WO2021223152A1 - Apparatus and method to restrain inappropriate measurement event - Google Patents

Apparatus and method to restrain inappropriate measurement event Download PDF

Info

Publication number
WO2021223152A1
WO2021223152A1 PCT/CN2020/088974 CN2020088974W WO2021223152A1 WO 2021223152 A1 WO2021223152 A1 WO 2021223152A1 CN 2020088974 W CN2020088974 W CN 2020088974W WO 2021223152 A1 WO2021223152 A1 WO 2021223152A1
Authority
WO
WIPO (PCT)
Prior art keywords
target cell
signal strength
measured signal
network
base station
Prior art date
Application number
PCT/CN2020/088974
Other languages
French (fr)
Inventor
Yuankun ZHU
Pan JIANG
Chaofeng HUI
Fojian ZHANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/088974 priority Critical patent/WO2021223152A1/en
Publication of WO2021223152A1 publication Critical patent/WO2021223152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a configuration to restrain an inappropriate measurement event in wireless communication systems.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus may be a device at a UE.
  • the device may be a processor and/or a modem at a UE or the UE itself.
  • the apparatus may receive, from a base station, a measurement control indication to measure a signal strength of a target cell.
  • the apparatus may determine whether the target cell is associated with a first network.
  • the apparatus may adjust the measured signal strength of the target cell if the target cell is not associated with the first network.
  • the apparatus may determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating a wireless network.
  • FIG. 5 is a call flow diagram of signaling between a UE and a base station in accordance with certain aspects of the disclosure.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to restrict the reporting of non-5G capable cells.
  • the UE 104 of FIG. 1 may include an adjustment component 198 configured to adjust a measured signal strength of a target cell if the target cell is not associated with a first network (e.g., 5G) .
  • the UE 104 may receive, from a base station, a measurement control indication to measure a signal strength of a target cell.
  • the UE 104 may determine whether the target cell is associated with a first network.
  • the UE 104 may adjust the measured signal strength of the target cell if the target cell is not associated with the first network.
  • the UE 104 may determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • FIG. 4 is a diagram illustrating a wireless network 400 operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) Dual Connectivity (ENDC) .
  • a device e.g., UE 402 operating in ENDC may have an active connection with an cell 408 that supports ENDC.
  • the base station 404 may provide the cell 408 that supports ENDC.
  • the device 402 may report a measurement event of a target cell (e.g., 410) , that does not support ENDC.
  • the base station 406 may provide the cell 410 that does not support ENDC.
  • a handover to the target cell 410 that does not support ENDC may be triggered based on a report 412 of the measurement event, such that the connection with cell 408 that supports ENDC is terminated.
  • a cell measurement of a target cell 410 that does not support ENDC may be inappropriate because it may cause a bad user experience, due to the degradation in quality of the signal.
  • a handover to a cell 410 that does not support ENDC may result in loss in call quality and/or loss of video.
  • the cell 410 that does not support ENDC may not support the call quality and/or video quality present on cell 408 that supports ENDC.
  • the present disclosure relates to improving the manner in which the reporting of a measurement event of a cell is performed in order to restrict the condition of reporting cells that do not support ENDC (e.g., non-5G capable cells) measurement events by introducing an adjustment in the measured reference signal received power (RSRP) .
  • ENDC e.g., non-5G capable cells
  • the condition of checking of a reporting measurement event of a cell may be based on a RSRP.
  • a device may be configured with an adjustment value to adjust the measured RSRP of a cell that does not support ENDC (e.g., non-5G capable cell) .
  • the adjustment value may be 4 dBs.
  • the disclosure is not intended to be limited to the aspects presented herein.
  • the adjustment value may be less than or greater than 4 dBs.
  • a device may calculate an adjusted RSRP of a cell that does not support ENDC by taking the measured RSRP of the cell and subtracting the adjustment value.
  • the adjusted RSRP may be used by the device to determine whether such adjusted RSRP meets the condition of reporting a measurement event to the base station (e.g., serving cell) .
  • the adjustment value utilized by the device may raise a threshold of the target cell that does not support ENDC in order to meet a measurement event reporting condition. Adjusting the measured RSRP of the target cell that does not support ENDC may allow for some control of the reporting of the measurement event. As such, the adjustment value may allow for a call on a cell that supports ENDC to remain on such cell until the cell that does not support ENDC exceeds the raised threshold based on the adjustment value.
