WO2021238096A1 - 一种基于多个钢捆的自动焊接标牌方法及装置 - Google Patents

一种基于多个钢捆的自动焊接标牌方法及装置 Download PDF

Info

Publication number
WO2021238096A1
WO2021238096A1 PCT/CN2020/128644 CN2020128644W WO2021238096A1 WO 2021238096 A1 WO2021238096 A1 WO 2021238096A1 CN 2020128644 W CN2020128644 W CN 2020128644W WO 2021238096 A1 WO2021238096 A1 WO 2021238096A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
welded
welding
face
points
Prior art date
Application number
PCT/CN2020/128644
Other languages
English (en)
French (fr)
Inventor
孙茂杰
李福存
孙敬忠
钱静洁
朱正清
苏循亮
周鼎
汪光明
Original Assignee
江苏金恒信息科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金恒信息科技股份有限公司 filed Critical 江苏金恒信息科技股份有限公司
Publication of WO2021238096A1 publication Critical patent/WO2021238096A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume

Definitions

  • This application relates to the field of image processing technology, and in particular to a method and device for automatically welding signs based on multiple steel bundles.
  • the process of automatic welding of signs generally includes: when the current steel bale is transported to the position to be welded, the system controls the binocular camera to collect the end face image of the steel bale, through image processing, selects the welding point of the sign, and then according to the three-dimensional coordinates of the welding point of the sign, The telescopic welding gun is controlled to weld the signs of the current steel bundle. After the welding is completed, the system controls the binocular camera to collect the image of the end face of the next steel bundle, and performs welding point selection and welding work.
  • this application discloses an automatic method based on multiple steel bundles through the following embodiments. Method and device for welding signs.
  • the first aspect of the present application discloses a method for automatically welding signs based on a plurality of steel bundles, and the method includes:
  • Sign welding is performed according to the set of points to be welded for each steel bundle.
  • the obtaining the end surface contours of all the steel materials corresponding to each steel bundle according to the coordinates of the center point of the end surface contour of each steel and the outer contour of each steel bundle includes:
  • the center point of the end surface profile of each steel is divided into the inside of the outer profile curve to which it belongs, and the end profile of all the corresponding steels in each steel bundle is obtained.
  • the acquiring the set of points to be welded for each steel bundle according to the end surface contours of all the steel materials corresponding to each steel bundle includes:
  • the target steel bundle is any one of the steel bundles to be welded
  • the X value represents the horizontal distance between the center point of the steel end face profile and the origin of the coordinates
  • the Y value represents the vertical distance between the center point of the steel end profile profile and the origin of the coordinates
  • multiple points to be welded are selected from the center points of all the steel end face contours of the target steel bundle, where the Z value represents the steel end face contour
  • multiple sets of points to be welded of the target steel bundle are generated, wherein the number of points to be welded contained in each set of points to be welded is the same as the number of the welding sub-areas, and each set of points to be welded Different welding points in the welding point concentration correspond to different welding sub-regions, and the distance between the different welding points in each welding point concentration is not less than the size of the welding label.
  • the welding of signs according to the set of points to be welded of each steel bundle includes:
  • the welding signs are welded to the end surface of the target steel bundle according to the points to be welded in the set of points to be welded in sequence.
  • welding the signs to be welded to the end surface of the target steel bundle according to the points to be welded in the set of points to be welded in sequence includes:
  • the multiple points to be welded are selected from the center points of all steel end surface contours of the target steel bundle according to the Z value of the center point coordinates of all steel end surface contours in the target steel bundle, including:
  • the reference plane being the plane on which the steel end face corresponding to the center point with the smallest Z value in the target sub-region is located, and the target sub-region is any welding sub-region;
  • the setting of the end face welding area of the target steel bundle according to the X value and the Y value of the center point coordinates of the end face contours of all steels in the target steel bundle includes:
  • the rectangular area is set as the end face welding area of the target steel bundle.
  • said dividing the end face welding area of the target steel bundle into a plurality of welding sub-areas includes:
  • the end face welding area is equally divided into a plurality of welding sub-areas according to the area.
  • extracting the end surface contour of each steel from the end surface image of the steel bundle to be welded, and obtaining the center point coordinates of the end surface contour of each steel includes:
  • first center point set includes the center points of all end face contours in the first end face contour set
  • second center point set includes the second end face The center point of all the end face contours in the contour set
  • the coordinates of the center point of the contour of the end face of each steel material are obtained.
  • the second aspect of the present application discloses an automatic welding sign device based on multiple steel bales.
  • the device is applied to the method of automatically welding signs based on multiple steel bales as described in the first aspect of the present application.
  • the device includes :
  • An end face image acquisition module for acquiring an end face image of the steel bundle to be welded through a binocular camera, and the steel bundle to be welded contains at least one steel bundle;
  • the end face contour extraction module is used to extract the end face contour of each steel from the end face image of the steel bundle to be welded, and obtain the center point coordinates of the end face contour of each steel material, and the coordinate origin is located in the end face image of the steel bundle to be welded Upper left corner of
  • the outer contour extraction module is used to perform expansion processing on the image of the end face of the steel bundle to be welded, and extract the outer contour of each steel bundle;
  • the end surface contour dividing module is used to obtain the end surface contours of all the steel materials corresponding to each steel bundle according to the center point coordinates of the end surface contour of each steel and the outer contour of each steel bundle;
  • the point set to be welded acquisition module is used to obtain the point set to be welded of each steel bundle according to the profile of the end faces of all the steel materials corresponding to each steel bundle;
  • the welding module is used for welding the signs according to the set of points to be welded of each steel bundle.
  • the end face contour dividing module includes:
  • the outer contour curve obtaining unit is used to obtain the outer contour curve of each steel bundle
  • the dividing unit is used to divide the center point of the end surface profile of each steel into the inside of the corresponding outer contour curve according to the ray method, and obtain the end surface contours of all the corresponding steels in each steel bundle.
  • the acquisition module for the set of points to be welded includes:
  • the welding area setting unit is used to set the end face welding area of the target steel bundle according to the X and Y values of the center point coordinates of the end face contours of all steels in the target steel bundle, and the target steel bundle is the steel to be welded Any one of the steel bundles in the bundle, wherein the X value represents the horizontal distance between the center point of the steel end surface profile and the origin of the coordinates, and the Y value represents the vertical distance between the center point of the steel end profile and the origin of the coordinates;
  • a welding area dividing unit configured to divide the end face welding area of the target steel bundle into a plurality of welding sub-areas, and the number of the welding sub-areas is the same as the number of signs to be welded on the target steel bundle;
  • the to-be-welded point screening unit is used to screen out multiple to-be-welded points from the center points of all steel end face contours of the target steel bundle according to the Z value of the center point coordinates of all steel end face contours in the target steel bundle, wherein, The Z value represents the linear distance between the center point of the profile of the steel end face and the binocular camera;
  • the to-be-welded point set generating unit is configured to generate multiple to-be-welded point sets of the target steel bundle according to the multiple to-be-welded points, wherein the number of to-be-welded points contained in each to-be-welded point set is the same as the number of points to be welded
  • the number of sub-regions is the same, each of the different to-be-welded points in the to-be-welded cluster corresponds to different welding sub-regions, and the distance between the different to-be-welded points in each to-be-welded cluster is not less than the size of the to-be-welded sign.
  • the welding module includes:
  • the Z value summation unit is used to obtain the sum of the Z values of all the points to be welded in each point to be welded of the target steel bundle;
  • the priority level setting unit is used to set the priority levels of all point sets to be welded of the target steel bundle according to the order of the sum of Z values from small to large, wherein the priority of the point set to be welded with the smallest sum of Z values Highest level
  • the grade welding unit is used to weld the welded signs to the end surface of the target steel bundle starting from the set of points to be welded with the highest priority and sequentially according to the points to be welded that are concentrated on the points to be welded.
  • the grade welding unit includes:
  • the grade welding subunit is used to start from the set of points to be welded with the highest priority, obtain all the points to be welded in the set of points to be welded, and weld all the signs in sequence. During the welding process, if there is a sign welding failure, start from the sign. Use the points to be welded in the next priority level to be welded to continue welding.
  • the screening unit for points to be welded includes:
  • the reference surface setting subunit is used to set the reference surface of the target subregion, the reference surface being the plane of the steel end face corresponding to the center point with the smallest Z value in the target subregion, and the target subregion is Any welding sub-area;
  • the distance obtaining subunit is configured to obtain the minimum distance between the target end surface and the reference surface, where the target end surface is a plane on which any steel end surface in the target subregion is located;
  • the to-be-welded point determination subunit is used to determine whether the minimum distance does not exceed the length of the gun head of the telescopic welding gun, and if so, the center point of the steel end surface contour corresponding to the target end surface is set as the to-be-welded point.
  • the welding area setting unit includes:
  • the area division stator unit is used to extract the maximum X value, the minimum X value, the maximum Y value and the minimum Y value from the center point coordinates of all the steel end face contours in the target steel bundle, and define a rectangular area according to these four values ;
  • the welding area setting subunit is used to set the rectangular area as an end face welding area of the target steel bundle.
  • the welding area dividing unit includes:
  • the molecular unit such as area is used to divide the welding area of the end face into a plurality of welding sub-areas according to the area according to the number of the signs to be welded.
  • the end face contour extraction module includes:
  • the first end surface contour extraction unit is configured to extract the end surface contour of each steel material from the first end surface image to obtain a first end surface contour set, the first end surface image being collected by the first camera in the binocular camera;
  • the second end surface contour extraction unit is configured to extract the end surface contour of each steel material from the second end surface image to obtain a second end surface contour set, the second end surface image being collected by a second camera in the binocular camera;
  • the center point set acquiring unit is used to acquire a first center point set and a second center point set, wherein the first center point set includes the center points of all the end face contours in the first end face contour set, and the second center The point set includes the center points of all the end face contours in the second end face contour set;
