WO2021237327A1 - Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos - Google Patents
Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos Download PDFInfo
- Publication number
- WO2021237327A1 WO2021237327A1 PCT/BR2021/050227 BR2021050227W WO2021237327A1 WO 2021237327 A1 WO2021237327 A1 WO 2021237327A1 BR 2021050227 W BR2021050227 W BR 2021050227W WO 2021237327 A1 WO2021237327 A1 WO 2021237327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seismic
- steps
- trace
- extraction
- training
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000012549 training Methods 0.000 claims abstract description 33
- 238000013528 artificial neural network Methods 0.000 claims abstract description 15
- 230000000306 recurrent effect Effects 0.000 claims abstract description 8
- 230000006403 short-term memory Effects 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 15
- 238000000605 extraction Methods 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 238000010200 validation analysis Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000013135 deep learning Methods 0.000 claims description 4
- 210000004205 output neuron Anatomy 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 1
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 4
- 229930195733 hydrocarbon Natural products 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 230000035508 accumulation Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 208000035126 Facies Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention is related to seismic reflection survey, which is a well-known method to obtain subsurface information in the oil and gas exploration industry.
- seismic reflection survey is a well-known method to obtain subsurface information in the oil and gas exploration industry.
- an expert can obtain geometric, structural and stratigraphic characteristics and, with additional sources of geophysical information, possible locations of hydrocarbon accumulations and their quantity.
- Reflection seismic is one of the geophysical methods most used by the oil and gas industry due to the ease of generating data from a large area in a short time. By reading and understanding this data, it is possible to understand the structure of the subsurface. This structure, defined by horizons and faults, can give strong indications of the location of an oil and/or gas field.
- Figure 1 illustrates the seismic surveys carried out on land and at sea.
- each trace represents the result of a source emitting a vertical wave in the same position as receiver 1.
- these traces generate an image, where each geological interface, region of reflection of the seismic waves, are evidenced by a positive or negative peak ( Figure 3).
- DNN Deep neural Network
- One way to produce more samples with the same amount of seismic images labeled with gas reservoirs is to reduce the size of the neighborhood of the pixel labeled as gas. With smaller samples, the same region produces more samples.
- the proposal presented in the present invention is not to work with regions, but with traces. By reducing the dimensionality, the number of pixels in the sample is greatly reduced. A 31x31 window around a pixel in an image, for example, has 961 values. Looking at just the trace that contains that sample, the window is only 31 pixels long.
- the method addresses data displayed with a line denoting the waveform, waveform areas on one side of the baseline are shaded (ie waveform trace, variable fill).
- it adapts data and images in old formats to SEG-Y format.
- Maur ⁇ cio Araya-Poko, Joseph Jennings, Amir Delay, Taylor Dahlke, January 2018, consists of deep neural network training; the resulting predictive model maps the relationships between the data space and the final output (particularly the presence of high-speed segments that might indicate salt formations).
- the non-patent document "Neural networks and inversion of seismic data", by Gunter Röth Albert Tarantola, from 10/04/1994, reveals an experiment where a neural network is designed to accept a common synthetic trigger (ie, a set of seismograms obtained from a single source), as its input pattern and to compute the corresponding large scale one-dimensional velocity model as its output.
- a common synthetic trigger ie, a set of seismograms obtained from a single source
- the methodology proposed in the present invention treats the seismic data as a set of traces and the sample that feeds the neural network are excerpts of a one-dimensional signal similar to a sound or voice signal.
- a reservoir marking on a seismic usually already provides the required number of one-dimensional labeled samples for training.
- Another important aspect of the invention is the use of a recurrent neural network.
- the influence of a hydrocarbon reservoir on a seismic trace occurs not only where it is located, but throughout the trace that follows. Therefore, the invention comprises the use of a network of the long short-term memory type (Long Short-Term Memory, LSTM) to characterize regions that present gas signatures in seismic images.
- LSTM Long Short-Term Memory
- FIG. 2 illustrates the convolutional model of a seismic trace
- FIG. 3 illustrates a seismic image
- FIG. 4 illustrates an example of Bright (3), Dim (4), and Fiat spot (5) seismic anomalies
- FIG. 8 illustrates the block for training the LSTM neural network.
- Every pre-stacked data migration process seeks to create a trace that has a specific meaning.
- the seismic trace represents the response of a one-dimensional wave descending on the subsurface and reflecting at the interfaces between layers of different acoustic impedance.
- This model called the convolutional model, is naturally one-dimensional.
- the one-dimensional trace model is similar to other signals such as sound and voice. From the literature, it appears that the successful neural networks for these models are not convolutional, but recurrent. Unlike convolutional networks, recurrent networks implicitly recognize a concept of time series and the classification of a sample depends on the samples that came before it. This also occurs in the model of a wave reflecting in subsurface layers and in the corresponding convolutional model. Therefore, the present invention works with the trace and not with the seismic image.
- the proposed method has the three classical computer vision steps: (a) pre-processing, (b) training, and (c) detection.
- the pre-processing in this case consists of cleaning and normalizing the data.
- the training step aims to find the best possible configuration, that is, it aims to find the parameter values present in the layers, or cells, of the model, as well as the number of layers and the activation functions that should be used.
- This phase is essential for the network Recurrent neural can learn to differentiate classes of interest. Detection, in turn, aims to assign to each voxel (sample) of the seismic survey a probability of whether or not it contains gas.
- cleaning consists of removing the areas that are not of interest in the survey and eliminating the acquisition noise that are in the areas that we are going to consider.
- Cleaning in our case consists of defining a region of interest, ROI, (Region of Interest), which is the area of the seismic survey that may have gas accumulation.
