WO2021237611A1 - Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover - Google Patents

Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover Download PDF

Info

Publication number
WO2021237611A1
WO2021237611A1 PCT/CN2020/093019 CN2020093019W WO2021237611A1 WO 2021237611 A1 WO2021237611 A1 WO 2021237611A1 CN 2020093019 W CN2020093019 W CN 2020093019W WO 2021237611 A1 WO2021237611 A1 WO 2021237611A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal strength
ssb
strength measurement
measurement
handover
Prior art date
Application number
PCT/CN2020/093019
Other languages
French (fr)
Inventor
Zhuoqi XU
Yuankun ZHU
Pan JIANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093019 priority Critical patent/WO2021237611A1/en
Publication of WO2021237611A1 publication Critical patent/WO2021237611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • aspects of the present disclosure relate generally to wireless communication and to techniques for modifying a synchronization signal block (SSB) measurement for a measurement report to induce an SSB handover.
  • SSB synchronization signal block
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (such as time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • 3G 3 rd generation
  • 4G 4 th generation
  • 4G 4 th generation
  • 4G 4 th generation
  • 5G 5 th Generation
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than 3G or LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave (mmW) ) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • Wireless communication networks may support some combination of 2G, 3G, LTE, and 5G NR technologies.
  • a UE may communicate with the wireless communication network using one or more of the 2G, 3G, LTE, and 5G NR technologies.
  • the UE may use 5G NR for some applications, such as data transmissions, and may use LTE for other applications, such as voice transmissions.
  • a UE also may have access to wireless local area networks (WLANs) in the wireless communication network.
  • WLANs wireless local area networks
  • the method may include determining, from a plurality of synchronization signal blocks (SSBs) received from a base station (BS) of a wireless wide area network (WWAN) , that a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB.
  • the method may include modifying the first signal strength measurement with a signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement.
  • the method may include outputting a measurement report for transmission to the BS.
  • the measurement report may include the modified first signal strength measurement and the second signal strength measurement.
  • the first signal strength measurement may be modified with the signal strength compensation amount to cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
  • the first signal strength measurement may be modified with the signal strength compensation amount to increase a difference between the first signal strength measurement and the second signal strength measurement.
  • the method may include determining that the first signal strength measurement associated with the candidate SSB is greater than the second signal strength measurement associated with the serving SSB by at least a signal strength threshold, and modifying the first signal strength measurement with the signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement by at least the signal strength threshold.
  • the first signal strength measurement and the second signal strength measurement may be reference signal received power (RSRP) measurements
  • the signal strength threshold may be an RSRP threshold
  • the signal strength compensation amount may be an RSRP compensation amount.
  • the signal strength compensation amount may be greater than the signal strength threshold to significantly increase a difference between the first signal strength measurement and the second signal strength measurement.
  • a value of the signal strength compensation amount may be 15 decibels (dB) and a value of the signal strength threshold may be 6 db.
  • a value of the signal strength compensation amount and a value of the signal strength threshold may be configurable.
  • the method may include obtaining, after outputting the measurement report that includes the modified first signal strength measurement and the second signal strength measurement, an SSB handover request message from the BS.
  • the SSB handover request message may indicate to the UE to switch from the serving SSB to the candidate SSB.
  • the method may include switching from the serving SSB to the candidate SSB in response to receiving the SSB handover request message.
  • the measurement report may be transmitted to the BS periodically when the UE is in a connected mode.
  • the BS may be configured to implement a 5G New Radio (NR) radio access technology (RAT) .
  • NR 5G New Radio
  • RAT radio access technology
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus that includes one or more processors and one or more interfaces.
  • the one or more processors and the one or more interfaces may be configured to perform any of the above-mentioned methods.
  • a wireless communication device such as a BS or a UE, which includes the above-mentioned apparatus that is configured to perform any of the above-mentioned methods.
  • Figure 1 is a system diagram of an example wireless communication network.
  • FIG. 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) .
  • BS base station
  • UE user equipment
  • Figure 3 shows a system diagram of an example wireless communication network including a UE that is configured to modify a synchronization signal block (SSB) measurement for a measurement report to induce the wireless communication network to perform an SSB handover.
  • SSB synchronization signal block
  • Figure 4 shows an example message flow that shows a UE configured to modify an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
  • Figure 5 depicts a flowchart with example operations performed by an apparatus of a UE for modifying an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
  • Figure 6 shows a block diagram of an example wireless communication apparatus.
  • Figure 7 shows a block diagram of an example mobile communication device.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards, the standard, code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , single-carrier FDMA (SC-FDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA)
  • a wireless communication network (which also may be referred to as a wireless WAN or WWAN) may include a 5G NR radio access technology (RAT) of a 5G NR network and an LTE RAT of an LTE network.
  • the wireless communication network also may include a legacy RAT of a legacy network, such as a 3G RAT of a 3G network or a 2G RAT of a 2G network.
  • the RATs of a WWAN also may be referred to as WWAN RATs.
  • a user equipment (UE) of the wireless communication network may use the 5G NR RAT, the LTE RAT, or a legacy RAT depending on which wireless coverage is available to the UE and which wireless coverage provides the best quality service.
  • the UE may receive multiple synchronization signal blocks (SSBs) via multiple beams from the BS.
  • the UE may perform SSB measurements on the multiple SSBs to ensure that the UE is receiving wireless signals via the beam of the multiple beams having the greatest signal strength. For example, the UE may determine signal strength measurements for the serving SSB and one or more candidate SSBs.
  • the UE may provide the SSB measurements to the BS via a measurement report.
  • the BS may compare the SSB measurements to determine whether to perform an SSB handover from the serving SSB to one of the candidate SSBs.
  • the BS may determine whether a signal strength measurement associated with a candidate SSB is greater than a signal strength measurement associated with a serving SSB by at least an SSB handover threshold or offset.
  • the SSB handover threshold or offset may vary between network providers and in some implementations, may not be known by the UE.
  • the determination of whether to perform an SSB handover is typically controlled by the BS of the wireless communication network.
  • the UE typically cannot induce the BS of the wireless communication network to perform an SSB handover even if the signal conditions (such as the signal strength) associated with the serving SSB begin to degrade.
  • the UE since the UE typically has to wait to receive an SSB handover request message from the BS in order to switch from a serving SSB to a candidate SSB, the UE may have to wait until the signal conditions have substantially degraded to perform the SSB switch, which may impact the performance of the UE and the user experience. The UE may even experience a link failure via the serving SSB if the UE has to wait for the SSB handover request message from the BS to perform the SSB switch.
  • the UE may analyze the signal strength measurements using a signal strength threshold implemented by the UE, and may determine whether to modify one of the signal strength measurements in order to induce the BS to perform an SSB handover.
  • the UE may determine whether a signal strength measurement (which may be referred to as a first signal strength measurement) of a candidate SSB is greater than the signal strength measurement (which may be referred to as a second signal strength measurement) of the serving SSB by at least a signal strength threshold.
  • the signal strength threshold may be implemented by the UE and may be separate from the SSB handover threshold implemented by the BS, since the UE typically does not know the SSB handover policy (such as the SSB handover threshold) that the BS uses for SSB handover decisions.
  • the signal strength threshold may be used by the UE to identify a candidate SSB that has a signal strength measurement that is greater than the signal strength measurement of the serving SSB and identify the signal strength measurement to modify with a signal strength compensation amount.
  • the UE may modify the first signal strength measurement associated with the candidate SSB with a signal strength compensation amount.
  • the UE may modify the first signal strength measurement with the signal strength compensation amount to increase a difference between the first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB. Increasing the difference between the signal strength measurements may induce the BS to perform the SSB handover.
  • the UE may prepare and transmit a measurement report that includes the modified first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB.
  • the measurement report also may include the signal strength measurements for the other candidate SSBs.
  • the measurement report that includes the modified first signal strength measurement may cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
  • a UE modifying the first signal strength measurement to increase the difference between the first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB may allow the UE to influence the SSB handover decision that is typically controlled by the BS.
  • Increasing the difference between the signal strength measurements may induce the BS to perform the SSB handover.
  • increasing the difference between the signal strength measurements by a substantial amount may induce the BS to perform the SSB handover faster than if the first signal strength measurement was not modified by the signal strength compensation amount.
  • Inducing the BS to perform an SSB handover by increasing the difference between the signal strength measurements may prevent the signal conditions associated with the serving SSB to substantially deteriorate and may prevent link failure in the serving SSB.
  • inducing the BS to perform an SSB handover may improve power consumption and performance of the UE, and may improve the user experience.
  • FIG. 1 is a system diagram of an example wireless communication network 100.
  • the wireless communication network 100 may be an LTE network or a 5G NR network, or a combination thereof.
  • the wireless communication network 100 also may be referred to as a wide area network (WAN) or a wireless wide area network (WWAN) .
  • the wireless communication network 100 includes a number of base stations (BSs) 110 (individually labeled as 110A, 110B, 110C, 110D, 110E, and 110F) and other network entities.
  • a BS 110 may be a station that communicates with UEs 120 and also may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • a BS 110 may represent an eNB of an LTE network or a gNB of a 5G NR network, or a combination thereof. Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 110 or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 110 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cells.
  • a macro cell generally covers a relatively large geographic area (such as several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a pico cell generally covers a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell generally covers a relatively small geographic area (such as a home) and, in addition to unrestricted access, also may provide restricted access by UEs having an association with the femto cell (such as UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS.
  • the BSs 110D and 110E may be regular macro BSs, while the BSs 110A-110C may be macro BSs enabled with three dimensions (3D) , full dimensions (FD) , or massive MIMO.
  • the BSs 110A-110C may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 110F may be a small cell BS which may be a home node or portable access point.
  • a BS 110 may support one or multiple (such as two, three, four, and the like) cells.
  • the wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 120 are dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 also may be referred to as a terminal, a mobile station, a wireless device, a subscriber unit, a station, or the like.
  • a UE 120 may be a mobile phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a wearable device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a smart appliance, a drone, a video camera, a sensor, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 120 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • UICC Universal Integrated Circuit Card
  • a UE may be a device that does not include a UICC.
  • the UEs 120 that do not include UICCs also may be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 120A-120D are examples of mobile smart phone-type devices that may access the wireless communication network 100.
  • a UE 120 also may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) , and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 120E-120L are examples of various machines configured for communication that access the wireless communication network 100.
  • a UE 120 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt is representative of a communication link that indicates wireless transmissions between a UE 120 and a serving BS 110, which is a BS designated to serve the UE 120 on the downlink and uplink, or desired transmission between BSs, and backhaul transmissions between BSs.
  • the BSs 110A-110C may serve the UEs 120A and 120B using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 110D may perform backhaul communications with the BSs 110A-110C, as well as the BS 110F (which may be a small cell BS) .
  • the macro BS 110D also may transmit multicast services which are subscribed to and received by the UEs 120C and 120D.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 110 also may communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 110 (such as a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (such as NG-C and NG-U) and may perform radio configuration and scheduling for communication with the UEs 120.
  • the BSs 110 may communicate, either directly or indirectly (such as through core network) , with each other over backhaul links, which may be wired or wireless communication links.
  • the wireless communication network 100 also may support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 120E, which may be a drone. Redundant communication links with the UE 120E may include links from the macro BSs 110D and 110E, as well as links from the small cell BS 110F.
  • Other machine type devices such as the UE 120F and UE 120G (such as video cameras or smart lighting) , the UE 120H (such as a smart meter) , and UE 120I (such as a wearable device) may communicate through the wireless communication network 100 either directly with the BSs, such as the small cell BS 110F, and the macro BS 110E, or in multi-hop configurations by communicating with another user device which relays its information to the wireless communication network 100.
  • the UE 120H may communicate smart meter information to the UE 120I (such as a wearable device or mobile phone) , which may report to the wireless communication network 100 through the small cell BS 110F.
  • the wireless communication network 100 also may provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in vehicle-to-vehicle (V2V) communications, as shown by UEs 120J-120L.
  • the wireless communication network 100 may include one or more access points (APs) 107 that are part of one or more wireless local area networks (WLANs) .
  • the APs 107 (which also may be referred to as WLAN APs) may provide short-range wireless connectivity to the UEs 120 of the wireless communication network 100.
  • the wireless communication network 100 may utilize OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW also may be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 110 may assign or schedule transmission resources (such as in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the wireless communication network 100.
  • DL refers to the transmission direction from a BS 110 to a UE 120
  • UL refers to the transmission direction from a UE 120 to a BS 110.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots. Each slot may be further divided into mini-slots.
  • simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (such as the DL subframes) in a radio frame may be used for DL transmissions
  • another subset of the subframes (such as the UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 110 and the UEs 120.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 110 may transmit cell-specific reference signals (CRSs) or channel state information reference signals (CSI-RSs) to enable a UE 120 to estimate a DL channel.
  • CRSs cell-specific reference signals
  • CSI-RSs channel state information reference signals
  • a UE 120 may transmit sounding reference signals (SRSs) to enable a BS 110 to estimate a UL channel.
  • SRSs sounding reference signals
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and operational data.
  • the BSs 110 and the UEs 120 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the wireless communication network 100 may be an NR network deployed over a licensed spectrum or an NR network deployed over an unlicensed spectrum (such as NR-U and NR-U lite networks) .
  • the BSs 110 can transmit synchronization signals, including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) , in the wireless communication network 100 to facilitate synchronization.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the BSs 110 can broadcast system information associated with the wireless communication network 100 (such as a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 110 may broadcast one or more of the PSS, the SSS, and the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast one or more of the RMSI and the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 120 attempting to access the wireless communication network 100 may perform an initial cell search by detecting a PSS included in an SSB from a BS 110.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 120 may receive an SSS included in an SSB from the BS 110.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 120 may receive an MIB.
