实施例的剖面结构示意图。
图3是图1中的有机发光器件的n-型电荷发生层中第一电子传输有机物质、金属喹啉配合物和稀土金属非均匀分布的实施例的剖面结构示意图。
图4是图1中的有机发光器件的n-型电荷发生层中第一电子传输有机物质、金属喹啉配合物和稀土金属非均匀分布的另一实施例的剖面结构示意图。
图5是图3中的有机发光器件的第一电子传输层中第二电子传输有机物质和金属喹啉配合物非均匀分布的一实施例的剖面结构示意图。
图6是图4中的有机发光器件的第一电子传输层中第二电子传输有机物质和金属喹啉配合物均匀分布的一实施例的剖面结构示意图。
图7A是图5中的有机发光器件的对比例和实施例1中的电流随电压变化的曲线图。
图7B是图5中的有机发光器件的对比例和实施例1的效率随亮度变化的曲线图。
图7C是图5中的有机发光器件的对比例和实施例1的亮度随时间变化的曲线图。
图7D是图5中的有机发光器件的对比例和实施例1的电压变化随时间变化的曲线图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在相关技术中,有机发光器件的n-型电荷发生层由电子传输有机物质和掺杂在电子传输有机物质中的稀土金属、碱金属和碱土金属中的一种或多种,其中n-型电荷发生层通过材料的选择来调节有机发光器件的稳定性。材料的选择有限,且单层掺杂的n-型电荷发生层稳定性不够会导致有机发光器件工作电压上升加快,降低有机发光器件的寿命,影响有机发光器件的使用效果。
为了解决上述问题,本申请通过将金属喹啉配合物、第一电子传输有机物质和稀土金属三种材料共掺形成n-型电荷发生层,或者将金属喹啉配合物、第一电子传输有机物质和n-型有机物质三种材料共掺形成n-型电荷发生层,以减小n-型电荷发生层与发光层界面的能级差,从而降低了有机发光器件的驱动电压,提高了有机发光器件的寿命,改善了有机发光器件的稳定性。
如图1至4所示,有机发光器件包括在阳极110和阴极120之间的多个叠层。多个叠层包括依次层叠设置的第一空穴传输层131(HTL1)、第一发光层132(EML1)、第一电子传输层133(ETL1)、n-型电荷发生层134(N-CGL)和p-型电荷发生层135(P-CGL)。n-型电荷发生层134包括基质、第一掺质和第二掺质。在一实施例中,基质为第一电子传输有机物质N1,第一掺质为金属喹啉配合物N2,第二掺质选自稀土金属D、碱金属、碱土金属及其组合。在另一实施例中,基质为第一电子传输有机物质N1,第一掺质为金属喹啉配合物N2,第二掺质为n-型有机物质。
如图1所示,阳极110可以是透明电极、半透明电极等。透明电极由诸如铟锡氧化物(ITO)或铟锌氧化物(IZO)的透明导电材料形成。半透明电极由诸如铟锡氧化物(ITO)或铟锌氧化物(IZO)的透明导电材料和诸如铝(Al)、金(Au)、钼(Mo)、铬(Cr)、铜(Cu)或LiF的不透明导电材料混合形成。阴极120可以是光反射电极,光反射电极是由光反射性金属材料形成的,例如铝(Al)、金(Au)、钼(Mo)、铬(Cr)、铜(Cu)或LiF等,或是具有以上材料特性的多层结构。当阳极110是半透明电极而阴极120是光反射电极的情况下,有机发光器件为背发光结构,其中,光向下发射。当阴极120是半透明电极而阳极110是光反射电极的情况下,有机发光器件为顶发光结构,其中光向上发射。可选地,阴极120和阳极110都可以由透明电极形成,使得有机发光器件为双侧发光结构,其中光向上和向下发射。
在一实施例中,第一发光层132包括荧光或磷光蓝色的掺质以及基质,其发射蓝色光。在另一实施例中,第一发光层132包括荧光或磷光绿色掺质以及基质,其发射绿色光。在另一实施例中,第一发光层132包括荧光或磷光红色掺质以及基质,其发射红色光。
碱金属选自锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)。碱土金属选自铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)。稀土金属选自钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。本申请一实施例的掺质是镱(Yb)。本申请的掺质可以是碱金属、碱土金属和稀土金属中的一种或多种金属的组合。
金属喹啉配合物N2可以是八羟基喹啉锂,也可以是八羟基喹啉铝,本申请对于金属喹啉配合物不做具体限制,只要满足能实现本申请即可。
第一电子传输有机物质N1的材料选自2,9-二甲基-4、7-联苯-1、10-菲罗啉(BCP)、4,7-二苯基-1、10-菲罗啉(Bphen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)及其组合。