  • the matching unit is configured to match all the center points in the first center point set and the second center point set, where if there is and only one distance between the center point and the target point in the second center point set If it does not exceed the preset threshold, the matching is successful, otherwise the matching fails, the target point is any center point in the first center point set, and the preset threshold is the minimum value of the radius of all steel end faces in the steel bundle to be welded ;
  • a target point set acquiring unit configured to use all successfully matched center points in the first center point set as a first target point set, and use all successfully matched center points in the second center point set as a second target point set;
  • the center point coordinate obtaining unit is configured to obtain the center point coordinates of the contour of each steel end face according to the first target point set and the second target point set.
  • the embodiments of the present application disclose a method and device for automatically welding signs based on multiple steel bundles.
  • the image of the end face of the steel bundle to be welded is first obtained, and the steel bundle to be welded contains at least one steel bundle; Extract the end profile of each steel from the end face image of the welded steel bale, and obtain the center point coordinates of the end profile of each steel; perform expansion processing on the end image of the welded steel bale to extract the outer profile of each steel bale; The coordinates of the center point of the steel end profile and the outer profile of each steel bundle are obtained to obtain the end profile of all steels corresponding to each steel bundle; according to the end profile of all steels corresponding to each steel bundle, the to-be-welded steel bundle is obtained Point set: Weld the signs according to the set of points to be welded for each steel bundle.
  • the outer contours of the overlapping steel bundles are extracted, and all the steels to which they belong are divided, so that the system can identify the respective contours of each steel bundle and all the corresponding steels.
  • FIG. 1 is a schematic diagram of the work flow of a method for automatically welding signs based on multiple steel bundles disclosed in an embodiment of the application;
  • FIG. 2 is a schematic diagram of a work flow for obtaining a set of points to be welded for each steel bundle in a method for automatically welding signs based on multiple steel bundles disclosed in an embodiment of the application;
  • FIG. 3 is a schematic diagram of setting the end face welding area in a method for automatically welding signs based on multiple steel bundles disclosed in an embodiment of the application;
  • FIG. 4 is a schematic diagram of dividing the welding area of the end face in a method for automatically welding signs based on multiple steel bundles disclosed in an embodiment of the application;
  • FIG. 5 is a schematic diagram of the work flow of performing sign welding according to the set of points to be welded for each steel bundle in a method for automatically welding signs based on multiple steel bundles disclosed in an embodiment of the application;
  • Fig. 6 is a schematic structural diagram of an automatic welding sign device based on multiple steel bundles disclosed in an embodiment of the application.
  • the first embodiment of the present application discloses a method for automatically welding signs based on multiple steel bundles. Referring to the schematic diagram of the work flow shown in FIG. 1, the method includes:
  • Step S101 Obtain an image of the end surface of the steel bundle to be welded, and the steel bundle to be welded includes at least one steel bundle.
  • the end face image of the steel bundle to be welded is collected by a binocular camera, the binocular camera includes a first camera and a second camera, and the collected end face image includes the first end face image collected by the first camera and the second camera The captured second end face image.
  • Step S102 Extract the end surface contour of each steel from the end surface image of the steel bundle to be welded, and obtain the center point coordinates of the end surface contour of each steel.
  • step S102 includes:
  • the end surface contour of each steel is extracted from the first end surface image to obtain a first end surface contour set, and the first end surface image is collected by the first camera in the binocular camera.
  • the end surface contour of each steel is extracted from the second end surface image to obtain a second end surface contour set, and the second end surface image is collected by a second camera in the binocular camera.
  • Approximate circle processing is performed on each end surface contour in the first end surface contour set and the second end surface contour set to obtain the center point of each end surface contour.
  • first center point set includes the center points of all end face contours in the first end face contour set
  • second center point set includes the second end face The center point of all the end face contours in the contour set.
  • the matching is successful, otherwise the matching fails, the target point is any center point in the first center point set, and the preset threshold value is the minimum value of the radius of all steel end faces in the steel bundle to be welded.
  • the minimum value of the steel end face radius can be obtained according to the steel production specifications and stored in the system in advance.
  • the coordinates of the center point of the contour of the end face of each steel material are obtained.
  • the X and Y axis coordinate values of the center point of the profile of each steel end face can be generated by using the principle of binocular matching, and the center of the profile of each steel end profile can be generated by using the principle of binocular distance measurement.
  • the coordinate value of the Z axis of the point that is, the Z value.
  • the X value indicates the horizontal position of the center point of the profile of the steel end face
  • the Y value indicates the vertical position of the center point of the profile of the steel end face
  • the Z value indicates the distance between the center point of the profile of the steel end face and the binocular camera.
  • the straight-line distance is the straight-line distance.
  • Step S103 performing expansion processing on the image of the end face of the steel bundle to be welded, and extracting the outer contour of each steel bundle.
  • Dilation processing can segment independent image elements.
  • the gap between each steel in the same steel bundle is relatively small and will be filled after expansion treatment.
  • the gap between different steel bundles is larger and will be retained after expansion treatment.
  • the end surface of each steel bundle A large curved surface will be formed, and based on this, the outer contour of each steel bundle can be extracted.
  • step S104 according to the coordinates of the center point of the end face profile of each steel and the outer profile of each steel bundle, the end face profiles of all the steel materials corresponding to each steel bundle are obtained.
  • the center point of the end surface contour of each steel is divided into the inside of the outer contour curve to which it belongs, and the end contours of all the corresponding steels in each steel bundle are obtained.
  • the ray method is a method for judging whether a certain point is in the area. For example, to determine whether a target point is located in a polygon, a horizontal scan line (ie, a ray) can be drawn from the target point to the left, and the number of intersections between this line segment and the boundary of the polygon can be calculated. If the number of intersections is odd, it can be determined that the target point is inside the polygon; if it is even, it can be determined that the target point is outside the polygon.
  • a horizontal scan line ie, a ray
  • the embodiment of the application uses the ray method to draw rays from the center point of the end surface contour of each steel in turn. By judging whether the number of intersections between the drawn ray and the outer contour of the steel bundle is odd or even, the center point of each steel end surface contour is divided To the inside of the outer contour curve to which it belongs, the end surface contours of all the corresponding steels in each steel bundle can be finally obtained.
  • Step S105 Obtain a set of points to be welded for each steel bundle according to the profile of the end faces of all the steel materials corresponding to each steel bundle.
  • Step S106 performing sign welding according to the set of points to be welded of each steel bundle.
  • An embodiment of the present application discloses an automatic welding signage method based on multiple steel bundles.
  • the image of the end face of the steel bundle to be welded is first obtained, and the steel bundle to be welded contains at least one steel bundle; Extract the end face contour of each steel from the end face image of the bundle, and obtain the center point coordinates of the end face contour of each steel; perform expansion processing on the end face image of the steel bundle to be welded, and extract the outer contour of each steel bundle; according to each steel end face
  • the coordinates of the center point of the contour and the outer contour of each steel bundle are used to obtain the end surface contours of all steels corresponding to each steel bundle; according to the end surface contours of all steels corresponding to each steel bundle, the set of points to be welded for each steel bundle is obtained ; Sign welding according to the set of points to be welded for each steel bundle.
  • the outer contours of the overlapping steel bundles are extracted, and all the steels to which they belong are divided, so that the system can identify the respective contours of each steel bundle and all the corresponding steels.
  • the acquiring the set of points to be welded for each steel bundle according to the end surface contours of all the steel materials corresponding to each steel bundle includes:
  • Step S201 Set the end face welding area of the target steel bundle according to the X and Y values of the center point coordinates of the end face contours of all steels in the target steel bundle, where the target steel bundle is any one of the steel bundles to be welded Steel truss.
  • the maximum X value, the minimum X value, the maximum Y value and the minimum Y value are extracted from the coordinates of the center point of the contour of all steel end faces, and are based on these four values. Delimit a rectangular area. Then the rectangular area is set as the end face welding area of the target steel bundle.
  • FIG. 3 shows the end image of the target steel bundle.
  • the origin of the coordinates is located at the upper left corner of the entire end image.
  • the shape represents the contours of all steel end faces in the target steel bundle, and the rectangular box is a rectangular area delineated according to the maximum X value, the minimum X value, the maximum Y value and the minimum Y value, that is, the end welding area of the target steel bundle.
  • step S202 the end face welding area of the target steel bundle is divided into a plurality of welding sub-areas, and the number of the welding sub-areas is the same as the number of signs to be welded on the target steel bundle.
  • dividing the end face welding area into a plurality of welding sub-areas includes:
  • the end face welding area is equally divided into a plurality of welding sub-areas according to the area.
  • Step S203 According to the Z value of the center point coordinates of all steel end face contours in the target steel bundle, multiple points to be welded are selected from the center points of all steel end face contours of the target steel bundle.
  • Step S204 generating a plurality of welding point sets of the target steel bundle according to the plurality of welding points, wherein the number of welding points included in each welding point set is the same as the number of the welding sub-regions,
  • the different points to be welded in each point to be welded are corresponding to different welding sub-regions, and the distance between the different points to be welded in each point to be welded is not less than the size of the sign to be welded.
  • each point to be welded comes from a different welding sub-area; 2) After the signs are hung on each spot to be welded, the signs will not block each other. After the combination is completed, each set of points to be welded meets the three requirements described in step S204. In this case, each set of points to be welded can be welded for all the signs of the target steel bundle. In order to reduce the amount of data processing, as an example, the number of points to be welded can be preset to four.
  • the distance between the different welding points in the target steel bundle to be welded is not less than the size of the welding signs, so that after the signs are hung on the welding points in the different welding sub-regions, the signs will not communicate with each other. Occlude.
