WO2021237677A1 - METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK - Google Patents

METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK Download PDF

Info

Publication number
WO2021237677A1
WO2021237677A1 PCT/CN2020/093265 CN2020093265W WO2021237677A1 WO 2021237677 A1 WO2021237677 A1 WO 2021237677A1 CN 2020093265 W CN2020093265 W CN 2020093265W WO 2021237677 A1 WO2021237677 A1 WO 2021237677A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
volte service
attach
volte
service
Prior art date
Application number
PCT/CN2020/093265
Other languages
French (fr)
Inventor
Dongsheng Wang
Chaofeng HUI
Guojing LIU
Xiaomeng Lu
Xuesong Chen
Bing LENG
Jian Li
Haibo Liu
Bingqing WANG
Jiangang JIAO
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093265 priority Critical patent/WO2021237677A1/en
Publication of WO2021237677A1 publication Critical patent/WO2021237677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a user equipment (UE) configured to increase the performance of a Voice over Long-Term Evolution (VoLTE) service with non-standalone (NSA) new radio (NR) network.
  • UE user equipment
  • VoIP Voice over Long-Term Evolution
  • NSA non-standalone
  • NR new radio
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus are provided.
  • the apparatus of wireless communication is a UE.
  • the UE may determine whether a first tracking area (TA) associated with a first LTE cell supports a VoLTE service. If the first TA of the first LTE cell does not support the VoLTE service, the UE bars the TA and the UE may not attach to the cell associated with the first TA, and initiate a connection to an NR cell associated with a second LTE cell associated with a second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service.
  • TA tracking area
  • the UE may first determine whether the first TA supports the VoLTE service by transmitting an attach request to the first cell, and receiving an attach accept message from the first cell, the attach accept message indicating whether the first TA supports the VoLTE service.
  • the UE may bar the first TA and the UE may not attach to the cell associated with the first TA based on the indication in the attach accept message indicating that VoLTE service is unsupported by the cell associated with the first TA.
  • the UE may initiate the connection to the NR cell associated with the second LTE cell associated with the second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service by transmitting an attach request to the second LTE cell associated with the NR cell and the second TA.
  • the UE may receive an attach accept message from the second LTE cell, the attach accept message indicating that the second TA supports the VoLTE service and add the NR cell associated with the second LTE cell and the second TA in order to receive the VoLTE service. If the UE falls to find any TA that supports the VoLTE service, the UE may unbar the first TA and attaches the first cell associated with the first TA.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram of a wireless communication.
  • FIG. 5 is a flowchart of a method of wireless communication.
  • FIG. 6 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to YMHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component cartier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′ may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102′, employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz.
  • mmW /near mmW radio frequency (RF) band e.g., 3 GHz -300 GHz
  • Base stations /UEs may operate within one or more frequency range bands.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182′.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182′′.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to increase the performance of a Voice over Long-Term Evolution (VoLTE) service with NSA NR network (198) .
  • VoIP Voice over Long-Term Evolution
  • 5G NR 5G NR
  • the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix ofDL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subfrrame.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as Rx for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • the NSA NR network may be employed with an existing LTE network, with the LTE cell working as a master cell, and the NR cell working as secondary cell.
  • the control function of the communication may depend on the control plane of the primary LTE core network, while the NSA NR network focuses on the user plane to provide additional functionality other than the control function.
  • the LTE cell that provides the control function via the control plane may be referred as an LTE anchor cell.
  • a UE may first attach to the LTE anchor cell to establish s connection with the network. Subsequent to successfully establishing a connection by attaching to the LTE anchor cell, the UE may add a secondary cell of a NSA NR base station to establish a 5G connection.
  • the 5G service of the NSA NR base station provided to the UE may be limited to a service that the control function of the LTE anchor cell understands.
  • VoLTE is a standard high-speed wireless communication, which is based on the IP Multimedia Subsystem (IMS) network, with specific profiles for control and media planes of voice service on the LTE wireless broadband service. Accordingly a VoLTE service may deliver the voice service (control and media planes) as data flows within the LTE data bearer, minimizing an involvement of a circuit-switched voice network in the call path.
  • IMS IP Multimedia Subsystem
  • An NSA NR network may provide the VoLTE service to provide a high quality voice service.
  • the Tracking Area (TA) of some LTE anchor cells may not support VoLTE service.
  • the service provided by the NSA NR base station may be limited to the service supported by the LTE anchor cell, a UE attached to the LTE anchor cells in TAs that do not support the VoLTE service may not receive the VoLTE service even if the UE adds a NSA NR cell.
  • the UE may be provided with a non-VoLTE service, which has a lower voice quality than the VoLTE service.
  • the user of the UE may have a bad user experience because the UE may not provide the VoLTE service over the NSA NR network.
  • FIG. 4 is a call flow diagram 400 of a wireless communication.
  • the UE 402 may first determine to establish a wireless communication with the NSA NR network through a cell associated with a first TA 410.
  • the UE 402 may select the cell associated with the first TA 410 based on the measurements of the cells associated with the first TA 410.
  • the UE 402 may determine to select the cell associated with the first TA 410 based on at least one of a signal to noise ratio (SNR) , a signal to interference plus noise ratio (SINR) , a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , or a combination thereof of various cells associated with the first TA that are within range of the UE.
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE 402 may transmit an attach request 430 to a first LTE anchor cell 412.
  • the first LTE anchor cell 412 may transmit an attach response 432 to the UE 402.
  • the first LTE anchor cell 412 may include an indication of the features supported by the first LTE anchor cell 412 in the attach response 432.
  • the LTE network may provide support for an evolved packet core (EPC) network information element (IE) to indicate whether certain features are supported by the first TA 410 associated with the first LTE anchor cell 412.
  • EPC evolved packet core
