WO2021159291A1 - Measurement gap behavior with multiple radio connections - Google Patents

Measurement gap behavior with multiple radio connections Download PDF

Info

Publication number
WO2021159291A1
WO2021159291A1 PCT/CN2020/074809 CN2020074809W WO2021159291A1 WO 2021159291 A1 WO2021159291 A1 WO 2021159291A1 CN 2020074809 W CN2020074809 W CN 2020074809W WO 2021159291 A1 WO2021159291 A1 WO 2021159291A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
measurement
measurement gap
time period
gap time
Prior art date
Application number
PCT/CN2020/074809
Other languages
French (fr)
Inventor
Ling Xie
Zhanyi Liu
Xuqiang ZHANG
Avind Vardarajan SANTHANAM
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074809 priority Critical patent/WO2021159291A1/en
Publication of WO2021159291A1 publication Critical patent/WO2021159291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • aspects of the present disclosure generally relate to wireless communication and measurement gap behavior in a user equipment (UE) with multiple radio connections.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) .
  • a wireless communication system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Different base stations or network access nodes may implement different radio communication protocols including fourth-generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth-generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G fourth-generation
  • LTE-A Long Term Evolution
  • LTE-A Pro LTE-Advanced
  • NR New Radio
  • NR which also may be referred to as 5G for brevity, is a set of enhancements to
  • a UE may be capable of establishing multiple radio connections with a wireless communication system. For example, a UE may establish an LTE connection to a first base station of the wireless communication system and an NR connection to a second base station of the wireless communication system. Examples of multiple radio connections may include non-standalone (NSA) network deployments, dual connectivity, and split bearer, among other examples. Each radio connection may depend on different scheduling and timing synchronization.
  • NSA non-standalone
  • the method may include establishing a first connection with a first base station of a wireless communication network.
  • the method may include establishing a second connection with a second base station of the wireless communication network.
  • the method may include receiving a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection.
  • the method may include determining whether to perform the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period.
  • the method may include refraining from performing the measurement procedure during the first measurement gap time period based on the operating attribute of the second connection relative to the first measurement gap time period.
  • the method may include determining the operating attribute of the second connection relative to the first measurement gap time period.
  • the method may include determining, based on the operating attribute of the second connection, that a performance of the measurement procedure during the first measurement gap time period will negatively impact a communication via the second connection during the first measurement gap time period.
  • the method may include determining, by the UE, to refrain from performing the measurement procedure during the first measurement gap time period.
  • the method may include determining, prior to each measurement gap time period, whether or not to perform the measurement procedure during that measurement gap time period based on the operating attribute of the second connection relative to that measurement gap time period.
  • the operating attribute of the second connection includes a communication status.
  • the communication status may indicate that the second connection will be active during at least a portion of the first measurement gap time period.
  • the method may include receiving grant information for the second connection from the second base station.
  • the method may include determining the operating attribute based on the grant information.
  • the communication status may indicate that the second connection will be active during at least a portion of the first measurement gap time period when the grant information includes a grant for the UE to use the second connection during at least a portion of the first measurement gap time period.
  • the grant information may include at least one member selected from a group consisting of a transport block size (TBS) , a new data indicator field (NDI) , uplink activation signaling, modulation and coding scheme (MCS) , downlink control information (DCI) , and a physical layer resource allocation.
  • TBS transport block size
  • NDI new data indicator field
  • MCS modulation and coding scheme
  • DCI downlink control information
  • the method may include determining the operating attribute of the second connection based on grant information that indicates whether the second connection will be active during at least a portion of the first measurement gap time period.
  • the grant information indicates the second connection will be active when a new data indicator field (NDI) is toggled, a resource block (RB) size and modulation and coding scheme (MCS) indicate a transport block size (TBS) that extends into the first measurement gap time period, or the MCS of the second connection has a value reserved for retransmissions.
  • NDI new data indicator field
  • RB resource block
  • MCS modulation and coding scheme
  • the method may include performing the measurement procedure during a second measurement gap time period based on a determination that the second connection will remain idle during the second measurement gap time period.
  • the method may include determining a gap periodic interval that represents a quantity of skipped measurement time periods.
  • the method may include refraining from performing the measurement procedure for the quantity of skipped measurement time periods.
  • the method may include adjusting the gap periodic interval based on a signal quality metric of the first connection. Adjusting the gap periodic interval may include increasing or decreasing the gap periodic interval in correlation with the signal quality metric.
  • the method may include adjusting the gap periodic interval based on a traffic type of communication on the first connection. In some implementations, adjusting the gap periodic interval may include decreasing the gap periodic interval for high priority or voice traffic.
  • the method may include setting the gap periodic interval to the measurement gap repetition period (MGRP) when the first connection is being used for voice traffic.
  • MGRP measurement gap repetition period
  • the method may include determining a plurality of conditions that impact a measurement gap behavior for the first connection, the plurality of conditions including the operating attribute of the second connection.
  • the method may include, for each measurement gap time period, determining whether or not to perform the measurement procedure during that measurement gap time period based on the plurality of conditions.
  • the plurality of conditions may include a combination of any of the following: a communication status of the second connection relative to each measurement gap time period, a scheduling behavior of the second connection relative to the measurement gap configuration, a determination whether the second connection and the first connection use overlapping frequency ranges, an amount of time since a previous measurement procedure was performed, a signal quality metric associated with the first connection, and a determination whether the UE is stationary or nonstationary.
  • the method may include determining, for each condition, whether the condition favors or disfavors performing the measurement procedure.
  • the method may include determining whether or not to perform the measurement procedure based on whether the plurality of conditions favor or disfavor performing the measurement procedure.
  • the method may include weighting ones of the plurality of conditions.
  • the method may include determining the plurality of conditions in an order. In some implementations, when a first condition disfavors performing the measurement procedure during a particular measurement gap time period, the UE determines not to perform the measurement procedure during that measurement gap time period.
  • the method may include, relative to a second measurement gap time period, determining that the communication status of the second connection disfavors performing the measurement procedure when the communication status indicates that the second connection is active during the second measurement gap time period.
  • the method may include determining that the communication status of the second connection favors performing the measurement procedure when the communication status indicates that the second connection is idle during the second measurement gap time period.
  • the method may include determining that the scheduling behavior of the second connection relative the measurement gap configuration disfavors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection schedules communication during the measurement gap time periods.
  • the method may include determining that the scheduling behavior of the second connection relative the measurement gap configuration favors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection does not schedule communication during the measurement gap time periods.
  • the method may include determining a first condition based on whether the second connection and the first connection use overlapping frequency ranges.
  • the method may include determining that the first condition disfavors performing the measurement procedure when the second connection and the first connection use overlapping frequency ranges.
  • the method may include determining that the first condition favors performing the measurement procedure when the second connection and the first connection use non-overlapping frequency ranges.
  • the method may include determining a first condition based on an amount of time since a previous measurement procedure was performed. The method may include determining that the first condition disfavors performing the measurement procedure when the amount of time is less than a time period associated with a gap periodic interval. The method may include determining that the first condition favors performing the measurement procedure when the amount of time is greater than a time period associated with a gap periodic interval.
  • the method may include determining a first condition based on whether the UE is stationary or nonstationary. The method may include determining that the first condition disfavors performing the measurement procedure when the UE is stationary. The method may include determining that the first condition favors performing the measurement procedure when the UE is nonstationary.
  • the method may include determining a first condition based on a signal quality metric associated with the first connection.
  • the method may include determining that the first condition disfavors performing the measurement procedure when the signal quality metric is above a threshold.
  • the method may include determining that the first condition favors performing the measurement procedure when the signal quality metric is below the threshold.
  • the signal quality metric is based on at least one member selected from a group consisting of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and a received signal strength indicator (RSSI) .
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the method may include determining that a measurement reporting event (A2 event) is configured for the first connection.
  • the method may include determining the threshold based on a threshold configuration value for the A2 event.
  • the method may include determining the threshold based on a user-configurable setting, a network-configurable setting, a manufacturer configurable setting, or a UE-determined value based on the first connection.
  • the measurement gap configuration indicates a pattern of recurring measurement gap time periods.
  • the method may include determining to refrain from performing the measurement procedure during a first subset of the recurring measurement gap time periods that includes the first measurement gap time period. The method may include determining to perform the measurement procedure during a second subset of the recurring measurement gap time periods.
  • the method may include determining the second subset of the recurring measurement gap time periods based on a gap periodic interval.
  • the method may include determining, by the UE, the gap periodic interval based on a plurality of conditions associated with the first connection and the second connection.
  • the first base station is part of a legacy radio access network
  • the second base station is part of a new radio access network
  • the first connection and the second connection form a dual connectivity session with the wireless communication network.
  • the UE may include an interface and a processor configured to perform any one of the above-mentioned methods.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented as a computer-readable medium having stored therein instructions which, when executed by a processor, causes the processor to perform any one of the above-mentioned methods.
  • Figure 1 shows a pictorial diagram conceptually illustrating an example of a wireless network.
  • Figure 2 shows a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless network.
  • UE user equipment
  • Figure 3 shows a block diagram conceptually illustrating an example of a frame structure in a wireless network.
  • Figure 4 shows a block diagram conceptually illustrating an example of a UE with multiple radio connections.
  • Figure 5A shows a timing diagram conceptually illustrating an example of a measurement gap configuration for a first radio connection.
  • Figure 5B shows a timing diagram conceptually illustrating different possible scheduling behaviors of a second radio connection in relation to the timing of the measurement gap configuration shown in Figure 5A.
  • Figure 6 shows a flowchart illustrating an example process for managing measurement gap behavior according to some implementations.
  • Figure 7 shows a table with example conditions that may impact measurement gap behavior for the first connection.
  • Figure 8 shows a flowchart illustrating an example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • Figure 9 shows a conceptual diagram of an example configuration message and example configuration information related to managing measurement gap behavior.
  • Figure 10 shows a flowchart illustrating a first detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • Figure 11 shows a flowchart illustrating a second detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • Figure 12 shows a block diagram of an example wireless communication device.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV- DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink (DL) and uplink (UL) .
  • the DL (or forward link) refers to the communication link from the BS to the UE
  • the UL (or reverse link) refers to the communication link from the UE to the BS.
  • a wireless communication session or association between the UE and a BS may be referred to as a radio connection.
  • a UE may be capable of establishing multiple radio connections with a wireless communication system. For example, a UE may establish an LTE connection to a first base station (eNB) of the wireless communication system and an NR connection to a second base station (gNB) of the wireless communication system. Examples of multiple radio connections may include non-standalone (NSA) network deployments, dual connectivity, and split bearer, among other examples.
  • NSA non-standalone
  • One or more of the radio connections may have a measurement gap configuration that defines measurement gap time periods for the UE to perform a measurement procedure.
  • the measurement procedure is used by the UE to conduct measurements of base station signals to determine whether a change to the radio connection is warranted.
  • the first connection and the measurement gap configuration is based on an LTE connection.
  • the UE may be configured to periodically perform measurements to determine whether the LTE connection should change to a different LTE base station.
  • the measurement procedure includes temporarily suspending communication via the first connection during the measurement gap time period.
  • the UE is said to perform the measurement procedure (also referred to as “making the measurement gap” or similar terms) when the UE does not communicate with the eNB during the measurement gap time period so that the UE can obtain measurements of potential alternative base stations for the first connection.
  • the UE may be unavailable to transmit signals to, or receive signals from, the LTE connections during those measurement gap time periods that the UE performs the measurement procedure.
  • the UE would refrain from communicating via other radio connections during the same time period as the measurement procedure. For example, the UE may refrain from communicating with the gNB during the measurement gap time periods that the UE performs the measurement procedure.
  • the wireless communication network may adjust the scheduling of communication via the second connection to avoid the measurement gap time periods. For example, the wireless communication network may configure communication gaps for the second connection that correlate in time with the measurement gap time periods for the first connection. In some other implementations, the wireless communication may not configure communication gaps and may continue communicating via the second connection irrespective of the first connection. In either case, there is a possibility for the second connection to be active during at least part of the time that the first connection has a measurement gap time period. For example, the second connection, such as the NR connection, may be sensitive to timing, synchronization, and scheduling constraints. Even if the gNB configures communication gaps for an NR connection, the timing of the NR connection may not line up with the LTE connection. In some examples, the communication gap may be offset slightly in time.
  • the UE may be configured to suspend communication via the second connection when performing a measurement procedure for the first connection. However, doing so may impact communication via the second connection. For example, the UE may miss a communication (or portion of a communication) for the second connection. Missing the communication may impact performance for the second connection. For example, the UE may have dimension loss due to missing downlink control information (DCIs) , boundary loss due to hybrid automatic repeat request (HARQ) state mismatch or recovery delay, spectrum efficiency loss due to modulation coding scheme (MCS) penalty, or higher layer application delay due to round trip time (RTT) change.
  • DCIs downlink control information
  • HARQ hybrid automatic repeat request
  • MCS modulation coding scheme
  • RTT round trip time
  • This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for a UE to determine a measurement gap behavior for the first connection based on potential impact to the second connection.
  • Various implementations relate generally to conditions that the UE may use to determine whether to perform a measurement procedure (making a gap) on the first connection. The conditions may be based on operating attributes of the second connection as well as other factors that favor or disfavor performing the measurement procedure.
  • the UE may receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure.
  • the measurement procedure includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection. However, the UE may refrain from performing the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period.
  • the UE may determine whether a performance of the measurement procedure during a particular measurement gap time period would negatively impact a communication via the second connection. For example, the UE may examine grant information to determine whether the second connection will be active or idle during the measurement gap time period. If the second connection will be active during at least part of the measurement gap time period, the UE may refrain from performing the measurement procedure on the first connection.
  • the UE may consider a history or pattern or scheduling behavior for the second connection. For example, if the second connection frequently schedules communication during the same time periods as the measurement gap configuration, the UE may refrain from performing measurement procedures during every measurement gap time period. Alternatively, if the second connection regularly configures communication gaps that align with the measurement gap time periods, the UE may perform the measurement procedure during the measurement gap time periods with confidence that the gap will not impact communication via the second connection.
  • the UE may consider several conditions (also referred to as factors) that favor or disfavor performing the measurement procedure. For example, even if the measurement procedure will impact the communication of the second connection, the UE may proceed with performing the measurement procedure if other conditions of the first connection suggest a need to perform the measurement procedure. Those other conditions may include movement of the UE, a low signal quality metric, or an amount of time since the previous measurement procedure was performed.
  • the UE may determine whether to perform the measurement procedure for each measurement gap time period based on current conditions prior to the measurement gap time period. Thus, the UE may control the measurement gap behavior based on conditions the UE can detect. This permits the UE to manage the performance impact that the measurement procedure may cause to the second connection as well as the relative benefit on the first connection.
  • the UE may determine whether or not to perform the measurement procedure for a particular measurement gap time period based on several conditions. For example, the UE may consider a communication status of the second connection relative to each measurement gap time period, a scheduling behavior of the second connection relative the measurement gap configuration, a determination whether the second connection and the first connection use overlapping frequency ranges, an amount of time since a previous measurement procedure was performed, a signal quality metric associated with the first connection, and a determination whether the UE is stationary or nonstationary. These conditions may be arranged in different priorities or weightings. For example, the UE may determine whether the conditions favor or disfavor the performance of a measurement procedure. Some conditions may be used to force the performance (or refraining of performance) .
  • the UE may refrain from performing the measurement procedure regardless of the other conditions.
  • the UE may default to performing the measurement procedure on the first connection while continuing to communicate via the second connection during the measurement gap time period.
  • the UE may consider a signal quality metric associated with the first connection as a factor that favors or disfavors performing the measurement procedure.
  • the signal quality metric may be a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , or a received signal strength indicator (RSSI) .
  • the UE may compare the signal quality metric with a threshold to determine the relative quality of the first connection. If the signal quality metric is above the threshold, the first connection is relatively good quality and the UE may refrain from performing the measurement procedure. If the signal quality metric is below the threshold, the first connection may be relatively poor quality, and the UE may perform the measurement procedure.
  • the threshold may be based on a measurement reporting event (A2 event) that is configured for the first connection.
  • the A2 event is typically configured by the eNB to define when the UE should perform the measurement procedure and send an A2 report back to the eNB.
  • the UE may disable the A2 report and refrain from performing the measurement procedure if the signal quality metric is above the threshold defined for the A2 event.
  • the UE may determine a gap periodic interval that defines how often the UE will perform the measurement procedure from among the available measurement procedures.
  • the measurement gap configuration may define recurring measurement gap opportunities.
  • the time period between measurement gap opportunities may be referred to as a measurement gap repetition period (MGRP) .
  • the UE may determine a gap periodic interval which is longer than the MGRP. For example, the UE may determine to refrain from performing the measurement procedure for a quantity of measurement gap opportunities. When the UE refrains from performing the measurement procedure, the UE may be said to skip the measurement gap time period.
  • the quantity of measurement gap time periods that are skipped may be based on a variety of conditions described in this disclosure.
  • the gap periodic interval may be a value expressed in terms of time, the quantity of skipped measurement gap time periods, or any other value that determines how often the UE will consider whether to make the measurement gap from among the available measurement gap time periods.
  • a higher gap periodic interval refers to a greater quantity of skipped measurement gap time periods and less frequent measurement procedures.
  • a lower gap periodic interval refers to a fewer quantity of skipped measurement gap time periods and more frequent measurement procedures.
  • the UE may determine a higher gap periodic interval based on conditions such as when the UE is stationary, the first connection signal quality metric is above a threshold, or the first connection shares an overlapping frequency range with the second connection.
  • the UE may determine a lower gap periodic interval when the UE is nonstationary, the first connection signal quality metric is below the threshold, or the first connection is established on a non-overlapping frequency range.
