WO2021235865A1 - Stretchable near-infrared led band for smart healthcare - Google Patents

Stretchable near-infrared led band for smart healthcare Download PDF

Info

Publication number
WO2021235865A1
WO2021235865A1 PCT/KR2021/006286 KR2021006286W WO2021235865A1 WO 2021235865 A1 WO2021235865 A1 WO 2021235865A1 KR 2021006286 W KR2021006286 W KR 2021006286W WO 2021235865 A1 WO2021235865 A1 WO 2021235865A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stretchable
stretched
infrared
health care
Prior art date
Application number
PCT/KR2021/006286
Other languages
French (fr)
Korean (ko)
Inventor
김인미
Original Assignee
(주)케이디엔에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케이디엔에이 filed Critical (주)케이디엔에이
Publication of WO2021235865A1 publication Critical patent/WO2021235865A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0618Psychological treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0622Optical stimulation for exciting neural tissue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/22Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports flexible or deformable, e.g. into a curved shape
    • F21S4/24Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports flexible or deformable, e.g. into a curved shape of ribbon or tape form, e.g. LED tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • An embodiment of the present invention relates to a stretchable near-infrared LED band for smart health care.
  • the solution is to reduce the weight and spread of the near-infrared treatment device, and it should be designed with a focus on wearability so that the elderly can wear it at all times without any objection.
  • a stretchable near-infrared LED band for smart health care relates to a near-infrared LED band for health care, comprising: a stretchable substrate including a stretchable material; a plurality of stretching electrodes formed on the stretching substrate and printed in a straight pattern; a plurality of LED chips attached to the stretched substrate for irradiating near-infrared rays; and a stretching paste, and a plurality of stretching solders respectively electrically connecting the LED chip and the stretching electrode.
  • the first LED chip protective layer comprising a stretchable material and including a plurality of caps formed to individually surround one of the LED chips and the stretched solder connected to each LED chip; and a second LED chip protective layer including a stretchable material and formed at a position corresponding to the first LED chip protective layer on the rear surface of the stretched substrate, respectively.
  • the stretchable substrate protective layer formed on the entire surface of the stretched substrate to cover the first LED chip protective layer, the second LED chip protective layer, and the stretched electrode may be further included.
  • the stretched electrode may include a first layer formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material; a second layer formed to have a second hardness by mixing a conductive paste, a curing solvent, and a stretchable material; and a third layer formed by mixing a conductive paste, a curing solvent, and a stretchable material to have the first hardness, wherein the first layer is disposed as a lowermost layer, and the third layer is disposed as an uppermost layer, At least one or more layers of the second layer may be repeatedly disposed in a stacked structure of the first layer or the third layer.
  • the first hardness may be relatively lower than the second hardness.
  • first hardness may be 50
  • second hardness may be 90
  • each of the first layer and the third layer includes silver nanoparticles, a curing agent, and a thermoplastic polyurethane (TPU), and the second layer includes silver microparticles, a curing solvent, and a thermoplastic polyurethane (TPU). can do.
  • TPU thermoplastic polyurethane
  • a blending ratio of silver microparticles blended to form the second layer may be higher than a blending ratio of silver nanoparticles blended to form the first layer and the third layer.
  • each of the first layer and the third layer is formed by mixing 50% silver nanoparticles, 5% curing agent, and 45% thermoplastic polyurethane (TPU), and the second layer is silver micro It may be formed by mixing 70% of particles, 5% of curing solvent, and 25% of thermoplastic polyurethane (TPU).
  • the stretched solder is formed by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material
  • the conductive paste may be formed by mixing different types of conductive pastes at different mixing ratios.
  • the stretched solder may be formed by mixing silver microparticles, copper microparticles, a curing solvent (Gamma-butylrolatone), and thermoplastic polyurethane (TPU).
  • a curing solvent Gamma-butylrolatone
  • TPU thermoplastic polyurethane
  • the stretched solder may be formed by mixing 50% silver microparticles, 10% copper microparticles, 15% curing solvent (Gamma-butylrolatone), and 25% thermoplastic polyurethane (TPU).
  • the present invention by applying a material harmless to the human body, there is no side effect, the fit and convenience are increased, the economic burden is minimized, and a smart health care capable of SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate. It is possible to provide a stretchable near-infrared LED band for SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate. It is possible to provide a stretchable near-infrared LED band for SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate. It is possible to provide a stretchable near-infrared LED band for SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate. It is possible to provide a stretchable near-infrared LED band for SMD (Surface Mount Device) for attaching a near-
  • FIG. 1 is a cross-sectional view illustrating a detailed configuration of a stretchable near-infrared LED band for smart health care according to an embodiment of the present invention.
  • FIG. 2 is a view showing a stretched electrode manufactured according to an embodiment of the present invention.
  • FIG 3 is a view showing a detailed configuration of a stretching electrode according to an embodiment of the present invention.
  • FIG. 4 is a graph showing electrical characteristics of a stretched electrode according to an embodiment of the present invention.
  • FIG. 5 is a view showing the state of the stretching solder connecting the LED chip and the stretching electrode according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the temperature change with time when the stretched solder manufactured according to the embodiment of the present invention is formed.
  • FIG. 7 is a view showing a stretchable near-infrared LED band for smart health care manufactured according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating a detailed configuration of a stretchable near-infrared LED band for smart health care according to an embodiment of the present invention
  • FIG. 2 is a view showing a stretched electrode manufactured according to an embodiment of the present invention
  • Figure 3 is a view showing the detailed configuration of the stretched electrode according to the embodiment of the present invention
  • Figure 4 is a graph showing the electrical characteristics of the stretched electrode according to the embodiment of the present invention
  • Figure 5 is according to the embodiment of the present invention It is a view showing the state of the stretched solder connecting the LED chip and the stretched electrode
  • FIG. 6 is a graph showing the temperature change with time when the stretched solder manufactured according to an embodiment of the present invention is formed
  • FIG. 7 is an embodiment of the present invention It is a diagram showing a stretchable near-infrared LED band for smart health care manufactured according to an example.
  • a stretchable near-infrared LED band 1000 for smart health care includes a stretchable board 100 , stretchable electrodes 200 , and an LED chip. 300 , the bonding layer 400 , the stretched solder 500 , the first LED chip protective layer 600 , the second LED chip protective layer 700 , the stretched substrate protective layer 800 , and the light blocking pad 900 . It may include at least one.
  • the stretchable board 100 may include stretchable materials such as urethane, and may be manufactured with a stretch rate of 50% or more, but in this way, the stretchable board ( 100) is not limited to the material or material applied to, and the stretch rate of the manufactured substrate as described above, and may include a variety of materials and materials, and it is of course possible to manufacture and apply a substrate having a higher stretch rate.
  • the stretchable electrodes 200 may be formed on the stretchable substrate 200 and printed in a straight pattern.
  • the stretched electrode 200 is patterned in a straight line as shown in FIG. can be manufactured.
  • the stretching electrode 200 may have a multi-layer structure including a first layer 210 , a second layer 220 , and a third layer 230 .
  • the first layer 210 may be formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material in different mixing ratios, and may be formed in the lowermost layer.
  • a conductive paste As the electrode material applied to the first layer 210 of the present embodiment, it is preferable to use silver nanoparticles that are easy to solder and have excellent cost-effectiveness.
  • silver nanoparticles Ag Nano Particles
  • silver nano wires Ag Nano Wire
  • carbon nanotubes carbon nanotubes
  • hybrid material electrodes graphene electrodes (grapheme electrodes)
  • graphene electrodes grapheme electrodes
  • PEDOT/PSS conductive polymer
  • the stretchable material applied to the first layer 210 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the first layer 210 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
  • TPU thermoplastic polyurethane
  • the second layer 220 may be formed to have a second hardness relatively higher than the first hardness by mixing the conductive paste, the curing solvent (Gamma-butylrolatone), and the stretchable material in different mixing ratios.
  • the electrode material applied to the second layer 220 of the present embodiment it is preferable to use silver microparticles that are easy to solder and have excellent cost-effectiveness.
  • silver micro particles Ag Micro Particle
  • silver micro wire Ag Micro Wire
  • hybrid material electrode graphene electrode (grapheme electrode), conductive polymer (PEDOT/PSS) ) electrode, etc.
  • PEDOT/PSS conductive polymer
  • the stretchable material applied to the second layer 220 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the second layer 220 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
  • TPU thermoplastic polyurethane
  • the third layer 230 may be formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material in different mixing ratios, and may be formed in the lowermost layer.
  • a conductive paste As the electrode material applied to the first layer 210 of the present embodiment, it is preferable to use silver nanoparticles that are easy to solder and have excellent cost-effectiveness.
  • silver nanoparticles Ag Nano Particles
  • silver nano wires Ag Nano Wire
  • carbon nanotubes carbon nanotubes
  • hybrid material electrodes graphene electrodes (grapheme electrodes)
  • graphene electrodes grapheme electrodes
  • PEDOT/PSS conductive polymer
  • the stretchable material applied to the first layer 210 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the first layer 210 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
  • TPU thermoplastic polyurethane
  • the stretching electrode 200 has a multilayer structure in which the first layer 210, the second layer 220, and the third layer 230 are combined,
  • the first layer 210 is disposed as the lowermost layer
  • the third layer 230 is disposed as the uppermost layer (wherein the first and second layers 210 and 230 are made of substantially the same material). at least one layer) and the second layer 220 may be repeatedly disposed in a stacked structure of the first layer 210 or the third layer 230 .
  • 'lowest layer [first layer 210] - middle layer [second layer 220 / third layer 230 / second layer] (220) / third layer 230 / second layer 220 / third layer 230 / second layer 220] - may be made of a multi-layer structure of the uppermost layer [third layer 230]' , in this case, it is important that the second layer 220 is interposed between the first layer 210 and/or the third layer 230 .
  • the mixing ratio of silver micro-particles mixed to form the second layer 220 is mixed to form the first layer 210 and the third layer 230 . It can be set higher than the mixing rate of particles.
  • each of the first layer 210 and the third layer 230 is formed by mixing 50% silver nanoparticles, 5% curing agent (hardness 60), and 45% thermoplastic polyurethane (TPU).
  • the second layer 220 is formed by mixing 70% silver microparticles, 5% curing solvent (hardness 60), and 25% thermoplastic polyurethane (TPU), and has a first hardness of 50.
  • the first and third layers 210 and 230 and the second layer 220 having a second hardness of 90 may be formed, and more specific details thereof may be summarized in Table 1 below.
  • silver nanoparticles are applied to the conductive pastes included in the first layer 210 (Layer 1) and the third layer 230 (Layer 3), and the mixing ratio is 50%, respectively. and nano-sized particles are used, while the conductive paste included in the second layer 220 (Layer 2) is formed with Ag Micro Particles and the mixing ratio is 70%, so that the first and third The hardness of the layers 210 and 230 (Layer 1 and 3) is relatively lower than that of the second layer 220 (Layer 2).
  • first and third having relatively low hardness
  • a portion of the layers 210 and 230 may penetrate the corresponding crack to maintain conductivity without breaking the stretching electrode 200 .
  • the stretched electrode 200 forms a multi-layer structure with different mixtures and hardnesses of the conductive paste and the stretchable material as described above, and is patterned in a linear shape of about 0.2 to 0.8 mm, so that it is more It may have an improved stretch rate.
  • FIG. 4 is an experimental result for the stretched electrode 200 of this embodiment, and when comparing the characteristic curves, 'elongation vs.
  • the stretched electrode 200 of this embodiment based on 50% has a differentiated strength in that the resistance value changes very low compared to the conventional stretched electrode.
  • the near-infrared LED band 1000 to which the stretching electrode 200 having a resistance value having such an improvement in stretch rate (or elongation rate) and a low change rate is applied wears a near-infrared LED treatment device for medical use like clothes, wears like a band, or like a pars. It can also be applied in the form of an attachment, which enables constant treatment and self-treatment even in the case of the elderly or the disabled without restriction of activity.
  • the LED chip 300 may be adhered to the stretched substrate 100 through a bonding material to irradiate near-infrared rays.
  • ATP adenosine triphosphate
  • triphosphate triphosphate
  • ATP is formed of oxygen and glucose, and is delivered to each tissue through capillaries.
  • Most people with neurological diseases have problems with blood circulation. This is because ATP is not sufficiently provided through capillaries.
  • the mitochondria cannot fundamentally play the role of mitochondria, the mitochondria send pain signals to the brain, which is the background of pain, that is, the onset of neurological diseases.
  • Mitochondria are very sensitive to light. In particular, when mitochondria are stimulated in the near-infrared band, ATP production increases, and pain is reduced by properly providing ATP to each tissue.
  • the light source energy of near-infrared light can penetrate 20 to 100 mm of human skin and tissue into the muscle tissue of blood vessels. At this time, the muscle tissue expands and relaxes the diameter of the blood vessel to facilitate the blood flow of the blood vessel, so that it is possible to treat inflammation.
  • near-infrared light therapy restores oxidized tissue due to increased blood circulation, and when it is repeatedly operated according to a certain rule, improved human sensitivity improves gait and sense of balance, and reduced pain relieves more comfortable activity. and be able to sleep. In particular, it can reduce burning pain, stinging pain, and even inflammation throughout the body.
  • the bonding layer 400 serves to adhere the lower surface of the LED chip 300 to the upper portion of the stretched substrate 100 , and may be formed by bonding with a bonding material and then curing.
  • the stretching solder 500 may electrically connect between the LED chip 300 and the stretching electrode 200, respectively, as shown in FIG. 5 .
  • the stretched solder 500 is formed by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material, wherein the conductive paste includes different types of conductive pastes. It is preferable to be formed by mixing in different mixing ratios.
  • the stretched solder 500 may be formed by mixing silver micro particles (Ag Micro Particles), copper micro particles (Cu Micro Particles), a curing solvent (Gamma-butylrolatone), and thermoplastic polyurethane (TPU). .
  • the stretched solder 500 may be formed by mixing 50% silver microparticles, 10% copper microparticles, 15% curing solvent (Gamma-butylrolatone), and 25% thermoplastic polyurethane (TPU).
  • TPU thermoplastic polyurethane
  • the temperature of the Y-axis gradually increased over time on the X-axis.
  • the temperature profile was maintained for a certain period of time, and then increased again.
  • the temperature profile gradually decreased. Accordingly, it can be confirmed that the soldering material is formed in a stable structure on the electrode without spreading or dispersing.
  • SMD Surface Mount Device
  • SMD Surface Mount Device
  • the first LED chip protective layer 600 is coated with a stretchable material formed to individually surround one LED chip 300 and the stretched solder 500 connected to each LED chip (hardness 60 or less, elasticity 50%) Hereinafter, transparent) may be formed into a plurality of cap structures. That is, the first LED chip protective layer 600 is formed for each LED chip 300 to form an island.
  • the stretchable material applied to the first LED chip protective layer 600 may include transparent and colorless polyurethane, but in this embodiment, various materials having transparent and colorless stretching characteristics as well as polyurethane are used. can be applied.
  • the second LED chip protective layer 700 is coated with a stretchable material at a position corresponding to the first LED chip protective layer 600 on the rear surface of the stretched substrate 100 (hardness 60 or less, elasticity 50% or less, transparent ) and can be formed respectively.
  • the stretchable material applied to the second LED chip protective layer 700 may include transparent and colorless polyurethane, but in this embodiment, various materials having transparent and colorless stretching characteristics as well as polyurethane are used. can be applied.
  • the stretchable substrate protective layer 800 is a stretchable material on the entire surface of the stretched substrate 100 so as to cover the first LED chip protective layer 600 , the second LED chip protective layer 700 and the stretched electrode 200 .
  • This coating (hardness 30 or less, the same as the stretched substrate, transparent) can be formed.
  • the light blocking pad 900 may be formed such that an upper portion of the first LED chip protective layer 600 and a portion of the stretched substrate protective layer 800 covering the upper portion of the first LED chip protective layer 600 are exposed.
  • the material may include the nonwoven fabric 5T, but in this embodiment, not only the nonwoven fabric but also various materials having elongation properties may be used.
  • the light blocking pad 900 serves to block light from being emitted from the LED chip 300 to other than a portion of the first LED chip protective layer 600 and the stretched substrate protective layer 800 .
  • the stretchable near-infrared LED band for smart health care has no side effects by applying a material harmless to the human body, increases fit and convenience, minimizes economic burden, and is used for attaching a near-infrared LED to a stretchable and stretchable substrate.
  • SMD Surface Mount Device