- ROI region of interest
- the removal of noise is a step that depends on the seismic survey. Normalization is done by dividing all amplitude values by the maximum value of the amplitude modules.
- the training is also done in a conventional way, that is, of all sections (inlines or crosslines) that contain gas marking, a part for testing, another part for validation and the rest are separated randomly. for training.
- the next step is to define the configuration of the LSTM model that we will train for the detection of gas accumulations.
- the recurrent network model that is, the number of recurrent cells can be varied, as well as the activation functions ( softmax , step, among others) present in the layers intermediate and output layers.
- An example of a configuration, which obtained excellent results, is shown in Figure 5.
- four LSTM cells were used to process the seismic windows. These cells are responsible for extracting the information present in the samples and thus making it possible to identify the phenomena present in the classes (gas and non-gas).
- Softmax function is a kind of function useful for dealing with sorting problems. This function transforms the outputs for each class to values between 0 and 1 and also divides by the sum of the outputs. That is, essentially it gives the probability that the input is in a certain class, the softmax function can be described by the equation: (1)
- the neural network proposed here is an LSTM (Long Short-term Memory) type network with the architecture shown in Figure 5.
- LSTM Long Short-term Memory
- This invention presents a solution that uses the deep-learning technique to detect seismic signatures of gas accumulation - pockets and possible reservoirs.
- the proposed methodology does not require the existence of seismic anomalies - bright spots (3), Dim spot (4) flat spots (5) and among others (6) (see Figure 4). It presents good results even in cases with low signal/noise ratio and/or poorly lit, such as situations involving salt domes and volcanic rocks, where traditional techniques fail.
- the block diagram in Figure 6 presents all the steps to carry out the proposed methodology.
- the pre-processing consists of the steps of reading the SEG-Y file, removing noise and normalizing, extracting the trace seismic and windowing process.
- the detection corresponds to the other steps represented in Figure 6.
- Steps 3 and 6 are repeated for all sections of the seismic block.
- Steps 4 and 5 are repeated for every stroke in each of these sections.
- Reading the SEG-Y file header This header stores information about the seismic data contained in the file, such as the number of samples in time or depth, the number of inlines, and, in the case of 3D seismic surveys, crosslines. From the information contained in the header of the SEG-Y file, the algorithm reads all traces of a seismic section. In case the survey has more than one section, this step is repeated for all sections.
- Noise removal and normalization - Normalization consists of dividing all seismic data by the absolute maximum value of the amplitude values in all samples. In this way, all data are between the values -1 and 1. When the data has noise, this absolute maximum is calculated only on values that are in the 1% and 99% percentiles. Once divided, values less than -1 are turned into -1 and values greater than 1 are turned into 1.
- sections can be crosslines or inlines.
- Window extraction The windowing process consists of sequentially extracting all traces of a given size in the vicinity of each pixel of the trace that is far enough from the edge to be the center of the window. The first sample is at the top of the mix and the next sample of the mix to be considered depends on the step. windowing, which in our case is always 1 sample.
- Figure 7 exemplifies the windowing process in a seismic trace in which the step is 1 sample and the sample size is 41 samples, 20 samples for each side of the central sample. The window corresponding to this sample (pixel) then contains 41 values. This value 20 fits well in land surveys carried out in northern Brazil. Surveys with higher resolution may require larger values from this window.
- Training Test and Validation The validation base is responsible for assisting training. It is used as if it were the test base while trying to make a first adjustment to the model. It can later be incorporated into the training base if the training needs more labeled samples.
- the test base is kept separate to assess how general the model is and not just adjusted for the training base. That is, training is an iterative process to adjust the parameters of the LSTM model and to test the network on labeled data that knows the answer.
- the diagram in Figure 8 describes the training steps and the test steps. They only differ in the last three steps. Steps 6 and 7 are for training only and steps 8 and 9 are for testing. Steps 1 to 5 are the same as for the training and testing. Furthermore, they are also the same as in the classification, illustrated in Figure 6. They are repeated here for clarity.
- Reading the SEG-Y file header This header stores information about the seismic data contained in the file, such as the number of samples in time or depth, the number of inlines, and, in the case of 3D seismic surveys, crosslines. From the information contained in the header of the SEG-Y file, the algorithm reads all traces of a seismic section. In case the survey has more than one section, this step is repeated for all sections.
- Noise removal and normalization - Normalization consists of dividing all seismic data by the absolute maximum value of the amplitude values in all samples. In this way, all data are between the values -1 and 1. When the data has noise, this absolute maximum is calculated only on values that are in the 1% and 99% percentiles. Once divided, values less than -1 are turned into -1 and values greater than 1 are turned into 1.
- sections can be crosslines or inlines.
- Window extraction The windowing process consists of sequentially extracting all traces of a given size in the vicinity of each pixel of the trace that is far enough from the edge to be the center of the window. The first sample is at the top of the trace and the next trace sample to be considered depends on the windowing step, which in our case is always 1 sample.
- Figure 7 exemplifies the windowing process in a seismic trace in which the step is 1 sample and the sample size is 41 samples, 20 samples for each side of the central sample. The window corresponding to this sample (pixel) then contains 41 values. This value 20 fits well in land surveys carried out in northern Brazil. Surveys with higher resolution may require larger values from this window.