n-型有机物质的材料选自2,9-二甲基-4、7-联苯-1、10-菲罗啉(BCP)、4,7-二苯基-1、10-菲罗啉(Bphen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)及其组合。n-型有机物 质与第一电子传输有机物质N1为不同种材料。
在一实施例中,n-型电荷发生层134中金属喹啉配合物的掺杂质量百分比为10%至30%,n-型电荷发生层134中第二掺质的掺杂质量百分比为1%至5%。在一实施例中,n-型电荷发生层134中金属喹啉配合物的掺杂质量百分比可以为20%,n-型电荷发生层134中第二掺质的掺杂质量百分比可以为3%。
在一实施例中,n-型电荷发生层和第一电子传输层之间的LUMO能级差小于或等于0.3eV。实际上,n-型电荷发生层134和第一电子传输层133之间的LUMO能级差是由材料的能级差决定的,而LUMO能级差小于或等于0.3eV可以减小电子在传输过程中的能量势垒,进而减小驱动电压。
如图2至4所示,n-型电荷发生层134(N-CGL)的第一电子传输有机物质N1、金属喹啉配合物N2和稀土金属D是不规则排列的,虽然理论上来讲第一电子传输有机物质N1、金属喹啉配合物N2和稀土金属D三种材料的掺杂是均匀的。由于金属喹啉配合物N2的掺杂会导致n-型电荷发生层134和第一电子传输层133之间的LUMO能级差减小,因此n-型电荷发生层134的电子传输到第一电子传输层133(ETL1)的能量更小,从而提高传输速率,降低了有机发光器件的驱动电压,提高了有机发光器件的寿命,改善了有机发光器件的稳定性。
在一实施例中,有机发光器件还包括依次依次层叠设置的第二空穴传输层136(HTL2)、第二发光层137(EML2)和第二电子传输层138(ETL2)。第二空穴传输层136设置在p-型电荷发生层135远离第一电子传输层133的一侧。通过多层叠加的方式满足电子和空穴的传输,以及调控发光层的亮度以满足产品性能要求。
在一实施例中,n-型电荷发生层134的厚度为10纳米至30纳米。在一实施例中,n-型电荷发生层134的厚度可以为15纳米、20纳米或25纳米。控制n-型电荷发生层134的厚度的目的是防止随着膜层厚度的增加而导致有机发光器件工作电压上升加快,从而降低器件寿命。
在一实施例中,p-型电荷发生层135包括作为基质的空穴传输有机物质和作为掺质的p-型有机物质。在一实施例中,可以在p-型电荷发生层135中掺杂少量的用于空穴传输层的材料,以部分地降低在p-型电荷发生层135和第二空穴传输层136之间的界面处的势垒间隙(barrier gap),并引起有效的电荷分离,降低驱动电压且寿命增加的效果。
本申请通过将金属喹啉配合物、第一电子传输有机物质和稀土金属三种材料共掺杂形成n-型电荷发生层134,或者将金属喹啉配合物、第一电子传输有机物质和n-型有机物质 三种材料共掺杂形成n-型电荷发生层,从而减小与发光层界面的能级差,降低有机发光器件的驱动电压,提高有机发光器件的寿命,改善有机发光器件的稳定性。
如图5至6所示,有机发光器件包括在阳极110和阴极120之间的多个叠层。多个叠层包括依次层叠设置的第一空穴传输层131(HTL1)、第一发光层132(EML1)、第一电子传输层133(ETL1)、n-型电荷发生层134(N-CGL)和p-型电荷发生层135(P-CGL)。n-型电荷发生层134包括基质、第一掺质和第二掺质。在一实施例中,基质为第一电子传输有机物质N1,第一掺质为金属喹啉配合物N2,第二掺质选自稀土金属D、碱金属、碱土金属及其组合。在另一实施例中,基质为第一电子传输有机物质N1,第一掺质为金属喹啉配合物N2,第二掺质为n-型有机物质。第一电子传输层133包括作为基质的第二电子传输有机物质N3和作为掺质的金属喹啉配合物N2。
第二电子传输有机物质的材料选自2,9-二甲基-4、7-联苯-1、10-菲罗啉(BCP)、4,7-二苯基-1、10-菲罗啉(Bphen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)及其组合。第一电子传输有机物质和第二电子传输有机物质可以是同一种材料,也可以是不同种材料,根据有机发光器件的需要进行选择,本申请对第一电子传输有机物质和第二电子传输有机物质的材料不做具体限制。
在一实施例中,第一电子传输有机物质与第二电子传输有机物质的LUMO能级差小于或等于0.3eV。一定的LUMO能级差可以满足有机发光器件的需要。
在一实施例中,第一电子传输层133中金属喹啉配合物的掺杂质量百分比为30%至50%,例如,掺杂质量百分比为35%、40%、45%或50%。对于掺质来说,一般情况下,掺杂质量百分比不宜超过50%,但掺杂比例的提高有利于减小膜层之间的能级差,增加界面的接触力,提高电子的传输速率。