  • the MIB may include system information for initial network access and scheduling information for at least one of an RMSI and OSI.
  • the UE 120 may receive at least one of an RMSI and OSI.
  • the RMSI and OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 120 can perform a random access procedure to establish a connection with the BS 110.
  • the random access procedure may be a four-step random access procedure.
  • the UE 120 may transmit a physical random access channel (PRACH) , such as a PRACH preamble, and the BS 110 may respond with a random access response (RAR) .
  • PRACH physical random access channel
  • RAR random access response
  • the RAR may include one or more of a detected random access preamble identifier (ID) corresponding to the PRACH preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 120 may transmit a connection request to the BS 110 and the BS 110 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the PRACH, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 120 may transmit a PRACH (including a PRACH preamble) and a connection request in a single transmission and the BS 110 may respond by transmitting a RAR and a connection response in a single transmission.
  • the UE 120 and the BS 110 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 110 may schedule the UE 120 for UL and DL communications.
  • the BS 110 may transmit UL and DL scheduling grants to the UE 120 via a PDCCH.
  • the BS 110 may transmit a DL communication signal to the UE 120 via a PDSCH according to a DL scheduling grant.
  • the UE 120 may transmit a UL communication signal to the BS 110 via a PUSCH or PUCCH according to a UL scheduling grant.
  • the wireless communication network 100 may operate over a system BW or a component carrier BW.
  • the wireless communication network 100 may partition the system BW into multiple bandwidth parts (BWPs) .
  • a BWP may be a certain portion of the system BW. For example, if the system BW is 100 MHz, the BWPs may each be 20 MHz or less.
  • a BS 110 may dynamically assign a UE 120 to operate over a certain BWP.
  • the assigned BWP may be referred to as the active BWP.
  • the UE 120 may monitor the active BWP for signaling information from the BS 110.
  • the BS 110 may schedule the UE 120 for UL or DL communications in the active BWP.
  • the BS 110 may configure UEs 120 with narrowband operation capabilities (such as with transmission and reception limited to a BW of 20 MHz or less) to perform BWP hopping for channel monitoring and communications.
  • a BS 110 may assign a pair of BWPs within the component carrier to a UE 120 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • the BS 110 may additionally configure the UE 120 with one or more CORESETs in a BWP.
  • a CORESET may include a set of frequency resources spanning a number of symbols in time.
  • the BS 110 may configure the UE 120 with one or more search spaces for PDCCH monitoring based on the CORESETS.
  • the UE 120 may perform blind decoding in the search spaces to search for DL control information (such as UL or DL scheduling grants) from the BS 110.
  • the BS 110 may configure the UE 120 with one or more of the BWPs, the CORESETS, and the PDCCH search spaces via RRC configurations.
  • the wireless communication network 100 may operate over a shared frequency band or an unlicensed frequency band, for example, at about 3.5 gigahertz (GHz) , sub-6 GHz or higher frequencies in the mmWave band.
  • the wireless communication network 100 may partition a frequency band into multiple channels, for example, each occupying about 20 MHz.
  • the BSs 110 and the UEs 120 may be operated by multiple network operating entities sharing resources in the shared communication medium and may employ a LBT procedure to acquire channel occupancy time (COT) in the share medium for communications.
  • COT channel occupancy time
  • a COT may be non-continuous in time and may refer to an amount of time a wireless node can send frames when it has won contention for the wireless medium.
  • Each COT may include a plurality of transmission slots.
  • a COT also may be referred to as a transmission opportunity (TXOP) .
  • the BS 110 or the UE 120 may perform an LBT in the frequency band prior to transmitting in the frequency band.
  • the LBT can be based on energy detection or signal detection.
  • energy detection the BS 110 or the UE 120 may determine that the channel is busy or occupied when a signal energy measured from the channel is greater than a certain signal energy threshold.
  • signal detection the BS 110 or the UE 120 may determine that the channel is busy or occupied when a certain reservation signal (such as a preamble signal sequence) is detected in the channel.
  • FIG 2 is a block diagram conceptually illustrating an example 200 of a BS 110 in communication with a UE 120.
  • BS 110 and UE 120 may respectively be one of the BSs and one of the UEs in wireless communication network 100 of Figure 1.
  • BS 110 may be equipped with T antennas 234A through 234T
  • UE 120 may be equipped with R antennas 252A through 252R, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • the transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) , etc. ) and control information (for example, CQI requests, grants, upper layer signaling, etc. ) and provide overhead symbols and control symbols.
  • system information for example, for semi-static resource partitioning information (SRPI) , etc.
  • control information for example, CQI requests, grants, upper layer signaling, etc.
  • the transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators-demodulators (MODs-DEMODs) 232A through 232T (which also may be referred to as mods/demods or modems) .
  • MIMO multiple-input multiple-output
  • Each MOD-DEMOD 232 may process a respective output symbol stream (for example, for OFDM, etc. ) to obtain an output sample stream. Each MOD-DEMOD 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from MODs-DEMODs 232A through 232T may be transmitted via T antennas 234A through 234T, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252A through 252R may receive the downlink signals from BS 110 or other BSs and may provide received signals to modulators-demodulators (MODs-DEMODs) 254A through 254R, respectively (which also may be referred to as mods/demods or modems) .
  • Each MOD-DEMOD 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each MOD-DEMOD 254 may further process the input samples (for example, for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R MODs-DEMODs 254A through 254R, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , etc.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, etc. ) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by MODs-DEMODs 254A through 254R (for example, for DFT-s-OFDM, CP-OFDM, etc. ) , and transmitted to BS 110.
  • control information for example, for reports including RSRP, RSSI, RSRQ, CQI, etc.
  • Transmit processor 264 also may generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by MODs-DEMODs 254A through 254R (for example, for DFT-s-OFDM,
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by MOD-DEMOD 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240.
  • the BS 110 may include communication unit 244 and may communicate to network controller 130 via communication unit 244.
  • the network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
  • the controller/processor 240 of BS 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with modifying an SSB measurement for a measurement report to induce the wireless communication network to perform an SSB handover, as described in more detail elsewhere herein.
  • the controller/processor 240 of BS 110, the controller/processor 280 of UE 120, or any other component (s) (or combinations of components) of Figure 2 may perform or direct operations of, for example, the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4.
  • the memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
  • the stored program codes when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations described with respect to the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4.
  • the stored program codes when executed by the controller/processor 240 or other processors and modules at BS 110, may cause the BS 110 to perform operations described with respect to the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4.
  • a scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
  • UE 120 may include means for performing the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. In some aspects, such means may include one or more components of UE 120 described in connection with Figure 2.
  • BS 110 may include means for performing the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4.
  • such means may include one or more components of BS 110 described in connection with Figure 2.
  • While blocks in Figure 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
  • Figure 3 shows a system diagram of an example wireless communication network including a UE 120 that is configured to modify an SSB measurement for a measurement report to induce the wireless communication network 300 to perform an SSB handover.
  • the wireless communication network 300 shown in Figure 3 is based on the example wireless communication network 100 described in Figure 1.
  • the wireless communication network 300 also may be referred to as a wide area network (WAN) or a wireless wide area network (WWAN) .
  • the wireless communication network 300 may include the UE 120 and a BS 110 of a 5G NR network.
  • the UE 120 may be an example implementation of the UEs shown in Figures 1–2.
  • the BS 110 may be an example implementation of the BSs shown in Figures 1–2.
  • the wireless communication network 300 may include one or more additional BSs and one or more additional UEs.
  • the BS 110 may be a gNB that may implement a 5G NR RAT described in this disclosure to manage communications of a 5G NR network.
  • the UE 120 may include a connection management unit 322 and a signal measurement unit 324.
  • the connection management unit 322 may perform operations to establish a wireless connection with a BS of the wireless communication network 300, and may manage the wireless connection, such as to determine whether to maintain the wireless connection or whether to handoff the UE 120 to another BS or to another SSB of the serving BS.
  • the connection management unit 322 may work in conjunction with the signal measurement unit 324 to determine whether to perform an SSB handoff from a serving SSB associated with the BS 110 to a candidate SSB associated with the BS 110, as described further herein.
  • the signal measurement unit 324 may perform SSB measurements on a plurality of SSBs received from the BS 110 and may store the SSB measurements.
  • the plurality of SSBs may include the serving SSB and one or more candidate SSBs.
  • the signal measurement unit 324 may determine whether to switch from the serving SSB to one of the candidate SSBs based on the SSB measurements.
  • the BS 110 may include a connection management unit 316.
  • the connection management unit 316 may perform operations to establish a wireless connection with one or more UEs of the wireless communication network 300 (such as the UE 120) , and may manage the wireless connections, such as to determine whether to maintain the wireless connections or whether to handoff one or more of the UEs to another BS or to another SSB of the serving BS.
  • the connection management unit 322 and the signal measurement unit 324 may be implemented by the UE 120 using one or more of the components shown in Figure 2 for the UE 120, such as the controller/processor 280 and the memory 282.
  • the connection management unit 316 may be implemented by the BS 110 shown in Figure 3 using one or more of the components shown in Figure 2 for the BS 110, such as the controller/processor 240, the communication unit 244, and the memory 242.
  • the BS 110 may perform a beamforming operation to transmit a plurality of SSBs via a corresponding plurality of beams.
  • the BS 110 may perform a beamforming sweep (also referred to as a beam sweep) to transmit a plurality of SSBs via a corresponding plurality of beams.
  • the BS 110 may transit four SSBs (SSBs 0, 1, 2, and 3) via four beams (beams 0, 1, 2, and 3) .
  • the BS 110 may transmit the SSB 0 via the beam 0, the SSB 1 via the beam 1, the SSB 2 via the beam 2, and the SSB 3 via the beam 3.
  • the beam 0 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 0.
  • the beam 1 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 1.
  • the beam 2 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 2.
  • the beam 3 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 3. For example, when the UE 120 is at location A, the UE 120 may receive the strongest signals via the beam 0.
  • the UE 120 may receive the strongest signals via the beam 0, and thus the UE 120 may focus on processing the wireless signals received via the beam 0 to obtain wireless service.
  • the SSB 0 may be referred to as a serving SSB, and the SSBs 1–3 may be referred to as the candidate SSBs (or neighbor SSBs) .
  • the beam 0 also may be referred to as the serving beam and the beams 1–3 may be referred to as the candidate beams (or neighbor beams) .
  • the UE 120 may periodically perform SSB measurements on the plurality of SSBs, which include the serving SSB and the candidate SSBs.
  • the UE 120 may periodically perform signal strength measurements on the serving SSB and the candidate SSBs to determine whether one of the candidates SSBs has a greater signal strength than the serving SSB.
  • the UE 120 may determine the candidate SSB from the candidate SSBs that has the greatest signal strength measurement.
  • the UE 120 may compare the signal strength measurement of the candidate SSB to the signal strength measurement of the serving SSB to determine whether to induce the BS 110 to initiate an SSB handover in order to switch from the serving SSB to the candidate SSB, as described further herein.
  • the signal strength measurements may be reference signal received power (RSRP) measurements.
  • RSRP reference signal received power
  • the UE 120 may determine that a first signal strength measurement associated with a first candidate SSB is greater than a second signal strength measurement associated with a serving SSB. For example, when the UE 120 moves (as shown by the dashed arrow 350) from the location A that is serviced by the beam 0 to the location B that is serviced by the beam 1, the UE 120 may perform SSB measurements and may determine that the first signal strength measurement associated with the SSB 1 (which may be referred as the first candidate SSB) is greater than the second signal strength measurement associated with the SSB 0 (which may be referred to as the serving SSB) .
  • the UE 120 may determine whether the first signal strength measurement associated with the first candidate SSB is greater than the signal strength measurement associated with the serving SSB by at least a signal strength threshold.
  • the signal strength threshold also may be referred to as an offset or a signal strength offset.
  • the signal strength threshold may be an RSRP threshold.
  • the signal strength threshold may be preconfigured and may be configurable to be a variety of signal strength values. As a non-limiting example, the signal strength threshold may be configured to be approximately 6 decibels (dB) . As another non-limiting example, the signal strength threshold may be configured to be between approximately 4 dB and approximately 8 dB.
  • the UE 120 may modify the first signal strength measurement associated with the first candidate SSB with a signal strength compensation amount.
  • the first signal strength measurement may be modified with the signal strength compensation amount to increase a difference (which also may be referred to as a gap) between the first signal strength measurement associated with the first candidate SSB and the second signal strength measurement associated with the serving SSB.
  • a difference which also may be referred to as a gap
  • Increasing the difference (or gap) between the first signal strength measurement and the second signal strength measurement may induce the BS 110 to initiate an SSB handover from the serving SSB to the first candidate SSB.
  • the signal strength compensation amount also may be referred to as a signal strength compensation factor.
  • the signal strength compensation amount may be an RSRP compensation amount.
  • the signal strength compensation amount may be preconfigured and may be configurable to be a variety of signal strength compensation amounts. As a non-limiting example, the signal strength compensation amount may be configured to be approximately 15 dB. As another non-limiting example, the signal strength compensation amount may be configured to be between approximately 12 dB and approximately 18 dB. In some implementations, the signal strength compensation amount may be greater than the signal strength threshold in order to significantly increase the difference between the first signal strength measurement and the second signal strength measurement.
  • the UE 120 may prepare a measurement report for transmission to the BS 110.
  • the UE 120 may prepare a measurement report that includes the modified first signal strength measurement for the first candidate SSB and the second signal strength measurement for the serving SSB.
  • the measurement report also may include the signal strength measurements for the other candidate SSBs.
  • the UE 120 may transmit the measurement report to the BS 110.
  • the UE 120 may use the modified first signal strength measurement for the measurement report to cause the BS 110 to perform an SSB handover from the serving SSB to the first candidate SSB.
  • the UE 120 may be configured to transmit a measurement report to the BS 110 periodically.
  • the BS 110 may cause the UE 120 to send a measurement report periodically by setting a report type parameter to periodic as described in the 3GPP technical specification (TS) 38.331, version 16.0.0 (2020-03) (hereafter “TS 38.331” ) .
  • the BS 110 may cause the UE 120 to perform signal strength measurements, such as RSRP measurements, and include the signal strength measurements in the measurement reports by setting the reportQuantity parameter to ssb-Index-RSPR as described in the TS 38.331.
  • the measurement report may be referred to as a channel state feedback (CSF) report.
  • CSF channel state feedback
  • the BS 110 may receive the measurement report and determine whether one of the candidate SSBs has a greater signal strength than the serving SSB. For example, the BS 110 may compare the modified first signal strength measurement associated with the first candidate SSB with the second signal strength measurement associated with the serving SSB. The BS 110 may determine whether the modified first signal strength measurement is greater than the second signal strength measurement by an SSB handover threshold or offset (which also may be referred to as a handover threshold or offset) . As described herein, the SSB handover threshold or offset may vary between network providers and may not be known by the UE 120.
  • the BS 110 may determine that the difference between the modified first signal strength measurement and the second signal strength measurement is greater than the SSB handover threshold or offset. In some implementations, after the BS 110 determines the difference between the modified first signal strength measurement and the second signal strength measurement is greater than the SSB handover threshold or offset, the BS 110 may initiate an SSB handover from the serving SSB to the first candidate SSB. As described herein, the UE 120 adding the signal strength compensation amount to the first signal strength measurement may substantially increase the difference between the first signal strength measurement and the second signal strength measurement to cause the BS 110 to initiate an SSB handover.