Abstract

The present invention relates to a stretchable near-infrared LED band for smart healthcare, and is intended to enable a surface mount device (SMD) for attaching a near-infrared LED to a stretchable substrate, wherein a material harmless to the human body is applied to eliminate side effects, comfort and ease of wear are increased, and economic burden is minimized. According to one embodiment, disclosed is a stretchable near-infrared LED band for smart healthcare, the band comprising: a stretchable substrate including a stretchable material; a plurality of stretchable electrodes formed on the stretchable substrate and printed in a straight-line pattern; a plurality of LED chips that are attached to the stretchable substrate and are for emitting near-infrared rays; and a plurality of stretchable solder parts including a stretchable paste and electrically connecting the LED chips to the stretchable electrodes, respectively.

Description

스마트 헬스 케어용 스트레처블 근적외선 LED 밴드Stretchable Near Infrared LED Band for Smart Healthcare
본 발명의 실시예는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드에 관한 것이다.An embodiment of the present invention relates to a stretchable near-infrared LED band for smart health care.
2020년 65세 이상 인구는 전체 인구(내국인)의 15.7%를 차지하는 813만명으로 증가 예상되며, 건강수명 남 65세, 여 67세 대비 기대수명은 남자 77.9세, 여자 84.6세로 국민1인당 의료비지출도 매년 평균6.6%씩 증가하고 있다. 이에 인구 고령화에 따라 의료서비스 및 건강관리를 통한 건강수명 증대가 요구되고 있다.In 2020, the population aged 65 and over is expected to increase to 8.13 million, accounting for 15.7% of the total population (Koreans). It is increasing by an average of 6.6% every year. Accordingly, with the aging of the population, it is required to increase the healthy lifespan through medical services and health management.
경상의료비 증가속도(GDP 대비)는 ‘10년 대비 ‘16년 1.2% 상승하여, OECD 평균 증가(0.2%)보다 높은 상승폭을 보이는데, 만 65세 이상 고령자의 1인당 연간 진료비가 2018년 처음으로 400만원을 넘어섰으며, 전체 고령자 진료비는 지난해 28조3247억원으로 2010년(14조1350억원)의 두 배가 됐다. 세계에서 가장 빨리 고령화되는 우리 사회는 앞으로 고령자 진료비 증가와 건강보험 재정적자 부담 등 심각한 사회적 문제에 직면하고 있다.The rate of increase in ordinary medical expenses (relative to GDP) rose 1.2% in 2016 compared to 2010, which is higher than the OECD average increase (0.2%). The total medical expenses for the elderly reached 28.32 trillion won last year, doubling from 14.135 trillion won in 2010. Our society, which is aging the fastest in the world, is facing serious social problems such as increased medical expenses for the elderly and the burden of health insurance budget deficits.
2017년 고령화 노인 만성질병 중 골관절염, 류마티스 관절염, 요통, 좌골신경통 등 신경질환계의 질병이 전체 만성질병의 22%를 차지하고 있다. 이에 사회적 비용으로 산출 시 약 6조2천억원의 손실이며, 개인평균당 년228만원이 지출되고 있다.Among the chronic diseases of the aging elderly in 2017, neurological diseases such as osteoarthritis, rheumatoid arthritis, back pain, and sciatica accounted for 22% of all chronic diseases. Therefore, when calculated as a social cost, it is a loss of about 6.2 trillion won, and an average of 2.28 million won per individual is spent annually.
미국 MIT대학 및 일본 이(理)화학연구소 연구팀에서는 광 치료(LED Therapy)관련 연구개발에 통증치료는 물론, 불치병으로 알려진 알츠하이머 및 암 치료에 이르기까지 연구영역을 넓히고 있으며, 미래의료기기 사업화에 박차를 가하고 있다. The research team at MIT University in the U.S. and the Institute of Physics and Chemistry in Japan are expanding their research areas from light therapy (LED Therapy)-related R&D to not only pain treatment, but also Alzheimer's and cancer, known incurable diseases, spurring the commercialization of future medical devices. is applying
좀 더 구체적으로, 광 의료기기 산업이 지속적인 높은 성장률을 보이면서, 미국, 유럽, 일본 등 선진국에서는 보건 의료 과학기술을 21세기 전략 산업의 하나로 선정하여 국가적으로 집중적인 연구개발 프로그램을 추진하고 있으며, 관련 시장의 확대를 기대하고 있다.More specifically, as the optical medical device industry continues to show a high growth rate, advanced countries such as the United States, Europe, and Japan have selected health and medical science and technology as one of the strategic industries of the 21st century and are promoting national intensive R&D programs. is expected to expand.
현재까지 시장성 있는 광역학기기는 기존 광원으로 임상검증이 완료된 원적외선 치료기, 광 조사기 등이 대부분이며, LED 광원을 이용한 치료기기는 이미 연구개발단계를 벗어나 임상 검증을 밟고 있다. 기존 광학장비를 이용한 레이저 치료기기의 안전성 평가 규격을 바탕으로 새로운 개념의 LED 광원 기반 치료기의 안전성을 확보해 가고 있으며, 국제 규격 및 의료 규격을 준수 하는 LED 광원 개발과 임상적 치료 기전 연구 및 실험을 동시에 진행하고 있다.Until now, most marketable photodynamic devices are far-infrared therapy devices and light irradiators that have been clinically verified as existing light sources. Based on the safety evaluation standards for laser treatment devices using existing optical equipment, we are securing the safety of a new concept LED light source-based treatment device. are proceeding at the same time.
'Photon Therapeutics Ltd.'를 비롯한 외국 회사들이 세계 LED 치료기 시장에서 각축을 벌이고 있는 지금, 국내 LED 치료기 시장에서는 소수의 영세한 기업이 제품 출시를 시작하고 있으며, 수입제품의 우수한 성능과 품질을 따라잡기 위해 노력하고 있다.While foreign companies including 'Photon Therapeutics Ltd.' are competing in the global LED treatment device market, a small number of small companies are starting to launch their products in the domestic LED treatment device market. are working for
그러나, 해외대비 국내는 아직도 까다로운 의료기기 규제 및 법으로 인해 영세기업의 경우 엄두를 내지 못하고 있는 안타까운 실정이다.However, it is a pity that small businesses cannot afford to do so due to strict medical device regulations and laws in Korea compared to overseas.
근적외선LED의 치료효과는 이미 잘 알려져 있고, 이를 이용한 알츠하이머 치료연구분야까지 더욱 확대되고 있다.The therapeutic effect of near-infrared LED is already well known, and it is further expanded to the field of Alzheimer's treatment research using it.
상기와 같이 국내 및 해외연구진을 통해 근적외선 치료에 대한 임상효과는 입증되어 실용화되고 있으나, 대부분 병원이나 의료시설에 의존하여야 하므로 상시 치료와 꾸준한 자가치료(Self-Care)가 어렵다는 것인 현실이다.As described above, the clinical effect of near-infrared treatment has been proven and put to practical use through domestic and foreign researchers, but the reality is that it is difficult to always treat and maintain self-treatment (Self-Care) because most of them depend on hospitals or medical facilities.
결과적으로 해결방안은 근적외선 치료기기의 경량화, 보급화가 절실하며 노인들에게 있어서 거부감 없이 상시 착용이 가능하도록 착용감 중점의 디자인이 되어야 한다.As a result, the solution is to reduce the weight and spread of the near-infrared treatment device, and it should be designed with a focus on wearability so that the elderly can wear it at all times without any objection.
본 발명의 실시예는, 인체 무해한 소재를 적용하여 부작용이 없고, 착용감과 편의성이 증대되고, 경제적 부담을 최소화하며, 신축 가능한 연신 기판에 근적외선 LED를 부착하기 위한 SMD(Surface Mount Device)가 가능한 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드를 제공한다.In an embodiment of the present invention, there is no side effect by applying a material harmless to the human body, the fit and convenience are increased, the economic burden is minimized, and a SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate is possible smart Provides stretchable near-infrared LED bands for healthcare.
본 발명의 실시예에 따른 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드는, 헬스 케어를 위한 근적외선 LED 밴드에 관한 것으로, 스트레처블 물질을 포함하는 연신 기판; 상기 연신 기판 상에 형성되고, 직선 패턴으로 인쇄된 다수의 연신 전극; 상기 연신 기판 상에 접착되어 근적외선을 조사하기 위한 다수의 LED칩; 및 연신 페이스트를 포함하고, 상기 LED칩과 상기 연신 전극 간을 각각 전기적으로 연결하는 다수의 연신 솔더를 포함한다.A stretchable near-infrared LED band for smart health care according to an embodiment of the present invention relates to a near-infrared LED band for health care, comprising: a stretchable substrate including a stretchable material; a plurality of stretching electrodes formed on the stretching substrate and printed in a straight pattern; a plurality of LED chips attached to the stretched substrate for irradiating near-infrared rays; and a stretching paste, and a plurality of stretching solders respectively electrically connecting the LED chip and the stretching electrode.
또한, 스트레처블 물질을 포함하고, 상기 LED칩 하나와 각 LED칩에 연결된 연신 솔더를 각각 개별적으로 둘러싸도록 형성된 다수의 캡을 포함하는 제1 LED칩 보호층; 및 스트레처블 물질을 포함하고, 상기 연신 기판의 배면 중 상기 제1 LED칩 보호층과 대응되는 위치에 각각 형성된 제2 LED칩 보호층을 더 포함할 수 있다.In addition, the first LED chip protective layer comprising a stretchable material and including a plurality of caps formed to individually surround one of the LED chips and the stretched solder connected to each LED chip; and a second LED chip protective layer including a stretchable material and formed at a position corresponding to the first LED chip protective layer on the rear surface of the stretched substrate, respectively.