  • IE network information element
  • the first LTE anchor cell 412 may include the IE value of 0 (0x0) in the attach response 432, indicating that the VoLTE service cannot be provided in the first TA 410.
  • the first LTE anchor cell 412 may include the IE value of 1 (0xl) in the attach response 432, indicating that the VoLTE service can be provided in the first TA 410.
  • the EPS network feature support IE may be coded as shown in Table 1 as provided below.
  • the EPS network feature support may be a type 4 IE with a minimum length of 3 octets and a maximum length of 4 octets. If the octet 1 “EPS network feature support IEI” is coded as unsupported, the octet 2, 3, and 4 are all not included.
  • the first LTE anchor cell 412 may include the IMS voice over PS session indicator (IMS VoPS) (octet 3, bit 1) IE to indicate whether the first LTE anchor cell 412 supports the VoLTE service in the attach response 432 transmitted to the UE 402.
  • IMS VoPS IMS voice over PS session indicator
  • bit 1 of the EPS network feature support IE corresponding to the IMS VoPS may indicate that the VoLTE service is not supported by the first LTE anchor cell 412
  • a bit value of 1 in octet 3 bit 1 of the EPS network feature support IE corresponding to the IMS VoPS may indicate that the VoLTE service is supported by the first LTE anchor cell 412.
  • the UE 402 at 434 may determine, based on the attach response 432 received from the first LTE anchor cell 412, whether the first TA 410 associated with the first LTE anchor cell 412 supports the VoLTE service. Upon determining that the first TA 410 associated with the first LTE anchor cell 412 does not support the VoLTE service based on the attach response 432 received from the first LTE anchor cell 412, at 436 the UE 402 may bar the first TA 410. As such, the UE may not attach to cells associated with the barred first TA 410, including the first LTE anchor cell 412 and the first NSA NR base station 414 associated with the first TA 410.
  • the UE 402 may determine to attach to a cell associated with a second TA 420.
  • the UE 402 may also select the second TA 420 based on the measurements of cells within range of the UE, other than the cells associated with the barred TAs.
  • the UE 402 may determine to select a cell associated with the second TA 420 based on at least one of the SNR, the SINR, the RSRP, the RSRQ, or a combination thereof, of the cell.
  • the SNR, the SINR, the RSRP, or the RSRQ of the selected cell associated with the second TA 420 may be lower than those of cells associated with the first TA 410.
  • the UE since the first TA 410 is barred, which precludes the UE from attaching to a cell associated with the first TA, the UE may determine to select and attach to a cell associated with the second TA 420.
  • the UE 402 may transmit an attach request 440 to a second LTE anchor cell 422 associated with the second TA 420.
  • the second LTE anchor cell 422 may transmit an attach response 442 to the UE 402.
  • the second LTE anchor cell 422 may include the indication of the features supported by the second LTE anchor cell 422 in the attach response 442.
  • the attach response 442 may include the IE indicating whether certain features, including the VoLTE service, are supported by the second LTE anchor cell 422 associated with the second TA 420.
  • the UE 402 at 444 may add the second NSA NR 424 associated with the second TA 420, register the VoLTE service through the second LTE anchor cell 422, to perform the VoLTE service over the second NSA NR base station 424. If at 450 the UE determines that the IE included in the attach response 442 indicates that the second TA 420 does not support the VoLTE service, the UE 402 at 452 may bar the second TA 420. The UE 402 may then select another TA and determine whether that TA supports the VoLTE service.
  • the selection of a TA may be performed until the UE determines that none of the available TAs support the VoLTE service.
  • the UE 402 may unbar the first TA 410, and attach to the first LTE anchor cell 412 and the first NSA NR base station 414 associated with the first TA 410 to provide the wireless communication without the VoLTE service.
  • the UE 402 may choose the TA that supports the VoLTE service over the NSA NR network to improve the quality of the voice call.
  • FIG. 5 is a flowchart 500 of a method of wireless communication.
  • the UE may transmit an attach request (430) to a first LTE anchor cell to establish a wireless communication with the NSA NR network.
  • 502 may be performed by an LTE anchor cell management component 640 of FIG. 6.
  • the UE may receive an attach response (432) in response to the attach request (430) .
  • 503 may be performed by the LTE anchor cell management component 640 of FIG. 6.
  • the UE may determine whether the attach response indicates that the first TA supports VoLTE service (434) .
  • 504 may be performed by a VoLTE service management component 642 of FIG. 6.
  • the UE may add the first NSA NR base station (414) associated with the first TA 410, and register the VoLTE service.
  • 506 may be performed by the VoLTE service management component 642 and an NSA NR management component 644 of FIG. 6.
  • the UE may bar the first TA (410) .
  • 508 may be performed by a TA management component 646 of FIG. 6.
  • the UE may transmit an attach request (440) to a second LTE anchor cell to establish a wireless communication with the NSA NR network.
  • 510 may be performed by the LTE anchor cell management component 640 of FIG. 6.
  • the UE may receive an attach response (442) in response to the attach request (440) .
  • 511 may be performed by the LTE anchor cell management component 640 of FIG. 6.
  • the UE may determine whether the attach response indicates that the second TA (420) supports VoLTE service. For example, 512 may be performed by the VoLTE service management component 642 of FIG. 6.
  • the UE may add the second NSA NR base station (424) associated with the second TA 420, and register a VoLTE service.
  • 514 may be performed by the VoLTE service management component 642 and the NSA NR management component 644 of FIG. 6.
  • the UE may bar the second TA (420) .
  • 516 may be performed by the TA management component 646 of FIG. 6.
  • the UE may unbar the first TA upon failing to detect a TA supporting VoLTE service.
  • 518 may be performed by the TA management component 646 of FIG. 6.
  • the UE may attach to a cell associated with the first TA 410 without the VoLTE service.
  • 520 may be performed by the LTE anchor cell management component 640 of FIG. 6.
  • FIG. 6 is a diagram 600 illustrating an example of a hardware implementation for an apparatus 602.
  • the apparatus 602 is a UE and includes a cellular baseband processor 604 (also referred to as a modem) coupled to a cellular RF transceiver 622 and one or more subscriber identity modules (SIM) cards 620, an application processor 606 coupled to a secure digital (SD) card 608 and a screen 610, a Bluetooth module 612, a wireless local area network (WLAN) module 614, a Global Positioning System (GPS) module 616, and a power supply 618.
  • the cellular baseband processor 604 communicates through the cellular RF transceiver 622 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 604 may include a computer-readable medium /memory.
  • the cellular baseband processor 604 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 604, causes the cellular baseband processor 604 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 604 when executing software.