  • a to-be-welded point is concentrated, the horizontal distance between the two to-be-welded points in the welding sub-area A and the welding sub-area B cannot be less than the length of the sign, two of the welding sub-area C and the welding sub-area D
  • the horizontal distance between the points to be welded cannot be less than the length of the sign; the vertical distance between the two points to be welded in the welding sub-area A and the welding sub-area C cannot be less than the width of the sign, the welding sub-area B and the welding sub-area D
  • the vertical distance between the two to-be-welded points in can not be less than the width of the sign; the straight-line distance between the two to-be-welded points in the welding sub-area A and the welding sub-area D cannot be less than the hypotenuse length of the sign, the welding sub-area
  • the straight line distance between the two to-be-welded points in B and the welding sub-area C cannot be less than the length of the hypotenuse of the sign.
  • the point to be welded with the smallest Z value can be selected from other welding sub-areas, and it is combined with other selected points to be welded Set of points to be welded.
  • a welding point with the smallest Z value can be selected from the other three welding sub-areas, and the welding point set can be formed with the remaining three selected welding points .
  • the remaining three selected points to be welded should be excluded.
  • the welding of signs according to the set of points to be welded of each steel bundle includes:
  • Step S501 Obtain the sum of the Z values of all the points to be welded in each point to be welded of the target steel bundle.
  • Step S502 Set the priority levels of all the point sets to be welded of the target steel bundle according to the descending order of the sum of the Z values, wherein the point set to be welded with the smallest sum of Z values has the highest priority.
  • step S503 starting from the set of points to be welded with the highest priority, the signs to be welded are welded to the end surface of the target steel bundle in sequence according to the points to be welded in the concentration of points to be welded.
  • the minimum sum of Z values means that in the process of welding all the signs of the target steel bundle, the moving distance of the gun head of the telescopic welding gun is the least, and the welding time is relatively the least.
  • the priority levels of all the point sets to be welded are set, and the point set to be welded with the smallest sum of Z values is set as the point set to be welded with the highest priority. So as to effectively reduce the actual welding time and improve the efficiency of welding.
  • welding the signs to be welded to the end surface of the target steel bundle in sequence according to the points to be welded in the concentration of points to be welded includes:
  • the first welding sub-area of the target steel bundle will be welded with a sign.
  • the second welding sub-area will be welded with a sign. If the welding fails, it will be discarded.
  • For the current point set to be welded use the point set to be welded with the next priority level, start from the second point to be welded, and perform sign welding on the second welding sub-area, and so on, until all signs are welded.
  • a binocular camera must be used to collect the image of the end face of the steel bundle to determine whether the sign is successfully welded.
  • image preprocessing such as grayscale, filtering and corrosion processing
  • the welding sequence of the different steel bundles needs to be determined according to the specifications of the signs currently provided for the telescopic welding gun. For example, if three steel bundles are stacked in a cone, the lower two steel bundles are a specification, and the upper steel bundle is b specification, and the telescopic welding gun is provided with a specification label on site, then the lower two steel bundles should be welded at this time. Similarly, if the telescopic welding gun is provided with a b-specification label, the upper steel bale should be welded at this time. In this way, the accuracy of welding can be ensured to prevent the problem of inconsistency between the label and the specifications of the steel bale.
  • the end surface of the steel bundle is uneven, and the end surface of some steels is recessed. If the depth of the recess is greater than the length of the gun head of the telescopic welding torch, the telescopic welding torch will be damaged when welding these steel end surfaces.
  • a plurality of waiting points are selected from the center points of all the steel end face contours of the target steel bundle.
  • Welding points including:
  • the reference plane of the target sub-region is the plane of the steel end face corresponding to the center point with the smallest Z value in the target sub-region (that is, the steel end face closest to the binocular camera), the target The sub-area is any welding sub-area.
  • the target end face is a plane on which any steel end face in the target sub-region is located.
  • the datum plane is the most protruding steel end surface of the target steel bundle end surface.
  • the second embodiment of the present application discloses an automatic welding signage device based on multiple steel bales.
  • the device is applied to the automatic welding signage method based on multiple steel bales as described in the first embodiment of the present application.
  • the device includes:
  • the end face image acquisition module 10 is used to acquire an end face image of the steel bundle to be welded, and the steel bundle to be welded contains at least one steel bundle.
  • the end surface contour extraction module 20 is used to extract the end surface contour of each steel from the end surface image of the steel bundle to be welded, and obtain the center point coordinates of the end surface contour of each steel.
  • the outer contour extraction module 30 is configured to perform expansion processing on the end face image of the steel bundle to be welded, and extract the outer contour of each steel bundle.
  • the end surface contour dividing module 40 is configured to obtain the end surface contours of all steel materials corresponding to each steel bundle according to the center point coordinates of the end surface contour of each steel and the outer contour of each steel bundle.
  • the to-be-welded point set obtaining module 50 is used to obtain the to-be-welded point set of each steel bundle according to the profile of the end faces of all the steel materials corresponding to each steel bundle.
  • the welding module 60 is used for welding the signs according to the set of points to be welded of each steel bundle.
  • the end face contour dividing module includes:
  • the outer contour curve obtaining unit is used to obtain the outer contour curve of each steel bundle.
  • the division unit is used to divide the center point of the end surface profile of each steel to the inside of the corresponding outer profile curve according to the ray method, and obtain the end profile of all the corresponding steels in each steel bundle.
  • the acquisition module of the set of points to be welded includes:
  • the welding area setting unit is used to set the end face welding area of the target steel bundle according to the X and Y values of the center point coordinates of the end face contours of all steels in the target steel bundle, and the target steel bundle is the steel to be welded Any steel bale in the bale.
  • the welding area dividing unit is used to divide the end face welding area of the target steel bundle into a plurality of welding sub-areas, and the number of the welding sub-areas is the same as the number of signs to be welded on the target steel bundle.
  • the to-be-welded point screening unit is used to screen out multiple to-be-welded points from the center points of all steel end face contours of the target steel bundle according to the Z value of the center point coordinates of all steel end face contours in the target steel bundle.
  • the to-be-welded point set generating unit is configured to generate multiple to-be-welded point sets of the target steel bundle according to the multiple to-be-welded points, wherein the number of to-be-welded points contained in each to-be-welded point set is the same as the number of points to be welded
  • the number of sub-regions is the same, each of the different to-be-welded points in the to-be-welded cluster corresponds to different welding sub-regions, and the distance between the different to-be-welded points in each to-be-welded cluster is not less than the size of the to-be-welded sign.
  • the welding module includes:
  • the Z value summation unit is used to obtain the sum of the Z values of all the points to be welded in each point to be welded of the target steel bundle.
  • the priority level setting unit is used to set the priority levels of all point sets to be welded of the target steel bundle according to the order of the sum of Z values from small to large, wherein the priority of the point set to be welded with the smallest sum of Z values The highest level.
  • the grade welding unit is used to weld the welded signs to the end surface of the target steel bundle starting from the set of points to be welded with the highest priority and sequentially according to the points to be welded that are concentrated on the points to be welded.
  • grade welding unit includes:
  • the grade welding subunit is used to start from the set of points to be welded with the highest priority, obtain all the points to be welded in the set of points to be welded, and weld all the signs in sequence. During the welding process, if there is a sign welding failure, start from the sign. Use the points to be welded in the next priority level to be welded to continue welding.
  • the screening unit for the points to be welded includes:
  • the reference surface setting subunit is used to set the reference surface of the target subregion, the reference surface being the plane of the steel end face corresponding to the center point with the smallest Z value in the target subregion, and the target subregion is Any welding sub-area.
  • the distance obtaining subunit is used to obtain the minimum distance between the target end surface and the reference surface, and the target end surface is a plane where any steel end surface in the target subregion is located.
  • the to-be-welded point determination subunit is used to determine whether the minimum distance does not exceed the length of the gun head of the telescopic welding gun, and if so, the center point of the steel end surface contour corresponding to the target end surface is set as the to-be-welded point.
  • the welding area setting unit includes:
  • the area division stator unit is used to extract the maximum X value, the minimum X value, the maximum Y value and the minimum Y value from the center point coordinates of all the steel end face contours in the target steel bundle, and define a rectangular area according to these four values .
  • the welding area setting subunit is used to set the rectangular area as an end face welding area of the target steel bundle.
  • the welding area dividing unit includes:
  • the area obtaining subunit is used to obtain the area of the end face welding area.
  • the molecular unit such as area is used to divide the welding area of the end face into a plurality of welding sub-areas according to the area according to the number of the signs to be welded.
  • the end face contour extraction module includes:
  • the first end surface contour extraction unit is used to extract the end surface contour of each steel material from the first end surface image to obtain a first end surface contour set, and the first end surface image is collected by the first camera in the binocular camera.
  • the second end surface contour extraction unit is used to extract the end surface contour of each steel material from the second end surface image to obtain a second end surface contour set, the second end surface image being collected by the second camera of the binocular camera.
  • the center point set acquiring unit is used to acquire a first center point set and a second center point set, wherein the first center point set includes the center points of all the end face contours in the first end face contour set, and the second center The point set includes the center points of all the end face contours in the second end face contour set.
  • the matching unit is configured to match all the center points in the first center point set and the second center point set, where if there is and only one distance between the center point and the target point in the second center point set If it does not exceed the preset threshold, the matching is successful, otherwise the matching fails, the target point is any center point in the first center point set, and the preset threshold is the minimum value of the radius of all steel end faces in the steel bundle to be welded .
  • a target point set acquiring unit configured to use all successfully matched center points in the first center point set as a first target point set, and use all successfully matched center points in the second center point set as a second target point set.
  • the center point coordinate obtaining unit is configured to obtain the center point coordinates of the contour of each steel end face according to the first target point set and the second target point set.

