WO2021238170A1 - 二元水权核算交易方法及系统 - Google Patents

二元水权核算交易方法及系统 Download PDF

Info

Publication number
WO2021238170A1
WO2021238170A1 PCT/CN2020/136179 CN2020136179W WO2021238170A1 WO 2021238170 A1 WO2021238170 A1 WO 2021238170A1 CN 2020136179 W CN2020136179 W CN 2020136179W WO 2021238170 A1 WO2021238170 A1 WO 2021238170A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
sewage
intake
discharge
pollutant
Prior art date
Application number
PCT/CN2020/136179
Other languages
English (en)
French (fr)
Inventor
段凯
陈晓宏
刘丙军
赵铜铁钢
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2021238170A1 publication Critical patent/WO2021238170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the present invention relates to the technical field of water resources management, and more specifically, to a dual water right accounting method and system.
  • the right to use water resources can be divided into two types: inside the river and outside the river: the right to use outside the river is the right to take the water. In addition to domestic water and other water types, it also has the right to freely transfer; the right to use the river mainly includes ecological water in the river and water for shipping and power generation.
  • the main representative body is usually the state.
  • Traditional definitions of water rights often only involve the definition of water quantity, while ignoring water quality, which is the most core characteristic of water resources. Therefore, in recent years, some scholars have also included water quality in the scope of water rights, proposing that water rights should include water environment rights, Drainage rights, etc. From the perspective of the value of water resources, the diversification of water quality and the value of water resources are closely linked.
  • a water body with good water quality has multiple functions and can bring greater economic benefits, while poor water quality has a single function or even loses. Negative value due to the original function. Therefore, pollutant discharge, like water withdrawal, is the use and weakening of the value of the water body in the region. It is essentially the use of the water environment capacity and water quality value, and it is part of the right to use water resources in the river.
  • the water rights transaction system is an important means to promote the optimal allocation of water resources. Its essence is a “quasi-market” method that combines administrative allocation and market allocation. It seeks a balance between efficiency and fairness by coordinating the allocation of responsibilities between the government and the market. balance.
  • the existing water rights transaction precedents mainly occur in water-poor areas, but with the rapid economic and social development, the traditionally rich water areas have gradually begun to highlight the scarcity of water resources, especially the rapid increase in total sewage discharge. The relative lag in the ability to control pollutants has caused increasingly severe water shortages.
  • the current water right accounting methods and management systems only focus on the optimal allocation of water withdrawal rights under certain water quality goals, resulting in a disconnect between water quantity and water quality management, and it is difficult to achieve coordinated management and control of water resources allocation and water pollution prevention.
  • the present invention overcomes the technical defects of the existing water right accounting method that has the disjointness of water quantity and quality in the calculation process, and it is difficult to realize the coordinated management and control of water resources allocation and water pollution prevention, and provides a dual water right accounting method and system.
  • the binary water rights accounting transaction method includes the following steps:
  • S1 Obtain the water function zoning, administrative divisions, and distribution of river basin water systems in the survey area, and establish a generalized model of water intake and sewage discharge for the regional water resources system;
  • S2 Obtain hydrometeorological conditions, available water resources, current status of water resources development and utilization, and current water environment in the survey area, and establish water balance equations and pollutant balance equations for the main flow and water quality control sections in the survey area;
  • S5 Establish the functional relationship between the newly added/reduced water intake and the reduced/newly increased pollutant discharge under certain incoming water conditions and water quality control targets, and calculate the value standard and control range of the water user's transaction of water withdrawal and pollutant discharge rights.
  • the step S1 is specifically: the generalization model for water intake and sewage discharge is composed of several water intake and sewage discharge units, and two influencing factors of water intake and sewage are added to the natural water quantity and quality balance equation, based on the basic principles of conservation of matter and migration and transformation of pollutants.
  • the quantitative relationship between the amount of water taken and the amount of pollutant discharge specifically set:
  • the amount of water and its pollutant concentration upstream into the water intake and sewage unit are R i and C i ; the local self-produced water and its pollutant concentration in the water intake and sewage unit are R p and C p ; the amount of water taken and the quality of the water in the water intake and sewage unit concentration q w, C w, comprising a quantity of water to agricultural, industrial, domestic water and river ecological water; the amount of sewage water within a period and its average concentration blowdown unit R e, C e, including centralized network discharged through the city Domestic sewage and industrial wastewater; the amount of water flowing out of the downstream water intake and sewage unit and its average pollutant concentration R o , C o .
  • the water balance equation includes the natural water balance equation and the artificial water balance equation, which is specifically expressed as:
  • ⁇ R is the change in tank storage and various natural losses
  • q c is the amount of water consumption
  • K is the comprehensive degradation coefficient of pollutants in the system.
  • step S3 because the water use structure and the sewage structure usually do not fluctuate too much within a certain period of time, the change is slow and gradual.
  • R e ⁇ q w
  • is the comprehensive emission coefficient under a certain emission standard.
  • ⁇ q is the system water intake increment.
  • the change in R o (1- ⁇ ) The term ⁇ q can be ignored; when C w ⁇ C e is satisfied, the increase in the water intake will cause the corresponding C o Increase of;
  • the ecological water demand in the river is considered according to a certain proportion of the output of the water intake and sewage unit, that is, the ecological water demand in the river is taken as:
  • step S5 if the amount of water taken has reached the maximum amount of water taken, if water is to be taken continuously, in order to ensure that the water quality target of the outbound water meets C o ⁇ C t , the comprehensive pollution discharge coefficient ⁇ needs to be reduced;
  • the small value is ⁇ , then the pollutant conservation equation should be:
  • the value range of the total water withdrawal and total sewage discharge in the unit can be used as the total elastic total of water withdrawal and discharge Data support for volume control and water rights transaction pricing.
  • Binary water rights accounting and trading system including:
  • the generalization model establishment module for water intake and sewage discharge is used to obtain the water function zoning, administrative division, and distribution of river basins in the survey area and complete the establishment of the generalization model for water intake and sewage discharge;
  • the water balance equation and pollutant balance equation establishment module are used to obtain hydrometeorological conditions, water resources availability, water resources development and utilization status and water environment status in the survey area, and complete the water volume for the main flow and water quality control sections in the survey area.
  • the comprehensive pollutant discharge coefficient calculation module is used to obtain and calculate the characteristic values of the water consumption rate, pollutant discharge coefficient, and pollutant degradation coefficient in the survey area, and calculate the comprehensive pollutant discharge coefficient;
  • the current water withdrawal calculation module is used to calculate the current water withdrawal based on the sewage discharge standards and water environmental quality standards of the survey area;
  • the new allocable water intake calculation module under sewage conditions is used to calculate the new allottable water intake under sewage conditions by combining the sewage discharge standards of the survey area and the water environment quality standards;
  • the calculation module for the maximum total water withdrawal is used to calculate the maximum total water withdrawal by combining the sewage discharge standards and water environmental quality standards of the survey area;
  • the functional relationship establishment module is used to establish the functional relationship between the newly added/reduced water intake and the reduced/newly increased pollutant discharge under certain incoming water conditions and water quality control targets, and calculates the value standard and regulation of the water users' water withdrawal and emission rights transactions Scope.
  • the amount of water and its pollutant concentration upstream into the water intake and sewage unit are R i and C i ; the local self-produced water and its pollutant concentration in the water intake and sewage unit are R p and C p ; the amount of water taken and the quality of the water in the water intake and sewage unit concentration q w, C w, comprising a quantity of water to agricultural, industrial, domestic water and river ecological water; the amount of sewage water within a period and its average concentration blowdown unit R e, C e, including centralized network discharged through the city Domestic sewage and industrial wastewater; the amount of water flowing out of the water intake and sewage unit downstream and the average pollutant concentration R o , C o .
  • the established water balance equation includes the natural water balance equation and the artificial water balance equation, which are specifically expressed as:
  • ⁇ R is the change in tank storage and various natural losses
  • q c is the water consumption
  • K is the comprehensive degradation coefficient of pollutants in the system
  • the current water intake calculation module completes the calculation of the current water intake and sewage conditions that can be allocated for the newly added water intake and the maximum total water intake , Specifically:
  • ⁇ q is the system water intake increment.
  • the change in R o (1- ⁇ ) The term ⁇ q can be ignored; when C w ⁇ C e is satisfied, the increase in the water intake will cause the corresponding C o Increase of;
  • the ecological water demand in the river is considered according to a certain proportion of the output of the water intake and sewage unit, that is, the ecological water demand in the river is taken as:
  • the value range of the total water withdrawal and total sewage discharge in the unit can be used as the total elastic total of water withdrawal and discharge Data support for volume control and water rights transaction pricing.
  • this method establishes a dynamic functional relationship between the total amount of water taken out of the river and the total amount of pollutant discharge in the river by constructing a regional water resource and water environment simulation model, and proposes a flexible total control based on water quantity and quality.
  • the dual water rights accounting and trading method and system provided a new water rights accounting method and water resources management ideas in order to alleviate the widespread water shortage problem in southern my country.
  • the present invention provides a binary water rights accounting and trading method and system, which innovatively incorporates the simulation of water quantity and quality in the survey area into the calculation of water rights value, and can influence the usable amount of regional water resources and the water environment by identifying the process of human water intake and pollutant discharge.
  • the impact of quality reflects the conversion relationship between allocable water withdrawal and sewage discharge under certain incoming water conditions and water quality management objectives, and provides a way for scientifically measuring the value of water withdrawal and pollution rights trading, and realizing the coordinated management and control of total water withdrawal and total sewage discharge. A simple and effective solution.
  • Figure 1 is a flow chart of the method of the present invention
  • Figure 2 is a schematic diagram of the water intake and sewage unit model.
  • the dual water rights accounting transaction method includes the following steps:
  • S1 Obtain the water function zoning, administrative divisions, and distribution of river basin water systems in the survey area, and establish a generalized model of water intake and sewage discharge for the regional water resources system;
  • S2 Obtain hydrometeorological conditions, available water resources, current status of water resources development and utilization, and current water environment in the survey area, and establish water balance equations and pollutant balance equations for the main flow and water quality control sections in the survey area;
  • S5 Establish the functional relationship between the newly added/reduced water intake and the reduced/newly increased pollutant discharge under certain incoming water conditions and water quality control targets, and calculate the value standard and control range of the water user's transaction of water withdrawal and pollutant discharge rights.
  • the step S1 is specifically: the generalized model of water intake and sewage discharge is composed of several water intake and sewage discharge units, and the natural water quantity and quality balance equation is added with two influencing factors, water intake and sewage discharge, according to the conservation of matter Research on the quantitative relationship between water intake and pollutant discharge based on the basic principles of the migration and transformation of pollutants.
  • the specific settings are as follows:
  • the amount of water and its pollutant concentration upstream into the water intake and sewage unit are R i and C i ; the local self-produced water and its pollutant concentration in the water intake and sewage unit are R p and C p ; the amount of water taken and the quality of the water in the water intake and sewage unit concentration q w, C w, the quantity of water including agricultural, industrial, domestic (under the old covering statistical tertiary industry) with water and riverside ecological water; water discharge cell within a period emissions and average concentration of R e, C e , Mainly including the urban domestic sewage and industrial wastewater that are discharged through the pipe network; the amount of water flowing out of the downstream water intake and sewage unit and the average pollutant concentration R o , C o .