  • the BS 110 may transmit an SSB handover request message (which also may be referred to as a handover request message) to the UE 120 to request the UE 120 to switch from the serving SSB to the first candidate SSB.
  • the UE 120 may switch from the serving SSB to the first candidate SSB, and may transmit an SSB handover complete message (which also may be referred to as a handover complete message) to the BS 110.
  • Figure 4 shows an example message flow that shows a UE configured to modify an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
  • the message flow diagram 400 includes the UE 120 and the BS 110 associated with a 5G NR RAT that are described in Figure 3.
  • the BS 110 may perform a beam sweep and transmit a plurality of SSBs via a corresponding plurality of beams to the UE 120.
  • the SSB 0 may be the serving SSB
  • the SSBs 1–3 may be candidate SSBs.
  • the UE 120 may receive the plurality of SSBs via the corresponding plurality of beams. For example, the UE 120 may receive the SSB 0 (the serving SSB) via the beam 0, the SSB 1 via the beam 1, the SSB 2 via the beam 2, and the SSB 3 via the beam 3. In some implementations, the UE 120 may perform SSB measurements on the serving SSB and the candidate SSBs received from the BS 110. For example, the UE 120 may determine signal strength measurements, such as RSRP measurements, for the serving SSB and the candidate SSBs and may compare the signal strength measurements.
  • signal strength measurements such as RSRP measurements
  • the UE 120 may determine that a signal strength measurement (which may be referred to as a first signal strength measurement) associated with one of the candidate SSBs (which may be referred to as a first candidate SSB) is greater than a signal strength measurement (which may be referred to as a second signal strength measurement) associated with the serving SSB by at least a signal strength threshold.
  • the UE 120 may modify first signal strength measurement associated with the first candidate SSB with a signal strength compensation amount. For example, the UE 120 may determine a modified first signal strength measurement for the first candidate SSB by adding the signal strength compensation amount to the first signal strength measurement.
  • the UE 120 may transmit a measurement report to the BS 110.
  • the measurement report may include the modified first signal strength measurement associated with the first candidate SSB and the second signal strength measurement associated with the serving SSB.
  • the modified first signal strength measurement may be included in the measurement report to induce the BS 110 to perform an SSB handover.
  • the measurement report also may include signal strength measurements for the other candidate SSBs.
  • the BS 110 may receive and process the measurement report from the UE 120.
  • the BS 110 may determine whether one of the candidate SSBs has a greater signal strength than the serving SSB. For example, the BS 110 may determine that the modified first signal strength measurement associated with the first candidate SSB is greater than the second signal strength measurement associated with the serving SSB by at least the SSB handover threshold or offset.
  • the BS 110 may determine to perform an SSB handover after determining that the modified first signal strength measurement is greater than the second signal strength measurement by at least the SSB handover threshold.
  • the SSB handover threshold or offset may vary between network providers and may not be known by the UE 120. Since the UE 120 added the signal strength compensation amount to the first signal strength measurement to derive the modified first signal strength measurement, the BS 110 may determine that the difference between the modified first signal strength measurement and the second signal strength measurement is substantially greater than the SSB handover threshold.
  • the BS 110 may transmit an SSB handover request message to the UE 120 to request the UE 120 to switch from the serving SSB to the first candidate SSB.
  • the BS 110 may transmit the SSB handover request message after determining the modified first signal strength measurement is greater than the second signal strength measurement associated with the serving SSB by at least the SSB handover threshold or offset.
  • the BS 110 may immediately transmit the SSB handover request message.
  • the UE 120 may receive and process the SSB handover request message from the BS 110. For example, the UE 120 may determine that the SSB handover request message indicates to switch from the serving SSB to the first candidate SSB. After receiving and processing the SSB handover request message, the UE 120 may switch from the serving SSB to the first candidate SSB. For example, the UE 120 may switch from the SSB 0 of the beam 0 to the SSB 1 of the beam 1. After the SSB switch, the SSB 1 may be referred to as the serving SSB, and the SSB 0 may be referred to as one of the candidate SSBs.
  • the UE 120 may transmit an SSB handover complete message to the BS 110.
  • the SSB handover complete message may indicate to the BS 110 that the UE 120 has switched from the serving SSB (SSB 0) to the first candidate SSB (SSB 1) .
  • the BS 110 may receive the SSB handover complete message from the UE 120. After receiving the SSB handover complete message, the BS 110 may determine that the SSB handover has been completed and the BS 110 may begin to use the SSB 1 as the serving SSB.
  • Figure 5 depicts a flowchart 500 with example operations performed by an apparatus of a UE for modifying an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
  • the apparatus of the UE may determine, from a plurality of SSBs received from a BS of a WWAN, that a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB. In some implementations, the apparatus of the UE may determine that the first signal strength measurement is greater than the second signal strength measurement by at least a signal strength threshold. In some implementations, the BS may be configured to implement a 5G NR RAT to provide 5G service.
  • the apparatus of the UE may modify the first signal strength measurement with a signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement.
  • the apparatus of the UE may modify the first signal strength measurement with the signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement by at least the signal strength threshold.
  • the first signal strength measurement may be modified with the signal strength compensation amount to increase a difference between the first signal strength measurement and the second signal strength measurement.
  • the signal strength measurements may be RSRP measurements
  • the signal strength threshold may be an RSRP threshold
  • the signal strength compensation amount may be an RSRP compensation amount.
  • the apparatus of the UE may output a measurement report for transmission to the BS.
  • the measurement report may include the modified first signal strength measurement and the second signal strength measurement.
  • the first signal strength measurement may be modified with the signal strength compensation amount to cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
  • Figure 6 shows a block diagram of an example wireless communication apparatus 600.
  • the wireless communication apparatus 600 can be an example of a device for use in a UE, such as the UE 120 described above with reference to Figure 3.
  • the wireless communication apparatus 600 can be an example of a device for use in a BS, such as the BS 110 described above with reference to Figure 3.
  • the wireless communication apparatus 600 is capable of transmitting (or outputting for transmission) and receiving wireless communications.
  • the wireless communication apparatus 600 can be, or can include, a chip, system on chip (SoC) , chipset, package or device.
  • SoC system-on-chip
  • the term “system-on-chip” (SoC) is used herein to refer to a set of interconnected electronic circuits typically, but not exclusively, including one or more processors, a memory, and a communication interface.
  • the SoC may include a variety of different types of processors and processor cores, such as a general purpose processor, a central processing unit (CPU) , a digital signal processor (DSP) , a graphics processing unit (GPU) , an accelerated processing unit (APU) , a sub-system processor, an auxiliary processor, a single-core processor, and a multicore processor.
  • CPU central processing unit
  • DSP digital signal processor
  • GPU graphics processing unit
  • APU accelerated processing unit
  • the SoC may further include other hardware and hardware combinations, such as a field programmable gate array (FPGA) , a configuration and status register (CSR) , an application-specific integrated circuit (ASIC) , other programmable logic device, discrete gate logic, transistor logic, registers, performance monitoring hardware, watchdog hardware, counters, and time references.
  • SoCs may be integrated circuits (ICs) configured such that the components of the IC reside on the same substrate, such as a single piece of semiconductor material (such as, for example, silicon) .
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP also may include multiple independent SoCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single mobile communication device. The proximity of the SoCs facilitates high speed communications and the sharing of memory and resources.
  • multicore processor is used herein to refer to a single IC chip or chip package that contains two or more independent processing cores (for example a CPU core, IP core, GPU core, among other examples) configured to read and execute program instructions.
  • An SoC may include multiple multicore processors, and each processor in an SoC may be referred to as a core.
  • multiprocessor may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
  • the wireless communication apparatus 600 may include one or more modems 602.
  • the one or more modems 602 may include a WWAN modem (for example, a 3GPP 4G LTE or 5G compliant modem) .
  • the wireless communication apparatus 600 also includes one or more radios 604 (collectively “the radio 604” ) .
  • the wireless communication apparatus 600 further includes one or more processors, processing blocks or processing elements 606 (collectively “the processor 606” ) and one or more memory blocks or elements 608 (collectively “the memory 608” ) .
  • the modem 602 can include an intelligent hardware block or device such as, for example, an application-specific integrated circuit (ASIC) among other possibilities.
  • the modem 602 is generally configured to implement a PHY layer.
  • the modem 602 is configured to modulate packets and to output the modulated packets to the radio 604 for transmission over the wireless medium.
  • the modem 602 is similarly configured to obtain modulated packets received by the radio 604 and to demodulate the packets to provide demodulated packets.
  • the modem 602 may further include digital signal processing (DSP) circuitry, automatic gain control (AGC) , a coder, a decoder, a multiplexer and a demultiplexer.
  • DSP digital signal processing
  • AGC automatic gain control
  • data obtained from the processor 606 is provided to a coder, which encodes the data to provide encoded bits.
  • the encoded bits are mapped to points in a modulation constellation (using a selected MCS) to provide modulated symbols.
  • the modulated symbols may be mapped to a number NSS of spatial streams or a number NSTS of space-time streams.
  • the modulated symbols in the respective spatial or space-time streams may be multiplexed, transformed via an inverse fast Fourier transform (IFFT) block, and subsequently provided to the DSP circuitry for Tx windowing and filtering.
  • the digital signals may be provided to a digital-to-analog converter (DAC) .
  • the resultant analog signals may be provided to a frequency upconverter, and ultimately, the radio 604.
  • the modulated symbols in the respective spatial streams are precoded via a steering matrix prior to their provision to the IFFT block.
  • DSP circuitry While in a reception mode, digital signals received from the radio 604 are provided to the DSP circuitry, which is configured to acquire a received signal, for example, by detecting the presence of the signal and estimating the initial timing and frequency offsets.
  • the DSP circuitry is further configured to digitally condition the digital signals, for example, using channel (narrowband) filtering, analog impairment conditioning (such as correcting for I/Q imbalance) , and applying digital gain to ultimately obtain a narrowband signal.
  • the output of the DSP circuitry may be fed to the AGC, which is configured to use information extracted from the digital signals, for example, in one or more received training fields, to determine an appropriate gain.
  • the output of the DSP circuitry also is coupled with the demodulator, which is configured to extract modulated symbols from the signal and, for example, compute the logarithm likelihood ratios (LLRs) for each bit position of each subcarrier in each spatial stream.
  • the demodulator is coupled with the decoder, which may be configured to process the LLRs to provide decoded bits.
  • the decoded bits from all of the spatial streams are fed to the demultiplexer for demultiplexing.
  • the demultiplexed bits may be descrambled and provided to the MAC layer (the processor 606) for processing, evaluation, or interpretation.
  • the radio 604 generally includes at least one radio frequency (RF) transmitter (or “transmitter chain” ) and at least one RF receiver (or “receiver chain” ) , which may be combined into one or more transceivers.
  • the RF transmitters and receivers may include various DSP circuitry including at least one power amplifier (PA) and at least one low-noise amplifier (LNA) , respectively.
  • PA power amplifier
  • LNA low-noise amplifier
  • the RF transmitters and receivers may, in turn, be coupled to one or more antennas.
  • the wireless communication apparatus 600 can include, or be coupled with, multiple transmit antennas (each with a corresponding transmit chain) and multiple receive antennas (each with a corresponding receive chain) .
  • the symbols output from the modem 602 are provided to the radio 604, which transmits the symbols via the coupled antennas.
  • symbols received via the antennas are obtained by the radio 604, which provides the symbols to the modem 602.
  • the processor 606 can include an intelligent hardware block or device such as, for example, a processing core, a processing block, a central processing unit (CPU) , a microprocessor, a microcontroller, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a programmable logic device (PLD) such as a field programmable gate array (FPGA) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • the processor 606 processes information received through the radio 604 and the modem 602, and processes information to be output through the modem 602 and the radio 604 for transmission through the wireless medium.
  • the processor 606 may generally control the modem 602 to cause the modem to perform various operations described above.
  • the memory 608 can include tangible storage media such as random-access memory (RAM) or read-only memory (ROM) , or combinations thereof.
  • the memory 608 also can store non-transitory processor-or computer-executable software (SW) code containing instructions that, when executed by the processor 606, cause the processor to perform various operations described herein for wireless communication, including the generation, transmission, reception and interpretation of MPDUs, frames or packets.
  • SW computer-executable software
  • various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more modules of one or more computer programs.
  • FIG. 7 shows a block diagram of an example mobile communication device 704.
  • the mobile communication device 704 can be an example implementation of the UE 120 described herein.
  • the mobile communication device 704 includes a wireless communication apparatus (WCA) 715.
  • WCA 715 may be an example implementation of the wireless communication apparatus 600 described with reference to Figure 6.
  • the mobile communication device 704 also includes one or more antennas 725 coupled with the WCA 715 to transmit and receive wireless communications.
  • the mobile communication device 704 additionally includes an application processor 735 coupled with the WCA 715, and a memory 745 coupled with the application processor 735.
  • the mobile communication device 704 further includes a UI 755 (such as a touchscreen or keypad) and a display 765, which may be integrated with the UI 755 to form a touchscreen display.
  • the mobile communication device 704 may further include one or more sensors 775 such as, for example, one or more inertial sensors, accelerometers, temperature sensors, pressure sensors, or altitude sensors.
  • sensors 775 such as, for example, one or more inertial sensors, accelerometers, temperature sensors, pressure sensors, or altitude sensors.
  • Ones of the aforementioned components can communicate with other ones of the components directly or indirectly, over at least one bus.
  • the mobile communication device 704 further includes a housing that encompasses the WCA 715, the application processor 735, the memory 745, and at least portions of the antennas 725, UI 755, and display 765.
  • Figures 1–7 and the operations described herein are examples meant to aid in understanding example implementations and should not be used to limit the potential implementations or limit the scope of the claims. Some implementations may perform additional operations, fewer operations, operations in parallel or in a different order, and some operations differently.
  • the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes, operations and methods may be performed by circuitry that is specific to a given function.
  • implementations of the subject matter described in this specification can be implemented as software.
  • various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more modules of one or more computer programs.
  • Such computer programs can include non-transitory processor-or computer-executable instructions encoded on one or more tangible processor-or computer-readable storage media for execution by, or to control the operation of, data processing apparatus including the components of the devices described herein.
  • storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store program code in the form of instructions or data structures. Combinations of the above should also be included within the scope of storage media.
  • drawings may schematically depict one or more example processes in the form of a flowchart or flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In some circumstances, multitasking and parallel processing may be advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for modifying a synchronization signal block (SSB) measurement for a measurement report to induce an SSB handover. In some aspects, a user equipment (UE) may determine whether a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB by at least a signal strength threshold. If so, the UE may modify the first signal strength measurement with a signal strength compensation amount to increase a difference between the first and second signal strength measurements. The UE may transmit a measurement report to a BS that includes the modified first signal strength measurement and the second signal strength measurement in order to induce the BS to perform an SSB handover from the serving SSB to the candidate SSB.