  • the cellular baseband processor 604 further includes a reception component 630, a communication manager 632, and a transmission component 634.
  • the communication manager 632 includes the one or more illustrated components.
  • the components within the communication manager 632 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 604.
  • the cellular baseband processor 604 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 602 may be a modem chip and include just the baseband processor 604, and in another configuration, the apparatus 602 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforementioned additional modules of the apparatus 602.
  • the communication manager 632 includes an LTE anchor cell management component 640 that is configured to transmit an attach requests to the first and second LTE anchor cells and receive an attach response from the first and second LTE anchor cells, e.g., as described in connection with 502, 503, 510, 511, and 520 of FIG. 5.
  • the communication manager 632 further includes a VoLTE service management component 642 that is configured to determine whether the first and second TA support VoLTE service and register VoLTE service with the network, e.g., as described in connection with 504, 506, 512, and 514 of FIG. 5.
  • the communication manager 632 further includes an NSA NR management component 644 that is configured to add the first and second NSA NR associated with the first and second TAs, respectively, e.g., as described in connection with 506 and 514 of FIG. 5.
  • the communication manager 632 further includes a TA management component 646 that is configured to bar the first and second TAs or unbar the first TA upon failing to detect a TA supporting VoLTE service, e.g., as described in connection with 508, 516, and 518.
  • the components 640, 642, 644, and 646 are configured to communicate with each other.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 5. As such, each block in the aforementioned flowcharts of FIG 5 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 602 includes means for determining whether a first TA associated with a first cell supports VoLTE service, means for barring the UE from attaching to a cell associated with the first TA upon determining that VoLTE service is unsupported by the cell associated with the first TA, and means for initiating a connection to a second cell associated with a second TA for receiving the VoLTE service.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 602 configured to perform the functions recited by the aforementioned means.
  • the apparatus 602 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • the UE may determine whether a first TA associated with a first LTE cell supports a VoLTE service. If the first TA of the first LTE cell does not support the VoLTE service, the UE bars itself from attaching to the cell associated with the first TA, and initiate a connection to an NR cell associated with a second LTE cell associated with a second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service. The UE may first determine whether the first TA supports VoLTE service by transmitting an attach request to the first cell, and receiving an attach accept message from the first cell, the attach accept message indicating whether the first TA supports VoLTE service.
  • the UE may bar the UE from attaching to a cell associated with the first TA based on the indication in the attach accept message indicating that VoLTE service is unsupported by a cell associated with the first TA.
  • the UE may initiate the connection to the NR cell associated with the second LTE cell associated with the second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service by transmitting an attach request to the second LTE cell associated with the NR cell and the second TA.
  • the UE may receive an attach accept message from the second LTE cell, the attach accept message indicating that the second TA supports VoLTE service and add the NR cell associated with the second LTE cell and the second TA in order to receive the VoLTE service. If the UE fails to find any TA that supports VoLTE service, the UE may unbar the first TA and attaches the first cell associated with the first TA.
  • the UE may choose the TA that supports the VoLTE service over the NSA NR network to improve the quality of the voice call.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • 5G NSA network can provide VoLTE Call service to provide high quality voice service.
  • Some LTE anchor cell's TA Tracking Area
  • TA Tracking Area
  • the VoLTE call service cannot be provided even if the UE gets 5G NSA service, and just normal voice call service can be provided, which has a voice quality lower than VoLTE Call. This gives the user a bad experience because high quality VoLTE Call service cannot be provided in 5G NSA network.
  • the network may include an information element (IE) to inform the UE of the support of certain features including the VoLTE service. If the base station does not include such IE, the UE may interpret this as a receipt of an IE that the value part coded is zero, which means that the feature is not supported.
  • IE information element
  • these signaling may be communicated between the UE and the network
  • the network may transmit the attach response including the following IE.
  • the LTE1 base station may include the IE value of 0 (0x0) in the Attach Accept, indicating that the VoLTE Call service cannot be provided in this TA.
  • the LTE1 base station may include the IE value of 1 (0x1) in Attach Accept, indicating that the VoLTE Call service can be provided in this TA.
  • the LTE network may provide evolved packet core (EPC) network feature support information element (IE) to the UE to indicate whether certain features are supported by the network.
  • EPC evolved packet core
  • IE network feature support information element
  • the EPS network feature support IE may be coded as shown in Table 1.
  • the EPS network feature support is a type 4 information element with a minimum length of 3 octets and a maximum length of 4 octets. If the octet 1 “EPS network feature support IEI” is coded as unsupported, the octet 2, 3, and 4 are all not included.
  • the aspects of disclosure could let device bar this TA, then device will have chance to register other TA which support VoLTE and provide VoLTE call service in 5G NSA network.
  • the process is:
  • the device bar the TA#1
  • the device will search and register the TA#2, in TA2's “Attach Accept” message the VoLTE is supported.
  • the device get 5G NSA service in TA#2, the VoLTE Call service can be provided in TA#2 in 5G NSA network.
  • TA#1 (Cell#1) support VOLTE
  • TA#2 (Cell#2) do not support VoLTE
  • the device may fail to keep 5G NSA service over cell#2 (TA#2) and switch to cell#1 (TA#1) , although the cell#2 has stronger signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The apparatus of a wireless communication is a UE. The UE may determine whether a first TA associated with a first LTE anchor cell supports a VoLTE service. If the first TA of the first LTE anchor cell does not support the VoLTE service, the UE bars the first TA so that the UE does not attach to the cell associated with the first TA, and initiate a connection to a second LTE anchor cell and an NR cell associated with a second TA for receiving the VoLTE service, if the second TA of the second LTE anchor cell supports the VoLTE service.

