BR102020010867A2 - Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos - Google Patents

Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos Download PDF

Info

Publication number
BR102020010867A2
BR102020010867A2 BR102020010867-0A BR102020010867A BR102020010867A2 BR 102020010867 A2 BR102020010867 A2 BR 102020010867A2 BR 102020010867 A BR102020010867 A BR 102020010867A BR 102020010867 A2 BR102020010867 A2 BR 102020010867A2
Authority
BR
Brazil
Prior art keywords
seismic
trace
steps
training
sample
Prior art date
Application number
BR102020010867-0A
Other languages
English (en)
Inventor
Marcelo Gattass
Luiz Fernando Trindade Santos
Original Assignee
Faculdades Catolicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faculdades Catolicas filed Critical Faculdades Catolicas
Priority to BR102020010867-0A priority Critical patent/BR102020010867A2/pt
Priority to PCT/BR2021/050227 priority patent/WO2021237327A1/pt
Publication of BR102020010867A2 publication Critical patent/BR102020010867A2/pt

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

método detector de assinaturas de reservatórios de gás em levantamentos sísmicos. a presente invenção refere-se a um método para detectar reservatórios de hidrocarbonetos a partir de um levantamento sísmico. o método da presente invenção trata o dado sísmico como um conjunto de traços e a amostra que alimenta a rede neural são trechos de um sinal unidimensional parecido com um sinal de som ou voz. uma marcação de um reservatório numa sísmica geralmente já fornece o número necessário de amostras unidimensionais rotuladas para o treinamento. um outro aspecto importante da nossa proposta é a utilização de uma rede neural recorrente. a influência de um reservatório de hidrocarboneto num traço sísmico se dá não somente no local onde ele se encontra, mas em todo o traço que se segue. por isso propomos a utilização de uma rede do tipo longa memória de curto prazo (long short-term memory, lstm) para caracterizar regiões que apresentem assinaturas de gás em imagens sísmicas.

