WO2021235727A1 - Heat pump system using air heat of bipvt - Google Patents

Heat pump system using air heat of bipvt Download PDF

Info

Publication number
WO2021235727A1
WO2021235727A1 PCT/KR2021/005433 KR2021005433W WO2021235727A1 WO 2021235727 A1 WO2021235727 A1 WO 2021235727A1 KR 2021005433 W KR2021005433 W KR 2021005433W WO 2021235727 A1 WO2021235727 A1 WO 2021235727A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
hot water
air
water supply
Prior art date
Application number
PCT/KR2021/005433
Other languages
French (fr)
Korean (ko)
Inventor
서영태
최윤식
Original Assignee
(주)이너지테크놀러지스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이너지테크놀러지스 filed Critical (주)이너지테크놀러지스
Publication of WO2021235727A1 publication Critical patent/WO2021235727A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump system using air heat of BIPVT, and more particularly, using air heat produced by a BIPVT (Building Integrated Photovoltaic Thermal) collector as a heat source of a heat pump to maximize efficiency. It relates to a heat pump system.
  • BIPVT Building Integrated Photovoltaic Thermal
  • a heat pump is a device for cooling or heating an indoor space by sequentially performing processes of compressing, condensing, expanding, and evaporating a refrigerant.
  • hot water supply is a type of indirect heat exchange with heating water by using an auxiliary heat source or a hot water supply tank separately.
  • the cooling operation is limited because hot water supply is produced by stopping the cooling operation and switching to the heating operation.
  • An object of the present invention is to provide a heat pump system using the air heat of the BIPVT that can effectively use the air heat produced by the BIPVT collector.
  • a heat pump system using air heat of BIPVT includes a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve, and uses a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector.
  • BIPVT Building Integrated Photovoltaic Thermal
  • a pump system comprising: a hot water heat exchanger for exchanging heat with a refrigerant discharged from the compressor and a hot water heat source; a hot water supply tank having a flow path through which the hot water supply heat source absorbing heat from the hot water supply heat exchanger passes, and storing hot water supply water supplied with heat from the hot water supply heat source; a hot water supply pump installed in a flow path connecting the hot water supply heat exchanger and the hot water supply tank; a heating and cooling heat exchanger for exchanging heat with the refrigerant from the hot water supply heat exchanger; a heating and cooling water tank having an internal flow passage through which the heating and cooling heat source absorbed heat from the heating and cooling heat exchanger passes, and storing heating and cooling water exchanging heat with the heating and cooling heat source; a heating and cooling pump installed in a flow path connecting the heating and cooling heat exchanger and the heating and cooling water tank; an air heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector; a buffer tank configured
  • the cooling plate includes a first cooling plate having a first semicircular groove formed on one side of the cooling plate in contact with the heat generating unit and having a first semicircular groove on the other side to be fitted with the refrigerant pipe, and is coupled to the other side of the first cooling plate, and and a second cooling plate having a second semicircular groove portion opposite to the first groove portion.
  • a cooling plate heat exchanger suction passage branching from the suction-side flow passage of the compressor to guide the refrigerant before being sucked into the compressor to the cooling plate heat exchanger; a first on/off valve installed between a cooling plate heat exchanger discharge flow path for guiding and a point at which the cooling plate heat exchanger suction flow path is branched from the suction side flow path of the compressor and a point where the cooling plate heat exchanger discharge flow path is merged; and a second opening/closing valve for opening and closing the cooling plate heat exchanger discharge flow path, wherein the control unit is configured to, when the temperature of the heating unit of the inverter is equal to or higher than a preset first heating unit temperature, in an open state of the first opening/closing valve The second on-off valve is opened, and when the temperature of the heating part of the inverter is less than a preset second set heating part temperature, the second on-off valve is closed.
  • the control unit after opening the second opening/closing valve, when the temperature of the heat generating unit reaches the highest set temperature in which the first set heat generating unit temperature is higher than the first set heat generating unit temperature, the first open/close valve to shield
  • a hot gas bypass flow path installed in the discharge side flow path of the compressor to supply some of the refrigerant discharged from the compressor to the suction side flow path of the air-conditioning heat exchanger, and a hot gas flow rate control valve for opening and closing the hot gas bypass flow path It further includes, wherein the control unit controls the opening degree of the hot gas flow control valve according to the defrost operation mode or the suction side pressure of the compressor.
  • An economizer into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger is introduced, is formed inside the economizer, and the refrigerant discharged from the outdoor heat exchanger during a cooling operation flows in, and the air-conditioning heat exchanger during a heating operation a first economizer flow path through which the refrigerant discharged from A second economizer flow path that exchanges heat with the refrigerant passing through the first economizer flow path, an injection flow path for guiding the refrigerant discharged from the second economizer flow path to the compressor, and the remainder of the refrigerant discharged from the first economizer flow path to the expansion valve
  • a receiver into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger is introduced and temporarily stored;
  • a third check valve installed in the cooling receiver inlet flow path, a heating receiver inlet channel configured to guide the refrigerant from the cooling and heating heat exchanger to the receiver during heating operation, and a fourth check valve installed in the heating receiver inlet channel and a receiver discharge passage for guiding the refrigerant from the receiver to the economizer, wherein the controller controls opening and closing of the third and fourth check valves according to the operation mode.