또한, 스트레처블 물질을 포함하고, 상기 제1 LED칩 보호층, 상기 제2 LED칩 보호층 및 상기 연신 전극을 덮도록 상기 연신 기판의 전면에 형성된 연신 기판 보호층을 더 포함할 수 있다.In addition, including a stretchable material, the stretchable substrate protective layer formed on the entire surface of the stretched substrate to cover the first LED chip protective layer, the second LED chip protective layer, and the stretched electrode may be further included.
또한, 상기 연신 전극은, 전도성 페이스트, 경화용제(Gamma-butylrolatone), 스트레처블 물질이 배합되어 제1 경도를 갖도록 형성된 제1 레이어; 전도성 페이스트, 경화용제, 스트레처블 물질이 배합되어 제2 경도를 갖도록 형성된 제2 레이어; 및 전도성 페이스트, 경화용제, 스트레처블 물질이 배합되어 상기 제1 경도를 갖도록 형성된 제3 레이어를 포함하되, 상기 제1 레이어가 최하부층으로 배치되고, 상기 제3 레이어가 최상부층으로 배치되고, 상기 제2 레이어가 상기 제1 레이어 또는 상기 제3 레이어의 적층 구조로 적어도 한 층 이상 반복 배치될 수 있다.In addition, the stretched electrode may include a first layer formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material; a second layer formed to have a second hardness by mixing a conductive paste, a curing solvent, and a stretchable material; and a third layer formed by mixing a conductive paste, a curing solvent, and a stretchable material to have the first hardness, wherein the first layer is disposed as a lowermost layer, and the third layer is disposed as an uppermost layer, At least one or more layers of the second layer may be repeatedly disposed in a stacked structure of the first layer or the third layer.
또한, 상기 제1 경도가 상기 제2 경도보다 상대적으로 낮을 수 있다.In addition, the first hardness may be relatively lower than the second hardness.
또한, 상기 제1 경도는 50이고, 상기 제2 경도는 90일 수 있다.In addition, the first hardness may be 50, and the second hardness may be 90.
또한, 상기 제1 레이어 및 상기 제3 레이어 각각은 은 나노 파티클, 경화용재 및 열가소성 폴리우레탄(TPU)을 포함하고, 상기 제2 레이어는 은 마이크로 파티클, 경화용제 및 열가소성 폴리우레탄(TPU)을 포함할 수 있다.In addition, each of the first layer and the third layer includes silver nanoparticles, a curing agent, and a thermoplastic polyurethane (TPU), and the second layer includes silver microparticles, a curing solvent, and a thermoplastic polyurethane (TPU). can do.
또한, 상기 제2 레이어를 형성하기 위해 배합되는 은 마이크로 파티클의 배합률이 상기 제1 레이어 및 상기 제3 레이어를 형성하기 위해 배합되는 은 나노 파티클의 배합률보다 높을 수 있다.Also, a blending ratio of silver microparticles blended to form the second layer may be higher than a blending ratio of silver nanoparticles blended to form the first layer and the third layer.
또한, 상기 제1 레이어 및 상기 제3 레이어 각각은, 은 나노 파티클이 50%, 경화용재가 5% 및 열가소성 폴리우레탄(TPU)이 45%로 배합되어 형성되고, 상기 제2 레이어는, 은 마이크로 파티클이 70%, 경화용제가 5% 및 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성될 수 있다.In addition, each of the first layer and the third layer is formed by mixing 50% silver nanoparticles, 5% curing agent, and 45% thermoplastic polyurethane (TPU), and the second layer is silver micro It may be formed by mixing 70% of particles, 5% of curing solvent, and 25% of thermoplastic polyurethane (TPU).
또한, 상기 연신 솔더는, 전도성 페이스트, 경화용제(Gamma-butylrolatone), 스트레처블 물질이 배합되어 형성되고, 상기 전도성 페이스트는, 서로 다른 종류의 전도성 페이스트가 서로 다른 배합률로 배합되어 형성될 수 있다.In addition, the stretched solder is formed by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material, and the conductive paste may be formed by mixing different types of conductive pastes at different mixing ratios. .
또한, 상기 연신 솔더는, 은 마이크로 파티클, 구리 마이크로 파티클, 경화용제(Gamma-butylrolatone), 열가소성 폴리우레탄(TPU)이 배합되어 형성될 수 있다.In addition, the stretched solder may be formed by mixing silver microparticles, copper microparticles, a curing solvent (Gamma-butylrolatone), and thermoplastic polyurethane (TPU).
또한, 상기 연신 솔더는, 은 마이크로 파티클이 50%, 구리 마이크로 파티클이 10%, 경화용제(Gamma-butylrolatone)가 15%, 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성될 수 있다.In addition, the stretched solder may be formed by mixing 50% silver microparticles, 10% copper microparticles, 15% curing solvent (Gamma-butylrolatone), and 25% thermoplastic polyurethane (TPU).
본 발명에 따르면, 인체 무해한 소재를 적용하여 부작용이 없고, 착용감과 편의성이 증대되고, 경제적 부담을 최소화하며, 신축 가능한 연신 기판에 근적외선 LED를 부착하기 위한 SMD(Surface Mount Device)가 가능한 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드를 제공할 수 있다.According to the present invention, by applying a material harmless to the human body, there is no side effect, the fit and convenience are increased, the economic burden is minimized, and a smart health care capable of SMD (Surface Mount Device) for attaching a near-infrared LED to a stretchable and stretchable substrate. It is possible to provide a stretchable near-infrared LED band for
도 1은 본 발명의 실시예에 따른 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드의 세부 구성을 설명하기 위해 나타낸 단면도이다.1 is a cross-sectional view illustrating a detailed configuration of a stretchable near-infrared LED band for smart health care according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 제작된 연신 전극을 나타낸 도면이다.2 is a view showing a stretched electrode manufactured according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 연신 전극의 세부 구성을 나타낸 도면이다.3 is a view showing a detailed configuration of a stretching electrode according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 연신 전극의 전기적 특성을 나타낸 그래프이다.4 is a graph showing electrical characteristics of a stretched electrode according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 LED칩과 연신 전극을 연결하는 연신 솔더의 상태를 나타낸 도면이다.5 is a view showing the state of the stretching solder connecting the LED chip and the stretching electrode according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 제작된 연신 솔더 형성 시 시간에 따른 온도 변화를 나타낸 그래프이다.6 is a graph showing the temperature change with time when the stretched solder manufactured according to the embodiment of the present invention is formed.
도 7은 본 발명의 실시예에 따라 제작된 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드를 나타낸 도면이다.7 is a view showing a stretchable near-infrared LED band for smart health care manufactured according to an embodiment of the present invention.
도 1은 본 발명의 실시예에 따른 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드의 세부 구성을 설명하기 위해 나타낸 단면도이고, 도 2는 본 발명의 실시예에 따라 제작된 연신 전극을 나타낸 도면이고, 도 3은 본 발명의 실시예에 따른 연신 전극의 세부 구성을 나타낸 도면이고, 도 4는 본 발명의 실시예에 따른 연신 전극의 전기적 특성을 나타낸 그래프이고, 도 5는 본 발명의 실시예에 따른 LED칩과 연신 전극을 연결하는 연신 솔더의 상태를 나타낸 도면이고, 도 6은 본 발명의 실시예에 따라 제작된 연신 솔더 형성 시 시간에 따른 온도 변화를 나타낸 그래프이며, 도 7은 본 발명의 실시예에 따라 제작된 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드를 나타낸 도면이다.1 is a cross-sectional view illustrating a detailed configuration of a stretchable near-infrared LED band for smart health care according to an embodiment of the present invention, and FIG. 2 is a view showing a stretched electrode manufactured according to an embodiment of the present invention, Figure 3 is a view showing the detailed configuration of the stretched electrode according to the embodiment of the present invention, Figure 4 is a graph showing the electrical characteristics of the stretched electrode according to the embodiment of the present invention, Figure 5 is according to the embodiment of the present invention It is a view showing the state of the stretched solder connecting the LED chip and the stretched electrode, FIG. 6 is a graph showing the temperature change with time when the stretched solder manufactured according to an embodiment of the present invention is formed, and FIG. 7 is an embodiment of the present invention It is a diagram showing a stretchable near-infrared LED band for smart health care manufactured according to an example.
도 1을 참조하면, 본 발명의 실시예에 따른 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드(1000)는, 연신 기판(stretchable board)(100), 연신 전극(stretchable electrodes)(200), LED칩(300), 본딩층(400), 연신 솔더(500), 제1 LED칩 보호층(600), 제2 LED칩 보호층(700), 연신 기판 보호층(800) 및 차광 패드(900) 중 적어도 하나를 포함할 수 있다.Referring to FIG. 1 , a stretchable near-infrared LED band 1000 for smart health care according to an embodiment of the present invention includes a stretchable board 100 , stretchable electrodes 200 , and an LED chip. 300 , the bonding layer 400 , the stretched solder 500 , the first LED chip protective layer 600 , the second LED chip protective layer 700 , the stretched substrate protective layer 800 , and the light blocking pad 900 . It may include at least one.