Abstract

在图像处理技术领域,公开了一种基于多个钢捆的自动焊接标牌方法及装置,该方法中,首先获取待焊接钢捆的端面图像(S101),从待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标(S102);对待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓(S103);根据每根钢材端面轮廓的中心点坐标及每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓(S104);根据每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集(S105);按照每个钢捆的待焊接点集进行标牌焊接(S106)。上述方法中,在选取标牌焊接点之前,对重叠交叉的钢捆的外轮廓进行提取,并划分各自所属的所有钢材,提高后续标牌焊接点的选取精度。

Description

一种基于多个钢捆的自动焊接标牌方法及装置 技术领域
本申请涉及图像处理技术领域,尤其涉及一种基于多个钢捆的自动焊接标牌方法及装置。
背景技术
现有技术中,在对钢材进行打捆包装之后,需要在每个钢捆的端面上焊接一定数量的标牌,这些标牌用于显示钢捆的基本信息,例如型号、规格及生产日期等。传统的标牌焊接方式是通过人工焊接,效率较低,无法适用于产量较大的生产。为了提高效率,目前,普遍采用机器控制的方式,实现标牌的自动焊接。
自动焊接标牌的流程大致包括:在当前钢捆被输送至待焊接位置时,系统控制双目相机采集钢捆的端面图像,通过图像处理,选取标牌焊接点,然后根据标牌焊接点的三维坐标,控制伸缩焊枪对当前钢捆的标牌进行焊接,焊接完成后,系统控制双目相机采集下一个钢捆的端面图像,进行焊接点选取及焊接工作。
但是,当多个钢捆通过链床进行运输的过程中,容易出现重叠交叉的现象,若三个钢捆叠在一起,双目相机拍摄所得的图像中,这三个钢捆的端面会锥形堆叠,若多个钢捆并排靠在一起,其端面图像会横向并列,这种情况下,系统难以识别出每个钢捆各自的轮廓,影响标牌焊接点的选取精度。
发明内容
为了解决当多个钢捆出现重叠交叉时,系统难以识别出每个钢捆各自的轮廓,影响标牌焊接点选取精度的问题,本申请通过以下实施例公开了一种基于多个钢捆的自动焊接标牌方法及装置。
本申请第一方面公开了一种基于多个钢捆的自动焊接标牌方法,所述方法包括:
通过双目相机获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;
从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标,坐标原点位于所述待焊接钢捆的端面图像的左上角;
对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;
根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;
根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;
按照所述每个钢捆的待焊接点集进行标牌焊接。
可选的,所述根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获 取每个钢捆对应的所有钢材的端面轮廓,包括:
获取所述每个钢捆的外轮廓曲线;
根据射线法,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线内部,获取每个钢捆中对应的所有钢材的端面轮廓。
可选的,所述根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集,包括:
根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆,其中,X值表示所述钢材端面轮廓中心点与所述坐标原点的水平距离,Y值表示所述钢材端面轮廓中心点与所述坐标原点的垂直距离;
将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致;
根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,其中,Z值表示所述钢材端面轮廓中心点与双目相机之间的直线距离;
根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
可选的,所述按照所述每个钢捆的待焊接点集进行标牌焊接,包括:
获取所述目标钢捆的每个待焊接点集中所有待焊接点的Z值之和;
根据所述Z值之和从小到大的顺序,设置所述目标钢捆的所有待焊接点集的优先等级,其中,Z值之和最小的待焊接点集的优先等级最高;
从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上。
可选的,所述从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上,包括:
从优先等级最高的待焊接点集开始,获取待焊接点集中所有的待焊接点,依次焊接所有标牌,焊接过程中,若存在标牌焊接失败,则从该标牌开始,使用下一优先等级的待焊接点集中的待焊接点继续进行焊接。
可选的,所述根据目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,包括:
设定目标子区域的基准面,所述基准面为所述目标子区域中Z值最小的中心点对应的钢材端面所处的平面,所述目标子区域为任一个焊接子区域;
获取目标端面与所述基准面之间的最小距离,所述目标端面为所述目标子区域中任一根钢材端面所处的平面;
判断所述最小距离是否不超过伸缩焊枪的枪头长度,若是,则将所述目标端面对应的钢材端面轮廓中心点设为所述待焊接点。
可选的,所述根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,包括:
从所述目标钢捆中所有钢材端面轮廓中心点坐标中提取最大X值、最小X值、最大Y值及最小Y值,并根据这四个值划定矩形区域;
将所述矩形区域设定为所述目标钢捆的端面焊接区域。
可选的,所述将所述目标钢捆的端面焊接区域分割为多个焊接子区域,包括:
获取所述端面焊接区域的面积;
根据所述需焊接标牌的数量,按面积将所述端面焊接区域等分为多个焊接子区域。
可选的,所述从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标,包括:
从第一端面图像中提取每根钢材的端面轮廓,获取第一端面轮廓集,所述第一端面图像由双目相机中的第一相机采集所得;
从第二端面图像中提取每根钢材的端面轮廓,获取第二端面轮廓集,所述第二端面图像由所述双目相机中的第二相机采集所得;
获取第一中心点集及第二中心点集,其中,所述第一中心点集包括所述第一端面轮廓集中所有端面轮廓的中心点,所述第二中心点集包括所述第二端面轮廓集中所有端面轮廓的中心点;
对所述第一中心点集与所述第二中心点集中的所有中心点进行匹配,其中,若第二中心点集中有且仅有一个中心点与目标点之间的距离不超过预设阈值,则匹配成功,否则匹配失败,所述目标点为第一中心点集中的任一个中心点,所述预设阈值为所述待焊接钢捆中所有钢材端面半径的最小值;
将所述第一中心点集中所有匹配成功的中心点作为第一目标点集,及,将所述第二中心点集中所有匹配成功的中心点作为第二目标点集;
根据所述第一目标点集与所述第二目标点集,获取所述每根钢材端面轮廓的中心点坐标。
本申请第二方面公开了一种基于多个钢捆的自动焊接标牌装置,所述装置应用于本申请第一方面所述的一种基于多个钢捆的自动焊接标牌方法,所述装置包括:
端面图像获取模块,用于通过双目相机获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;
端面轮廓提取模块,用于从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓, 并获取每根钢材端面轮廓的中心点坐标,坐标原点位于所述待焊接钢捆的端面图像的左上角;
外轮廓提取模块,用于对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;
端面轮廓划分模块,用于根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;
待焊接点集获取模块,用于根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;
焊接模块,用于按照所述每个钢捆的待焊接点集进行标牌焊接。
可选的,所述端面轮廓划分模块包括:
外轮廓曲线获取单元,用于获取所述每个钢捆的外轮廓曲线;
划分单元,用于根据射线法,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线内部,获取每个钢捆中对应的所有钢材的端面轮廓。
可选的,所述待焊接点集获取模块包括:
焊接区域设定单元,用于根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆,其中,X值表示所述钢材端面轮廓中心点与所述坐标原点的水平距离,Y值表示所述钢材端面轮廓中心点与所述坐标原点的垂直距离;
焊接区域分割单元,用于将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致;
待焊接点筛选单元,用于根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,其中,Z值表示所述钢材端面轮廓中心点与双目相机之间的直线距离;
待焊接点集生成单元,用于根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
可选的,所述焊接模块包括:
Z值求和单元,用于获取所述目标钢捆的每个待焊接点集中所有待焊接点的Z值之和;
优先等级设置单元,用于根据所述Z值之和从小到大的顺序,设置所述目标钢捆的所有待焊接点集的优先等级,其中,Z值之和最小的待焊接点集的优先等级最高;
等级焊接单元,用于从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上。
可选的,所述等级焊接单元包括:
等级焊接子单元,用于从优先等级最高的待焊接点集开始,获取待焊接点集中所有的待焊接点,依次焊接所有标牌,焊接过程中,若存在标牌焊接失败,则从该标牌开始,使用下一优先等级的待焊接点集中的待焊接点继续进行焊接。
可选的,所述待焊接点筛选单元包括:
基准面设定子单元,用于设定目标子区域的基准面,所述基准面为所述目标子区域中Z值最小的中心点对应的钢材端面所处的平面,所述目标子区域为任一个焊接子区域;
距离获取子单元,用于获取目标端面与所述基准面之间的最小距离,所述目标端面为所述目标子区域中任一根钢材端面所处的平面;
待焊接点判定子单元,用于判断所述最小距离是否不超过伸缩焊枪的枪头长度,若是,则将所述目标端面对应的钢材端面轮廓中心点设为所述待焊接点。
