WO2021238290A1 - 一种海洋可燃冰开采气体固态化储运的系统与方法 - Google Patents

一种海洋可燃冰开采气体固态化储运的系统与方法 Download PDF

Info

Publication number
WO2021238290A1
WO2021238290A1 PCT/CN2021/073885 CN2021073885W WO2021238290A1 WO 2021238290 A1 WO2021238290 A1 WO 2021238290A1 CN 2021073885 W CN2021073885 W CN 2021073885W WO 2021238290 A1 WO2021238290 A1 WO 2021238290A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustible ice
methane gas
transportation
synthesis
storage
Prior art date
Application number
PCT/CN2021/073885
Other languages
English (en)
French (fr)
Other versions
WO2021238290A9 (zh
Inventor
冯景春
张偲
杨志峰
王屹
何頔
蔡宴朋
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021238290A1 publication Critical patent/WO2021238290A1/zh
Publication of WO2021238290A9 publication Critical patent/WO2021238290A9/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L7/00Fuels produced by solidifying fluid fuels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases

Definitions

  • the invention relates to the technical field of development, utilization, storage and transportation of marine combustible ice resources, and more specifically, to a system and method for solid-state storage and transportation of marine combustible ice mining gas.
  • Combustible ice also known as natural gas hydrate, is a crystalline clathrate compound formed by gas molecules (mainly methane molecules in nature) and water molecules under high-pressure and low-temperature environmental conditions. Because of its wide distribution, large reserves, The advantages of high energy density, clean and pollution-free after combustion, are hailed as the most potential alternative energy source in the 21st century.
  • Patent application (publication number: 108192684A) continuous preparation device and preparation method of massive combustible ice.
  • a method for preparing massive combustible ice is disclosed, in the actual application process, the mining of marine combustible ice is far away from the mainland, which is safe and economical.
  • the transportation of the mined product methane gas to the mainland end users is an important link in determining the industrial utilization of combustible ice.
  • Conventional pipeline natural gas transportation methods have disadvantages such as high cost, high risk, and easy corrosion of pipelines in the ocean environment for long-distance pipeline laying.
  • natural gas storage and transportation in ocean environment mainly uses liquefied natural gas technology, and the natural gas is liquefied and transported after the natural gas is removed from the mining platform.
  • the storage and transportation of liquefied natural gas needs to be processed at -162°C, and during the transportation process, the storage container has been kept in a high-pressure and low-temperature environment, which requires high transportation personnel and related operators, and the liquefaction and purification process is relatively complicated and prone to explosion.
  • the present invention overcomes the technical drawbacks of the existing method of storing and transporting natural gas in ocean environment through liquefied natural gas, which has high requirements on transportation personnel and related operators, and the liquefaction and purification process is relatively complicated, and explosion is prone to occur. It provides a marine environment. System and method for solidified storage and transportation of combustible ice mining gas.
  • a solid-state storage and transportation system for marine combustible ice mining gas including a mining platform, combustible ice synthesis pretreatment system, methane gas solidification device, combustible ice storage device, and pipeline system; wherein:
  • the mining platform is used to separate combustible ice into production water and methane gas, and the production water and methane gas are transported to the combustible ice synthesis pretreatment system through the pipeline system;
  • the combustible ice synthesis pretreatment system pretreats the produced water and methane gas, and transports them to the methane gas solidification device via the pipeline system;
  • the methane gas solidification device is used for the synthesis, compression and solidification and modeling of combustible ice, and the processed combustible ice is transported to the combustible ice storage device for storage and transportation.
  • the present invention uses methane gas and pure water to synthesize combustible ice, and proposes to treat the produced water after combustible ice mining in the ocean-going in-situ environment and then synthesize combustible with the mined methane gas.
  • Ice not only has the characteristics of "memory effect" when the produced water mined from combustible ice is re-formed into combustible ice, it also treats the produced water from combustible ice mined in-situ, which avoids bringing the produced water back to the mainland for treatment.
  • the high cost effect It can realize the industrialized ecological storage and transportation of combustible ice mining gas.
  • the combustible ice synthesis pretreatment system includes a production water storage device, a production water treatment device and a methane gas storage device; wherein:
  • the produced water storage device connects and stores produced water from the mining platform through the pipeline system, and is connected with the produced water treatment device through the pipeline system, and a control system is provided on the pipeline system. valve;
  • the production water treatment device is used to perform multi-stage filtration separation and membrane permeation treatment on the stored production water, and connect the processed production water to the methane gas solidification device;
  • the methane gas storage device connects and stores methane gas from the mining platform through the pipeline system, and its output port is connected to the methane gas solidification device.
  • the production water storage device plays a role of storing the production water on the one hand, and on the other hand, the sediment in the production water is taken out by standing storage, and the original mud drain is designed in the lower part of the production water storage device; at the same time, during the storage process In order to ensure the “memory effect” of the produced water as much as possible, the temperature should not be too high.
  • the outer wall of the production water storage device is wrapped with an insulation layer and a water bath cooling jacket to ensure that the temperature of the produced water does not exceed 25°C during the entire storage process;
  • the water treatment device mainly uses the water treatment process to perform multi-stage separation and membrane permeation of the produced water mined from combustible ice to remove the sediment and other impurities carried during the mining process to ensure that the water quality of the treated produced water can meet the formation of combustible water.
  • the need for ice The methane gas storage device mainly includes large-scale gas storage tanks and pipeline systems to achieve the purpose of storing and buffering methane gas extracted from combustible ice.
  • the system not only uses the "memory" feature of the produced water to synthesize combustible ice, but also can process and utilize the produced water in situ, avoiding the increased cost of transporting the produced water back to land for processing.
  • the methane gas solidification device includes a device for rapidly synthesizing combustible ice and a device for compressing and forming combustible ice; wherein:
  • the rapid synthesis combustible ice device includes a cavity and a control circuit, a spraying element is arranged on the top of the inner wall of the cavity, a microbubble fluid treatment element is arranged on the bottom of the inner wall, and an accelerator spraying element and a stirring element are arranged in the middle of the inner wall; the cavity
  • the outer wall is covered with an annular wall cooling and explosion cooling system;
  • the spraying original, the microbubble fluid processing original, the accelerator spraying original, the stirring original, and the ring wall cooling and explosion cooling system are all electrically connected to the control circuit and controlled by the control circuit;
  • the rapid synthesis combustible ice device is connected to the combustible ice compression and molding device through the pipeline system;
  • the combustible ice compression and molding device is used to filter the combustible ice slurry synthesized in the rapid combustible ice synthesis device to form high-density block or spherical combustible ice as required, and transmit it to the piping system.
  • Combustible ice storage device is used to filter the combustible ice slurry synthesized in the rapid combustible ice synthesis device to form high-density block or spherical combustible ice as required, and transmit it to the piping system.
  • Combustible ice storage device is used to filter the combustible ice slurry synthesized in the rapid combustible ice synthesis device to form high-density block or spherical combustible ice as required, and transmit it to the piping system.
  • the rapid synthesis of combustible ice device mainly includes the original part capable of spraying the injected processed production water uniformly in multiple directions, the original part of microbubble fluid treatment of the methane gas injected through the methane gas storage device, and the injection and spraying of combustible ice
  • the produced water is evenly sprayed into the top of the rapid synthesis combustible ice device.
  • methane gas is introduced from the bottom of the rapid synthesis combustible ice device from the methane gas storage device, and the methane gas passes through the microbubble fluid at the bottom of the rapid synthesis combustible ice device.
  • the processed parts are separated, and then fully mixed with the production water sprayed on the top, and a certain amount of combustible ice forming accelerator is sprayed through the wall.
  • the stirring mode can be continuous stirring or sequential batch stirring mode.
  • the combustible ice storage device is a storage tank composed of a plurality of pressure tanks; a pressure gauge and a built-in temperature sensor are installed on the top of the storage tank; it is used for real-time monitoring of the temperature and pressure of the pressure tank.
  • the top of the pressure tank is provided with a conduit, and the conduit is finally formed into a pipeline to be connected to a pressure tank without flammable ice.
  • each combustible ice storage tank is connected to a combustible ice storage tank through a drainage duct.
  • the combustible ice storage tank is connected to the same empty tank.
  • the empty tank is used to collect methane gas released by the decomposition of combustible ice inadvertently during storage and transportation.
  • the temperature and pressure of the combustible ice storage tank should be monitored in real time, and a certain amount of combustible ice stabilizer should be sprayed in the combustible ice storage tank.
  • the present invention proposes to rapidly synthesize combustible ice by pressurizing, cooling, spraying accelerators, and enhancing the mass transfer rate in the rapid synthesizing combustible ice device, and then cooling, decompressing, and compressing the combustible ice slurry. It can realize long-distance transportation of combustible ice in a lower pressure environment. Compared with LNG transportation, it effectively avoids the high cost of ultra-low temperature (below -20°C) transportation and reduces explosions during LNG transportation. risk.