  • the gap periodic interval may be in related to the signal quality metric (such as the RSRP, RSRQ, or RSSI) associated with the first connection. For example, the UE may determine a higher gap periodic interval when the signal quality metric is higher than a threshold –resulting in fewer measurement procedures when the first connection is good. The UE may determine a lower gap periodic interval when the signal quality metric is lower than a threshold –resulting in more frequent measurement procedures when the first connection is poor.
  • the signal quality metric such as the RSRP, RSRQ, or RSSI
  • the gap periodic interval may be based on traffic patterns or priority of traffic for the first connection. For example, if the first connection is engaged in a high priority traffic or voice over data (such as Voice over LTE, VoLTE) traffic, the UE may determine a lower gap periodic interval, resulting in more frequent measurement procedures. In some implementations, the gap periodic interval may be the same as the MGRP (thus, no skipped measurement gap time periods) when the UE is engaged in high priority or VoLTE traffic on the first connection. Conversely, when the UE is engaged in low priority traffic on the first connection, the UE may determine a higher gap periodic interval.
  • the techniques of this disclosure may be used with different types of connections. For brevity and consistency, the examples are described using a first connection based on LTE communication with an LTE evolved base station (eNB) and a second connection based on NR communication with a next-generation base station (gNB) . The examples are based on an NSA implementation of E-UTRA-NR dual connectivity (ENDC) . Furthermore, the example measurement gap configuration is based on inter-frequency or intra-frequency measurements of the LTE connection. It should be apparent that the techniques of this disclosure may be used vis-a-vis with other types of connections and measurement gap configurations. For example, the techniques may be used with an NR-E-UTRA dual connectivity (NEDC) , split bearer, or combinations of LTE/NR with other communication protocols.
  • NEDC NR-E-UTRA dual connectivity
  • split bearer or combinations of LTE/NR with other communication protocols.
  • Performance of the first connection and the second connection may be improved by balancing the need to measure alternative base stations for the first connection with the need to maintain communication via the second connection.
  • the techniques in this disclosure provide flexibility for the UE to control measurement gap behavior based on conditions that the UE can determine relative to each measurement gap time period.
  • the UE may adjust measurement gap behavior (such as the gap periodic interval) based on how the measurement procedure of the first connection may impact the second connection.
  • FIG. 1 is a block diagram conceptually illustrating an example of a wireless network 100.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and also may be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS, a BS subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another as well as to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
  • Wireless network 100 also may include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) .
  • a relay station also may be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station also may be referred to as a relay BS, a relay base station, or a relay, among other examples.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, relay BSs, among other examples. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, or a station, among other examples.
  • a UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, among other examples, that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, similar components, or a combination thereof.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT also may be referred to as a radio technology, an air interface, among other examples.
  • a frequency also may be referred to as a carrier, a frequency channel, among other examples.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • access to the air interface may be scheduled, where a scheduling entity (for example, a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell.
  • a scheduling entity for example, a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (for example, one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, in a mesh network, or another type of network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • mesh network UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (for example, without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110.
  • FIG 2 is a block diagram conceptually illustrating an example 200 of a base station 110 in communication with a UE 120.
  • the base station 110 and the UE 120 may respectively be one of the base stations and one of the UEs in wireless network 100 of Figure 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • the transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) or the like) and control information (for example, CQI requests, grants, upper layer signaling, among other examples. ) and provide overhead symbols and control symbols.
  • SRPI semi-static resource partitioning information
  • the transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (for example, for OFDM) to obtain an output sample stream.
  • Each modulator 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (for example, for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, among other examples) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (for example, for DFT-s-OFDM, CP-OFDM, among other examples) , and transmitted to base station 110.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240.
  • the base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • the network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
  • the controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with managing measurement gap behavior of the first connection based on an operating attribute of the second connection, as described in more detail elsewhere herein.
  • the controller/processor 280 of UE 120, or any other component (s) (or combinations of components) of Figure 2 may perform or direct operations of, for example, process 600 of Figure 6, process 800 of Figure 8, process 1000 of Figure 10, process 1100 of Figure 11, or other processes as described herein.
  • the memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • the stored program codes when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations described with respect to process 600 of Figure 6, process 800 of Figure 8, process 1000 of Figure 10, process 1100 of Figure 11, or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
  • While blocks in Figure 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
  • FIG. 3 is a block diagram conceptually illustrating an example frame structure 300 in a wireless network.
  • the example frame structure 300 may be for FDD in the wireless network, which may include a 5G NR wireless network or another type of wireless network.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) .
  • Each radio frame may have a predetermined duration (for example, 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ⁇ 1) subframes (for example, with indices of 0 through Z-1) .
  • Each subframe may have a predetermined duration (for example, 1ms) and may include a set of slots (for example, 2m slots per subframe are shown in Figure 3, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, or the like) .
  • Each slot may include a set of L symbol periods.
  • each slot may include fourteen symbol periods (for example, as shown in Figure 3) , seven symbol periods, or another number of symbol periods.
  • the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
  • a scheduling unit for the FDD may frame-based, subframe-based, slot-based, symbol-based, or the like.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Figure 3 may be used.
  • a base station may transmit synchronization signals.
  • a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , or the like, on the downlink for each cell supported by the base station.
  • PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may be used by UEs to determine symbol timing
  • the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing.
  • the base station also may transmit a physical broadcast channel (PBCH) .
  • the PBCH may carry some system information, such as system information that supports initial access by UEs.
  • the base station may transmit the PSS, the SSS, the PBCH, or a combination thereof in accordance with a synchronization communication hierarchy (for example, a synchronization signal (SS) hierarchy) including multiple synchronization communications (for example, SS blocks) .
  • a synchronization communication hierarchy for example, a synchronization signal (SS) hierarchy
  • multiple synchronization communications for example, SS blocks
  • the base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots.
  • SIBs system information blocks
  • the base station may transmit control information/data on a physical downlink control channel (PDCCH) in particular symbol periods of a slot.
  • the base station may transmit traffic data or other data on the PDSCH in the remaining symbol periods of each slot.
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, or the like, or combinations thereof. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SINR signal-to-noise-and-interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • New radio may refer to radios configured to operate according to a new air interface (for example, other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (for example, other than Internet Protocol (IP) ) .
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (for example, 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (for example, 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, or mission critical targeting ultra-reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra-reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration.
  • Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms.
  • Each slot may indicate a link direction (for example, DL or UL) for data transmission and the link direction for each slot may be dynamically switched.
  • Each slot may include DL/UL data as well as DL/UL control data.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such central units or distributed units.
  • FIG. 4 shows a block diagram conceptually illustrating an example of a UE with multiple radio connections.
  • the block diagram 400 includes a UE 120 that includes multiple radios –a first radio is an LTE radio 422 and a second radio is a 5G NR radio 424.
  • a single chip or component of the UE 120 may provide an interface that communicates via the first and second radios.
  • the LTE radio 422 may establish a first connection 412 (an LTE connection) with a first base station (eNB) 410.
  • the NR radio 424 may establish a second connection 452 (an NR connection) with a second base station (gNB) 450.
  • Each of the first and second connections 412 and 452 may have different radio resource configurations (RRC) and timing synchronization between the respective radios and base stations.
  • RRC radio resource configurations
  • the eNB 410 may provide a measurement gap configuration to the UE 120 to use for the first connection 412.
  • the measurement gap configuration may define measurement gap time periods for the UE 120 to periodically measure signals 416 from another base station 414.
  • the measurement procedure may include the UE 120 refraining from communicating via the first connection 412 while measuring the signals 416 from the other base station 414.
  • the UE 120 may include a measurement gap controller 426 that controls when the UE 120 performs the measurement procedures. Traditionally, the UE 120 may adhere to the measurement gap configuration and perform a traditional measurement procedure during each measurement gap time period defined by the measurement gap configuration.
  • the measurement gap configuration may define a pattern of recurring measurement gap time periods.
  • the measurement gap controller 426 may determine whether or not to perform the measurement procedure during particular measurement gap time periods. For example, the measurement gap controller 426 may determine to skip some measurement gap time periods and refrain from performing the measurement procedure during those skipped measurement gap time periods.
  • the measurement gap controller 426 may determine a gap periodic interval that is longer than the MGRP defined in the measurement gap configuration. The UE 120 may determine that performing the measurement procedure during a particular measurement gap time period may be detrimental to the timing or maintenance of the second connection.
  • the first base station also may configure a measurement reporting event (A2 event) that instructs the UE to send a measurement report (A2 report) based on configured thresholds.
  • A2 event a measurement reporting event
  • the A2 event configuration may indicate a threshold for RSRQ or RSRP.
  • the UE may be expected to send an A2 report if the UE determines that the current RSRQ or RSRP of the first connection is below the A2 event threshold.
  • the UE may disregard the A2 event configuration based on conditions that the UE may determine such as a stable first connection or a potential negative impact to the second connection.
  • the UE may use the threshold in the A2 event configuration as one factor in determining whether or not to perform a measurement procedure.
  • FIG. 5A shows a timing diagram conceptually illustrating an example of a measurement gap configuration for a first radio connection.
  • the timing diagram 500 shows an example timing 512 of communications and measurement gaps on a first connection.
  • a measurement gap configuration may define recurring measurement gap time periods 502a, 502b, 502c, and 502d. The period between each measurement gap time periods may be referred to as an MGRP 508.
  • a duration of the measurement gap time periods is a measurement gap length 506.
  • the measurement gap configuration may include a gap pattern that is defined by a technical specification.
  • the first base station eNB
  • RRC radio resource control
  • the measurement gap configuration may be a pattern identifier (ID) between #0 to #23 as defined in Section 9.1.2 of 3GPP technical specification (TS) 38.133 v 15.0.0 (2017-12) (hereafter: “TS 38.133” ) .
  • the numeric gap pattern ID may be associated with a respective measurement gap length (MGL) and a respective MGRP.
  • MML measurement gap length
  • pattern IDs 0-11 variously have a measurement gap length of three milliseconds, four milliseconds, or six milliseconds, and a measurement gap repetition period of twenty milliseconds, forty milliseconds, eighty milliseconds, or one hundred sixty milliseconds.
  • Pattern IDs 12-23 variously have a measurement gap length of 1.5 milliseconds, 3.5 milliseconds, or 5.5 milliseconds, and a measurement gap repetition period of twenty milliseconds, forty milliseconds, eighty milliseconds, or one hundred sixty milliseconds.
  • Figure 5B shows a timing diagram conceptually illustrating different possible scheduling behaviors of a second radio connection in relation to the timing of the measurement gap configuration shown in Figure 5A.
  • a wireless communication network would manage communication gaps in a second connection so that the communication gaps align with the measurement gap time periods of the first connection. However, this may not always be the case.
  • Figure 5B shows some examples of timing for communication gaps (or lack thereof) in relation to the measurement gap time periods in Figure 5A, primarily in relation to a first measurement gap time period 502a of Figure 5A.
  • the second base station may cause communication gaps that align in time with the measurement gap time periods.
  • a communication gap 570 aligns in time with a first measurement gap time periods 502a of the first connection.
  • the UE may perform the measurement procedure in each of the measurement gap time periods 502a-502d of the first connection with confidence that the measurement procedure will not impact communication on the second connection.
  • the timing of the communication gaps may not align with the measurement gap time periods for a variety of reasons, as shown in timing examples 552b, 552c, and 552d.
  • the second base station may not configure communication gaps based on the measurement gap configuration of the first connection.
  • the UE may miss a communication 572 via the second connection.
  • the UE may perform the measurement procedure on the first connection while continuing to communicate via the second connection.
  • the UE may determine not to perform the measurement procedure during the first measurement gap time period 502a to prevent impact to the communication 572 on the second connection.
  • the second base station may attempt to schedule communication gaps that align with the measurement gap time periods of the first connection. However, the communication gaps may be misaligned.
  • the third example timing 552c shows the communication gap 576 occurs in an incorrect time slot while active communication 574 occurs in a time slot that aligns with the first measurement gap time period 502a.
  • the fourth example timing 552d shows the communication gap 582 slightly offset in time (due to timing synchronization difference or drift) while active communication 584 occurs during at least part of the time that aligns with the first measurement gap time period 502a.
  • FIG. 6 shows a flowchart illustrating an example process for managing measurement gap behavior according to some implementations.
  • the operations of process 600 may be implemented by a UE or its components as described herein.
  • the process 600 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
  • the process 600 begins with block 610.
  • the apparatus may establish a first connection with a first base station of a wireless communication network.
  • the apparatus may establish a second connection with a second base station of the wireless communication network.
  • the apparatus may receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection.
  • the measurement gap configuration may be included in an RRC or another configuration message for an LTE connection with eNB.
  • the apparatus may determine whether to perform the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period.
  • This disclosure includes several conditions and related operating attributes that may be used to determine whether or not to make the measurement gap and perform the measurement procedure.
  • Figure 7 shows a table 700 with example conditions that may impact measurement gap behavior for the first connection. Some conditions (such as the conditions in group 710) are impacted by operating attributes of the second connection. Other conditions (such as the conditions in group 720) may depend on the first connection or changes in the UE that are independent of the first and second connections. Each condition may have a status that favors or disfavors a determination whether the UE should perform a measurement procedure during a measurement gap time period. For example, the conditions may be based on balancing the need to conduct measurements of an alternative base station for the first connection with the potential impact on the second connection. In some implementations, the UE may consider multiple conditions (such as any combination of two or more of the example conditions in table 700) . The UE may prioritize some conditions over others.
  • the UE may use a weighting factor with the conditions to determine whether to perform the measurement procedure. As shown more in Figures 10 and 11, there may be a variety of ways these conditions are applied in a determination algorithm. In some implementations, one condition may be a limiting factor the prevents or causes performance of the measurement procedure regardless of the other conditions. The conditions will be described below in no particular order or priority.
  • An example condition is based on the second connection communication status. For example, if the second connection is currently active prior to the measurement gap time period or is scheduled to be active during the measurement gap time period, the condition disfavors performing the traditional measurement procedure on the first connection. Alternatively, if the second connection is idle and there are no scheduled communications during the measurement gap time period, the UE may perform the measurement procedure during the measurement gap time period without impacting the second connection. Thus when the second connection communication status indicates that the second connection will be idle during the measurement gap time period, the condition favors performance of the measurement procedure. In some implementations, the second connection communication status may be determined based on scheduling or grant information.
  • the grant information may include transport block size (TBS) , a new data indicator field (NDI) , modulation and coding scheme (MCS) , uplink activation signaling, downlink control information (DCI) , or a physical layer resource allocation, among other examples.
  • TBS transport block size
  • NDI new data indicator field
  • MCS modulation and coding scheme
  • DCI downlink control information
  • the grant information may be based on an ongoing HARQ process.
  • Another example condition is based on the second connection scheduling behavior.
  • the UE may determine whether the second base station is likely to schedule communication during measurement gap time periods based on historical communication. For example, the second base station may never, rarely, occasionally, frequently, regularly, or always schedule communications (rather than communication gaps) during the measurement gap time periods. If the second connection generally does not schedule (or rarely schedules) communications during the measurement gap time periods, the UE may favor performing the measurement procedure. Conversely, if the second connection generally does (or regularly) schedules communication during the measurement gap time periods, the UE may disfavor performing the measurement procedure.
  • the second connection scheduling behavior may be observed by the UE based on a sliding window history of communications and communication gaps in relation to the most recent measurement gap time periods.
  • Another example condition is based on whether the first connection and the second connection are established on overlapping or non-overlapping frequency ranges. If the first connection and the second connection are established on overlapping frequency ranges, then the UE would discontinue communication on the second connection as part of the measurement procedure on the first connection. Thus, the UE may disfavor performing the measurement procedure when the first connection and the second connection are established on overlapping frequency ranges. If the first connection and the second connection are established on non-overlapping frequency ranges, then the UE may continue communication on the second connection while performing the measurement procedure on the first connection. Thus, the UE may favor performing the measurement procedure when the first connection and the second connection are established on non-overlapping frequency ranges.
  • the frequency of the measurement gap time periods may be configured with a MGRP.
  • the UE may determine a different a different gap periodic interval that includes skipping some measurement gap time periods.
  • the UE may favor performing the measurement procedure.
  • the UE may perform the measurement procedure even if doing so may impact communication via the second connection.
  • the UE may disfavor performing the measurement procedure unless it can do so without impact to the second connection.
  • Another example condition is based on the first connection signal quality. For example, if the signal quality metric (such as RSRP, RSRQ, or RSSI) is below a threshold, the UE may favor performing the measurement procedure. Alternatively, if the signal quality metric is above the threshold, the UE may disfavor performing the measurement procedure. When the signal quality metric is above the threshold, the UE may infer that the first connection is stable and that conducting measurements on alternative base stations is unwarranted if doing so would impact the second connection. If the signal quality metric is below the threshold, the UE may infer that the first connection would benefit from changing to an alternative base station and may warrant performing the measurement procedure despite the risk of impacting communication on the second connection.
  • the signal quality metric such as RSRP, RSRQ, or RSSI
  • the UE may be capable of determining movement based on satellite positioning service, accelerometer, changes in signal strength, or beamforming information, among other examples.
  • the quality of the first connection may be relatively stable.
  • the UE may disfavor performing the measurement procedure when the UE is stationary.
  • the quality of the first connection may change such that measuring alternative base stations for the first connection is warranted.
  • the UE may favor performing the measurement procedure when the UE is nonstationary.
  • the traffic type may be related to a priority, quality of service, or other categorization.
  • the UE may determine that it is more or less useful to perform a measurement procedure. For example, when the UE is engaged in high priority traffic (including, for example, VoLTE) , the UE may favor performing the measurement procedure. When the UE is engaged in low priority traffic (such as best effort data) , the UE may disfavor performing the measurement procedure. In some implementations, when the UE is engaged in certain types of traffic, such as voice traffic, the UE may perform a measurement procedure at each measurement gap opportunity regardless of potential impact to the second connection.
  • high priority traffic including, for example, VoLTE
  • low priority traffic such as best effort data
  • the UE may perform a measurement procedure at each measurement gap opportunity regardless of potential impact to the second connection.
  • these example conditions may be applied for a single measurement gap time period or a set of measurement gap time periods.
  • the UE may determine on a per-gap basis whether to perform the measurement procedure.
  • the UE may determine whether or not to perform measurement procedures during each of a set of measurement gap time periods.