상기 연신 기판(stretchable board)(100)은, 우레탄(urethane)과 같은 스트레처블 물질(stretchable materials)을 포함하여 이루질 수 있으며, 신축율 50% 이상으로 제작될 수 있으나, 이와 같이 연신 기판(100)에 적용되는 물질이나 재질, 제작된 기판의 신축율을 상기와 같이 한정하는 것은 아니며, 다양한 물질과 재질을 포함할 수 있으며, 더 높은 신축율을 갖는 기판을 제작하여 적용 가능함을 물론이다. The stretchable board 100 may include stretchable materials such as urethane, and may be manufactured with a stretch rate of 50% or more, but in this way, the stretchable board ( 100) is not limited to the material or material applied to, and the stretch rate of the manufactured substrate as described above, and may include a variety of materials and materials, and it is of course possible to manufacture and apply a substrate having a higher stretch rate.
상기 연신 전극(stretchable electrodes)(200)은, 연신 기판(200) 상에 형성되고, 직선 패턴으로 인쇄(patterning)될 수 있다. 예를 들어, 연신 전극(200)은 도 2의 (b)에 도시된 바와 같이 기존의 연신 기판과 같이 구불구불한 곡선 형태가 아닌 도 2의 (a)에 도시된 바와 같이 직선 형태로 패터닝되어 제작될 수 있다.The stretchable electrodes 200 may be formed on the stretchable substrate 200 and printed in a straight pattern. For example, the stretched electrode 200 is patterned in a straight line as shown in FIG. can be manufactured.
이러한 연신 전극(200)은 제1 레이어(210), 제2 레이어(220) 및 제3 레이어(230)를 포함하는 멀티 레이어(Multi-Layer) 구조로 이루어질 수 있다.The stretching electrode 200 may have a multi-layer structure including a first layer 210 , a second layer 220 , and a third layer 230 .
상기 제1 레이어(210)는, 전도성 페이스트, 경화용제(Gamma-butylrolatone)와 스트레처블 물질이 서로 다른 배합률로 배합되어 제1 경도를 갖도록 형성되고, 최하위층에 형성될 수 있다. 본 실시예의 제1 레이어(210)에 적용되는 전극 물질은 납땜(soldering)이 용이하면서 가성비 측면에서 우수한 은 나노 파티클(Ag Nano Particle)을 적용하는 것이 바람직하다. 다만, 본 실시예의 제1 레이어(210)에 은 나노 파티클(Ag Nano Particle)뿐만 아니라, 은 나노 와이어(Ag Nano Wire), 탄소나노튜브(carbon nanotube), 하이브리드 소재 전극, 그래핀 전극(grapheme electrodes), 전도성 고분자(PEDOT/PSS)전극 등을 적용할 수 있다. 또한, 제1 레이어(210)에 적용되는 스트레처블 물질은 연신이 용이한 열가소성 폴리우레탄(TPU)을 적용하는 것이 바람직하나, 본 실시예의 제1 레이어(210)에 적용되는 스트레처블 물질을 폴리우레탄으로만 한정하는 것이 아니라, 다양한 연신 물질을 적용할 수 있다.The first layer 210 may be formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material in different mixing ratios, and may be formed in the lowermost layer. As the electrode material applied to the first layer 210 of the present embodiment, it is preferable to use silver nanoparticles that are easy to solder and have excellent cost-effectiveness. However, in the first layer 210 of this embodiment, not only silver nanoparticles (Ag Nano Particles), but also silver nano wires (Ag Nano Wire), carbon nanotubes (carbon nanotubes), hybrid material electrodes, graphene electrodes (grapheme electrodes) ), conductive polymer (PEDOT/PSS) electrodes, etc. can be applied. In addition, the stretchable material applied to the first layer 210 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the first layer 210 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
상기 제2 레이어(220)는, 전도성 페이스트, 경화용제(Gamma-butylrolatone)와 스트레처블 물질이 서로 다른 배합률로 배합되어 제1 경도보다 상대적으로 높은 제2 경도를 갖도록 형성될 수 있다. 본 실시예의 제2 레이어(220)에 적용되는 전극 물질은 납땜(soldering)이 용이하면서 가성비 측면에서 우수한 은 마이크로 파티클(Ag Micro Particle)을 적용하는 것이 바람직하다. 다만, 본 실시예의 제2 레이어(220)에 은 마이크로 파티클(Ag Micro Particle)뿐만 아니라, 은 마이크로 와이어(Ag Micro Wire), 하이브리드 소재 전극, 그래핀 전극(grapheme electrodes), 전도성 고분자(PEDOT/PSS)전극 등을 적용할 수 있다. 또한, 제2 레이어(220)에 적용되는 스트레처블 물질은 연신이 용이한 열가소성 폴리우레탄(TPU)을 적용하는 것이 바람직하나, 본 실시예의 제2 레이어(220)에 적용되는 스트레처블 물질을 폴리우레탄으로만 한정하는 것이 아니라, 다양한 연신 물질을 적용할 수 있다.The second layer 220 may be formed to have a second hardness relatively higher than the first hardness by mixing the conductive paste, the curing solvent (Gamma-butylrolatone), and the stretchable material in different mixing ratios. As the electrode material applied to the second layer 220 of the present embodiment, it is preferable to use silver microparticles that are easy to solder and have excellent cost-effectiveness. However, in the second layer 220 of this embodiment, not only silver micro particles (Ag Micro Particle), but also silver micro wire (Ag Micro Wire), hybrid material electrode, graphene electrode (grapheme electrode), conductive polymer (PEDOT/PSS) ) electrode, etc. can be applied. In addition, the stretchable material applied to the second layer 220 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the second layer 220 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
상기 제3 레이어(230)는, 전도성 페이스트, 경화용제(Gamma-butylrolatone)와 스트레처블 물질이 서로 다른 배합률로 배합되어 제1 경도를 갖도록 형성되고, 최하위층에 형성될 수 있다. 본 실시예의 제1 레이어(210)에 적용되는 전극 물질은 납땜(soldering)이 용이하면서 가성비 측면에서 우수한 은 나노 파티클(Ag Nano Particle)을 적용하는 것이 바람직하다. 다만, 본 실시예의 제1 레이어(210)에 은 나노 파티클(Ag Nano Particle)뿐만 아니라, 은 나노 와이어(Ag Nano Wire), 탄소나노튜브(carbon nanotube), 하이브리드 소재 전극, 그래핀 전극(grapheme electrodes), 전도성 고분자(PEDOT/PSS)전극 등을 적용할 수 있다. 또한, 제1 레이어(210)에 적용되는 스트레처블 물질은 연신이 용이한 열가소성 폴리우레탄(TPU)을 적용하는 것이 바람직하나, 본 실시예의 제1 레이어(210)에 적용되는 스트레처블 물질을 폴리우레탄으로만 한정하는 것이 아니라, 다양한 연신 물질을 적용할 수 있다.The third layer 230 may be formed to have a first hardness by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material in different mixing ratios, and may be formed in the lowermost layer. As the electrode material applied to the first layer 210 of the present embodiment, it is preferable to use silver nanoparticles that are easy to solder and have excellent cost-effectiveness. However, in the first layer 210 of this embodiment, not only silver nanoparticles (Ag Nano Particles), but also silver nano wires (Ag Nano Wire), carbon nanotubes (carbon nanotubes), hybrid material electrodes, graphene electrodes (grapheme electrodes) ), conductive polymer (PEDOT/PSS) electrodes, etc. can be applied. In addition, the stretchable material applied to the first layer 210 is preferably a thermoplastic polyurethane (TPU) that is easy to stretch, but the stretchable material applied to the first layer 210 of this embodiment is used. It is not limited only to polyurethane, and various stretching materials can be applied.
이러한 연신 전극(200)은 제1 레이어(210), 제2 레이어(220) 및 제3 레이어(230)가 조합된 다층 구조로 이루어지며, The stretching electrode 200 has a multilayer structure in which the first layer 210, the second layer 220, and the third layer 230 are combined,
좀 더 구체적으로는 제1 레이어(210)가 최하부층으로 배치되고, 제3 레이어(230)가 최상부층으로 배치되고(여기서 제1 및 제2 레이어(210, 230)의 실질적으로 동일 구성물질로 이루어진 층임), 제2 레이어(220)가 제1 레이어(210) 또는 제3 레이어(230)의 적층 구조로 적어도 한 층 이상 반복 배치될 수 있다. More specifically, the first layer 210 is disposed as the lowermost layer, and the third layer 230 is disposed as the uppermost layer (wherein the first and second layers 210 and 230 are made of substantially the same material). at least one layer) and the second layer 220 may be repeatedly disposed in a stacked structure of the first layer 210 or the third layer 230 .
예를 들어, 도 3에 연신 전극(200)을 확대한 부분을 참조하면, '최하위층[제1 레이어(210)] - 중간층[제2 레이어(220)/제3 레이어(230)/제2 레이어(220)/제3 레이어(230)/제2 레이어(220)/제3 레이어(230)/제2 레이어(220)] - 최상위층[제3 레이어(230)]'의 다층 구조로 이루어질 수 있으며, 이때, 제2 레이어(220)가 제1 레이어(210) 및/또는 제3 레이어(230) 사이에 개재되는 것이 중요하다. For example, referring to the enlarged part of the stretching electrode 200 in FIG. 3 , 'lowest layer [first layer 210] - middle layer [second layer 220 / third layer 230 / second layer] (220) / third layer 230 / second layer 220 / third layer 230 / second layer 220] - may be made of a multi-layer structure of the uppermost layer [third layer 230]' , in this case, it is important that the second layer 220 is interposed between the first layer 210 and/or the third layer 230 .
본 실시예에 따른 연신 전극(200)에서 제2 레이어(220)를 형성하기 위해 배합되는 은 마이크로 파티클의 배합률이 제1 레이어(210) 및 제3 레이어(230)를 형성하기 위해 배합되는 은 나노 파티클의 배합률보다 높게 세팅될 수 있다. In the stretching electrode 200 according to the present embodiment, the mixing ratio of silver micro-particles mixed to form the second layer 220 is mixed to form the first layer 210 and the third layer 230 . It can be set higher than the mixing rate of particles.