可选的,所述焊接区域设定单元包括:
区域划定子单元,用于从所述目标钢捆中所有钢材端面轮廓中心点坐标中提取最大X值、最小X值、最大Y值及最小Y值,并根据这四个值划定矩形区域;
焊接区域设定子单元,用于将所述矩形区域设定为所述目标钢捆的端面焊接区域。
可选的,所述焊接区域分割单元包括:
面积获取子单元,用于获取所述端面焊接区域的面积;
面积等分子单元,用于根据所述需焊接标牌的数量,按面积将所述端面焊接区域等分为多个焊接子区域。
可选的,所述端面轮廓提取模块包括:
第一端面轮廓提取单元,用于从第一端面图像中提取每根钢材的端面轮廓,获取第一端面轮廓集,所述第一端面图像由双目相机中的第一相机采集所得;
第二端面轮廓提取单元,用于从第二端面图像中提取每根钢材的端面轮廓,获取第二端面轮廓集,所述第二端面图像由所述双目相机中的第二相机采集所得;
中心点集获取单元,用于获取第一中心点集及第二中心点集,其中,所述第一中心点集包括所述第一端面轮廓集中所有端面轮廓的中心点,所述第二中心点集包括所述第二端面轮廓集中所有端面轮廓的中心点;
匹配单元,用于对所述第一中心点集与所述第二中心点集中的所有中心点进行匹配,其中,若第二中心点集中有且仅有一个中心点与目标点之间的距离不超过预设阈值,则匹配成功,否则匹配失败,所述目标点为第一中心点集中的任一个中心点,所述预设阈值为所述待焊接钢捆中所有钢材端面半径的最小值;
目标点集获取单元,用于将所述第一中心点集中所有匹配成功的中心点作为第一目标点集,及,将所述第二中心点集中所有匹配成功的中心点作为第二目标点集;
中心点坐标获取单元,用于根据所述第一目标点集与所述第二目标点集,获取所述每根钢材端面轮廓的中心点坐标。
本申请实施例公开了一种基于多个钢捆的自动焊接标牌方法及装置,该方法中,首先获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;从待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标;对待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;根据每根钢材端面轮廓的中心点坐标及每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;根据每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;按照每个钢捆的待焊接点集进行标牌焊接。上述方法中,在选取标牌焊接点之前,对重叠交叉的钢捆的外轮廓进行提取,并划分各自所属的所有钢材,使得系统能够识别出每个钢捆各自的轮廓及各自所对应的所有钢材,确保后续针对每个钢捆选取标牌焊接点不会出错,保证选取精度。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法的工作流程示意图;
图2为本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法中,获取每个钢捆的待焊接点集的工作流程示意图;
图3为本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法中,设定端面焊接区域的示意图;
图4为本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法中,分割端面焊接区域的示意图;
图5为本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法中,按照每个钢捆的待焊接点集进行标牌焊接的工作流程示意图;
图6为本申请实施例公开的一种基于多个钢捆的自动焊接标牌装置的结构示意图。
具体实施方式
本申请第一实施例公开了一种基于多个钢捆的自动焊接标牌方法,参见图1所示的工作流程示意图,所述方法包括:
步骤S101,获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆。
通过双目相机采集待焊接钢捆的端面图像,所述双目相机包括第一相机及第二相机,采集所得的端面图像包括所述第一相机采集的第一端面图像及所述第二相机采集的第二端面图像。
步骤S102,从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标。
基于双目相机采集所得的第一端面图像及第二端面图像,步骤S102包括:
从第一端面图像中提取每根钢材的端面轮廓,获取第一端面轮廓集,所述第一端面图像由双目相机中的第一相机采集所得。
从第二端面图像中提取每根钢材的端面轮廓,获取第二端面轮廓集,所述第二端面图像由所述双目相机中的第二相机采集所得。
对第一端面轮廓集与第二端面轮廓集中的各端面轮廓分别进行逼近圆处理,获取各端面轮廓的中心点。
获取第一中心点集及第二中心点集,其中,所述第一中心点集包括所述第一端面轮廓集中所有端面轮廓的中心点,所述第二中心点集包括所述第二端面轮廓集中所有端面轮廓的中心点。
对所述第一中心点集与所述第二中心点集中的所有中心点进行匹配,其中,若第二中心点集中有且仅有一个中心点与目标点之间的距离不超过预设阈值,则匹配成功,否则匹配失败,所述目标点为第一中心点集中的任一个中心点,所述预设阈值为所述待焊接钢捆中所有钢材端面半径的最小值。实际应用中,钢材端面半径的最小值可根据钢材的生产规格获取,预先存储至系统中。
将所述第一中心点集中所有匹配成功的中心点作为第一目标点集,及,将所述第二中心点集中所有匹配成功的中心点作为第二目标点集。其中,第一目标点集与第二目标点集中点的数目一致,且一一对应。
根据所述第一目标点集与所述第二目标点集,获取所述每根钢材端面轮廓的中心点坐标。
具体的,利用双目匹配原理便可生成每根钢材端面轮廓的中心点的X、Y轴坐标值,即X值和Y值,利用双目测距原理便可生成每根钢材端面轮廓的中心点Z轴坐标值,即Z值。其中,X值表示钢材端面轮廓的中心点在水平方向上的位置,Y值表示钢材端面轮廓的中心点在竖直方向上的位置,Z值表示钢材端面轮廓的中心点与双目相机之间的直线距离。
步骤S103,对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓。
膨胀处理可以分割出独立的图像元素。同一个钢捆中每根钢材之间的缝隙相对较小,经过膨胀处理后会被填充,不同钢捆之间的缝隙较大,经过膨胀处理后会被保留下来,最终每个钢捆的端面会形成一个大曲面,基于此,便可提取每个钢捆的外轮廓。
步骤S104,根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓。
本申请实施例中,通过以下步骤获取每个钢捆对应的所有钢材的端面轮廓:
首先,获取所述每个钢捆的外轮廓曲线。实际应用中,基于上文所获取的每个钢捆的外轮廓,容易计算出外轮廓曲线及其曲线方程。
然后,根据射线法,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线内部,获取每个钢捆中对应的所有钢材的端面轮廓。
其中,射线法是一种用于判断某一点是否在区域内的方法。例如,若要判断某一目标点是否位于一个多边形内,可从该目标点向左引水平扫描线(即射线),计算此线段与该多边形边界的相交次数。如果相交次数为奇数,则可判定该目标点在多边形内;如果为偶数,则可判定该目标点在多边形外。
本申请实施例使用射线法,依次从每根钢材端面轮廓的中心点引出射线,通过判断引出的射线与钢捆外轮廓之间相交次数为奇数还是偶数,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线内部,最终可以获取每个钢捆中对应的所有钢材的端面轮廓。
步骤S105,根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集。
步骤S106,按照所述每个钢捆的待焊接点集进行标牌焊接。
本申请实施例公开的一种基于多个钢捆的自动焊接标牌方法,该方法中,首先获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;从待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标;对待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;根据每根钢材端面轮廓的中心点坐标及每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;根据每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;按照每个钢捆的待焊接点集进行标牌焊接。上述方法中,在选取标牌焊接点之前,对重叠交叉的钢捆的外轮廓进行提取,并划分各自所属的所有钢材,使得系统能够识别出每个钢捆各自的轮廓及各自所对应的所有钢材,确保后续针对每个钢捆选取标牌焊接点不会出错,保证选取精度。
进一步的,参见图2所示的工作流程示意图,所述根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集,包括:
步骤S201,根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆。
由于钢捆的端面一般为类长方形,因此,本申请实施例中,从所有钢材端面轮廓中心点坐标中提取最大X值、最小X值、最大Y值及最小Y值,并根据这四个值划定矩形区域。然后将所述矩形区域设定为所述目标钢捆的端面焊接区域。
参见图3,图示为目标钢捆的端面图像,坐标原点位于整个端面图像的左上角,从坐标原点向右水平延伸为X正轴,从坐标原点向下垂直延伸为Y正轴,各个圆形表示目标钢捆中所有的钢材端面轮廓,矩形方框为根据最大X值、最小X值、最大Y值及最小Y值所划定的矩形区域,即目标钢捆的端面焊接区域。
步骤S202,将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致。
在一种实现方式中,将所述端面焊接区域分割为多个焊接子区域,包括:
获取所述端面焊接区域的面积。
根据所述需焊接标牌的数量,按面积将所述端面焊接区域等分为多个焊接子区域。
结合图3及图4,作为示例,若需焊接标牌的数量为四个,则将端面焊接区域按面积等分为四个焊接子区域,即图4中的焊接子区域A、焊接子区域B、焊接子区域C和焊接子区域D,每一个焊接子区域仅用来焊接一个标牌。
步骤S203,根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点。
步骤S204,根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
目前现有的自动焊接标牌流程中,每焊接完一个标牌,便要双目相机重新采集钢捆的端面图像,进行图像处理,获取下一个标牌的焊接点,这样的焊接流程需花费较长时间,若需焊接的标牌数量较大,将无法满足实际生产要求。
本申请实施例中,在焊接之前便针对每个钢捆,获取了多个待焊接点集,因此在焊接过程中,无需重复进行图像采集及图像处理工作,使用待焊接点集便可对所有标牌进行焊接,能够节约大量时间,有效提高焊接效率。