  • the UE may adjust a gap periodic interval for performing measurement procedure based on one or more of the example conditions (or a combination of conditions) .
  • the example conditions in table 700 may be combined in various ways to form an algorithm for determining whether to utilize a measurement gap for the measurement procedure or whether to skip the measurement gap opportunity.
  • Figures 10 and 11 show example processes that combine and prioritize the example conditions of table 700 in different ways.
  • FIG 8 shows a flowchart illustrating an example process 800 for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • the operations of process 800 may be implemented by a UE or its components as described herein.
  • the process 800 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
  • the process 800 begins with block 810.
  • the apparatus may receive a measurement gap configuration for the first connection.
  • the measurement gap configuration may define a pattern or series of measurement gap time periods.
  • the measurement gap time periods also may be referred to as measurement gap opportunities.
  • the apparatus may be configured to perform operations at blocks 830-880 to determine whether or not to perform a measurement procedure during the measurement gap opportunity.
  • the apparatus may determine whether the measurement procedure can be performed without impact to the second connection. For example, if the second connection is established on a non-overlapping frequency range or if the second connection is not active during the measurement gap opportunity, the apparatus may determine that the measurement procedure can be performed without impact to the second connection. If the apparatus can perform the measurement procedure without impact to the second connection, the process 800 continues to block 850. At block 850, the apparatus determines to perform the measurement procedure during that measurement gap opportunity. At block 830, if the apparatus determines that the measurement procedure will impact the second connection, the process 800 continues to block 840.
  • the apparatus may determine if the measurement procedure is warranted despite the impact to the second connection. For example, if the first connection is relatively stable with a strong signal quality metric and the UE is stationary, the apparatus may determine that performing the measurement procedure is not warranted. However, the apparatus may determine that performing the measurement procedure is warranted despite the impact to the second connection if the first connection is not stable, has a weak signal quality metric, or the US is non-stationary, among other examples. If the measurement procedure is warranted, the process 800 continues to block 850. At block 850, the apparatus determines to perform the measurement procedure during that measurement gap opportunity. At block 840, if the apparatus determines that the measurement procedure is not warranted, the process 800 continues to block 860.
  • the apparatus determines to refrain from performing the measurement procedure during that measurement gap opportunity.
  • the apparatus may disable an A2 report for that measurement gap opportunity.
  • the apparatus may adjust the gap periodic interval. For example, the apparatus may increase or decrease the amount of time before the next considered measurement gap opportunity based on the conditions considered in blocks 630 and 640.
  • adjusting the may include increasing or decreasing the gap periodic interval in correlation with the signal quality metric. In some implementations, adjusting the gap periodic interval may include decreasing the gap periodic interval for high priority or voice traffic. In some implementations, the apparatus may set the gap periodic interval to the MGRP when the first connection is being used for voice traffic.
  • Figure 9 shows a conceptual diagram of an example configuration message 900 and example configuration information related to managing measurement gap behavior.
  • a base station such as the eNB or gNB
  • the UE may transmit a similarly formatted reporting message (not shown) with some of the configuration settings described with reference to Figure 9.
  • the configuration message 900 may include one or more indicators (or information elements) that affect how the UE determines the measurement gap behavior for the first connection.
  • the configuration message 900 may include a frame header 924 and configuration data 910.
  • the frame header 924 may indicate the type of configuration information or other frame control information.
  • the configuration data 910 may include a variety of indicators 932.
  • Figure 9 includes several example indicators 960.
  • the example indicators 960 may include the measurement gap configuration 962.
  • the measurement gap configuration 962 may indicate a pattern ID or other value that defines the timing and periodicity of the measurement gap time periods.
  • the example indicators 960 may include measurement gap timing 964, a measurement gap pattern 966, or a combination thereof.
  • the example indicators 960 may include an A2 event configuration.
  • the A2 event configuration may include a threshold (sometimes referred to as an A2 threshold) .
  • a UE may use the A2 threshold to determine whether the signal quality of the first connection warrants (or does not warrant) performing the measurement procedure.
  • the example indicators 960 may include a threshold 972 configured by the base station for use by the UE in determining whether to perform the measurement procedure.
  • the example indicators 960 may include a permission setting 974 that indicates whether the UE is permitted to skip measurement gap time periods.
  • the example indicators 960 may include a capability setting (not shown) which indicates whether the UE is capable of determining whether to perform the measurement procedure or skip the measurement gap time period.
  • the example indicators 960 may include a network-specified criterion 976 for the UE to use when determining whether or not to perform the measurement procedure.
  • the network-specified criterion 976 may require the UE to make the measurement gap within a maximum time period regardless of impact to the other connections.
  • the network-specified criterion 976 may require the UE to refrain from making the measurement gap unless the second connection is inactive during the measurement gap time period.
  • Figure 10 shows a flowchart illustrating a first detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • the operations of process 1000 may be implemented by a UE or its components as described herein.
  • the process 1000 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
  • the example of Figure 10 is based on the examples described herein. For brevity and clarity, the example of Figure 10 is described using LTE communication as the first connection and NR communication as the second connection.
  • the process 1000 begins with block 1010.
  • the apparatus may receive a measurement gap configuration for the LTE connection.
  • the measurement gap configuration may describe LTE measurement gaps for the UE to perform a measurement procedure.
  • the apparatus may determine if the NR connection is scheduling communication during the LTE measurement gap. If the NR connection does not schedule communication during the LTE measurement gap, the process continues to block 1030.
  • the apparatus may perform the measurement procedure during the LTE measurement gap.
  • the apparatus if the apparatus determines that the NR connection does schedule communication during the LTE measurement gap, the process continues to block 1040.
  • the apparatus may determine whether the LTE connection and the NR connection are using overlapping frequency ranges. If the LTE connection and the NR connection do not use overlapping frequency ranges, the process 1000 continues to block 1050. At block 1050, the apparatus may perform the measurement procedure during the LTE measurement gap while continuing to communicate via the NR connection on the nonoverlapping frequency range. At block 1040, if the apparatus determines that the LTE connection and the NR connection use overlapping frequency ranges, the process 1000 continues to block 1060.
  • the apparatus may determine a threshold for the LTE connection condition.
  • the threshold may be based on the A2 event configuration or may be based on a threshold determined by the UE based on historical data.
  • the threshold may be for use in comparison with a signal quality metric to determine if the first connection is high quality or poor quality.
  • the apparatus may compare the LTE connection condition (such as signal quality metric) with the threshold. If the LTE connection condition is below the threshold, the process 1000 may proceed to block 1080.
  • the apparatus may determine to perform the measurement procedure regardless of the potential impact to the second connection.
  • the apparatus may discontinue communicating via the LTE connection and the NR connection during the measurement gap time period so that the apparatus can perform the measurement procedure.
  • the process may proceed to block 1090.
  • the apparatus may refrain from performing the measurement procedure.
  • the apparatus may adjust the gap periodic interval based on the conditions considered in blocks 1020, 1040, and 1070. For example, the apparatus may increase the gap periodic interval (for a longer period of time before the next measurement gap opportunity) .
  • Figure 11 shows a flowchart illustrating a second detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
  • the operations of process 1100 may be implemented by a UE or its components as described herein.
  • the process 1100 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
  • the example of Figure 12 is based on the examples described herein. For brevity and clarity, the example of Figure 12 is described using LTE communication as the first connection and NR communication as the second connection.
  • the process 1100 begins with block 1110.
  • the apparatus may receive a measurement gap configuration for the LTE connection.
  • the apparatus may determine whether the NR connection is active prior to, or during, the measurement gap time period. If so, the process 1100 may proceed to block 1125.
  • the apparatus may refrain from performing the measurement procedure.
  • the process may proceed to block 1130.
  • the apparatus may determine whether the LTE connection and the NR connection are using overlapping frequency ranges. If the LTE connection and the NR connection do not use overlapping frequency ranges, the process 1100 continues to block 1135. At block 1135, the apparatus may perform the measurement procedure during the LTE measurement gap while continuing to communicate via the NR connection on the nonoverlapping frequency range. At block 1130, if the apparatus determines that the LTE connection and the NR connection use overlapping frequency ranges, the process 1100 continues to block 1140.
  • the apparatus may compare the signal quality metric of the LTE connection with a threshold. If the signal quality metric is below the threshold, the process 1100 may proceed to block 1150. At block 1150, the apparatus may determine to perform the measurement procedure regardless of the potential impact to the second connection. At block 1150, the apparatus may discontinue communicating via the LTE connection and the NR connection during the measurement gap time period so that the apparatus can perform the measurement procedure.
  • the process may proceed to block 1160.
  • the apparatus may determine whether the UE is stationary. If the UE is not stationary, the process 1100 may proceed to block 1150, where the UE performs the measurement procedure. At block 1160, if the UE is stationary, the process 1100 may proceed to block 1170.
  • the apparatus may determine if the A2 event is configured for the LTE connection. If so, the process continues to block 1175. At block 1175, the apparatus may disable the A2 report. At block 1170, if the A2 event is not configured, the process 1100 may proceed to block 1180.
  • the apparatus may refrain from performing the measurement procedure.
  • the apparatus may adjust the gap periodic interval based on the conditions considered in blocks 1120, 1130, 1140, 1160, and 1170. For example, the apparatus may increase the gap periodic interval (for longer period of time before the next measurement gap opportunity) .
  • the UE may determine whether to perform the measurement procedure based on activity on the second connection.
  • the UE may determine whether the second connection is active based on grant information. For example, the UE may review available grant information to determine whether the UE is expected to be active.
  • the grant information may be related to a HARQ process or other ongoing communication via the second connection.
  • the grant information may indicate whether the second connection will be active during at least a portion of a measurement gap time period.
  • the UE may determine the communication status based on a new data indicator field (NDI) . When the NDI is toggled, the UE may determine that the second connection will remain active. In another example, the UE may determine a transport block size (TBS) based on a resource block (RB) size and MCS. The UE may determine the second connection will remain active when the TBS extends into the next measurement gap time period. In another example, the UE may determine that the second connection will remain active based on the MCS of the second connection. For example, the UE may determine the second connection will remain active in an HARQ process when the MCS has a value (such as 29–31) that is reserved for retransmissions.
  • NDI new data indicator field
  • Figure 12 shows a block diagram of an example wireless communication device 1200.
  • the wireless communication device 1200 can be an example of a device for use in a UE, such as UE 120 described above with reference to Figure 1.
  • the wireless communication device 1200 is capable of transmitting (or outputting for transmission) and receiving wireless communications.
  • the wireless communication device 1200 can be, or can include, a chip, system on chip (SoC) , chipset, package or device.
  • SoC system-on-chip
  • the term “system-on-chip” (SoC) is used herein to refer to a set of interconnected electronic circuits typically, but not exclusively, including one or more processors, a memory, and a communication interface.
  • the SoC may include a variety of different types of processors and processor cores, such as a general purpose processor, a central processing unit (CPU) , a digital signal processor (DSP) , a graphics processing unit (GPU) , an accelerated processing unit (APU) , a sub-system processor, an auxiliary processor, a single-core processor, and a multicore processor.
  • CPU central processing unit
  • DSP digital signal processor
  • GPU graphics processing unit
  • APU accelerated processing unit
  • the SoC may further include other hardware and hardware combinations, such as a field programmable gate array (FPGA) , a configuration and status register (CSR) , an application-specific integrated circuit (ASIC) , other programmable logic device, discrete gate logic, transistor logic, registers, performance monitoring hardware, watchdog hardware, counters, and time references.
  • SoCs may be integrated circuits (ICs) configured such that the components of the IC reside on the same substrate, such as a single piece of semiconductor material (such as, for example, silicon) .
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP also may include multiple independent SoCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single mobile communication device. The proximity of the SoCs facilitates high speed communications and the sharing of memory and resources.
  • multicore processor is used herein to refer to a single IC chip or chip package that contains two or more independent processing cores (for example a CPU core, IP core, GPU core, among other examples) configured to read and execute program instructions.
  • An SoC may include multiple multicore processors, and each processor in an SoC may be referred to as a core.
  • multiprocessor may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
  • the wireless communication device 1200 may include one or more modems 1202.
  • the one or more modems 1202 may include a WWAN modem (for example, a 3GPP 4G LTE or 5G compliant modem) .
  • the wireless communication device 1200 also includes one or more radios 1204 (collectively “the radio 1204” ) .
  • the wireless communication device 1200 further includes one or more processors, processing blocks or processing elements 1206 (collectively “the processor 1206” ) and one or more memory blocks or elements 12010 (collectively “the memory 12010” ) .
  • the modem 1202 can include an intelligent hardware block or device such as, for example, an application-specific integrated circuit (ASIC) among other possibilities.
  • the modem 1202 is generally configured to implement a PHY layer.
  • the modem 1202 is configured to modulate packets and to output the modulated packets to the radio 1204 for transmission over the wireless medium.
  • the modem 1202 is similarly configured to obtain modulated packets received by the radio 1204 and to demodulate the packets to provide demodulated packets.
  • the modem 1202 may further include digital signal processing (DSP) circuitry, automatic gain control (AGC) , a coder, a decoder, a multiplexer and a demultiplexer.
  • DSP digital signal processing
  • AGC automatic gain control
  • data obtained from the processor 1206 is provided to a coder, which encodes the data to provide encoded bits.
  • the encoded bits are then mapped to points in a modulation constellation (using a selected MCS) to provide modulated symbols.
  • the modulated symbols may then be mapped to a number NSS of spatial streams or a number NSTS of space-time streams.
  • the modulated symbols in the respective spatial or space-time streams may then be multiplexed, transformed via an inverse fast Fourier transform (IFFT) block, and subsequently provided to the DSP circuitry for Tx windowing and filtering.
  • the digital signals may then be provided to a digital-to-analog converter (DAC) .
  • the resultant analog signals may then be provided to a frequency upconverter, and ultimately, the radio 1204.
  • the modulated symbols in the respective spatial streams are precoded via a steering matrix prior to their provision to the IFFT block.
  • DSP circuitry While in a reception mode, digital signals received from the radio 1204 are provided to the DSP circuitry, which is configured to acquire a received signal, for example, by detecting the presence of the signal and estimating the initial timing and frequency offsets.
  • the DSP circuitry is further configured to digitally condition the digital signals, for example, using channel (narrowband) filtering, analog impairment conditioning (such as correcting for I/Q imbalance) , and applying digital gain to ultimately obtain a narrowband signal.
  • the output of the DSP circuitry may then be fed to the AGC, which is configured to use information extracted from the digital signals, for example, in one or more received training fields, to determine an appropriate gain.
  • the output of the DSP circuitry also is coupled with the demodulator, which is configured to extract modulated symbols from the signal and, for example, compute the logarithm likelihood ratios (LLRs) for each bit position of each subcarrier in each spatial stream.
  • the demodulator is coupled with the decoder, which may be configured to process the LLRs to provide decoded bits.
  • the decoded bits from all of the spatial streams are then fed to the demultiplexer for demultiplexing.
  • the demultiplexed bits may then be descrambled and provided to the MAC layer (the processor 1206) for processing, evaluation, or interpretation.
  • the radio 1204 generally includes at least one radio frequency (RF) transmitter (or “transmitter chain” ) and at least one RF receiver (or “receiver chain” ) , which may be combined into one or more transceivers.
  • the RF transmitters and receivers may include various DSP circuitry including at least one power amplifier (PA) and at least one low-noise amplifier (LNA) , respectively.
  • PA power amplifier
  • LNA low-noise amplifier
  • the RF transmitters and receivers may, in turn, be coupled to one or more antennas.
  • the wireless communication device 1200 can include, or be coupled with, multiple transmit antennas (each with a corresponding transmit chain) and multiple receive antennas (each with a corresponding receive chain) .
  • the symbols output from the modem 1202 are provided to the radio 1204, which then transmits the symbols via the coupled antennas.
  • symbols received via the antennas are obtained by the radio 1204, which then provides the symbols to the modem 1202.
  • the processor 1206 can include an intelligent hardware block or device such as, for example, a processing core, a processing block, a central processing unit (CPU) , a microprocessor, a microcontroller, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a programmable logic device (PLD) such as a field programmable gate array (FPGA) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • the processor 1206 processes information received through the radio 1204 and the modem 1202, and processes information to be output through the modem 1202 and the radio 1204 for transmission through the wireless medium.
  • the processor 1206 may generally control the modem 1202 to cause the modem to perform various operations described above.
  • the memory 12010 can include tangible storage media such as random-access memory (RAM) or read-only memory (ROM) , or combinations thereof.
  • the memory 12010 also can store non-transitory processor-or computer-executable software (SW) code containing instructions that, when executed by the processor 1206, cause the processor to perform various operations described herein for wireless communication, including the generation, transmission, reception and interpretation of MPDUs, frames or packets.
  • SW non-transitory processor-or computer-executable software
  • various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more modules of one or more computer programs.
  • Figures 1–12 and the operations described herein are examples meant to aid in understanding example implementations and should not be used to limit the potential implementations or limit the scope of the claims. Some implementations may perform additional operations, fewer operations, operations in parallel or in a different order, and some operations differently.
  • the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes, operations and methods may be performed by circuitry that is specific to a given function.
  • implementations of the subject matter described in this specification can be implemented as software.
  • various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more modules of one or more computer programs.
  • Such computer programs can include non-transitory processor-or computer-executable instructions encoded on one or more tangible processor-or computer-readable storage media for execution by, or to control the operation of, data processing apparatus including the components of the devices described herein.
  • storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store program code in the form of instructions or data structures. Combinations of the above should also be included within the scope of storage media.
  • the terms “user equipment” , “wireless communication device” , “mobile communication device” , “communication device” , and/or “mobile device” refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, Internet-of-Things (IoT) devices, palm-top computers, wireless electronic mail receivers, multimedia Internet enabled cellular telephones, wireless gaming controllers, display sub-systems, driver assistance systems, vehicle controllers, vehicle system controllers, vehicle communication system, infotainment systems, vehicle telematics systems or subsystems, vehicle display systems or subsystems, vehicle data controllers or routers, and similar electronic devices which include a programmable processor and memory and circuitry configured to perform operations as described herein.
  • IoT Internet-of-Things
  • SIM Subscriber identification module
  • SIM card Subscriber identification module
  • subscriber identification module refers to a memory that may be an integrated circuit or embedded into a removable card, and that stores an International Mobile Subscriber Identity (IMSI) , related key, and/or other information used to identify and/or authenticate a mobile communication device on a network and enable a communication service with the network.
  • IMSI International Mobile Subscriber Identity
  • SIM subscriber identity
  • SAT SIM application toolkit
  • a SIM card may further store home identifiers (such as, a System Identification Number (SID) /Network Identification Number (NID) pair, a Home Public Land Mobile Number (HPLMN) code, among other examples) to indicate the SIM card network operator provider.
  • SID System Identification Number
  • NID Network Identification Number
  • HPLMN Home Public Land Mobile Number
  • An Integrated Circuit Card Identity (ICCID) SIM serial number may be printed on the SIM card for identification.
  • a SIM may be implemented within a portion of memory of the mobile communication device, and thus need not be a separate or removable circuit, chip or card.
  • drawings may schematically depict one or more example processes in the form of a flowchart or flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In some circumstances, multitasking and parallel processing may be advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for managing measurement gap behavior in a user equipment (UE) that has multiple radio connections. A measurement gap is a period of time when the UE temporarily suspends communication and measures signals from alternative base stations for a first connection. In accordance with aspects of this disclosure, the UE may determine whether or not to make a measurement gap in a first connection based on whether the measurement gap will impact communication for a second connection concurrently established between the UE and another base station. The measurement gap behavior may be determined based on operating attributes or conditions related to the multiple radio connections including the second connection.