- LSTM Weight Update Each sample is screened and produces a gas probability estimate. As it is known whether or not the gas exists at that point, it is possible to estimate the error and correct the network parameters in order to minimize them. This process is referred to in the literature as backpropagation.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
A presente invenção refere-se a um método para detectar reservatórios de hidrocarbonetos a partir de um levantamento sísmico. O método da presente invenção trata o dado sísmico como um conjunto de traços e a amostra que alimenta a rede neural são trechos de um sinal unidimensional parecido com um sinal de som ou voz. Uma marcação de um reservatório numa sísmica geralmente já fornece o número necessário de amostras unidimensionais rotuladas para o treinamento. Um outro aspecto importante da nossa proposta é a utilização de uma rede neural recorrente. A influência de um reservatório de hidrocarboneto num traço sísmico se dá não somente no local onde ele se encontra, mas em todo o traço que se segue. Por isso propomos a utilização de uma rede do tipo longa memória de curto prazo (Long Short-Term Memory, LSTM) para caracterizar regiões que apresentem assinaturas de gás em imagens sísmicas.
Description
“MÉTODO DETECTOR DE ASSINATURAS DE RESERVATÓRIOS DE GÁS
EM LEVANTAMENTOS SÍSMICOS"
Campo da Invenção
[0001] A presente invenção está relacionada ao levantamento de reflexão sísmica, que é um método bem conhecido para obter informações de subsuperfície na indústria de exploração de petróleo e gás. Ao analisar os dados sísmicos, um especialista pode obter características geométricas estruturais e estratigráficas e, com fontes adicionais de informação geofísica, possíveis localizações de acumulações de hidrocarbonetos e sua quantidade.
Descricão do Estado da Técnica
[0002] A sísmica de reflexão é um dos métodos geofísicos mais empregados pela indústria de óleo e gás devido facilidade de gerar dados de uma área extensa em pouco tempo. Através da leitura e do entendimento desse dado é possível compreender a estrutura da subsuperfície. Essa estrutura, definida pelos horizontes e falhas, pode dar fortes indícios da localização de um campo de petróleo e/ou gás.
[0003] A Figura 1 ilustra os levantamentos sísmicos feitos em terra e no mar. A sísmica de reflexão registra em cada receptor 1, hidrofone, ou geofone, a amplitude X e o tempo de chegada das ondas sísmicas. Essas ondas, geradas pelas fontes 2, refletem nas interfaces das camadas geológicas e são registradas nos receptores. Após o processamento sísmico, cada traço (Figura 2) representa o resultado de uma fonte emitindo uma onda vertical na mesma posição do receptor 1. Quando concatenados, esses traços geram uma imagem, onde cada interface geológica, região de reflexão das ondas sísmica, estão evidenciadas por um pico positivo ou negativo (Figura 3).
[0004] Na interpretação, geocientistas utilizam as imagens sísmicas atentando-se em variações no tempo de chegada de onda sísmica e no comportamento da interface das camadas em determinadas regiões (Figura 4). Em teoria, esses conhecimentos, munidos de outras fontes de dados geofísicos
e geológicos, podem gerar inferências sobre a litologia, tipo de rocha e propriedades físicas inerentes às mesmas.
[0005] Apesar de fornecer informações vitais sobre as estruturas presentes nas subsuperfícies da área do levantamento, os dados oriundos da sísmica de reflexão, assim como a grande maioria das informações fornecidas por métodos geofísicos, são ambíguos. Ou seja, corpos rochosos diferentes, ou até mesmo rochas do mesmo tipo, mas com propriedades físicas diferentes, podem gerar a mesma anomalia ou assinatura sísmica. Isso torna a interpretação sísmica uma tarefa complexa e demorada. Além disso, com o constante avanço tecnológico, os dados sísmicos estão sendo coletados cada vez mais rápido e maiores quantidades, aumentando consideravelmente o esforço humano e a demanda de tempo na interpretação dessas informações.
[0006] As abordagens visando a identificação de possíveis assinaturas sísmicas de acúmulo de gás, objetivo aqui presente, também não fogem dos problemas citados acima. Tradicionalmente são usadas inspeções visuais de anomalias de amplitude sísmica e informações de poço, quando disponíveis. Os algoritmos de inversão sísmica também são úteis para esta tarefa. Essas abordagens são pouco eficientes considerando dados sísmicos com alvos pouco evidentes e/ou com baixa razão sinal/ruído. Na maioria das vezes, a aplicação de atributos sísmicos e processos de inversão nestes dados acarreta em informações imprecisas ou errôneas, já que as mesmas são sensíveis aos ruídos e à baixa iluminação do alvo. Além disso, essas metodologias são demoradas e humanamente intensivas, levando em conta a alta gama de atributos que podem ser aplicados e inspecionados e o processamento de dados adicional necessário para a aplicação dos algoritmos de inversão.
[0007] Pelo exposto acima, algoritmos que auxiliem os geocientistas na identificação de assinaturas sísmicas de gás são muito importantes. Eles aumentam a acurácia e eficiência da busca por reservatórios de gás, diminuindo assim o risco exploratório.
[0008] Atualmente as Redes Neurais Profundas, do inglês Deep Neural
Network (DNN) dominam as discussões acadêmicas e tem chamado a atenção da indústria de óleo e gás que espera delas resultados rápidos, acurados e com pouca intervenção humana. Na etapa de exploração, as redes neurais prometem aprimorar as diversas etapas da interpretação sísmica como a amarração de poços geofísicos, a classificação de fácies sísmicas, o delineamento de domos de sais, e a detecção de horizontes e falhas.
[0009] A grande maioria dos algoritmos de detecção de feições (horizontes, falhas, etc.) em imagens sísmicas são baseados em redes convolucionais profundas, CNNs do inglês Convolutional Neural Network. O treinamento supervisionado dessas redes segue o padrão convencional das redes neurais. Essas redes são treinadas em imagens com as feições de interesse já marcadas. No linguajar da área, o conjunto de valores ao redor de cada pixel é uma amostra e, quando sabemos a classificação de uma amostra, dizemos que ela é rotulada. As redes neurais profundas são treinadas com milhares de amostras rotuladas. O treinamento determina os coeficientes da rede e, depois de treinadas, espera- se que as CNNs detectem nas novas imagens sísmicas os pixels que estejam representando a feição para a qual a rede foi treinada a detectar.
