WO2021238068A1 - 一种储能式间歇性车辆供电系统及供电方法 - Google Patents

一种储能式间歇性车辆供电系统及供电方法 Download PDF

Info

Publication number
WO2021238068A1
WO2021238068A1 PCT/CN2020/127095 CN2020127095W WO2021238068A1 WO 2021238068 A1 WO2021238068 A1 WO 2021238068A1 CN 2020127095 W CN2020127095 W CN 2020127095W WO 2021238068 A1 WO2021238068 A1 WO 2021238068A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
energy storage
vehicle
storage device
voltage
Prior art date
Application number
PCT/CN2020/127095
Other languages
English (en)
French (fr)
Inventor
邓谊柏
陈挺
阮殿波
黄家尧
唐继开
李玉新
乔志军
郑超
于学文
张仲才
荆葛
郑谋锦
唐良辉
王恒
关祚洋
Original Assignee
宁波中车新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波中车新能源科技有限公司 filed Critical 宁波中车新能源科技有限公司
Publication of WO2021238068A1 publication Critical patent/WO2021238068A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of energy storage vehicle charging, in particular to an energy storage type intermittent vehicle power supply system and a power supply method.
  • Energy-storage trams can absorb the vehicle’s regenerative braking energy as much as possible due to their full-line operation contactless network.
  • New energy vehicles can well solve the pollution problems caused by urban exhaust emissions and the fuel consumption of vehicles in standby.
  • Energy storage vehicles are more and more popular in the market.
  • the power supply system of energy storage vehicles is still connected through high voltage, and then the energy storage vehicles are directly charged in step-down, rectification, and step-down DCDC, in order to be able to complete quickly
  • the connected capacity is large.
  • the fee for the installed capacity of the industrial power supply is fixed according to the power capacity, and the operating cost of the vehicle increases.
  • the current power supply system is highly dependent on the power supply network. When the power supply network fails or is out of power, there is no way to provide power again.
  • the technical problem to be solved by the present invention is how to reduce the cost of capacity electricity price, how to reduce the loss during no-load, and how to reduce the dependence on the power supply network, thereby providing an energy storage type Intermittent vehicle power supply system and method.
  • An energy storage type intermittent vehicle power supply system including:
  • Transformer rectifier, first DC/DC module, energy storage device, second DC/DC module, multiple isolation switches, and power supply rails corresponding to the isolation switches;
  • One end of the transformer is connected to the input end of the power grid, the other end of the transformer is connected to one end of the rectifier, the other end of the rectifier is connected to the first DC/DC module, and the other ends of the first DC/DC module are respectively connected One end of the energy storage device and one end of the second DC/DC module are connected, and the other end of the step-down DC/DC is connected to the power supply rail through an isolating switch;
  • the first DC/DC module is used to charge the energy storage device with a preset low power when the vehicle to be charged has not entered the station;
  • the second DC/DC module is used to receive the electric energy of the first DC/DC module and the energy storage device when the vehicle to be charged enters the station, and output the received electric energy to the vehicle with charging.
  • a voltage sensor is arranged between the isolation switch and the power supply rail;
  • the voltage sensor is used to detect the voltage signal at the current power supply rail, and transmit the detected voltage signal to the second DC/DC module, and when the voltage signal at the current power supply rail detected by the voltage sensor is not zero, pass the second DC
  • the /DC module controls the isolation switch to close, and when the voltage signal at the current power rail detected by the voltage sensor reaches the preset full voltage, the isolation switch is controlled to open.
  • the isolating switch judging unit is used to judge whether the isolating switch is closed in the current power supply system, and if so, when other vehicles to be charged enter the station, control the disconnecting switches connected to the power supply rails connected to other vehicles to be charged to continue to be disconnected , And determine that the current power supply system does not have the isolation switch closed, and control the isolation switches connected to the power supply rails connected to other vehicles to be charged to close.
  • the wireless communication unit includes an information access unit, an information extraction unit, and an information transmission unit;
  • the information access unit is used to determine whether there is a vehicle to be charged within the preset distance range of the current power supply system through wireless communication;
  • the information extraction unit is used to extract the remaining capacity information and voltage of the current vehicle to be charged through the preset database of the vehicle to be charged when the information access unit confirms that a vehicle to be charged is connected within a preset distance of the current power supply system information.
  • the information transmission unit is used to obtain and extract the remaining capacity information and voltage information of the current vehicle to be charged.
  • the rectifier is a diode rectifier, which is used to convert the alternating current after the transformer has stepped down into direct current.
  • the energy storage device is a power battery energy storage device or a super capacitor energy storage device.
  • the energy storage device includes an energy storage device contactor, an energy storage device fuse, and an energy storage device energy management system.
  • the fuse is used as a power battery cell voltage or a super capacitor cell in the energy storage device. The voltage exceeds the preset voltage, the temperature of the power battery cell or the cell temperature of the super capacitor in the energy storage device exceeds the preset temperature, and the voltage of the energy storage device system exceeds the preset overall voltage, and the temperature of the energy storage device system exceeds the preset overall When the temperature is over, cut off the contactor.