如图5至6所示,n-型电荷发生层134(N-CGL)的第一电子传输有机物质N1、金属喹啉配合物N2和稀土金属D是不规则排列,即非均匀分布的,虽然理论上来讲第一电子传输有机物质N1、金属喹啉配合物N2和稀土金属D三种材料的掺杂是均匀的。第一电子传输层133的第二电子传输有机物质N3和金属喹啉配合物N2的也可以是不规则排列,即非均匀分布的。具体的,金属喹啉配合物在n-型电荷发生层134和第一电子传输层133中均靠近两层之间的界面分布。n-型电荷发生层134和第一电子传输层133中都掺杂少量的金属喹啉配合物N2,以部分地降低在n-型电荷发生层134和第一电子传输层133之间的界面处的势垒间隙,并引起有效的电荷分离,且增加了n-型电荷发生层134和第一电子传输层133界面的接触力,提高了电子的传输能力,降低驱动电压降低,有利于提高有机发 光器件的寿命,保持有机发光器件的稳定性。
本申请通过将金属喹啉配合物N2分别掺杂到n-型电荷发生层134和第一电子传输层133中,改善n-型电荷发生层134和第一电子传输层133的界面接触,进而增大电子传输能力,减小与第一电子传输层133界面的能级差,降低了有机发光器件的驱动电压,提高了有机发光器件的寿命,改善了有机发光器件的稳定性。
表1所示的数据是在掺杂质量百分比为50%的八羟基喹啉锂的第一电子传输层133(ETL1)的条件下,对比例、实施例1和实施例2的相关测试数据。其中N2代表八羟基喹啉锂。
表1
Figure PCTCN2021084011-appb-000001
从表1可以看出,在环境相同的条件下,对n-型电荷发生层134(N-CGL)进行金属喹啉配合物N2的掺杂,其中金属喹啉配合物N2的掺杂质量百分比分别为0%,20%,50%,之后在亮度为750nits的条件下进行性能测试。从表1可知金属喹啉配合物N2掺杂质量百分比为0%、20%和50%时的初始电压分别为8.19V,8.03V和8.25V。初始电压值越小,有机发光器件的功耗越小,器件的性能越好。金属喹啉配合物N2掺杂质量百分比为0%、20%和50%时的效率(Efficiency,简称Eff)为8.9cd/A,8.8cd/A和8.1cd/A。效率值越大,有机发光器件电压越小,电流越小,电流越小功耗越小,器件性能越好。在器件寿命(Life Time简称LT)的衰减时间为20h,其他条件不变的情况下,当金属喹啉配合物N2的掺杂质量百分比为0%、20%和50%时,寿命分别衰减至98.6%、99.4%和99.3%。寿命数值越高,有机发光器件衰减的程度越小,器件的使用时间就越久。电压差值(ΔV)是电压V与寿命衰减20h后的电压V1的差值。电压差值越小,说明器件的寿命越长,使用时间就越长。因此,综合表1所有条件,可以明显得到第一电子传输层133(ETL1)掺杂质量百分比为50%的八羟基喹啉锂(LiQ)情况下,掺杂质量百分比为20%的八羟基喹啉锂的n-型电荷发生层134(N-CGL)的情况下,器件的性能都比对比例的器件的性能更好。
图7A为在亮度为750nits,第一电子传输层133(ETL1)掺杂质量百分比为50%的八 羟基喹啉锂(LiQ)情况下,结合表1所得出的对比例和实施例1的有机发光器件的电流随电压变化的曲线图。从图7A可以看出,随着电压的增加,电流逐渐增大,当控制电流相同的情况下,实施例1的电压值明显小于对比例的电压值。这说明在其他条件相同的情况下,实施例1的电压更小。因此,有机发光器件的功耗越小,器件的性能越好。
图7B为在亮度为750nits,第一电子传输层133(ETL1)的掺杂质量百分比为50%的八羟基喹啉锂(LiQ)情况下,结合表1所得出的对比例和实施例1的有机发光器件的电流随电压变化的曲线图。从图7B可以看出,对比例和实施例1的效率变化基本一致,说明实施例1效率可以满足生产需求。
图7C为在亮度为750nits,第一电子传输层133(ETL1)的掺杂质量百分比为50%的八羟基喹啉锂(LiQ)情况下,结合表1所得出的对比例和实施例1的有机发光器件的亮度随时间变化的曲线图。从图7C可以看出,在衰减时间相同的情况下,实施例1的亮度值明显高于对比例的亮度值,亮度值越高,寿命越长,器件的使用时间就越久。
图7D为在亮度为750nits,第一电子传输层133(ETL1)的掺杂质量百分比为50%的八羟基喹啉锂(LiQ)情况下,结合表1所得出的对比例和实施例1的有机发光器件的亮度随时间变化的曲线图。从图7D可以看出,随衰减时间的增加,实施例1的曲线相较于对比例的曲线更趋于平缓。因此在衰减时间相同的情况下,实施例1的电压差值明显低于对比例的电压差值。电压差值越小,说明器件的寿命越长,使用时间就越长。
本申请还提供的一种显示面板,该显示面板可以用于手机,平板电脑等。该显示面板包括上述任一实施方式的有机发光器件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (17)