  • the water balance equation includes a natural water balance equation and an artificial water balance equation, which is specifically expressed as:
  • ⁇ R is the change in tank storage and various natural losses
  • q c is the water consumption
  • the time scale of the model depends on the level of detail of the data. It can be studied in years, months, or flood seasons and non-flood seasons, and in the research period It can be approximated that the change of water quality is stable, and the corresponding steady-state model can be obtained after the boundary conditions are determined.
  • the pollutant balance equation in the unit system is:
  • K is the comprehensive degradation coefficient of pollutants in the system.
  • step S3 since the water use structure and the sewage structure usually do not fluctuate too much within a certain period of time, the change is slow and gradual, combining the current idea of dual control of the total sewage discharge and the sewage concentration.
  • ⁇ q is the system water intake increment.
  • the change in R o (1- ⁇ ) The term ⁇ q can be ignored; when C w ⁇ C e is satisfied, the increase in the water intake will cause the corresponding C o Increase of;
  • the ecological water demand in the river is considered (including the water demand for maintaining ecological balance and meeting the shipping function), that is, the ecological water demand in the river is taken as:
  • step S5 if the amount of water withdrawn has reached the maximum amount of water withdrawn, if it is to continue to withdraw water, in order to ensure that the water quality target of the outbound water meets C o ⁇ C t , it is necessary to reduce the comprehensive pollutant discharge coefficient ⁇ ; set ⁇ The decrease value of is ⁇ , then the pollutant conservation equation should be:
  • the value range of the total water withdrawal and total sewage discharge in the unit can be used as the total elastic total of water withdrawal and discharge Data support for volume control and water rights transaction pricing.
  • this method innovatively incorporates regional water quantity and quality simulation into the calculation of water rights value, and can reflect certain incoming water conditions by identifying the impact of the human water intake and sewage process on the regional water resources and water environment quality. It provides a simple and effective solution for scientifically measuring the transaction value of water withdrawal rights and pollution emission rights, and realizing the coordinated control of total water withdrawal and total pollution discharge.
  • a binary water rights accounting and trading system including:
  • the generalization model establishment module for water intake and sewage discharge is used to obtain the water function zoning, administrative division, and distribution of river basins in the survey area and complete the establishment of the generalization model for water intake and sewage discharge;
  • the water balance equation and pollutant balance equation establishment module are used to obtain hydrometeorological conditions, water resources availability, water resources development and utilization status and water environment status in the survey area, and complete the water volume for the main flow and water quality control sections in the survey area.
  • the comprehensive pollutant discharge coefficient calculation module is used to obtain and calculate the characteristic values of the water consumption rate, pollutant discharge coefficient, and pollutant degradation coefficient in the survey area, and calculate the comprehensive pollutant discharge coefficient;
  • the current water withdrawal calculation module is used to calculate the current water withdrawal based on the sewage discharge standards and water environmental quality standards of the survey area;
  • the new allocable water intake calculation module under sewage conditions is used to calculate the new allottable water intake under sewage conditions by combining the sewage discharge standards of the survey area and the water environment quality standards;
  • the calculation module for the maximum total water withdrawal is used to calculate the maximum total water withdrawal by combining the sewage discharge standards and water environmental quality standards of the survey area;
  • the functional relationship establishment module is used to establish the functional relationship between the newly added/reduced water intake and the reduced/newly increased pollutant discharge under certain incoming water conditions and water quality control targets, and calculates the value standard and regulation of the water users' water withdrawal and emission rights transactions Scope.
  • water intake and sewage generalization model establishment module several water intake and sewage units are combined into a water intake and sewage generalization model, and two influencing factors of water intake and sewage are added to the natural water quantity and quality balance equation, based on material conservation and The basic principle of the migration and transformation of pollutants is to study the quantitative relationship between the amount of water taken and the amount of pollutants discharged.
  • the specific settings are:
  • the amount of water and its pollutant concentration upstream into the water intake and sewage unit are R i and C i ; the local self-produced water and its pollutant concentration in the water intake and sewage unit are R p and C p ; the amount of water and the quality of the water taken in the water intake and sewage unit concentration q w, C w, comprising a quantity of water to agricultural, industrial, domestic water and river ecological water; the amount of sewage water within a period and its average concentration blowdown unit R e, C e, including centralized network discharged through the city Domestic sewage and industrial wastewater; the amount of water flowing out of the water intake and sewage unit downstream and the average pollutant concentration R o , C o .
  • the established water balance equation includes the natural water balance equation and the artificial water balance equation, which are specifically expressed as:
  • ⁇ R is the change in tank storage and various natural losses
  • q c is the water consumption
  • K is the comprehensive degradation coefficient of pollutants in the system
  • the current water intake calculation module completes the distribution of the new water intake and the maximum total water intake under the current water intake and sewage conditions.
  • the calculation of is specifically:
  • ⁇ q is the system water intake increment.
  • the change in R o (1- ⁇ ) The term ⁇ q can be ignored; when C w ⁇ C e is satisfied, the increase in the water intake will cause the corresponding C o Increase of;
  • the ecological water demand in the river is considered according to a certain proportion of the output of the water intake and sewage unit, that is, the ecological water demand in the river is taken as:
  • the value range of the total water withdrawal and total sewage discharge in the unit can be used as the total elastic total of water withdrawal and discharge Data support for volume control and water rights transaction pricing.
  • the system established a dynamic functional relationship between the total amount of water taken out of the river and the total amount of pollutant discharge in the river through the construction of a regional water resources and water environment simulation model, and proposed a flexible total based on water quantity and water quality.
  • the dual water rights accounting and trading method and system based on quantity control provide a new water rights accounting method and water resources management ideas in order to alleviate the widespread water shortage problem in southern my country.