  • the control unit When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, stops the hot water supply pump, and operates the air conditioning pump during the cooling operation, heat is absorbed from the BIPVT collector A heat source of one air is transferred to the air heat exchanger, the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage, and the refrigerant compressed in the compressor is transferred to the hot water heat exchanger in the four directions.
  • the outdoor heat exchanger After passing through the valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in sequence, it circulates to the compressor, heat exchange is not performed in the hot water supply heat exchanger, and in the outdoor heat exchanger, the refrigerant and the outside air exchange heat with the refrigerant. is condensed, the refrigerant is evaporated in the air-conditioning heat exchanger, the cooling/cooling heat source is cooled, the cooling/cooling heat source cools the cooling/cooling water stored in the cooling/cooling water tank, and the cooling/cooling water is used to cool the room.
  • the control unit When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, operates the hot water supply pump, and stops the heating/cooling pump during the summer hot water supply operation, heat is removed from the BIPVT collector
  • the absorbed air heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank, and in the compressor
  • the compressed refrigerant passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and then circulates to the compressor. It is transmitted to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, heat exchange is not performed in the air-conditioning heat exchanger, and the outdoor heat exchanger serves as an evaporator.
  • the control unit When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, and operates both the hot water supply pump and the air conditioning pump during the cooling and hot water supply operation, the air absorbed heat from the BIPVT collector of the heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank, and the refrigerant compressed in the compressor circulates to the compressor after passing through the hot water supply heat exchanger, the four-way valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in turn, and in the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is the hot water supply heat source is transferred to, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, the outdoor heat exchanger serves as a condenser, and the refrigerant is evaporated in the air conditioning heat exchange
  • the control unit When the control unit operates the first and second BIPVT heat source pumps during the heating operation, stops the hot water supply pump, and operates the heating/cooling pump, the heat source of the air that has absorbed heat from the BIPVT collector is transferred to the air heat exchanger.
  • the hot water produced by the air heat exchanger passes through the first BIPVT heat source supply passage, the buffer tank, the second BIPVT heat source supply passage, and the outdoor heat exchanger in order to transfer heat to the outdoor heat exchanger, and is compressed by the compressor.
  • the refrigerant After passing through the hot water supply heat exchanger, the four-way valve, the air conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in sequence, the refrigerant is circulated to the compressor, and heat exchange is not performed in the hot water supply heat exchanger, and the air conditioning heat exchanger
  • the condensed heat generated in the is transferred to the heating and cooling water tank and used to heat the room, and the outdoor heat exchanger absorbs heat from the second BIPVT heat source supply flow path and evaporates it.
  • the control unit When the control unit operates the first and second BIPVT heat source pumps during the heating and hot water supply operation, and both the hot water supply pump and the heating/cooling pump operate, the heat source of the air absorbed by the BIPVT collector is transferred to the air heat exchanger and , the hot water produced in the air heat exchanger passes through the outdoor heat exchanger sequentially through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to transfer heat to the outdoor heat exchanger, and is compressed by the compressor.
  • the refrigerant passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, and the expansion valve in turn, and then circulates back to the compressor.
  • the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, and in the air conditioning heat exchanger, the condensed heat generated while the refrigerant is condensed is transferred to the heating and cooling water tank to be used to heat the room, and the outdoor heat exchange In the air, the refrigerant absorbs heat from the second BIPVT heat source supply passage and is evaporated.
  • control unit When the control unit operates both the first BIPVT heat source pump and the second BIPVT heat source pump during the winter hot water supply operation, operates the hot water supply pump, and stops the air conditioning pump, the air absorbed heat from the BIPVT collector of the heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger sequentially passes through the outdoor heat exchanger through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to heat the outdoor heat exchanger.
  • the refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and then circulates to the compressor, and in the hot water heat exchanger, the refrigerant Condensation heat generated while condensing is transferred to the hot water supply heat source, the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, heat exchange is not performed in the air conditioning heat exchanger, and the refrigerant in the outdoor heat exchanger is evaporated by absorbing heat from the second BIPVT heat source supply passage.
  • a heat pump system using air heat of BIPVT includes a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve, and a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector
  • the heat pump system using air heat of the BIPVT includes a cooling plate heat exchanger installed to be in contact with the heat generating part of the inverter, and by exchanging heat with the refrigerant before being sucked into the compressor and the heat generating part, the refrigerant passes through the cooling plate heat exchanger
  • the capacity and efficiency of the evaporator can be increased, and the temperature of the heating part of the inverter can be lowered, so that noise is reduced compared to the case of using a cooling fan to cool the inverter. there is no advantage.