  • FIG. 5 is a call flow diagram 500 between a UE 502 and a base station 504.
  • the base station 504 may provide a cell serving UE 502.
  • the base station 504 may correspond to the base station 102/180 and, accordingly, the cell may include a geographic coverage area 110 in which communication coverage is provided and/or small cell 102’ having a coverage area 110’ .
  • the UE 502 may correspond to at least UE 104.
  • the base station 504 may correspond to the base station 310 and the UE 502 may correspond to the UE 350.
  • the base station 504 may transmit a measurement control indication 506 to the UE 502.
  • the UE may receive the measurement control indication from the base station 504.
  • the measurement control indication may indicate instructions for the UE to measure a signal strength of at least one target cell.
  • the measurement control indication 506 may include a list of target cells to be measured by the UE 502.
  • the list of target cells may include target cells that support ENDC or do not support ENDC.
  • the UE 502 may determine whether the at least one target cell is associated with a first network.
  • the first network may be an ENDC network.
  • the UE 502 may adjust the measured signal strength of the target cell.
  • the UE may adjust the measured signal strength of the target cell if the target cell is not associated with the first network.
  • the measured signal strength of the target cell may be based on RSRP.
  • the UE 502 may reduce the measured signal strength of the target cell based on an adjustment value.
  • the UE 502 may reduce the measured signal strength of the target cell based on the adjustment value to adjust the measured signal strength of the target cell that is not associated with the first network.
  • the adjustment value may raise a threshold of the first network in order to meet a measurement event reporting condition.
  • the UE does not adjust the measured signal strength of the target cell.
  • the UE may proceed with normal operation and measure the signal strength of the target cell.
  • the UE may utilized the actual measured RSRP of such target cell to determine whether to report the measured signal strength to the base station 504.
  • the UE 502 may determine whether to report an adjusted measured signal strength of the target cell.
  • the UE 502 may determine whether to report the adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  • the UE 502 may report the adjusted measured signal strength of the target cell to the base station 504 if the adjusted measured signal strength meets the threshold for the measurement event reporting condition.
  • the UE 502 may determine whether the adjusted measured signal strength of the target cell is greater than a threshold. The UE 502 may determine whether the adjusted measured signal strength of the target cell is greater than the threshold to determine whether to report the adjusted measured signal strength of the target cell. The UE 502 may report the adjusted measured signal strength of the target cell to the base station 504. The threshold may be based on an adjustment performed on the measured signal strength of the target cell.
  • the UE 502 may transmit an adjusted measured signal strength indication 514 to the base station 504.
  • the adjusted measured signal strength indication 514 may indicate the adjusted measured signal strength of the target cell.
  • the adjusted measured signal strength indication 514 may be transmitted based on the determination of whether to report an adjusted measured signal strength of the target cell.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 502; the apparatus 702; the device 350; a processing system, which may include the memory and components configured to perform each of the blocks of the method, and which may be the entire UE or a component of the UE, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • one or more of the illustrated operations of the method 600 may be omitted, transposed, and/or contemporaneously performed.
  • Optional aspects are illustrated with a dashed line.
  • the method may enable a UE to restrict the reporting of non-5G capable cells by adjusting the measured RSRP of the non-5G capable cells.
  • the UE may receive a measurement control indication.
  • 602 may be performed by measurement component 740 of apparatus 702.
  • the UE may receive the measurement control indication from a base station.
  • the measurement control indication may indicate instructions to measure a signal strength of a target cell.
  • the UE may determine whether the target cell is associated with a first network.
  • 604 may be performed by determination component 742 of apparatus 702.
  • the first network may be an ENDC network.
  • the UE may adjust the measured signal strength of the target cell.
  • 606 may be performed by adjustment component 744 of apparatus 702.
  • the UE may adjust the measured signal strength of the target cell if the target cell is not associated with the first network.