Description

MEASUREMENT GAP BEHAVIOR WITH MULTIPLE RADIO CONNECTIONS TECHNICAL FIELD
Aspects of the present disclosure generally relate to wireless communication and measurement gap behavior in a user equipment (UE) with multiple radio connections.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) . A wireless communication system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . Different base stations or network access nodes may implement different radio communication protocols including fourth-generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth-generation (5G) systems which may be referred to as New Radio (NR) systems. NR, which also may be referred to as 5G for brevity, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A UE may be capable of establishing multiple radio connections with a wireless communication system. For example, a UE may establish an LTE connection to a first base station of the wireless communication system and an NR connection to a second base station of the wireless communication system. Examples of multiple radio connections may include non-standalone (NSA) network deployments, dual connectivity, and split bearer, among other examples. Each radio connection may depend on different scheduling and timing synchronization.
SUMMARY
The systems, methods, and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by an apparatus for use in a user equipment (UE) . The method may include establishing a first connection with a first base station of a wireless communication network. The method may include establishing a second connection with a second base station of the wireless communication network. The method may include receiving a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection. The method may include determining whether to perform the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period.
In some implementations, the method may include refraining from performing the measurement procedure during the first measurement gap time period based on the operating attribute of the second connection relative to the first measurement gap time period.
In some implementations, the method may include determining the operating attribute of the second connection relative to the first measurement gap time period. The method may include determining, based on the operating attribute of the second connection, that a performance of the measurement procedure during the first measurement gap time period will negatively impact a communication via the second connection during the first measurement gap time period. The method may include determining, by the UE, to refrain from performing the measurement procedure during the first measurement gap time period.
In some implementations, the method may include determining, prior to each measurement gap time period, whether or not to perform the measurement procedure during that measurement gap time period based on the operating attribute of the second connection relative to that measurement gap time period.
In some implementations, the operating attribute of the second connection includes a communication status. The communication status may indicate that the second  connection will be active during at least a portion of the first measurement gap time period.
In some implementations, the method may include receiving grant information for the second connection from the second base station. The method may include determining the operating attribute based on the grant information. The communication status may indicate that the second connection will be active during at least a portion of the first measurement gap time period when the grant information includes a grant for the UE to use the second connection during at least a portion of the first measurement gap time period.
In some implementations, the grant information may include at least one member selected from a group consisting of a transport block size (TBS) , a new data indicator field (NDI) , uplink activation signaling, modulation and coding scheme (MCS) , downlink control information (DCI) , and a physical layer resource allocation.
In some implementations, the method may include determining the operating attribute of the second connection based on grant information that indicates whether the second connection will be active during at least a portion of the first measurement gap time period. The grant information indicates the second connection will be active when a new data indicator field (NDI) is toggled, a resource block (RB) size and modulation and coding scheme (MCS) indicate a transport block size (TBS) that extends into the first measurement gap time period, or the MCS of the second connection has a value reserved for retransmissions.
In some implementations, the method may include performing the measurement procedure during a second measurement gap time period based on a determination that the second connection will remain idle during the second measurement gap time period.
In some implementations, the method may include determining a gap periodic interval that represents a quantity of skipped measurement time periods. The method may include refraining from performing the measurement procedure for the quantity of skipped measurement time periods.
In some implementations, the method may include adjusting the gap periodic interval based on a signal quality metric of the first connection. Adjusting the gap periodic interval may include increasing or decreasing the gap periodic interval in correlation with the signal quality metric.
In some implementations, the method may include adjusting the gap periodic interval based on a traffic type of communication on the first connection. In some implementations, adjusting the gap periodic interval may include decreasing the gap periodic interval for high priority or voice traffic.
In some implementations, the method may include setting the gap periodic interval to the measurement gap repetition period (MGRP) when the first connection is being used for voice traffic.
In some implementations, the method may include determining a plurality of conditions that impact a measurement gap behavior for the first connection, the plurality of conditions including the operating attribute of the second connection. The method may include, for each measurement gap time period, determining whether or not to perform the measurement procedure during that measurement gap time period based on the plurality of conditions.
In some implementations, the plurality of conditions may include a combination of any of the following: a communication status of the second connection relative to each measurement gap time period, a scheduling behavior of the second connection relative to the measurement gap configuration, a determination whether the second connection and the first connection use overlapping frequency ranges, an amount of time since a previous measurement procedure was performed, a signal quality metric associated with the first connection, and a determination whether the UE is stationary or nonstationary.
In some implementations, the method may include determining, for each condition, whether the condition favors or disfavors performing the measurement procedure. The method may include determining whether or not to perform the measurement procedure based on whether the plurality of conditions favor or disfavor performing the measurement procedure.
In some implementations, the method may include weighting ones of the plurality of conditions.
In some implementations, the method may include determining the plurality of conditions in an order. In some implementations, when a first condition disfavors performing the measurement procedure during a particular measurement gap time period, the UE determines not to perform the measurement procedure during that measurement gap time period.
In some implementations, the method may include, relative to a second measurement gap time period, determining that the communication status of the second connection disfavors performing the measurement procedure when the communication status indicates that the second connection is active during the second measurement gap time period. The method may include determining that the communication status of the second connection favors performing the measurement procedure when the communication status indicates that the second connection is idle during the second measurement gap time period.
In some implementations, the method may include determining that the scheduling behavior of the second connection relative the measurement gap configuration disfavors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection schedules communication during the measurement gap time periods. The method may include determining that the scheduling behavior of the second connection relative the measurement gap configuration favors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection does not schedule communication during the measurement gap time periods.
In some implementations, the method may include determining a first condition based on whether the second connection and the first connection use overlapping frequency ranges. The method may include determining that the first condition disfavors performing the measurement procedure when the second connection and the first connection use overlapping frequency ranges. The method may include determining that the first condition favors performing the measurement procedure when the second connection and the first connection use non-overlapping frequency ranges.
In some implementations, the method may include determining a first condition based on an amount of time since a previous measurement procedure was performed. The method may include determining that the first condition disfavors performing the measurement procedure when the amount of time is less than a time period associated with a gap periodic interval. The method may include determining that the first condition favors performing the measurement procedure when the amount of time is greater than a time period associated with a gap periodic interval.
In some implementations, the method may include determining a first condition based on whether the UE is stationary or nonstationary. The method may include determining that the first condition disfavors performing the measurement  procedure when the UE is stationary. The method may include determining that the first condition favors performing the measurement procedure when the UE is nonstationary.
In some implementations, the method may include determining a first condition based on a signal quality metric associated with the first connection. The method may include determining that the first condition disfavors performing the measurement procedure when the signal quality metric is above a threshold. The method may include determining that the first condition favors performing the measurement procedure when the signal quality metric is below the threshold.
In some implementations, the signal quality metric is based on at least one member selected from a group consisting of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and a received signal strength indicator (RSSI) .
In some implementations, the method may include determining that a measurement reporting event (A2 event) is configured for the first connection. The method may include determining the threshold based on a threshold configuration value for the A2 event.
In some implementations, the method may include determining the threshold based on a user-configurable setting, a network-configurable setting, a manufacturer configurable setting, or a UE-determined value based on the first connection.
In some implementations, the measurement gap configuration indicates a pattern of recurring measurement gap time periods. In some implementations, the method may include determining to refrain from performing the measurement procedure during a first subset of the recurring measurement gap time periods that includes the first measurement gap time period. The method may include determining to perform the measurement procedure during a second subset of the recurring measurement gap time periods.
In some implementations, the method may include determining the second subset of the recurring measurement gap time periods based on a gap periodic interval.
In some implementations, the method may include determining, by the UE, the gap periodic interval based on a plurality of conditions associated with the first connection and the second connection.
In some implementations, the first base station is part of a legacy radio access network, and the second base station is part of a new radio access network.
In some implementations, the first connection and the second connection form a dual connectivity session with the wireless communication network.
Another innovative aspect of the subject matter described in this disclosure can be implemented as a UE. The UE may include an interface and a processor configured to perform any one of the above-mentioned methods.
Another innovative aspect of the subject matter described in this disclosure can be implemented as a computer-readable medium having stored therein instructions which, when executed by a processor, causes the processor to perform any one of the above-mentioned methods.
Another innovative aspect of the subject matter described in this disclosure can be implemented as a system having means for implementing any one of the above-mentioned methods.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a pictorial diagram conceptually illustrating an example of a wireless network.
Figure 2 shows a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless network.
Figure 3 shows a block diagram conceptually illustrating an example of a frame structure in a wireless network.
Figure 4 shows a block diagram conceptually illustrating an example of a UE with multiple radio connections.
Figure 5A shows a timing diagram conceptually illustrating an example of a measurement gap configuration for a first radio connection.
Figure 5B shows a timing diagram conceptually illustrating different possible scheduling behaviors of a second radio connection in relation to the timing of the measurement gap configuration shown in Figure 5A.
Figure 6 shows a flowchart illustrating an example process for managing measurement gap behavior according to some implementations.
Figure 7 shows a table with example conditions that may impact measurement gap behavior for the first connection.
Figure 8 shows a flowchart illustrating an example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
Figure 9 shows a conceptual diagram of an example configuration message and example configuration information related to managing measurement gap behavior.
Figure 10 shows a flowchart illustrating a first detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
Figure 11 shows a flowchart illustrating a second detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations.
Figure 12 shows a block diagram of an example wireless communication device.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. Some of the examples in this disclosure are based on wireless and wired local area network (LAN) communication according to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless standards, the IEEE 802.3 Ethernet standards, and the IEEE 1901 Powerline communication (PLC) standards. However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving radio frequency signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the
Figure PCTCN2020074809-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV- DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink (DL) and uplink (UL) . The DL (or forward link) refers to the communication link from the BS to the UE, and the UL (or reverse link) refers to the communication link from the UE to the BS. Different types of base stations may be referred to as a NodeB, an LTE evolved nodeB (eNB) , a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G NodeB, among other examples, depending on the wireless communication standard that the base station supports. A wireless communication session or association between the UE and a BS may be referred to as a radio connection. A UE may be capable of establishing multiple radio connections with a wireless communication system. For example, a UE may establish an LTE connection to a first base station (eNB) of the wireless communication system and an NR connection to a second base station (gNB) of the wireless communication system. Examples of multiple radio connections may include non-standalone (NSA) network deployments, dual connectivity, and split bearer, among other examples.
One or more of the radio connections may have a measurement gap configuration that defines measurement gap time periods for the UE to perform a measurement procedure. The measurement procedure is used by the UE to conduct measurements of base station signals to determine whether a change to the radio connection is warranted. In the examples of this disclosure, the first connection and the measurement gap configuration is based on an LTE connection. According to the measurement gap configuration, the UE may be configured to periodically perform measurements to determine whether the LTE connection should change to a different LTE base station. The measurement procedure includes temporarily suspending communication via the first connection during the measurement gap time period. The UE is said to perform the measurement procedure (also referred to as “making the measurement gap” or similar terms) when the UE does not communicate with the eNB  during the measurement gap time period so that the UE can obtain measurements of potential alternative base stations for the first connection. Thus, the UE may be unavailable to transmit signals to, or receive signals from, the LTE connections during those measurement gap time periods that the UE performs the measurement procedure. In order to obtain an accurate measurement, ideally, the UE would refrain from communicating via other radio connections during the same time period as the measurement procedure. For example, the UE may refrain from communicating with the gNB during the measurement gap time periods that the UE performs the measurement procedure.
To accommodate the measurement procedure of the first connection, the wireless communication network may adjust the scheduling of communication via the second connection to avoid the measurement gap time periods. For example, the wireless communication network may configure communication gaps for the second connection that correlate in time with the measurement gap time periods for the first connection. In some other implementations, the wireless communication may not configure communication gaps and may continue communicating via the second connection irrespective of the first connection. In either case, there is a possibility for the second connection to be active during at least part of the time that the first connection has a measurement gap time period. For example, the second connection, such as the NR connection, may be sensitive to timing, synchronization, and scheduling constraints. Even if the gNB configures communication gaps for an NR connection, the timing of the NR connection may not line up with the LTE connection. In some examples, the communication gap may be offset slightly in time.
In a traditional implementation, the UE may be configured to suspend communication via the second connection when performing a measurement procedure for the first connection. However, doing so may impact communication via the second connection. For example, the UE may miss a communication (or portion of a communication) for the second connection. Missing the communication may impact performance for the second connection. For example, the UE may have dimension loss due to missing downlink control information (DCIs) , boundary loss due to hybrid automatic repeat request (HARQ) state mismatch or recovery delay, spectrum efficiency loss due to modulation coding scheme (MCS) penalty, or higher layer application delay due to round trip time (RTT) change. Thus, when a UE has established a first connection  and a second connection, the measurement gap behavior of the first connection may depend on the second connection.
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for a UE to determine a measurement gap behavior for the first connection based on potential impact to the second connection. Various implementations relate generally to conditions that the UE may use to determine whether to perform a measurement procedure (making a gap) on the first connection. The conditions may be based on operating attributes of the second connection as well as other factors that favor or disfavor performing the measurement procedure. In accordance with this disclosure, the UE may receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure. The measurement procedure includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection. However, the UE may refrain from performing the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period.
In some implementations, the UE may determine whether a performance of the measurement procedure during a particular measurement gap time period would negatively impact a communication via the second connection. For example, the UE may examine grant information to determine whether the second connection will be active or idle during the measurement gap time period. If the second connection will be active during at least part of the measurement gap time period, the UE may refrain from performing the measurement procedure on the first connection.
In some implementations, the UE may consider a history or pattern or scheduling behavior for the second connection. For example, if the second connection frequently schedules communication during the same time periods as the measurement gap configuration, the UE may refrain from performing measurement procedures during every measurement gap time period. Alternatively, if the second connection regularly configures communication gaps that align with the measurement gap time periods, the UE may perform the measurement procedure during the measurement gap time periods with confidence that the gap will not impact communication via the second connection.
In some implementations, the UE may consider several conditions (also referred to as factors) that favor or disfavor performing the measurement procedure. For example, even if the measurement procedure will impact the communication of the  second connection, the UE may proceed with performing the measurement procedure if other conditions of the first connection suggest a need to perform the measurement procedure. Those other conditions may include movement of the UE, a low signal quality metric, or an amount of time since the previous measurement procedure was performed.
In some implementations, the UE may determine whether to perform the measurement procedure for each measurement gap time period based on current conditions prior to the measurement gap time period. Thus, the UE may control the measurement gap behavior based on conditions the UE can detect. This permits the UE to manage the performance impact that the measurement procedure may cause to the second connection as well as the relative benefit on the first connection.
In some implementations, the UE may determine whether or not to perform the measurement procedure for a particular measurement gap time period based on several conditions. For example, the UE may consider a communication status of the second connection relative to each measurement gap time period, a scheduling behavior of the second connection relative the measurement gap configuration, a determination whether the second connection and the first connection use overlapping frequency ranges, an amount of time since a previous measurement procedure was performed, a signal quality metric associated with the first connection, and a determination whether the UE is stationary or nonstationary. These conditions may be arranged in different priorities or weightings. For example, the UE may determine whether the conditions favor or disfavor the performance of a measurement procedure. Some conditions may be used to force the performance (or refraining of performance) . For example, if a grant of the second connection indicates the second connection will be active during the measurement gap time period, the UE may refrain from performing the measurement procedure regardless of the other conditions. In another example, if the first connection and the second connection use non-overlapping frequency ranges, the UE may default to performing the measurement procedure on the first connection while continuing to communicate via the second connection during the measurement gap time period.
In some implementations, the UE may consider a signal quality metric associated with the first connection as a factor that favors or disfavors performing the measurement procedure. The signal quality metric may be a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , or a received signal strength indicator (RSSI) . The UE may compare the signal quality metric with a threshold to  determine the relative quality of the first connection. If the signal quality metric is above the threshold, the first connection is relatively good quality and the UE may refrain from performing the measurement procedure. If the signal quality metric is below the threshold, the first connection may be relatively poor quality, and the UE may perform the measurement procedure. In some implementations, the threshold may be based on a measurement reporting event (A2 event) that is configured for the first connection. The A2 event is typically configured by the eNB to define when the UE should perform the measurement procedure and send an A2 report back to the eNB. However, in some implementations of this disclosure, the UE may disable the A2 report and refrain from performing the measurement procedure if the signal quality metric is above the threshold defined for the A2 event.
In some implementations, the UE may determine a gap periodic interval that defines how often the UE will perform the measurement procedure from among the available measurement procedures. The measurement gap configuration may define recurring measurement gap opportunities. The time period between measurement gap opportunities may be referred to as a measurement gap repetition period (MGRP) . In some implementations, the UE may determine a gap periodic interval which is longer than the MGRP. For example, the UE may determine to refrain from performing the measurement procedure for a quantity of measurement gap opportunities. When the UE refrains from performing the measurement procedure, the UE may be said to skip the measurement gap time period. The quantity of measurement gap time periods that are skipped may be based on a variety of conditions described in this disclosure. The gap periodic interval may be a value expressed in terms of time, the quantity of skipped measurement gap time periods, or any other value that determines how often the UE will consider whether to make the measurement gap from among the available measurement gap time periods. A higher gap periodic interval refers to a greater quantity of skipped measurement gap time periods and less frequent measurement procedures. A lower gap periodic interval refers to a fewer quantity of skipped measurement gap time periods and more frequent measurement procedures. The UE may determine a higher gap periodic interval based on conditions such as when the UE is stationary, the first connection signal quality metric is above a threshold, or the first connection shares an overlapping frequency range with the second connection. The UE may determine a lower gap periodic interval when the UE is nonstationary, the first connection signal quality metric  is below the threshold, or the first connection is established on a non-overlapping frequency range.
In some implementations, the gap periodic interval may be in related to the signal quality metric (such as the RSRP, RSRQ, or RSSI) associated with the first connection. For example, the UE may determine a higher gap periodic interval when the signal quality metric is higher than a threshold –resulting in fewer measurement procedures when the first connection is good. The UE may determine a lower gap periodic interval when the signal quality metric is lower than a threshold –resulting in more frequent measurement procedures when the first connection is poor.
In some implementations, the gap periodic interval may be based on traffic patterns or priority of traffic for the first connection. For example, if the first connection is engaged in a high priority traffic or voice over data (such as Voice over LTE, VoLTE) traffic, the UE may determine a lower gap periodic interval, resulting in more frequent measurement procedures. In some implementations, the gap periodic interval may be the same as the MGRP (thus, no skipped measurement gap time periods) when the UE is engaged in high priority or VoLTE traffic on the first connection. Conversely, when the UE is engaged in low priority traffic on the first connection, the UE may determine a higher gap periodic interval.