Description

METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK BACKGROUND
Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a user equipment (UE) configured to increase the performance of a Voice over Long-Term Evolution (VoLTE) service with non-standalone (NSA) new radio (NR) network.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G NR. 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus of wireless communication is a UE. The UE may determine whether a first tracking area (TA) associated with a first LTE cell supports a VoLTE service. If the first TA of the first LTE cell does not support the VoLTE service, the UE bars the TA and the UE may not attach to the cell associated with the first TA, and initiate a connection to an NR cell associated with a second LTE cell associated with a second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service. The UE may first determine whether the first TA supports the VoLTE service by transmitting an attach request to the first cell, and receiving an attach accept message from the first cell, the attach accept message indicating whether the first TA supports the VoLTE service. The UE may bar the first TA and the UE may not attach to the cell associated with the first TA based on the indication in the attach accept message indicating that VoLTE service is unsupported by the cell associated with the first TA. The UE may initiate the connection to the NR cell associated with the second LTE cell associated with the second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service by transmitting an attach request to the second LTE cell associated with the NR cell and the second TA. The UE may receive an attach accept message from the second LTE cell, the attach accept message indicating that the second TA supports the VoLTE service and add the NR cell associated with the second LTE cell and the second TA in order to receive the VoLTE service. If the UE falls to find any TA that supports the VoLTE service, the UE may unbar the first TA and attaches the first cell associated with the first TA.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram of a wireless communication.
FIG. 5 is a flowchart of a method of wireless communication.
FIG. 6 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be  described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations  102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to YMHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component cartier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′ may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by  the Wi-Fi AP 150. The small cell 102′, employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102′ or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz -300 GHz) has extremely high path loss and a short range. Base stations /UEs may operate within one or more frequency range bands. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182′. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182″. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a  transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to increase the performance of a Voice over Long-Term Evolution (VoLTE) service with NSA NR network (198) . Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured  with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix ofDL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subfrrame. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ *15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts  (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as Rx for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel  estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs;  and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency  domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided  to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
As a part of the NR deployment options, the NSA NR network may be employed with an existing LTE network, with the LTE cell working as a master cell, and the NR cell working as secondary cell. Particularly in the NSA NR set up, the control function of the communication may depend on the control plane of the primary LTE core network, while the NSA NR network focuses on the user plane to provide additional functionality other than the control function. The LTE cell that provides the control function via the control plane may be referred as an LTE anchor cell. A UE may first attach to the LTE anchor cell to establish s connection with the network. Subsequent to successfully establishing a connection by attaching to the LTE anchor cell, the UE may add a secondary cell of a NSA NR base station to establish a 5G connection.
However, since the control function of the communication depends on the control plane of the LTE anchor cell of the primary LTE core network, the 5G service of the NSA NR base station provided to the UE may be limited to a service that the control function of the LTE anchor cell understands.
VoLTE is a standard high-speed wireless communication, which is based on the IP Multimedia Subsystem (IMS) network, with specific profiles for control and media planes of voice service on the LTE wireless broadband service. Accordingly a VoLTE service may deliver the voice service (control and media planes) as data flows within the LTE data bearer, minimizing an involvement of a circuit-switched voice network in the call path.
An NSA NR network may provide the VoLTE service to provide a high quality voice service. However, the Tracking Area (TA) of some LTE anchor cells may not support VoLTE service. Since the service provided by the NSA NR base station may be limited to the service supported by the LTE anchor cell, a UE attached to the LTE anchor cells in TAs that do not support the VoLTE service may not receive the VoLTE service even if the UE adds a NSA NR cell. Accordingly, the UE may be provided with a non-VoLTE service, which has a lower voice quality than the VoLTE service. As a result, the user of the UE may have a bad user experience because the UE may not provide the VoLTE service over the NSA NR network.
FIG. 4 is a call flow diagram 400 of a wireless communication. The UE 402 may first determine to establish a wireless communication with the NSA NR network through a cell associated with a first TA 410. The UE 402 may select the cell associated with the first TA 410 based on the measurements of the cells associated with the first TA 410. For example, the UE 402 may determine to select the cell associated with the first TA 410 based on at least one of a signal to noise ratio (SNR) , a signal to interference plus noise ratio (SINR) , a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , or a combination thereof of various cells associated with the first TA that are within range of the UE.
More particularly, to establish a wireless communication with the NSA NR network, the UE 402 may transmit an attach request 430 to a first LTE anchor cell 412. In response to receiving an attach request 430 from the UE 402, the first LTE anchor cell 412 may transmit an attach response 432 to the UE 402.
The first LTE anchor cell 412 may include an indication of the features supported by the first LTE anchor cell 412 in the attach response 432. For example, the LTE network may provide support for an evolved packet core (EPC) network information element (IE) to indicate whether certain features are supported by the first TA 410 associated with the first LTE anchor cell 412. For example, if the first TA 410 associated with the first LTE anchor cell 412 does not support VoLTE service, the  first LTE anchor cell 412 may include the IE value of 0 (0x0) in the attach response 432, indicating that the VoLTE service cannot be provided in the first TA 410. If the first TA 410 associated with the first LTE anchor cell 412 does support VoLTE service, the first LTE anchor cell 412 may include the IE value of 1 (0xl) in the attach response 432, indicating that the VoLTE service can be provided in the first TA 410.