  • the coefficient of performance of the system can be maximized by absorbing the heat source of air produced by the BIPVT collector during heating operation or hot water supply operation through the outdoor heat exchanger and using it as a heat source for the heat pump cycle.
  • the condensed heat of the refrigerant is recovered from the outdoor heat exchanger during the cooling operation and transferred to the buffer tank, it can be used for preheating the water supply, so there is an advantage in that the temperature of the hot water supply tank can be kept constant.
  • FIG. 1 is a view showing a cooling operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a hot water supply operation state in summer of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • FIG. 3 is a view showing a cooling and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a heating operation state of a heat pump system using air heat of BIPVT according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a heating and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a winter hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating a state in which a cooling plate heat exchanger is coupled to an inverter of a heat pump system according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of the cooling plate heat exchanger shown in FIG. 7 .
  • FIG. 1 is a view showing a cooling operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • the heat pump system using air heat of BIPVT connects the BIPVT (Building Integrated Photovoltaic Thermal) hot water production cycle and the heat pump cycle, It is a system that uses a heat source.
  • BIPVT Building Integrated Photovoltaic Thermal
  • the BIPVT hot water production cycle 100 includes the BIPVT collector 110 , the air heat exchanger 120 , the buffer tank 130 , the first air flow path 101 , the second air flow path 102 , and the air fan 103 . ), air replenishment passage 104, air replenishment passage valve 105, air discharge passage 106, air discharge passage valve 107, first BIPVT heat source supply passage 131, second BIPVT heat source supply passage 132, It includes a first BIPVT heat source pump 141 , a second BIPVT heat source pump 142 , and a water supply preheating passage 150 .
  • the BIPVT collector 110 is a device that replaces the exterior material of the building and is integrated with the building and absorbs sunlight to produce heat and electricity at the same time. An air passage through which air for absorbing heat passes is formed in the BIPVT collector 110 .
  • the air heat exchanger 120 is a heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector 110 .
  • the buffer tank 130 is a tank formed to temporarily store the hot water produced by the air heat exchanger 120 and preheat the water supplied from the outside.
  • the buffer tank 130 and the air heat exchanger 120 are connected to the first BIPVT heat source supply passage 131 .
  • the water supply preheating passage 150 is a passage formed inside the buffer tank 130 to allow water supplied from the outside to pass therethrough.
  • the water supply preheating passage 150 is separately formed so that the hot water stored in the buffer tank 130 and the water supply do not mix.
  • the water supply preheated in the water supply preheating passage 150 is supplied to a heating and cooling water tank to be described later through the water supply storage passage 152 .
  • the first air flow path 101 connects the BIPVT collector 110 and the inlet of the air heat exchanger 120 to transfer the air that has absorbed heat in the BIPVT collector 110 to the air heat exchanger 120 .
  • the air fan 103 is installed in the first air flow path 101 and blows the air that has absorbed heat from the BIPVT collector 110 to the air heat exchanger 120 .
  • the second air flow path 102 connects the outlet of the air heat exchanger 120 and the BIPVT collector 110 to return the air cooled by heat exchange in the air heat exchanger 120 to the BIPVT collector 110 again.
  • the air replenishment flow path 104 is connected to the second air flow path 102 and is a flow path for additionally introducing external air.
  • the air replenishment passage valve 105 is installed at a point where the air replenishment passage 104 and the second air passage 102 are connected, and regulates the additional inflow of external air.
  • the air discharge flow path 106 is connected to the second air flow path 102 and is a flow path for discharging the air in the second air flow path 102 to the outside.
  • the air discharge passage 106 is connected to a position closer to the outlet side of the air heat exchanger 120 than the air replenishment passage 104 in the second air passage 102 .
  • the air discharge passage valve 107 is installed at a point where the air discharge passage 106 and the second air passage 102 are connected, and regulates air discharge.
  • the first BIPVT heat source supply passage 131 is a passage connecting the air heat exchanger 120 and the buffer tank 130 .
  • the first BIPVT heat source supply flow path 131 guides the hot water heated from the air heat exchanger 120 to the buffer tank 130 , and supplies the heat source of the BIPVT collector 110 to the buffer tank 130 .
  • the first BIPVT heat source pump 141 is installed at the outlet side of the buffer tank 130 in the first BIPVT heat source supply passage 131 to convert the hot water stored in the buffer tank 130 to the air heat exchanger 120 . It is a pump that pumps
  • the second BIPVT heat source supply passage 132 is a passage connecting the buffer tank 130 and an outdoor heat exchanger 40 to be described later.
  • the second BIPVT heat source supply passage 132 guides the hot water stored in the buffer tank 130 to the outdoor heat exchanger 40, and transfers the heat source of the BIPVT collector 110 to the outdoor heat exchanger of the heat pump cycle. (40) is supplied.