Description

MÉTODO DETECTOR DE ASSINATURAS DE RESERVATÓRIOS DE GÁS EM LEVANTAMENTOS SÍSMICOS Campo da Invenção
[0001] A presente invenção está relacionada ao levantamento de reflexão sísmica, que é um método bem conhecido para obter informações de subsuperfície na indústria de exploração de petróleo e gás. Ao analisar os dados sísmicos, um especialista pode obter características geométricas estruturais e estratigráficas e, com fontes adicionais de informação geofísica, possíveis localizações de acumulações de hidrocarbonetos e sua quantidade.
Descrição do Estado da Técnica
[0002] A sísmica de reflexão é um dos métodos geofísicos mais empregados pela indústria de óleo e gás devido facilidade de gerar dados de uma área extensa em pouco tempo. Através da leitura e do entendimento desse dado é possível compreender a estrutura da subsuperfície. Essa estrutura, definida pelos horizontes e falhas, pode dar fortes indícios da localização de um campo de petróleo e/ou gás.
[0003] A Figura 1 ilustra os levantamentos sísmicos feitos em terra e no mar. A sísmica de reflexão registra em cada receptor 1, hidrofone, ou geofone, a amplitude X e o tempo de chegada das ondas sísmicas. Essas ondas, geradas pelas fontes 2, refletem nas interfaces das camadas geológicas e são registradas nos receptores. Após o processamento sísmico, cada traço (Figura 2) representa o resultado de uma fonte emitindo uma onda vertical na mesma posição do receptor 1. Quando concatenados, esses traços geram uma imagem, onde cada interface geológica, região de reflexão das ondas sísmica, estão evidenciadas por um pico positivo ou negativo (Figura 3).
[0004] Na interpretação, geocientistas utilizam as imagens sísmicas atentando-se em variações no tempo de chegada de onda sísmica e no comportamento da interface das camadas em determinadas regiões (Figura 4). Em teoria, esses conhecimentos, munidos de outras fontes de dados geofísicos e geológicos, podem gerar inferências sobre a litologia, tipo de rocha e propriedades físicas inerentes às mesmas.
[0005] Apesar de fornecer informações vitais sobre as estruturas presentes nas subsuperfícies da área do levantamento, os dados oriundos da sísmica de reflexão, assim como a grande maioria das informações fornecidas por métodos geofísicos, são ambíguos. Ou seja, corpos rochosos diferentes, ou até mesmo rochas do mesmo tipo, mas com propriedades físicas diferentes, podem gerar a mesma anomalia ou assinatura sísmica. Isso torna a interpretação sísmica uma tarefa complexa e demorada. Além disso, com o constante avanço tecnológico, os dados sísmicos estão sendo coletados cada vez mais rápido e maiores quantidades, aumentando consideravelmente o esforço humano e a demanda de tempo na interpretação dessas informações.
[0006] As abordagens visando a identificação de possíveis assinaturas sísmicas de acúmulo de gás, objetivo aqui presente, também não fogem dos problemas citados acima. Tradicionalmente são usadas inspeções visuais de anomalias de amplitude sísmica e informações de poço, quando disponíveis. Os algoritmos de inversão sísmica também são úteis para esta tarefa. Essas abordagens são pouco eficientes considerando dados sísmicos com alvos pouco evidentes e/ou com baixa razão sinal/ruído. Na maioria das vezes, a aplicação de atributos sísmicos e processos de inversão nestes dados acarreta em informações imprecisas ou errôneas, já que as mesmas são sensíveis aos ruídos e à baixa iluminação do alvo. Além disso, essas metodologias são demoradas e humanamente intensivas, levando em conta a alta gama de atributos que podem ser aplicados e inspecionados e o processamento de dados adicional necessário para a aplicação dos algoritmos de inversão.
[0007] Pelo exposto acima, algoritmos que auxiliem os geocientistas na identificação de assinaturas sísmicas de gás são muito importantes. Eles aumentam a acurácia e eficiência da busca por reservatórios de gás, diminuindo assim o risco exploratório.
[0008] Atualmente as Redes Neurais Profundas, do inglês Deep Neural Network (DNN) dominam as discussões acadêmicas e tem chamado a atenção da indústria de óleo e gás que espera delas resultados rápidos, acurados e com pouca intervenção humana. Na etapa de exploração, as redes neurais prometem aprimorar as diversas etapas da interpretação sísmica como a amarração de poços geofísicos, a classificação de fácies sísmicas, o delineamento de domos de sais, e a detecção de horizontes e falhas.