The techniques of this disclosure may be used with different types of connections. For brevity and consistency, the examples are described using a first connection based on LTE communication with an LTE evolved base station (eNB) and a second connection based on NR communication with a next-generation base station (gNB) . The examples are based on an NSA implementation of E-UTRA-NR dual connectivity (ENDC) . Furthermore, the example measurement gap configuration is based on inter-frequency or intra-frequency measurements of the LTE connection. It should be apparent that the techniques of this disclosure may be used vis-a-vis with other types of connections and measurement gap configurations. For example, the techniques may be used with an NR-E-UTRA dual connectivity (NEDC) , split bearer, or combinations of LTE/NR with other communication protocols.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. Performance of the first connection and the second connection may be improved by balancing the need to measure alternative base stations for the first connection with the need to maintain communication via the second connection. The techniques in this  disclosure provide flexibility for the UE to control measurement gap behavior based on conditions that the UE can determine relative to each measurement gap time period. The UE may adjust measurement gap behavior (such as the gap periodic interval) based on how the measurement procedure of the first connection may impact the second connection.
Figure 1 is a block diagram conceptually illustrating an example of a wireless network 100. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and also may be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS, a BS subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs having association with the femto cell (for example, UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Figure 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another as well as to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of  backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network.
Wireless network 100 also may include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (for example, a BS or a UE) and send a transmission of the data to a downstream station (for example, a UE or a BS) . A relay station also may be a UE that can relay transmissions for other UEs. In the example shown in Figure 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station also may be referred to as a relay BS, a relay base station, or a relay, among other examples.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, for example, macro BSs, pico BSs, femto BSs, relay BSs, among other examples. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (for example, 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
UEs 120 (for example, 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, or a station, among other examples. A UE may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart ring, smart bracelet) ) , an entertainment device (for example, a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, among other examples, that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, among other examples. A frequency also may be referred to as a carrier, a frequency channel, among other examples. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, where a scheduling entity (for example, a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (for example, one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, in a mesh network, or another type of network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
In some aspects, two or more UEs 120 (for example, shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (for example, without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the UE 120 may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110.
Figure 2 is a block diagram conceptually illustrating an example 200 of a base station 110 in communication with a UE 120. In some aspects, the base station 110 and the UE 120 may respectively be one of the base stations and one of the UEs in wireless network 100 of Figure 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (for example, encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. The transmit processor 220 also may process system information (for example, for semi-static resource partitioning information (SRPI) or the like) and control information (for example, CQI requests, grants, upper layer signaling, among other examples. ) and provide overhead symbols and control symbols. The transmit processor 220 also may generate reference symbols for reference signals (for example, the cell-specific reference signal (CRS) ) and synchronization signals (for example, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or  the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (for example, for OFDM) to obtain an output sample stream. Each modulator 232 may further process (for example, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (for example, filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (for example, for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (for example, demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller or processor (controller/processor) 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , among other examples. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports including RSRP, RSSI, RSRQ, CQI, among other examples) from controller/processor 280. Transmit processor 264 also may generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (for example, for DFT-s-OFDM, CP-OFDM, among other examples) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded  data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller or processor (i.e., controller/processor) 240. The base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. The network controller 130 may include communication unit 294, a controller or processor (i.e., controller/processor) 290, and memory 292.
The controller/processor 240 of base station 110, the controller/processor 280 of UE 120, or any other component (s) of Figure 2 may perform one or more techniques associated with managing measurement gap behavior of the first connection based on an operating attribute of the second connection, as described in more detail elsewhere herein. For example, the controller/processor 280 of UE 120, or any other component (s) (or combinations of components) of Figure 2 may perform or direct operations of, for example, process 600 of Figure 6, process 800 of Figure 8, process 1000 of Figure 10, process 1100 of Figure 11, or other processes as described herein. The  memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. The stored program codes, when executed by the controller/processor 280 or other processors and modules at UE 120, may cause the UE 120 to perform operations described with respect to process 600 of Figure 6, process 800 of Figure 8, process 1000 of Figure 10, process 1100 of Figure 11, or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink, the uplink, or a combination thereof.
While blocks in Figure 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, the TX MIMO processor 266, or another processor may be performed by or under the control of controller/processor 280.
Figure 3 is a block diagram conceptually illustrating an example frame structure 300 in a wireless network. In some aspects, the example frame structure 300 may be for FDD in the wireless network, which may include a 5G NR wireless network or another type of wireless network. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) . Each radio frame may have a predetermined duration (for example, 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ≥ 1) subframes (for example,  with indices of 0 through Z-1) . Each subframe may have a predetermined duration (for example, 1ms) and may include a set of slots (for example, 2m slots per subframe are shown in Figure 3, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, or the like) . Each slot may include a set of L symbol periods. For example, each slot may include fourteen symbol periods (for example, as shown in Figure 3) , seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (for example, when m = 1) , the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1. In some aspects, a scheduling unit for the FDD may frame-based, subframe-based, slot-based, symbol-based, or the like.
While some techniques are described herein in connection with frames, subframes, slots, or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Figure 3 may be used.
In certain telecommunications (for example, NR) , a base station may transmit synchronization signals. For example, a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , or the like, on the downlink for each cell supported by the base station. The PSS and SSS may be used by UEs for cell search and acquisition. For example, the PSS may be used by UEs to determine symbol timing, and the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing. The base station also may transmit a physical broadcast channel (PBCH) . The PBCH may carry some system information, such as system information that supports initial access by UEs.
In some aspects, the base station may transmit the PSS, the SSS, the PBCH, or a combination thereof in accordance with a synchronization communication hierarchy (for example, a synchronization signal (SS) hierarchy) including multiple synchronization communications (for example, SS blocks) .
The base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots. The base station may transmit control information/data on a physical downlink control channel  (PDCCH) in particular symbol periods of a slot. The base station may transmit traffic data or other data on the PDSCH in the remaining symbol periods of each slot.
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, or the like, or combinations thereof. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New radio (NR) may refer to radios configured to operate according to a new air interface (for example, other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (for example, other than Internet Protocol (IP) ) . In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (for example, 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (for example, 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, or mission critical targeting ultra-reliable low latency communications (URLLC) service.
In some aspects, a single component carrier bandwidth of 100 MHZ may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (for example, DL or UL) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DL/UL data as well as DL/UL control data.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding also may be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based interface. NR networks may include entities such central units or distributed units.
Figure 4 shows a block diagram conceptually illustrating an example of a UE with multiple radio connections. The block diagram 400 includes a UE 120 that includes multiple radios –a first radio is an LTE radio 422 and a second radio is a 5G NR radio 424. In some implementations, a single chip or component of the UE 120 may provide an interface that communicates via the first and second radios. The LTE radio 422 may establish a first connection 412 (an LTE connection) with a first base station (eNB) 410. The NR radio 424 may establish a second connection 452 (an NR connection) with a second base station (gNB) 450. Each of the first and  second connections  412 and 452 may have different radio resource configurations (RRC) and timing synchronization between the respective radios and base stations.
In the example of Figure 4, the eNB 410 may provide a measurement gap configuration to the UE 120 to use for the first connection 412. For example, the measurement gap configuration may define measurement gap time periods for the UE 120 to periodically measure signals 416 from another base station 414. As described above, the measurement procedure may include the UE 120 refraining from communicating via the first connection 412 while measuring the signals 416 from the other base station 414.
The UE 120 may include a measurement gap controller 426 that controls when the UE 120 performs the measurement procedures. Traditionally, the UE 120 may adhere to the measurement gap configuration and perform a traditional measurement procedure during each measurement gap time period defined by the measurement gap configuration. The measurement gap configuration may define a pattern of recurring measurement gap time periods. To mitigate the impact of the measurement procedure on the second connection 452, the measurement gap controller 426 may determine whether or not to perform the measurement procedure during particular measurement gap time periods. For example, the measurement gap controller 426 may determine to skip some  measurement gap time periods and refrain from performing the measurement procedure during those skipped measurement gap time periods. The measurement gap controller 426 may determine a gap periodic interval that is longer than the MGRP defined in the measurement gap configuration. The UE 120 may determine that performing the measurement procedure during a particular measurement gap time period may be detrimental to the timing or maintenance of the second connection.
In some implementations, the first base station also may configure a measurement reporting event (A2 event) that instructs the UE to send a measurement report (A2 report) based on configured thresholds. For example, the A2 event configuration may indicate a threshold for RSRQ or RSRP. According to the A2 event configuration, the UE may be expected to send an A2 report if the UE determines that the current RSRQ or RSRP of the first connection is below the A2 event threshold. However, as described in this disclosure, there may be conditions in which the UE may disable the A2 reporting or may refrain from performing the measurement procedure. Advantageously, the UE may disregard the A2 event configuration based on conditions that the UE may determine such as a stable first connection or a potential negative impact to the second connection. In some implementations, the UE may use the threshold in the A2 event configuration as one factor in determining whether or not to perform a measurement procedure.
Figure 5A shows a timing diagram conceptually illustrating an example of a measurement gap configuration for a first radio connection. The timing diagram 500 shows an example timing 512 of communications and measurement gaps on a first connection. A measurement gap configuration may define recurring measurement  gap time periods  502a, 502b, 502c, and 502d. The period between each measurement gap time periods may be referred to as an MGRP 508. A duration of the measurement gap time periods is a measurement gap length 506. The measurement gap configuration may include a gap pattern that is defined by a technical specification. For example, the first base station (eNB) may transmit a signal, such as a radio resource control (RRC) signal, that includes an indication of a measurement gap pattern (such as a measurement gap pattern identifier) to the UE. In some embodiments, the measurement gap configuration may be a pattern identifier (ID) between #0 to #23 as defined in Section 9.1.2 of 3GPP technical specification (TS) 38.133 v 15.0.0 (2017-12) (hereafter: “TS 38.133” ) . The numeric gap pattern ID may be associated with a respective measurement gap length (MGL) and a respective MGRP. In Section 9.1.2 of TS 38.133, for example, pattern IDs  0-11 variously have a measurement gap length of three milliseconds, four milliseconds, or six milliseconds, and a measurement gap repetition period of twenty milliseconds, forty milliseconds, eighty milliseconds, or one hundred sixty milliseconds. Pattern IDs 12-23 variously have a measurement gap length of 1.5 milliseconds, 3.5 milliseconds, or 5.5 milliseconds, and a measurement gap repetition period of twenty milliseconds, forty milliseconds, eighty milliseconds, or one hundred sixty milliseconds.
Figure 5B shows a timing diagram conceptually illustrating different possible scheduling behaviors of a second radio connection in relation to the timing of the measurement gap configuration shown in Figure 5A. In an ideal deployment, a wireless communication network would manage communication gaps in a second connection so that the communication gaps align with the measurement gap time periods of the first connection. However, this may not always be the case. Figure 5B shows some examples of timing for communication gaps (or lack thereof) in relation to the measurement gap time periods in Figure 5A, primarily in relation to a first measurement gap time period 502a of Figure 5A.
In a first example timing 552a, the second base station may cause communication gaps that align in time with the measurement gap time periods. For example, a communication gap 570 aligns in time with a first measurement gap time periods 502a of the first connection. In this example, the UE may perform the measurement procedure in each of the measurement gap time periods 502a-502d of the first connection with confidence that the measurement procedure will not impact communication on the second connection. In real-world deployments, the timing of the communication gaps may not align with the measurement gap time periods for a variety of reasons, as shown in timing examples 552b, 552c, and 552d.
In a second example timing 552b, the second base station may not configure communication gaps based on the measurement gap configuration of the first connection. Thus, if the UE performs a traditional measurement procedure (in which the UE concurrently suspends communication on both connections) during the first measurement gap time period 502a, the UE may miss a communication 572 via the second connection. As described further in this disclosure, there may be some implementations in which the UE may perform the measurement procedure on the first connection while continuing to communicate via the second connection. Alternatively, the UE may determine not to perform the measurement procedure during the first measurement gap time period 502a to prevent impact to the communication 572 on the second connection.
In a third example timing 552c and fourth example timing 552d, the second base station may attempt to schedule communication gaps that align with the measurement gap time periods of the first connection. However, the communication gaps may be misaligned. The third example timing 552c shows the communication gap 576 occurs in an incorrect time slot while active communication 574 occurs in a time slot that aligns with the first measurement gap time period 502a. The fourth example timing 552d shows the communication gap 582 slightly offset in time (due to timing synchronization difference or drift) while active communication 584 occurs during at least part of the time that aligns with the first measurement gap time period 502a.
Figure 6 shows a flowchart illustrating an example process for managing measurement gap behavior according to some implementations. The operations of process 600 may be implemented by a UE or its components as described herein. For example, the process 600 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
The process 600 begins with block 610. At block 610, the apparatus may establish a first connection with a first base station of a wireless communication network. At block 620, the apparatus may establish a second connection with a second base station of the wireless communication network.
At block 630, the apparatus may receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection. For example, the measurement gap configuration may be included in an RRC or another configuration message for an LTE connection with eNB.
At block 640, the apparatus may determine whether to perform the measurement procedure during a first measurement gap time period based on an operating attribute of the second connection relative to the first measurement gap time period. This disclosure includes several conditions and related operating attributes that may be used to determine whether or not to make the measurement gap and perform the measurement procedure.
Figure 7 shows a table 700 with example conditions that may impact measurement gap behavior for the first connection. Some conditions (such as the conditions in group 710) are impacted by operating attributes of the second connection.  Other conditions (such as the conditions in group 720) may depend on the first connection or changes in the UE that are independent of the first and second connections. Each condition may have a status that favors or disfavors a determination whether the UE should perform a measurement procedure during a measurement gap time period. For example, the conditions may be based on balancing the need to conduct measurements of an alternative base station for the first connection with the potential impact on the second connection. In some implementations, the UE may consider multiple conditions (such as any combination of two or more of the example conditions in table 700) . The UE may prioritize some conditions over others. In some implementations, the UE may use a weighting factor with the conditions to determine whether to perform the measurement procedure. As shown more in Figures 10 and 11, there may be a variety of ways these conditions are applied in a determination algorithm. In some implementations, one condition may be a limiting factor the prevents or causes performance of the measurement procedure regardless of the other conditions. The conditions will be described below in no particular order or priority.
An example condition is based on the second connection communication status. For example, if the second connection is currently active prior to the measurement gap time period or is scheduled to be active during the measurement gap time period, the condition disfavors performing the traditional measurement procedure on the first connection. Alternatively, if the second connection is idle and there are no scheduled communications during the measurement gap time period, the UE may perform the measurement procedure during the measurement gap time period without impacting the second connection. Thus when the second connection communication status indicates that the second connection will be idle during the measurement gap time period, the condition favors performance of the measurement procedure. In some implementations, the second connection communication status may be determined based on scheduling or grant information. The grant information may include transport block size (TBS) , a new data indicator field (NDI) , modulation and coding scheme (MCS) , uplink activation signaling, downlink control information (DCI) , or a physical layer resource allocation, among other examples. In some implementations, the grant information may be based on an ongoing HARQ process.
Another example condition is based on the second connection scheduling behavior. For example, the UE may determine whether the second base station is likely to schedule communication during measurement gap time periods based on historical  communication. For example, the second base station may never, rarely, occasionally, frequently, regularly, or always schedule communications (rather than communication gaps) during the measurement gap time periods. If the second connection generally does not schedule (or rarely schedules) communications during the measurement gap time periods, the UE may favor performing the measurement procedure. Conversely, if the second connection generally does (or regularly) schedules communication during the measurement gap time periods, the UE may disfavor performing the measurement procedure. The second connection scheduling behavior may be observed by the UE based on a sliding window history of communications and communication gaps in relation to the most recent measurement gap time periods.
Another example condition is based on whether the first connection and the second connection are established on overlapping or non-overlapping frequency ranges. If the first connection and the second connection are established on overlapping frequency ranges, then the UE would discontinue communication on the second connection as part of the measurement procedure on the first connection. Thus, the UE may disfavor performing the measurement procedure when the first connection and the second connection are established on overlapping frequency ranges. If the first connection and the second connection are established on non-overlapping frequency ranges, then the UE may continue communication on the second connection while performing the measurement procedure on the first connection. Thus, the UE may favor performing the measurement procedure when the first connection and the second connection are established on non-overlapping frequency ranges.
Another example condition is based on a time since the last measurement procedure was performed. As described above, the frequency of the measurement gap time periods may be configured with a MGRP. However, the UE may determine a different a different gap periodic interval that includes skipping some measurement gap time periods. However, if the previous measurement procedure was performed more than a threshold amount of time (possibly in relation to the gap periodic interval) , the UE may favor performing the measurement procedure. In some implementations, the UE may perform the measurement procedure even if doing so may impact communication via the second connection. On the other hand, if the previous measurement procedure was performed less than the threshold amount of time, the UE may disfavor performing the measurement procedure unless it can do so without impact to the second connection.
Another example condition is based on the first connection signal quality. For example, if the signal quality metric (such as RSRP, RSRQ, or RSSI) is below a threshold, the UE may favor performing the measurement procedure. Alternatively, if the signal quality metric is above the threshold, the UE may disfavor performing the measurement procedure. When the signal quality metric is above the threshold, the UE may infer that the first connection is stable and that conducting measurements on alternative base stations is unwarranted if doing so would impact the second connection. If the signal quality metric is below the threshold, the UE may infer that the first connection would benefit from changing to an alternative base station and may warrant performing the measurement procedure despite the risk of impacting communication on the second connection.
Another example condition is based on movement of the UE. The UE may be capable of determining movement based on satellite positioning service, accelerometer, changes in signal strength, or beamforming information, among other examples. When the UE is stationary, the quality of the first connection may be relatively stable. Thus, the UE may disfavor performing the measurement procedure when the UE is stationary. When the UE is non-stationary, the quality of the first connection may change such that measuring alternative base stations for the first connection is warranted. Thus, the UE may favor performing the measurement procedure when the UE is nonstationary.
Another example condition is based on the traffic type on the first connection. The traffic type may be related to a priority, quality of service, or other categorization. Depending on the traffic type, the UE may determine that it is more or less useful to perform a measurement procedure. For example, when the UE is engaged in high priority traffic (including, for example, VoLTE) , the UE may favor performing the measurement procedure. When the UE is engaged in low priority traffic (such as best effort data) , the UE may disfavor performing the measurement procedure. In some implementations, when the UE is engaged in certain types of traffic, such as voice traffic, the UE may perform a measurement procedure at each measurement gap opportunity regardless of potential impact to the second connection.
In some implementations, these example conditions may be applied for a single measurement gap time period or a set of measurement gap time periods. For example, the UE may determine on a per-gap basis whether to perform the measurement procedure. Alternatively, the UE may determine whether or not to perform measurement procedures during each of a set of measurement gap time periods. The UE may adjust a  gap periodic interval for performing measurement procedure based on one or more of the example conditions (or a combination of conditions) .