For example, the EPS network feature support IE may be coded as shown in Table 1 as provided below.
Figure PCTCN2020093265-appb-000001
<Table 1. example EPS network feature support IE>
The EPS network feature support may be a type 4 IE with a minimum length of 3 octets and a maximum length of 4 octets. If the octet 1 “EPS network feature support IEI” is coded as unsupported, the  octet  2, 3, and 4 are all not included.
For example, the first LTE anchor cell 412 may include the IMS voice over PS session indicator (IMS VoPS) (octet 3, bit 1) IE to indicate whether the first LTE anchor cell 412 supports the VoLTE service in the attach response 432 transmitted to the UE 402. Particularly, a bit value of 0 in octet 3, bit 1 of the EPS network feature support IE corresponding to the IMS VoPS may indicate that the VoLTE service is not supported by the first LTE anchor cell 412, and a bit value of 1 in octet 3, bit 1 of the EPS network feature support IE corresponding to the IMS VoPS may indicate that the VoLTE service is supported by the first LTE anchor cell 412.
The UE 402 at 434 may determine, based on the attach response 432 received from the first LTE anchor cell 412, whether the first TA 410 associated with the first LTE anchor cell 412 supports the VoLTE service. Upon determining that the first TA 410 associated with the first LTE anchor cell 412 does not support the VoLTE service based on the attach response 432 received from the first LTE anchor cell 412, at 436 the UE 402 may bar the first TA 410. As such, the UE may not attach to cells associated with the barred first TA 410, including the first LTE anchor cell 412 and the first NSA NR base station 414 associated with the first TA 410.
In response to barring the first TA 410, the UE 402 may determine to attach to a cell associated with a second TA 420. The UE 402 may also select the second TA 420 based on the measurements of cells within range of the UE, other than the cells associated with the barred TAs. For example, the UE 402 may determine to select a cell associated with the second TA 420 based on at least one of the SNR, the SINR, the RSRP, the RSRQ, or a combination thereof, of the cell. In this case, the SNR, the SINR, the RSRP, or the RSRQ of the selected cell associated with the second TA 420 may be lower than those of cells associated with the first TA 410. However, since the first TA 410 is barred, which precludes the UE from attaching to a cell associated with the first TA, the UE may determine to select and attach to a cell associated with the second TA 420.
To establish the wireless communication with a cell associated with the second TA 420, the UE 402 may transmit an attach request 440 to a second LTE anchor cell 422 associated with the second TA 420. The second LTE anchor cell 422 may transmit an attach response 442 to the UE 402. The second LTE anchor cell 422 may include the indication of the features supported by the second LTE anchor cell 422 in the attach response 442. Accordingly, the attach response 442 may include the IE indicating whether certain features, including the VoLTE service, are supported by the second LTE anchor cell 422 associated with the second TA 420.
If the IE included in the attach response 442 indicates that the second TA 420 supports the VoLTE service, the UE 402 at 444 may add the second NSA NR 424 associated with the second TA 420, register the VoLTE service through the second LTE anchor cell 422, to perform the VoLTE service over the second NSA NR base station 424. If at 450 the UE determines that the IE included in the attach response 442 indicates that the second TA 420 does not support the VoLTE service, the UE 402 at 452 may bar the second TA 420. The UE 402 may then select another TA and determine whether that TA supports the VoLTE service. The selection of a TA may be performed until the UE determines that none of the available TAs support the VoLTE service. Upon failing to find a TA that supports the VoLTE service, at 454 the UE 402 may unbar the first TA 410, and attach to the first LTE anchor cell 412 and the first NSA NR base station 414 associated with the first TA 410 to provide the wireless communication without the VoLTE service.
Accordingly, the UE 402 may choose the TA that supports the VoLTE service over the NSA NR network to improve the quality of the voice call.
FIG. 5 is a flowchart 500 of a method of wireless communication. At 502, the UE may transmit an attach request (430) to a first LTE anchor cell to establish a wireless communication with the NSA NR network. For example, 502 may be performed by an LTE anchor cell management component 640 of FIG. 6.
At 503, the UE may receive an attach response (432) in response to the attach request (430) . For example, 503 may be performed by the LTE anchor cell management component 640 of FIG. 6.
At 504, the UE may determine whether the attach response indicates that the first TA supports VoLTE service (434) . For example, 504 may be performed by a VoLTE service management component 642 of FIG. 6.
At 506, upon the UE determining that the attach response 432 indicates that the first TA (410) supports the VoLTE service, the UE may add the first NSA NR base station (414) associated with the first TA 410, and register the VoLTE service. For example, 506 may be performed by the VoLTE service management component 642 and an NSA NR management component 644 of FIG. 6.
At 508, upon the UE determining that the attach response 432 indicates that the first TA (410) does not support the VoLTE service (434) , the UE may bar the first TA (410) . For example, 508 may be performed by a TA management component 646 of FIG. 6.
At 510, the UE may transmit an attach request (440) to a second LTE anchor cell to establish a wireless communication with the NSA NR network. For example, 510 may be performed by the LTE anchor cell management component 640 of FIG. 6.
Upon receiving the attach response (442) , at 511, the UE may receive an attach response (442) in response to the attach request (440) . For example, 511 may be performed by the LTE anchor cell management component 640 of FIG. 6.
At 512, the UE may determine whether the attach response indicates that the second TA (420) supports VoLTE service. For example, 512 may be performed by the VoLTE service management component 642 of FIG. 6.
At 514, upon the UE determining that the attach response 442 indicates that the second TA (420) supports VoLTE service, the UE may add the second NSA NR base station (424) associated with the second TA 420, and register a VoLTE service. For example, 514 may be performed by the VoLTE service management component 642 and the NSA NR management component 644 of FIG. 6.
At 516, upon the UE determining that the attach response 442 indicates that the second TA (420) does not support VoLTE service (450) , the UE may bar the second TA (420) . For example, 516 may be performed by the TA management component 646 of FIG. 6.
At 518, the UE may unbar the first TA upon failing to detect a TA supporting VoLTE service. For example, 518 may be performed by the TA management component 646 of FIG. 6.
At 520, the UE may attach to a cell associated with the first TA 410 without the VoLTE service. For example, 520 may be performed by the LTE anchor cell management component 640 of FIG. 6.
FIG. 6 is a diagram 600 illustrating an example of a hardware implementation for an apparatus 602. The apparatus 602 is a UE and includes a cellular baseband processor 604 (also referred to as a modem) coupled to a cellular RF transceiver 622 and one or more subscriber identity modules (SIM) cards 620, an application processor 606 coupled to a secure digital (SD) card 608 and a screen 610, a Bluetooth module 612, a wireless local area network (WLAN) module 614, a Global Positioning System (GPS) module 616, and a power supply 618. The cellular baseband processor 604 communicates through the cellular RF transceiver 622 with the UE 104 and/or BS 102/180. The cellular baseband processor 604 may include a computer-readable medium /memory. The cellular baseband processor 604 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 604, causes the cellular baseband processor 604 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 604 when executing software. The cellular baseband processor 604 further includes a reception component 630, a communication manager 632, and a transmission component 634. The communication manager 632 includes the one or more illustrated components. The components within the communication manager 632 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 604. The cellular baseband processor 604 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 602 may be a modem chip and include just the  baseband processor 604, and in another configuration, the apparatus 602 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforementioned additional modules of the apparatus 602.