[0009] A grande maioria dos algoritmos de detecção de feições (horizontes, falhas, etc.) em imagens sísmicas são baseados em redes convolucionais profundas, CNNs do inglês Convolutional Neural Network. O treinamento supervisionado dessas redes segue o padrão convencional das redes neurais. Essas redes são treinadas em imagens com as feições de interesse já marcadas. No linguajar da área, o conjunto de valores ao redor de cada pixel é uma amostra e, quando sabemos a classificação de uma amostra, dizemos que ela é rotulada. As redes neurais profundas são treinadas com milhares de amostras rotuladas. O treinamento determina os coeficientes da rede e, depois de treinadas, esperase que as CNNs detectem nas novas imagens sísmicas os pixels que estejam representando a feição para a qual a rede foi treinada a detectar.
[0010] O treinamento de CNNs em imagens sísmicas apresentam dois problemas importantes: número insuficiente de dados rotulados e ruídos. As redes profundas requerem centenas de milhares de amostras rotuladas e isso é difícil de se obter em sísmica. Os reservatórios de gás encontrados no norte do Brasil, por exemplo, são bastantes estreitos, dificultando a obtenção de muitas amostras que possam ser rotuladas como de gás. Uma janela de 31x31 pixels, centrada num pixel do reservatório de gás, muito provavelmente tem as bordas fora dele. Isto porque temos poucos pixels na vertical. Com isso fica muito difícil gerar o número necessário de amostras para treinar a rede. O fato de a sísmica terrestre ser muito ruidosa também atrapalha muito.
[0011] Uma maneira de se produzir mais amostras com a mesma quantidade de imagens sísmicas rotuladas com reservatórios de gás consiste em reduzir o tamanho da vizinhança do pixel rotulado como gás. Com amostras menores, uma mesma região produz mais amostras.
[0012] A proposta apresentada na presente invenção consiste em não trabalhar com regiões, mas com traços. Ao reduzir a dimensionalidade, o número de pixels da amostra reduz bastante. Uma janela de 31x31 em torno de um pixel numa imagem, por exemplo, tem 961 valores. Olhando apenas o traço que contém aquela amostra, a janela tem apenas 31 pixels.
[0013] O documento não patentário “Converting scanned images of seismic reflection data into SEG-Y format”, de Daniel Sopher, de 13/11/2017, revela um método para a conversão (vetorização) de imagens digitalizadas de dados sísmicos de reflexão sísmica empilhados para o formato padrão SEG-Y. O método aborda dados exibidos com uma linha denotando a forma de onda, onde áreas em um lado da linha de base estão sombreadas (ou seja, traço de agitação, preenchimento variável). Porém adapta dados e imagens em formatos antigos para o formato SEG-Y.
[0014] O documento não patentário “Deep learning Inversion of Seismic Data”, de Shucai Li, Bin Liu, Yuxiao Ren, Yangkang Chen, Senlin Yang, Yunhai Wang e Peng Jiang, de 23/01/2019, propõe uma Rede de Inversão Sísmica endto-end (SeisInvNet para abreviar) com componentes novos para fazer o melhor uso de todos os dados sísmicos.
[0015] O documento não patentário “Deep Learning Tomography”, de Mauricio Araya-Polo, Joseph Jennings, Amir Adler, Taylor Dahlke, de janeiro de 2018, consiste no treinamento de redes neurais profundas; o modelo preditivo resultante mapeia as relações entre o espaço de dados e a saída final (particularmente, a presença de segmentos de alta velocidade que possam indicar formações de sal).
[0016] O documento não patentário “Neural networks and inversion of seismic data”, de Gunter Röth Albert Tarantola, de 10/04/1994, revela um experimento onde uma rede neural é projetada para aceitar um disparo sintético comum (ou seja, um conjunto de sismogramas obtidos de uma única fonte), como seu padrão de entrada e para computar o modelo de velocidade unidimensional correspondente em larga escala como seu output.
[0017] O estado da técnica citado acima, não possui as características únicas que serão apresentadas detalhadamente a seguir. Nenhum dos documentos revela o uso conjunto do sistema LSTM para mapas geológicos usando como entrada dados 1D. Os documentos tentam resolver esse problema utilizando imagens sísmicas e não os traços individualmente, ou seja, o dado diretamente como veio a ser colhido. Entende-se que nenhum documento presente na literatura aborda o uso de deep-learning para identificação de possíveis acúmulos de gás em dados sísmicos, seja tanto no domínio da imagem, quanto considerando a análise focada no traço.
Descrição Resumida da Invenção
[0018] A metodologia proposta na presente invenção trata o dado sísmico como um conjunto de traços e a amostra que alimenta a rede neural são trechos de um sinal unidimensional parecido com um sinal de som ou voz. Uma marcação de um reservatório numa sísmica geralmente já fornece o número necessário de amostras unidimensionais rotuladas para o treinamento. Um outro aspecto importante da invenção é a utilização de uma rede neural recorrente. A influência de um reservatório de hidrocarboneto num traço sísmico se dá não somente no local onde ele se encontra, mas em todo o traço que se segue. Por isso a invenção compreende a utilização de uma rede do tipo longa memória de curto prazo (Long Short-Term Memory, LSTM) para caracterizar regiões que apresentem assinaturas de gás em imagens sísmicas.