Abstract

一种二元水权核算交易方法及系统,通过构建区域水资源与水环境模拟模型,建立了河道外取水总量控制与河道内排污总量控制之间的动态函数关系,将区域水量水质模拟纳入水权价值的核算中,能够通过辨识人类取水排污过程对区域水资源可利用量和水环境质量的影响,反映一定来水条件和水质管理目标下可分配取水量与排污量的转换关系,为科学衡量取水权与排污权交易价值、实现取水总量与排污总量的协同管控提供一种简单有效的解决办法。

Description

二元水权核算交易方法及系统 技术领域
本发明涉及水资源管理技术领域,更具体的,涉及一种二元水权核算方法及系统。
背景技术
水资源的使用权可分为河道内与河道外两种:河道外的使用权即取水权,在获得取水权后水权持有者具有充分的使用与获益权,除了国家限制交易的基本生活用水等用水类别之外,也具有自由转让权;河道内的使用权则主要包括河道内生态用水及航运、发电用水等,其主要代表主体通常为国家。传统的水权定义往往只涉及到针对水量的界定,而忽视了水质这一水资源最为核心的特质,所以近年来也有学者将水质纳入水权的考虑范围,提出水权应包含水环境权、排水权等。若从水资源价值的角度来看,水质与水资源的价值多元性是紧密联系在一起的,水质优良的水体功能多样,能带来更大的经济效益,而水质差则功能单一,甚至失去原有功能而产生负价值。因此,排污同取水一样是对区域内水体价值的使用和削弱,其实质上是对水环境容量和水质价值的使用,属于河道内水资源使用权的一部分。
水权交易制度是促进水资源优化配置的重要手段,其实质是一种行政配置与市场配置相结合的“准市场”方式,通过协调政府与市场间的职责分配,以寻求效率与公平间的平衡。已有的水权交易先例主要发生在水资源匮乏地区,但随着经济社会的迅速发展,传统意义上的丰水地区也开始逐渐凸现出水资源的稀缺性,尤其是排污总量的急剧增长与污染物治理能力的相对滞后造成了日益严峻的水质性缺水。然而,现在的水权核算方法及管理体系仅仅侧重于一定水质目标下的取水权优化配置,造成水量与水质的管理相脱节,难以实现水资源配置与水污染防治的协调管控。
发明内容
本发明为克服现有的水权核算方法在计算过程中存在水量水质脱节,难以实现水资源配置与水污染防治的协调管控的技术缺陷,提供一种二元水权核算方法 及系统。
为解决上述技术问题,本发明的技术方案如下:
二元水权核算交易方法,包括以下步骤:
S1:获取调查区域内的水功能区划、行政区划及流域水系分布,建立区域水资源系统的取水排污概化模型;
S2:获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,建立水量平衡方程与污染物平衡方程;
S3:获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值,得到综合排污系数;
S4:结合调查区域的污水排放标准与水环境质量标准,计算现状取水、排污条件下的可分配新增取水量与最大取水总量;
S5:建立在一定来水条件与水质控制目标下新增/削减取水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
其中,所述步骤S1具体为:取水排污概化模型由若干个取水排污单元组成,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o,至此,完成取水排污概化模型的建立。
其中,在所述步骤S2中,水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:
自然水量平衡方程:
R i+R p=R o+ΔR    (1)
人工水量平衡方程:
R e=q w-q c    (2)
其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;假设取水排污概化 模型水质的变化是稳定的,在确定了边界条件后即可得到相应的稳态模型;综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,取水排污单元内的污染物平衡方程为:
R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o    (3)
式中K为系统内污染物综合降解系数。
其中,在所述步骤S3中,由于在一定时间内用水结构与排污结构通常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标准下的综合排污系数。
其中,在所述步骤S4中,当取水排污单元内取水量增大后,污染物守衡方程为:
R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o  (4)
式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
A=q wC w+(1+K)R oC o-R iC i-R pC p    (5)
若令输出水的水质目标为C o≤C t
A t=q wC w+(1+K)R oC t-R iC i-R pC p    (6)
则得到:
Figure PCTCN2020136179-appb-000001
相应的现状综合排污系数之下的最大可取水量即为:
q max=q w+Δq max    (8)
另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量,即河道内生态需水取为:
R s=ηR o    (9)
因此,考虑生态约束与水质约束的最大取水量应为:
q max=min{(1-η)R o,q w+Δq max}    (10)
至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算。
其中,在所述步骤S5中,若取水量已达到了最大取水量,若要继续取水, 为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减小值为Δα,则此时污染物守衡方程应为:
(α-Δα)(q max+Δq)C e=ΔqC w+A    (11)
同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
Figure PCTCN2020136179-appb-000002
在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
Figure PCTCN2020136179-appb-000003
结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
二元水权核算交易系统,包括:
取水排污概化模型建立模块,用于获取调查区域内的水功能区划、行政区划及流域水系分布并完成取水排污概化模型的建立;
水量平衡方程与污染物平衡方程建立模块,用于获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,完成水量平衡方程与污染物平衡方程的建立;
综合排污系数计算模块,用于获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值并计算得到综合排污系数;
现状取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算现状取水量;
排污条件下的可分配新增取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算排污条件下的可分配新增取水量;
最大取水总量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算最大取水总量;
函数关系建立模块,用于建立在一定来水条件与水质控制目标下新增/削减取 水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
其中,在所述取水排污概化模型建立模块中,将若干个取水排污单元组成取水排污概化模型,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o
其中,在水量平衡方程与污染物平衡方程建立模块中,建立的水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:
自然水量平衡方程:
R i+R p=R o+ΔR
人工水量平衡方程:
R e=q w-q c