The communication manager 632 includes an LTE anchor cell management component 640 that is configured to transmit an attach requests to the first and second LTE anchor cells and receive an attach response from the first and second LTE anchor cells, e.g., as described in connection with 502, 503, 510, 511, and 520 of FIG. 5.
The communication manager 632 further includes a VoLTE service management component 642 that is configured to determine whether the first and second TA support VoLTE service and register VoLTE service with the network, e.g., as described in connection with 504, 506, 512, and 514 of FIG. 5. The communication manager 632 further includes an NSA NR management component 644 that is configured to add the first and second NSA NR associated with the first and second TAs, respectively, e.g., as described in connection with 506 and 514 of FIG. 5. The communication manager 632 further includes a TA management component 646 that is configured to bar the first and second TAs or unbar the first TA upon failing to detect a TA supporting VoLTE service, e.g., as described in connection with 508, 516, and 518. The  components  640, 642, 644, and 646 are configured to communicate with each other.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIG. 5. As such, each block in the aforementioned flowcharts of FIG 5 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 602, and in particular the cellular baseband processor 604, includes means for determining whether a first TA associated with a first cell supports VoLTE service, means for barring the UE from attaching to a cell associated with the first TA upon determining that VoLTE service is unsupported by the cell associated with the first TA, and means for initiating a connection to a second cell associated with a second TA for receiving the VoLTE service. The aforementioned means may be one or more of the aforementioned components of  the apparatus 602 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 602 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
Referring again to FIGS. 4, 5, and 6, the UE may determine whether a first TA associated with a first LTE cell supports a VoLTE service. If the first TA of the first LTE cell does not support the VoLTE service, the UE bars itself from attaching to the cell associated with the first TA, and initiate a connection to an NR cell associated with a second LTE cell associated with a second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service. The UE may first determine whether the first TA supports VoLTE service by transmitting an attach request to the first cell, and receiving an attach accept message from the first cell, the attach accept message indicating whether the first TA supports VoLTE service. The UE may bar the UE from attaching to a cell associated with the first TA based on the indication in the attach accept message indicating that VoLTE service is unsupported by a cell associated with the first TA. The UE may initiate the connection to the NR cell associated with the second LTE cell associated with the second TA for receiving the VoLTE service, if the second TA of the second LTE cell supports the VoLTE service by transmitting an attach request to the second LTE cell associated with the NR cell and the second TA. The UE may receive an attach accept message from the second LTE cell, the attach accept message indicating that the second TA supports VoLTE service and add the NR cell associated with the second LTE cell and the second TA in order to receive the VoLTE service. If the UE fails to find any TA that supports VoLTE service, the UE may unbar the first TA and attaches the first cell associated with the first TA.
Accordingly, the UE may choose the TA that supports the VoLTE service over the NSA NR network to improve the quality of the voice call.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or  omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute  for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Method to improve 5G NSA VoLTE Call service
PROBLEM DESCRIPTION:
5G NSA network can provide VoLTE Call service to provide high quality voice service.
Some LTE anchor cell's TA (Tracking Area) do not support VoLTE, and if the 5G NSA device registers on these TA, the VoLTE call service cannot be provided even if the UE gets 5G NSA service, and just normal voice call service can be provided, which has a voice quality lower than VoLTE Call. This gives the user a bad experience because high quality VoLTE Call service cannot be provided in 5G NSA network.
Signaling in attach response indicating the VoLTE call service
The network may include an information element (IE) to inform the UE of the support of certain features including the VoLTE service. If the base station does not include such IE, the UE may interpret this as a receipt of an IE that the value part coded is zero, which means that the feature is not supported.
For example, these signaling may be communicated between the UE and the network
For example, in response to receiving an attach request from the UE, the network may transmit the attach response including the following IE.
In a TA which does not support VoLTE, the LTE1 base station may include the IE value of 0 (0x0) in the Attach Accept, indicating that the VoLTE Call service cannot be provided in this TA.
In a TA which does support VoLTE, the LTE1 base station may include the IE value of 1 (0x1) in Attach Accept, indicating that the VoLTE Call service can be provided in this TA.
For example, the LTE network may provide evolved packet core (EPC) network feature support information element (IE) to the UE to indicate whether certain features are supported by the network. The EPS network feature support IE may be coded as shown in Table 1.
The EPS network feature support is a type 4 information element with a minimum length of 3 octets and a maximum length of 4 octets. If the octet 1 “EPS network feature support IEI” is coded as unsupported, the  octet  2, 3, and 4 are all not included.
Figure PCTCN2020093265-appb-000002
<Table 1 . example EPS network feature support IE>
Figure PCTCN2020093265-appb-000003
Aspects of Disclosure:
If the 5G NSA device register on the TA which do not support VoLTE, the aspects of disclosure could let device bar this TA, then device will have chance to register other TA which support VoLTE and provide VoLTE call service in 5G NSA network.
The process is:
1. The device register on TA#1, but in TA#1's “Attach Accept” message the VoLTE is marked as not supported.
2. The device bar the TA#1
3. The device will search and register the TA#2, in TA2's “Attach Accept” message the VoLTE is supported.
4. The device get 5G NSA service in TA#2, the VoLTE Call service can be provided in TA#2 in 5G NSA network.
flow chart of the aspects of disclosure:
Figure PCTCN2020093265-appb-000004
Aspects of Disclosure: possible scenario
1. Setup 2 5G NSA cells configured with different TAs in test network, TA#1 (Cell#1) support VOLTE, TA#2 (Cell#2) do not support VoLTE
2. Increase the strength of cell#2 stronger than cell#1 and UE may first register to cell#2.
3. According to the aspects of the disclosure, the device may fail to keep 5G NSA service over cell#2 (TA#2) and switch to cell#1 (TA#1) , although the cell#2 has stronger signal.