예를 들어, 제1 레이어(210)와 제3 레이어(230) 각각은, 은 나노 파티클이 50%, 경화용재(경도 60)가 5% 및 열가소성 폴리우레탄(TPU)이 45%로 배합되어 형성되고, 제2 레이어(220)는, 은 마이크로 파티클이 70%, 경화용제(경도 60)가 5% 및 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성되고, 50의 제1 경도를 갖는 제1 및 제3 레이어(210, 230)와, 90의 제2 경도를 갖는 제2 레이어(220)가 형성될 수 있으며, 이에 대한 보다 구체적인 사항은 하기의 표 1과 같이 정리할 수 있다.For example, each of the first layer 210 and the third layer 230 is formed by mixing 50% silver nanoparticles, 5% curing agent (hardness 60), and 45% thermoplastic polyurethane (TPU). The second layer 220 is formed by mixing 70% silver microparticles, 5% curing solvent (hardness 60), and 25% thermoplastic polyurethane (TPU), and has a first hardness of 50. The first and third layers 210 and 230 and the second layer 220 having a second hardness of 90 may be formed, and more specific details thereof may be summarized in Table 1 below.
Electrode LayerElectrode Layer 원료Raw material 배합율mixing ratio 경도Hardness
Layer 1
(Low)
Layer 1
(Low)
nano Ag Particles nano Ag Particles 50%50% 5050
경화용제(Gama-Butylrolatone)Hardening solvent (Gama-Butylrolatone) 5%5%
Layer 2
(High)
Layer 2
(High)
Urethane TPU(경도60)Urethane TPU (hardness 60) 45%45% 9090
micro Ag Particlesmicro Ag Particles 70%70%
경화용제(Gama-Butylrolatone)Hardening solvent (Gama-Butylrolatone) 5%5%
Urethane TPU(경도60)Urethane TPU (hardness 60) 25%25%
Layer 3
(Low)
Layer 3
(Low)
nano Ag Particles nano Ag Particles 50%50% 5050
경화용제(Gama-Butylrolatone)Hardening solvent (Gama-Butylrolatone) 5%5%
Urethane TPU(경도60)Urethane TPU (hardness 60) 45%45%
표 1을 참조하면, 제1 레이어(210)(Layer 1)와 제3 레이어(230)(Layer 3)에 포함된 전도성 페이스트는 은 나노 파티클(Ag Nano Particle)을 적용하며 그 배합률이 각각 50%이며 나노 크기의 입자를 사용한 반면, 제2 레이어(220)(Layer 2)에 포함된 전도성 페이스트 은 마이크로 파티클(Ag Micro Particle)을 적용하며 그 배합률이 70%이 되도록 형성함으로써, 제1 및 제3 레이어(210, 230)(Layer 1, 3)의 경도가 제2 레이어(220)(Layer 2)의 경도보다 상대적으로 낮다. Referring to Table 1, silver nanoparticles are applied to the conductive pastes included in the first layer 210 (Layer 1) and the third layer 230 (Layer 3), and the mixing ratio is 50%, respectively. and nano-sized particles are used, while the conductive paste included in the second layer 220 (Layer 2) is formed with Ag Micro Particles and the mixing ratio is 70%, so that the first and third The hardness of the layers 210 and 230 (Layer 1 and 3) is relatively lower than that of the second layer 220 (Layer 2).
이러한 경우 연신 전극(200)이 신축되어 상하 방향으로 힘이 작용함에 따라 경도가 높은 제2 레이어(220)(Layer 2)에 미세 크랙(crack)들이 발생되더라도 경도가 상대적으로 낮은 제1 및 제3 레이어(210, 230)(Layer 1, 3)의 일부가 해당 크랙(crack)에 침투되어 연신 전극(200)이 끊어지지 않고 전도성을 유지시켜줄 수 있다.In this case, even if fine cracks are generated in the second layer 220 (Layer 2) having high hardness as the stretching electrode 200 is stretched and a force is applied in the vertical direction, first and third having relatively low hardness A portion of the layers 210 and 230 (Layers 1 and 3) may penetrate the corresponding crack to maintain conductivity without breaking the stretching electrode 200 .
종래의 연신 전극은 신축 시 전극의 기계적 충격(단선 및 클랙)방지를 위해 대부분 구불구불한 형태로 제작되나, 이는 회로 구성 시 미세전극 및 다양한 회로구성이 불가능하다. Conventional stretched electrodes are mostly manufactured in a serpentine shape to prevent mechanical shock (disconnection and cracking) of the electrode during expansion and contraction, but it is impossible to configure microelectrodes and various circuits during circuit configuration.
본 실시예에 따른 연신 전극(200)은 상기와 같이 전도성 페이스트 및 스트러처블 물질을 서로 다른 배합과 경도로 멀티 레이어 구조를 형성하고, 대략 0.2~0.8mm의 직선 형태로 패터닝됨으로써, 종래보다 더 향상된 신축율을 가질 수 있다.The stretched electrode 200 according to the present embodiment forms a multi-layer structure with different mixtures and hardnesses of the conductive paste and the stretchable material as described above, and is patterned in a linear shape of about 0.2 to 0.8 mm, so that it is more It may have an improved stretch rate.
한편, 도 4는 본 실시예의 연신 전극(200)에 대한 실험 결과로, 특성 곡선을 비교해보면 '연신율 vs. 저항값 변화 추이'를 볼 때 50%기준 본 실시예의 연신 전극(200)이 종래의 연신 전극에 비해 저항값이 매우 낮게 변화하는 차별화된 강점을 갖는다. Meanwhile, FIG. 4 is an experimental result for the stretched electrode 200 of this embodiment, and when comparing the characteristic curves, 'elongation vs. When looking at the 'resistance value change trend', the stretched electrode 200 of this embodiment based on 50% has a differentiated strength in that the resistance value changes very low compared to the conventional stretched electrode.
이러한 신축율(또는 연신율) 향상 및 낮은 변화율을 갖는 저항값을 갖는 연신 전극(200)이 적용된 근적외선 LED 밴드(1000)는, 메디칼용 근적외선 LED 치료기를 옷처럼 입거나, 밴드처럼 착용하거나 또는 파스처럼 부착형태로도 응용할 수 있게 되며, 이는 노약자나 장애자의 경우에도 활동의 제약 없이 상시 치료 및 자가치료를 가능하도록 한다.The near-infrared LED band 1000 to which the stretching electrode 200 having a resistance value having such an improvement in stretch rate (or elongation rate) and a low change rate is applied, wears a near-infrared LED treatment device for medical use like clothes, wears like a band, or like a pars. It can also be applied in the form of an attachment, which enables constant treatment and self-treatment even in the case of the elderly or the disabled without restriction of activity.
상기 LED칩(300)은, 연신 기판(100) 상에 본딩 물질을 통해 접착되어 근적외선을 조사할 수 있다.The LED chip 300 may be adhered to the stretched substrate 100 through a bonding material to irradiate near-infrared rays.
모든 인체조직에는 세포를 재생하는 소형발전소가 있는데, 이를 미토콘드리아(Mitochondria)라고 한다. 이는 인체의 에너지를 생산하는데 의학적으로 이러한 에너지를 아데노신(Adenosine Triphosphate)과 3인산, ATP로 요약해서 말한다. 여기서, ATP는 산소와 포도당으로 형성되어 있으며, 모세혈관을 통해 각 조직에 전달된다. 신경계 질환자는 대부분 혈액순환에 문제가 크다. 이는 모세혈관을 통해 ATP를 충분히 제공받지 못하기 때문이다. 즉, 근원적으로 미토콘드리아의 역할을 할 수 없게 되면 미토콘드리아는 뇌에 통증신호를 보내는데 이것이 통증 즉, 신경질환발병의 배경이다. 미토콘드리아는 빛에 매우 민감하다. 특히 근적외선 대에서 미토콘드리아를 자극하면 ATP생산이 증가하고, 각 조직에 ATP를 제대로 제공함으로써 통증이 줄어든다.Every human tissue has a small power plant that regenerates cells, which is called mitochondria. It produces the energy of the human body, and medically, this energy is summarized as adenosine triphosphate, triphosphate, and ATP. Here, ATP is formed of oxygen and glucose, and is delivered to each tissue through capillaries. Most people with neurological diseases have problems with blood circulation. This is because ATP is not sufficiently provided through capillaries. In other words, when the mitochondria cannot fundamentally play the role of mitochondria, the mitochondria send pain signals to the brain, which is the background of pain, that is, the onset of neurological diseases. Mitochondria are very sensitive to light. In particular, when mitochondria are stimulated in the near-infrared band, ATP production increases, and pain is reduced by properly providing ATP to each tissue.
또한, 근적외선의 광원 에너지는 혈관의 근육조직으로 20~100mm 인체피부 및 조직침투가 가능하다. 이때 근육조직은 혈관의 직경을 확장하고 이완시키어 혈관의 혈류를 원활하게 하여 염증 치료도 가능하다. In addition, the light source energy of near-infrared light can penetrate 20 to 100 mm of human skin and tissue into the muscle tissue of blood vessels. At this time, the muscle tissue expands and relaxes the diameter of the blood vessel to facilitate the blood flow of the blood vessel, so that it is possible to treat inflammation.
종합적으로 볼 때 근적외선 광 치료는 혈액순환의 증가로 산화된 조직을 회복시키면서 반복적으로 일정 규칙에 따라 작동되게 할 경우 향상된 인체 민감성은 걸음걸이와 인체균형감각을 좋게 하고, 감소된 통증은 좀더 편한 활동과 수면을 취할 수 있게 된다. 특히 온몸이 타는 듯한 통증과 찌르는 듯한 느낌의 통증 그리고 나아가 염증까지도 줄여줄 수 있다.Overall, near-infrared light therapy restores oxidized tissue due to increased blood circulation, and when it is repeatedly operated according to a certain rule, improved human sensitivity improves gait and sense of balance, and reduced pain relieves more comfortable activity. and be able to sleep. In particular, it can reduce burning pain, stinging pain, and even inflammation throughout the body.
상기 본딩층(400)은 LED칩(300)의 하면을 연신 기판(100) 상부에 접착시키는 역할을 하며, 본딩 물질로 본딩한 후 경화되어 형성될 수 있다.The bonding layer 400 serves to adhere the lower surface of the LED chip 300 to the upper portion of the stretched substrate 100 , and may be formed by bonding with a bonding material and then curing.