  • the second BIPVT heat source pump 142 is installed at the outlet side of the buffer tank 130 in the second BIPVT heat source supply flow path 132 and converts the hot water stored in the buffer tank 130 to the outdoor heat exchanger 40 . It is a pump that pumps
  • the heat pump cycle includes a compressor (10), hot water heat exchanger (20), hot water supply tank (22), air-conditioning heat exchanger (30), air-conditioning water tank (32), outdoor heat exchanger (40), cold plate heat exchanger ( 50 ), an economizer 60 , a receiver 70 , a four-way valve 80 and an expansion valve 90 .
  • the compressor 10 is a BLDC compressor that compresses a refrigerant circulating in the heat pump cycle.
  • the compressor 10 is an inverter compressor controlled by the inverter 300 .
  • the hot water supply heat exchanger 20 is a heat exchanger for exchanging the refrigerant discharged from the compressor 10 and the hot water supply water.
  • the hot water supply tank 22 time water is supplied from the outside and stored as hot water water, and an internal flow path is formed through which a hot water source, which is hot water that has absorbed heat from the hot water heat exchanger 20 , passes.
  • the hot water supply and the hot water supply heat source are not mixed in the hot water supply tank 22 , and only heat exchange between the hot water supply water and the hot water supply heat source is performed.
  • the hot water supply heat source will be described as an example of water.
  • the hot water supply heat exchanger 20 and the hot water supply tank 22 are connected by a hot water supply passage 24 .
  • a hot water supply pump 26 is installed in the hot water supply passage 24 .
  • the air-conditioning heat exchanger 30 is a heat exchanger that heat-exchanges the refrigerant discharged from the hot water supply heat exchanger 20 and the cooling/heating heat source.
  • cooling and heating water tank 32 city water is supplied from the outside and stored as cooling and cooling water, and an internal flow path is formed through which a heating and cooling heat source, which is hot water that has absorbed heat from the heating and cooling heat exchanger 30 , passes.
  • the heating and cooling water and the heating and cooling heat source are not mixed in the inside of the heating and cooling water tank 32 , and only heat exchange between the heating and cooling water and the heating and cooling heat source is performed.
  • the heating and cooling heat source will be described as an example of water.
  • the heating and cooling heat exchanger 30 and the cooling and heating water tank 32 are connected to each other by a heating and cooling heat source flow path 34 .
  • a cooling/heating pump 36 is installed in the cooling/heating heat source flow path 34 .
  • the outdoor heat exchanger 40 is a heat exchanger that exchanges heat between the refrigerant from any one of the hot water supply heat exchanger 20 and the air-conditioning heat exchanger 30 and the hot water supplied from the buffer tank 130 and outdoor air. .
  • a refrigerant passage 40a through which the refrigerant passes and a hot water passage 40b through which the hot water passes are formed in the outdoor heat exchanger 40 in a double coil type.
  • the hot water flow path is a flow path connected to the second BIPVT heat source supply flow path 132 .
  • An outdoor heat exchange fan 40c for blowing outside air is installed in the outdoor heat exchanger 40 .
  • the cold plate heat exchanger 50 is connected to a flow path branched from the suction side flow path 11 of the compressor 10 . More specifically, the cooling plate heat exchanger 50 branches from a main flow path 53 connecting the four-way valve 80 and the accumulator 55 among the suction side flow paths 11 of the compressor 10 . installed in the flow path.
  • the cooling plate heat exchanger 50 is provided in the heat generating unit 301 of the inverter 300 to cool the heat generating unit 301 of the inverter 300 using the refrigerant before being sucked into the compressor. , the refrigerant evaporates.
  • the heating unit 301 is a current supply device (PSD, POWER SUPPLY DEVICE).
  • the cooling plate heat exchanger 50 is formed in a plate shape so as to be in contact with the heat generating part 301 of the inverter 300 and a cooling plate having a plurality of through holes formed therein. 510 , and a plurality of refrigerant tubes 520 inserted into the through holes to pass through the cooling plate 510 , and through which the refrigerant passes.
  • the cooling plate 510 is formed to be in contact with the heat generating unit 301 . It will be described as an example in which the two first and second cooling plates 511 and 512 of the cooling plate 510 are coupled to each other.
  • One side of the first cooling plate 511 is formed as a flat surface to be in contact with the heat generating unit 301 , and a first groove portion 511a having a semicircular shape is formed on the other side of the first cooling plate 511 so that the refrigerant pipe 520 is fitted. do.
  • the second cooling plate 512 is coupled to the other side of the first cooling plate 511 .
  • the second cooling plate 512 is formed with a second groove portion 512a having a semicircular shape opposite to the first groove portion 511a, so that the first groove portion 511a and the second groove portion 512a pass through the second cooling plate 512 . form a hall
  • the first and second cooling plates 511 and 512 may be fastened to the heating unit 301 by a plurality of fastening members 530 .
  • the fastening member 530 will be described as an example of a fastening bolt.