其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;假设取水排污概化模型水质的变化是稳定的,在确定了边界条件后即可得到相应的稳态模型;再综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,建立取水排污单元内的污染物平衡方程,具体为:
R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o
式中K为系统内污染物综合降解系数;
在所述综合排污系数计算模块中,由于在一定时间内用水结构与排污结构通常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标准下的综合排污系数。
其中,所述现状取水量计算模块、排污条件下的可分配新增取水量计算模块和最大取水总量计算模块完成现状取水、排污条件下的可分配新增取水量与最大 取水总量的计算,具体为:
当取水排污单元内取水量增大后,污染物守衡方程为:
R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o
式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
A=q wC w+(1+K)R oC o-R iC i-R pC p
若令输出水的水质目标为C o≤C t
A t=q wC w+(1+K)R oC t-R iC i-R pC p
则得到:
Figure PCTCN2020136179-appb-000004
相应的现状综合排污系数之下的最大可取水量即为:
q max=q w+Δq max
另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量,即河道内生态需水取为:
R s=ηR o
因此,考虑生态约束与水质约束的最大取水量应为:
q max=min{(1-η)R o,q w+Δq max}
至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算;
在所述函数关系建立模块中,核算用水户进行取水权与排污权交易的价值标准与调控范围,具体过程为:
若取水量已达到了最大取水量,若要继续取水,为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减小值为Δα,则此时污染物守衡方程应为:
(α-Δα)(q max+Δq)C e=ΔqC w+A
同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
Figure PCTCN2020136179-appb-000005
在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
Figure PCTCN2020136179-appb-000006
结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
上述方案中,本方法通过构建区域水资源与水环境模拟模型,建立了河道外取水总量控制与河道内排污总量控制之间的动态函数关系,提出了一种基于水量水质弹性总量控制的二元水权核算交易方法及系统,为缓解我国南方地区普遍存在的水质性缺水问题,提供了一种新的水权核算方法与水资源管理思路。
与现有技术相比,本发明技术方案的有益效果是:
本发明提供的一种二元水权核算交易方法及系统,创新性地将调查区域水量水质模拟纳入水权价值的核算中,能够通过辨识人类取水排污过程对区域水资源可利用量和水环境质量的影响,反映了一定来水条件和水质管理目标下可分配取水量与排污量的转换关系,为科学衡量取水权与排污权交易价值、实现取水总量与排污总量的协同管控提供一种简单有效的解决办法。
附图说明
图1为本发明所述方法流程图;
图2为取水排污单元模型示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1所示,二元水权核算交易方法,包括以下步骤:
S1:获取调查区域内的水功能区划、行政区划及流域水系分布,建立区域水资源系统的取水排污概化模型;
S2:获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,建立水量平衡方程与污染物平衡方程;
S3:获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值,得到综合排污系数;
S4:结合调查区域的污水排放标准与水环境质量标准,计算现状取水、排污条件下的可分配新增取水量与最大取水总量;
S5:建立在一定来水条件与水质控制目标下新增/削减取水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
更具体的,如图2所示,所述步骤S1具体为:取水排污概化模型由若干个取水排污单元组成,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活(按照旧统计口径涵盖第三产业)用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o,至此,完成取水排污概化模型的建立。
更具体的,在所述步骤S2中,水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:
自然水量平衡方程:
R i+R p=R o+ΔR    (1)
人工水量平衡方程:
R e=q w-q c    (2)
其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;模型的时间尺度根据资料的详细程度而定,可以年、月或分汛期与非汛期进行研究,而在研究的时段内可以近似认为水质的变化是稳定的,在确定了边界条件后即可得到相应的稳 态模型。综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,单元系统内的污染物平衡方程为:
R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o    (3)
式中K为系统内污染物综合降解系数。
更具体的,在所述步骤S3中,由于在一定时间内用水结构与排污结构通常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标准下的综合排污系数。
其中,在所述步骤S4中,当取水排污单元内取水量增大后,污染物守衡方程为:
R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o  (4)
式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
A=q wC w+(1+K)R oC o-R iC i-R pC p    (5)
若令输出水的水质目标为C o≤C t
A t=q wC w+(1+K)R oC t-R iC i-R pC p    (6)
则得到:
Figure PCTCN2020136179-appb-000007
相应的现状综合排污系数之下的最大可取水量即为:
q max=q w+Δq max    (8)
另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量(包括维持生态平衡、满足航运功能等的需水),即河道内生态需水取为:
R s=ηR o    (9)
因此,考虑生态约束与水质约束的最大取水量应为:
q max=min{(1-η)R o,q w+Δq max}    (10)
至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算。
更具体的,在所述步骤S5中,若取水量已达到了最大取水量,若要继续取水,为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减 小值为Δα,则此时污染物守衡方程应为:
(α-Δα)(q max+Δq)C e=ΔqC w+A    (11)
同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
Figure PCTCN2020136179-appb-000008
在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
Figure PCTCN2020136179-appb-000009
结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