Description

MODIFYING A SYNCHRONIZATION SIGNAL BLOCK (SSB) MEASUREMENT FOR A MEASUREMENT REPORT TO INDUCE AN SSB HANDOVER TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication and to techniques for modifying a synchronization signal block (SSB) measurement for a measurement report to induce an SSB handover.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (such as time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the 3 rd generation (3G) and 4 th generation (4G, including long term evolution (LTE) ) technologies to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) or 5G NR. For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than 3G or LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave (mmW) ) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
Wireless communication networks may support some combination of 2G, 3G, LTE, and 5G NR technologies. A UE may communicate with the wireless communication network using one or more of the 2G, 3G, LTE, and 5G NR technologies. For example, the UE may use 5G NR for some applications, such as data transmissions, and may use LTE for other applications, such as voice transmissions. A UE also may have access to wireless local area networks (WLANs) in the wireless communication network.
SUMMARY
The systems, methods, and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communication performed by an apparatus of a user equipment (UE) . The method may include determining, from a plurality of synchronization signal blocks (SSBs) received from a base station (BS) of a wireless wide area network (WWAN) , that a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB. The method may include modifying the first signal strength measurement with a signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement. The method may include outputting a measurement report for transmission to the BS. The measurement report may include the modified first signal strength measurement and the second signal strength measurement. The first signal strength measurement may be modified with the signal strength compensation amount to cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
In some implementations, the first signal strength measurement may be modified with the signal strength compensation amount to increase a difference between the first signal strength measurement and the second signal strength measurement.
In some implementations, the method may include determining that the first signal strength measurement associated with the candidate SSB is greater than the second  signal strength measurement associated with the serving SSB by at least a signal strength threshold, and modifying the first signal strength measurement with the signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement by at least the signal strength threshold.
In some implementations, the first signal strength measurement and the second signal strength measurement may be reference signal received power (RSRP) measurements, the signal strength threshold may be an RSRP threshold, and the signal strength compensation amount may be an RSRP compensation amount.
In some implementations, the signal strength compensation amount may be greater than the signal strength threshold to significantly increase a difference between the first signal strength measurement and the second signal strength measurement.
In some implementations, a value of the signal strength compensation amount may be 15 decibels (dB) and a value of the signal strength threshold may be 6 db.
In some implementations, a value of the signal strength compensation amount and a value of the signal strength threshold may be configurable.
In some implementations, the method may include obtaining, after outputting the measurement report that includes the modified first signal strength measurement and the second signal strength measurement, an SSB handover request message from the BS. The SSB handover request message may indicate to the UE to switch from the serving SSB to the candidate SSB. The method may include switching from the serving SSB to the candidate SSB in response to receiving the SSB handover request message.
In some implementations, the measurement report may be transmitted to the BS periodically when the UE is in a connected mode.
In some implementations, the BS may be configured to implement a 5G New Radio (NR) radio access technology (RAT) .
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus that includes one or more processors and one or more interfaces. The one or more processors and the one or more interfaces may be configured to perform any of the above-mentioned methods.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a wireless communication device, such as a BS or a UE, which includes the above-mentioned apparatus that is configured to perform any of the above-mentioned methods.
Aspects of the subject matter described in this disclosure can be implemented in a device, a software program, a system, or other means to perform any of the above-mentioned methods.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a system diagram of an example wireless communication network.
Figure 2 is a block diagram conceptually illustrating an example of a base station (BS) in communication with a user equipment (UE) .
Figure 3 shows a system diagram of an example wireless communication network including a UE that is configured to modify a synchronization signal block (SSB) measurement for a measurement report to induce the wireless communication network to perform an SSB handover.
Figure 4 shows an example message flow that shows a UE configured to modify an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
Figure 5 depicts a flowchart with example operations performed by an apparatus of a UE for modifying an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
Figure 6 shows a block diagram of an example wireless communication apparatus.
Figure 7 shows a block diagram of an example mobile communication device.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The examples in this disclosure are based on wireless network communications in wide area networks (WANs) . However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards, the
Figure PCTCN2020093019-appb-000001
standard, code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , single-carrier FDMA (SC-FDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , 5 th Generation (5G) or new radio (NR) , Advanced Mobile Phone Service (AMPS) , or other known signals that are used to communicate within a wireless, cellular or internet of things (IoT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
A wireless communication network (which also may be referred to as a wireless WAN or WWAN) may include a 5G NR radio access technology (RAT) of a 5G NR network and an LTE RAT of an LTE network. The wireless communication network also may include a legacy RAT of a legacy network, such as a 3G RAT of a 3G network  or a 2G RAT of a 2G network. The RATs of a WWAN also may be referred to as WWAN RATs. A user equipment (UE) of the wireless communication network may use the 5G NR RAT, the LTE RAT, or a legacy RAT depending on which wireless coverage is available to the UE and which wireless coverage provides the best quality service.
When a UE is operating in a connected mode and is registered with a BS that implements a 5G NR RAT, the UE may receive multiple synchronization signal blocks (SSBs) via multiple beams from the BS. The UE may perform SSB measurements on the multiple SSBs to ensure that the UE is receiving wireless signals via the beam of the multiple beams having the greatest signal strength. For example, the UE may determine signal strength measurements for the serving SSB and one or more candidate SSBs. The UE may provide the SSB measurements to the BS via a measurement report. The BS may compare the SSB measurements to determine whether to perform an SSB handover from the serving SSB to one of the candidate SSBs. For example, to determine whether to perform an SSB handover, the BS may determine whether a signal strength measurement associated with a candidate SSB is greater than a signal strength measurement associated with a serving SSB by at least an SSB handover threshold or offset. The SSB handover threshold or offset may vary between network providers and in some implementations, may not be known by the UE. Thus, the determination of whether to perform an SSB handover is typically controlled by the BS of the wireless communication network. The UE typically cannot induce the BS of the wireless communication network to perform an SSB handover even if the signal conditions (such as the signal strength) associated with the serving SSB begin to degrade. Also, since the UE typically has to wait to receive an SSB handover request message from the BS in order to switch from a serving SSB to a candidate SSB, the UE may have to wait until the signal conditions have substantially degraded to perform the SSB switch, which may impact the performance of the UE and the user experience. The UE may even experience a link failure via the serving SSB if the UE has to wait for the SSB handover request message from the BS to perform the SSB switch.
In some implementations, the UE may analyze the signal strength measurements using a signal strength threshold implemented by the UE, and may determine whether to modify one of the signal strength measurements in order to induce  the BS to perform an SSB handover. The UE may determine whether a signal strength measurement (which may be referred to as a first signal strength measurement) of a candidate SSB is greater than the signal strength measurement (which may be referred to as a second signal strength measurement) of the serving SSB by at least a signal strength threshold. The signal strength threshold may be implemented by the UE and may be separate from the SSB handover threshold implemented by the BS, since the UE typically does not know the SSB handover policy (such as the SSB handover threshold) that the BS uses for SSB handover decisions. The signal strength threshold may be used by the UE to identify a candidate SSB that has a signal strength measurement that is greater than the signal strength measurement of the serving SSB and identify the signal strength measurement to modify with a signal strength compensation amount.
In some implementations, the UE may modify the first signal strength measurement associated with the candidate SSB with a signal strength compensation amount. The UE may modify the first signal strength measurement with the signal strength compensation amount to increase a difference between the first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB. Increasing the difference between the signal strength measurements may induce the BS to perform the SSB handover. The UE may prepare and transmit a measurement report that includes the modified first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB. The measurement report also may include the signal strength measurements for the other candidate SSBs. The measurement report that includes the modified first signal strength measurement may cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. A UE modifying the first signal strength measurement to increase the difference between the first signal strength measurement associated with the candidate SSB and the second signal strength measurement associated with the serving SSB may allow the UE to influence the SSB handover decision that is typically controlled by the BS. Increasing the difference between the signal strength measurements may induce the BS to perform  the SSB handover. Also, increasing the difference between the signal strength measurements by a substantial amount may induce the BS to perform the SSB handover faster than if the first signal strength measurement was not modified by the signal strength compensation amount. Inducing the BS to perform an SSB handover by increasing the difference between the signal strength measurements may prevent the signal conditions associated with the serving SSB to substantially deteriorate and may prevent link failure in the serving SSB. Thus, inducing the BS to perform an SSB handover may improve power consumption and performance of the UE, and may improve the user experience.
Figure 1 is a system diagram of an example wireless communication network 100. The wireless communication network 100 may be an LTE network or a 5G NR network, or a combination thereof. The wireless communication network 100 also may be referred to as a wide area network (WAN) or a wireless wide area network (WWAN) . The wireless communication network 100 includes a number of base stations (BSs) 110 (individually labeled as 110A, 110B, 110C, 110D, 110E, and 110F) and other network entities. A BS 110 may be a station that communicates with UEs 120 and also may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. In some implementations, a BS 110 may represent an eNB of an LTE network or a gNB of a 5G NR network, or a combination thereof. Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 110 or a BS subsystem serving the coverage area, depending on the context in which the term is used.
BS 110 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cells. A macro cell generally covers a relatively large geographic area (such as several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A pico cell generally covers a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell generally covers a relatively small geographic area (such as a home) and, in addition to unrestricted access, also may provide restricted access by UEs having an association with the femto cell (such as UEs in a closed subscriber group (CSG) , UEs for users in the  home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in Figure 1, the BSs 110D and 110E may be regular macro BSs, while the BSs 110A-110C may be macro BSs enabled with three dimensions (3D) , full dimensions (FD) , or massive MIMO. The BSs 110A-110C may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 110F may be a small cell BS which may be a home node or portable access point. A BS 110 may support one or multiple (such as two, three, four, and the like) cells.
The wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 120 are dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile. A UE 120 also may be referred to as a terminal, a mobile station, a wireless device, a subscriber unit, a station, or the like. A UE 120 may be a mobile phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a wearable device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a smart appliance, a drone, a video camera, a sensor, or the like. In one aspect, a UE 120 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 120 that do not include UICCs also may be referred to as IoT devices or internet of everything (IoE) devices. The UEs 120A-120D are examples of mobile smart phone-type devices that may access the wireless communication network 100. A UE 120 also may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) , and the like. The UEs 120E-120L are examples of various machines configured for communication that access the wireless communication network 100. A UE 120 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In  Figure 1, a lightning bolt is representative of a communication link that indicates wireless transmissions between a UE 120 and a serving BS 110, which is a BS designated to serve the UE 120 on the downlink and uplink, or desired transmission between BSs, and backhaul transmissions between BSs.
In operation, the BSs 110A-110C may serve the  UEs  120A and 120B using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 110D may perform backhaul communications with the BSs 110A-110C, as well as the BS 110F (which may be a small cell BS) . The macro BS 110D also may transmit multicast services which are subscribed to and received by the  UEs  120C and 120D. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 110 also may communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 110 (such as a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (such as NG-C and NG-U) and may perform radio configuration and scheduling for communication with the UEs 120. In various examples, the BSs 110 may communicate, either directly or indirectly (such as through core network) , with each other over backhaul links, which may be wired or wireless communication links.
The wireless communication network 100 also may support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 120E, which may be a drone. Redundant communication links with the UE 120E may include links from the macro BSs 110D and 110E, as well as links from the small cell BS 110F. Other machine type devices, such as the UE 120F and UE 120G (such as video cameras or smart lighting) , the UE 120H (such as a smart meter) , and UE 120I (such as a wearable device) may communicate through the wireless communication network 100 either directly with the BSs, such as the small cell BS 110F, and the macro BS 110E, or in multi-hop configurations by communicating with another user device which relays its information to the wireless communication network 100. For example,  the UE 120H may communicate smart meter information to the UE 120I (such as a wearable device or mobile phone) , which may report to the wireless communication network 100 through the small cell BS 110F. The wireless communication network 100 also may provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in vehicle-to-vehicle (V2V) communications, as shown by UEs 120J-120L. Furthermore, the wireless communication network 100 may include one or more access points (APs) 107 that are part of one or more wireless local area networks (WLANs) . The APs 107 (which also may be referred to as WLAN APs) may provide short-range wireless connectivity to the UEs 120 of the wireless communication network 100.
In some implementations, the wireless communication network 100 may utilize OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW also may be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
The BSs 110 may assign or schedule transmission resources (such as in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the wireless communication network 100. DL refers to the transmission direction from a BS 110 to a UE 120, whereas UL refers to the transmission direction from a UE 120 to a BS 110. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (such as the DL subframes) in a radio frame may be used for DL transmissions, and another subset of the subframes (such as the UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 110 and the UEs 120. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 110 may transmit cell-specific reference signals (CRSs) or channel state information reference signals (CSI-RSs) to enable a UE 120 to estimate a DL channel. Similarly, a UE 120 may transmit sounding reference signals (SRSs) to enable a BS 110 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and operational data. In some aspects, the BSs 110 and the UEs 120 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In some aspects, the wireless communication network 100 may be an NR network deployed over a licensed spectrum or an NR network deployed over an unlicensed spectrum (such as NR-U and NR-U lite networks) . The BSs 110 can transmit synchronization signals, including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) , in the wireless communication network 100 to facilitate synchronization. The BSs 110 can broadcast system information associated with the wireless communication network 100 (such as a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 110 may broadcast one or more of the PSS, the SSS, and the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast one or more of the RMSI and the OSI over a physical downlink shared channel (PDSCH) .
In some aspects, a UE 120 attempting to access the wireless communication network 100 may perform an initial cell search by detecting a PSS included in an SSB from a BS 110. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 120 may receive an SSS included in an SSB from the BS 110. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 120 may receive an MIB. The MIB may include system information for initial network access and scheduling information for at least one of an RMSI and OSI. After decoding the MIB, the UE 120 may receive at least one of an RMSI and OSI. The RMSI and OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, and SRS.