[0010] O treinamento de CNNs em imagens sísmicas apresentam dois problemas importantes: número insuficiente de dados rotulados e ruídos. As redes profundas requerem centenas de milhares de amostras rotuladas e isso é difícil de se obter em sísmica. Os reservatórios de gás encontrados no norte do Brasil, por exemplo, são bastantes estreitos, dificultando a obtenção de muitas amostras que possam ser rotuladas como de gás. Uma janela de 31x31 pixels, centrada num pixel do reservatório de gás, muito provavelmente tem as bordas fora dele. Isto porque temos poucos pixels na vertical. Com isso fica muito difícil gerar o número necessário de amostras para treinar a rede. O fato de a sísmica terrestre ser muito ruidosa também atrapalha muito.
[0011] Uma maneira de se produzir mais amostras com a mesma quantidade de imagens sísmicas rotuladas com reservatórios de gás consiste em reduzir o
tamanho da vizinhança do pixel rotulado como gás. Com amostras menores, uma mesma região produz mais amostras.
[0012] A proposta apresentada na presente invenção consiste em não trabalhar com regiões, mas com traços. Ao reduzir a dimensionalidade, o número de pixels da amostra reduz bastante. Uma janela de 31x31 em tomo de um pixel numa imagem, por exemplo, tem 961 valores. Olhando apenas o traço que contém aquela amostra, a janela tem apenas 31 pixels.
[0013] O documento não patentário “ Converting scanned images of seismic reflection data into SEG-Y formar, de Daniel Sopher, de 13/11/2017, revela um método para a conversão (vetorização) de imagens digitalizadas de dados sísmicos de reflexão sísmica empilhados para o formato padrão SEG-Y. O método aborda dados exibidos com uma linha denotando a forma da onda, onda áreas em um lado da linha de base estão sombreadas (ou seja, traço da agitação, preenchimento variável). Porém adapta dados e imagens em formatos antigos para o formato SEG-Y.
[0014] O documento não patentário “Deep learning Invarsion of Seismic
Data", de Shucai Li, Bin Liu, Yuxiao Ren, Yangkang Chen, Senlin Yang, Yunhai Wang e Peng Jiang, de 23/01/2019, propõe uma Rede de Inversão Sísmica end- to-end ( SeisInvNet para abreviar) com componentes novos para fazer o melhor uso de todos os dados sísmicos.
[0015] O documento não patentário " Deep Learning Tomography", de
Maurício Araya-Poko, Joseph Jennings, Amir Adiar, Taylor Dahlke, de janeiro de 2018, consiste no treinamento de redes neurais profundas; o modelo preditivo resultante mapeia as relações entre o espaço de dados e a saída final (particularmente, a presença de segmentos de alta velocidade que possam indicar formações de sal).
[0016] O documento não patentário “ Neural networks and inversion of seismic data", de Gunter Röth Albert Tarantola, de 10/04/1994, revela um experimento onde uma rede neural é projetada para aceitar um disparo sintético comum (ou seja, um conjunto de sismogramas obtidos de uma única fonte),
como seu padrão de entrada e para computar o modelo de velocidade unidimensional correspondente em larga escala como seu output.
[0017] O estado da técnica citado acima, não possui as características únicas que serão apresentadas detalhadamente a seguir. Nenhum dos documentos revela o uso conjunto do sistema LSTM para mapas geológicos usando como entrada dados 1D. Os documentos tentam resolver esse problema utilizando imagens sísmicas e não os traços individualmente, ou seja, o dado diretamente como veio a ser colhido. Entende-se que nenhum documento presente na literatura aborda o uso de deep-leaming para identificação de possíveis acúmulos de gás em dados sísmicos, seja tanto no domínio da imagem, quanto considerando a análise focada no traço.
Descricão Resumida da Invenção
[0018] A metodologia proposta na presente invenção trata o dado sísmico como um conjunto de traços e a amostra que alimenta a rede neural são trechos de um sinal unidimensional parecido com um sinal de som ou voz. Uma marcação de um reservatório numa sísmica geralmente já fornece o número necessário de amostras unidimensionais rotuladas para o treinamento. Um outro aspecto importante da invenção é a utilização de uma rede neural recorrente. A influência de um reservatório de hidrocarboneto num traço sísmico se dá não somente no local onde ele se encontra, mas em todo o traço que se segue. Por isso a invenção compreende a utilização de uma rede do tipo longa memória de curto prazo ( Long Short-Term Memory, LSTM) para caracterizar regiões que apresentem assinaturas de gás em imagens sísmicas.
Breve Descricão dos Desenhos
[0019] A presente invenção será descrita com mais detalhes a seguir, com referência às figuras em anexo que, de uma forma esquemática e não limitativa do escopo inventivo, representam exemplos de realização da mesma. Nos desenhos, têm-se:
- A Figura 1 ilustra o levantamento sísmico de reflexão;
- A Figura 2 ilustra o modelo convolucional de um traço sísmico;
- A Figura 3 ilustra uma imagem sísmica;
- A Figura 4 ilustra um exemplo de anomalias sísmicas Bright (3), Dim (4), e Fiat spot (5);
- A Figura 5 ilustra a arquitetura LSTM proposta;
- A Figura 6 ilustra o bloco principal da metodologia;
- A Figura 7 ilustra o processo de janelamento; e
- A Figura 8 ilustra o bloco para treinamento da rede neural LSTM.