  • a fastening hole 531 through which the fastening member 530 is fastened is formed in the first and second cooling plates 511 and 512 , and a fastening hole through which the fastening member 530 is fastened also to the heating part 301 . 301a is formed.
  • the present invention is not limited thereto, and the first and second cooling plates 511 and 512 are fastened and fixed by the fastening member 530 , and the cooling plate 510 and the heat generating unit 301 are connected to the fastening member. It may be fixed with a coupling member or an adhesive member other than the 530 .
  • Each of the refrigerant tubes 520 has one end connected to a cooling plate heat exchanger suction passage 51 to be described later, and the other end connected to a cooling plate heat exchanger discharge passage 52 to be described later. That is, the refrigerant pipes 520 are a plurality of pipes branched from the cooling plate heat exchanger suction passage 51 through which the refrigerant passes, and after passing through the cooling plate 510 , the cooling plate heat exchanger is discharged again. It is laminated to the flow path (52).
  • a cooling plate heat exchanger suction passage 51 and a cooling plate heat exchanger discharge passage 52 are connected to the cold plate heat exchanger 50 .
  • the cooling plate heat exchanger suction flow path 51 is a flow path branching from the main flow path 53 and guiding the refrigerant before being sucked into the compressor 10 to the cooling plate heat exchanger 50 .
  • the cooling plate heat exchanger discharge flow path 52 is a flow path for guiding the refrigerant discharged from the cooling plate heat exchanger 50 to the suction side flow path 11 of the compressor 10 .
  • a first opening/closing valve 54 is installed between a point where the cooling plate heat exchanger suction passage 51 is branched from the main flow passage 53 and a point where the cooling plate heat exchanger discharge passage 52 is combined.
  • the first on/off valve 54 is a flow control valve that controls the flow rate sucked into the compressor 10 .
  • the refrigerant flows into the cooling plate heat exchanger 50 .
  • a second on-off valve 56 for controlling the refrigerant discharged from the cooling plate heat exchanger 50 is installed in the cooling plate heat exchanger discharge passage 52 .
  • the opening and closing of the first and second opening/closing valves 54 and 56 are controlled by the control unit.
  • the control unit opens the first on-off valve 54 when the compressor 10 is operated.
  • the second on-off valve 56 in the state in which the first on-off valve 54 is opened open up
  • the control unit blocks the first on/off valve 54 .
  • control unit blocks the second on-off valve 56 .
  • the first set heating part temperature is about 75 °C
  • the second set heating part temperature will be described as an example of about 70 °C.
  • the present invention is not limited thereto, and the first and second set temperature of the heating unit may be preset to an optimal temperature through an experiment or the like.
  • the first and second opening/closing valves 54 and 56 may be manually operated if necessary.
  • An accumulator 55 is installed between the cooling plate heat exchanger 50 and the compressor 10 .
  • An oil separator 13 is installed in the discharge-side flow path 12 of the compressor 10 .
  • a hot gas bypass passage 14 is branched from the discharge-side passage 12 of the compressor 10 .
  • the hot gas bypass passage 14 is a passage for supplying a portion of the refrigerant from the compressor 10 to the suction-side passage of the air-conditioning heat exchanger 30 .
  • a hot gas flow control valve 15 for controlling the flow rate is installed in the hot gas bypass passage 14 .
  • the hot gas flow control valve 15 is controlled according to the defrost operation mode or the suction side pressure of the compressor 10 .
  • the economizer 60 is installed so that the refrigerant condensed in any one of the outdoor heat exchanger 40 and the air-conditioning heat exchanger 30 flows in.
  • a first economizer flow path 60a and a second economizer flow path 60b are formed inside the economizer 60 .
  • the first economizer flow path 60a is a flow path through which the refrigerant discharged from the outdoor heat exchanger 40 flows in during a cooling operation, and into which the refrigerant discharged from the air conditioning heat exchanger 30 flows during a heating operation.
  • the second economizer flow path 60b is formed separately from the first economizer flow path 60a and exchanges heat with a refrigerant passing through the first economizer flow path 60a.
  • the branch flow path 61 is a flow path branching from the discharge side flow path of the economizer 60 and guiding some of the refrigerant discharged from the economizer 60 to the second economizer flow path 60b.
  • the branch flow path 61 is provided with a branch opening/closing valve 62 for controlling opening and closing of the flow path, and a branch flow control valve 63 for controlling the flow rate of the refrigerant passing through the branch flow path 61 .
  • the opening/closing of the branch opening/closing valve 62 is controlled according to the temperature of the refrigerant discharged from the economizer 60 through the second economizer flow path 60b.
  • the economizer 60 and the compressor 10 are connected by an injection flow path 65 .
  • the injection flow path 65 is a flow path for injecting the refrigerant discharged from the second economizer flow path 60b toward the suction side of the compressor 10 .
  • a first injection flow control valve 66 is installed in the injection flow path 65 .
  • An injection branch passage 67 for guiding a portion of the refrigerant discharged from the second economizer passage 60b toward the suction side of the accumulator 55 is branched from the injection passage 65 .