상기 연신 솔더(500)는 도 5에 도시된 바와 같이 LED칩(300)과 연신 전극(200) 간을 각각 전기적으로 연결할 수 있다. The stretching solder 500 may electrically connect between the LED chip 300 and the stretching electrode 200, respectively, as shown in FIG. 5 .
일반적으로 이형전극 및 패턴에 반도체 소자들을 탑재하는 방법으로는 고가의 해외 은(Ag) 본드로 사용할 수밖에 없는 현실이며, 챔버(Chamber)에서 백킹(Backing)하는 방법 외에는 없었다. 챔버(Chamber)에서 백킹(Backing)하는 방법이 일반적이나, 열의 분포 및 전달이 일정하지 않아 부분적으로 완전 소결이 되지 않을 경우 용해제가 내부에 남아 저항성분으로 전환되어 전극저항이 높아질 수 밖에 없다 (참고: Ag본드 350~450만원/Kg). 더 큰 문제점은 최소 130℃ 또는 160℃에서 1시간 이상 백킹(Backing)해야 하므로 생산성이 매우 낮으며, 또 다른 문제점은 SMD(Surface Mount Device) 솔더 플로우(Solder Flow) 시 1시간씩 백킹(Backing)하는 경우는 넥 포인트(Neck point)가 발생하여 대량 연속생산이 불가능하다.In general, there is no choice but to use expensive overseas silver (Ag) bond as a method of mounting semiconductor devices on a heterogeneous electrode and pattern, and there is no other way than backing in a chamber. Although the method of backing in the chamber is common, if partial sintering is not completed due to inconsistent heat distribution and transfer, the solvent remains inside and is converted into a resistive component, which inevitably increases the electrode resistance (refer to : Ag bond 3.5~4.5 million won/Kg). A bigger problem is that the productivity is very low because backing is required at least at 130℃ or 160℃ for 1 hour or more. In this case, a neck point occurs and mass serial production is impossible.
이러한 문제를 해결하기 위한 본 실시예에 따른 연신 솔더(500)는 전도성 페이스트, 경화용제(Gamma-butylrolatone), 스트레처블 물질이 배합되어 형성되고, 여기서 전도성 페이스트는, 서로 다른 종류의 전도성 페이스트가 서로 다른 배합률로 배합되어 형성되는 것이 바람직하다.In order to solve this problem, the stretched solder 500 according to the present embodiment is formed by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material, wherein the conductive paste includes different types of conductive pastes. It is preferable to be formed by mixing in different mixing ratios.
좀 더 구체적으로 연신 솔더(500)는, 은 마이크로 파티클(Ag Micro Particles), 구리 마이크로 파티클(Cu Micro Particles), 경화용제(Gamma-butylrolatone), 열가소성 폴리우레탄(TPU)이 배합되어 형성될 수 있다. More specifically, the stretched solder 500 may be formed by mixing silver micro particles (Ag Micro Particles), copper micro particles (Cu Micro Particles), a curing solvent (Gamma-butylrolatone), and thermoplastic polyurethane (TPU). .
예를 들어, 연신 솔더(500)는, 은 마이크로 파티클이 50%, 구리 마이크로 파티클이 10%, 경화용제(Gamma-butylrolatone)가 15%, 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성될 수 있으며, 이에 대한 보다 구체적인 사항은 하기의 표 2와 같이 정리할 수 있다.For example, the stretched solder 500 may be formed by mixing 50% silver microparticles, 10% copper microparticles, 15% curing solvent (Gamma-butylrolatone), and 25% thermoplastic polyurethane (TPU). can be, and more specific details can be summarized as shown in Table 2 below.
Solder PasteSolder Paste 원료Raw material 배합율mixing ratio 경도Hardness
Screen Printing TypeScreen Printing Type micro Ag particles micro Ag particles 50%50% 9090
micro Cu particlesmicro Cu particles 10%10%
경화용제(Gama-Butylrolatone)Hardening solvent (Gama-Butylrolatone) 15%15%
Urethane TPU(경도60)Urethane TPU (hardness 60) 25%25%
이에, 본 실시예에 따른 연신 솔더(500)는 도 6에 도시된 바와 같이 X축의 시간이 지남에 따라 점차적으로 Y축의 온도가 상승하였다 일정 시간 유지하고, 다시 상승한 후 점차 낮아지는 온도 프로파일의 결과에 따라 솔더링 물질이 퍼지거나 흩어짐 없이 전극에 안정적인 구조로 형성됨을 확인할 수 있다.Accordingly, in the stretched solder 500 according to this embodiment, as shown in FIG. 6 , the temperature of the Y-axis gradually increased over time on the X-axis. The temperature profile was maintained for a certain period of time, and then increased again. As a result, the temperature profile gradually decreased. Accordingly, it can be confirmed that the soldering material is formed in a stable structure on the electrode without spreading or dispersing.
이러한 종래의 솔더링(soldering) 문제를 해결하기 위해 나노 솔더 페이스트를 이용해 170℃에서 100초 가량 SMD(Surface Mount Device)를 실시할 수 저온 나노 솔더링 방법을 통해 생산성과 품질성을 모두 향상시킬 수 있다.In order to solve the conventional soldering problem, SMD (Surface Mount Device) can be performed at 170° C. for about 100 seconds using nano solder paste. Through the low-temperature nano soldering method, both productivity and quality can be improved.
상기 제1 LED칩 보호층(600)은, LED칩(300) 하나와 각 LED칩에 연결된 연신 솔더(500)를 각각 개별적으로 둘러싸도록 형성된 스트레처블 물질이 코팅(경도60이하, 신축성 50%이하, 투명)되어 다수의 캡(cap) 구조로 형성될 수 있다. 즉, LED칩(300) 마다 제1 LED칩 보호층(600)을 형성하여 아일랜드(Ireland)가 형성되도록 한다. The first LED chip protective layer 600 is coated with a stretchable material formed to individually surround one LED chip 300 and the stretched solder 500 connected to each LED chip (hardness 60 or less, elasticity 50%) Hereinafter, transparent) may be formed into a plurality of cap structures. That is, the first LED chip protective layer 600 is formed for each LED chip 300 to form an island.
상기 제1 LED칩 보호층(600)에 적용되는 스트레처블 물질은 투명 무색의 폴리우레탄(polyurethane)을 포함할 수 있으나, 본 실시예에서는 폴리우레탄뿐만 아니라 투명 무색의 연신 특성을 갖는 다양한 물질을 적용할 수 있다.The stretchable material applied to the first LED chip protective layer 600 may include transparent and colorless polyurethane, but in this embodiment, various materials having transparent and colorless stretching characteristics as well as polyurethane are used. can be applied.
상기 제2 LED칩 보호층(700은, 연신 기판(100)의 배면 중 제1 LED칩 보호층(600)과 대응되는 위치에 스트레처블 물질이 코팅(경도60이하, 신축성 50%이하, 투명)되어 각각 형성될 수 있다. The second LED chip protective layer 700 is coated with a stretchable material at a position corresponding to the first LED chip protective layer 600 on the rear surface of the stretched substrate 100 (hardness 60 or less, elasticity 50% or less, transparent ) and can be formed respectively.
상기 제2 LED칩 보호층(700)에 적용되는 스트레처블 물질은 투명 무색의 폴리우레탄(polyurethane)을 포함할 수 있으나, 본 실시예에서는 폴리우레탄뿐만 아니라 투명 무색의 연신 특성을 갖는 다양한 물질을 적용할 수 있다.The stretchable material applied to the second LED chip protective layer 700 may include transparent and colorless polyurethane, but in this embodiment, various materials having transparent and colorless stretching characteristics as well as polyurethane are used. can be applied.
상기 연신 기판 보호층(800)은, 제1 LED칩 보호층(600), 제2 LED칩 보호층(700) 및 연신 전극(200)을 덮도록 연신 기판(100)의 전면에 스트레처블 물질이 코팅(경도30이하, 연신 기판과 동일, 투명)되어 형성될 수 있다. The stretchable substrate protective layer 800 is a stretchable material on the entire surface of the stretched substrate 100 so as to cover the first LED chip protective layer 600 , the second LED chip protective layer 700 and the stretched electrode 200 . This coating (hardness 30 or less, the same as the stretched substrate, transparent) can be formed.
상기 차광 패드(900)는 제1 LED칩 보호층(600)의 상부와 제1 LED칩 보호층(600)의 상부를 덮는 연신 기판 보호층(800)의 일부가 노출되도록 형성될 수 있으며, 구성 물질로는 부직포(5T)를 포함할 수 있으나, 본 실시예에서는 부직포뿐만 아니라 연신 특성을 갖는 다양한 물질을 적용할 수 있다. 이러한 차광 패드(900)는 LED칩(300)으로부터 광이 제1 LED칩 보호층(600)과 연신 기판 보호층(800)의 일부 이외로 발산되는 것을 차단하는 역할을 한다. The light blocking pad 900 may be formed such that an upper portion of the first LED chip protective layer 600 and a portion of the stretched substrate protective layer 800 covering the upper portion of the first LED chip protective layer 600 are exposed. The material may include the nonwoven fabric 5T, but in this embodiment, not only the nonwoven fabric but also various materials having elongation properties may be used. The light blocking pad 900 serves to block light from being emitted from the LED chip 300 to other than a portion of the first LED chip protective layer 600 and the stretched substrate protective layer 800 .
본 발명에 따른 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드는, 인체 무해한 소재를 적용하여 부작용이 없고, 착용감과 편의성이 증대되고, 경제적 부담을 최소화하며, 신축 가능한 연신 기판에 근적외선 LED를 부착하기 위한 SMD(Surface Mount Device)가 가능하다.The stretchable near-infrared LED band for smart health care according to the present invention has no side effects by applying a material harmless to the human body, increases fit and convenience, minimizes economic burden, and is used for attaching a near-infrared LED to a stretchable and stretchable substrate. SMD (Surface Mount Device) is possible.