  • the present invention proposes to spray a certain amount of combustible ice stabilizer in the combustible ice storage tank, which can effectively enhance the stability of solid combustible ice and avoid the decomposition of combustible ice due to disturbance of the external environment during transportation.
  • the present invention proposes to use an empty gas storage tank to connect to the combustible ice storage tank to collect methane gas that is accidentally decomposed and released during storage and transportation, which not only avoids the safety risk caused by gas release and pressurization, but also collects the gas To the end use, it can avoid the harsh environment of the whole storage and transportation process, and realize the ecological storage and transportation.
  • a method for solid-state storage and transportation of marine combustible ice mining gas includes the following steps:
  • the combustible ice synthesis pretreatment system preprocesses the produced water and methane gas and stores them, and connects them to the methane gas solidification device through the pipeline system;
  • the methane gas solidification device fully mixes the input methane gas with the produced water, and sprays a certain amount of accelerators to form combustible ice through the wall; when the pressure in the methane gas solidification device increases to a set value that is easy to synthesize combustible ice After the pressure range (12-20MPa), then lower the temperature in the device to 4°C and stir to synthesize combustible ice;
  • the combustible ice synthesis pretreatment system stores and stands the produced water through the produced water storage device, and the heat preservation layer and the water bath refrigeration jacket arranged on the outer wall of the produced water storage device will make the produced water storage device
  • the temperature is controlled below 25°C; then the produced water is subjected to multi-stage filtration and separation and membrane permeation using the water treatment process through the production water treatment device to obtain produced water that meets the water quality required by combustible ice;
  • the combustible ice synthesis pretreatment system buffers and stores the methane gas obtained from the mining platform through a methane gas storage device.
  • the methane gas solidification device includes a device for rapidly synthesizing combustible ice and a device for compressing and molding combustible ice; wherein:
  • the rapid synthesis combustible ice device includes a cavity and a control circuit, a spraying element is arranged on the top of the inner wall of the cavity, a microbubble fluid treatment element is arranged on the bottom of the inner wall, and an accelerator spraying element and a stirring element are arranged in the middle of the inner wall; the cavity
  • the outer wall is covered with an annular wall cooling and explosion cooling system;
  • the spraying original, the microbubble fluid processing original, the accelerator spraying original, the stirring original, and the ring wall cooling and explosion cooling system are all electrically connected to the control circuit and controlled by the control circuit;
  • the produced water is evenly sprayed into the rapid synthesis combustible ice device through the spraying elements on the top of the rapid synthesis combustible ice device.
  • methane gas is introduced from the lower part of the rapid synthesis combustible ice device into the methane gas storage device, and the methane gas passes through the rapid synthesis combustible ice device
  • the microbubble fluid treatment element at the bottom is separated, it is fully mixed with the production water sprayed on the top, and a certain amount of accelerator for the formation of combustible ice is sprayed through the accelerator injection element; when the pressure in the rapid synthesis of combustible ice device is increased to easily combustible ice After rapidly forming pressure conditions (12-20MPa), lower the temperature in the device to 4°C, and then start the stirring element to enhance the mass transfer rate and perform combustible ice synthesis;
  • the combustible ice slurry is introduced into the combustible ice compression and molding device, and then the temperature and pressure conditions are changed to meet the stable existence of combustible ice and reduce the combustible ice compression and molding device Set the temperature to -15 to -10°C, then reduce the pressure in the device to keep it at 0.15-2MPa, the excess water in the combustible ice slurry will be filtered, and then the filtered combustible ice slurry will be compressed as needed Into a solid ball or block combustible ice product.
  • the combustible ice storage device is a storage tank composed of a plurality of pressure tanks; Leave a small amount of gas space, and connect each storage tank to a pressure tank that does not contain combustible ice through a duct to prevent methane gas leakage;
  • the temperature and pressure in the device are monitored in real time to provide environmental protection for subsequent transportation.
  • the invention provides a system and method for solidified storage and transportation of marine combustible ice mining gas, which utilizes the memory characteristics of produced water to rapidly synthesize combustible ice, and at the same time, synthesizes, cools, and cools combustible ice through a methane gas solidification device.
  • Decompression and compression molding realize the long-distance transportation of combustible ice in a lower pressure environment, effectively avoiding the high cost of ultra-low temperature transportation, and reducing the explosion risk during the transportation of liquefied natural gas.
  • Figure 1 is a schematic diagram of the system structure of the solid-state storage and transportation of marine combustible ice mining gas
  • a system for solidified storage and transportation of marine combustible ice mining gas includes a mining platform 1, a combustible ice synthesis pretreatment system 2, a methane gas solidification device 3, a combustible ice storage device 4, and a pipeline system 5. ;in:
  • the mining platform 1 is used to separate combustible ice into production water and methane gas, and the production water and methane gas are transported to the combustible ice synthesis pretreatment system 2 via the pipeline system 5;
  • the combustible ice synthesis pretreatment system 2 preprocesses the produced water and methane gas, and transports them to the methane gas solidification device 3 via the pipeline system 5;
  • the methane gas solidification device 3 is used for the synthesis, compression and solidification and modeling of combustible ice, and the processed combustible ice is transported to the combustible ice storage device 4 for storage and transportation.
  • the present invention uses methane gas and pure water to synthesize combustible ice, and proposes to treat the produced water after combustible ice mining in an ocean-going in-situ environment.
  • Synthetic combustible ice not only uses the produced water mined from combustible ice to form combustible ice with the characteristics of "memory effect", but also treats the produced water from combustible ice mining in-situ, avoiding pulling the produced water back to the mainland for treatment.
  • the high cost effect brought about. It can realize the industrialized ecological storage and transportation of combustible ice mining gas.
  • the combustible ice synthesis pretreatment system 2 includes a production water storage device 21, a production water treatment device 22, and a methane gas storage device 23; wherein:
  • the produced water storage device 21 connects the produced water from the mining platform 1 through the pipeline system 5 and stores it, and it communicates with the produced water treatment device 22 through the pipeline system 5, A control valve is provided on the system 5;
  • the produced water treatment device 22 is used to perform multi-stage filtration and separation and membrane permeation treatment on the stored produced water, and connect the processed produced water to the methane gas solidification device 3;
  • the methane gas storage device 23 connects the methane gas from the mining platform 1 through the pipeline system 5 and stores it, and its output port is connected to the methane gas solidification device 3.
  • the production water storage device 21 plays a role of storing the production water on the one hand, and on the other hand, the sediment in the production water is taken out by standing storage, and the original sludge discharge is designed at the lower part of the production water storage device 21; at the same time; In order to ensure the "memory effect" of the produced water as much as possible during the storage process, the temperature should not be too high.
  • the outer wall of the production water storage device 21 is wrapped with an insulation layer and a water bath cooling jacket to ensure that the temperature of the produced water is not high during the entire storage process.
  • the production water treatment device 22 mainly performs multi-stage separation and membrane permeation of the production water mined from combustible ice through a water treatment process to remove the sediment and other impurities carried during the mining process to ensure the treated production water
  • the water quality can meet the needs of forming combustible ice.
  • the methane gas storage device 23 mainly includes a large gas storage tank and a pipeline system, and realizes the purpose of storing and buffering methane gas extracted from combustible ice.
  • the system not only uses the "memory" characteristics of the produced water to synthesize combustible ice, but also can process and utilize the produced water in situ, avoiding the increased cost of transporting the produced water back to land for processing.
  • the methane gas solidification device 3 includes a rapid synthesis combustible ice device 31 and a combustible ice compression and molding device 32; wherein:
  • the rapid synthesis combustible ice device 31 includes a cavity and a control circuit, a spraying element is arranged on the top of the inner wall of the cavity, a microbubble fluid processing element is arranged on the bottom of the inner wall, and an accelerator spraying element and a stirring element are arranged on the middle of the inner wall;
  • the outer wall of the cavity is covered with a ring wall cooling and explosion cooling system;
  • the spraying original, the microbubble fluid processing original, the accelerator spraying original, the stirring original, and the ring wall cooling and explosion cooling system are all electrically connected to the control circuit and controlled by the control circuit;
  • the rapid synthesis combustible ice device 31 is connected to the combustible ice compression and molding device 32 through the pipeline system 5;
  • the combustible ice compression and molding device 32 is used to filter the combustible ice slurry synthesized in the fast combustible ice device 31 to form high-density block or spherical combustible ice as required, which is transmitted by the pipeline system 5 To the combustible ice storage device 4.