在具体实施过程中,本方法创新性地将区域水量水质模拟纳入水权价值的核算中,能够通过辨识人类取水排污过程对区域水资源可利用量和水环境质量的影响,反映一定来水条件和水质管理目标下可分配取水量与排污量的转换关系,为科学衡量取水权与排污权交易价值、实现取水总量与排污总量的协同管控提供一种简单有效的解决办法。
实施例2
更具体的,在实施例1的基础上,提供一种二元水权核算交易系统,包括:
取水排污概化模型建立模块,用于获取调查区域内的水功能区划、行政区划及流域水系分布并完成取水排污概化模型的建立;
水量平衡方程与污染物平衡方程建立模块,用于获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,完成水量平衡方程与污染物平衡方程的建立;
综合排污系数计算模块,用于获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值并计算得到综合排污系数;
现状取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算现状取水量;
排污条件下的可分配新增取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算排污条件下的可分配新增取水量;
最大取水总量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算最大取水总量;
函数关系建立模块,用于建立在一定来水条件与水质控制目标下新增/削减取水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
更具体的,在所述取水排污概化模型建立模块中,将若干个取水排污单元组成取水排污概化模型,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o
更具体的,在水量平衡方程与污染物平衡方程建立模块中,建立的水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:
自然水量平衡方程:
R i+R p=R o+ΔR
人工水量平衡方程:
R e=q w-q c
其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;假设取水排污概化模型水质的变化是稳定的,在确定了边界条件后即可得到相应的稳态模型;再综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,建立取水排污单元内的污染物平衡方程,具体为:
R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o
式中K为系统内污染物综合降解系数;
在所述综合排污系数计算模块中,由于在一定时间内用水结构与排污结构通 常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标准下的综合排污系数。
更具体的,所述现状取水量计算模块、排污条件下的可分配新增取水量计算模块和最大取水总量计算模块完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算,具体为:
当取水排污单元内取水量增大后,污染物守衡方程为:
R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o
式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
A=q wC w+(1+K)R oC o-R iC i-R pC p
若令输出水的水质目标为C o≤C t
A t=q wC w+(1+K)R oC t-R iC i-R pC p
则得到:
Figure PCTCN2020136179-appb-000010
相应的现状综合排污系数之下的最大可取水量即为:
q max=q w+Δq max
另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量,即河道内生态需水取为:
R s=ηR o
因此,考虑生态约束与水质约束的最大取水量应为:
q max=min{(1-η)R o,q w+Δq max}
至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算;
在所述函数关系建立模块中,核算用水户进行取水权与排污权交易的价值标准与调控范围,具体过程为:
若取水量已达到了最大取水量,若要继续取水,为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减小值为Δα,则此时污染物守衡方程应为:
(α-Δα)(q max+Δq)C e=ΔqC w+A
同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
Figure PCTCN2020136179-appb-000011
在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
Figure PCTCN2020136179-appb-000012
结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
在具体实施过程中,本系统通过构建区域水资源与水环境模拟模型,建立了河道外取水总量控制与河道内排污总量控制之间的动态函数关系,提出了一种基于水量水质弹性总量控制的二元水权核算交易方法及系统,为缓解我国南方地区普遍存在的水质性缺水问题,提供了一种新的水权核算方法与水资源管理思路。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 二元水权核算交易方法,其特征在于,包括以下步骤:
    S1:获取调查区域内的水功能区划、行政区划及流域水系分布,建立区域水资源系统的取水排污概化模型;
    S2:获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,建立水量平衡方程与污染物平衡方程;
    S3:获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值,得到综合排污系数;
    S4:结合调查区域的污水排放标准与水环境质量标准,计算现状取水、排污条件下的可分配新增取水量与最大取水总量;
    S5:建立在一定来水条件与水质控制目标下新增/削减取水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
  2. 根据权利要求1所述的二元水权核算交易方法,其特征在于,所述步骤S1具体为:取水排污概化模型由若干个取水排污单元组成,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
    上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o,至此,完成取水排污概化模型的建立。
  3. 根据权利要求2所示的二元水权核算交易方法,其特征在于,在所述步骤S2中,水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:自然水量平衡方程:
    R i+R p=R o+ΔR  (1)
    人工水量平衡方程:
    R e=q w-q c  (2) 其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;假设取水排污概化模型水质的变化是稳定的,在确定了边界条件后即可得到相应的稳态模型;综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,取水排污单元内的污染物平衡方程为:
    R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o  (3)式中K为系统内污染物综合降解系数。
  4. 根据权利要求3所述的二元水权核算交易方法,其特征在于,在所述步骤S3中,由于在一定时间内用水结构与排污结构通常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标准下的综合排污系数。
  5. 根据权利要求4所述的二元水权核算交易方法,其特征在于,在所述步骤S4中,当取水排污单元内取水量增大后,污染物守衡方程为:
    R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o  (4)