  1. 一种有机发光器件,包括:
    设于阳极和阴极之间的多个叠层;
    所述多个叠层包括依次层叠设置的第一空穴传输层、第一发光层、第一电子传输层、n-型电荷发生层和p-型电荷发生层;
    所述n-型电荷发生层包括基质、第一掺质和第二掺质,
    所述基质为第一电子传输有机物质,所述第一掺质为金属喹啉配合物,所述第二掺质选自稀土金属、碱金属、碱土金属及其组合;或者所述基质为所述第一电子传输有机物质,所述第一掺质为所述金属喹啉配合物,所述第二掺质为n-型有机物质。
  2. 根据权利要求1所述的有机发光器件,其中,所述第一电子传输层包括第二电子传输有机物质和掺杂在所述第二电子传输有机物质中的所述金属喹啉配合物。
  3. 根据权利要求2所述的有机发光器件,其中,所述金属喹啉配合物为八羟基喹啉锂或八羟基喹啉铝。
  4. 根据权利要求2所述的有机发光器件,其中,所述n-型电荷发生层和所述第一电子传输层之间的LUMO能级差小于或等于0.3eV。
  5. 根据权利要求2所述的有机发光器件,其中,所述p-型电荷发生层包括空穴传输有机物质和掺杂在所述空穴传输有机物质中的p-型有机物质。
  6. 根据权利要求2-5中任一项所述的有机发光器件,其中,所述第一电子传输有机物质与所述第二电子传输有机物质的LUMO能级差小于或等于0.3eV。
  7. 根据权利要求1所述的有机发光器件,其中,所述有机发光器件还包括依次层叠设置的第二空穴传输层、第二发光层和第二电子传输层,所述第二空穴传输层设置在所述p-型电荷发生层远离所述第一电子传输层的一侧。
  8. 根据权利要求1-5中任一项所述的有机发光器件,其中,所述n-型电荷发生层中所述金属喹啉配合物的掺杂质量百分比的范围为10%至30%,所述第二掺质的掺杂质量百分比的范围为1%至5%。
  9. 根据权利要求2-5中任一项所述的有机发光器件,其中,所述第一电子传输层中的所述金属喹啉配合物的掺杂质量百分比的范围为30%至50%。
  10. 根据权利要求2-5任一项所述的有机发光器件,其中,所述n-型电荷发生层中所述金属喹啉配合物的掺杂质量百分比为20%,所述第一电子传输层中的所述金属喹啉配合物的掺杂质量百分比为50%。
  11. 根据权利要求1-5任一项所述的有机发光器件,其中,所述第一电子传输有机物质的材料选自2,9-二甲基-4、7-联苯-1、10-菲罗啉、4,7-二苯基-1、10-菲罗啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯及其组合。
  12. 根据权利要求2-5任一项所述的有机发光器件,其中,所述第二电子传输有机物质的材料选自2,9-二甲基-4、7-联苯-1、10-菲罗啉(BCP)、4,7-二苯基-1、10-菲罗啉(Bphen)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)及其组合。
  13. 根据权利要求12所述的有机发光器件,其中,所述第一电子传输有机物质和所述第二电子传输有机物质为同一种材料。
  14. 根据权利要求2-5所述的有机发光器件,其中,所述金属喹啉配合物在所述n-型电荷发生层和所述第一电子传输层中均是非均匀分布的。
  15. 根据权利要求2-5所述的有机发光器件,其中,所述金属喹啉配合物在所述n-型电荷发生层和所述第一电子传输层中均靠近所述n-型电荷发生层和所述第一电子传输层之间的界面分布。
  16. 根据权利要求1-5所述的有机发光器件,其中,所述n-型电荷发生层的厚度范围为10纳米至30纳米。
  17. 一种显示面板,包括根据权利要求1-16中任一项所述的有机发光器件。
PCT/CN2021/084011 2020-05-27 2021-03-30 有机发光器件和显示面板 WO2021238391A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/715,622 US20220231252A1 (en) 2020-05-27 2022-04-07 Organic light-emitting device and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010462196.1 2020-05-27
CN202010462196.1A CN111554823A (zh) 2020-05-27 2020-05-27 有机发光器件和显示面板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/715,622 Continuation US20220231252A1 (en) 2020-05-27 2022-04-07 Organic light-emitting device and display panel