  • the measured signal strength of the target cell may be based on RSRP.
  • the UE may reduce the measured signal strength of the target cell based on an adjustment value.
  • 608 may be performed by reduction component 746 of apparatus 702.
  • the UE may reduce the measured signal strength of the target cell based on the adjustment value to adjust the measured signal strength of the target cell that is not associated with the first network.
  • the adjustment value may raise a threshold of the first network in order to meet a measurement event reporting condition.
  • the UE may determine whether to report an adjusted measured signal strength of the target cell. For example, 610 may be performed by report component 748 of apparatus 702. The UE may determine whether to report the adjusted measured signal strength of the target cell based on the adjusted measured signal strength. The UE may report the adjusted measured signal strength of the target cell to the base station.
  • the UE may determine whether the adjusted measured signal strength of the target cell is greater than a threshold.
  • 612 may be performed by signal component 750 of apparatus 702.
  • the UE may determine whether the adjusted measured signal strength of the target cell is greater than the threshold to determine whether to report the adjusted measured signal strength of the target cell.
  • the threshold may be based on an adjustment performed on the measured signal strength of the target cell.
  • FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702.
  • the apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718.
  • the cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 704 may include a computer-readable medium /memory.
  • the cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software.
  • the cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734.
  • the communication manager 732 includes the one or more illustrated components.
  • the components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704.
  • the cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
  • the communication manager 732 includes a measurement component 740 that is configured to receive a measurement control indication, e.g., as described in connection with 602 of FIG. 6.
  • the communication manager 732 further includes a determination component 742 that is configured to determine whether a target cell is associated with a first network, e.g., as described in connection with 604 of FIG. 6.
  • the communication manager 732 further includes an adjustment component 744 that is configured to adjust the measured signal strength of the target cell, e.g., as described in connection with 606 of FIG. 6.
  • the communication manager 732 further includes a reduction component 746 that is configured to reduce the measured signal strength of the target cell based on an adjustment value, e.g., as described in connection with 608 of FIG. 6.
  • the communication manager 732 further includes a report component 748 that is configured to determine whether to report an adjusted measured signal strength of the target cell, e.g., as described in connection with 610 of FIG. 6.
  • the communication manager 732 further includes a signal component 750 that is configured to determine whether the adjusted measured signal strength of the target cell is greater than a threshold, e.g., as described in connection with 612 of FIG. 6.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 702 includes means for means for receiving, from a base station, a measurement control indication to measure a signal strength of a target cell.
  • the apparatus includes means for determining whether the target cell is associated with a first network.
  • the apparatus includes means for adjusting the measured signal strength of the target cell if the target cell is not associated with the first network.
  • the apparatus includes means for determining whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  • the apparatus may further include means for reducing the measured signal strength of the target cell by an adjustment value.
  • the means for determining whether to report the adjusted measured signal strength of the target cell may be configured to determine whether the adjusted measured signal strength of the target cell is greater than a threshold.
  • the threshold may be based on an adjustment performed to the measured signal strength of the target cell.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means.
  • the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A configuration to enable a UE to restrict the reporting of non-5G capable cells by adjusting the measured RSRP. The apparatus may receive, from a base station, a measurement control indication to measure a signal strength of a target cell. The apparatus may determine whether the target cell is associated with a first network. The apparatus may adjust the measured signal strength of the target cell if the target cell is not associated with the first network. The apparatus may determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.