Breve Descrição dos Desenhos
[0019] A presente invenção será descrita com mais detalhes a seguir, com referência às figuras em anexo que, de uma forma esquemática e não limitativa do escopo inventivo, representam exemplos de realização da mesma. Nos desenhos, têm-se:
  • - A Figura 1 ilustra o levantamento sísmico de reflexão;
  • - A Figura 2 ilustra o modelo convolucional de um traço sísmico;
  • - A Figura 3 ilustra uma imagem sísmica;
  • - A Figura 4 ilustra um exemplo de anomalias sísmicas Bright (3), Dim (4), e Flat spot (5);
  • - A Figura 5 ilustra a arquitetura LSTM proposta;
  • - A Figura 6 ilustra o bloco principal da metodologia;
  • - A Figura 7 ilustra o processo de janelamento; e
  • - A Figura 8 ilustra o bloco para treinamento da rede neural LSTM.
Descrição Detalhada da Invenção
[0020] A escolha de trabalhar no domínio do traço também pode ter outra explicação. Todo processo de migração dos dados pré-empilhados busca criar um traço que tem um sentido específico. O traço sísmico representa a resposta de uma onda unidimensional descendo na subsuperfície e refletindo nas interfaces entre camadas de impedância acústica diferentes. Esse modelo, chamado de modelo convolucional, é naturalmente unidimensional.
[0021] O modelo do traço unidimensional se assemelha a outros sinais como o do som e da voz. Da literatura verifica-se que as redes neurais bem-sucedidas para esses modelos não são as convolucionais, mas sim as recorrentes. Diferentemente das redes convolucionais, as redes recorrentes implicitamente reconhecem um conceito de série temporal e a classificação de uma amostra depende das amostras que vieram antes dela. Isto também ocorre no modelo de uma onda refletindo em camadas da subsuperfície e no modelo convolucional correspondente. Por isso, a presente invenção trabalha com o traço e não com a imagem sísmica.
[0022] O método proposto possui as três etapas clássicas de visão computacional: (a) pré-processamento, (b) treinamento, e (c) detecção.
[0023] O pré-processamento neste caso consiste em limpeza e normalização dos dados. Já o passo de treinamento objetiva encontrar a melhor configuração possível, ou seja, ele visa encontrar os valores dos parâmetros presentes nas camadas, ou células, do modelo assim como o número de camadas e as funções de ativação que deverão ser utilizadas. Essa fase é essencial para que a rede neural recorrente possa aprender a diferenciar as classes de interesse. A detecção, por sua vez, objetiva atribuir a cada voxel (amostra) do levantamento sísmico uma probabilidade de ele conter ou não gás.
[0024] Os valores máximos das amplitudes das ondas sísmicas nos dados empilhados dependem do processo de migração e são, de certa forma, arbitrários e podem variar de um levantamento para outro. Para uniformizar as amostras de diversos treinamentos é interessante colocá-las numa mesma escala, por exemplo, variando no intervalo [-1, +1] , sem alterar os voxels de valor zero.
[0025] Em um levantamento sísmico também é comum termos voxels cujo valor não foi medido, mas que aparecem no meio de outros valores calculados. Frequentemente encontramos nos arquivos SEG-Y esses voxels com o valor correspondente à máxima representação computacional do tipo de dado que armazena a amplitude.
[0026] No pré-processamento, a limpeza consiste na retirada das áreas que não interessam no levantamento e na eliminação dos ruídos de aquisição que estejam nas áreas que vamos considerar. A limpeza no nosso caso consiste em definir uma região de interesse, ROI, (Region of Interest), que é a área do levantamento sísmico que pode ter acúmulo de gás. A retirada dos ruídos é uma etapa que depende do levantamento sísmico. Já a normalização se faz dividindo todos os valores de amplitude pelo valor máximo dos módulos das amplitudes.
[0027] O treinamento também se faz de forma convencional, ou seja, de todas as seções (inlines ou crosslines) que contém marcação de gás, separa se, de forma aleatória, uma parte para teste, uma outra parte para validação e o restante para o treinamento. Na literatura em média usa-se 15% para teste, 15% para validação e 70% para treinamento, porém esses valores podem variar devido ao tamanho da base de dados disponíveis para realizar o treinamento. Um último ponto que vale ressaltar é que o treinamento, validação e teste são feitos em amostras de seções distintas.