通常情况下,使用一个待焊接点集中的待焊接点,便可以将目标钢捆的所有标牌一次性焊接完成。但是考虑到实际工况中,可能存在某个标牌焊接失败的情况,本申请实施例中,针对一个钢捆,生成多个待焊接点集以供备用,防止在某个标牌焊接失败的情况下需重新进行图像采集及图像处理以选取新的标牌焊接点,最大程度减少系统处理时间,提高焊接效率。
具体的,针对目标钢捆的多个待焊接点进行组合,便可生成多个待焊接点集,组合过程中,遵循以下原则:(1)每个待焊接点来自不同的焊接子区域;(2)每个待焊接点挂上标牌之后,标牌之间不会相互遮挡。完成组合之后所得到的每个待焊接点集皆满足步骤S204中所述的三点要求,这种情况下,每个待焊接点集都可以针对目标钢捆的所有标牌进行焊接。为了减少数据处理量,作为示例,待焊接点集的数量可以预先设置为四个。
目标钢捆的每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸,是为了使不同焊接子区域的待焊接点挂上标牌后,标牌之间不会相互遮挡。
结合图4,一个待焊接点集中,焊接子区域A和焊接子区域B中的两个待焊接点之间的水平距离不能小于标牌的长度,焊接子区域C和焊接子区域D中的两个待焊接点之间的水平距离不能小于标牌的长度;焊接子区域A和焊接子区域C中的两个待焊接点之间的垂直距离不能小于标牌的宽度,焊接子区域B和焊接子区域D中的两个待焊接点之间的垂直距离不能小于标牌的宽度;焊接子区域A和焊接子区域D中的两个待焊接点之间的直线距离不能小于标牌的斜边长度,焊接子区域B和焊接子区域C中的两个待焊接点之间的直线距离不能小于标牌的斜边长度。
在生成待焊接点集时,若目标钢捆的某一焊接子区域不存在待焊接点,可以从其他焊接子区域中选取Z值最小的待焊接点,与其他已选定的待焊接点组成待焊接点集。结合图 4,若焊接子区域A没有待焊接点,便可从另外三个焊接子区域中选取一个Z值最小的待焊接点,与其余三个已选定的待焊接点组成待焊接点集。在选取Z值最小的待焊接点时,要把其余三个已选定的待焊接点排除在外。
进一步的,参见图5所示的工作流程示意图,所述按照所述每个钢捆的待焊接点集进行标牌焊接,包括:
步骤S501,获取所述目标钢捆的每个待焊接点集中所有待焊接点的Z值之和。
步骤S502,根据所述Z值之和从小到大的顺序,设置所述目标钢捆的所有待焊接点集的优先等级,其中,Z值之和最小的待焊接点集的优先等级最高。
步骤S503,从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上。
Z值之和最小,意味着在焊接目标钢捆的所有标牌过程中,伸缩焊枪的枪头移动距离最少,焊接所需时间也相对最少。本申请实施例中,按照所述Z值之和从小到大的顺序,设置所有待焊接点集的优先等级,并将Z值之和最小的待焊接点集设为最优先焊接的点集,从而有效减少实际焊接的时间,提高焊接的效率。
进一步的,所述从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上,包括:
从优先等级最高的待焊接点集开始,获取待焊接点集中所有的待焊接点,依次焊接所有标牌,焊接过程中,若存在标牌焊接失败的情况,则从该标牌开始,使用下一优先等级的待焊接点集中的待焊接点继续进行焊接。
具体的,从优先等级最高的待焊接点集开始,对目标钢捆的第一个焊接子区域进行标牌焊接,焊接成功后,对第二个焊接子区域进行标牌焊接,若焊接失败,便舍弃当前待焊接点集,使用下一个优先等级的待焊接点集,从第二个待焊接点开始,对第二焊接子区域进行标牌焊接,以此类推,直至完成所有标牌的焊接。
需要说明的是,每焊接完一个标牌,都要使用双目相机采集钢捆端面图像,以判断标牌焊接是否成功。在检测标牌焊接是否成功时,选取任意一个相机采集的端面图像,对其进行图像预处理(如灰度化、滤波及腐蚀处理),得到标牌的轮廓,如果该轮廓大于预设的面积阈值,则焊接成功,否则焊接失败。作为示例,面积阈值的设置范围为:不小于当前标牌面积的一半。
若所有待焊接点集都已被舍弃,但目标钢捆的标牌仍未全部焊接完成,此时,系统发出警报,提示工作人员焊接失败,需重新针对该目标钢捆进行焊接点选取工作。
若重叠交叉在一起的钢捆的规格不一致,不同钢捆的焊接顺序需根据当前提供给伸缩焊枪的标牌规格来决定。例如,若三个钢捆锥形堆叠,下面两个钢捆为a规格,上面一个钢捆为b规格,现场给伸缩焊枪提供了a规格标牌,则此时应对下面两个钢捆进行焊接,同样的,若现场给伸缩焊枪提供了b规格标牌,则此时应对上面一个钢捆进行焊接。这样可以确保焊接的准确度,以防出现标牌与钢捆规格不一致的问题。
通常,钢捆的端面凹凸不平,有些钢材的端面是凹进去的,若其凹进去的深度大于伸缩焊枪的枪头长度,在针对这些钢材端面进行焊接时,将会撞坏伸缩焊枪。
为了防止伸缩焊枪被撞,本申请实施例中,所述根据目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,包括:
设定目标子区域的基准面,所述基准面为所述目标子区域中Z值最小的中心点对应的钢材端面所处的平面(即与双目相机距离最近的钢材端面),所述目标子区域为任一个焊接子区域。
获取目标端面与所述基准面之间的最小距离,所述目标端面为所述目标子区域中任一根钢材端面所处的平面。
判断所述最小距离是否不超过伸缩焊枪的枪头长度,若是,则将所述目标端面对应的钢材端面轮廓中心点设为所述待焊接点。
基准面为目标钢捆端面中最凸出的钢材端面,通过筛选,将凹陷深度大于伸缩焊枪枪头长度的钢材滤除,将剩下的钢材端面轮廓中心点作为待焊接点,从而防止后期焊接过程中发生事故,有效确保焊接过程中的安全性。
下述为本申请公开的装置实施例,用于执行上述方法实施例。对于装置实施例中未披露的细节,请参照方法实施例。
本申请第二实施例公开了一种基于多个钢捆的自动焊接标牌装置,所述装置应用于本申请第一实施例所述的一种基于多个钢捆的自动焊接标牌方法,参见图6所示的结构示意图,所述装置包括:
端面图像获取模块10,用于获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆。
端面轮廓提取模块20,用于从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标。
外轮廓提取模块30,用于对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓。
端面轮廓划分模块40,用于根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓。
待焊接点集获取模块50,用于根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集。
焊接模块60,用于按照所述每个钢捆的待焊接点集进行标牌焊接。
进一步的,所述端面轮廓划分模块包括:
外轮廓曲线获取单元,用于获取所述每个钢捆的外轮廓曲线。
划分单元,用于根据射线法,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线 内部,获取每个钢捆中对应的所有钢材的端面轮廓。
进一步的,所述待焊接点集获取模块包括:
焊接区域设定单元,用于根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆。
焊接区域分割单元,用于将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致。
待焊接点筛选单元,用于根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点。
待焊接点集生成单元,用于根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
进一步的,所述焊接模块包括:
Z值求和单元,用于获取所述目标钢捆的每个待焊接点集中所有待焊接点的Z值之和。
优先等级设置单元,用于根据所述Z值之和从小到大的顺序,设置所述目标钢捆的所有待焊接点集的优先等级,其中,Z值之和最小的待焊接点集的优先等级最高。
等级焊接单元,用于从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上。
进一步的,所述等级焊接单元包括:
等级焊接子单元,用于从优先等级最高的待焊接点集开始,获取待焊接点集中所有的待焊接点,依次焊接所有标牌,焊接过程中,若存在标牌焊接失败,则从该标牌开始,使用下一优先等级的待焊接点集中的待焊接点继续进行焊接。
进一步的,所述待焊接点筛选单元包括:
基准面设定子单元,用于设定目标子区域的基准面,所述基准面为所述目标子区域中Z值最小的中心点对应的钢材端面所处的平面,所述目标子区域为任一个焊接子区域。
距离获取子单元,用于获取目标端面与所述基准面之间的最小距离,所述目标端面为所述目标子区域中任一根钢材端面所处的平面。
待焊接点判定子单元,用于判断所述最小距离是否不超过伸缩焊枪的枪头长度,若是,则将所述目标端面对应的钢材端面轮廓中心点设为所述待焊接点。
进一步的,所述焊接区域设定单元包括:
区域划定子单元,用于从所述目标钢捆中所有钢材端面轮廓中心点坐标中提取最大X值、最小X值、最大Y值及最小Y值,并根据这四个值划定矩形区域。
焊接区域设定子单元,用于将所述矩形区域设定为所述目标钢捆的端面焊接区域。
进一步的,所述焊接区域分割单元包括:
面积获取子单元,用于获取所述端面焊接区域的面积。
面积等分子单元,用于根据所述需焊接标牌的数量,按面积将所述端面焊接区域等分为多个焊接子区域。
进一步的,所述端面轮廓提取模块包括:
第一端面轮廓提取单元,用于从第一端面图像中提取每根钢材的端面轮廓,获取第一端面轮廓集,所述第一端面图像由双目相机中的第一相机采集所得。
第二端面轮廓提取单元,用于从第二端面图像中提取每根钢材的端面轮廓,获取第二端面轮廓集,所述第二端面图像由所述双目相机中的第二相机采集所得。
中心点集获取单元,用于获取第一中心点集及第二中心点集,其中,所述第一中心点集包括所述第一端面轮廓集中所有端面轮廓的中心点,所述第二中心点集包括所述第二端面轮廓集中所有端面轮廓的中心点。
匹配单元,用于对所述第一中心点集与所述第二中心点集中的所有中心点进行匹配,其中,若第二中心点集中有且仅有一个中心点与目标点之间的距离不超过预设阈值,则匹配成功,否则匹配失败,所述目标点为第一中心点集中的任一个中心点,所述预设阈值为所述待焊接钢捆中所有钢材端面半径的最小值。
目标点集获取单元,用于将所述第一中心点集中所有匹配成功的中心点作为第一目标点集,及,将所述第二中心点集中所有匹配成功的中心点作为第二目标点集。
中心点坐标获取单元,用于根据所述第一目标点集与所述第二目标点集,获取所述每根钢材端面轮廓的中心点坐标。
以上结合具体实施方式和范例性实例对本申请进行了详细说明,不过这些说明并不能理解为对本申请的限制。本领域技术人员理解,在不偏离本申请精神和范围的情况下,可以对本申请技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本申请的范围内。本申请的保护范围以所附权利要求为准。