    式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
    A=q wC w+(1+K)R oC o-R iC i-R pC p  (5)
    若令输出水的水质目标为C o≤C t
    A t=q wC w+(1+K)R oC t-R iC i-R pC p  (6)
    则得到:
    Figure PCTCN2020136179-appb-100001
    相应的现状综合排污系数之下的最大可取水量即为:
    q max=q w+Δq max  (8)
    另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量,即河道内生态需水取为:
    R s=ηR o  (9)
    因此,考虑生态约束与水质约束的最大取水量应为:
    q max=min{(1-η)R o,q w+Δq max}(10)
    至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算。
  6. 根据权利要求5所述的二元水权核算交易方法,其特征在于,在所述步骤S5中,若取水量已达到了最大取水量,若要继续取水,为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减小值为Δα,则此时污染物守衡方程应为:
    (α-Δα)(q max+Δq)C e=ΔqC w+A  (11)
    同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
    Figure PCTCN2020136179-appb-100002
    在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
    Figure PCTCN2020136179-appb-100003
    结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
  7. 二元水权核算交易系统,其特征在于,包括:
    取水排污概化模型建立模块,用于获取调查区域内的水功能区划、行政区划及流域水系分布并完成取水排污概化模型的建立;
    水量平衡方程与污染物平衡方程建立模块,用于获取调查区域内水文气象条件、水资源可利用量、水资源开发利用现状与水环境现状,针对调查区域的主要流量与水质控制断面,完成水量平衡方程与污染物平衡方程的建立;
    综合排污系数计算模块,用于获取并测算调查区域内耗水率、排污系数、污染物降解系数特征值并计算得到综合排污系数;
    现状取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算现状取水量;
    排污条件下的可分配新增取水量计算模块,用于结合调查区域的污水排放标准与水环境质量标准计算排污条件下的可分配新增取水量;
    最大取水总量计算模块,用于结合调查区域的污水排放标准与水环境质量标 准计算最大取水总量;
    函数关系建立模块,用于建立在一定来水条件与水质控制目标下新增/削减取水量与削减/新增排污量的函数关系,核算用水户进行取水权与排污权交易的价值标准与调控范围。
  8. 根据权利要求7所述的二元水权核算交易系统,其特征在于,在所述取水排污概化模型建立模块中,将若干个取水排污单元组成取水排污概化模型,在自然的水量水质平衡方程中加入取水与排污两种影响因子,依据物质守恒和污染物质迁移转化的基本原理对取水量与排污量的量化关系进行研究,具体设:
    上游进入取水排污单元的水量及其污染物浓度为R i和C i;取水排污单元内的本地自产水量及其污染物浓度为R p和C p;取水排污单元内的取水量及取水水质浓度为q w,C w,取水量包括农业、工业、生活用水及河道外生态用水;时段内取水排污单元的排污量及其平均浓度R e,C e,主要包括通过管网集中排放的城市生活污水与工业废水;下游流出取水排污单元的水量及其平均污染物浓度R o、C o
  9. 根据权利要求8所述的二元水权核算交易系统,其特征在于,在水量平衡方程与污染物平衡方程建立模块中,建立的水量平衡方程包括自然水量平衡方程和人工水量平衡方程,具体表示为:
    自然水量平衡方程:
    R i+R p=R o+ΔR
    人工水量平衡方程:
    R e=q w-q c
    其中,ΔR为槽蓄变化量及各种自然损失,q c为耗水量;假设取水排污概化模型水质的变化是稳定的,在确定了边界条件后即可得到相应的稳态模型;再综合考虑到污染物迁移转化过程中的各个源汇项及物质守衡的基本原理,建立取水排污单元内的污染物平衡方程,具体为:
    R iC i+R pC p+R eC e=q wC w+R oC o+KR oC o
    式中K为系统内污染物综合降解系数;
    在所述综合排污系数计算模块中,由于在一定时间内用水结构与排污结构通常不会有太大的波动,其变化是缓慢、渐进的,结合目前排污总量与排污浓度双控制的思路,假设R e与q w存在一定的比例关系,即令R e=αq w,α为一定排污标 准下的综合排污系数。
  10. 根据权利要求9所述的二元水权核算交易系统,其特征在于,所述现状取水量计算模块、排污条件下的可分配新增取水量计算模块和最大取水总量计算模块完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算,具体为:
    当取水排污单元内取水量增大后,污染物守衡方程为:
    R iC i+R pC p+α(q w+Δq)C e=(q w+Δq)C w+(1+K)[R o-(1-α)Δq]C o
    式中Δq为系统取水增量,当径流量远大于取水量时R o的变化量(1-α)Δq项可忽略;当满足C w<αC e时,取水量的增大会引起C o相应的增大;令:
    A=q wC w+(1+K)R oC o-R iC i-R pC p
    若令输出水的水质目标为C o≤C t
    A t=q wC w+(1+K)R oC t-R iC i-R pC p
    则得到:
    Figure PCTCN2020136179-appb-100004
    相应的现状综合排污系数之下的最大可取水量即为:
    q max=q w+Δq max
    另外,按取水排污单元输出水量的一定比例考虑河道内生态需水量,即河道内生态需水取为:
    R s=ηR o
    因此,考虑生态约束与水质约束的最大取水量应为:
    q max=min{(1-η)R o,q w+Δq max}
    至此,完成现状取水、排污条件下的可分配新增取水量与最大取水总量的计算;
    在所述函数关系建立模块中,核算用水户进行取水权与排污权交易的价值标准与调控范围,具体过程为:
    若取水量已达到了最大取水量,若要继续取水,为保证出境水的水质目标满足C o≤C t,需要减小综合排污系数α;设α的减小值为Δα,则此时污染物守衡方程应为:
    (α-Δα)(q max+Δq)C e=ΔqC w+A
    同样令输出水量的水质目标为C o≤C t,则得Δα与Δq之间的关系式:
    Figure PCTCN2020136179-appb-100005
    在一定的排污浓度标准之下,α的减小意味着排污量的削减,所以在选定现状基准值后可进一步得出一定的来水条件和水质控制目标下取水增量Δq与排污削减量ΔR e间的函数关系:
    Figure PCTCN2020136179-appb-100006
    结合现状水平年资料即可得出单元内取水总量与排污总量的取值范围,以及达到最大取水量后排污削减量与取水增量间的转换关系,以作为取水量与排污量弹性总量控制以及水权交易定价的数据支撑。
PCT/CN2020/136179 2020-05-29 2020-12-14 二元水权核算交易方法及系统 WO2021238170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010475618.9A CN111709618B (zh) 2020-05-29 2020-05-29 二元水权核算交易方法及系统
CN202010475618.9 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021238170A1 true WO2021238170A1 (zh) 2021-12-02