[0028] Uma vez definida a base de dados para o treinamento, o próximo passo é definir a configuração do modelo LSTM que iremos treinar para a detecção de acúmulos de gás. Nesse passo, vale destacar que é possível ter diversas possibilidades de configurações para o modelo de rede recorrente, ou seja, pode-se variar o número de células recorrentes, assim como as funções de ativação (softmax, degrau, entre outros) presentes nas camadas intermediárias e camadas de saída. Um exemplo de configuração, que obtiveram excelentes resultados, é apresentado na Figura 5. Nela foram utilizadas quatro células LSTM para processar as janelas sísmicas. Essas células são responsáveis pela extração das informações presentes nas amostras e assim possibilitando identificar os fenômenos presentes nas classes (gás e não gás).
[0029] Por fim, o modelo apresenta dois neurônios de saída, empregando a função softmax. A função softmax é um tipo de função útil para lidar com problemas de classificação. Essa função transforma as saídas para cada classe para valores entre 0 e 1 e também divide pela soma das saídas. Ou seja, essencialmente ela dá a probabilidade de a entrada estar em uma determinada classe, a função softmax pode ser descrita pela equação:
σ(Z)j = e⌃{zj}/ \sum_{k = 1}⌃{K} e⌃{zk}, para j = 1, ..., k (1)
[0030] A rede neural proposta aqui é uma rede tipo LSTM (Long Short-term Memory) com a arquitetura mostrada na Figura 5.
[0031] Esta invenção apresenta uma solução que utiliza a técnica de deeplearning para detectar assinaturas sísmicas de acúmulo de gás - bolsões e possíveis reservatórios. A metodologia proposta não requer a existência de anomalias sísmicas - bright spots (3), Dim spot (4) flat spots (5) e entre outros (6) (vide Figura 4). Ela apresenta bons resultados mesmo em casos com baixa razão de sinal/ruído e/ou pouco iluminados, como ocorrem situações envolvendo domos de sais e rochas vulcânicas, onde técnicas tradicionais falham.
[0032] O diagrama de blocos da Figura 6 apresenta todos os passos para efetuar a metodologia proposta. O pré-processamento consiste das etapas de leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço sísmico e processo de janelamento. Já a detecção corresponde às demais etapas representadas na Figura 6. A seguir será descrito, com detalhes, cada bloco do processo. Os passos 3 e 6 são repetidos para todas as seções do bloco sísmico. Os passos 4 e 5 são repetidos para todos os traços de cada uma dessas seções.
  • 1. Leitura do arquivo SEG-Y - O primeiro passo do processo consiste na leitura do cabeçalho do arquivo de SEG-Y. Esse cabeçalho armazena as informações sobre os dados sísmicos contido no arquivo, tais como, o número de amostras em tempo ou profundidade, o número de inlines, e, no caso de levantamentos sísmicos 3D, de crosslines. A partir das informações contidas no cabeçalho do arquivo SEG-Y, o algoritmo lê todos os traços de uma seção sísmica. No caso de o levantamento ter mais de uma seção, este passo é repetido para todas as seções.
  • 2. Remoção de ruídos e normalização – A normalização consiste em dividir todo dado sísmico pelo valor máximo absoluto dos valores das amplitudes em todas as amostras. Desta forma, todos os dados ficam entre os valores -1 e 1. Quando o dado tem ruídos este máximo absoluto é calculado apenas nos valores que esteja nos percentis de 1% e 99%. Depois de dividido, os valores menores que -1 são transformados em -1 e os maiores de 1 são transformados em 1.
  • 3. Extração das seções – A investigação da presença de gás se faz investigando uma seção 2D por vez. Nos levantamentos 3D as seções podem ser crosslines ou inlines.
  • 4. Extração dos traços sísmicos - Todos os traços da seção em questão são extraídos e cada traço é tratado individualmente.
  • 5. Extração das janelas - O processo de janelamento consiste na extração sequencial de todos os trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela. A primeira amostra é na parte superior do traço e a próxima amostra do traço a ser considerada depende do passo do janelamento que no nosso caso é sempre 1 amostra. A Figura 7 exemplifica o processo de janelamento em um traço sísmico no qual o passo é 1 amostra e o tamanho da amostra é de 41 amostras, 20 amostras para cada lado da amostra central. A janela correspondente a essa amostra(pixel) contém, então, 41 valores. Esse valor 20 se adaptou bem nos levantamentos terrestres feitos no norte do Brasil. Levantamentos com maior resolução podem requerer valores maiores desta janela.
  • 6. Classificação pela LSTM – Cada janela é submetida a rede LSTM mostrada na Figura 5 que realiza a classificação da amostra (pixel) central atribuindo a ela um valor de probabilidade de conter ou não gás.