Claims (9)

  1. 一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述方法包括:
    通过双目相机获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;
    从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标,坐标原点位于所述待焊接钢捆的端面图像的左上角;
    对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;
    根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;
    根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;
    按照所述每个钢捆的待焊接点集进行标牌焊接;
    其中,所述根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集,包括:
    根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆,其中,X值表示所述钢材端面轮廓中心点与所述坐标原点的水平距离,Y值表示所述钢材端面轮廓中心点与所述坐标原点的垂直距离;
    将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致;
    根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,其中,Z值表示所述钢材端面轮廓中心点与双目相机之间的直线距离;
    根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
  2. 根据权利要求1所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓,包括:
    获取所述每个钢捆的外轮廓曲线;
    根据射线法,将每根钢材端面轮廓的中心点划分至所属的外轮廓曲线内部,获取每个钢捆中对应的所有钢材的端面轮廓。
  3. 根据权利要求1所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述按照所述每个钢捆的待焊接点集进行标牌焊接,包括:
    获取所述目标钢捆的每个待焊接点集中所有待焊接点的Z值之和;
    根据所述Z值之和从小到大的顺序,设置所述目标钢捆的所有待焊接点集的优先等级,其中,Z值之和最小的待焊接点集的优先等级最高;
    从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊 接标牌焊接至所述目标钢捆的端面上。
  4. 根据权利要求3所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述从优先等级最高的待焊接点集开始,依次按照待焊接点集中的待焊接点,将所述需焊接标牌焊接至所述目标钢捆的端面上,包括:
    从优先等级最高的待焊接点集开始,获取待焊接点集中所有的待焊接点,依次焊接所有标牌,焊接过程中,若存在标牌焊接失败,则从该标牌开始,使用下一优先等级的待焊接点集中的待焊接点继续进行焊接。
  5. 根据权利要求1所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述根据目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,包括:
    设定目标子区域的基准面,所述基准面为所述目标子区域中Z值最小的中心点对应的钢材端面所处的平面,所述目标子区域为任一个焊接子区域;
    获取目标端面与所述基准面之间的最小距离,所述目标端面为所述目标子区域中任一根钢材端面所处的平面;
    判断所述最小距离是否不超过伸缩焊枪的枪头长度,若是,则将所述目标端面对应的钢材端面轮廓中心点设为所述待焊接点。
  6. 根据权利要求1所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,包括:
    从所述目标钢捆中所有钢材端面轮廓中心点坐标中提取最大X值、最小X值、最大Y值及最小Y值,并根据这四个值划定矩形区域;
    将所述矩形区域设定为所述目标钢捆的端面焊接区域。
  7. 根据权利要求1或6所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述将所述目标钢捆的端面焊接区域分割为多个焊接子区域,包括:
    获取所述端面焊接区域的面积;
    根据所述需焊接标牌的数量,按面积将所述端面焊接区域等分为多个焊接子区域。
  8. 根据权利要求1所述的一种基于多个钢捆的自动焊接标牌方法,其特征在于,所述从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标,包括:
    从第一端面图像中提取每根钢材的端面轮廓,获取第一端面轮廓集,所述第一端面图像由双目相机中的第一相机采集所得;
    从第二端面图像中提取每根钢材的端面轮廓,获取第二端面轮廓集,所述第二端面图像由所述双目相机中的第二相机采集所得;
    获取第一中心点集及第二中心点集,其中,所述第一中心点集包括所述第一端面轮廓集中所有端面轮廓的中心点,所述第二中心点集包括所述第二端面轮廓集中所有端面轮廓的中心点;
    对所述第一中心点集与所述第二中心点集中的所有中心点进行匹配,其中,若第二中心点集中有且仅有一个中心点与目标点之间的距离不超过预设阈值,则匹配成功,否则匹配失败,所述目标点为第一中心点集中的任一个中心点,所述预设阈值为所述待焊接钢捆中所有钢材端面半径的最小值;
    将所述第一中心点集中所有匹配成功的中心点作为第一目标点集,及,将所述第二中心点集中所有匹配成功的中心点作为第二目标点集;
    根据所述第一目标点集与所述第二目标点集,获取所述每根钢材端面轮廓的中心点坐标。
  9. 一种基于多个钢捆的自动焊接标牌装置,其特征在于,所述装置应用于权利要求1-8任一项所述的一种基于多个钢捆的自动焊接标牌方法,所述装置包括:
    端面图像获取模块,用于通过双目相机获取待焊接钢捆的端面图像,所述待焊接钢捆中至少包含一个钢捆;
    端面轮廓提取模块,用于从所述待焊接钢捆的端面图像中提取每根钢材的端面轮廓,并获取每根钢材端面轮廓的中心点坐标,坐标原点位于所述待焊接钢捆的端面图像的左上角;
    外轮廓提取模块,用于对所述待焊接钢捆的端面图像进行膨胀处理,提取每个钢捆的外轮廓;
    端面轮廓划分模块,用于根据所述每根钢材端面轮廓的中心点坐标及所述每个钢捆的外轮廓,获取每个钢捆对应的所有钢材的端面轮廓;
    待焊接点集获取模块,用于根据所述每个钢捆对应的所有钢材的端面轮廓,获取每个钢捆的待焊接点集;
    焊接模块,用于按照所述每个钢捆的待焊接点集进行标牌焊接;
    其中,所述待焊接点集获取模块包括:
    焊接区域设定单元,用于根据目标钢捆中所有钢材端面轮廓中心点坐标的X值与Y值,设定所述目标钢捆的端面焊接区域,所述目标钢捆为所述待焊接钢捆中的任一个钢捆,其中,X值表示所述钢材端面轮廓中心点与所述坐标原点的水平距离,Y值表示所述钢材端面轮廓中心点与所述坐标原点的垂直距离;
    焊接区域分割单元,用于将所述目标钢捆的端面焊接区域分割为多个焊接子区域,所述焊接子区域的数量与所述目标钢捆需焊接标牌的数量一致;
    待焊接点筛选单元,用于根据所述目标钢捆中所有钢材端面轮廓中心点坐标的Z值,从所述目标钢捆所有钢材端面轮廓的中心点中筛选出多个待焊接点,其中,Z值表示所述钢材端面轮廓中心点与双目相机之间的直线距离;
    待焊接点集生成单元,用于根据所述多个待焊接点,生成所述目标钢捆的多个待焊接点集,其中,每个待焊接点集中包含的待焊接点数量与所述焊接子区域的数量一致,每个待焊接点集中不同的待焊接点对应不同的焊接子区域,且,每个待焊接点集中不同待焊接点之间的距离不小于所述需焊接标牌的尺寸。