  • the rapid synthesis of combustible ice device 31 mainly includes the original component capable of spraying the injected processed produced water uniformly in multiple directions, the original component of microbubble fluid treatment of the methane gas injected through the methane gas storage device, the injection and The accelerant spray element formed by spraying combustible ice, the built-in agitating element to enhance mass transfer and the outer envelope ring wall cooling and explosion cooling system.
  • the produced water is evenly sprayed into the top of the rapid synthesis combustible ice device 31, and at the same time, methane gas is introduced from the methane gas storage device 23 from the bottom of the rapid synthesis combustible ice device 31, and the methane gas passes through the rapid synthesis combustible ice device.
  • the microbubble fluid at the bottom is separated from the original, and then fully mixed with the production water sprayed on the top, and a certain amount of combustible ice forming accelerator is sprayed through the wall.
  • the stirring mode can be continuous stirring or sequential batch stirring mode.
  • the rapid combustible ice synthesis device 31 into the combustible ice compression and molding device 32, and then the temperature and pressure conditions in the device are changed to ensure the stable existence of combustible ice.
  • the combustible ice slurry is filtered out of the excess water in the device, and then as needed Compress the filtered combustible ice slurry into a solid spherical or massive high-quality combustible ice product.
  • the combustible ice storage device 4 is a storage tank composed of 8 pressure tanks that can be carried on board and is convenient for loading and unloading for vehicle transportation; the top of the storage tank is equipped with a pressure gauge and a built-in temperature sensor; used for real-time Monitor the temperature and pressure of the pressure tank.
  • a conduit is provided on the top of the pressure tank, and the conduit is finally formed into a pipeline to be connected to a pressure tank that does not contain combustible ice.
  • each combustible ice storage tank is passed through the drainage duct Connect with an empty tank that is the same as the combustible ice storage tank.
  • the empty tank is used to collect methane gas released by the decomposition of combustible ice inadvertently during storage and transportation.
  • the temperature and pressure of the combustible ice storage tank should be monitored in real time, and a certain amount of combustible ice stabilizer should be sprayed in the combustible ice storage tank.
  • the present invention proposes to rapidly synthesize combustible ice by pressurizing, cooling, spraying accelerators, and enhancing the mass transfer rate in the rapid synthesizing combustible ice device 31, and then the combustible ice slurry is cooled, decompressed, Compression molding can realize long-distance transportation of combustible ice in a lower pressure environment.
  • LNG transportation it effectively avoids the high cost of ultra-low temperature (below -20°C) transportation and reduces the transportation process of LNG. Explosion risk in.
  • the present invention proposes to spray a certain amount of combustible ice stabilizer in the combustible ice storage tank, which can effectively enhance the stability of solid combustible ice and avoid the disturbance of the external environment during the transportation process, which may cause combustible ice. break down.
  • the present invention proposes to use an empty gas storage tank to connect to the combustible ice storage tank to collect methane gas that is accidentally decomposed and released during storage and transportation, which not only avoids the safety risk caused by gas release and pressurization, but also collects the gas To the end use, it can avoid the harsh environment of the whole storage and transportation process, and realize the ecological storage and transportation.
  • a method for solid-state storage and transportation of marine combustible ice mining gas which includes the following steps:
  • the combustible ice synthesis pretreatment system 2 preprocesses the produced water and methane gas and stores them, and connects the piping system 5 to the methane gas solidification device 3;
  • the methane gas solidification device 3 fully mixes the input methane gas with the produced water, and sprays a certain amount of accelerant to form combustible ice through the wall; when the pressure in the methane gas solidification device 3 increases to 20 MPa, reduce the inside of the device To 4°C and stir to synthesize combustible ice;
  • the combustible ice synthesis pretreatment system 2 stores and stands the produced water through the produced water storage device 21, and the heat preservation layer and the water bath cooling jacket are arranged on the outer wall of the produced water storage device 21
  • the temperature of the produced water storage device 21 is controlled below 25°C; then the produced water is subjected to multi-stage filtration and separation and membrane permeation through the water treatment process through the production water treatment device 22 to obtain produced water that meets the water quality conditions for rapid formation of combustible ice ;
  • the combustible ice synthesis pretreatment system 2 buffers and stores the methane gas obtained from the mining platform 1 through the methane gas storage device 23.
  • the methane gas solidification device 3 includes a rapid synthesis combustible ice device 31 and a combustible ice compression and molding device 32; wherein:
  • the rapid synthesis combustible ice device 31 includes a cavity and a control circuit, a spraying element is arranged on the top of the inner wall of the cavity, a microbubble fluid processing element is arranged on the bottom of the inner wall, and an accelerator spraying element and a stirring element are arranged on the middle of the inner wall;
  • the outer wall of the cavity is covered with a ring wall cooling and explosion cooling system;
  • the spraying original, the microbubble fluid processing original, the accelerator spraying original, the stirring original, and the ring wall cooling and explosion cooling system are all electrically connected to the control circuit and controlled by the control circuit;
  • the produced water is evenly sprayed into the rapid synthesis combustible ice device 31 through the spraying elements on the top of the rapid synthesis combustible ice device 31.
  • the methane gas is introduced from the methane gas storage device 23 from the lower part of the rapid synthesis combustible ice device 31, and the methane gas passes through the rapid synthesis combustible ice device 31.
  • the microbubble fluid processing element at the bottom of the synthetic combustible ice device 31 After the microbubble fluid processing element at the bottom of the synthetic combustible ice device 31 is separated, it is fully mixed with the production water sprayed on the top, and a certain amount of the accelerator that forms combustible ice is sprayed through the accelerator injection element; when the combustible ice device 31 is quickly synthesized After the pressure is increased to 20MPa, reduce the temperature in the device to 4°C, and then start the stirring element to enhance the mass transfer rate and perform combustible ice synthesis;
  • the combustible ice slurry is introduced into the combustible ice compression and molding device 32, and the temperature of the combustible ice compression and molding device 32 is set to -15°C, and the pressure does not exceed 1 MPa ,
  • the excess water in the combustible ice slurry will be filtered, and then the filtered combustible ice slurry will be compressed into a solid spherical or massive combustible ice product as needed.
  • the combustible ice storage device 4 is a storage tank composed of multiple pressure tanks; Reserve a small amount of gas space on the top of the tank, and connect each storage tank to a pressure tank that does not contain combustible ice through a duct to prevent methane gas leakage;
  • the temperature and pressure in the device are monitored in real time to provide environmental protection for subsequent transportation.
  • the produced water and methane gas separated from the mining platform 1 are connected to the produced water storage device 21 and the methane gas storage device 23 respectively through pipelines; the produced water storage device 21 must fully ensure a low temperature environment to ensure The "memory effect" that retains the produced water and then forms combustible ice, the produced water enters the produced water treatment device 22 after passing through the storage device for a short period of time. In order to fully retain the memory effect of the produced water, the resting time should not exceed 24 hours.
  • Impurities in the produced water are removed by the precipitation and membrane separation of the produced water treatment device 22, and then uniformly sprayed into the fast synthetic combustible ice device 31 through the top of the fast synthetic combustible ice device 31.
  • the methane gas is introduced from the methane gas storage device 23 from the lower part of the rapid synthesis combustible ice device 31, the methane gas is separated by the microbubble treatment original at the bottom of the rapid synthesis combustible ice device 31, and then fully mixed with the production water sprayed on the top, and Spray a certain amount of sodium dodecyl sulfonate, which is a promoter of combustible ice formation, on the wall.
  • the stirring mode adopts the sequential batch stirring mode.
  • each combustible ice storage tank is loaded, a small part of the gas space is reserved on the top of each combustible ice storage tank, and each combustible ice storage tank is connected to one and the rest through the drainage duct. Connected to an empty tank.
  • the empty tank is used to collect methane gas released by the decomposition of combustible ice inadvertently during storage and transportation.
  • the temperature and pressure changes of the combustible ice storage tank should be monitored in real time, and a certain amount of combustible ice stabilizer hydroxyethyl cellulose should be sprayed in the combustible ice storage tank.
  • the present invention provides a system and method for solidified storage and transportation of marine combustible ice mining gas, which uses the memory characteristics of produced water to synthesize combustible ice, and at the same time, uses methane gas solidification device to perform combustible ice
  • the synthesis, cooling, decompression, and compression molding of LNG realize long-distance transportation of combustible ice in a lower pressure environment, effectively avoiding the high cost of ultra-low temperature transportation, and reducing the explosion risk during the transportation of liquefied natural gas.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种海洋可燃冰开采气体固态化储运的系统,通过开采平台(1)将可燃冰开采得到的生产水和甲烷气体输送到可燃冰合成预处理系统(2)中;经由可燃冰合成预处理系统(2)对生产水和甲烷气体进行预处理,并输送到甲烷气体固态化装置(3)中;甲烷气体固态化装置(3)用于可燃冰的合成、压缩固态化以及造型处理,并将处理后的可燃冰输送到可燃冰存储装置(4)中进行存储运输;一种海洋可燃冰开采气体固态化储运的方法,通过甲烷气体固态化装置(3)进行可燃冰的合成、降温、减压、压缩成型,实现了可燃冰在较低的压力环境进行长距离运输,有效的避免了液化天然气超低温运输的高成本支出,并且降低了液化天然气输运过程中的爆炸风险。