Claims (12)

  1. 헬스 케어를 위한 근적외선 LED 밴드에 관한 것으로,It relates to a near-infrared LED band for health care,
    스트레처블 물질을 포함하는 연신 기판;a stretched substrate including a stretchable material;
    상기 연신 기판 상에 형성되고, 직선 패턴으로 인쇄된 다수의 연신 전극;a plurality of stretching electrodes formed on the stretching substrate and printed in a straight pattern;
    상기 연신 기판 상에 접착되어 근적외선을 조사하기 위한 다수의 LED칩; 및a plurality of LED chips attached to the stretched substrate for irradiating near-infrared rays; and
    연신 페이스트를 포함하고, 상기 LED칩과 상기 연신 전극 간을 각각 전기적으로 연결하는 다수의 연신 솔더를 포함하는 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.A stretchable near-infrared LED band for smart healthcare, comprising a stretching paste, and comprising a plurality of stretching solders respectively electrically connecting the LED chip and the stretching electrode.
  2. 제1 항에 있어서,According to claim 1,
    스트레처블 물질을 포함하고, 상기 LED칩 하나와 각 LED칩에 연결된 연신 솔더를 각각 개별적으로 둘러싸도록 형성된 다수의 캡을 포함하는 제1 LED칩 보호층; 및a first LED chip protective layer including a stretchable material and including a plurality of caps formed to individually surround one of the LED chips and the stretched solder connected to each LED chip; and
    스트레처블 물질을 포함하고, 상기 연신 기판의 배면 중 상기 제1 LED칩 보호층과 대응되는 위치에 각각 형성된 제2 LED칩 보호층을 더 포함하는 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.Stretchable near-infrared light for smart health care, comprising a stretchable material, and further comprising a second LED chip protective layer respectively formed at a position corresponding to the first LED chip protective layer on the rear surface of the stretched substrate LED band.
  3. 제2 항에 있어서,3. The method of claim 2,
    스트레처블 물질을 포함하고, 상기 제1 LED칩 보호층, 상기 제2 LED칩 보호층 및 상기 연신 전극을 덮도록 상기 연신 기판의 전면에 형성된 연신 기판 보호층을 더 포함하는 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.Smart comprising a stretchable material and further comprising a stretched substrate protective layer formed on the front surface of the stretched substrate to cover the first LED chip protective layer, the second LED chip protective layer, and the stretched electrode Stretchable near-infrared LED band for healthcare.
  4. 제1 항에 있어서,According to claim 1,
    상기 연신 전극은,The stretched electrode is
    전도성 페이스트, 경화용제(Gamma-butylrolatone), 스트레처블 물질이 배합되어 제1 경도를 갖도록 형성된 제1 레이어;a first layer formed by mixing a conductive paste, a curing solvent (Gamma-butylrolatone), and a stretchable material to have a first hardness;
    전도성 페이스트, 경화용제, 스트레처블 물질이 배합되어 제2 경도를 갖도록 형성된 제2 레이어; 및a second layer formed to have a second hardness by mixing a conductive paste, a curing solvent, and a stretchable material; and
    전도성 페이스트, 경화용제, 스트레처블 물질이 배합되어 상기 제1 경도를 갖도록 형성된 제3 레이어를 포함하되,A conductive paste, a curing solvent, and a stretchable material are mixed to include a third layer formed to have the first hardness,
    상기 제1 레이어가 최하부층으로 배치되고, 상기 제3 레이어가 최상부층으로 배치되고, 상기 제2 레이어가 상기 제1 레이어 또는 상기 제3 레이어의 적층 구조로 적어도 한 층 이상 반복 배치되는 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.The first layer is disposed as a lowermost layer, the third layer is disposed as an uppermost layer, and the second layer is repeatedly disposed at least one layer in a stacked structure of the first layer or the third layer. Stretchable near-infrared LED band for smart health care.
  5. 제4 항에 있어서,5. The method of claim 4,
    상기 제1 경도가 상기 제2 경도보다 상대적으로 낮은 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.Stretchable near-infrared LED band for smart health care, characterized in that the first hardness is relatively lower than the second hardness.
  6. 제4 항에 있어서,5. The method of claim 4,
    상기 제1 경도는 50이고, 상기 제2 경도는 90인 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.The first hardness is 50, the second hardness is a stretchable near-infrared LED band for smart health care, characterized in that 90.
  7. 제4 항에 있어서,5. The method of claim 4,
    상기 제1 레이어 및 상기 제3 레이어 각각은 은 나노 파티클, 경화용재 및 열가소성 폴리우레탄(TPU)을 포함하고,Each of the first layer and the third layer includes silver nanoparticles, a curing agent, and a thermoplastic polyurethane (TPU),
    상기 제2 레이어는 은 마이크로 파티클, 경화용제 및 열가소성 폴리우레탄(TPU)을 포함하는 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.The second layer is a stretchable near-infrared LED band for smart health care, characterized in that it contains silver microparticles, a curing solvent, and a thermoplastic polyurethane (TPU).
  8. 제7 항에 있어서,8. The method of claim 7,
    상기 제2 레이어를 형성하기 위해 배합되는 은 마이크로 파티클의 배합률이 상기 제1 레이어 및 상기 제3 레이어를 형성하기 위해 배합되는 은 나노 파티클의 배합률보다 높은 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.Stretchable near-infrared light for smart health care, characterized in that the blending ratio of silver microparticles blended to form the second layer is higher than the blending ratio of silver nanoparticles blended to form the first layer and the third layer LED band.
  9. 제7 항에 있어서,8. The method of claim 7,
    상기 제1 레이어 및 상기 제3 레이어 각각은, 은 나노 파티클이 50%, 경화용재가 5% 및 열가소성 폴리우레탄(TPU)이 45%로 배합되어 형성되고,Each of the first layer and the third layer is formed by mixing 50% silver nanoparticles, 5% curing agent, and 45% thermoplastic polyurethane (TPU),
    상기 제2 레이어는, 은 마이크로 파티클이 70%, 경화용제가 5% 및 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성된 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.The second layer is a stretchable near-infrared LED band for smart health care, characterized in that it is formed by mixing 70% silver microparticles, 5% curing solvent, and 25% thermoplastic polyurethane (TPU).
  10. 제1 항에 있어서,According to claim 1,
    상기 연신 솔더는,The stretched solder is
    전도성 페이스트, 경화용제(Gamma-butylrolatone), 스트레처블 물질이 배합되어 형성되고, It is formed by mixing conductive paste, curing solvent (Gamma-butylrolatone), and a stretchable material.
    상기 전도성 페이스트는, The conductive paste is
    서로 다른 종류의 전도성 페이스트가 서로 다른 배합률로 배합되어 형성된 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.A stretchable near-infrared LED band for smart healthcare, characterized in that it is formed by mixing different types of conductive pastes at different mixing ratios.
  11. 제1 항에 있어서,According to claim 1,
    상기 연신 솔더는,The stretched solder is
    은 마이크로 파티클, 구리 마이크로 파티클, 경화용제(Gamma-butylrolatone), 열가소성 폴리우레탄(TPU)이 배합되어 형성된 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.A stretchable near-infrared LED band for smart health care, characterized in that it is formed by mixing silver microparticles, copper microparticles, curing solvent (Gamma-butylrolatone), and thermoplastic polyurethane (TPU).
  12. 제1 항에 있어서,According to claim 1,
    상기 연신 솔더는,The stretched solder is
    은 마이크로 파티클이 50%, 구리 마이크로 파티클이 10%, 경화용제(Gamma-butylrolatone)가 15%, 열가소성 폴리우레탄(TPU)이 25%로 배합되어 형성된 것을 특징으로 하는 스마트 헬스 케어용 스트레처블 근적외선 LED 밴드.Stretchable near infrared rays for smart health care, characterized in that 50% silver microparticles, 10% copper microparticles, 15% curing solvent (Gamma-butylrolatone), and 25% thermoplastic polyurethane (TPU) LED band.
PCT/KR2021/006286 2020-05-21 2021-05-20 Stretchable near-infrared led band for smart healthcare WO2021235865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0061029 2020-05-21
KR1020200061029A KR102256074B1 (en) 2020-05-21 2020-05-21 Stretchable near infrared ray light emitting diode band for smart healthcare