Descricâo Detalhada da Invenção
[0020] A escolha de trabalhar no domínio do traço também pode ter outra explicação. Todo processo de migração dos dados pré-empilhados busca criar um traço que tem um sentido específico. O traço sísmico representa a resposta de uma onda unidimensional descendo na subsuperfície e refletindo nas interfaces entre camadas de impedância acústica diferentes. Esse modelo, chamado de modelo convolucional, é naturalmente unidimensional.
[0021] O modelo do traço unidimensional se assemelha a outros sinais como o do som e da voz. Da literatura verifica-se que as redes neurais bem-sucedidas para esses modelos não são as convolucionais, mas sim as recorrentes. Diferentemente das redes convolucionais, as redes recorrentes implicitamente reconhecem um conceito de série temporal e a classificação de uma amostra depende das amostras que vieram antes dela. Isto também ocorre no modelo de uma onda refletindo em camadas da subsuperfície e no modelo convolucional correspondente. Por isso, a presente invenção trabalha com o traço e não com a imagem sísmica.
[0022] O método proposto possui as três etapas clássicas de visão computacional: (a) pré-processamento, (b) treinamento, e (c) detecção.
[0023] O pré-processamento neste caso consiste em limpeza e normalização dos dados. Já o passo de treinamento objetiva encontrar a melhor configuração possível, ou seja, ele visa encontrar os valores dos parâmetros presentes nas camadas, ou células, do modelo assim como o número de camadas e as funções de ativação que deverão ser utilizadas. Essa fase é essencial para que a rede
neural recorrente possa aprender a diferenciar as classes de interesse. A detecção, por sua vez, objetiva atribuir a cada voxel (amostra) do levantamento sísmico uma probabilidade de ele conter ou não gás.
[0024] Os valores máximos das amplitudes das ondas sísmicas nos dados empilhados dependem do processo de migração e são, de certa forma, arbitrários e podem variar de um levantamento para outro. Para uniformizar as amostras de diversos treinamentos é interessante colocá-las numa mesma escala, por exemplo, variando no intervalo [-1 , +1 ], sem alterar os voxels de valor zero.
[0025] Em um levantamento sísmico também é comum termos voxels cujo valor não foi medido, mas que aparecem no meio de outros valores calculados. Frequentemente encontramos nos arquivos SEG-Y esses voxels com o valor correspondente à máxima representação computacional do tipo de dado que armazena a amplitude.
[0026] No pré-processamento, a limpeza consiste na retirada das áreas que não interessam no levantamento e na eliminação dos ruídos de aquisição que estejam nas áreas que vamos considerar. A limpeza no nosso caso consiste em definir uma região de interesse, ROI, ( Region of Interest), que é a área do levantamento sísmico que pode ter acúmulo de gás. A retirada dos ruídos é uma etapa que depende do levantamento sísmico. Já a normalização se faz dividindo todos os valores de amplitude pelo valor máximo dos módulos das amplitudes. [0027] O treinamento também se faz de forma convencional, ou seja, de todas as seções ( inlines ou crosslines) que contém marcação de gás, separa se, de forma aleatória, uma parte para teste, uma outra parte para validação e o restante para o treinamento. Na literatura em média usa-se 15% para teste, 15% para validação e 70% para treinamento, porém esses valores podem variar devido ao tamanho da base de dados disponíveis para realizar o treinamento. Um último ponto que vale ressaltar é que o treinamento, validação e teste são feitos em amostras de seções distintas.
[0028] Uma vez definida a base de dados para o treinamento, o próximo passo é definir a configuração do modelo LSTM que iremos treinar para a detecção de acúmulos de gás. Nesse passo, vale destacar que é possível ter diversas possibilidades de configurações para o modelo de rede recorrente, ou seja, pode-se variar o número de células recorrentes, assim como as funções de ativação ( softmax , degrau, entre outros) presentes nas camadas intermediárias e camadas de saída. Um exemplo de configuração, que obtiveram excelentes resultados, é apresentado na Figura 5. Nela foram utilizadas quatro células LSTM para processar as janelas sísmicas. Essas células são responsáveis pela extração das informações presentes nas amostras e assim possibilitando identificar os fenômenos presentes nas classes (gás e não gás).
[0029] Por fim, o modelo apresenta dois neurônios de saída, empregando a função softmax. A função softmax é um tipo de função útil para lidar com problemas de classificação. Essa função transforma as saídas para cada classe para valores entre 0 e 1 e também divide pela soma das saídas. Ou seja, essencialmente ela dá a probabilidade de a entrada estar em uma determinada classe, a função softmax pode ser descrita pela equação:
(1)
[0030] A rede neural proposta aqui é uma rede tipo LSTM ( Long Short-term Memory) com a arquitetura mostrada na Figura 5.
[0031] Esta invenção apresenta uma solução que utiliza a técnica de deep- learning para detectar assinaturas sísmicas de acúmulo de gás - bolsões e possíveis reservatórios. A metodologia proposta não requer a existência de anomalias sísmicas - bright spots (3), Dim spot (4) flat spots (5) e entre outros (6) (vide Figura 4). Ela apresenta bons resultados mesmo em casos com baixa razão de sinal/ruído e/ou pouco iluminados, como ocorrem situações envolvendo domos de sais e rochas vulcânicas, onde técnicas tradicionais falham.
[0032] O diagrama de blocos da Figura 6 apresenta todos os passos para efetuar a metodologia proposta. O pré-processamento consiste das etapas de leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço
sísmico e processo de janelamento. Já a detecção corresponde às demais etapas representadas na Figura 6. A seguir será descrito, com detalhes, cada bloco do processo. Os passos 3 e 6 são repetidos para todas as seções do bloco sísmico. Os passos 4 e 5 são repetidos para todos os traços de cada uma dessas seções.