Description

APPARATUS AND METHOD TO RESTRAIN INAPPROPRIATE MEASUREMENT EVENT BACKGROUND
Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a configuration to restrain an inappropriate measurement event in wireless communication systems.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi- access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device at a UE. The device may be a processor and/or a modem at a UE or the UE itself. The apparatus may receive, from a base station, a measurement control indication to measure a signal strength of a target cell. The apparatus may determine whether the target cell is associated with a first network. The apparatus may adjust the measured signal strength of the target cell if the target cell is not associated with the first network. The apparatus may determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating a wireless network.
FIG. 5 is a call flow diagram of signaling between a UE and a base station in accordance with certain aspects of the disclosure.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state  machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions,  the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be  referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102'may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102'or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.  Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast  Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to restrict the reporting of non-5G capable cells. For example, the UE 104 of FIG. 1  may include an adjustment component 198 configured to adjust a measured signal strength of a target cell if the target cell is not associated with a first network (e.g., 5G) . The UE 104 may receive, from a base station, a measurement control indication to measure a signal strength of a target cell. The UE 104 may determine whether the target cell is associated with a first network. The UE 104 may adjust the measured signal strength of the target cell if the target cell is not associated with the first network. The UE 104 may determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one  particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may  have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport  channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted  by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
FIG. 4 is a diagram illustrating a wireless network 400 operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) Dual Connectivity (ENDC) . A device (e.g., UE 402) operating in ENDC may have an active connection with an cell 408 that supports ENDC. The base station 404 may provide the cell 408 that supports ENDC. The device 402 may report a measurement event of a target cell (e.g., 410) , that does not support ENDC. The base station 406 may provide the cell 410 that does not support ENDC. A handover to the target cell 410 that does not support ENDC may be triggered based on a report 412 of the measurement event, such that the connection with cell 408 that supports ENDC is terminated. A cell measurement of a target cell 410 that does not support ENDC may be inappropriate because it may cause a bad user experience, due to the degradation in quality of the signal. In such instances, a handover to a cell 410 that does not support ENDC may result in loss in call quality and/or loss of video. The cell 410 that does not support ENDC may not support the call quality and/or video quality present on cell 408 that supports ENDC.
The present disclosure relates to improving the manner in which the reporting of a measurement event of a cell is performed in order to restrict the condition of reporting cells that do not support ENDC (e.g., non-5G capable cells) measurement events by introducing an adjustment in the measured reference signal received power (RSRP) .
The condition of checking of a reporting measurement event of a cell may be based on a RSRP. A device may be configured with an adjustment value to adjust the measured RSRP of a cell that does not support ENDC (e.g., non-5G capable  cell) . In some aspects, the adjustment value may be 4 dBs. However, the disclosure is not intended to be limited to the aspects presented herein. In some aspects, the adjustment value may be less than or greater than 4 dBs. A device may calculate an adjusted RSRP of a cell that does not support ENDC by taking the measured RSRP of the cell and subtracting the adjustment value. The adjusted RSRP may be used by the device to determine whether such adjusted RSRP meets the condition of reporting a measurement event to the base station (e.g., serving cell) . The adjustment value utilized by the device may raise a threshold of the target cell that does not support ENDC in order to meet a measurement event reporting condition. Adjusting the measured RSRP of the target cell that does not support ENDC may allow for some control of the reporting of the measurement event. As such, the adjustment value may allow for a call on a cell that supports ENDC to remain on such cell until the cell that does not support ENDC exceeds the raised threshold based on the adjustment value.
FIG. 5 is a call flow diagram 500 between a UE 502 and a base station 504. Optional aspects are illustrated with a dashed line. The base station 504 may provide a cell serving UE 502. For example, in the context of FIG. 1, the base station 504 may correspond to the base station 102/180 and, accordingly, the cell may include a geographic coverage area 110 in which communication coverage is provided and/or small cell 102’ having a coverage area 110’ . Further, the UE 502 may correspond to at least UE 104. In another example, in the context of FIG. 3, the base station 504 may correspond to the base station 310 and the UE 502 may correspond to the UE 350.
As illustrated in FIG. 5, the base station 504 may transmit a measurement control indication 506 to the UE 502. The UE may receive the measurement control indication from the base station 504. The measurement control indication may indicate instructions for the UE to measure a signal strength of at least one target cell. The measurement control indication 506 may include a list of target cells to be measured by the UE 502. The list of target cells may include target cells that support ENDC or do not support ENDC.
At 508, the UE 502, may determine whether the at least one target cell is associated with a first network. In some aspects, the first network may be an ENDC network.
At 510, the UE 502, may adjust the measured signal strength of the target cell. The UE may adjust the measured signal strength of the target cell if the target cell is not associated with the first network. In some aspects, the measured signal strength of the target cell may be based on RSRP.