  • the multifunctional charging port is arranged between the second DC/DC module and the isolation switch, and is used for charging the new energy vehicle that needs to be charged.
  • the multi-function charging port is a two-way multi-function charging port, which is used to access a preset emergency charging vehicle through the multi-function charging port in a preset emergency state to charge the vehicle with charging.
  • a power supply method based on an energy storage type intermittent vehicle power supply system including the steps:
  • step S3 If there is an isolating switch closed in the current power supply system, continue to step S2; if no isolating switch in the current power supply system is closed, close the isolating switch currently connected to the power rail of the vehicle to be charged;
  • the transformer and rectifier in the power supply system can be charged with a constant power through a boosted DC/DC, that is, a small power can be kept connected to the power supply system without impacting the power supply network.
  • This power supply system includes an energy storage device.
  • the first DC/DC module charges the energy storage device.
  • the second DC/DC module Voltage characteristics for charging.
  • the rectifier of this power supply system can convert the AC point after the step-down into DC power, using diodes for rectification, which maximizes the rectification efficiency, and the rectification efficiency is not less than 99%.
  • the ground energy storage device uses power batteries or super capacitors for energy storage. It is composed of multiple cells in series and in parallel. It is characterized by high-power charging and discharging, and low internal resistance, so the charging and discharging efficiency high. Therefore, during working hours, the energy storage device will output high power from the stored electric energy when the vehicle enters the station to meet the needs of fast charging of the vehicle; after the vehicle leaves the station, the boosted DC/DC will use low power for charging. Until it is full; the problem of no-load loss will not occur when the vehicle is out of operation at night.
  • the isolation switch of this power supply system is controlled by a step-down DC/DC.
  • the isolation switches of different branches are interlocked with each other and cannot be turned on at the same time.
  • the multi-functional charging interface of this power supply system is for new energy vehicles that need to be charged after the mainline running vehicle is offline. At the same time, the interface is a two-way interface. In an emergency, it can be connected to an emergency charging car to charge the vehicle.
  • the total output of the ground energy storage device uses contactors and fuses for safety protection, and is equipped with an energy management system. On the one hand, it can control the single voltage of the energy storage device within the allowable pressure difference range, and if the internal In case of monomer overvoltage, overtemperature, or system overvoltage, the contactor can be cut off in time to ensure that the system is in a safe state.
  • Figure 1 is a schematic diagram of an intermittent power supply system
  • Figure 2 is a schematic diagram of a 10kv/380V power supply direct charging type
  • Figure 3 is a flow chart of an energy storage type intermittent vehicle power supply method.
  • This embodiment provides an energy storage type intermittent vehicle power supply system. As shown in Figures 1 to 2, the system includes:
  • Transformer rectifier, first DC/DC module, energy storage device, second DC/DC module, multiple isolation switches, and power supply rails corresponding to the isolation switches;
  • One end of the transformer is connected to the input end of the power grid, the other end of the transformer is connected to one end of the rectifier, the other end of the rectifier is connected to the first DC/DC module, and the other ends of the first DC/DC module are respectively connected One end of the energy storage device and one end of the second DC/DC module are connected, and the other end of the step-down DC/DC is connected to the power supply rail through an isolating switch;
  • the first DC/DC module is used to charge the energy storage device with a preset low power when the vehicle to be charged has not entered the station;
  • the second DC/DC module is used to receive the electric energy of the first DC/DC module and the energy storage device when the vehicle to be charged enters the station, and output the received electric energy to the vehicle with charging.
  • the first DC/DC module is a step-up DC/DC module
  • the second DC/DC module is a step-down DC/DC module.
  • the transformer and the rectifier can always be charged with a relatively constant power through the first DC/DC module, that is, a relatively small power connection can be maintained, and the power supply network will not be impacted.
  • the first DC/DC module is charged into the energy storage device; when a vehicle enters the station, the second DC/DC module controls the charging according to the voltage characteristics of the vehicle , That is, first detect the voltage of the energy storage system on the vehicle, and then close the isolation switch for charging.
  • the constant current mode will be adopted first, then the constant power output mode, and finally the constant voltage charging mode will be adopted.
  • the input side of the transformer is connected to a 10kv power supply network, and the output side is stepped down to AC380V.
  • the windings of the transformer are copper windings
  • the iron core of the transformer is an amorphous alloy iron core.
  • This system can be adapted to scenarios where a dedicated power supply line is not 10kv.
  • Industrial power supply AC380V is used to charge the vehicle, which solves the problem that a dedicated power supply line needs to be set up in some scenarios.
  • the first DC/DC module plays a role of boosting, and at the same time, its power setting is consistent with the power of the transformer, which further improves the efficiency of the entire power supply system.
  • a voltage sensor is arranged between the isolation switch and the power supply rail;
  • the voltage sensor is used to detect the voltage signal at the current power supply rail, and transmit the detected voltage signal to the second DC/DC module, and when the voltage signal at the current power supply rail detected by the voltage sensor is not zero, pass the second DC
  • the /DC module controls the isolation switch to close, and when the voltage signal at the current power rail detected by the voltage sensor reaches the preset full voltage, the isolation switch is controlled to open.