1. Leitura do arquivo SEG-Y - O primeiro passo do processo consiste na leitura do cabeçalho do arquivo de SEG-Y. Esse cabeçalho armazena as informações sobre os dados sísmicos contido no arquivo, tais como, o número de amostras em tempo ou profundidade, o número de inlines, e, no caso de levantamentos sísmicos 3D, de crosslines. A partir das informações contidas no cabeçalho do arquivo SEG-Y, o algoritmo lê todos os traços de uma seção sísmica. No caso de o levantamento ter mais de uma seção, este passo é repetido para todas as seções.
2. Remoção de ruídos e normalização - A normalização consiste em dividir todo dado sísmico pelo valor máximo absoluto dos valores das amplitudes em todas as amostras. Desta forma, todos os dados ficam entre os valores -1 e 1. Quando o dado tem ruídos este máximo absoluto é calculado apenas nos valores que esteja nos percentis de 1 % e 99%. Depois de dividido, os valores menores que -1 são transformados em -1 e os maiores de 1 são transformados em 1.
3. Extração das seções - A investigação da presença de gás se faz investigando uma seção 2D por vez. Nos levantamentos 3D as seções podem ser crosslines ou inlines.
4. Extração dos traços sísmicos - Todos os traços da seção em questão são extraídos e cada traço é tratado individualmente.
5. Extração das janelas - O processo de janelamento consiste na extração sequencial de todos os trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela. A primeira amostra é na parte superior do traço e a próxima amostra do traço a ser considerada depende do passo
do janelamento que no nosso caso é sempre 1 amostra. A Figura 7 exemplifica o processo de janelamento em um traço sísmico no qual o passo é 1 amostra e o tamanho da amostra é de 41 amostras, 20 amostras para cada lado da amostra central. A janela correspondente a essa amostra(pixel) contém, então, 41 valores. Esse valor 20 se adaptou bem nos levantamentos terrestres feitos no norte do Brasil. Levantamentos com maior resolução podem requerer valores maiores desta janela.
6. Classificação pela LSTM - Cada janela é submetida a rede LSTM mostrada na Figura 5 que realiza a classificação da amostra (pixel) central atribuindo a ela um valor de probabilidade de conter ou não gás.
7. Reconstrução da imagem a partir da classificação - neste passo, os pixels da imagem sísmica, cujas amostras indicaram a presença de gás, são repintados para realçar essa informação. Os pixels que a LSTM não indica a presença de gás são mantidos.
[0033] A determinação dos pesos da rede proposta é feita através do treinamento do modelo a partir de dados rotulados por especialistas da área.
[0034] Para o treinamento do modelo é necessário separar a base original (total de seções sísmicas) em duas novas partes, denominadas: Treino Teste e Validação. A base de validação é responsável por auxiliar o treinamento. Ela é utilizada como se fosse a base de teste enquanto se busca fazer um primeiro ajuste do modelo. Posteriormente ela pode ser incorporada à base de treinamento, caso o treinamento precise de mais amostras rotuladas. A base de teste é mantida separada para avaliar o quanto o modelo é geral e não foi ajustado apenas para a base do treinamento. Ou seja, o treinamento é um processo interativo para ajustar os parâmetros do modelo da LSTM e para testar a rede em dados rotulados que se conhece a resposta. O diagrama da Figura 8 descreve os passos de treinamento e os passos de teste. Eles diferem apenas nos três últimos passos. Os passos 6 e 7 são apenas para o treinamento e os passos 8 e 9 são para o teste. Os passos de 1 a 5 são os mesmos tanto para o
treinamento quanto para o teste. Mais ainda, são também os mesmos da classificação, ilustrados na Figura 6. São repetidos aqui para maior clareza.
1. Leitura do arquivo SEG-Y - O primeiro passo do processo consiste na leitura do cabeçalho do arquivo de SEG-Y. Esse cabeçalho armazena as informações sobre os dados sísmicos contido no arquivo, tais como, o número de amostras em tempo ou profundidade, o número de inlines, e, no caso de levantamentos sísmicos 3D, de crosslines. A partir das informações contidas no cabeçalho do arquivo SEG-Y, o algoritmo lê todos os traços de uma seção sísmica. No caso de o levantamento ter mais de uma seção, este passo é repetido para todas as seções.
2. Remoção de ruídos e normalização - A normalização consiste em dividir todo dado sísmico pelo valor máximo absoluto dos valores das amplitudes em todas as amostras. Desta forma, todos os dados ficam entre os valores -1 e 1. Quando o dado tem ruídos este máximo absoluto é calculado apenas nos valores que esteja nos percentis de 1% e 99%. Depois de dividido, os valores menores que -1 são transformados em -1 e os maiores de 1 são transformados em 1.
3. Extração das seções - A investigação da presença de gás se faz investigando uma seção 2D por vez. Nos levantamentos 3D as seções podem ser crosslines ou inlines.
4. Extração dos traços sísmicos - Todos os traços da seção em questão são extraídos e cada traço é tratado individualmente.
5. Extração das janelas - O processo de janelamento consiste na extração sequencial de todos os trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela. A primeira amostra é na parte superior do traço e a próxima amostra do traço a ser considerada depende do passo do janelamento que no nosso caso é sempre 1 amostra. A Figura 7 exemplifica o processo de janelamento em um traço sísmico no qual o passo é 1 amostra e o tamanho da amostra é 41 amostras, 20 amostras
para cada lado da amostra central. A janela correspondente a essa amostra(pixel) contém, então, 41 valores. Esse valor 20 se adaptou bem nos levantamentos terrestres feitos no norte do Brasil. Levantamentos com maior resolução podem requerer valores maiores desta janela.