In some aspects, the UE 502 may reduce the measured signal strength of the target cell based on an adjustment value. The UE 502 may reduce the measured signal strength of the target cell based on the adjustment value to adjust the measured signal strength of the target cell that is not associated with the first network. In some aspects, the adjustment value may raise a threshold of the first network in order to meet a measurement event reporting condition.
In some aspects, for example if the target cell is associated with the first network (e.g., ENDC) , the UE does not adjust the measured signal strength of the target cell. In such instances, the UE may proceed with normal operation and measure the signal strength of the target cell. The UE may utilized the actual measured RSRP of such target cell to determine whether to report the measured signal strength to the base station 504.
At 512, the UE 502 may determine whether to report an adjusted measured signal strength of the target cell. The UE 502 may determine whether to report the adjusted measured signal strength of the target cell based on the adjusted measured signal strength. The UE 502 may report the adjusted measured signal strength of the target cell to the base station 504 if the adjusted measured signal strength meets the threshold for the measurement event reporting condition.
In some aspects, the UE 502 may determine whether the adjusted measured signal strength of the target cell is greater than a threshold. The UE 502 may determine whether the adjusted measured signal strength of the target cell is greater than the threshold to determine whether to report the adjusted measured signal strength of the target cell. The UE 502 may report the adjusted measured signal strength of the target cell to the base station 504. The threshold may be based on an adjustment performed on the measured signal strength of the target cell.
In some aspects, the UE 502 may transmit an adjusted measured signal strength indication 514 to the base station 504. The adjusted measured signal strength indication 514 may indicate the adjusted measured signal strength of the target cell. The adjusted measured signal strength indication 514 may be transmitted based on  the determination of whether to report an adjusted measured signal strength of the target cell.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 502; the apparatus 702; the device 350; a processing system, which may include the memory and components configured to perform each of the blocks of the method, and which may be the entire UE or a component of the UE, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . According to various aspects, one or more of the illustrated operations of the method 600 may be omitted, transposed, and/or contemporaneously performed. Optional aspects are illustrated with a dashed line. The method may enable a UE to restrict the reporting of non-5G capable cells by adjusting the measured RSRP of the non-5G capable cells.
At 602, the UE may receive a measurement control indication. For example, 602 may be performed by measurement component 740 of apparatus 702. The UE may receive the measurement control indication from a base station. The measurement control indication may indicate instructions to measure a signal strength of a target cell.
At 604, the UE may determine whether the target cell is associated with a first network. For example, 604 may be performed by determination component 742 of apparatus 702. In some aspects, the first network may be an ENDC network.
At 606, the UE may adjust the measured signal strength of the target cell. For example, 606 may be performed by adjustment component 744 of apparatus 702. The UE may adjust the measured signal strength of the target cell if the target cell is not associated with the first network. In some aspects, the measured signal strength of the target cell may be based on RSRP.
In some aspects, for example at 608, the UE may reduce the measured signal strength of the target cell based on an adjustment value. For example, 608 may be performed by reduction component 746 of apparatus 702. The UE may reduce the measured signal strength of the target cell based on the adjustment value to adjust the measured signal strength of the target cell that is not associated with the first network. In some aspects, the adjustment value may raise a threshold of the first network in order to meet a measurement event reporting condition.
At 610, the UE may determine whether to report an adjusted measured signal strength of the target cell. For example, 610 may be performed by report component  748 of apparatus 702. The UE may determine whether to report the adjusted measured signal strength of the target cell based on the adjusted measured signal strength. The UE may report the adjusted measured signal strength of the target cell to the base station.
In some aspects, for example at 612, the UE may determine whether the adjusted measured signal strength of the target cell is greater than a threshold. For example, 612, may be performed by signal component 750 of apparatus 702. The UE may determine whether the adjusted measured signal strength of the target cell is greater than the threshold to determine whether to report the adjusted measured signal strength of the target cell. The threshold may be based on an adjustment performed on the measured signal strength of the target cell.
FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702. The apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718. The cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180. The cellular baseband processor 704 may include a computer-readable medium /memory. The cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software. The cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734. The communication manager 732 includes the one or more illustrated components. The components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704. The cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the  controller/processor 359. In one configuration, the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