Claims (19)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    determining whether a first tracking area (TA) associated with a first cell supports a voice over long term evolution (VoLTE) service;
    barring the first TA so that the UE does not attach to the cell associated with the first TA upon determining that VoLTE service is unsupported by the first TA; and
    initiating a connection to a second cell and a third cell associated with a second TA for receiving the VoLTE service.
  2. The method of claim 1, wherein the determining whether the first TA supports the VoLTE service comprises:
    transmitting an attach request to the first cell; and
    receiving, in response to the transmitted attach request, an attach accept message from the first cell, the attach accept message indicating whether the first TA supports the VoLTE service,
    wherein the UE bars the first TA so that the UE does not attach to the cell associated with the first TA based on the indication in the attach accept message indicating that the VoLTE service is unsupported by the cell associated with the first TA.
  3. The method of claim 1, wherein the initiating the connection to the second cell associated with the second TA for receiving the VoLTE service comprises:
    transmitting an attach request to the third cell associated with the second cell and the second TA;
    receiving, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that the second TA supports VoLTE service; and
    adding the second cell associated with the third cell and the second TA in order to receive the VoLTE service.
  4. The method of claim 3, wherein the third cell is an LTE cell and the second cell is a new radio non-standalone (NSA) (NR) cell.
  5. The method of claim 1, wherein at least one of a signal to noise ratio (SNR) , a signal to interference plus noise ratio (SINR) , a reference signal received power (RSRP) , or a reference signal received quality (RSRQ) is lower at the third cell than at the first cell.
  6. The method of claim 1, wherein the initiating the connection to the second cell associated with the second TA for receiving the VoLTE service comprises:
    transmitting an attach request to the third cell associated with the second cell and the second TA; and
    receiving, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that VoLTE service is unsupported by the cell associated with the second TA,
    wherein UE unbars the first TA and attaches the first cell associated with the first TA upon failing to detect a VoLTE service supporting cell.
  7. An apparatus for wireless communication, comprising:
    means for determining whether a first tracking area (TA) associated with a first cell supports a voice over long term evolution (VoLTE) service;
    means for barring the first TA so that the UE does not attach to the cell associated with the first TA upon determining that VoLTE service is unsupported by the first TA; and
    means for initiating a connection to a second cell and a third cell associated with a second TA for receiving the VoLTE service.
  8. The apparatus of claim 7, wherein the means for determining whether the first TA supports the VoLTE service is configured to:
    transmit an attach request to the first cell; and
    receive, in response to the transmitted attach request, an attach accept message from the first cell, the attach accept message indicating whether the first TA supports the VoLTE service,
    wherein the UE bars the first TA so that the UE does not attach to the cell associated with the first TA based on the indication in the attach accept message indicating that the VoLTE service is unsupported by the cell associated with the first TA.
  9. The apparatus of claim 7, wherein the means for initiating the connection to the second cell associated with the second TA for receiving the VoLTE service is configured to:
    transmit an attach request to the third cell associated with the second cell and the second TA;
    receive, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that the second TA supports VoLTE service; and
    add the second cell associated with the third cell and the second TA in order to receive the VoLTE service.
  10. The apparatus of claim 9, wherein the third cell is an LTE cell and the second cell is a new radio non-standalone (NSA) (NR) cell.
  11. The apparatus of claim 7, wherein at least one of a signal to noise ratio (SNR) , a signal to interference plus noise ratio (SINR) , a reference signal received power (RSRP) , or a reference signal received quality (RSRQ) is lower at the third cell than at the first cell.
  12. The apparatus of claim 7, wherein the means for initiating the connection to the second cell associated with the second TA for receiving the VoLTE service is configured to:
    transmit an attach request to the third cell associated with the second cell and the second TA; and
    receive, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that VoLTE service is unsupported by the cell associated with the second TA,
    wherein UE unbars the first TA and attaches the first cell associated with the first TA upon failing to detect a VoLTE service supporting cell.
  13. An apparatus for wireless communication, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine whether a first tracking area (TA) associated with a first cell supports a voice over long term evolution (VoLTE) service;
    bar the first TA so that the UE does not attach to the cell associated with the first TA upon determining that VoLTE service is unsupported by the first TA; and
    initiate a connection to a second cell and a third cell associated with a second TA for receiving the VoLTE service.
  14. The apparatus of claim 13, wherein the at least one processor is further configured to:
    transmit an attach request to the first cell; and
    receive, in response to the transmitted attach request, an attach accept message from the first cell, the attach accept message indicating whether the first TA supports the VoLTE service,
    wherein the UE bars the first TA so that the UE does not attach to the cell associated with the first TA based on the indication in the attach accept message indicating that the VoLTE service is unsupported by the cell associated with the first TA.
  15. The apparatus of claim 13, wherein the at least one processor is further configured to:
    transmit an attach request to the third cell associated with the second cell and the second TA;
    receive, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that the second TA supports VoLTE service; and
    add the second cell associated with the third cell and the second TA in order to receive the VoLTE service.
  16. The apparatus of claim 15, wherein the third cell is an LTE cell and the second cell is a new radio non-standalone (NSA) (NR) cell.
  17. The apparatus of claim 13, wherein at least one of a signal to noise ratio (SNR) , a signal to interference plus noise ratio (SINR) , a reference signal received power (RSRP) , or a reference signal received quality (RSRQ) is lower at the third cell than at the first cell.
  18. The apparatus of claim 13, wherein the at least one processor is further configured to:
    transmit an attach request to the third cell associated with the second cell and the second TA; and
    receive, in response to the transmitted attach request, an attach accept message from the third cell, the attach accept message indicating that VoLTE service is unsupported by the cell associated with the second TA,
    wherein UE unbars the first TA and attaches the first cell associated with the first TA upon failing to detect a VoLTE service supporting cell.
  19. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to:
    determine whether a first tracking area (TA) associated with a first cell supports a voice over long term evolution (VoLTE) service;
    bar the first TA so that the UE does not attach to the cell associated with the first TA upon determining that VoLTE service is unsupported by the first TA; and
    initiate a connection to a second cell and a third cell associated with a second TA for receiving the VoLTE service.
PCT/CN2020/093265 2020-05-29 2020-05-29 METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK WO2021237677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093265 WO2021237677A1 (en) 2020-05-29 2020-05-29 METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093265 WO2021237677A1 (en) 2020-05-29 2020-05-29 METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK

Publications (1)

Publication Number Publication Date
WO2021237677A1 true WO2021237677A1 (en) 2021-12-02

Family

ID=78745489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093265 WO2021237677A1 (en) 2020-05-29 2020-05-29 METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK

Country Status (1)

Country Link
WO (1) WO2021237677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102805A1 (en) * 2021-12-09 2023-06-15 Apple Inc. Non-standalone 5g shared radio access network management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010318A (en) * 2013-02-22 2014-08-27 华为技术有限公司 Service transmission method and device
CN104137582A (en) * 2012-02-22 2014-11-05 Lg电子株式会社 Method and device for supporting voice service in wireless communication system
CN105392159A (en) * 2015-11-02 2016-03-09 中国联合网络通信集团有限公司 Method and device for determining terminal speech strategy
CN105706471A (en) * 2013-11-08 2016-06-22 三星电子株式会社 Method for continuously providing emergency call service through packet network
WO2018065936A1 (en) * 2016-10-07 2018-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Support of single radio voice call continuity in next generation (5g) networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137582A (en) * 2012-02-22 2014-11-05 Lg电子株式会社 Method and device for supporting voice service in wireless communication system
CN104010318A (en) * 2013-02-22 2014-08-27 华为技术有限公司 Service transmission method and device
CN105706471A (en) * 2013-11-08 2016-06-22 三星电子株式会社 Method for continuously providing emergency call service through packet network
CN105392159A (en) * 2015-11-02 2016-03-09 中国联合网络通信集团有限公司 Method and device for determining terminal speech strategy
WO2018065936A1 (en) * 2016-10-07 2018-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Support of single radio voice call continuity in next generation (5g) networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102805A1 (en) * 2021-12-09 2023-06-15 Apple Inc. Non-standalone 5g shared radio access network management
GB2627591A (en) * 2021-12-09 2024-08-28 Apple Inc Non-standalone 5G shared radio access network management

Similar Documents

Publication Publication Date Title
WO2022021335A1 (en) Inter-cell mobility across serving and non-serving cells
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US11800460B2 (en) Indication of potential NR UL transmission in NE-DC
US11330617B2 (en) Scheduling threshold report for multi-transmit/receive points
WO2020251718A1 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
WO2020226835A9 (en) Radio link monitoring reference signals for ues that do not support csi-rs based radio link monitoring
WO2021143380A1 (en) Methods and apparatus for updating pucch spatial relation information
US11476984B2 (en) Flexible spectrum usage with carrier aggregation
US11791971B2 (en) Component carrier group based bandwidth part switching
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
WO2022016369A1 (en) Pdsch dmrs design for phase coherent bundling
US20220039006A1 (en) Dynamic cell functionality determination in l1/l2 based mobility
US11943740B2 (en) Methods and apparatus for repetition of paging and paging DCI
WO2021237677A1 (en) METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK
WO2022077207A1 (en) Assisted connectivity
WO2022061588A1 (en) Standalone cell selection and reselection with channel bandwidth information
WO2021223152A1 (en) Apparatus and method to restrain inappropriate measurement event
WO2022056666A1 (en) Methods and apparatus for video over nr-dc
WO2021253267A1 (en) Method to handle out of local area data network service area
WO2022056667A1 (en) Optimization for stand alone cell selection
WO2022006855A1 (en) Avoid registration in standalone mode for non-standalone subscriber
WO2021237571A1 (en) Method and apparatus for managing wireless communication
WO2022052028A1 (en) Methods and apparatus for mmtc network reliability enhancements
WO2022047609A1 (en) Methods and apparatus for embb capability utilizing modems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938236

Country of ref document: EP

Kind code of ref document: A1