  • a second injection flow control valve 68 is installed in the injection branch passage 67 .
  • the receiver 70 is installed on the upstream side of the economizer 60 , and the refrigerant condensed in any one of the outdoor heat exchanger 40 and the air-conditioning heat exchanger 30 flows in and is temporarily stored.
  • the receiver inflow path 72 for cooling and the receiver inflow path 73 for heating are connected.
  • the cooling receiver inflow passage 72 is formed to guide the refrigerant from the outdoor heat exchanger 40 to the receiver 70 during the cooling operation.
  • the cooling receiver inlet passage 72 connects the first refrigerant passage 41 that is the discharge passage of the outdoor heat exchanger 40 and the intake passage 71 of the receiver 70 during the cooling operation. It is euro
  • a third check valve 203 is installed in the cooling receiver inlet passage 72 to prevent backflow during heating operation.
  • the heating receiver inlet flow path 73 is a flow path formed to guide the refrigerant from the air-conditioning heat exchanger 30 to the receiver 70 during heating operation.
  • the heating receiver inlet passage 73 is a passage connecting the third refrigerant passage 43 that is the discharge passage of the air-conditioning heat exchanger 30 and the suction passage 71 of the receiver 70 during the heating operation. am.
  • a fourth check valve 204 is installed in the heating receiver inlet flow path 73 to prevent reverse flow during cooling operation.
  • a receiver discharge passage 75 is connected to the discharge side of the receiver 70 .
  • the receiver discharge passage 75 is a passage for guiding the refrigerant discharged from the receiver 70 to the economizer 60 .
  • the receiver discharge passage 75 connects the receiver 70 and the first economizer passage 60a.
  • the expansion valve 90 is an expansion device that expands the refrigerant discharged from the economizer 60 .
  • the expansion valve suction flow path 91 is connected to the suction side of the expansion valve 90 , and the expansion valve discharge flow path 92 is connected to the discharge side.
  • the expansion valve discharge flow path 92 is branched into a cooling expansion valve discharge flow path 93 and a heating expansion valve discharge flow path 94 .
  • the cooling expansion valve discharge flow path 93 is a flow path for guiding the refrigerant discharged from the expansion valve 90 to the air conditioning heat exchanger 30 during cooling operation.
  • the cooling expansion valve discharge passage 93 is connected to the third refrigerant passage 43 .
  • a first check valve 201 is installed in the cooling expansion valve discharge passage 93 to prevent reverse flow during heating operation.
  • the heating expansion valve discharge flow path 94 is a flow path for guiding the refrigerant discharged from the expansion valve 90 to the outdoor heat exchanger 40 during a heating operation.
  • the heating expansion valve discharge passage 94 is connected to the first refrigerant passage 41 .
  • a second check valve 202 is installed in the heating expansion valve discharge passage 94 to prevent reverse flow during cooling operation.
  • the four-way valve 80 is a valve that switches the direction of the flow path according to the operation mode.
  • an operation mode including a cooling operation, a cooling hot water supply operation requiring both cooling and hot water supply, a heating operation, a heating hot water supply operation requiring both heating and hot water supply, and a hot water supply operation requiring only hot water supply, of the hot water supply tank 22
  • a controller (not shown) for controlling the operation of the hot water supply pump 26, the air conditioning pump 36, and the first and second BIPVT heat source pumps 141 and 142 according to the internal temperature and the internal temperature of the heating and cooling water tank 32 city) is further included.
  • the system also includes a plurality of sensors.
  • the plurality of sensors include a first temperature sensor 201 installed in the suction-side passage 11 of the compressor 10 , second and third temperature sensors 202 and 203 installed in the hot water supply passage 24 , and the The fourth and fifth temperature sensors 204 and 205 installed in the heating and cooling heat source flow path 34, the sixth temperature sensor 206 installed in the first refrigerant flow path, and the refrigerant flow path 40a of the outdoor heat exchanger 40
  • the seventh temperature sensor 207 installed, the eighth temperature sensor 208 installed in the second BIPVT heat source supply passage 132 , the ninth temperature sensor 209 installed in the hot water supply tank 22 , and the heating and cooling water tank 32 ) and a tenth temperature sensor 210 installed in the eleventh temperature sensor 211 installed in the injection passage 65 .
  • the controller (not shown) operates the first BIPVT heat source pump 141 , stops the second BIPVT heat source pump 142 , and the hot water pump 26 operates stopped, and the heating/cooling pump 136 operates.
  • the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the water supply preheating passage 150 is formed in the buffer tank 130 , so that water supplied from the outside can be preheated by exchanging heat with the hot water.
  • the water supply preheated in the buffer tank 130 is stored in the hot water supply tank 22 through the water supply storage passage 152 . That is, the heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
  • the temperature of the hot water supply tank 22 can be maintained within a predetermined range.