Publications (1)

Publication Number Publication Date
WO2021235865A1 true WO2021235865A1 (en) 2021-11-25

Family

ID=76137347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006286 WO2021235865A1 (en) 2020-05-21 2021-05-20 Stretchable near-infrared led band for smart healthcare

Country Status (2)

Country Link
KR (1) KR102256074B1 (en)
WO (1) WO2021235865A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD968685S1 (en) * 2019-11-22 2022-11-01 Malathi Damera Light ornament
KR102626523B1 (en) * 2023-06-16 2024-01-19 주식회사 지노랩 Double thermal healthcare band with light therapy function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078975A (en) * 2001-04-12 2002-10-19 엘지전선 주식회사 Melt-flow controlling method for elastomer by UV irradiation
KR20130017696A (en) * 2011-08-11 2013-02-20 한국전자통신연구원 Pad for thermotheraphy
KR101413560B1 (en) * 2012-11-01 2014-08-06 한국전기연구원 Band-type phototherapy device
KR20180138254A (en) * 2017-06-19 2018-12-31 전남대학교산학협력단 Flexible electrode and preparation method thereof
KR20200001213A (en) * 2018-06-27 2020-01-06 한국광기술원 A stretchable patches with double printing wiring structure and a stretchable patch manufacturing method with double printing wiring structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386248B2 (en) 2014-05-16 2019-08-20 National Institute Of Advanced Industrial Science And Technology Stretchable electrically-conductive circuit and manufacturing method therefor
KR101806339B1 (en) 2016-06-28 2017-12-08 한국광기술원 Micro LED manufacturing method for transparent display and micro LED for transparent display
KR101947660B1 (en) 2017-03-30 2019-02-13 주식회사 코쿤디자인 Stretchable LED Display Apparatus
KR102067101B1 (en) 2017-11-17 2020-01-15 한국광기술원 Stretchable patch
KR102463359B1 (en) * 2019-05-30 2022-11-07 주식회사 아모라이프사이언스 LED patch for skin care device and skin care device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078975A (en) * 2001-04-12 2002-10-19 엘지전선 주식회사 Melt-flow controlling method for elastomer by UV irradiation
KR20130017696A (en) * 2011-08-11 2013-02-20 한국전자통신연구원 Pad for thermotheraphy
KR101413560B1 (en) * 2012-11-01 2014-08-06 한국전기연구원 Band-type phototherapy device
KR20180138254A (en) * 2017-06-19 2018-12-31 전남대학교산학협력단 Flexible electrode and preparation method thereof
KR20200001213A (en) * 2018-06-27 2020-01-06 한국광기술원 A stretchable patches with double printing wiring structure and a stretchable patch manufacturing method with double printing wiring structure

Also Published As

Publication number Publication date
KR102256074B1 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2021235865A1 (en) Stretchable near-infrared led band for smart healthcare
CN209863824U (en) Electrical stimulation patch
US20140257449A1 (en) Conductive garment
US11896842B2 (en) Method and system for irradiating tissue with pulsed blue and red light to reduce muscle fatigue, enhance wound healing and tissue repair, and reduce pain
CN102784437B (en) Health care apparatus based on linear package of lighting-emitting diodes (LEDs)
CN108783778A (en) wearable OLED device
CN106178271A (en) Flexible nerve electrode device that LED light stimulates and electrographic recording is integrated and preparation method thereof
Araki et al. Flexible neural interfaces for brain implants—the pursuit of thinness and high density
Obaid et al. Advanced electrical and optical microsystems for biointerfacing
CN107676638A (en) A kind of LED light source
Wei et al. Wearable electrical stimulation to improve lymphatic function
US20100145136A1 (en) Ear clip with pole
CN104162233A (en) Near-infrared light therapeutic apparatus for treating brain diseases
WO2018225976A1 (en) Smart device having wave providing function
CN111616699B (en) Flexible twelve-lead electrocardiograph monitoring device and manufacturing method thereof
JP2012205884A (en) Biogalvanic battery treating device
CN111544774B (en) Phototherapy socks
CN201624178U (en) Electric pulse health-care cap
CN215136019U (en) Phototherapy device
CN103691068B (en) A kind of physical therapy device
CN212522719U (en) Multifunctional surge magnetic therapeutic instrument
WO2018182123A1 (en) Wave providing accessory using sawtooth waveform
Cha et al. Wearable and Implantable Light-Emitting Diodes and Their Biomedical Applications
US20170188464A1 (en) Stretchable electronic assembly
CN215841250U (en) FPC-based miniLED phototherapy instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808289

Country of ref document: EP

Kind code of ref document: A1