PCT/CN2020/128644 2020-05-27 2020-11-13 一种基于多个钢捆的自动焊接标牌方法及装置 WO2021238096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010457835.5 2020-05-27
CN202010457835.5A CN111563911B (zh) 2020-05-27 2020-05-27 一种基于多个钢捆的自动焊接标牌方法及装置

Publications (1)

Publication Number Publication Date
WO2021238096A1 true WO2021238096A1 (zh) 2021-12-02

Family

ID=72073629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128644 WO2021238096A1 (zh) 2020-05-27 2020-11-13 一种基于多个钢捆的自动焊接标牌方法及装置

Country Status (2)

Country Link
CN (1) CN111563911B (zh)
WO (1) WO2021238096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114581368A (zh) * 2022-01-18 2022-06-03 无锡瑞进智能工程有限公司 一种基于双目视觉的棒材焊牌方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111563911B (zh) * 2020-05-27 2020-10-20 江苏金恒信息科技股份有限公司 一种基于多个钢捆的自动焊接标牌方法及装置
CN112991327B (zh) * 2021-04-14 2023-05-30 河北省科学院应用数学研究所 基于机器视觉的钢格网焊接系统、方法和终端设备
CN113658226B (zh) * 2021-08-26 2023-09-05 中国人民大学 一种限高装置高度检测方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037874A1 (en) * 2006-08-09 2008-02-14 Hon Hai Precision Industry Co., Ltd. System and method for scanning edges of a workpiece
CN108961285A (zh) * 2018-06-20 2018-12-07 广东工业大学 一种集装箱铰链焊缝边缘提取方法和装置
CN110614459A (zh) * 2019-08-25 2019-12-27 北京首钢自动化信息技术有限公司 一种钢捆端面智能焊牌装置及其方法
CN110773842A (zh) * 2019-10-21 2020-02-11 大族激光科技产业集团股份有限公司 一种焊接定位方法及装置
CN110930512A (zh) * 2019-11-28 2020-03-27 江苏金恒信息科技股份有限公司 一种钢捆标牌焊接方法及系统
CN111563911A (zh) * 2020-05-27 2020-08-21 江苏金恒信息科技股份有限公司 一种基于多个钢捆的自动焊接标牌方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037874A1 (en) * 2006-08-09 2008-02-14 Hon Hai Precision Industry Co., Ltd. System and method for scanning edges of a workpiece
CN108961285A (zh) * 2018-06-20 2018-12-07 广东工业大学 一种集装箱铰链焊缝边缘提取方法和装置
CN110614459A (zh) * 2019-08-25 2019-12-27 北京首钢自动化信息技术有限公司 一种钢捆端面智能焊牌装置及其方法
CN110773842A (zh) * 2019-10-21 2020-02-11 大族激光科技产业集团股份有限公司 一种焊接定位方法及装置
CN110930512A (zh) * 2019-11-28 2020-03-27 江苏金恒信息科技股份有限公司 一种钢捆标牌焊接方法及系统
CN111563911A (zh) * 2020-05-27 2020-08-21 江苏金恒信息科技股份有限公司 一种基于多个钢捆的自动焊接标牌方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114581368A (zh) * 2022-01-18 2022-06-03 无锡瑞进智能工程有限公司 一种基于双目视觉的棒材焊牌方法及装置
CN114581368B (zh) * 2022-01-18 2023-11-17 无锡瑞进智能工程有限公司 一种基于双目视觉的棒材焊牌方法及装置

Also Published As

Publication number Publication date
CN111563911B (zh) 2020-10-20
CN111563911A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021238096A1 (zh) 一种基于多个钢捆的自动焊接标牌方法及装置
WO2019184223A1 (zh) 一种棒材标牌焊接方法
WO2021238097A1 (zh) 一种自动焊接标牌的方法及装置
WO2021238094A1 (zh) 一种线材的挂牌系统及方法
CN104462691B (zh) 一种在动态几何软件中实现鼠标智能画图的方法及装置
EP3630404B1 (en) An apparatus and a method for automated seam welding of a work piece comprising a base plate with a pattern of upstanding profiles
CN105718728B (zh) 一种用于压路机碾压遍数自动计算的方法
CN116309576B (zh) 一种锂电池焊缝缺陷检测方法、系统及存储介质
CN110930512B (zh) 一种钢捆标牌焊接方法及系统
CN114581368B (zh) 一种基于双目视觉的棒材焊牌方法及装置
JP2001289614A (ja) 変位センサ
CN110349116B (zh) 一种用于面阵相机图片拼接的算法
CN109840522B (zh) 一种大棒端面标记方案及字符图像矫正方法
CN104848829B (zh) 组合模板检测系统及方法
TW201631312A (zh) 光學薄膜缺陷檢測裝置及方法
CN116228640A (zh) 基于深度图像的焊缝检测方法、系统、装置及存储介质
JP2017173992A (ja) 結束鋼管検査装置及び結束鋼管検査方法
CN115055806A (zh) 基于视觉跟踪的焊接轨迹跟踪方法及装置
CN115415694A (zh) 一种钣金工艺用焊接方法、系统及装置
CN114943704A (zh) 一种电池电极模切件缺陷检测方法、装置和设备
CN106514063A (zh) 薄板焊接机器人
KR20120003626A (ko) 블록 관리 시스템 및 그의 선박 블록 적치 공간 파악 방법
CN111428547B (zh) 车位确定方法及装置
CN104986539B (zh) 组合模板自动输送系统
CN108262583A (zh) 焊缝的类型判断和定位方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937732

Country of ref document: EP

Kind code of ref document: A1