The example conditions in table 700 may be combined in various ways to form an algorithm for determining whether to utilize a measurement gap for the measurement procedure or whether to skip the measurement gap opportunity. Figures 10 and 11 show example processes that combine and prioritize the example conditions of table 700 in different ways.
Figure 8 shows a flowchart illustrating an example process 800 for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations. The operations of process 800 may be implemented by a UE or its components as described herein. For example, the process 800 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12.
The process 800 begins with block 810. At block 810, the apparatus may receive a measurement gap configuration for the first connection. The measurement gap configuration may define a pattern or series of measurement gap time periods. The measurement gap time periods also may be referred to as measurement gap opportunities. For each measurement gap opportunity 820, the apparatus may be configured to perform operations at blocks 830-880 to determine whether or not to perform a measurement procedure during the measurement gap opportunity.
At block 830, the apparatus may determine whether the measurement procedure can be performed without impact to the second connection. For example, if the second connection is established on a non-overlapping frequency range or if the second connection is not active during the measurement gap opportunity, the apparatus may determine that the measurement procedure can be performed without impact to the second connection. If the apparatus can perform the measurement procedure without impact to the second connection, the process 800 continues to block 850. At block 850, the apparatus determines to perform the measurement procedure during that measurement gap opportunity. At block 830, if the apparatus determines that the measurement procedure will impact the second connection, the process 800 continues to block 840.
At block 840, the apparatus may determine if the measurement procedure is warranted despite the impact to the second connection. For example, if the first connection is relatively stable with a strong signal quality metric and the UE is stationary,  the apparatus may determine that performing the measurement procedure is not warranted. However, the apparatus may determine that performing the measurement procedure is warranted despite the impact to the second connection if the first connection is not stable, has a weak signal quality metric, or the US is non-stationary, among other examples. If the measurement procedure is warranted, the process 800 continues to block 850. At block 850, the apparatus determines to perform the measurement procedure during that measurement gap opportunity. At block 840, if the apparatus determines that the measurement procedure is not warranted, the process 800 continues to block 860.
At block 860, the apparatus determines to refrain from performing the measurement procedure during that measurement gap opportunity. In some implementations, the apparatus may disable an A2 report for that measurement gap opportunity.
At block 870, the apparatus may adjust the gap periodic interval. For example, the apparatus may increase or decrease the amount of time before the next considered measurement gap opportunity based on the conditions considered in  blocks  630 and 640.
In some implementations, adjusting the may include increasing or decreasing the gap periodic interval in correlation with the signal quality metric. In some implementations, adjusting the gap periodic interval may include decreasing the gap periodic interval for high priority or voice traffic. In some implementations, the apparatus may set the gap periodic interval to the MGRP when the first connection is being used for voice traffic.
Figure 9 shows a conceptual diagram of an example configuration message 900 and example configuration information related to managing measurement gap behavior. For example, a base station (such as the eNB or gNB) may transmit the example configuration message 900 to a UE. In some implementations, the UE may transmit a similarly formatted reporting message (not shown) with some of the configuration settings described with reference to Figure 9. The configuration message 900 may include one or more indicators (or information elements) that affect how the UE determines the measurement gap behavior for the first connection. The configuration message 900 may include a frame header 924 and configuration data 910. The frame header 924 may indicate the type of configuration information or other frame control information. The configuration data 910 may include a variety of indicators 932. Figure 9 includes several example indicators 960.
In some implementations, the example indicators 960 may include the measurement gap configuration 962. The measurement gap configuration 962 may indicate a pattern ID or other value that defines the timing and periodicity of the measurement gap time periods. Alternatively, or additionally, the example indicators 960 may include measurement gap timing 964, a measurement gap pattern 966, or a combination thereof.
In some implementations, the example indicators 960 may include an A2 event configuration. The A2 event configuration may include a threshold (sometimes referred to as an A2 threshold) . A UE may use the A2 threshold to determine whether the signal quality of the first connection warrants (or does not warrant) performing the measurement procedure. Alternatively, or additionally, the example indicators 960 may include a threshold 972 configured by the base station for use by the UE in determining whether to perform the measurement procedure.
In some implementations, the example indicators 960 may include a permission setting 974 that indicates whether the UE is permitted to skip measurement gap time periods. Alternatively, the example indicators 960 may include a capability setting (not shown) which indicates whether the UE is capable of determining whether to perform the measurement procedure or skip the measurement gap time period.
In some implementations, the example indicators 960 may include a network-specified criterion 976 for the UE to use when determining whether or not to perform the measurement procedure. For example, the network-specified criterion 976 may require the UE to make the measurement gap within a maximum time period regardless of impact to the other connections. In another example, the network-specified criterion 976 may require the UE to refrain from making the measurement gap unless the second connection is inactive during the measurement gap time period.
Figure 10 shows a flowchart illustrating a first detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations. The operations of process 1000 may be implemented by a UE or its components as described herein. For example, the process 1000 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12. The example of Figure 10 is based on the examples described herein. For brevity and clarity, the example of Figure 10 is  described using LTE communication as the first connection and NR communication as the second connection.
The process 1000 begins with block 1010. At block 1010, the apparatus may receive a measurement gap configuration for the LTE connection. The measurement gap configuration may describe LTE measurement gaps for the UE to perform a measurement procedure. At block 1020, the apparatus may determine if the NR connection is scheduling communication during the LTE measurement gap. If the NR connection does not schedule communication during the LTE measurement gap, the process continues to block 1030. At block 1030, the apparatus may perform the measurement procedure during the LTE measurement gap. At block 1020, if the apparatus determines that the NR connection does schedule communication during the LTE measurement gap, the process continues to block 1040.
At block 1040, the apparatus may determine whether the LTE connection and the NR connection are using overlapping frequency ranges. If the LTE connection and the NR connection do not use overlapping frequency ranges, the process 1000 continues to block 1050. At block 1050, the apparatus may perform the measurement procedure during the LTE measurement gap while continuing to communicate via the NR connection on the nonoverlapping frequency range. At block 1040, if the apparatus determines that the LTE connection and the NR connection use overlapping frequency ranges, the process 1000 continues to block 1060.
At block 1060, the apparatus may determine a threshold for the LTE connection condition. For example, the threshold may be based on the A2 event configuration or may be based on a threshold determined by the UE based on historical data. The threshold may be for use in comparison with a signal quality metric to determine if the first connection is high quality or poor quality. At block 1070, the apparatus may compare the LTE connection condition (such as signal quality metric) with the threshold. If the LTE connection condition is below the threshold, the process 1000 may proceed to block 1080. At block 1080, the apparatus may determine to perform the measurement procedure regardless of the potential impact to the second connection. At block 1080, the apparatus may discontinue communicating via the LTE connection and the NR connection during the measurement gap time period so that the apparatus can perform the measurement procedure.
At block 1070, if the LTE connection condition is above the threshold (indicating a good quality of the first connection) , the process may proceed to block  1090. At block 1090, the apparatus may refrain from performing the measurement procedure. At block 1095, the apparatus may adjust the gap periodic interval based on the conditions considered in  blocks  1020, 1040, and 1070. For example, the apparatus may increase the gap periodic interval (for a longer period of time before the next measurement gap opportunity) .
Figure 11 shows a flowchart illustrating a second detailed example process for determining whether to perform a measurement procedure during a measurement gap time period according to some implementations. The operations of process 1100 may be implemented by a UE or its components as described herein. For example, the process 1100 may be performed by an apparatus such as UE 120 described above with reference to Figure 4 or a wireless communication device such as the wireless communication device 1200 described with reference to Figure 12. The example of Figure 12 is based on the examples described herein. For brevity and clarity, the example of Figure 12 is described using LTE communication as the first connection and NR communication as the second connection.
The process 1100 begins with block 1110. At block 1110, the apparatus may receive a measurement gap configuration for the LTE connection. At block 1120, the apparatus may determine whether the NR connection is active prior to, or during, the measurement gap time period. If so, the process 1100 may proceed to block 1125. At block 1125, because the NR connection is active, the apparatus may refrain from performing the measurement procedure. At block 1120, if the NR connection is idle (not active) during the measurement gap time period, the process may proceed to block 1130.
At block 1130, the apparatus may determine whether the LTE connection and the NR connection are using overlapping frequency ranges. If the LTE connection and the NR connection do not use overlapping frequency ranges, the process 1100 continues to block 1135. At block 1135, the apparatus may perform the measurement procedure during the LTE measurement gap while continuing to communicate via the NR connection on the nonoverlapping frequency range. At block 1130, if the apparatus determines that the LTE connection and the NR connection use overlapping frequency ranges, the process 1100 continues to block 1140.
At block 1140, the apparatus may compare the signal quality metric of the LTE connection with a threshold. If the signal quality metric is below the threshold, the process 1100 may proceed to block 1150. At block 1150, the apparatus may determine to perform the measurement procedure regardless of the potential impact to the second  connection. At block 1150, the apparatus may discontinue communicating via the LTE connection and the NR connection during the measurement gap time period so that the apparatus can perform the measurement procedure.
At block 1140, if the signal quality metric of the LTE connection is above the threshold (indicating a good quality of the first connection) , the process may proceed to block 1160. At block 1160, the apparatus may determine whether the UE is stationary. If the UE is not stationary, the process 1100 may proceed to block 1150, where the UE performs the measurement procedure. At block 1160, if the UE is stationary, the process 1100 may proceed to block 1170.
At block 1170, the apparatus may determine if the A2 event is configured for the LTE connection. If so, the process continues to block 1175. At block 1175, the apparatus may disable the A2 report. At block 1170, if the A2 event is not configured, the process 1100 may proceed to block 1180.
At block 1180, the apparatus may refrain from performing the measurement procedure. At block 1190, the apparatus may adjust the gap periodic interval based on the conditions considered in  blocks  1120, 1130, 1140, 1160, and 1170. For example, the apparatus may increase the gap periodic interval (for longer period of time before the next measurement gap opportunity) .
The example processes described in Figures 6, 8, 10, and 11 are provided as illustrative examples. In some implementations, as described herein, the UE may determine whether to perform the measurement procedure based on activity on the second connection. The UE may determine whether the second connection is active based on grant information. For example, the UE may review available grant information to determine whether the UE is expected to be active. The grant information may be related to a HARQ process or other ongoing communication via the second connection. The grant information may indicate whether the second connection will be active during at least a portion of a measurement gap time period.
There may be various ways to determine the second connection communication status based on the grant information. For example, the UE may determine the communication status based on a new data indicator field (NDI) . When the NDI is toggled, the UE may determine that the second connection will remain active. In another example, the UE may determine a transport block size (TBS) based on a resource block (RB) size and MCS. The UE may determine the second connection will remain active when the TBS extends into the next measurement gap time period. In another  example, the UE may determine that the second connection will remain active based on the MCS of the second connection. For example, the UE may determine the second connection will remain active in an HARQ process when the MCS has a value (such as 29–31) that is reserved for retransmissions.
Figure 12 shows a block diagram of an example wireless communication device 1200. In some implementations, the wireless communication device 1200 can be an example of a device for use in a UE, such as UE 120 described above with reference to Figure 1. The wireless communication device 1200 is capable of transmitting (or outputting for transmission) and receiving wireless communications.
The wireless communication device 1200 can be, or can include, a chip, system on chip (SoC) , chipset, package or device. The term “system-on-chip” (SoC) is used herein to refer to a set of interconnected electronic circuits typically, but not exclusively, including one or more processors, a memory, and a communication interface. The SoC may include a variety of different types of processors and processor cores, such as a general purpose processor, a central processing unit (CPU) , a digital signal processor (DSP) , a graphics processing unit (GPU) , an accelerated processing unit (APU) , a sub-system processor, an auxiliary processor, a single-core processor, and a multicore processor. The SoC may further include other hardware and hardware combinations, such as a field programmable gate array (FPGA) , a configuration and status register (CSR) , an application-specific integrated circuit (ASIC) , other programmable logic device, discrete gate logic, transistor logic, registers, performance monitoring hardware, watchdog hardware, counters, and time references. SoCs may be integrated circuits (ICs) configured such that the components of the IC reside on the same substrate, such as a single piece of semiconductor material (such as, for example, silicon) .
The term “system in a package” (SIP) is used herein to refer to a single module or package that may contain multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SoCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP also may include multiple independent SoCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single mobile communication device. The proximity of the SoCs facilitates high speed communications and the sharing of memory and resources.
The term “multicore processor” is used herein to refer to a single IC chip or chip package that contains two or more independent processing cores (for example a CPU core, IP core, GPU core, among other examples) configured to read and execute program instructions. An SoC may include multiple multicore processors, and each processor in an SoC may be referred to as a core. The term “multiprocessor” may be used herein to refer to a system or device that includes two or more processing units configured to read and execute program instructions.
The wireless communication device 1200 may include one or more modems 1202. In some implementations, the one or more modems 1202 (collectively “the modem 1202” ) may include a WWAN modem (for example, a 3GPP 4G LTE or 5G compliant modem) . In some implementations, the wireless communication device 1200 also includes one or more radios 1204 (collectively “the radio 1204” ) . In some implementations, the wireless communication device 1200 further includes one or more processors, processing blocks or processing elements 1206 (collectively “the processor 1206” ) and one or more memory blocks or elements 12010 (collectively “the memory 12010” ) .
The modem 1202 can include an intelligent hardware block or device such as, for example, an application-specific integrated circuit (ASIC) among other possibilities. The modem 1202 is generally configured to implement a PHY layer. For example, the modem 1202 is configured to modulate packets and to output the modulated packets to the radio 1204 for transmission over the wireless medium. The modem 1202 is similarly configured to obtain modulated packets received by the radio 1204 and to demodulate the packets to provide demodulated packets. In addition to a modulator and a demodulator, the modem 1202 may further include digital signal processing (DSP) circuitry, automatic gain control (AGC) , a coder, a decoder, a multiplexer and a demultiplexer. For example, while in a transmission mode, data obtained from the processor 1206 is provided to a coder, which encodes the data to provide encoded bits. The encoded bits are then mapped to points in a modulation constellation (using a selected MCS) to provide modulated symbols. The modulated symbols may then be mapped to a number NSS of spatial streams or a number NSTS of space-time streams. The modulated symbols in the respective spatial or space-time streams may then be multiplexed, transformed via an inverse fast Fourier transform (IFFT) block, and subsequently provided to the DSP circuitry for Tx windowing and filtering. The digital signals may then be provided to a digital-to-analog converter (DAC) . The resultant analog signals may then be provided to  a frequency upconverter, and ultimately, the radio 1204. In implementations involving beamforming, the modulated symbols in the respective spatial streams are precoded via a steering matrix prior to their provision to the IFFT block.
While in a reception mode, digital signals received from the radio 1204 are provided to the DSP circuitry, which is configured to acquire a received signal, for example, by detecting the presence of the signal and estimating the initial timing and frequency offsets. The DSP circuitry is further configured to digitally condition the digital signals, for example, using channel (narrowband) filtering, analog impairment conditioning (such as correcting for I/Q imbalance) , and applying digital gain to ultimately obtain a narrowband signal. The output of the DSP circuitry may then be fed to the AGC, which is configured to use information extracted from the digital signals, for example, in one or more received training fields, to determine an appropriate gain. The output of the DSP circuitry also is coupled with the demodulator, which is configured to extract modulated symbols from the signal and, for example, compute the logarithm likelihood ratios (LLRs) for each bit position of each subcarrier in each spatial stream. The demodulator is coupled with the decoder, which may be configured to process the LLRs to provide decoded bits. The decoded bits from all of the spatial streams are then fed to the demultiplexer for demultiplexing. The demultiplexed bits may then be descrambled and provided to the MAC layer (the processor 1206) for processing, evaluation, or interpretation.
The radio 1204 generally includes at least one radio frequency (RF) transmitter (or “transmitter chain” ) and at least one RF receiver (or “receiver chain” ) , which may be combined into one or more transceivers. For example, the RF transmitters and receivers may include various DSP circuitry including at least one power amplifier (PA) and at least one low-noise amplifier (LNA) , respectively. The RF transmitters and receivers may, in turn, be coupled to one or more antennas. For example, in some implementations, the wireless communication device 1200 can include, or be coupled with, multiple transmit antennas (each with a corresponding transmit chain) and multiple receive antennas (each with a corresponding receive chain) . The symbols output from the modem 1202 are provided to the radio 1204, which then transmits the symbols via the coupled antennas. Similarly, symbols received via the antennas are obtained by the radio 1204, which then provides the symbols to the modem 1202.
The processor 1206 can include an intelligent hardware block or device such as, for example, a processing core, a processing block, a central processing unit (CPU) , a  microprocessor, a microcontroller, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a programmable logic device (PLD) such as a field programmable gate array (FPGA) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. The processor 1206 processes information received through the radio 1204 and the modem 1202, and processes information to be output through the modem 1202 and the radio 1204 for transmission through the wireless medium. In some implementations, the processor 1206 may generally control the modem 1202 to cause the modem to perform various operations described above.
The memory 12010 can include tangible storage media such as random-access memory (RAM) or read-only memory (ROM) , or combinations thereof. The memory 12010 also can store non-transitory processor-or computer-executable software (SW) code containing instructions that, when executed by the processor 1206, cause the processor to perform various operations described herein for wireless communication, including the generation, transmission, reception and interpretation of MPDUs, frames or packets. For example, various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein, can be implemented as one or more modules of one or more computer programs.
Figures 1–12 and the operations described herein are examples meant to aid in understanding example implementations and should not be used to limit the potential implementations or limit the scope of the claims. Some implementations may perform additional operations, fewer operations, operations in parallel or in a different order, and some operations differently.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software. As used herein, the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
As used herein, a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members. For example, “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
The various illustrative components, logic, logical blocks, modules, circuits, operations and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, firmware, software, or combinations of hardware, firmware or software, including the structures disclosed in this specification and the structural equivalents thereof. The interchangeability of hardware, firmware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware, firmware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative components, logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes, operations and methods may be performed by circuitry that is specific to a given function.
As described above, in some aspects implementations of the subject matter described in this specification can be implemented as software. For example, various functions of components disclosed herein, or various blocks or steps of a method, operation, process or algorithm disclosed herein can be implemented as one or more modules of one or more computer programs. Such computer programs can include non-transitory processor-or computer-executable instructions encoded on one or more tangible processor-or computer-readable storage media for execution by, or to control the operation of, data processing apparatus including the components of the devices described herein. By way of example, and not limitation, such storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store program code in the form of instructions or data structures. Combinations of the above should also be included within the scope of storage media.
As used herein, the terms “user equipment” , “wireless communication device” , “mobile communication device” , “communication device” , and/or “mobile device” refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, Internet-of-Things (IoT) devices, palm-top computers, wireless electronic mail receivers, multimedia Internet enabled cellular telephones, wireless gaming controllers, display sub-systems, driver assistance systems, vehicle controllers, vehicle system controllers, vehicle communication system, infotainment systems, vehicle telematics systems or subsystems, vehicle display systems or subsystems, vehicle data controllers or routers, and similar electronic devices which include a programmable processor and memory and circuitry configured to perform operations as described herein.
As used herein, the terms “SIM, ” “SIM card, ” and “subscriber identification module” are used interchangeably to refer to a memory that may be an integrated circuit or embedded into a removable card, and that stores an International Mobile Subscriber Identity (IMSI) , related key, and/or other information used to identify and/or authenticate a mobile communication device on a network and enable a communication service with the network. Because the information stored in a SIM enables the mobile communication device to establish a communication link for a particular communication service with a particular network, the term “subscription” is used herein as a shorthand reference to refer to the communication service associated with and enabled by the information stored  in a particular SIM as the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another. A SIM used in various examples may contain user account information, an international mobile subscriber identity (IMSI) , a set of SIM application toolkit (SAT) commands, and storage space for phone book contacts. A SIM card may further store home identifiers (such as, a System Identification Number (SID) /Network Identification Number (NID) pair, a Home Public Land Mobile Number (HPLMN) code, among other examples) to indicate the SIM card network operator provider. An Integrated Circuit Card Identity (ICCID) SIM serial number may be printed on the SIM card for identification. However, a SIM may be implemented within a portion of memory of the mobile communication device, and thus need not be a separate or removable circuit, chip or card.
Various modifications to the implementations described in this disclosure may be readily apparent to persons having ordinary skill in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, various features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. As such, although features may be described above as acting in particular combinations, and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one or more example processes in the form of a flowchart or flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In  some circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (68)