After obtaining one or more of the MIB, the RMSI and the OSI, the UE 120 can perform a random access procedure to establish a connection with the BS 110. In some examples, the random access procedure may be a four-step random access procedure. For example, the UE 120 may transmit a physical random access channel (PRACH) , such as a PRACH preamble, and the BS 110 may respond with a random access response (RAR) . The RAR may include one or more of a detected random access preamble identifier (ID) corresponding to the PRACH preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and a backoff indicator. Upon receiving the RAR, the UE 120 may transmit a connection request to the BS 110 and the BS 110 may respond with a connection response. The connection response may indicate a contention resolution. In some examples, the PRACH, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some examples, the random access procedure may be a two-step random access procedure, where the UE 120 may transmit a PRACH (including a PRACH  preamble) and a connection request in a single transmission and the BS 110 may respond by transmitting a RAR and a connection response in a single transmission.
After establishing a connection, the UE 120 and the BS 110 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 110 may schedule the UE 120 for UL and DL communications. The BS 110 may transmit UL and DL scheduling grants to the UE 120 via a PDCCH. The BS 110 may transmit a DL communication signal to the UE 120 via a PDSCH according to a DL scheduling grant. The UE 120 may transmit a UL communication signal to the BS 110 via a PUSCH or PUCCH according to a UL scheduling grant.
In some aspects, the wireless communication network 100 may operate over a system BW or a component carrier BW. The wireless communication network 100 may partition the system BW into multiple bandwidth parts (BWPs) . A BWP may be a certain portion of the system BW. For example, if the system BW is 100 MHz, the BWPs may each be 20 MHz or less. A BS 110 may dynamically assign a UE 120 to operate over a certain BWP. The assigned BWP may be referred to as the active BWP. The UE 120 may monitor the active BWP for signaling information from the BS 110. The BS 110 may schedule the UE 120 for UL or DL communications in the active BWP. In some implementations, the BS 110 may configure UEs 120 with narrowband operation capabilities (such as with transmission and reception limited to a BW of 20 MHz or less) to perform BWP hopping for channel monitoring and communications.
In some aspects, a BS 110 may assign a pair of BWPs within the component carrier to a UE 120 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications. The BS 110 may additionally configure the UE 120 with one or more CORESETs in a BWP. A CORESET may include a set of frequency resources spanning a number of symbols in time. The BS 110 may configure the UE 120 with one or more search spaces for PDCCH monitoring based on the CORESETS. The UE 120 may perform blind decoding in the search spaces to search for DL control information (such as UL or DL scheduling grants) from the BS 110. For example, the BS 110 may configure the UE 120 with one or more of the BWPs, the CORESETS, and the PDCCH search spaces via RRC configurations.
In some aspects, the wireless communication network 100 may operate over a shared frequency band or an unlicensed frequency band, for example, at about 3.5 gigahertz (GHz) , sub-6 GHz or higher frequencies in the mmWave band. The wireless communication network 100 may partition a frequency band into multiple channels, for example, each occupying about 20 MHz. The BSs 110 and the UEs 120 may be operated by multiple network operating entities sharing resources in the shared communication medium and may employ a LBT procedure to acquire channel occupancy time (COT) in the share medium for communications. A COT may be non-continuous in time and may refer to an amount of time a wireless node can send frames when it has won contention for the wireless medium. Each COT may include a plurality of transmission slots. A COT also may be referred to as a transmission opportunity (TXOP) . The BS 110 or the UE 120 may perform an LBT in the frequency band prior to transmitting in the frequency band. The LBT can be based on energy detection or signal detection. For energy detection, the BS 110 or the UE 120 may determine that the channel is busy or occupied when a signal energy measured from the channel is greater than a certain signal energy threshold. For signal detection, the BS 110 or the UE 120 may determine that the channel is busy or occupied when a certain reservation signal (such as a preamble signal sequence) is detected in the channel.
Figure 2 is a block diagram conceptually illustrating an example 200 of a BS 110 in communication with a UE 120. In some aspects, BS 110 and UE 120 may respectively be one of the BSs and one of the UEs in wireless communication network 100 of Figure 1. BS 110 may be equipped with T antennas 234A through 234T, and UE 120 may be equipped with R antennas 252A through 252R, where in general T ≥ 1 and R ≥ 1.
At BS 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. The transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) , etc. ) and control information (for example, CQI  requests, grants, upper layer signaling, etc. ) and provide overhead symbols and control symbols. The transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators-demodulators (MODs-DEMODs) 232A through 232T (which also may be referred to as mods/demods or modems) . Each MOD-DEMOD 232 may process a respective output symbol stream (for example, for OFDM, etc. ) to obtain an output sample stream. Each MOD-DEMOD 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from MODs-DEMODs 232A through 232T may be transmitted via T antennas 234A through 234T, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252A through 252R may receive the downlink signals from BS 110 or other BSs and may provide received signals to modulators-demodulators (MODs-DEMODs) 254A through 254R, respectively (which also may be referred to as mods/demods or modems) . Each MOD-DEMOD 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each MOD-DEMOD 254 may further process the input samples (for example, for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R MODs-DEMODs 254A through 254R, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator  (CQI) , etc. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, etc. ) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by MODs-DEMODs 254A through 254R (for example, for DFT-s-OFDM, CP-OFDM, etc. ) , and transmitted to BS 110. At BS 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by MOD-DEMOD 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240. The BS 110 may include communication unit 244 and may communicate to network controller 130 via communication unit 244. The network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
The controller/processor 240 of BS 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with modifying an SSB measurement for a measurement report to induce the wireless communication network to perform an SSB handover, as described in more detail elsewhere herein. For example, the controller/processor 240 of BS 110, the controller/processor 280 of UE 120, or any other component (s) (or combinations of components) of Figure 2 may perform or direct operations of, for example, the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. The  memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
The stored program codes, when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations  described with respect to the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. The stored program codes, when executed by the controller/processor 240 or other processors and modules at BS 110, may cause the BS 110 to perform operations described with respect to the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. A scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
In some aspects, UE 120 may include means for performing the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. In some aspects, such means may include one or more components of UE 120 described in connection with Figure 2.
In some aspects, BS 110 may include means for performing the process depicted by flowchart 500 of Figure 5, or other processes as described herein, such as the processes described in Figures 3 and 4. In some aspects, such means may include one or more components of BS 110 described in connection with Figure 2.
While blocks in Figure 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
Figure 3 shows a system diagram of an example wireless communication network including a UE 120 that is configured to modify an SSB measurement for a measurement report to induce the wireless communication network 300 to perform an SSB handover. The wireless communication network 300 shown in Figure 3 is based on the example wireless communication network 100 described in Figure 1. The wireless communication network 300 also may be referred to as a wide area network (WAN) or a wireless wide area network (WWAN) . The wireless communication network 300 may include the UE 120 and a BS 110 of a 5G NR network. The UE 120 may be an example implementation of the UEs shown in Figures 1–2. The BS 110 may be an example  implementation of the BSs shown in Figures 1–2. Although not shown for simplicity, the wireless communication network 300 may include one or more additional BSs and one or more additional UEs. In some implementations, the BS 110 may be a gNB that may implement a 5G NR RAT described in this disclosure to manage communications of a 5G NR network.
In some implementations, the UE 120 may include a connection management unit 322 and a signal measurement unit 324. In some implementations, the connection management unit 322 may perform operations to establish a wireless connection with a BS of the wireless communication network 300, and may manage the wireless connection, such as to determine whether to maintain the wireless connection or whether to handoff the UE 120 to another BS or to another SSB of the serving BS. For example, the connection management unit 322 may work in conjunction with the signal measurement unit 324 to determine whether to perform an SSB handoff from a serving SSB associated with the BS 110 to a candidate SSB associated with the BS 110, as described further herein. In some implementations, the signal measurement unit 324 may perform SSB measurements on a plurality of SSBs received from the BS 110 and may store the SSB measurements. The plurality of SSBs may include the serving SSB and one or more candidate SSBs. The signal measurement unit 324 may determine whether to switch from the serving SSB to one of the candidate SSBs based on the SSB measurements.
In some implementations, the BS 110 may include a connection management unit 316. The connection management unit 316 may perform operations to establish a wireless connection with one or more UEs of the wireless communication network 300 (such as the UE 120) , and may manage the wireless connections, such as to determine whether to maintain the wireless connections or whether to handoff one or more of the UEs to another BS or to another SSB of the serving BS. In some implementations, the connection management unit 322 and the signal measurement unit 324 may be implemented by the UE 120 using one or more of the components shown in Figure 2 for the UE 120, such as the controller/processor 280 and the memory 282. In some implementations, the connection management unit 316 may be implemented by the BS 110 shown in Figure 3 using one or more of the components shown in Figure 2 for the BS  110, such as the controller/processor 240, the communication unit 244, and the memory 242.
In some implementations, the BS 110 may perform a beamforming operation to transmit a plurality of SSBs via a corresponding plurality of beams. The BS 110 may perform a beamforming sweep (also referred to as a beam sweep) to transmit a plurality of SSBs via a corresponding plurality of beams. For example, as shown in Figure 3, the BS 110 may transit four SSBs ( SSBs  0, 1, 2, and 3) via four beams ( beams  0, 1, 2, and 3) . For example, the BS 110 may transmit the SSB 0 via the beam 0, the SSB 1 via the beam 1, the SSB 2 via the beam 2, and the SSB 3 via the beam 3. The beam 0 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 0. The beam 1 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 1. The beam 2 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 2. The beam 3 may provide wireless service to UEs that are located in an area that receives the strongest signals via the beam 3. For example, when the UE 120 is at location A, the UE 120 may receive the strongest signals via the beam 0.
In some implementations, when the UE 120 is at location A, the UE 120 may receive the strongest signals via the beam 0, and thus the UE 120 may focus on processing the wireless signals received via the beam 0 to obtain wireless service. The SSB 0 may be referred to as a serving SSB, and the SSBs 1–3 may be referred to as the candidate SSBs (or neighbor SSBs) . The beam 0 also may be referred to as the serving beam and the beams 1–3 may be referred to as the candidate beams (or neighbor beams) . The UE 120 may periodically perform SSB measurements on the plurality of SSBs, which include the serving SSB and the candidate SSBs. For example, when the UE 120 is in a connected mode, the UE 120 may periodically perform signal strength measurements on the serving SSB and the candidate SSBs to determine whether one of the candidates SSBs has a greater signal strength than the serving SSB. In some implementations, the UE 120 may determine the candidate SSB from the candidate SSBs that has the greatest signal strength measurement. The UE 120 may compare the signal strength measurement of the candidate SSB to the signal strength measurement of the serving SSB to determine whether to induce the BS 110 to initiate an SSB handover in  order to switch from the serving SSB to the candidate SSB, as described further herein. In some implementations, the signal strength measurements may be reference signal received power (RSRP) measurements.
In some implementations, the UE 120 may determine that a first signal strength measurement associated with a first candidate SSB is greater than a second signal strength measurement associated with a serving SSB. For example, when the UE 120 moves (as shown by the dashed arrow 350) from the location A that is serviced by the beam 0 to the location B that is serviced by the beam 1, the UE 120 may perform SSB measurements and may determine that the first signal strength measurement associated with the SSB 1 (which may be referred as the first candidate SSB) is greater than the second signal strength measurement associated with the SSB 0 (which may be referred to as the serving SSB) . In some implementations, the UE 120 may determine whether the first signal strength measurement associated with the first candidate SSB is greater than the signal strength measurement associated with the serving SSB by at least a signal strength threshold. The signal strength threshold also may be referred to as an offset or a signal strength offset. In some implementations, the signal strength threshold may be an RSRP threshold. The signal strength threshold may be preconfigured and may be configurable to be a variety of signal strength values. As a non-limiting example, the signal strength threshold may be configured to be approximately 6 decibels (dB) . As another non-limiting example, the signal strength threshold may be configured to be between approximately 4 dB and approximately 8 dB.
In some implementations, when the UE 120 determines the first signal strength measurement associated with the first candidate SSB is greater than the second signal strength measurement associated with the serving SSB by at least the signal strength threshold, the UE 120 may modify the first signal strength measurement associated with the first candidate SSB with a signal strength compensation amount. The first signal strength measurement may be modified with the signal strength compensation amount to increase a difference (which also may be referred to as a gap) between the first signal strength measurement associated with the first candidate SSB and the second signal strength measurement associated with the serving SSB. Increasing the difference (or gap) between the first signal strength measurement and the second signal strength  measurement may induce the BS 110 to initiate an SSB handover from the serving SSB to the first candidate SSB. The signal strength compensation amount also may be referred to as a signal strength compensation factor. In some implementations, the signal strength compensation amount may be an RSRP compensation amount. The signal strength compensation amount may be preconfigured and may be configurable to be a variety of signal strength compensation amounts. As a non-limiting example, the signal strength compensation amount may be configured to be approximately 15 dB. As another non-limiting example, the signal strength compensation amount may be configured to be between approximately 12 dB and approximately 18 dB. In some implementations, the signal strength compensation amount may be greater than the signal strength threshold in order to significantly increase the difference between the first signal strength measurement and the second signal strength measurement.
In some implementations, the UE 120 may prepare a measurement report for transmission to the BS 110. The UE 120 may prepare a measurement report that includes the modified first signal strength measurement for the first candidate SSB and the second signal strength measurement for the serving SSB. The measurement report also may include the signal strength measurements for the other candidate SSBs. The UE 120 may transmit the measurement report to the BS 110. The UE 120 may use the modified first signal strength measurement for the measurement report to cause the BS 110 to perform an SSB handover from the serving SSB to the first candidate SSB. In some implementations, the UE 120 may be configured to transmit a measurement report to the BS 110 periodically. For example, the BS 110 may cause the UE 120 to send a measurement report periodically by setting a report type parameter to periodic as described in the 3GPP technical specification (TS) 38.331, version 16.0.0 (2020-03) (hereafter “TS 38.331” ) . In some implementations, the BS 110 may cause the UE 120 to perform signal strength measurements, such as RSRP measurements, and include the signal strength measurements in the measurement reports by setting the reportQuantity parameter to ssb-Index-RSPR as described in the TS 38.331. In some implementations, the measurement report may be referred to as a channel state feedback (CSF) report.
In some implementations, the BS 110 may receive the measurement report and determine whether one of the candidate SSBs has a greater signal strength than the  serving SSB. For example, the BS 110 may compare the modified first signal strength measurement associated with the first candidate SSB with the second signal strength measurement associated with the serving SSB. The BS 110 may determine whether the modified first signal strength measurement is greater than the second signal strength measurement by an SSB handover threshold or offset (which also may be referred to as a handover threshold or offset) . As described herein, the SSB handover threshold or offset may vary between network providers and may not be known by the UE 120. In some implementations, the BS 110 may determine that the difference between the modified first signal strength measurement and the second signal strength measurement is greater than the SSB handover threshold or offset. In some implementations, after the BS 110 determines the difference between the modified first signal strength measurement and the second signal strength measurement is greater than the SSB handover threshold or offset, the BS 110 may initiate an SSB handover from the serving SSB to the first candidate SSB. As described herein, the UE 120 adding the signal strength compensation amount to the first signal strength measurement may substantially increase the difference between the first signal strength measurement and the second signal strength measurement to cause the BS 110 to initiate an SSB handover. In some implementations, the greater the difference between the modified first signal strength measurement and the second signal strength measurement, the faster the SSB handover may be triggered at the BS 110. In some implementations, after initiating the SSB handover, the BS 110 may transmit an SSB handover request message (which also may be referred to as a handover request message) to the UE 120 to request the UE 120 to switch from the serving SSB to the first candidate SSB. The UE 120 may switch from the serving SSB to the first candidate SSB, and may transmit an SSB handover complete message (which also may be referred to as a handover complete message) to the BS 110.