6. Atualização dos pesos da LSTM - Cada amostra é submetida a rede e produz uma estimativa de probabilidade de gás. Como se sabe da existência ou não do gás naquele ponto, pode-se estimar o erro e corrigir os parâmetros da rede de forma a minimizá-los. Esse processo é chamado na literatura de backpropagation.
7. Salva os pesos da LSTM - Após o treinamento a rede LSTM está definida e seus pesos são salvos para as futuras etapas. Sejam elas de teste ou de classificação.
8. Cálculo das métricas de classificação - Esta etapa calcula os erros de classificação da rede nos dados de teste.
9. Se os erros de classificação forem aceitáveis a rede está treinada. Caso contrário, a base de dados de treinamento e os parâmetros da rede precisam ser melhorados.
[0035] Portanto, deve ser entendido que a invenção aqui descrita e suas partes componentes descritas acima fazem parte de uma modalidade preferida e de exemplos de situações que poderiam ocorrer, o real escopo do objeto da invenção encontra-se definido nas reivindicações.
Claims
Reivindicações
1- MÉTODO DETECTOR DE ASSINATURAS DE RESERVATÓRIOS DE GÁS EM LEVANTAMENTOS SÍSMICOS, caracterizado por utilizar a técnica de deep-learning para detectar assinaturas sísmicas de acúmulo de gás, sem requerer a existência de anomalias sísmicas tais como bright spots (3), Dim spot (4) fíat spots (5) e entre outros (6) seja tanto no domínio da imagem, quanto considerando a análise focada no traço.
2- MÉTODO, de acordo com a reivindicação 1 , caracterizado por utilizar uma rede neural recorrente do tipo LSTM (Long Short-term Memory) para cada traço sísmico com dois neurônios de saída empregando a função softmax.
3- MÉTODO, de acordo com a reivindicação 1 , caracterizado por compreender as seguintes etapas: a) Pré-processamento: onde se define uma região de interesse que consiste em leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço sísmico e processo de janelamento; b) Treinamento: que consiste em leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço sísmico e processo de janelamento, além de treinamento e validação do modelo, salvando os pesos do modelo e classificando as janelas sísmicas da base de teste; c) Detecção: que é a classificação do modelo e a reconstrução da imagem a partir das janelas classificadas pelo modelo.
4- MÉTODO, de acordo com a reivindicação 3, caracterizado pela etapa b) separar 15% das imagens para teste, 15% para validação e 70% para treinamento.
5- MÉTODO, de acordo com a reivindicação 3, caracterizado pelas etapas a) e b) normalizarem as amostras, colocando-as em um intervalo [-1; +1] sem alterar os voxels de valor zero.
6- MÉTODO, de acordo com a reivindicação 3, caracterizado pelo processo de janelamento das etapas a) e b) consistir na extração sequencial de todos os
trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela.
7- MÉTODO, de acordo com as reivindicações 5 e 6, caracterizado pela primeira amostra do traço e a próxima amostra do traço possuir um passo de janelamento igual a uma amostra, e o tamanho da amostra ser de 41 amostras; 20 amostras para cada lado da amostra central.
8- MÉTODO, de acordo com a reivindicação 3, caracterizado etapa a) consistir nos seguintes passos: i. Leitura do arquivo SEG-Y; ii. Remoção de ruídos e normalização; iii. Extração das seções; iv. Extração dos traços sísmicos; v. Extração das janelas; vi. Classificação pela LSTM; vii. Reconstrução da imagem.
9- MÉTODO, de acordo com a reivindicação 8, caracterizado pelos passos
(iii) e (vi) serem repetidos para todas as seções do bloco sísmico, e os passos
(iv) e (v) serem repetidos para todos os traços de cada uma dessas seções.
10- MÉTODO, de acordo com a reivindicação 3, caracterizado etapa b) consistir nos seguintes passos: i. Leitura do arquivo SEG-Y; ii. Remoção de ruídos e normalização; iii. Extração das seções; iv. Extração dos traços sísmicos; v. Extração das janelas; vi. Atualização dos pesos da LSTM; vii. Salvar os pesos da LSTM; viii. Cálculo das métricas de classificação; ix. Classificação dos erros em aceitáveis ou não.