  • the isolating switch judging unit is used to judge whether the isolating switch is closed in the current power supply system, and if so, when other vehicles to be charged enter the station, control the disconnecting switches connected to the power supply rails connected to other vehicles to be charged to continue to be disconnected , And determine that the current power supply system does not have the isolation switch closed, and control the isolation switches connected to the power supply rails connected to other vehicles to be charged to close.
  • the voltage sensor detects that the signal is not zero.
  • the voltage DC/DC control isolation switch is closed, and then the step-down DC/DC starts to output until the vehicle is fully charged, and the closed isolation switch is opened.
  • the switch of this road cannot be closed at this time, and the next one that needs to be charged can be closed until the previous one is disconnected.
  • the wireless communication unit includes an information access unit, an information extraction unit, and an information transmission unit;
  • the information access unit is used to determine whether there is a vehicle to be charged within the preset distance range of the current power supply system through wireless communication;
  • the information extraction unit is used to extract the remaining capacity information and voltage of the current vehicle to be charged through the preset database of the vehicle to be charged when the information access unit confirms that a vehicle to be charged is connected within a preset distance of the current power supply system information.
  • the information transmission unit is used to obtain and extract the remaining capacity information and voltage information of the current vehicle to be charged.
  • the current capacity information and voltage information of the vehicle to be charged can be acquired again when the vehicle to be charged is not connected to the power supply system.
  • the rectifier is a diode rectifier, which is used to convert the alternating current after the transformer has stepped down into direct current.
  • the rectifier device can convert the reduced AC power into DC power, and adopt diodes for rectification to maximize the rectification efficiency, and the rectification efficiency is not less than 99%.
  • the energy storage device is a power battery energy storage device or a super capacitor energy storage device, and the charging and discharging function is above 3C.
  • the energy storage device reduces the dependence on the power supply network when the vehicle is charged.
  • the energy storage device includes an energy storage device contactor, an energy storage device fuse, and an energy storage device energy management system.
  • the fuse is used as a power battery cell voltage or a super capacitor cell in the energy storage device. The voltage exceeds the preset voltage, the temperature of the power battery cell or the cell temperature of the super capacitor in the energy storage device exceeds the preset temperature, and the voltage of the energy storage device system exceeds the preset overall voltage, and the temperature of the energy storage device system exceeds the preset overall When the temperature is over, cut off the contactor.
  • the energy storage device adopts a power battery or a super capacitor for energy storage, and is composed of a plurality of monomers connected in series and in parallel.
  • the energy storage device is characterized by being able to perform high-power charging and discharging, and has a small internal resistance, so the charging and discharging efficiency is high. Therefore, during working hours, the energy storage device will output high power from the stored electric energy when the vehicle enters the station to meet the needs of fast charging of the vehicle; after the vehicle leaves the station, the boosted DC/DC will use low power for charging. Until it is full; the problem of no-load loss will not occur when the vehicle is out of operation at night.
  • the second DC/DC module After the second DC/DC module detects that the vehicle enters the station, it controls to simultaneously output the electrical energy of the energy storage device and the electrical energy of the first DC/DC module to the vehicle that needs to be charged. Before charging is started, the second DC/DC module needs to detect the voltage at the output terminal of the isolation switch, and then control the isolation switch to close, and then start charging.
  • the isolating switch is controlled by the second DC/DC module.
  • the isolating switches of different branches are interlocked with each other and cannot be turned on at the same time.
  • the multifunctional charging port is arranged between the second DC/DC module and the isolation switch, and is used for charging the new energy vehicle that needs to be charged.
  • the multi-function charging port is a two-way multi-function charging port, which is used to access a preset emergency charging vehicle through the multi-function charging port in a preset emergency state to charge the vehicle with charging.
  • the multifunctional charging interface is used to open to new energy vehicles that need to be charged after the mainline running vehicle goes offline.
  • the interface is a two-way interface. In an emergency, it can be connected to an emergency charging car to charge the vehicle.