Description

一种海洋可燃冰开采气体固态化储运的系统与方法 技术领域
本发明涉及海洋可燃冰资源开发的利用与储运技术领域,更具体的,涉及一种海洋可燃冰开采气体固态化储运的系统与方法。
背景技术
可燃冰,又名天然气水合物,是一种由气体分子(自然界主要为甲烷分子)和水分子在高压、低温环境条件下形成的一种结晶状笼型化合物,因其分布广、储量大、能量密度高、燃烧后清洁无污染等优点被誉为21世纪最富潜力的接替能源。
专利申请(公开号为:108192684A)块状可燃冰的连续制备装置及其制备方法虽然公开了一种块状可燃冰的制备方法,但在实际应用过程中,海洋可燃冰开采远离大陆,安全经济的将开采出来后的产品甲烷气体输运至大陆终端用户才是决定可燃冰产业化利用的重要环节。常规的管道天然气输运方式对远洋环境存在长距离铺设管道成本高、风险大、管道在海洋环境易腐蚀等缺点。目前远洋环境天然气储运主要是利用液化天然气技术,在开采平台将天然气进行三脱除杂后将天然气进行液化运输。液化天然气储运需要在-162℃处理,且输运过程中,储存容器一直保持在高压和低温环境,对输运人员和相关操作人员要求高,且液化和净化工艺相对复杂,容易发生爆炸。
发明内容
本发明为克服现有的通过液化天然气进行远洋环境天然气储运的方式,存在对输运人员和相关操作人员要求高,且液化和净化工艺相对复杂,容易发生爆炸的技术缺陷,提供一种海洋可燃冰开采气体固态化储运的系统与方法。
为解决上述技术问题,本发明的技术方案如下:
一种海洋可燃冰开采气体固态化储运的系统,包括开采平台、可燃冰合成预处理系统、甲烷气体固态化装置、可燃冰存储装置和管路系统;其中:
所述开采平台用于将可燃冰分离为生产水和甲烷气体,生产水和甲烷气体经 由所述管路系统输送到所述可燃冰合成预处理系统中;
所述可燃冰合成预处理系统对生产水和甲烷气体进行预处理,并经由所述管路系统输送到所述甲烷气体固态化装置中;
所述甲烷气体固态化装置用于可燃冰的合成、压缩固态化以及造型处理,并将处理后的可燃冰输送到所述可燃冰存储装置中进行存储运输。
上述方案中,本发明相对于现有可燃冰储运利用甲烷气体和纯水合成可燃冰,提出了在远洋原位环境将可燃冰开采后的生产水进行处理后与开采得到的甲烷气体合成可燃冰,既利用了可燃冰开采的生产水再形成可燃冰时具备“记忆效应”的特点,又对可燃冰开采的生产水进行了原位处理,避免了将生产水拉回大陆环境处理带来的高成本效应。可实现可燃冰开采气体产业化生态储运。
其中,所述可燃冰合成预处理系统包括生产水存储装置、生产水处理装置和甲烷气体存储装置;其中:
所述生产水存储装置将生产水从所述开采平台通过所述管路系统接出并进行存储,其与所述生产水处理装置通过所述管路系统连通,在管路系统上设置有控制阀;
所述生产水处理装置用于对存储后的生产水进行多级过滤分离和膜渗透处理,并将处理完成的生产水接入所述甲烷气体固态化装置中;
所述甲烷气体存储装置将甲烷气体从所述开采平台通过所述管路系统接出并进行存储,其输出口与所述甲烷气体固态化装置连接。
上述方案中,生产水存储装置一方面起到储存生产水的作用,另一方面通过静置存储取出生产水中的泥沙,在生产水存储装置的下部设计有排泥原件;同时,在储存过程中为了尽量保证生产水的“记忆效应”,不可温度过高,生产水存储装置外壁包裹有保温层和水浴制冷夹套,以保证整个储存过程中,生产水的温度不高于25℃;生产水处理装置主要是通过水处理工艺将可燃冰开采的生产水进行多级过了分离和膜渗透,去除开采过程携带的泥沙和其它杂质,以确保处理后的生产水的水质能满足形成可燃冰的需要。甲烷气体储存装置主要包括大型储气罐及管线系统,实现将可燃冰开采出来的甲烷气体进行储存和缓冲的目的。
上述方案中,本系统既利用生产水的“记忆性”特点进行可燃冰的合成,又可对生产水进行原位处理利用,避免生产水运回陆地处理增加成本。
其中,所述甲烷气体固态化装置包括快速合成可燃冰装置和可燃冰压缩及造 型装置;其中:
所述快速合成可燃冰装置包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温爆冷系统;
所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降温爆冷系统均与所述控制电路电性连接,由控制电路进行控制;
所述快速合成可燃冰装置通过所述管路系统与所述可燃冰压缩及造型装置连接;
所述可燃冰压缩及造型装置用于将所述快速合成可燃冰装置中合成的可燃冰浆液进行过滤,根据需要形成高密度的块状或者球状可燃冰,由所述管路系统传输至所述可燃冰存储装置。
上述方案中,快速合成可燃冰装置主要包括能将注入的处理后的生产水进行多方向均匀的喷洒原件、将经由甲烷气体储存装置注入的甲烷气体进行微气泡流体处理原件、注入和喷洒可燃冰形成的促进剂喷射原件、内置强化传质的搅拌原件和外覆环壁降温爆冷系统。
上述方案中,生产水经由快速合成可燃冰装置的顶部均匀喷洒进入,同时,将甲烷气体由甲烷气体储存装置由快速合成可燃冰装置底部引入,甲烷气体经过快速合成可燃冰装置底部的微气泡流体处理原件分隔,然后与顶部喷洒的生产水充分混合,并且通过壁面喷洒一定量的形成可燃冰的促进剂,当可燃冰合成装置内的压力增加至设定压力范围(12-20MPa)后,降低装置内的温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰的合成。搅拌模式可采取连续搅拌或者序批式搅拌模式。
上述方案中,当合成大量的可燃冰浆液后,将其从快速合成可燃冰装置引入可燃冰压缩及造型装置,降低装置内的温度为-15至-10℃范围内,随后降低装置内的压力,使其压力范围在0.15-2MPa,可燃冰浆液在装置内被过滤掉多余的水分,然后根据需要压将过滤后的可燃冰浆液缩成固态的球状或块状高品质可燃冰成品。
其中,所述可燃冰存储装置为多个耐压罐组成的储罐;所述储罐顶部安装有压力计和内置有温度传感器;用于实时监测耐压罐的温度和压力。
其中,所述耐压罐顶部均设置有导管,所述导管最终合成一个管路与一个不 装可燃冰的耐压罐相连。
上述方案中,待固态高品质可燃冰合成后,装入可燃冰存储装置,在每个可燃冰储罐的顶部预留少部分气体空间,并且将每个可燃冰储罐通过引流导管与一个与可燃冰储罐相同的空罐连接。该空罐用来收集储运过程中不慎造成可燃冰分解释放的甲烷气体。在整个输运过程中,应实时监测关注可燃冰储罐的温度和压力值变化,并且在可燃冰储罐内喷洒一定量的可燃冰稳定剂。
上述方案中,本发明提出的通过在快速合成可燃冰装置内增压、降温、喷洒促进剂、增强传质速率等方法快速合成可燃冰,然后将可燃冰浆液进行降温、减压、压缩成型,可实现可燃冰在较低的压力环境进行长距离运输,相比液化天然气运输,有效的避免了超低温(低于-20℃)运输的高成本支出,并且降低了液化天然气输运过程中的爆炸风险。
上述方案中,本发明提出了在可燃冰储罐中喷洒一定量的可燃冰稳定剂,可有效的增强固态可燃冰的稳定性,避免在输运过程中由于外部环境扰动,造成可燃冰分解。并且本发明提出了用一个空的气体储存罐与可燃冰储存罐相连接,搜集储运过程中不慎分解释放的甲烷气体,既避免了气体释放增压带来的安全风险,又收集了气体至终端使用,可避免整个储运过程对环境的恶劣应县,实现生态化储运。
一种海洋可燃冰开采气体固态化储运的方法,包括以下步骤:
S1:将开采平台分离出来的生产水和甲烷气体分别通过管路系统接入可燃冰合成预处理系统;
S2:可燃冰合成预处理系统对于生产水和甲烷气体进行预处理后进行存储,由管路系统接入甲烷气体固态化装置中;