Figure 4 shows an example message flow that shows a UE configured to modify an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB. The message flow diagram 400 includes the UE 120 and the BS 110 associated with a 5G NR RAT that are described in Figure 3.
At 405, the BS 110 may perform a beam sweep and transmit a plurality of SSBs via a corresponding plurality of beams to the UE 120. For example, the SSB 0 may be the serving SSB, and the SSBs 1–3 may be candidate SSBs.
At 410, the UE 120 may receive the plurality of SSBs via the corresponding plurality of beams. For example, the UE 120 may receive the SSB 0 (the serving SSB) via the beam 0, the SSB 1 via the beam 1, the SSB 2 via the beam 2, and the SSB 3 via the beam 3. In some implementations, the UE 120 may perform SSB measurements on the serving SSB and the candidate SSBs received from the BS 110. For example, the UE 120 may determine signal strength measurements, such as RSRP measurements, for the serving SSB and the candidate SSBs and may compare the signal strength measurements. The UE 120 may determine that a signal strength measurement (which may be referred to as a first signal strength measurement) associated with one of the candidate SSBs (which may be referred to as a first candidate SSB) is greater than a signal strength measurement (which may be referred to as a second signal strength measurement) associated with the serving SSB by at least a signal strength threshold. The UE 120 may modify first signal strength measurement associated with the first candidate SSB with a signal strength compensation amount. For example, the UE 120 may determine a modified first signal strength measurement for the first candidate SSB by adding the signal strength compensation amount to the first signal strength measurement.
At 415, the UE 120 may transmit a measurement report to the BS 110. The measurement report may include the modified first signal strength measurement associated with the first candidate SSB and the second signal strength measurement associated with the serving SSB. The modified first signal strength measurement may be included in the measurement report to induce the BS 110 to perform an SSB handover. The measurement report also may include signal strength measurements for the other candidate SSBs.
At 420, the BS 110 may receive and process the measurement report from the UE 120. The BS 110 may determine whether one of the candidate SSBs has a greater signal strength than the serving SSB. For example, the BS 110 may determine that the modified first signal strength measurement associated with the first candidate SSB is greater than the second signal strength measurement associated with the serving SSB by  at least the SSB handover threshold or offset. The BS 110 may determine to perform an SSB handover after determining that the modified first signal strength measurement is greater than the second signal strength measurement by at least the SSB handover threshold. As described herein, the SSB handover threshold or offset may vary between network providers and may not be known by the UE 120. Since the UE 120 added the signal strength compensation amount to the first signal strength measurement to derive the modified first signal strength measurement, the BS 110 may determine that the difference between the modified first signal strength measurement and the second signal strength measurement is substantially greater than the SSB handover threshold.
At 425, the BS 110 may transmit an SSB handover request message to the UE 120 to request the UE 120 to switch from the serving SSB to the first candidate SSB. The BS 110 may transmit the SSB handover request message after determining the modified first signal strength measurement is greater than the second signal strength measurement associated with the serving SSB by at least the SSB handover threshold or offset. In some implementations, when the BS 110 determines that the difference between the modified first signal strength measurement and the second signal strength measurement is substantially greater than the SSB handover threshold, the BS 110 may immediately transmit the SSB handover request message.
At 430, the UE 120 may receive and process the SSB handover request message from the BS 110. For example, the UE 120 may determine that the SSB handover request message indicates to switch from the serving SSB to the first candidate SSB. After receiving and processing the SSB handover request message, the UE 120 may switch from the serving SSB to the first candidate SSB. For example, the UE 120 may switch from the SSB 0 of the beam 0 to the SSB 1 of the beam 1. After the SSB switch, the SSB 1 may be referred to as the serving SSB, and the SSB 0 may be referred to as one of the candidate SSBs.
At 435, the UE 120 may transmit an SSB handover complete message to the BS 110. The SSB handover complete message may indicate to the BS 110 that the UE 120 has switched from the serving SSB (SSB 0) to the first candidate SSB (SSB 1) .
At 440, the BS 110 may receive the SSB handover complete message from the UE 120. After receiving the SSB handover complete message, the BS 110 may  determine that the SSB handover has been completed and the BS 110 may begin to use the SSB 1 as the serving SSB.
Figure 5 depicts a flowchart 500 with example operations performed by an apparatus of a UE for modifying an SSB measurement for a measurement report to induce a BS to perform an SSB handover from a serving SSB to a candidate SSB.
At block 510, the apparatus of the UE may determine, from a plurality of SSBs received from a BS of a WWAN, that a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB. In some implementations, the apparatus of the UE may determine that the first signal strength measurement is greater than the second signal strength measurement by at least a signal strength threshold. In some implementations, the BS may be configured to implement a 5G NR RAT to provide 5G service.
At block 520, the apparatus of the UE may modify the first signal strength measurement with a signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement. In some implementations, the apparatus of the UE may modify the first signal strength measurement with the signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement by at least the signal strength threshold. The first signal strength measurement may be modified with the signal strength compensation amount to increase a difference between the first signal strength measurement and the second signal strength measurement. In some implementations, the signal strength measurements may be RSRP measurements, the signal strength threshold may be an RSRP threshold, and the signal strength compensation amount may be an RSRP compensation amount.
At block 530, the apparatus of the UE may output a measurement report for transmission to the BS. The measurement report may include the modified first signal strength measurement and the second signal strength measurement. The first signal strength measurement may be modified with the signal strength compensation amount to cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
Figure 6 shows a block diagram of an example wireless communication apparatus 600. In some implementations, the wireless communication apparatus 600 can  be an example of a device for use in a UE, such as the UE 120 described above with reference to Figure 3. In some implementations, the wireless communication apparatus 600 can be an example of a device for use in a BS, such as the BS 110 described above with reference to Figure 3. The wireless communication apparatus 600 is capable of transmitting (or outputting for transmission) and receiving wireless communications.
The wireless communication apparatus 600 can be, or can include, a chip, system on chip (SoC) , chipset, package or device. The term “system-on-chip” (SoC) is used herein to refer to a set of interconnected electronic circuits typically, but not exclusively, including one or more processors, a memory, and a communication interface. The SoC may include a variety of different types of processors and processor cores, such as a general purpose processor, a central processing unit (CPU) , a digital signal processor (DSP) , a graphics processing unit (GPU) , an accelerated processing unit (APU) , a sub-system processor, an auxiliary processor, a single-core processor, and a multicore processor. The SoC may further include other hardware and hardware combinations, such as a field programmable gate array (FPGA) , a configuration and status register (CSR) , an application-specific integrated circuit (ASIC) , other programmable logic device, discrete gate logic, transistor logic, registers, performance monitoring hardware, watchdog hardware, counters, and time references. SoCs may be integrated circuits (ICs) configured such that the components of the IC reside on the same substrate, such as a single piece of semiconductor material (such as, for example, silicon) .
The term “system in a package” (SIP) is used herein to refer to a single module or package that may contain multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SoCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP also may include multiple independent SoCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single mobile communication device. The proximity of the SoCs facilitates high speed communications and the sharing of memory and resources.
The term “multicore processor” is used herein to refer to a single IC chip or chip package that contains two or more independent processing cores (for example a CPU core, IP core, GPU core, among other examples) configured to read and execute program instructions. An SoC may include multiple multicore processors, and each processor in an SoC may be referred to as a core. The term “multiprocessor” may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
The wireless communication apparatus 600 may include one or more modems 602. In some implementations, the one or more modems 602 (collectively “the modem 602” ) may include a WWAN modem (for example, a 3GPP 4G LTE or 5G compliant modem) . In some implementations, the wireless communication apparatus 600 also includes one or more radios 604 (collectively “the radio 604” ) . In some implementations, the wireless communication apparatus 600 further includes one or more processors, processing blocks or processing elements 606 (collectively “the processor 606” ) and one or more memory blocks or elements 608 (collectively “the memory 608” ) .
The modem 602 can include an intelligent hardware block or device such as, for example, an application-specific integrated circuit (ASIC) among other possibilities. The modem 602 is generally configured to implement a PHY layer. For example, the modem 602 is configured to modulate packets and to output the modulated packets to the radio 604 for transmission over the wireless medium. The modem 602 is similarly configured to obtain modulated packets received by the radio 604 and to demodulate the packets to provide demodulated packets. In addition to a modulator and a demodulator, the modem 602 may further include digital signal processing (DSP) circuitry, automatic gain control (AGC) , a coder, a decoder, a multiplexer and a demultiplexer. For example, while in a transmission mode, data obtained from the processor 606 is provided to a coder, which encodes the data to provide encoded bits. The encoded bits are mapped to points in a modulation constellation (using a selected MCS) to provide modulated symbols. The modulated symbols may be mapped to a number NSS of spatial streams or a number NSTS of space-time streams. The modulated symbols in the respective spatial or space-time streams may be multiplexed, transformed via an inverse fast Fourier transform (IFFT) block, and subsequently provided to the DSP circuitry for Tx  windowing and filtering. The digital signals may be provided to a digital-to-analog converter (DAC) . The resultant analog signals may be provided to a frequency upconverter, and ultimately, the radio 604. In implementations involving beamforming, the modulated symbols in the respective spatial streams are precoded via a steering matrix prior to their provision to the IFFT block.
While in a reception mode, digital signals received from the radio 604 are provided to the DSP circuitry, which is configured to acquire a received signal, for example, by detecting the presence of the signal and estimating the initial timing and frequency offsets. The DSP circuitry is further configured to digitally condition the digital signals, for example, using channel (narrowband) filtering, analog impairment conditioning (such as correcting for I/Q imbalance) , and applying digital gain to ultimately obtain a narrowband signal. The output of the DSP circuitry may be fed to the AGC, which is configured to use information extracted from the digital signals, for example, in one or more received training fields, to determine an appropriate gain. The output of the DSP circuitry also is coupled with the demodulator, which is configured to extract modulated symbols from the signal and, for example, compute the logarithm likelihood ratios (LLRs) for each bit position of each subcarrier in each spatial stream. The demodulator is coupled with the decoder, which may be configured to process the LLRs to provide decoded bits. The decoded bits from all of the spatial streams are fed to the demultiplexer for demultiplexing. The demultiplexed bits may be descrambled and provided to the MAC layer (the processor 606) for processing, evaluation, or interpretation.
The radio 604 generally includes at least one radio frequency (RF) transmitter (or “transmitter chain” ) and at least one RF receiver (or “receiver chain” ) , which may be combined into one or more transceivers. For example, the RF transmitters and receivers may include various DSP circuitry including at least one power amplifier (PA) and at least one low-noise amplifier (LNA) , respectively. The RF transmitters and receivers may, in turn, be coupled to one or more antennas. For example, in some implementations, the wireless communication apparatus 600 can include, or be coupled with, multiple transmit antennas (each with a corresponding transmit chain) and multiple receive antennas (each with a corresponding receive chain) . The symbols output from the  modem 602 are provided to the radio 604, which transmits the symbols via the coupled antennas. Similarly, symbols received via the antennas are obtained by the radio 604, which provides the symbols to the modem 602.
The processor 606 can include an intelligent hardware block or device such as, for example, a processing core, a processing block, a central processing unit (CPU) , a microprocessor, a microcontroller, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a programmable logic device (PLD) such as a field programmable gate array (FPGA) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. The processor 606 processes information received through the radio 604 and the modem 602, and processes information to be output through the modem 602 and the radio 604 for transmission through the wireless medium. In some implementations, the processor 606 may generally control the modem 602 to cause the modem to perform various operations described above.
The memory 608 can include tangible storage media such as random-access memory (RAM) or read-only memory (ROM) , or combinations thereof. The memory 608 also can store non-transitory processor-or computer-executable software (SW) code containing instructions that, when executed by the processor 606, cause the processor to perform various operations described herein for wireless communication, including the generation, transmission, reception and interpretation of MPDUs, frames or packets. For example, various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein, can be implemented as one or more modules of one or more computer programs.
Figure 7 shows a block diagram of an example mobile communication device 704. For example, the mobile communication device 704 can be an example implementation of the UE 120 described herein. The mobile communication device 704 includes a wireless communication apparatus (WCA) 715. For example, the WCA 715 may be an example implementation of the wireless communication apparatus 600 described with reference to Figure 6. The mobile communication device 704 also includes one or more antennas 725 coupled with the WCA 715 to transmit and receive wireless communications. The mobile communication device 704 additionally includes  an application processor 735 coupled with the WCA 715, and a memory 745 coupled with the application processor 735. In some implementations, the mobile communication device 704 further includes a UI 755 (such as a touchscreen or keypad) and a display 765, which may be integrated with the UI 755 to form a touchscreen display. In some implementations, the mobile communication device 704 may further include one or more sensors 775 such as, for example, one or more inertial sensors, accelerometers, temperature sensors, pressure sensors, or altitude sensors. Ones of the aforementioned components can communicate with other ones of the components directly or indirectly, over at least one bus. The mobile communication device 704 further includes a housing that encompasses the WCA 715, the application processor 735, the memory 745, and at least portions of the antennas 725, UI 755, and display 765.
Figures 1–7 and the operations described herein are examples meant to aid in understanding example implementations and should not be used to limit the potential implementations or limit the scope of the claims. Some implementations may perform additional operations, fewer operations, operations in parallel or in a different order, and some operations differently.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software. As used herein, the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
As used herein, a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members. For  example, “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
The various illustrative components, logic, logical blocks, modules, circuits, operations and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, firmware, software, or combinations of hardware, firmware or software, including the structures disclosed in this specification and the structural equivalents thereof. The interchangeability of hardware, firmware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware, firmware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative components, logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes, operations and methods may be performed by circuitry that is specific to a given function.
As described above, in some aspects implementations of the subject matter described in this specification can be implemented as software. For example, various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more  modules of one or more computer programs. Such computer programs can include non-transitory processor-or computer-executable instructions encoded on one or more tangible processor-or computer-readable storage media for execution by, or to control the operation of, data processing apparatus including the components of the devices described herein. By way of example, and not limitation, such storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store program code in the form of instructions or data structures. Combinations of the above should also be included within the scope of storage media.
Various modifications to the implementations described in this disclosure may be readily apparent to persons having ordinary skill in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, various features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. As such, although features may be described above as acting in particular combinations, and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one or more example processes in the form of a flowchart or flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be  performed before, after, simultaneously, or between any of the illustrated operations. In some circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (13)