11- MÉTODO, de acordo com a reivindicação 10, caracterizado pelos passos (vi) e (vii) serem apenas para o treinamento e os passos (viii) e (ix) serem para o teste.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102020010867-0A BR102020010867A2 (pt) | 2020-05-29 | 2020-05-29 | Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos |
BRBR1020200108670 | 2020-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021237327A1 true WO2021237327A1 (pt) | 2021-12-02 |
Family
ID=78745687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2021/050227 WO2021237327A1 (pt) | 2020-05-29 | 2021-05-27 | Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos |
Country Status (2)
Country | Link |
---|---|
BR (1) | BR102020010867A2 (pt) |
WO (1) | WO2021237327A1 (pt) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114399024A (zh) * | 2021-12-20 | 2022-04-26 | 淮阴工学院 | 油气浓度大数据智能检测系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6560540B2 (en) * | 2000-09-29 | 2003-05-06 | Exxonmobil Upstream Research Company | Method for mapping seismic attributes using neural networks |
CN106886043A (zh) * | 2017-03-01 | 2017-06-23 | 成都理工大学 | 基于地震数据深度学习的储层检测方法 |
US20190064389A1 (en) * | 2017-08-25 | 2019-02-28 | Huseyin Denli | Geophysical Inversion with Convolutional Neural Networks |
CN109799533A (zh) * | 2018-12-28 | 2019-05-24 | 中国石油化工股份有限公司 | 一种基于双向循环神经网络的储层预测方法 |
US20190379589A1 (en) * | 2018-06-12 | 2019-12-12 | Ciena Corporation | Pattern detection in time-series data |
CN110927791A (zh) * | 2018-09-20 | 2020-03-27 | 中国石油化工股份有限公司 | 基于深度学习利用地震数据进行流体预测的方法及装置 |
US20200160173A1 (en) * | 2017-07-21 | 2020-05-21 | Landmark Graphics Corporation | Deep Learning Based Reservoir Modeling |
US20200183047A1 (en) * | 2018-12-11 | 2020-06-11 | Exxonmobil Upstream Research Company | Automated Reservoir Modeling Using Deep Generative Networks |
US10948618B2 (en) * | 2016-10-14 | 2021-03-16 | Chevron U.S.A. Inc. | System and method for automated seismic interpretation |
-
2020
- 2020-05-29 BR BR102020010867-0A patent/BR102020010867A2/pt unknown
-
2021
- 2021-05-27 WO PCT/BR2021/050227 patent/WO2021237327A1/pt active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6560540B2 (en) * | 2000-09-29 | 2003-05-06 | Exxonmobil Upstream Research Company | Method for mapping seismic attributes using neural networks |
US10948618B2 (en) * | 2016-10-14 | 2021-03-16 | Chevron U.S.A. Inc. | System and method for automated seismic interpretation |
CN106886043A (zh) * | 2017-03-01 | 2017-06-23 | 成都理工大学 | 基于地震数据深度学习的储层检测方法 |
US20200160173A1 (en) * | 2017-07-21 | 2020-05-21 | Landmark Graphics Corporation | Deep Learning Based Reservoir Modeling |
US20190064389A1 (en) * | 2017-08-25 | 2019-02-28 | Huseyin Denli | Geophysical Inversion with Convolutional Neural Networks |
US20190379589A1 (en) * | 2018-06-12 | 2019-12-12 | Ciena Corporation | Pattern detection in time-series data |
CN110927791A (zh) * | 2018-09-20 | 2020-03-27 | 中国石油化工股份有限公司 | 基于深度学习利用地震数据进行流体预测的方法及装置 |
US20200183047A1 (en) * | 2018-12-11 | 2020-06-11 | Exxonmobil Upstream Research Company | Automated Reservoir Modeling Using Deep Generative Networks |
CN109799533A (zh) * | 2018-12-28 | 2019-05-24 | 中国石油化工股份有限公司 | 一种基于双向循环神经网络的储层预测方法 |
Non-Patent Citations (1)
Title |
---|
SANTOS LUIZ FERNANDO, SILVA REINALDO MOZART, GATTASS MARCELO: "Direct Hydrocarbon Indicators based on Long short-term memory neural network", SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS 2019, SOCIETY OF EXPLORATION GEOPHYSICISTS, 10 August 2019 (2019-08-10), pages 2373 - 2377, XP055876581, Retrieved from the Internet <URL:https://web.tecgraf.puc-rio.br/press/publication/Santos2019a/Santos2019a.pdf> [retrieved on 20220106] * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114399024A (zh) * | 2021-12-20 | 2022-04-26 | 淮阴工学院 | 油气浓度大数据智能检测系统 |
CN114399024B (zh) * | 2021-12-20 | 2023-02-03 | 淮阴工学院 | 油气浓度大数据智能检测系统 |
Also Published As
Publication number | Publication date |
---|---|
BR102020010867A2 (pt) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112703429B (zh) | 基于机器学习的地震属性分析 | |
CN109709603B (zh) | 地震层位识别与追踪方法、系统 | |
US20180106917A1 (en) | System and method for seismic facies identification using machine learning | |
US5798982A (en) | Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models | |
CN111596978A (zh) | 用人工智能进行岩相分类的网页显示方法、模块和系统 | |
US20200041692A1 (en) | Detecting Fluid Types Using Petrophysical Inversion | |
BR102019010073A2 (pt) | processo para a detecção de objetos geológicos em uma imagem sísmica | |
US10578758B2 (en) | Sequence pattern characterization | |
EP3978961A1 (en) | System and method for quantitative seismic integration modeling workflow | |
CN101430386B (zh) | 一种地震多参数融合气藏检测方法 | |
CN116168224A (zh) | 基于成像砾石含量的机器学习岩相自动识别方法 | |
WO2021237327A1 (pt) | Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos | |
EP4133310A1 (en) | System and method for seismic inversion | |
US20220236435A1 (en) | Low-Frequency Seismic Survey Design | |
Lim et al. | Machine learning derived AVO analysis on marine 3D seismic data over gas reservoirs near South Korea | |
US11208886B2 (en) | Direct hydrocarbon indicators analysis informed by machine learning processes | |
CN112394392B (zh) | 对烃源岩分布情况进行评价的方法和装置 | |
Ye et al. | Rapid and Consistent Identification of Stratigraphic Boundaries and Stacking Patterns in Well Logs-An Automated Process Utilizing Wavelet Transforms and Beta Distributions | |
US12124949B2 (en) | Methodology for learning a similarity measure between geophysical objects | |
CN114076990B (zh) | 油页岩反射能量确定方法、系统、存储介质及电子设备 | |
US20210374465A1 (en) | Methodology for learning a similarity measure between geophysical objects | |
Eze | Modeling the Spatial Distribution of Natural Fractures in Shale Reservoirs using Machine Learning and Geostatistical Methods | |
Lotfi et al. | Enhancing fault detection using multi-layer perceptron neural network and unconventional seismic attributes | |
Hidayat et al. | The Pematang Group Sand Analysis Using Growing Neural Network Machine Learning | |
Mardan et al. | A fine‐tuning workflow for automatic first‐break picking with deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813896 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21813896 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21813896 Country of ref document: EP Kind code of ref document: A1 |