  • the refrigerant compressed in the compressor (10) is the hot water heat exchanger (20), the four-way valve (80), the outdoor heat exchanger (40), the receiver (70), the economizer (60), and the expansion valve ( 90), after passing through the air-conditioning heat exchanger 30 and the cooling plate heat exchanger 50 in sequence, it circulates back to the compressor 10 .
  • the refrigerant compressed in the compressor 10 flows into the hot water heat exchanger 20 .
  • the hot water supply pump 26 since the hot water supply pump 26 is not operated, the refrigerant does not heat exchange in the hot water supply heat exchanger 20 .
  • the refrigerant from the hot water supply heat exchanger (20) flows into the outdoor heat exchanger (40) through the four-way valve (80).
  • the refrigerant not heat-exchanged in the hot water supply heat exchanger 20 flows into the outdoor heat exchanger 40 in a high temperature state.
  • the outdoor heat exchanger 40 heat exchange between the refrigerant and outdoor air is performed.
  • the outdoor heat exchanger 40 serves as a refrigerant condenser.
  • heat of condensation is generated as the refrigerant is condensed.
  • the outdoor heat exchanger 40 serves as a condenser of the refrigerant.
  • the outdoor heat exchange fan 40c operates when the condensing pressure of the refrigerant exceeds a preset pressure.
  • the refrigerant from the outdoor heat exchanger 40 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in order, and then flows into the air-conditioning heat exchanger 30 .
  • control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
  • branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
  • heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
  • the refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
  • the refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 , and then flows into the air-conditioning heat exchanger 30 .
  • the air-conditioning heat exchanger 30 heat exchange is made between the refrigerant and the air-conditioning heat source, so that the refrigerant is evaporated and the air-conditioning heat source is cooled. That is, during the cooling operation, the air conditioning heat exchanger 30 serves as an evaporator of the refrigerant.
  • the cooling and heating heat source cooled in the heating and cooling heat exchanger 30 flows into the cooling and heating water tank 32 .
  • cooling and heating water tank 32 heat exchange is performed between the heating and cooling heat source and the cooling and heating water, and the cooling and heating heat source cools the heating and cooling water.
  • the cooling and heating water stored in the heating and cooling water tank 32 and cooled by the heating and cooling heat source is used to cool the room.
  • it is used as a refrigerant of a cooling device installed in a room, and can be used to cool indoor air.
  • the refrigerant evaporated from the air-conditioning heat exchanger 30 passes through the cooling plate heat exchanger 50 or passes through the cooling plate heat exchanger 50 according to the operation of the first and second opening/closing valves 54 and 56 . After bypassing, it is circulated to the compressor 10 .
  • the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 .
  • the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
  • the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
  • the refrigerant may lower the temperature of the heating part of the inverter.
  • the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
  • the first on-off valve 54 opens and the second on-off valve 56 is closed, The refrigerant is guided to bypass the cold plate heat exchanger (50).
  • the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
  • FIG. 2 is a diagram illustrating a hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • the controller (not shown) operates the first BIPVT heat source pump 141, stops the second BIPVT heat source pump 142, and the hot water supply pump 26 operates, and the heating/cooling pump 136 stops the operation.
  • the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
  • the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in order, it circulates back to the compressor 10 .
  • the refrigerant discharged from the compressor (10) flows into the hot water heat exchanger (20).
  • heat exchange is performed between the refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
  • the hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
  • the hot water supply tank 22 heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water.
  • the hot water supply is used for hot water supply.
  • the refrigerant which has been deprived of heat from the hot water supply heat exchanger (20), flows into the air-conditioning heat exchanger (30) through the four-way valve (80).
  • the refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
  • the outdoor heat exchanger functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
  • the operation of the outdoor heat exchange fan 40c is stopped, and heat exchange is not performed in the outdoor heat exchanger 40 .
  • the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
  • the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
  • FIG. 3 is a view showing a cooling and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • the controller (not shown) operates the first BIPVT heat source pump 141 , stops the second BIPVT heat source pump 142 , and operates the hot water supply pump 26 and All of the heating and cooling pumps 136 are also operated.
  • the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
  • the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the outdoor heat exchanger 40 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the air-conditioning heat exchanger 30 in sequence, it circulates back to the compressor 10 .
  • the high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
  • heat exchange is performed between the high-temperature refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
  • the hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
  • the hot water supply tank 22 heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water.
  • the hot water supply is used for hot water supply.
  • the refrigerant from the hot water supply heat exchanger (20) flows into the outdoor heat exchanger (40) through the four-way valve (80).
  • the outdoor heat exchanger 40 functions as a condenser, and the outdoor heat exchange fan 40c operates when the condensing pressure of the refrigerant exceeds a preset pressure.
  • the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
  • the refrigerant from the outdoor heat exchanger 40 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in order, and then flows into the air-conditioning heat exchanger 30 .
  • control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
  • branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
  • heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
  • the refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
  • the refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 , and then flows into the air-conditioning heat exchanger 30 .