  • This embodiment provides a power supply method corresponding to an energy storage type intermittent vehicle power supply system. As shown in FIG. 3, the method includes the steps:
  • step S3 If there is an isolating switch closed in the current power supply system, continue to step S2; if no isolating switch in the current power supply system is closed, close the isolating switch currently connected to the power rail of the vehicle to be charged;
  • the ground energy storage device can be composed of a super capacitor or a high-power power battery, which can meet the high-power output when the vehicle is charged. On the one hand, it reduces the connected capacity and reduces the cost of electricity price for users; secondly, the transformer capacity is reduced, and the loss at no-load is also reduced, and the energy consumption cost is reduced; finally, the ground energy storage device can reduce the vehicle It is highly dependent on the power supply network when charging, and the power reserve can even be completed in the low period in places with conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种储能式间歇性车辆供电系统,包括:变压器、整流器、第一DC/DC模块、储能装置、第二DC/DC模块、多个隔离开关以及和隔离开关对应连接的供电轨;第一DC/DC模块,用于车辆未进站时,通过预设小功率对储能装置进行充电;第二DC/DC模块,用于待充电车辆进站时,输出电能至待充电车辆。该供电系统有效降低了储能式车辆充电系统接入供电系统的容量,为用户减少了容量电价的支出成本,还能减小变压器容量,降低了空载时的损耗。

Description

一种储能式间歇性车辆供电系统及供电方法 技术领域
本发明涉及储能车辆充电技术领域,尤其涉及一种储能式间歇性车辆供电系统及供电方法。
背景技术
储能式有轨电车由于具备全线运行无接触网,能够最大可能吸收车辆的再生制动能量,新能源汽车由于能够很好解决城市的尾气排放造成的污染问题,车辆待机的油耗问题,因此储能式车辆越来越受市场的欢迎,目前储能式车辆的供电系统仍然是通过高压接入,然后在降压、整流、降压DCDC直接为储能式车辆进行充电,为了能够快速的完成车辆充电,其接入的容量大,同时接入工业电源装机容量费用是根据功率容量大小固定收取费用的,车辆的运营成本增加。并且目前的供电系统对供电网络有高度依赖,在供电网络出现故障或者断电时,就没有办法再提供电源。
发明内容
针对上述现有技术的现状,本发明所要解决的技术问题在于如何减少容量电价的支出成本,并如何降低空载时的损耗,以及如何降低对供电网络的依赖,从而提供了一种储能式间歇性车辆供电系统及方法。
为了达到上述目的,本申请采用以下技术方案:
一种储能式间歇性车辆供电系统,包括:
变压器、整流器、第一DC/DC模块、储能装置、第二DC/DC模块、多个隔离开关以及和隔离开关对应连接的供电轨;
所述变压器的一端与电网入端相连,所述变压器的另一端和整流器的一端连接,所述整流器的另一端和第一DC/DC模块连接,所述第一DC/DC模块的另一端分别接储能装置的一端以及第二DC/DC模块的一端,所述降压DC/DC的另一端通过隔离开关和供电轨连接;
所述第一DC/DC模块,用于待充电车辆未进站时,通过预设小功率对储能装置进行充电;
所述第二DC/DC模块,用于待充电车辆进站时,接收第一DC/DC模块和储能装置的电能,并将接收的电能输出至带充电车辆。
进一步地,所述隔离开关和供电轨之间设置有电压传感器;
所述电压传感器用于检测当前供电轨处电压信号,并将检测的电压信号传输至第二DC/DC模块,并当电压传感器检测的当前供电轨处电压信号不为零时,通过第二DC/DC模块控制隔离开关闭合,当电压传感器检测的当前供电轨处电压信号达到预设充满电压时,控制隔离开关断开。
进一步地,还包括隔离开关判断单元;
所述隔离开关判断单元,用于判断当前供电系统是否有隔离开关闭合,若有,当其他待充电车辆进站时,控制其他待充电车辆接入的供电轨上连接的隔离开关持续断开状态,并判断当前供电系统没有隔离开关闭合时,控制其他待充电车辆接入的供电轨上连接的隔离开关闭合。
进一步地,
还包括无线通讯单元,所述无线通讯单元包括信息接入单元、信息提取单元以及信息传输单元;
所述信息接入单元,用于通过无线通讯判断当前供电系统预设距离范围内是否有待充电车辆接入;