The communication manager 732 includes a measurement component 740 that is configured to receive a measurement control indication, e.g., as described in connection with 602 of FIG. 6. The communication manager 732 further includes a determination component 742 that is configured to determine whether a target cell is associated with a first network, e.g., as described in connection with 604 of FIG. 6. The communication manager 732 further includes an adjustment component 744 that is configured to adjust the measured signal strength of the target cell, e.g., as described in connection with 606 of FIG. 6. The communication manager 732 further includes a reduction component 746 that is configured to reduce the measured signal strength of the target cell based on an adjustment value, e.g., as described in connection with 608 of FIG. 6. The communication manager 732 further includes a report component 748 that is configured to determine whether to report an adjusted measured signal strength of the target cell, e.g., as described in connection with 610 of FIG. 6. The communication manager 732 further includes a signal component 750 that is configured to determine whether the adjusted measured signal strength of the target cell is greater than a threshold, e.g., as described in connection with 612 of FIG. 6.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 702, and in particular the cellular baseband processor 704, includes means for means for receiving, from a base station, a measurement control indication to measure a signal strength of a target cell. The apparatus includes means for determining whether the target cell is associated with a first network. The apparatus includes means for adjusting the measured signal  strength of the target cell if the target cell is not associated with the first network. The apparatus includes means for determining whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength. The apparatus may further include means for reducing the measured signal strength of the target cell by an adjustment value. The means for determining whether to report the adjusted measured signal strength of the target cell may be configured to determine whether the adjusted measured signal strength of the target cell is greater than a threshold. The threshold may be based on an adjustment performed to the measured signal strength of the target cell. The aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a  condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (19)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    receiving, from a base station, a measurement control indication to measure a signal strength of a target cell;
    determining whether the target cell is associated with a first network;
    adjusting the measured signal strength of the target cell if the target cell is not associated with the first network; and
    determining whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  2. The method of claim 1, wherein the first network is an Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) Dual Connectivity (ENDC) network.
  3. The method of claim 1, wherein the adjusting the measured signal strength further comprises:
    reducing the measured signal strength of the target cell by an adjustment value.
  4. The method of claim 3, wherein the adjustment value raises a threshold of the first network in order to meet a measurement event reporting condition.
  5. The method of claim 1, wherein the measured signal strength of the target cell is based on reference signal received power (RSRP) .
  6. The method of claim 1, wherein the determining whether to report the adjusted measured signal strength of the target cell comprises:
    determining whether the adjusted measured signal strength of the target cell is greater than a threshold, wherein the threshold is based on an adjustment performed to the measured signal strength of the target cell.
  7. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for receiving, from a base station, a measurement control indication to measure a signal strength of a target cell;
    means for determining whether the target cell is associated with a first network;
    means for adjusting the measured signal strength of the target cell if the target cell is not associated with the first network; and
    means for determining whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  8. The apparatus of claim 7, wherein the first network is an Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) Dual Connectivity (ENDC) network.
  9. The apparatus of claim 7, wherein the adjusting the measured signal strength further comprises:
    means for reducing the measured signal strength of the target cell by an adjustment value.
  10. The apparatus of claim 9, wherein the adjustment value raises a threshold of the first network in order to meet a measurement event reporting condition.
  11. The apparatus of claim 7, wherein the measured signal strength of the target cell is based on reference signal received power (RSRP) .
  12. The apparatus of claim 7, wherein the means for determining whether to report the adjusted measured signal strength of the target cell is configured to:
    determine whether the adjusted measured signal strength of the target cell is greater than a threshold, wherein the threshold is based on an adjustment performed to the measured signal strength of the target cell.
  13. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, from a base station, a measurement control indication to measure a signal strength of a target cell;
    determine whether the target cell is associated with a first network;
    adjust the measured signal strength of the target cell if the target cell is not associated with the first network; and
    determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
  14. The apparatus of claim 13, wherein the first network is an Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) Dual Connectivity (ENDC) network.
  15. The apparatus of claim 13, wherein to adjust the measured signal strength, the at least one processor is further configured to:
    reduce the measured signal strength of the target cell by an adjustment value.
  16. The apparatus of claim 15, wherein the adjustment value raises a threshold of the first network in order to meet a measurement event reporting condition.
  17. The apparatus of claim 13, wherein the measured signal strength of the target cell is based on reference signal received power (RSRP) .
  18. The apparatus of claim 13, wherein to determine whether to report the adjusted measured signal strength of the target cell, the at least one processor is further configured to:
    determine whether the adjusted measured signal strength of the target cell is greater than a threshold, wherein the threshold is based on an adjustment performed to the measured signal strength of the target cell.
  19. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to:
    receive, from a base station, a measurement control indication to measure a signal strength of a target cell;
    determine whether the target cell is associated with a first network;
    adjust the measured signal strength of the target cell if the target cell is not associated with the first network; and
    determine whether to report, to the base station, an adjusted measured signal strength of the target cell based on the adjusted measured signal strength.
PCT/CN2020/088974 2020-05-07 2020-05-07 Apparatus and method to restrain inappropriate measurement event WO2021223152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088974 WO2021223152A1 (en) 2020-05-07 2020-05-07 Apparatus and method to restrain inappropriate measurement event