  • 7. Reconstrução da imagem a partir da classificação - neste passo, os pixels da imagem sísmica, cujas amostras indicaram a presença de gás, são repintados para realçar essa informação. Os pixels que a LSTM não indica a presença de gás são mantidos.
[0033] A determinação dos pesos da rede proposta é feita através do treinamento do modelo a partir de dados rotulados por especialistas da área.
[0034] Para o treinamento do modelo é necessário separar a base original (total de seções sísmicas) em duas novas partes, denominadas: Treino Teste e Validação. A base de validação é responsável por auxiliar o treinamento. Ela é utilizada como se fosse a base de teste enquanto se busca fazer um primeiro ajuste do modelo. Posteriormente ela pode ser incorporada à base de treinamento, caso o treinamento precise de mais amostras rotuladas. A base de teste é mantida separada para avaliar o quanto o modelo é geral e não foi ajustado apenas para a base do treinamento. Ou seja, o treinamento é um processo interativo para ajustar os parâmetros do modelo da LSTM e para testar a rede em dados rotulados que se conhece a resposta. O diagrama da Figura 8 descreve os passos de treinamento e os passos de teste. Eles diferem apenas nos três últimos passos. Os passos 6 e 7 são apenas para o treinamento e os passos 8 e 9 são para o teste. Os passos de 1 a 5 são os mesmos tanto para o treinamento quanto para o teste. Mais ainda, são também os mesmos da classificação, ilustrados na Figura 6. São repetidos aqui para maior clareza.
  • 1. Leitura do arquivo SEG-Y - O primeiro passo do processo consiste na leitura do cabeçalho do arquivo de SEG-Y. Esse cabeçalho armazena as informações sobre os dados sísmicos contido no arquivo, tais como, o número de amostras em tempo ou profundidade, o número de inlines, e, no caso de levantamentos sísmicos 3D, de crosslines. A partir das informações contidas no cabeçalho do arquivo SEG-Y, o algoritmo lê todos os traços de uma seção sísmica. No caso de o levantamento ter mais de uma seção, este passo é repetido para todas as seções.
  • 2. Remoção de ruídos e normalização – A normalização consiste em dividir todo dado sísmico pelo valor máximo absoluto dos valores das amplitudes em todas as amostras. Desta forma, todos os dados ficam entre os valores -1 e 1. Quando o dado tem ruídos este máximo absoluto é calculado apenas nos valores que esteja nos percentis de 1% e 99%. Depois de dividido, os valores menores que -1 são transformados em -1 e os maiores de 1 são transformados em 1.
  • 3. Extração das seções – A investigação da presença de gás se faz investigando uma seção 2D por vez. Nos levantamentos 3D as seções podem ser crosslines ou inlines.
  • 4. Extração dos traços sísmicos - Todos os traços da seção em questão são extraídos e cada traço é tratado individualmente.
  • 5. Extração das janelas - O processo de janelamento consiste na extração sequencial de todos os trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela. A primeira amostra é na parte superior do traço e a próxima amostra do traço a ser considerada depende do passo do janelamento que no nosso caso é sempre 1 amostra. A Figura 7 exemplifica o processo de janelamento em um traço sísmico no qual o passo é 1 amostra e o tamanho da amostra é 41 amostras, 20 amostras para cada lado da amostra central. A janela correspondente a essa amostra(pixel) contém, então, 41 valores. Esse valor 20 se adaptou bem nos levantamentos terrestres feitos no norte do Brasil. Levantamentos com maior resolução podem requerer valores maiores desta janela.
  • 6. Atualização dos pesos da LSTM – Cada amostra é submetida a rede e produz uma estimativa de probabilidade de gás. Como se sabe da existência ou não do gás naquele ponto, pode-se estimar o erro e corrigir os parâmetros da rede de forma a minimizá-los. Esse processo é chamado na literatura de backpropagation.
  • 7. Salva os pesos da LSTM – Após o treinamento a rede LSTM está definida e seus pesos são salvos para as futuras etapas. Sejam elas de teste ou de classificação.
  • 8. Cálculo das métricas de classificação – Esta etapa calcula os erros de classificação da rede nos dados de teste.
  • 9. Se os erros de classificação forem aceitáveis a rede está treinada. Caso contrário, a base de dados de treinamento e os parâmetros da rede precisam ser melhorados.
[0035] Portanto, deve ser entendido que a invenção aqui descrita e suas partes componentes descritas acima fazem parte de uma modalidade preferida e de exemplos de situações que poderiam ocorrer, o real escopo do objeto da invenção encontra-se definido nas reivindicações.