所述信息提取单元,用于当信息接入单元确认当前供电系统预设距离范围内有待充电车辆接入时,通过该待充电车辆的预设数据库提取当前待充电车辆的剩余电容量信息以及电压信息。
所述信息传输单元,用于获取提取当前待充电车辆的剩余电容量信息以及电压信息。
进一步地,所述整流器为二极管整流器,用于将变压器降压后的交流电转为直流电。
进一步地,所述储能装置为动力电池储能装置或超级电容储能装置。
进一步地,储能装置包括储能装置接触器和储能装置熔断器以及储能装置能源管理系统,所述熔断器,用于当储能装置内的动力电池单体电压或超级电 容的单体电压超过预设电压,储能装置内的动力电池单体温度或超级电容的单体温度超过预设温度以及储能装置系统的电压超过预设整体电压,储能装置系统的温度超过预设整体温度时,切断接触器。
进一步地,还包括多功能充电口;
所述多功能充电口设置在第二DC/DC模块和隔离开关之间,用于对所需充电的新能源汽车充电。
进一步地,所述多功能充电口为双向多功能充电口,用于在预设应急状态下,通过所述多功能充电口接入预设应急充电车为带充电车辆充电。
一种基于储能式间歇性车辆供电系统的供电方法,包括步骤:
S1:通过电压传感器获取当前供电轨处的电压是否不为零;
S2:若当前供电轨处的电压为零,通过第一DC/DC模块给储能装置按照预设小功率充电;若当前供电轨处的电压不为零,判断当前供电系统内是否有隔离开关闭合;
S3:若当前供电系统内有隔离开关闭合,继续执行步骤S2;若当前供电系统内没有隔离开关闭合,则闭合当前接入待充电车辆的供电轨的隔离开关;
S4:通过第二DC/DC模块获取第一DC/DC模块和储能装置的电能,并将获取的电能传输至该待充电车辆;
S5:通过电压传感器获取当前供电轨处的电压是否达到预设充满电压;
S6:若是,则控制该供电轨处连接的隔离开关断开。
本发明至少包括以下有益效果:
(1):本供电系统中的变压器、整流装置能够以恒定的功率,经过升压DC/DC进行充电,即能够保持一个较小的功率接入供电系统,不会对供电网络进行冲击。
(2):本供电系统中的包括储能装置,在车辆未进站时,第一DC/DC模块对储能装置进行充电,在车辆进站后,第二DC/DC模块根据车辆上的电压特性进行充电。
(3):本供电系统的整流器能够将降压后的交流点转变成直流电,采用二极管进行整流,最大程度提高整流效率,整流效率不低于99%。
(4):地面储能装置采用动力电池或超级电容进行储能,由多个单体串联和并联后构成,其特点是能够进行大功率的充放电,同时具备内阻小,因此充放电效率高。因此在工作时间内,储能装置在车辆进站时将储存在内部的电能进行高功率输出,满足车辆快充的需求;在车辆离站后,升压DC/DC将采用小功率进行充电,直至充满;在车辆晚间退出运行时不会发生空载损耗的问题。
(5):本供电系统的隔离开关由降压DC/DC控制,为避免不同车辆同时充电造成的短路故障,不同支路的隔离开关相互互锁,不能同时导通。
(6):本供电系统的多功能充电接口,给在正线运行车下线后,需要进行充电的新能源汽车。同时该接口是一个双向的接口,在应急情况下,可以接入应急充电车为车辆进行充电。
(7)地面储能装置总输出采用了接触器和熔断器进行了安全保护,并配置了能源管理系统,一方面能控制储能装置的单体电压在允许的压差范围内,同时若内部出现了单体过压,过温,或者系统过压,过温时能够及时切断接触器,确保系统处于安全状态。
附图说明
图1为间歇性供电系统示意图;
图2为10kv/380V供电直充式示意图;
图3为一种储能式间歇性车辆供电方法流程图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例一
本实施例提供了一种储能式间歇性车辆供电系统,如图1至图2所示,本系统包括:
变压器、整流器、第一DC/DC模块、储能装置、第二DC/DC模块、多个隔离开关以及和隔离开关对应连接的供电轨;
所述变压器的一端与电网入端相连,所述变压器的另一端和整流器的一端连接,所述整流器的另一端和第一DC/DC模块连接,所述第一DC/DC模块的另一端分别接储能装置的一端以及第二DC/DC模块的一端,所述降压DC/DC的另一端通过隔离开关和供电轨连接;
所述第一DC/DC模块,用于待充电车辆未进站时,通过预设小功率对储能装置进行充电;
所述第二DC/DC模块,用于待充电车辆进站时,接收第一DC/DC模块和储能装置的电能,并将接收的电能输出至带充电车辆。
所述第一DC/DC模块为升压DC/DC模块,所述第二DC/DC模块为降压DC/DC模块。
本系统中变压器,整流器能够一直以一个较为恒定的功率,经过第一DC/DC模块进行充电,即能够保持一个较小的功率接入,不会对供电网络进行冲击。由于引入了储能装置,在车辆未进站前,第一DC/DC模块进行充电至储能装置中;当有车辆进站时,第二DC/DC模块控制根据车辆上的电压特性进行充电,即首先检测车辆上储能系统的电压,然后闭合隔离开关进行充电,为了提高充电效率,会采取先恒流方式,再恒功率的输出方式,最后采用恒压充电方式。
如图2所示,变压器输入侧接至10kv供电网,输出侧降压至AC380V,为了提供效率降低空载损耗,变压器的绕组为铜绕组,所述变压器的铁芯为非晶合金铁芯。
本系统可以适应在非10kv供电专线的场景,采用工业供电AC380V实现对车辆的充电,解决部分场景最后需要架设供电专线的问题。
所述的第一DC/DC模块起升压作用,同时其功率设置和所述的变压器功率一致,进一步提升整个供电系统的效率。
进一步地,所述隔离开关和供电轨之间设置有电压传感器;
所述电压传感器用于检测当前供电轨处电压信号,并将检测的电压信号传输至第二DC/DC模块,并当电压传感器检测的当前供电轨处电压信号不为零时,通过第二DC/DC模块控制隔离开关闭合,当电压传感器检测的当前供电轨处电压信号达到预设充满电压时,控制隔离开关断开。
进一步地,还包括隔离开关判断单元;