  1. A method for wireless communication performed by an apparatus of a user equipment (UE) , comprising:
    determining, from a plurality of synchronization signal blocks (SSBs) received from a base station (BS) of a wireless wide area network (WWAN) , that a first signal strength measurement associated with a candidate SSB is greater than a second signal strength measurement associated with a serving SSB;
    modifying the first signal strength measurement with a signal strength compensation amount in response to determining the first signal strength measurement is greater than the second signal strength measurement; and
    outputting a measurement report for transmission to the BS, the measurement report including the modified first signal strength measurement and the second signal strength measurement, the first signal strength measurement being modified with the signal strength compensation amount to cause the BS to perform an SSB handover from the serving SSB to the candidate SSB.
  2. The method of claim 1, wherein the first signal strength measurement is modified with the signal strength compensation amount to increase a difference between the first signal strength measurement and the second signal strength measurement.
  3. The method of claim 1, further comprising:
    determining that the first signal strength measurement associated with the candidate SSB is greater than the second signal strength measurement associated with the serving SSB by at least a signal strength threshold; and
    modifying the first signal strength measurement with the signal strength compensation amount in response to determining the first signal strength  measurement is greater than the second signal strength measurement by at least the signal strength threshold.
  4. The method of claim 3, wherein
    the first signal strength measurement and the second signal strength measurement are reference signal received power (RSRP) measurements,
    the signal strength threshold is an RSRP threshold, and
    the signal strength compensation amount is an RSRP compensation amount.
  5. The method of claim 3, wherein the signal strength compensation amount is greater than the signal strength threshold to significantly increase a difference between the first signal strength measurement and the second signal strength measurement.
  6. The method of claim 3, wherein a value of the signal strength compensation amount is 15 decibels (dB) and a value of the signal strength threshold is 6 db.
  7. The method of claim 3, wherein a value of the signal strength compensation amount and a value of the signal strength threshold are configurable.
  8. The method of claim 1, further comprising:
    obtaining, after outputting the measurement report that includes the modified first signal strength measurement and the second signal strength measurement, an SSB handover request message from the BS, the SSB handover request message indicating to the UE to switch from the serving SSB to the candidate SSB; and
    switching from the serving SSB to the candidate SSB in response to receiving the SSB handover request message.
  9. The method of claim 1, wherein the measurement report is transmitted to the BS periodically when the UE is in a connected mode.
  10. The method of claim 1, wherein the BS is configured to implement a 5G New Radio (NR) radio access technology (RAT) .
  11. An apparatus of a user equipment (UE) for wireless communication, comprising: one or more interfaces for communicating via a wireless communication network; and
    one or more processors configured to perform any one of the method claims 1–10.
  12. A computer-readable medium having stored therein instructions which, when executed by a processor of a user equipment (UE) , causes the UE to perform any one of the method claims 1–10.
  13. An apparatus, comprising:
    means for implementing any one of the method claims 1–10.
PCT/CN2020/093019 2020-05-28 2020-05-28 Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover WO2021237611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093019 WO2021237611A1 (en) 2020-05-28 2020-05-28 Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093019 WO2021237611A1 (en) 2020-05-28 2020-05-28 Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover

Publications (1)

Publication Number Publication Date
WO2021237611A1 true WO2021237611A1 (en) 2021-12-02

Family

ID=78745408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093019 WO2021237611A1 (en) 2020-05-28 2020-05-28 Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover

Country Status (1)

Country Link
WO (1) WO2021237611A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176430A1 (en) * 2010-01-20 2011-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for triggering measurements of other radio access technologies (rats)
US9693268B2 (en) * 2014-06-05 2017-06-27 Electronics And Telecommunications Research Institute Method of handover in mobile communication system
CN108243470A (en) * 2016-12-26 2018-07-03 大唐移动通信设备有限公司 A kind of cell switching method and base station
CN108924890A (en) * 2018-09-25 2018-11-30 珠海格力电器股份有限公司 Mobile communications network switching method, device, user equipment and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176430A1 (en) * 2010-01-20 2011-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for triggering measurements of other radio access technologies (rats)
US9693268B2 (en) * 2014-06-05 2017-06-27 Electronics And Telecommunications Research Institute Method of handover in mobile communication system
CN108243470A (en) * 2016-12-26 2018-07-03 大唐移动通信设备有限公司 A kind of cell switching method and base station
CN108924890A (en) * 2018-09-25 2018-11-30 珠海格力电器股份有限公司 Mobile communications network switching method, device, user equipment and storage medium

Similar Documents

Publication Publication Date Title
CN110431857B (en) Techniques and apparatus for signal quality measurement for narrowband internet of things (NB-IOT) devices
US11259263B2 (en) Dual registration using dynamic spectrum sharing (DSS) in a wide area network (WAN)
WO2023086749A1 (en) Leveraging integrated access and backhaul (iab) resource management for power savings in a wireless communication network
EP4295522A1 (en) Hybrid automatic repeat request (harq) procedure using multiple beams in a wireless wide area network (wwan)
WO2022245559A1 (en) Power harvesting protocol for configurable metasurfaces in a wireless wide area network (wwan)
WO2023278953A1 (en) Tracking network traffic of local area network (lan) subnets in a wireless wide area network (wwan)
US11671887B2 (en) Limiting handoffs between wireless communication networks during a time period
WO2021159291A1 (en) Measurement gap behavior with multiple radio connections
WO2021237611A1 (en) Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover
US11950152B2 (en) Robust measurement procedure for neighbor base station (BS) handoff candidates in a wireless wide area network (WWAN)
WO2021243651A1 (en) Saving user equipment (ue) power by preventing 5g measurements when ue is stationary
WO2021232374A1 (en) Empirical data based 5g network search for performing 5g network reselection from a legacy network
WO2021253279A1 (en) Preventing frequent 5g new radio (nr) cell handovers in a non-standalone (nsa) mode when user equipment (ue) is stationary
US12003975B2 (en) Channel state information (CSI) measurement and report for dynamic spectrum sharing (DSS) in a wireless wide area network (WWAN)
WO2021184242A1 (en) Handover conditions for a handover measurement report in a wide area network (wan)
WO2021232287A1 (en) Modifying radio access technology (rat) selection priorities used by user equipment (ue) for establishing wireless connection
US20230063299A1 (en) Channel state information (csi) measurement and report for dynamic spectrum sharing (dss) in a wireless wide area network (wwan)
US20230007679A1 (en) Differentiation of full duplex (fd) traffic scheduling combinations in a wireless wide area network (wwan)
US11956808B2 (en) Scheduling request (SR) management for split data radio bearer (DRB) in a wireless wide area network (WWAN)
US20230318900A1 (en) Adaptation of amplitude and phase shift keying (apsk) modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938307

Country of ref document: EP

Kind code of ref document: A1