  1. A method for wireless communication by an apparatus of a user equipment (UE) , comprising:
    establishing a first connection with a first base station of a wireless communication network;
    establishing a second connection with a second base station of the wireless communication network;
    receiving a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    determining whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period.
  2. The method of claim 1, further comprising:
    refraining from performing the measurement procedure during the first measurement gap time period based, at least in part, on the operating attribute of the second connection relative to the first measurement gap time period.
  3. The method of claim 2, further comprising:
    determining the operating attribute of the second connection relative to the first measurement gap time period;
    determining, based on the operating attribute of the second connection, that a performance of the measurement procedure during the first measurement gap time period will negatively impact a communication via the second connection during the first measurement gap time period; and
    determining, by the UE, to refrain from performing the measurement procedure during the first measurement gap time period.
  4. The method of claim 1, further comprising:
    determining, prior to each measurement gap time period, whether or not to perform the measurement procedure during that measurement gap time period based, at least in part, on the operating attribute of the second connection relative to that measurement gap time period.
  5. The method of claim 1, wherein the operating attribute of the second connection includes a communication status, and wherein the communication status indicates that the second connection will be active during at least a portion of the first measurement gap time period.
  6. The method of claim 5, further comprising:
    receiving grant information for the second connection from the second base station; and
    determining the operating attribute based on the grant information, wherein the communication status indicates that the second connection will be active during at least a portion of the first measurement gap time period when the grant information includes a grant for the UE to use the second connection during at least a portion of the first measurement gap time period.
  7. The method of claim 6, wherein the grant information include at least one member selected from a group consisting of a transport block size (TBS) , a new data indicator field (NDI) , uplink activation signaling, modulation and coding scheme (MCS) , downlink control information (DCI) , and a physical layer resource allocation.
  8. The method of claim 1, further comprising:
    determining the operating attribute of the second connection based on grant information that indicates whether the second connection will be active during at least a portion of the first measurement gap time period, wherein the grant information indicates the second connection will be active based on at least one member selected from a group consisting of:
    a new data indicator field (NDI) is toggled,
    a resource block (RB) size and modulation and coding scheme (MCS) indicate a transport block size (TBS) that extends into the first measurement gap time period, and
    the MCS of the second connection has a value reserved for retransmissions.
  9. The method of claim 1, further comprising:
    performing the measurement procedure during a second measurement gap time period based, at least in part, on a determination that the second connection will remain idle during the second measurement gap time period.
  10. The method of claim 1, further comprising:
    determining a gap periodic interval that represents a quantity of skipped measurement time periods; and
    refraining from performing the measurement procedure for the quantity of skipped measurement time periods.
  11. The method of claim 10, further comprising:
    adjusting the gap periodic interval based on a signal quality metric of the first connection, wherein adjusting the gap periodic interval includes increasing or decreasing the gap periodic interval in correlation with the signal quality metric.
  12. The method of claim 10, further comprising:
    adjusting the gap periodic interval based on a traffic type of communication on the first connection, wherein adjusting the gap periodic interval includes decreasing the gap periodic interval for high priority or voice traffic.
  13. The method of claim 10, further comprising:
    setting the gap periodic interval to the measurement gap repetition period (MGRP) when the first connection is being used for voice traffic.
  14. The method of claim 1, further comprising:
    determining a plurality of conditions that impact a measurement gap behavior for the first connection, the plurality of conditions including the operating attribute of the second connection; and
    for each measurement gap time period, determining whether or not to perform the measurement procedure during that measurement gap time period based on the plurality of conditions.
  15. The method of claim 14, wherein the plurality of conditions includes a combination of members selected from a group consisting of:
    a communication status of the second connection relative to each measurement gap time period,
    a scheduling behavior of the second connection relative to the measurement gap configuration,
    a determination whether the second connection and the first connection use overlapping frequency ranges,
    an amount of time since a previous measurement procedure was performed,
    a signal quality metric associated with the first connection, and
    a determination whether the UE is stationary or nonstationary.
  16. The method of claim 15, wherein determining whether or not to perform the measurement procedure based on the plurality of conditions includes:
    determining, for each condition, whether the condition favors or disfavors performing the measurement procedure; and
    determining whether or not to perform the measurement procedure based on whether the plurality of conditions favor or disfavor performing the measurement procedure.
  17. The method of claim 14, further comprising weighting ones of the plurality of conditions.
  18. The method of claim 14, further comprising determining the plurality of conditions in an order, wherein when a first condition disfavors performing the measurement procedure during a particular measurement gap time period, the UE  determines not to perform the measurement procedure during that measurement gap time period.
  19. The method of claim 14, further comprising, relative to a second measurement gap time period:
    determining that the communication status of the second connection disfavors performing the measurement procedure when the communication status indicates that the second connection is active during the second measurement gap time period; and
    determining that the communication status of the second connection favors performing the measurement procedure when the communication status indicates that the second connection is idle during the second measurement gap time period.
  20. The method of claim 14, further comprising:
    determining that the scheduling behavior of the second connection relative the measurement gap configuration disfavors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection schedules communication during the measurement gap time periods; and
    determining that the scheduling behavior of the second connection relative the measurement gap configuration favors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection does not schedule communication during the measurement gap time periods.
  21. The method of claim 14, further comprising:
    determining a first condition based on whether the second connection and the first connection use overlapping frequency ranges;
    determining that the first condition disfavors performing the measurement procedure when the second connection and the first connection use overlapping frequency ranges; and
    determining that the first condition favors performing the measurement procedure when the second connection and the first connection use non-overlapping frequency ranges.
  22. The method of claim 14, further comprising:
    determining a first condition based on an amount of time since a previous measurement procedure was performed;
    determining that the first condition disfavors performing the measurement procedure when the amount of time is less than a time period associated with a gap periodic interval; and
    determining that the first condition favors performing the measurement procedure when the amount of time is greater than a time period associated with a gap periodic interval.
  23. The method of claim 14, further comprising:
    determining a first condition based on whether the UE is stationary or nonstationary;
    determining that the first condition disfavors performing the measurement procedure when the UE is stationary; and
    determining that the first condition favors performing the measurement procedure when the UE is nonstationary.
  24. The method of claim 14, further comprising:
    determining a first condition based on a signal quality metric associated with the first connection,
    determining that the first condition disfavors performing the measurement procedure when the signal quality metric is above a threshold; and
    determining that the first condition favors performing the measurement procedure when the signal quality metric is below the threshold.
  25. The method of claim 24, wherein the signal quality metric is based on at least one member selected from a group consisting of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and a received signal strength indicator (RSSI) .
  26. The method of claim 24, further comprising:
    determining that a measurement reporting event (A2 event) is configured for the first connection; and
    determining the threshold based, at least in part, on a threshold configuration value for the A2 event.
  27. The method of claim 14, further comprising:
    determining the threshold based on a user-configurable setting, a network-configurable setting, a manufacturer configurable setting, or a UE-determined value based on the first connection.
  28. The method of claim 1, wherein the measurement gap configuration indicates a pattern of recurring measurement gap time periods, the method further comprising:
    determining to refrain from performing the measurement procedure during a first subset of the recurring measurement gap time periods that includes the first measurement gap time period; and
    determining to perform the measurement procedure during a second subset of the recurring measurement gap time periods.
  29. The method of claim 28, further comprising:
    determining the second subset of the recurring measurement gap time periods based on a gap periodic interval.
  30. The method of claim 29, further comprising;
    determining, by the UE, the gap periodic interval based on a plurality of conditions associated with the first connection and the second connection.
  31. The method of claim 1, wherein the first base station is part of a legacy radio access network, and wherein the second base station is part of a new radio access network.
  32. The method of claim 1, wherein the first connection and the second connection form a dual connectivity session with the wireless communication network.
  33. A user equipment (UE) for wireless communication, comprising:
    an interface; and
    one or more processors, which together with the interface, are configured to:
    establish a first connection with a first base station of a wireless communication network;
    establish a second connection with a second base station of the wireless communication network;
    receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    determine whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period.
  34. The UE of claim 33, wherein the one or more processors are further configured to:
    refrain from performing the measurement procedure during the first measurement gap time period based, at least in part, on the operating attribute of the second connection relative to the first measurement gap time period.
  35. The UE of claim 34, wherein the one or more processors are further configured to:
    determine the operating attribute of the second connection relative to the first measurement gap time period; and
    determine, based on the operating attribute of the second connection, that a performance of the measurement procedure during the first measurement gap  time period will negatively impact a communication via the second connection during the first measurement gap time period; and
    determine, by the UE, to refrain from performing the measurement procedure during the first measurement gap time period.
  36. The UE of claim 33, wherein the one or more processors are further configured to:
    determine, prior to each measurement gap time period, whether or not to perform the measurement procedure during that measurement gap time period based, at least in part, on the operating attribute of the second connection relative to that measurement gap time period.
  37. The UE of claim 33, wherein the operating attribute of the second connection includes a communication status, and wherein the communication status indicates that the second connection will be active during at least a portion of the first measurement gap time period.
  38. The UE of claim 37, wherein the one or more processors are further configured to:
    receive grant information for the second connection from the second base station; and
    determine the operating attribute based on the grant information, wherein the communication status indicates that the second connection will be active during at least a portion of the first measurement gap time period when the grant information includes a grant for the UE to use the second connection during at least a portion of the first measurement gap time period.
  39. The UE of claim 38, wherein the grant information include at least one member selected from a group consisting of a transport block size (TBS) , a new data indicator field (NDI) , uplink activation signaling, modulation and coding scheme (MCS) , downlink control information (DCI) , and a physical layer resource allocation.
  40. The UE of claim 33, wherein the one or more processors are further configured to:
    determine the operating attribute of the second connection based on grant information that indicates whether the second connection will be active during at least a portion of the first measurement gap time period, wherein the grant information indicates the second connection will be active based on at least one member selected from a group consisting of:
    a new data indicator field (NDI) is toggled,
    a resource block (RB) size and modulation and coding scheme (MCS) indicate a transport block size (TBS) that extends into the first measurement gap time period, and
    the MCS of the second connection has a value reserved for retransmissions.
  41. The UE of claim 33, wherein the one or more processors are further configured to perform the measurement procedure during a second measurement gap time period based, at least in part, on a determination that the second connection will remain idle during the second measurement gap time period.
  42. The UE of claim 33, further wherein the one or more processors are further configured to:
    determine a gap periodic interval that represents a quantity of skipped measurement time periods; and
    refrain from performing the measurement procedure for the quantity of skipped measurement time periods.
  43. The UE of claim 42, wherein the one or more processors are further configured to:
    adjust the gap periodic interval based on a signal quality metric of the first connection, wherein adjusting the gap periodic interval includes increasing or decreasing the gap periodic interval in correlation with the signal quality metric.
  44. The UE of claim 42, wherein the one or more processors are further configured to:
    adjust the gap periodic interval based on a traffic type of communication on the first connection, wherein adjusting the gap periodic interval includes decreasing the gap periodic interval for high priority or voice traffic.
  45. The UE of claim 42, wherein the one or more processors are further configured to:
    set the gap periodic interval to the measurement gap repetition period (MGRP) when the first connection is being used for voice traffic.
  46. The UE of claim 33, wherein the one or more processors are further configured to:
    determine a plurality of conditions that impact a measurement gap behavior for the first connection, the plurality of conditions including the operating attribute of the second connection; and
    for each measurement gap time period, determine whether or not to perform the measurement procedure during that measurement gap time period based on the plurality of conditions.
  47. The UE of claim 46, wherein the plurality of conditions includes a combination of members selected from a group consisting of:
    a communication status of the second connection relative to each measurement gap time period,
    a scheduling behavior of the second connection relative to the measurement gap configuration,
    a determination whether the second connection and the first connection use overlapping frequency ranges,
    an amount of time since a previous measurement procedure was performed,
    a signal quality metric associated with the first connection, and
    a determination whether the UE is stationary or nonstationary.
  48. The UE of claim 47, wherein the one or more processors being configured to determine whether or not to perform the measurement procedure based on the plurality of conditions includes the one or more processors being configured to: :
    determine, for each condition, whether the condition favors or disfavors performing the measurement procedure; and
    determine whether or not to perform the measurement procedure based on whether the plurality of conditions favor or disfavor performing the measurement procedure.
  49. The UE of claim 46, wherein the one or more processors are further configured to weight ones of the plurality of conditions.
  50. The UE of claim 46, wherein the one or more processors are further configured to determine the plurality of conditions in an order, wherein when a first condition disfavors performing the measurement procedure during a particular measurement gap time period, the UE determines not to perform the measurement procedure during that measurement gap time period.
  51. The UE of claim 46, wherein the one or more processors are further configured to, relative to a second measurement gap time period:
    determine that the communication status of the second connection disfavors performing the measurement procedure when the communication status indicates that the second connection is active during the second measurement gap time period; and
    determine that the communication status of the second connection favors performing the measurement procedure when the communication status indicates that the second connection is idle during the second measurement gap time period.
  52. The UE of claim 46, wherein the one or more processors are further configured to:
    determine that the scheduling behavior of the second connection relative the measurement gap configuration disfavors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection schedules communication during the measurement gap time periods; and
    determine that the scheduling behavior of the second connection relative the measurement gap configuration favors performing the measurement procedure when the scheduling behavior of the second connection indicates that the second connection does not schedule communication during the measurement gap time periods.
  53. The UE of claim 46, wherein the one or more processors are further configured to:
    determine a first condition based on whether the second connection and the first connection use overlapping frequency ranges;
    determine that the first condition disfavors performing the measurement procedure when the second connection and the first connection use overlapping frequency ranges; and
    determine that the first condition favors performing the measurement procedure when the second connection and the first connection use non-overlapping frequency ranges.
  54. The UE of claim 46, wherein the one or more processors are further configured to:
    determine a first condition based on an amount of time since a previous measurement procedure was performed;
    determine that the first condition disfavors performing the measurement procedure when the amount of time is less than a time period associated with a gap periodic interval; and
    determine that the first condition favors performing the measurement procedure when the amount of time is greater than a time period associated with a gap periodic interval.
  55. The UE of claim 46, wherein the one or more processors are further configured to:
    determine a first condition based on whether the UE is stationary or nonstationary;
    determine that the first condition disfavors performing the measurement procedure when the UE is stationary; and
    determine that the first condition favors performing the measurement procedure when the UE is nonstationary.
  56. The UE of claim 46, wherein the one or more processors are further configured to:
    determine a first condition based on a signal quality metric associated with the first connection;
    determine that the first condition disfavors performing the measurement procedure when the signal quality metric is above a threshold; and
    determine that the first condition favors performing the measurement procedure when the signal quality metric is below the threshold.
  57. The UE of claim 56, wherein the signal quality metric is based on at least one member selected from a group consisting of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and a received signal strength indicator (RSSI) .
  58. The UE of claim 56, wherein the one or more processors are further configured to:
    determine that a measurement reporting event (A2 event) is configured for the first connection; and
    determine the threshold based, at least in part, on a threshold configuration value for the A2 event.
  59. The UE of claim 46, wherein the one or more processors are further configured to:
    determine the threshold based on a user-configurable setting, a network-configurable setting, a manufacturer configurable setting, or a UE-determined value based on the first connection.
  60. The UE of claim 33, wherein the measurement gap configuration indicates a pattern of recurring measurement gap time periods, wherein the one or more processors are further configured to:
    determine to refrain from performing the measurement procedure during a first subset of the recurring measurement gap time periods that includes the first measurement gap time period; and
    determine to perform the measurement procedure during a second subset of the recurring measurement gap time periods.
  61. The UE of claim 60, wherein the one or more processors are further configured to:
    determine the second subset of the recurring measurement gap time periods based on a gap periodic interval.
  62. The UE of claim 61, wherein the one or more processors are further configured to:
    determine, by the UE, the gap periodic interval based on a plurality of conditions associated with the first connection and the second connection.
  63. The UE of claim 33, wherein the first base station is part of a legacy radio access network, and wherein the second base station is part of a new radio access network.
  64. The UE of claim 33, wherein the first connection and the second connection form a dual connectivity session with the wireless communication network.
  65. A computer-readable medium having stored therein instructions which, when executed by a processor, causes the processor to:
    establish a first connection with a first base station of a wireless communication network;
    establish a second connection with a second base station of the wireless communication network;
    receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    determine whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period.
  66. A wireless communication device comprising:
    at least one modem;
    at least one processor communicatively coupled with the at least one modem; and
    at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with the at least one modem, is configured to:
    establish a first connection with a first base station of a wireless communication network;
    establish a second connection with a second base station of the wireless communication network;
    receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    determine whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period.
  67. An apparatus comprising:
    the wireless communication device comprising:
    at least one modem;
    at least one processor communicatively coupled with the at least one modem; and
    at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with the at least one modem, is configured to:
    establish a first connection with a first base station of a wireless communication network;
    establish a second connection with a second base station of the wireless communication network;
    receive a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    determine whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period;
    at least one transceiver coupled to the at least one modem;
    a plurality of antennas coupled to the at least one transceiver to wirelessly transmit signals output from the at least one transceiver; and
    a housing that encompasses the at least one modem, the at least one processor, the at least one memory, the at least one transceiver and at least a portion of the plurality of antennas.
  68. A system, comprising:
    means for establishing a first connection with a first base station of a wireless communication network;
    means for establishing a second connection with a second base station of the wireless communication network;
    means for receiving a measurement gap configuration that indicates measurement gap time periods for the UE to perform a measurement procedure that includes temporarily suspending communication via the first connection and obtaining measurements of potential alternative base stations for the first connection; and
    means for determining whether to perform the measurement procedure during a first measurement gap time period based, at least in part, on an operating attribute of the second connection relative to the first measurement gap time period.
PCT/CN2020/074809 2020-02-12 2020-02-12 Measurement gap behavior with multiple radio connections WO2021159291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074809 WO2021159291A1 (en) 2020-02-12 2020-02-12 Measurement gap behavior with multiple radio connections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074809 WO2021159291A1 (en) 2020-02-12 2020-02-12 Measurement gap behavior with multiple radio connections