所述隔离开关判断单元,用于判断当前供电系统是否有隔离开关闭合,若有,当其他待充电车辆进站时,控制其他待充电车辆接入的供电轨上连接的隔离开关持续断开状态,并判断当前供电系统没有隔离开关闭合时,控制其他待充电车辆接入的供电轨上连接的隔离开关闭合。
即在隔离开关输出端设有电压传感器,假若现在隔离开关处于断开状态,当车辆进站后,车辆的受电装置与地面充电装置接触后,电压传感器检测到信号不为零,此时降压DC/DC控制隔离开关闭合,接着降压DC/DC开始输出,直至车辆充满电,断开闭合的隔离开关。当其中一路输出隔离开关闭合,其他车辆进站时,此时该路的开关不能闭合,直至上一路隔离开关断开后才能闭合下一路需要充电的隔离开关。
进一步地,还包括无线通讯单元,所述无线通讯单元包括信息接入单元、信息提取单元以及信息传输单元;
所述信息接入单元,用于通过无线通讯判断当前供电系统预设距离范围内是否有待充电车辆接入;
所述信息提取单元,用于当信息接入单元确认当前供电系统预设距离范围内有待充电车辆接入时,通过该待充电车辆的预设数据库提取当前待充电车辆的剩余电容量信息以及电压信息。
所述信息传输单元,用于获取提取当前待充电车辆的剩余电容量信息以及电压信息。
通过无线通讯单元,能够再次实现待充电车辆未接入供电系统时,对待充电车辆当前的电容量信息以及电压信息的获取。
进一步地,所述整流器为二极管整流器,用于将变压器降压后的交流电转为直流电。
所述的整流装置能够将降压后的交流电转变成直流电,采用二极管进行整流,最大程度提高整流效率,整流效率不低于99%。
进一步地,所述储能装置为动力电池储能装置或超级电容储能装置,充放电功能力在3C以上。所述储能装置降低了车辆充电时对供电网络的依赖。
进一步地,储能装置包括储能装置接触器和储能装置熔断器以及储能装置 能源管理系统,所述熔断器,用于当储能装置内的动力电池单体电压或超级电容的单体电压超过预设电压,储能装置内的动力电池单体温度或超级电容的单体温度超过预设温度以及储能装置系统的电压超过预设整体电压,储能装置系统的温度超过预设整体温度时,切断接触器。
所述储能装置采用动力电池或超级电容进行储能,由多个单体串联和并联后构成,其特点是能够进行大功率的充放电,同时具备内阻小,因此充放电效率高。因此在工作时间内,储能装置在车辆进站时将储存在内部的电能进行高功率输出,满足车辆快充的需求;在车辆离站后,升压DC/DC将采用小功率进行充电,直至充满;在车辆晚间退出运行时不会发生空载损耗的问题。所述的第二DC/DC模块检测到车辆进站后,控制将储能装置的电能和第一DC/DC模块的电能同时输出给需要充电车辆的上。第二DC/DC模块在充电启动前,需要检测隔离开关输出端的电压,然后再控制隔离开关闭合,再启动充电。
所述隔离开关由第二DC/DC模块控制,为避免不同车辆同时充电造成的短路故障,不同支路的隔离开关相互互锁,不能同时导通。
进一步地,还包括多功能充电口;
所述多功能充电口设置在第二DC/DC模块和隔离开关之间,用于对所需充电的新能源汽车充电。
进一步地,所述多功能充电口为双向多功能充电口,用于在预设应急状态下,通过所述多功能充电口接入预设应急充电车为带充电车辆充电。
所述的多功能充电接口用于开放给在正线运行车下线后,需要进行充电的新能源汽车。同时该接口是一个双向的接口,在应急情况下,可以接入应急充电车为车辆进行充电。
实施例二
本实施例提供了一种储能式间歇性车辆供电系统对应的供电方法,如图3所示,本方法包括步骤:
S1:通过电压传感器获取当前供电轨处的电压是否不为零;
S2:若当前供电轨处的电压为零,通过第一DC/DC模块给储能装置按照预设小功率充电;若当前供电轨处的电压不为零,判断当前供电系统内是否有隔离开关闭合;
S3:若当前供电系统内有隔离开关闭合,继续执行步骤S2;若当前供电系统内没有隔离开关闭合,则闭合当前接入待充电车辆的供电轨的隔离开关;
S4:通过第二DC/DC模块获取第一DC/DC模块和储能装置的电能,并将获取的电能传输至该待充电车辆;
S5:通过电压传感器获取当前供电轨处的电压是否达到预设充满电压;
S6:若是,则控制该供电轨处连接的隔离开关断开。
采用本方法,能够通过地面储能装置由超级电容或高功率的动力电池构成,能够满足车辆充电时的大功率输出。一方面降低了接入的容量,为用户减少了容量电价支出成本;其次,减配了变压容量,也降低了空载时的损耗,减少了能耗成本;最后地面储能装置能够降低车辆充电时对供电网络的高度依赖,在具备条件的场所甚至可以在低谷期完成电量的储备。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种储能式间歇性车辆供电系统,其特征在于,包括:
    变压器、整流器、第一DC/DC模块、储能装置、第二DC/DC模块、多个隔离开关以及和隔离开关对应连接的供电轨;
    所述变压器的一端与电网入端相连,所述变压器的另一端和整流器的一端连接,所述整流器的另一端和第一DC/DC模块连接,所述第一DC/DC模块的另一端分别接储能装置的一端以及第二DC/DC模块的一端,所述降压DC/DC的另一端通过隔离开关和供电轨连接;
    所述第一DC/DC模块,用于待充电车辆未进站时,通过预设小功率对储能装置进行充电;
    所述第二DC/DC模块,用于待充电车辆进站时,接收第一DC/DC模块和储能装置的电能,并将接收的电能输出至带充电车辆。
  2. 根据权利要求1所述的一种储能式间歇性车辆供电系统,其特征在于,所述隔离开关和供电轨之间设置有电压传感器;
    所述电压传感器用于检测当前供电轨处电压信号,并将检测的电压信号传输至第二DC/DC模块,并当电压传感器检测的当前供电轨处电压信号不为零时,通过第二DC/DC模块控制隔离开关闭合,当电压传感器检测的当前供电轨处电压信号达到预设充满电压时,控制隔离开关断开。
  3. 根据权利要求2所述的一种储能式间歇性车辆供电系统,其特征在于,包括隔离开关判断单元;