S3:甲烷气体固态化装置将输入的甲烷气体与生产水充分混合,通过壁面喷洒一定量的形成可燃冰的促进剂;当甲烷气体固态化装置内的压力增加至设定的易于可燃冰合成的压力范围(12-20MPa)后,然后降低装置内的温度至4℃并进行搅拌,进行可燃冰的合成;
S4:当合成大量的可燃冰浆液后,降低甲烷气体固态化装置的温度在-15至-10℃,随后降低装置内的压力,使其压力范围在0.15-2MPa,保证可燃冰稳定不分解,然后根据需要将可燃冰浆液缩成固态的球状或块状可燃冰成品;
S5:待固态的可燃冰成品合成后,装入可燃冰存储装置并对装置内的温度和 压力进行实时监测,为后续运输提供环境保障。
其中,在所述步骤S2中,所述可燃冰合成预处理系统通过生产水存储装置对生产水进行存储静置,设置在生产水存储装置外壁的保温层和水浴制冷夹套将生产水存储装置的温度控制在25℃以下;然后通过生产水处理装置利用水处理工艺将生产水进行多级过滤分离和膜渗透,以得到满足可燃冰需要的水质的生产水;
所述可燃冰合成预处理系统通过甲烷气体存储装置对从开采平台得到的甲烷气体进行缓冲与储存。
上述方案中,
其中,在所述步骤S3中,甲烷气体固态化装置包括快速合成可燃冰装置和可燃冰压缩及造型装置;其中:
所述快速合成可燃冰装置包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温爆冷系统;
所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降温爆冷系统均与所述控制电路电性连接,由控制电路进行控制;
生产水经由快速合成可燃冰装置顶部的喷洒原件均匀喷洒进入快速合成可燃冰装置内,同时,将甲烷气体存储装置中将甲烷气体从快速合成可燃冰装置下部引入,甲烷气体经过快速合成可燃冰装置底部的微气泡流体处理原件分隔后,与顶部喷洒的生产水充分混合,并且通过促进剂喷射原件喷洒一定量的形成可燃冰的促进剂;当快速合成可燃冰装置内的压力增加至易于可燃冰快速形成的压力条件(12-20MPa)后,降低装置内温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰合成;
在所述步骤S4中,当合成大量的可燃冰浆液后,将可燃冰浆液引入可燃冰压缩及造型装置中,随后改变温度压力条件达,满足可燃冰能稳定存在,降低可燃冰压缩及造型装置温度,使其设置为-15至-10℃,然后降低装置内的压力,使其保持在0.15-2MPa,可燃冰浆液中多余的水分将被过滤,然后根据需要将过滤后的可燃冰浆液压缩成固态的球状或块状可燃冰成品。
其中,在所述步骤S5中,待固态可燃冰合成后,装入可燃冰存储装置中,所述可燃冰存储装置为多个耐压罐组成的储罐;在每个耐压罐的顶部预留少部分 气体空间,并且将每个储罐通过导管与一个不装可燃冰的耐压罐相连,防止甲烷气体泄漏;
在输运过程中,对装置内的温度和压力进行实时监测,为后续运输提供环境保障。
与现有技术相比,本发明技术方案的有益效果是:
本发明提供的一种海洋可燃冰开采气体固态化储运的系统与方法,利用生产水的记忆性特点进行可燃冰的快速合成,同时,通过甲烷气体固态化装置进行可燃冰的合成、降温、减压、压缩成型,实现了可燃冰在较低的压力环境进行长距离运输,有效的避免了超低温运输的高成本支出,并且降低了液化天然气输运过程中的爆炸风险。
附图说明
图1为海洋可燃冰开采气体固态化储运的系统结构示意图;
其中:1、开采平台;2、可燃冰合成预处理系统;21、生产水存储装置;22、生产水处理装置;23、甲烷气体存储装置;3、甲烷气体固态化装置;31、快速合成可燃冰装置;32、可燃冰压缩及造型装置;4、可燃冰存储装置;5、管路系统。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1所示,一种海洋可燃冰开采气体固态化储运的系统,包括开采平台1、可燃冰合成预处理系统2、甲烷气体固态化装置3、可燃冰存储装置4和管路系统5;其中:
所述开采平台1用于将可燃冰分离为生产水和甲烷气体,生产水和甲烷气体经由所述管路系统5输送到所述可燃冰合成预处理系统2中;
所述可燃冰合成预处理系统2对生产水和甲烷气体进行预处理,并经由所述 管路系统5输送到所述甲烷气体固态化装置3中;
所述甲烷气体固态化装置3用于可燃冰的合成、压缩固态化以及造型处理,并将处理后的可燃冰输送到所述可燃冰存储装置4中进行存储运输。
在具体实施过程中,本发明相对于现有可燃冰储运利用甲烷气体和纯水合成可燃冰,提出了在远洋原位环境将可燃冰开采后的生产水进行处理后与开采得到的甲烷气体合成可燃冰,既利用了可燃冰开采的生产水再形成可燃冰时具备“记忆效应”的特点,又对可燃冰开采的生产水进行了原位处理,避免了将生产水拉回大陆环境处理带来的高成本效应。可实现可燃冰开采气体产业化生态储运。
更具体的,所述可燃冰合成预处理系统2包括生产水存储装置21、生产水处理装置22和甲烷气体存储装置23;其中:
所述生产水存储装置21将生产水从所述开采平台1通过所述管路系统5接出并进行存储,其与所述生产水处理装置22通过所述管路系统5连通,在管路系统5上设置有控制阀;
所述生产水处理装置22用于对存储后的生产水进行多级过滤分离和膜渗透处理,并将处理完成的生产水接入所述甲烷气体固态化装置3中;
所述甲烷气体存储装置23将甲烷气体从所述开采平台1通过所述管路系统5接出并进行存储,其输出口与所述甲烷气体固态化装置3连接。
在具体实施过程中,生产水存储装置21一方面起到储存生产水的作用,另一方面通过静置存储取出生产水中的泥沙,在生产水存储装置21的下部设计有排泥原件;同时,在储存过程中为了尽量保证生产水的“记忆效应”,不可温度过高,生产水存储装置21外壁包裹有保温层和水浴制冷夹套,以保证整个储存过程中,生产水的温度不高于25℃;生产水处理装置22主要是通过水处理工艺将可燃冰开采的生产水进行多级过了分离和膜渗透,去除开采过程携带的泥沙和其它杂质,以确保处理后的生产水的水质能满足形成可燃冰的需要。甲烷气体储存装置23主要包括大型储气罐及管线系统,实现将可燃冰开采出来的甲烷气体进行储存和缓冲的目的。
在具体实施过程中,本系统既利用生产水的“记忆性”特点进行可燃冰的合成,又可对生产水进行原位处理利用,避免生产水运回陆地处理增加成本。
更具体的,所述甲烷气体固态化装置3包括快速合成可燃冰装置31和可燃冰压缩及造型装置32;其中:
所述快速合成可燃冰装置31包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温爆冷系统;
所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降温爆冷系统均与所述控制电路电性连接,由控制电路进行控制;
所述快速合成可燃冰装置31通过所述管路系统5与所述可燃冰压缩及造型装置32连接;
所述可燃冰压缩及造型装置32用于将所述快速合成可燃冰装置31中合成的可燃冰浆液进行过滤,根据需要形成高密度的块状或者球状可燃冰,由所述管路系统5传输至所述可燃冰存储装置4。
在具体实施过程中,快速合成可燃冰装置31主要包括能将注入的处理后的生产水进行多方向均匀的喷洒原件、将经由甲烷气体储存装置注入的甲烷气体进行微气泡流体处理原件、注入和喷洒可燃冰形成的促进剂喷射原件、内置强化传质的搅拌原件和外覆环壁降温爆冷系统。