Publications (1)

Publication Number Publication Date
WO2021238391A1 true WO2021238391A1 (zh) 2021-12-02

Family

ID=72006843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084011 WO2021238391A1 (zh) 2020-05-27 2021-03-30 有机发光器件和显示面板

Country Status (3)

Country Link
US (1) US20220231252A1 (zh)
CN (1) CN111554823A (zh)
WO (1) WO2021238391A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554823A (zh) * 2020-05-27 2020-08-18 云谷(固安)科技有限公司 有机发光器件和显示面板
CN115377310A (zh) * 2022-08-29 2022-11-22 京东方科技集团股份有限公司 一种发光器件和显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514287A (zh) * 2014-10-13 2016-04-20 乐金显示有限公司 有机发光二极管装置
US20160181561A1 (en) * 2014-12-18 2016-06-23 Samsung Display Co., Ltd. White organic light emitting diode
CN107180917A (zh) * 2016-03-10 2017-09-19 三星显示有限公司 有机发光装置
CN107464884A (zh) * 2016-06-06 2017-12-12 清华大学 一种叠层有机电致发光器件
CN111554823A (zh) * 2020-05-27 2020-08-18 云谷(固安)科技有限公司 有机发光器件和显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742250B (zh) * 2018-12-28 2021-08-24 云谷(固安)科技有限公司 一种有机发光二极管及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514287A (zh) * 2014-10-13 2016-04-20 乐金显示有限公司 有机发光二极管装置
US20160181561A1 (en) * 2014-12-18 2016-06-23 Samsung Display Co., Ltd. White organic light emitting diode
CN107180917A (zh) * 2016-03-10 2017-09-19 三星显示有限公司 有机发光装置
CN107464884A (zh) * 2016-06-06 2017-12-12 清华大学 一种叠层有机电致发光器件
CN111554823A (zh) * 2020-05-27 2020-08-18 云谷(固安)科技有限公司 有机发光器件和显示面板

Also Published As

Publication number Publication date
US20220231252A1 (en) 2022-07-21
CN111554823A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
US10147899B2 (en) Tandem organic electroluminescent element
CN106848084B (zh) 一种oled显示面板、制作方法及含有其的电子设备
CN108232025B (zh) 一种有机电致发光器件
US20150155515A1 (en) Organic light emitting display and method for fabricating the same
JP2004319424A (ja) 有機電界発光ディスプレイ装置
WO2021238391A1 (zh) 有机发光器件和显示面板
US10615355B2 (en) Organic light-emitting display panel and display device
CN101171698A (zh) 有机电致发光元件
US20180013098A1 (en) Organic Light-Emitting Display Panel and Device
KR101894332B1 (ko) 유기 발광 표시 장치
CN109545932B (zh) 发光二极管
US10615359B2 (en) Organic light-emitting display panel and device
CN110335954B (zh) 一种高效稳定的白光有机电致发光器件及其制备方法
WO2021017627A1 (zh) 有机发光二极管器件和显示装置
CN101800290A (zh) 采用金属氧化物掺杂作为空穴注入结构的有机发光二极管
CN109428005B (zh) 有机电致发光器件
US20070285001A1 (en) System for displaying images
WO2014187084A1 (zh) 一种有机电致发光器件及显示装置
TWI601445B (zh) 有機電激發光元件
KR20110027484A (ko) 유기전계발광소자
US20230030418A1 (en) Oled device and preparation method therefor, display substrate, and display apparatus
CN107195793A (zh) 一种白光有机电致发光器件和相应的显示面板
WO2021213144A1 (zh) 有机发光二极管器件及其制作方法、和显示面板
CN111740020B (zh) 一种高效长寿命的蓝光器件
CN111916574A (zh) 蓝光电致发光器件、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812947

Country of ref document: EP

Kind code of ref document: A1