    所述隔离开关判断单元,用于判断当前供电系统是否有隔离开关闭合,若有,当其他待充电车辆进站时,控制其他待充电车辆接入的供电轨上连接的隔离开关持续断开状态,并判断当前供电系统没有隔离开关闭合时,控制其他待充电车辆接入的供电轨上连接的隔离开关闭合。
  4. 根据权利要求1所述的一种储能式间歇性车辆供电系统,其特征在于,
    还包括无线通讯单元,所述无线通讯单元包括信息接入单元、信息提取单元以及信息传输单元;
    所述信息接入单元,用于通过无线通讯判断当前供电系统预设距离范围内是否有待充电车辆接入;
    所述信息提取单元,用于当信息接入单元确认当前供电系统预设距离范围内有待充电车辆接入时,通过该待充电车辆的预设数据库提取当前待充电车辆的剩余电容量信息以及电压信息。
    所述信息传输单元,用于获取提取当前待充电车辆的剩余电容量信息以及电压信息。
  5. 根据权利要求1所述的一种储能式间歇性车辆供电系统,其特征在于,所述整流器为二极管整流器,用于将变压器降压后的交流电转为直流电。
  6. 根据权利要求1所述的一种储能式间歇性车辆供电系统,其特征在于,所述储能装置为动力电池储能装置或超级电容储能装置。
  7. 根据权利要求6所述的一种储能式间歇性车辆供电系统,其特征在于,储能装置包括储能装置接触器和储能装置熔断器以及储能装置能源管理系统,所述熔断器,用于当储能装置内的动力电池单体电压或超级电容的单体电压超过预设电压,储能装置内的动力电池单体温度或超级电容的单体温度超过预设温度以及储能装置系统的电压超过预设整体电压,储能装置系统的温度超过预设整体温度时,切断接触器。
  8. 根据权利要求1所述的一种储能式间歇性车辆供电系统,其特征在于,还包括多功能充电口;
    所述多功能充电口设置在第二DC/DC模块和隔离开关之间,用于对所需充电的新能源汽车充电。
  9. 根据权利要求7所述的一种储能式间歇性车辆供电系统,其特征在于,所述多功能充电口为双向多功能充电口,用于在预设应急状态下,通过所述多功能充电口接入预设应急充电车为带充电车辆充电。
  10. 一种基于上述权利要求1-9任意权利要求的储能式间歇性车辆供电系统的储能式间歇性车辆供电方法,其特征在于,包括步骤:
    S1:通过电压传感器获取当前供电轨处的电压是否不为零;
    S2:若当前供电轨处的电压为零,通过第一DC/DC模块给储能装置按照预设小功率充电;若当前供电轨处的电压不为零,判断当前供电系统内是否有隔离开关闭合;
    S3:若当前供电系统内有隔离开关闭合,继续执行步骤S2;若当前供电 系统内没有隔离开关闭合,则闭合当前接入待充电车辆的供电轨的隔离开关;
    S4:通过第二DC/DC模块获取第一DC/DC模块和储能装置的电能,并将获取的电能传输至该待充电车辆;
    S5:通过电压传感器获取当前供电轨处的电压是否达到预设充满电压;
    S6:若是,则控制该供电轨处连接的隔离开关断开。
PCT/CN2020/127095 2020-05-29 2020-11-06 一种储能式间歇性车辆供电系统及供电方法 WO2021238068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010478180.XA CN111806266A (zh) 2020-05-29 2020-05-29 一种储能式间歇性车辆供电系统及供电方法
CN202010478180.X 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021238068A1 true WO2021238068A1 (zh) 2021-12-02

Family

ID=72848406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127095 WO2021238068A1 (zh) 2020-05-29 2020-11-06 一种储能式间歇性车辆供电系统及供电方法

Country Status (2)

Country Link
CN (1) CN111806266A (zh)
WO (1) WO2021238068A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2618874A (en) * 2022-03-11 2023-11-22 Tdi Greenway Tech Limited Rapid charging arrangement
CN117621891A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 车辆充电系统及储能装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806266A (zh) * 2020-05-29 2020-10-23 宁波中车新能源科技有限公司 一种储能式间歇性车辆供电系统及供电方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401288A (zh) * 2013-08-06 2013-11-20 南车株洲电力机车有限公司 一种储能式电力牵引车辆防止拉弧的充电方法及系统
JP2015229470A (ja) * 2014-06-06 2015-12-21 株式会社東芝 蓄電池監視装置および蓄電池監視装置の制御方法
CN206186811U (zh) * 2016-11-18 2017-05-24 广州白云电器设备股份有限公司 一种有轨电车充电系统
CN108512293A (zh) * 2018-01-23 2018-09-07 上海展枭新能源科技有限公司 一种储能式快速充电装置及充电方法
CN109760553A (zh) * 2019-03-01 2019-05-17 中铁轨道交通装备有限公司 一种跨坐式单轨车辆地面储能供电系统