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088974 WO2021223152A1 (en) 2020-05-07 2020-05-07 Apparatus and method to restrain inappropriate measurement event

Publications (1)

Publication Number Publication Date
WO2021223152A1 true WO2021223152A1 (en) 2021-11-11

Family

ID=78467665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088974 WO2021223152A1 (en) 2020-05-07 2020-05-07 Apparatus and method to restrain inappropriate measurement event

Country Status (1)

Country Link
WO (1) WO2021223152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005327A4 (en) * 2019-07-29 2023-05-03 Qualcomm Incorporated Techniques for cell selection for dual-connectivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099416A (en) * 2018-01-29 2019-08-06 中国移动通信有限公司研究院 Inter-system measuring method, device and terminal
CN110557776A (en) * 2019-05-16 2019-12-10 Oppo广东移动通信有限公司 network connection control method, terminal and storage medium
CN110636626A (en) * 2018-06-21 2019-12-31 华为技术有限公司 Communication method, communication device and network device
CN110677869A (en) * 2019-09-16 2020-01-10 Oppo广东移动通信有限公司 Network connection control method, terminal and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099416A (en) * 2018-01-29 2019-08-06 中国移动通信有限公司研究院 Inter-system measuring method, device and terminal
CN110636626A (en) * 2018-06-21 2019-12-31 华为技术有限公司 Communication method, communication device and network device
CN110557776A (en) * 2019-05-16 2019-12-10 Oppo广东移动通信有限公司 network connection control method, terminal and storage medium
CN110677869A (en) * 2019-09-16 2020-01-10 Oppo广东移动通信有限公司 Network connection control method, terminal and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On the impact of UL LBT on measurement reporting", 3GPP DRAFT; R4-1915250, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, Nevada, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819478 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005327A4 (en) * 2019-07-29 2023-05-03 Qualcomm Incorporated Techniques for cell selection for dual-connectivity

Similar Documents

Publication Publication Date Title
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US11800460B2 (en) Indication of potential NR UL transmission in NE-DC
EP4088407A1 (en) Non-terrestrial network power control based on harq retransmission on or off
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US11476984B2 (en) Flexible spectrum usage with carrier aggregation
WO2021253328A1 (en) Method and apparatus for managing signal transmission power mode
WO2021226884A1 (en) Ue indication of coherent uplink transmission
WO2021223216A1 (en) System and method for group component carrier-based beam update
US20230276420A1 (en) User equipment beam selection based on service demands
WO2021223152A1 (en) Apparatus and method to restrain inappropriate measurement event
WO2021164513A1 (en) Power rebalancing in a maximum permissible exposure event
US20230239123A1 (en) Associating transmission reception point with control resource set
WO2021237677A1 (en) METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK
US11870589B2 (en) Method and apparatus with multi-configuration HARQ message
US20220039006A1 (en) Dynamic cell functionality determination in l1/l2 based mobility
WO2021232231A1 (en) Apparatus and method to induce high-sensitive channel state information reference signal beam switching
WO2021237571A1 (en) Method and apparatus for managing wireless communication
WO2022151130A1 (en) Methods and apparatus for multi-part beam reporting for mpe
WO2021253267A1 (en) Method to handle out of local area data network service area
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
WO2022006855A1 (en) Avoid registration in standalone mode for non-standalone subscriber
US20220224494A1 (en) Base station controlled temporal filtering of channel state information
WO2022056666A1 (en) Methods and apparatus for video over nr-dc
WO2022051923A1 (en) Activation of joint dl/ul tci state for single dci and multiple trps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934783

Country of ref document: EP

Kind code of ref document: A1