在具体实施过程中,生产水经由快速合成可燃冰装置31的顶部均匀喷洒进入,同时,将甲烷气体由甲烷气体储存装置23由快速合成可燃冰装置31底部引入,甲烷气体经过快速合成可燃冰装置31底部的微气泡流体处理原件分隔,然后与顶部喷洒的生产水充分混合,并且通过壁面喷洒一定量的形成可燃冰的促进剂,当可燃冰合成装置内的压力增加至易于快速形成可燃冰的压力(12-20MPa)后,然后降低装置内的温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰的合成。搅拌模式可采取连续搅拌或者序批式搅拌模式。
在具体实施过程中,当合成大量的可燃冰浆液后,将其从快速合成可燃冰装置31引入可燃冰压缩及造型装置32,然后改变装置内的温度压力条件使其保证可燃冰能稳定存在,首先降低装置内的温度在-15至-10℃之间,然后降低装置内的压力,使装置内的压力范围为0.15-2MPa,可燃冰浆液在装置内被过滤掉多余的水分,然后根据需要压将过滤后的可燃冰浆液缩成固态的球状或块状高品质可燃冰成品。
更具体的,所述可燃冰存储装置4为8个耐压罐组成的可船载且方便装卸进行车运的储罐;所述储罐顶部安装有压力计和内置有温度传感器;用于实时监测耐压罐的温度和压力。
更具体的,所述耐压罐顶部均设置有导管,所述导管最终合成一个管路与一个不装可燃冰的耐压罐相连。
在具体实施过程中,待固态高品质可燃冰合成后,装入可燃冰存储装置4,在每个可燃冰储罐的顶部预留少部分气体空间,并且将每个可燃冰储罐通过引流导管与一个与可燃冰储罐相同的空罐连接。该空罐用来收集储运过程中不慎造成可燃冰分解释放的甲烷气体。在整个输运过程中,应实时监测关注可燃冰储罐的温度和压力值变化,并且在可燃冰储罐内喷洒一定量的可燃冰稳定剂。
在具体实施过程中,本发明提出的通过在快速合成可燃冰装置31内增压、降温、喷洒促进剂、增强传质速率等方法快速合成可燃冰,然后将可燃冰浆液进行降温、减压、压缩成型,可实现可燃冰在较低的压力环境进行长距离运输,相比液化天然气运输,有效的避免了超低温(低于-20℃)运输的高成本支出,并且降低了液化天然气输运过程中的爆炸风险。
在具体实施过程中,本发明提出了在可燃冰储罐中喷洒一定量的可燃冰稳定剂,可有效的增强固态可燃冰的稳定性,避免在输运过程中由于外部环境扰动,造成可燃冰分解。并且本发明提出了用一个空的气体储存罐与可燃冰储存罐相连接,搜集储运过程中不慎分解释放的甲烷气体,既避免了气体释放增压带来的安全风险,又收集了气体至终端使用,可避免整个储运过程对环境的恶劣应县,实现生态化储运。
实施例2
更具体的,在实施例1的基础上,如图2所示,提供一种海洋可燃冰开采气体固态化储运的方法,包括以下步骤:
S1:将开采平台1分离出来的生产水和甲烷气体分别通过管路系统5接入可燃冰合成预处理系统2;
S2:可燃冰合成预处理系统2对于生产水和甲烷气体进行预处理后进行存储,由管路系统5接入甲烷气体固态化装置3中;
S3:甲烷气体固态化装置3将输入的甲烷气体与生产水充分混合,通过壁面喷洒一定量的形成可燃冰的促进剂;当甲烷气体固态化装置3内的压力增加至20MPa后,降低装置内的温度至4℃并进行搅拌,进行可燃冰的合成;
S4:当合成大量的可燃冰浆液后,控制甲烷气体固态化装置3的温度为-15℃,压力为1MPa,根据需要将可燃冰浆液缩成固态的球状或块状可燃冰成品;
S5:待固态的可燃冰成品合成后,装入可燃冰存储装置4并对装置内的温度和压力进行实时监测,为后续运输提供环境保障。
更具体的,在所述步骤S2中,所述可燃冰合成预处理系统2通过生产水存储装置21对生产水进行存储静置,设置在生产水存储装置21外壁的保温层和水浴制冷夹套将生产水存储装置21的温度控制在25℃以下;然后通过生产水处理装置22利用水处理工艺将生产水进行多级过滤分离和膜渗透,以得到满足快速形成可燃冰的水质条件的生产水;
所述可燃冰合成预处理系统2通过甲烷气体存储装置23对从开采平台1得到的甲烷气体进行缓冲与储存。
更具体的,在所述步骤S3中,甲烷气体固态化装置3包括快速合成可燃冰装置31和可燃冰压缩及造型装置32;其中:
所述快速合成可燃冰装置31包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温爆冷系统;
所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降温爆冷系统均与所述控制电路电性连接,由控制电路进行控制;
生产水经由快速合成可燃冰装置31顶部的喷洒原件均匀喷洒进入快速合成可燃冰装置31内,同时,将甲烷气体存储装置23中将甲烷气体从快速合成可燃冰装置31下部引入,甲烷气体经过快速合成可燃冰装置31底部的微气泡流体处理原件分隔后,与顶部喷洒的生产水充分混合,并且通过促进剂喷射原件喷洒一定量的形成可燃冰的促进剂;当快速合成可燃冰装置31内的压力增加至20MPa后,降低装置内温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰合成;
在所述步骤S4中,当合成大量的可燃冰浆液后,将可燃冰浆液引入可燃冰压缩及造型装置32中,通过将可燃冰压缩及造型装置32温度设置为-15℃,压力不超过1MPa,可燃冰浆液中多余的水分将被过滤,然后根据需要将过滤后的可燃冰浆液压缩成固态的球状或块状可燃冰成品。
更具体的,在所述步骤S5中,待固态可燃冰合成后,装入可燃冰存储装置4中,所述可燃冰存储装置4为多个耐压罐组成的储罐;在每个耐压罐的顶部预留少部分气体空间,并且将每个储罐通过导管与一个不装可燃冰的耐压罐相连,防 止甲烷气体泄漏;
在输运过程中,对装置内的温度和压力进行实时监测,为后续运输提供环境保障。
在具体实施过程中,首先将从开采平台1分离出来的生产水和甲烷气体分别通过管线接入生产水储存装置21和甲烷气体储存装置23;生产水储存装置21中要充分保证低温环境,以保留生产水再形成可燃冰的“记忆效应”,生产水经过储存装置经过短暂静置后,进入生产水处理装置22。为了充分的保留生产水的记忆效应,静置时间以不超过24小时为宜。通过生产水处理装置22的沉淀和膜分离去除生产水里面的杂质,然后经由快速合成可燃冰装置31的顶部均匀喷洒进入快速合成可燃冰装置31。同时,将甲烷气体从甲烷气体储存装置23从快速合成可燃冰装置31的下部引入,甲烷气体经过快速合成可燃冰装置31底部的微气泡处理原件分隔,然后与顶部喷洒的生产水充分混合,并且通过壁面喷洒一定量的形成可燃冰的促进剂十二烷基磺酸钠,当可燃冰合成装置内的压力增加至20MPa后,降低装置内的温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰的合成,搅拌模式采取序批式搅拌模式。当监测到合成大量的可燃冰浆液后,将其从快速合成可燃冰装置31引入可燃冰压缩及造型装置32,然后降低装置内的温度为-15℃,且降低装置内的压力至1MPa,可燃冰浆液在装置内被过滤掉多余的水分,然后根据需要压将过滤后的可燃冰浆液缩成固态的球状或块状高品质可燃冰成品。待固态高品质可燃冰合成后,装入7个可燃冰储存罐,在每个可燃冰储罐的顶部预留少部分气体空间,并且将每个可燃冰储罐通过引流导管与一个与剩下的一个空罐连接。该空罐用来收集储运过程中不慎造成可燃冰分解释放的甲烷气体。在整个输运过程中,应实时监测关注可燃冰储罐的温度和压力值变化,并且在可燃冰储罐内喷洒一定量的可燃冰稳定剂羟乙基纤维素。