CN111806266A (zh) * 2020-05-29 2020-10-23 宁波中车新能源科技有限公司 一种储能式间歇性车辆供电系统及供电方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866607A1 (fr) * 2004-02-23 2005-08-26 Herve Benjamin Afriat Systeme d'alimentation en energie electrique a tres basse tension par des rails pour vehicule ferroviaire a stockage d'energie embarque
CN103545901B (zh) * 2013-11-14 2016-01-27 北京先行电气股份有限公司 一种有轨电车大功率充电设备
CN106740151A (zh) * 2016-12-27 2017-05-31 中车唐山机车车辆有限公司 轨道车辆的混合动力系统以及高速动车组
CN110626207B (zh) * 2018-06-01 2021-10-22 比亚迪股份有限公司 轨道交通车辆的充电方法、系统
CN108988447A (zh) * 2018-07-02 2018-12-11 国电南瑞科技股份有限公司 一种用于超级电容储能式有轨电车的供电方法及充电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401288A (zh) * 2013-08-06 2013-11-20 南车株洲电力机车有限公司 一种储能式电力牵引车辆防止拉弧的充电方法及系统
JP2015229470A (ja) * 2014-06-06 2015-12-21 株式会社東芝 蓄電池監視装置および蓄電池監視装置の制御方法
CN206186811U (zh) * 2016-11-18 2017-05-24 广州白云电器设备股份有限公司 一种有轨电车充电系统
CN108512293A (zh) * 2018-01-23 2018-09-07 上海展枭新能源科技有限公司 一种储能式快速充电装置及充电方法
CN109760553A (zh) * 2019-03-01 2019-05-17 中铁轨道交通装备有限公司 一种跨坐式单轨车辆地面储能供电系统
CN111806266A (zh) * 2020-05-29 2020-10-23 宁波中车新能源科技有限公司 一种储能式间歇性车辆供电系统及供电方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2618874A (en) * 2022-03-11 2023-11-22 Tdi Greenway Tech Limited Rapid charging arrangement
CN117621891A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 车辆充电系统及储能装置
CN117621891B (zh) * 2024-01-25 2024-06-11 杭州闪充聚能新能源有限公司 车辆充电系统及储能装置

Also Published As

Publication number Publication date
CN111806266A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN108162989B (zh) 一种城市轨道交通车辆用牵引辅助一体化车载储能系统
WO2021238068A1 (zh) 一种储能式间歇性车辆供电系统及供电方法
CN108407625B (zh) 一种用于新能源汽车双向充放电系统
CN205901410U (zh) 组合式应急保障电源
CN104253469A (zh) 二次电池组充放电管理系统
CN205945204U (zh) 一种组合式应急保障电源
CN103144526A (zh) 一种使用复合电源动力系统的混合动力汽车
CN109768561A (zh) 一种电动汽车控制方法及系统
CN103259059A (zh) 一种液流电池初始充电方法及电路
CN204928197U (zh) 应用于启停系统的双电压超级电容器复合电源
CN103296740B (zh) 电池组自动切换方法
CN109703397A (zh) 基于动力电池储能的多功能移动应急电源车
CN201830015U (zh) 一种车载电源电压监测及备用电池充放电控制装置
CN211320956U (zh) 一种在线式电源的充放电电路及充放电系统
CN205059486U (zh) 一种微混汽车怠速启停电源系统
CN203126503U (zh) 一种使用复合电源动力系统的混合动力汽车
CN205945101U (zh) 组合式超级电池
CN213007648U (zh) 一种氢能源发电设备拓扑结构
CN104242441A (zh) 太阳能与交流电网协同充电系统
CN201663488U (zh) 一种混合动力电动汽车用超级电容器控制装置
CN205989664U (zh) 一种电动车电气系统
CN113479104A (zh) 智能充电多层安全防护系统
CN202042937U (zh) 一种14v轻度混合动力车用动力电源
CN203589818U (zh) 智能车载变电站作业不间断供电系统
CN205989665U (zh) 电动车电气系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937354

Country of ref document: EP

Kind code of ref document: A1