Publications (1)

Publication Number Publication Date
WO2021159291A1 true WO2021159291A1 (en) 2021-08-19

Family

ID=77291942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074809 WO2021159291A1 (en) 2020-02-12 2020-02-12 Measurement gap behavior with multiple radio connections

Country Status (1)

Country Link
WO (1) WO2021159291A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198040A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for measurement gap configuration with adaptive configuration
WO2024031260A1 (en) * 2022-08-08 2024-02-15 Nec Corporation Method, device and computer storage medium of communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942119B1 (en) * 2011-11-15 2015-01-27 Sprint Spectrum L.P. Determining a burstiness profile of a wireless communication system
WO2015021256A1 (en) * 2013-08-09 2015-02-12 Huawei Technologies, Co., Ltd. System and method for resource allocation device-to-device for open discovery
CN106537975A (en) * 2014-07-11 2017-03-22 高通股份有限公司 Techniques for reporting timing differences in multiple connectivity wireless communications
WO2017171502A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Methods for performing multi-subframe scheduling in enhanced laa
CN108141749A (en) * 2015-08-03 2018-06-08 三星电子株式会社 For the method and apparatus of initial access in a wireless communication system
CN109076546A (en) * 2016-03-15 2018-12-21 索尼移动通信株式会社 Frequency error estimation during the repeating uplink message transmission of segmentation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942119B1 (en) * 2011-11-15 2015-01-27 Sprint Spectrum L.P. Determining a burstiness profile of a wireless communication system
WO2015021256A1 (en) * 2013-08-09 2015-02-12 Huawei Technologies, Co., Ltd. System and method for resource allocation device-to-device for open discovery
CN106537975A (en) * 2014-07-11 2017-03-22 高通股份有限公司 Techniques for reporting timing differences in multiple connectivity wireless communications
CN108141749A (en) * 2015-08-03 2018-06-08 三星电子株式会社 For the method and apparatus of initial access in a wireless communication system
CN109076546A (en) * 2016-03-15 2018-12-21 索尼移动通信株式会社 Frequency error estimation during the repeating uplink message transmission of segmentation
WO2017171502A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Methods for performing multi-subframe scheduling in enhanced laa

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Offline discussion #23: release of configuration at SCG release", 3GPP DRAFT; R2-1801647 OFFLINE DISCUSSION ON SCG RELEASE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Vancouver, Canada; 20180122 - 20180126, 27 January 2018 (2018-01-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051387076 *
MOTOROLA MOBILITY: ""A Discussion of Control Plane Issues for Dual Connectivity",", 3GPP TSG-RAN WG2#82 R2-132025,, 24 May 2013 (2013-05-24), XP050718510 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198040A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for measurement gap configuration with adaptive configuration
WO2024031260A1 (en) * 2022-08-08 2024-02-15 Nec Corporation Method, device and computer storage medium of communication

Similar Documents

Publication Publication Date Title
EP4277191A2 (en) Phase tracking reference signal port or configuration sharing across multiple physical downlink channels of multiple transmit receive points
US20200029335A1 (en) Physical uplink control channel repetition configuration
US10498477B2 (en) Tracking reference signal configuration design
WO2020096795A1 (en) Separately communicating demodulation reference signal-based channel information for multiple transmit receive points
US11805435B2 (en) Deriving CSI using a subset of configured CSI-RS resources
US11259263B2 (en) Dual registration using dynamic spectrum sharing (DSS) in a wide area network (WAN)
CN112005517B (en) Determining quality of non-anchor carrier using Narrowband Reference Signal (NRS) bins in non-anchor carrier
US10707979B2 (en) Estimating a narrowband reference signal received power parameter
WO2019083945A1 (en) Beam scanning period configuration
US10757668B2 (en) Determining a reference timing for a discovery procedure
KR20230035536A (en) Service relationships in wireless communication systems
WO2021162768A1 (en) Bandwidth part indication for multiple cells scheduled by a single downlink control information message
CN113785637B (en) Receiver automatic gain control
WO2023086749A1 (en) Leveraging integrated access and backhaul (iab) resource management for power savings in a wireless communication network
WO2021159291A1 (en) Measurement gap behavior with multiple radio connections
WO2020164463A1 (en) Differential reporting mode for amplitude and/or co-phase
WO2021226952A1 (en) Prompting wireless service reconnection based on signal change condition
US11950152B2 (en) Robust measurement procedure for neighbor base station (BS) handoff candidates in a wireless wide area network (WWAN)
US12003975B2 (en) Channel state information (CSI) measurement and report for dynamic spectrum sharing (DSS) in a wireless wide area network (WWAN)
WO2021243651A1 (en) Saving user equipment (ue) power by preventing 5g measurements when ue is stationary
WO2021184242A1 (en) Handover conditions for a handover measurement report in a wide area network (wan)
WO2021237611A1 (en) Modifying a synchronization signal block (ssb) measurement for a measurement report to induce an ssb handover
WO2021232374A1 (en) Empirical data based 5g network search for performing 5g network reselection from a legacy network
CN111357331B (en) Techniques and apparatus for providing an indication of fast dormancy capabilities in 5G
WO2021232287A1 (en) Modifying radio access technology (rat) selection priorities used by user equipment (ue) for establishing wireless connection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918858

Country of ref document: EP

Kind code of ref document: A1