Family

ID=72538402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136179 WO2021238170A1 (zh) 2020-05-29 2020-12-14 二元水权核算交易方法及系统

Country Status (2)

Country Link
CN (1) CN111709618B (zh)
WO (1) WO2021238170A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115859598A (zh) * 2022-11-24 2023-03-28 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 基于水质年均值限值的河流水环境容量核算方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709618B (zh) * 2020-05-29 2023-05-02 中山大学 二元水权核算交易方法及系统
CN112966919B (zh) * 2021-03-01 2023-11-14 武汉大学 一种基于条件价值风险的用水与排污冲突协调方法
CN115906687B (zh) * 2022-10-27 2023-08-22 天津大学 一种工业生活取水退水的河流环境影响的定量分析和评估方法
CN115796439B (zh) * 2022-10-27 2023-08-22 天津大学 一种改变灌区工程取水量对河流水环境影响的分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842713A (zh) * 2018-07-04 2018-11-20 黄河勘测规划设计有限公司 多沙河流水质水量一体化配置与调度方法及其系统
CN109685685A (zh) * 2018-12-28 2019-04-26 中国水利水电科学研究院 一种基于宏观配置方案的水资源多目标均衡调度方法
CN110689283A (zh) * 2019-10-15 2020-01-14 中国水利水电科学研究院 基于地下水模型的河系与渠系交错系统供水模拟方法及装置
US20200024832A1 (en) * 2016-07-29 2020-01-23 Veolia Environnement Ve Tool for managing multiple water resources
CN111709618A (zh) * 2020-05-29 2020-09-25 中山大学 二元水权核算交易方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750448B (zh) * 2012-06-11 2015-04-08 中国水利水电科学研究院 一种基于水功能区的水量水质调控方法
CN106557029A (zh) * 2016-11-11 2017-04-05 中国科学院生态环境研究中心 一种黑臭河流水污染控制与治理的方法
CN109389251A (zh) * 2018-10-30 2019-02-26 江苏省环境科学研究院 基于控制断面水质达标的污染物总量优化分配方法
CN109598428B (zh) * 2018-11-23 2023-05-02 北京建筑大学 一种基于行政单元和水系的污染物削减分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200024832A1 (en) * 2016-07-29 2020-01-23 Veolia Environnement Ve Tool for managing multiple water resources
CN108842713A (zh) * 2018-07-04 2018-11-20 黄河勘测规划设计有限公司 多沙河流水质水量一体化配置与调度方法及其系统
CN109685685A (zh) * 2018-12-28 2019-04-26 中国水利水电科学研究院 一种基于宏观配置方案的水资源多目标均衡调度方法
CN110689283A (zh) * 2019-10-15 2020-01-14 中国水利水电科学研究院 基于地下水模型的河系与渠系交错系统供水模拟方法及装置
CN111709618A (zh) * 2020-05-29 2020-09-25 中山大学 二元水权核算交易方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, BINGJUN ET AL.: "Water Resources Allocation Model Based on the Dual-Control of Water Quantity and Quality", ADVANCES IN WATER SCIENCE, vol. 20, no. 4, 31 July 2009 (2009-07-31), pages 513 - 517, XP055871521 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115859598A (zh) * 2022-11-24 2023-03-28 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 基于水质年均值限值的河流水环境容量核算方法及系统
CN115859598B (zh) * 2022-11-24 2023-08-25 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 基于水质年均值限值的河流水环境容量核算方法及系统

Also Published As

Publication number Publication date
CN111709618A (zh) 2020-09-25
CN111709618B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2021238170A1 (zh) 二元水权核算交易方法及系统
WO2021196552A1 (zh) 一种基于互馈关系解析的梯级水库风险评估方法及系统
WO2021109848A1 (zh) 一种考虑提升量的生态流量确定方法
CN102750448A (zh) 一种基于水功能区的水量水质调控方法
Gao et al. Cost-benefit analysis and technical efficiency evaluation of full-scale membrane bioreactors for wastewater treatment using economic approaches
CN109598408B (zh) 一种兼顾用水公平性和重要性的年水量调度计划编制方法
CN106126923B (zh) 流域梯级龙头水电站效益补偿方法及系统
Jia et al. Pinch analysis for targeting desalinated water price subsidy
Song et al. Rule-based water resource allocation in the Central Guizhou Province, China
CN116246388A (zh) 一种按匹配系数分摊计量的装置及方法
Guo et al. Does industrial agglomeration promote high‐quality development of the Yellow River Basin in China? Empirical test from the moderating effect of environmental regulation
Yan et al. Evaluation and prediction of water resources carrying capacity in Jiangsu Province, China
Huang et al. An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities
Wan et al. Derivation of tri-level programming model for multi-reservoir optimal operation in inter-basin transfer-diversion-supply project
Yang et al. Developing a comprehensive evaluation method for Interconnected River System Network assessment: A case study in Tangxun Lake group
CN111915065A (zh) 一种河流枯水期多目标动态水资源优化配置系统及方法
Hu et al. Total control-based unified allocation model for allowable basin water withdrawal and sewage discharge
Wang et al. Resolving trans-jurisdictional water conflicts by the Nash bargaining method: a case study in Zhangweinan canal basin in north China
Bai et al. Allocating total emission pollutant control based on water environmental carrying capacity: model establishment and case study
CN110378805B (zh) 梯级水电站发电调度分级调峰方法
CN115809562A (zh) 一种确定小流域引水沟渠规模方案的方法
CN108681821A (zh) 一种跨流域引水工程受水水库最优调度决策方法
CN107423874A (zh) 一种城市用地增量指标确定方法、服务器及系统
Zhang et al. Allocation of water resources in the lower Yellow river based on ecological footprint
CN112966902A (zh) 一种兼顾区域公平和污染源治理差异的水污染负荷分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20937522

Country of ref document: EP

Kind code of ref document: A1