在具体实施过程中,本发明提供的一种海洋可燃冰开采气体固态化储运的系统与方法,利用生产水的记忆性特点进行可燃冰的合成,同时,通过甲烷气体固态化装置进行可燃冰的合成、降温、减压、压缩成型,实现了可燃冰在较低的压力环境进行长距离运输,有效的避免了超低温运输的高成本支出,并且降低了液化天然气输运过程中的爆炸风险。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明 的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种海洋可燃冰开采气体固态化储运的系统,其特征在于,包括开采平台(1)、可燃冰合成预处理系统(2)、甲烷气体固态化装置(3)、可燃冰存储装置(4)和管路系统(5);其中:
    所述开采平台(1)用于将深海可燃冰分解得到甲烷气体和生产水,生产水和甲烷气体经由所述管路系统(5)输送到所述可燃冰合成预处理系统(2)中;
    所述可燃冰合成预处理系统(2)对生产水和甲烷气体进行预处理,并经由所述管路系统(5)输送到所述甲烷气体固态化装置(3)中;
    所述甲烷气体固态化装置(3)用于可燃冰的合成、压缩固态化以及造型处理,并将处理后的可燃冰输送到所述可燃冰存储装置(4)中进行存储运输。
  2. 根据权利要求1所述的一种海洋可燃冰开采气体固态化储运的系统,其特征在于,所述可燃冰合成预处理系统(2)包括生产水存储装置(21)、生产水处理装置(22)和甲烷气体存储装置(23);其中:
    所述生产水存储装置(21)将生产水从所述开采平台(1)通过所述管路系统(5)接出并进行存储,其与所述生产水处理装置(22)通过所述管路系统(5)连通,在管路系统(5)上设置有控制阀;
    所述生产水处理装置(22)用于对存储后的生产水进行多级过滤分离和膜渗透处理,并将处理完成的生产水接入所述甲烷气体固态化装置(3)中;
    所述甲烷气体存储装置(23)将甲烷气体从所述开采平台(1)通过所述管路系统(5)接出并进行存储,其输出口与所述甲烷气体固态化装置(3)连接。
  3. 根据权利要求2所述的一种海洋可燃冰开采气体固态化储运的系统,其特征在于,所述生产水存储装置(21)外壁包裹有保温层和水浴制冷夹套。
  4. 根据权利要求2所述的一种海洋可燃冰开采气体固态化储运的系统,其特征在于,所述甲烷气体固态化装置(3)包括快速合成可燃冰装置(31)和可燃冰压缩及造型装置(32);其中:
    所述快速合成可燃冰装置(31)包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温保冷系统;
    所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降 温保冷系统均与所述控制电路电性连接,由控制电路进行控制;
    所述快速合成可燃冰装置(31)通过所述管路系统(5)与所述可燃冰压缩及造型装置(32)连接;
    所述可燃冰压缩及造型装置(32)用于将所述快速合成可燃冰装置(31)中合成的可燃冰浆液进行过滤,根据需要形成高密度的块状或者球状可燃冰,由所述管路系统(5)传输至所述可燃冰存储装置(4)。
  5. 根据权利要求4所述的一种海洋可燃冰开采气体固态化储运的系统,其特征在于,所述可燃冰存储装置(4)为多个耐压罐组成的储罐;所述储罐顶部安装有压力计和内置有温度传感器;用于实时监测耐压罐的温度和压力。
  6. 根据权利要求5所述的一种海洋可燃冰开采气体固态化储运的系统,其特征在于,所述耐压罐顶部均设置有导管,所述导管最终合成一个管路与一个不装可燃冰的耐压罐相连。
  7. 一种海洋可燃冰开采气体固态化储运的方法,其特征在于,包括以下步骤:
    S1:将开采平台(1)分离出来的生产水和甲烷气体分别通过管路系统(5)接入可燃冰合成预处理系统(2);
    S2:可燃冰合成预处理系统(2)对于生产水和甲烷气体进行预处理后进行存储,由管路系统(5)接入甲烷气体固态化装置(3)中;
    S3:甲烷气体固态化装置(3)将输入的甲烷气体与生产水充分混合,通过壁面喷洒一定量的形成可燃冰的促进剂;当甲烷气体固态化装置(3)内的压力增加至设定压力12-20MPa后,降低装置内的温度至4℃并进行搅拌,进行可燃冰的合成;
    S4:当合成大量的可燃冰浆液后,降低甲烷气体固态化装置(3)的温度至-15℃至-10℃,然后降低装置内的压力使其压力不超过2MPa,根据需要将可燃冰浆液缩成固态的球状或块状可燃冰成品;
    S5:待固态的可燃冰成品合成后,装入可燃冰存储装置(4)并对装置内的温度和压力进行实时监测,为后续运输提供环境保障。
  8. 根据权利要求7所述的一种海洋可燃冰开采气体固态化储运的方法,其特征在于,在所述步骤S2中,所述可燃冰合成预处理系统(2)通过生产水存储装置(21)对生产水进行存储静置,设置在生产水存储装置(21)外壁的保温层和水浴制冷夹套将生产水存储装置(21)的温度控制在25℃以下;然后通过生产 水处理装置(22)利用水处理工艺将生产水进行多级过滤分离和膜渗透,以得到满足能快速形成可燃冰需要的水质的生产水;
    所述可燃冰合成预处理系统(2)通过甲烷气体存储装置(23)对从开采平台(1)得到的甲烷气体进行缓冲与储存。
  9. 根据权利要求8所述的一种海洋可燃冰开采气体固态化储运的方法,其特征在于,在所述步骤S3中,甲烷气体固态化装置(3)包括快速合成可燃冰装置(31)和可燃冰压缩及造型装置(32);其中:
    所述快速合成可燃冰装置(31)包括腔体和控制电路,所述腔体内壁顶部设置有喷洒原件,内壁底部设置有微气泡流体处理原件,内壁中部设置有促进剂喷射原件和搅拌原件;所述腔体外壁覆盖有环壁降温爆冷系统;
    所述喷洒原件、微气泡流体处理原件、促进剂喷射原件、搅拌原件和环壁降温爆冷系统均与所述控制电路电性连接,由控制电路进行控制;
    生产水经由快速合成可燃冰装置(31)顶部的喷洒原件均匀喷洒进入快速合成快速合成可燃冰装置(31)内,同时,将甲烷气体存储装置(23)中将甲烷气体从快速合成可燃冰装置的(31)下部引入,甲烷气体经过快速合成可燃冰装置可燃冰(31)底部的微气泡流体处理原件分隔后,与顶部喷洒的生产水充分混合,并且通过促进剂喷射原件喷洒一定量的形成可燃冰的促进剂;当快速合成可燃冰装置(31)内的压力增加至设定压力12-20MPa后,降低装置内温度至4℃,然后启动搅拌原件,增强传质速率,进行可燃冰合成;
    在所述步骤S4中,当合成大量的可燃冰浆液后,将可燃冰浆液引入可燃冰压缩及造型装置(32)中,然后降低可燃冰压缩及造型装置(32)的温度,保证其温度范围在-15-10℃,然后降低装置内的压力,使其压力范围在0.15-2MPa,随后过滤去除可燃冰浆液中多余的水分,然后根据需要将过滤后的可燃冰浆液压缩成固态的球状或块状可燃冰成品。
  10. 根据权利要求9所述的一种海洋可燃冰开采气体固态化储运的方法,其特征在于,在所述步骤S5中,待固态可燃冰合成后,装入可燃冰存储装置(4)中,所述可燃冰存储装置(4)为多个耐压罐组成的储罐;在每个耐压罐的顶部预留少部分气体空间,并且将每个储罐通过导管与一个不装可燃冰的耐压罐相连,防止甲烷气体泄露;
    在输运过程中,对装置内的温度和压力进行实时监测,为后续运输提供环境 保障。
PCT/CN2021/073885 2020-05-28 2021-01-27 一种海洋可燃冰开采气体固态化储运的系统与方法 WO2021238290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010465898.5 2020-05-28
CN202010465898.5A CN111577213B (zh) 2020-05-28 2020-05-28 一种海洋可燃冰开采气体固态化储运的系统与方法