Claims (11)

  1. MÉTODO DETECTOR DE ASSINATURAS DE RESERVATÓRIOS DE GÁS EM LEVANTAMENTOS SÍSMICOS, caracterizado por utilizar a técnica de deep-learning para detectar assinaturas sísmicas de acúmulo de gás, sem requerer a existência de anomalias sísmicas tais como bright spots (3), Dim spot (4) flat spots (5) e entre outros (6) seja tanto no domínio da imagem, quanto considerando a análise focada no traço.
  2. MÉTODO, de acordo com a reivindicação 1, caracterizado por utilizar uma rede neural recorrente do tipo LSTM (Long Short-term Memory) para cada traço sísmico com dois neurônios de saída empregando a função softmax.
  3. MÉTODO, de acordo com a reivindicação 1, caracterizado por compreender as seguintes etapas:
    • a) Pré-processamento: onde se define uma região de interesse que consiste em leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço sísmico e processo de janelamento;
    • b) Treinamento: que consiste em leitura do arquivo SEG-Y, remoção de ruídos e normalização, extração do traço sísmico e processo de janelamento, além de treinamento e validação do modelo, salvando os pesos do modelo e classificando as janelas sísmicas da base de teste;
    • c) Detecção: que é a classificação do modelo e a reconstrução da imagem a partir das janelas classificadas pelo modelo.
  4. MÉTODO, de acordo com a reivindicação 3, caracterizado pela etapa b) separar 15% das imagens para teste, 15% para validação e 70% para treinamento.
  5. MÉTODO, de acordo com a reivindicação 3, caracterizado pelas etapas a) e b) normalizarem as amostras, colocando-as em um intervalo [-1; +1] sem alterar os voxels de valor zero.
  6. MÉTODO, de acordo com a reivindicação 3, caracterizado pelo processo de janelamento das etapas a) e b) consistir na extração sequencial de todos os trechos do traço de um determinado tamanho na vizinhança de cada pixel do traço que esteja distante da borda o suficiente para ser o centro da janela.
  7. MÉTODO, de acordo com as reivindicações 5 e 6, caracterizado pela primeira amostra do traço e a próxima amostra do traço possuir um passo de janelamento igual a uma amostra, e o tamanho da amostra ser de 41 amostras; 20 amostras para cada lado da amostra central.
  8. MÉTODO, de acordo com a reivindicação 3, caracterizado etapa a) consistir nos seguintes passos:
    • i. Leitura do arquivo SEG-Y;
    • ii. Remoção de ruídos e normalização;
    • iii. Extração das seções;
    • iv. Extração dos traços sísmicos;
    • v. Extração das janelas;
    • vi. Classificação pela LSTM;
    • vii. Reconstrução da imagem.
  9. MÉTODO, de acordo com a reivindicação 8, caracterizado pelos passos (iii) e (vi) serem repetidos para todas as seções do bloco sísmico, e os passos (iv) e (v) serem repetidos para todos os traços de cada uma dessas seções.
  10. MÉTODO, de acordo com a reivindicação 3, caracterizado etapa b) consistir nos seguintes passos:
    • i. Leitura do arquivo SEG-Y;
    • ii. Remoção de ruídos e normalização;
    • iii. Extração das seções;
    • iv. Extração dos traços sísmicos;
    • v. Extração das janelas;
    • vi. Atualização dos pesos da LSTM;
    • vii. Salvar os pesos da LSTM;
    • viii. Cálculo das métricas de classificação;
    • ix. Classificação dos erros em aceitáveis ou não.
  11. MÉTODO, de acordo com a reivindicação 10, caracterizado pelos passos (vi) e (vii) serem apenas para o treinamento e os passos (viii) e (ix) serem para o teste.
BR102020010867-0A 2020-05-29 2020-05-29 Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos BR102020010867A2 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR102020010867-0A BR102020010867A2 (pt) 2020-05-29 2020-05-29 Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos
PCT/BR2021/050227 WO2021237327A1 (pt) 2020-05-29 2021-05-27 Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102020010867-0A BR102020010867A2 (pt) 2020-05-29 2020-05-29 Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos

Publications (1)

Publication Number Publication Date
BR102020010867A2 true BR102020010867A2 (pt) 2021-12-07

Family

ID=78745687

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102020010867-0A BR102020010867A2 (pt) 2020-05-29 2020-05-29 Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos

Country Status (2)

Country Link
BR (1) BR102020010867A2 (pt)
WO (1) WO2021237327A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114399024B (zh) * 2021-12-20 2023-02-03 淮阴工学院 油气浓度大数据智能检测系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560540B2 (en) * 2000-09-29 2003-05-06 Exxonmobil Upstream Research Company Method for mapping seismic attributes using neural networks
US10948618B2 (en) * 2016-10-14 2021-03-16 Chevron U.S.A. Inc. System and method for automated seismic interpretation
CN106886043B (zh) * 2017-03-01 2021-05-14 成都理工大学 基于地震数据深度学习的储层检测方法
AU2017424316A1 (en) * 2017-07-21 2020-01-02 Landmark Graphics Corporation Deep learning based reservoir modeling
US10996372B2 (en) * 2017-08-25 2021-05-04 Exxonmobil Upstream Research Company Geophysical inversion with convolutional neural networks
US11620528B2 (en) * 2018-06-12 2023-04-04 Ciena Corporation Pattern detection in time-series data
CN110927791B (zh) * 2018-09-20 2022-01-25 中国石油化工股份有限公司 基于深度学习利用地震数据进行流体预测的方法及装置
CA3122686C (en) * 2018-12-11 2023-10-24 Exxonmobil Upstream Research Company Automated reservoir modeling using deep generative networks
CN109799533B (zh) * 2018-12-28 2021-07-27 中国石油化工股份有限公司 一种基于双向循环神经网络的储层预测方法

Also Published As

Publication number Publication date
WO2021237327A1 (pt) 2021-12-02

Similar Documents

Publication Publication Date Title
US11668853B2 (en) Petrophysical inversion with machine learning-based geologic priors
CN112703429B (zh) 基于机器学习的地震属性分析
AU2017343749B2 (en) System and method for seismic facies identification using machine learning
ES2965985T3 (es) Método implementado por ordenador para generar un modelo de roca y/o fluido de subsuelo de un dominio determinado
US20190041534A1 (en) System and method for automated seismic interpretation
CN111596978A (zh) 用人工智能进行岩相分类的网页显示方法、模块和系统
US11480698B2 (en) Fluid saturation model for petrophysical inversion
BR102019010073A2 (pt) processo para a detecção de objetos geológicos em uma imagem sísmica
AU2019346137B2 (en) System and method for automated seismic interpretation
CN101430386B (zh) 一种地震多参数融合气藏检测方法
EP3978961A1 (en) System and method for quantitative seismic integration modeling workflow
EP4133310A1 (en) System and method for seismic inversion
BR102020010867A2 (pt) Método detector de assinaturas de reservatórios de gás em levantamentos sísmicos
US20210374465A1 (en) Methodology for learning a similarity measure between geophysical objects
US20220236435A1 (en) Low-Frequency Seismic Survey Design
Admasu A stochastic method for automated matching of horizons across a fault in 3D seismic data
Eze Modeling the Spatial Distribution of Natural Fractures in Shale Reservoirs using Machine Learning and Geostatistical Methods
Hidayat et al. The Pematang Group Sand Analysis Using Growing Neural Network Machine Learning
CN117270054A (zh) 一种目标井区多层裂缝解释方法、装置及计算机设备
US20180364382A1 (en) Similarity Determination based on a Coherence Function
CN115688541A (zh) 一种半监督深度类别自编码岩相识别方法及装置
Benvegna et al. Metrics, clustering and simulations to evaluate seismic signals.
JESUS Multi-attribute framework analysis for evaluating the potential hidrocarbon reservoir in siliciclastic and carbonate environments

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]