Publications (2)

Publication Number Publication Date
WO2021238290A1 true WO2021238290A1 (zh) 2021-12-02
WO2021238290A9 WO2021238290A9 (zh) 2022-10-20

Family

ID=72125651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073885 WO2021238290A1 (zh) 2020-05-28 2021-01-27 一种海洋可燃冰开采气体固态化储运的系统与方法

Country Status (2)

Country Link
CN (1) CN111577213B (zh)
WO (1) WO2021238290A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111577213B (zh) * 2020-05-28 2021-12-24 广东工业大学 一种海洋可燃冰开采气体固态化储运的系统与方法
CN112709552B (zh) * 2020-10-19 2022-03-08 青岛海洋地质研究所 基于水合物法开发海洋天然气水合物系统的装置及方法
CN113187444A (zh) * 2021-05-08 2021-07-30 王智刚 深海可燃冰的开采及安全储运技术

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214079A1 (en) * 2004-02-17 2005-09-29 Lovie Peter M Use of hydrate slurry for transport of associated gas
US20070145810A1 (en) * 2005-12-23 2007-06-28 Charles Wendland Gas hydrate material recovery apparatus
CN102269322A (zh) * 2011-01-20 2011-12-07 于雅群 一种水合物集存与装箱设备
CN103510926A (zh) * 2013-04-15 2014-01-15 李贤明 一种海底可燃冰的开采方法及系统
CN106761588A (zh) * 2016-12-23 2017-05-31 吉林大学 射流破碎、反循环输送浆态海洋天然气水合物的开采方法及开采装置
CN111577213A (zh) * 2020-05-28 2020-08-25 广东工业大学 一种海洋可燃冰开采气体固态化储运的系统与方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
CN1690360B (zh) * 2004-04-21 2010-05-12 中国科学院过程工程研究所 一种海底天然气水合物的开采方法及系统
CN100449117C (zh) * 2005-10-31 2009-01-07 中国科学院广州能源研究所 海底天然气水合物开采与储运方法及装置
CN104278975B (zh) * 2013-07-06 2016-12-28 宁波市成大机械研究所 海床可燃冰的收集办法及系统
CN108192684B (zh) * 2018-02-08 2024-04-09 青岛海洋地质研究所 块状可燃冰的连续制备装置及其制备方法
CN110184107A (zh) * 2019-05-29 2019-08-30 大庆东油睿佳石油科技有限公司 一种基于水合物法储运天然气的系统及使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214079A1 (en) * 2004-02-17 2005-09-29 Lovie Peter M Use of hydrate slurry for transport of associated gas
US20070145810A1 (en) * 2005-12-23 2007-06-28 Charles Wendland Gas hydrate material recovery apparatus
CN102269322A (zh) * 2011-01-20 2011-12-07 于雅群 一种水合物集存与装箱设备
CN103510926A (zh) * 2013-04-15 2014-01-15 李贤明 一种海底可燃冰的开采方法及系统
CN106761588A (zh) * 2016-12-23 2017-05-31 吉林大学 射流破碎、反循环输送浆态海洋天然气水合物的开采方法及开采装置
CN111577213A (zh) * 2020-05-28 2020-08-25 广东工业大学 一种海洋可燃冰开采气体固态化储运的系统与方法

Also Published As

Publication number Publication date
CN111577213B (zh) 2021-12-24
WO2021238290A9 (zh) 2022-10-20
CN111577213A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021238290A1 (zh) 一种海洋可燃冰开采气体固态化储运的系统与方法
TW438718B (en) Process for making gas hydrates
CN103343882B (zh) 一种液化天然气bog回收装置及回收方法
CN1380966A (zh) 天然气生产、运输、卸载、储存及向销售地分送的方法
JP2001507742A (ja) 水化物から気体を回収する方法
JPH11506073A (ja) 石油及びガスの輸送方法
KR101748784B1 (ko) 선박 lng벙커링용 기화 천연가스 처리장치
KR20130069749A (ko) 천연가스 하이드레이트 제조 장치 및 천연가스 하이드레이트 제조 방법
CN106061829A (zh) 用于处理蒸发气体的系统和方法
CN103343881B (zh) 一种回收bog的工艺及其装置
CN112228769A (zh) 一种基于防冻结控制的液甲烷深度过冷与加注系统及方法
CN101406763A (zh) 一种船运液货蒸发气体的再液化方法
JP2008248190A (ja) 混合ガスハイドレート製造方法
CN104390125B (zh) 液化天然气闪蒸气恒压回收方法及设备
CN106837338A (zh) 一种深海天然气水合物开采控制方法
KR20160128081A (ko) Lpg 운반선의 연료공급 시스템 및 연료공급 방법
CN203248988U (zh) 一种lng接收站蒸发气零排放处理系统
KR102333068B1 (ko) 부유식 액화천연가스 생산저장하역시설
JP4105671B2 (ja) 天然ガスペレット輸送船
JP2003515084A (ja) 水和物の貯蔵及び輸送
CN110205173A (zh) 一种气体水合物喷射合成试验系统
CN211010763U (zh) 分气质存储的lng储罐
RU2374556C2 (ru) Система газоснабжения с пиковым регулированием газопотребления
KR101722598B1 (ko) 가스공정을 테스트하기 위한 가스공급 시스템 및 방법
CN103234117A (zh) 一种lng接收站低能耗蒸发气零排放处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813223

Country of ref document: EP

Kind code of ref document: A1