  • heat exchange is made between the refrigerant and the air-conditioning heat source, so that the refrigerant is evaporated and the air-conditioning heat source is cooled.
  • the cooling and heating heat source cooled in the heating and cooling heat exchanger 30 flows into the cooling and heating water tank 32 .
  • cooling and heating water tank 32 heat exchange is performed between the heating and cooling heat source and the cooling and heating water, and the cooling and heating heat source cools the heating and cooling water.
  • the cooling and heating water stored in the heating and cooling water tank 32 and cooled by the heating and cooling heat source is used to cool the room.
  • it is used as a refrigerant of a cooling device installed in a room, and can be used to cool indoor air.
  • the refrigerant evaporated from the air-conditioning heat exchanger 30 passes through the cooling plate heat exchanger 50 or passes through the cooling plate heat exchanger 50 according to the operation of the first and second opening/closing valves 54 and 56 . After bypassing, it is circulated to the compressor 10 .
  • the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 .
  • the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
  • the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
  • the refrigerant may lower the temperature of the heating part of the inverter.
  • the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
  • the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
  • the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
  • FIG. 4 is a view illustrating a heating operation state of a heat pump system using air heat of BIPVT according to an embodiment of the present invention.
  • the control unit (not shown) operates the first and second BIPVT heat source pumps 141 and 142 , stops the hot water supply pump 26 , and the heating/cooling pump 136 . ) works.
  • the heat source of air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
  • the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 30 in sequence, it circulates back to the compressor 10 .
  • the high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
  • the hot water supply pump 26 since the hot water supply pump 26 is not operated, the refrigerant does not heat exchange in the hot water supply heat exchanger 20 .
  • the refrigerant from the hot water supply heat exchanger 20 flows into the air conditioning heat exchanger 30 through the four-way valve 80 .
  • the air-conditioning heat exchanger 30 heat exchange is made between the high-temperature refrigerant and the air-conditioning heat source, so that the refrigerant is condensed and the air-conditioning heat source is heated. That is, during the heating operation, the air-conditioning heat exchanger 30 serves as a condenser.
  • the heating and cooling heat source heated in the heating and cooling heat exchanger 30 flows into the heating and cooling water tank 32 .
  • heating/cooling water tank 32 heat exchange is made between the cooling/cooling heat source and the cooling/cooling water, and the cooling/cooling heat source heats the cooling/cooling water.
  • the heating and cooling water stored in the heating and cooling water tank 32 and heated by the heating and cooling heat source is used to heat the room.
  • it is used as a refrigerant of a heating device installed in a room, and can be used to heat the room.
  • the refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
  • the outdoor heat exchanger functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
  • control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
  • branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
  • heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
  • the refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
  • the refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 and then flows into the outdoor heat exchanger 40 .
  • the outdoor heat exchanger 40 heat exchange is performed between the refrigerant and the hot water introduced through the second BIPVT heat source supply passage 132 .
  • the refrigerant receives the heat of the hot water. That is, during the heating operation, the outdoor heat exchanger 40 functions as an evaporator.
  • the refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
  • the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 .
  • the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
  • the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
  • the refrigerant may lower the temperature of the heating part of the inverter.
  • the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
  • the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
  • the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and transferred to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
  • FIG. 5 is a diagram illustrating a heating and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • the controller (not shown) operates the first and second BIPVT heat source pumps 141 and 142 , and both the hot water supply pump 26 and the air conditioning pump 136 are also operated. make it work
  • the heat source of air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
  • the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in sequence, it circulates back to the compressor 10 .
  • the high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
  • heat exchange is performed between the high-temperature refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
  • the hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
  • the hot water supply tank 22 heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water.
  • the hot water supply is used for hot water supply.
  • the refrigerant from the hot water supply heat exchanger 20 flows into the air conditioning heat exchanger 30 through the four-way valve 80 .
  • the air-conditioning heat exchanger 30 heat exchange is made between the high-temperature refrigerant and the air-conditioning heat source, so that the refrigerant is condensed and the air-conditioning heat source is heated. That is, during the heating and hot water supply operation, the air-conditioning heat exchanger 30 serves as a condenser.
  • the heating and cooling heat source heated in the heating and cooling heat exchanger 30 flows into the heating and cooling water tank 32 .
  • heating/cooling water tank 32 heat exchange is made between the cooling/cooling heat source and the cooling/cooling water, and the cooling/cooling heat source heats the cooling/cooling water.
  • the heating and cooling water stored in the heating and cooling water tank 32 and heated by the heating and cooling heat source is used to heat the room.
  • it is used as a refrigerant of a heating device installed in a room, and can be used to heat the room.
  • the refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
  • the outdoor heat exchanger 40 functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
  • control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
  • branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
  • heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
  • the refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
  • the refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 and then flows into the outdoor heat exchanger 40 .
  • the outdoor heat exchanger 40 heat exchange between the refrigerant and the hot water is performed.
  • the refrigerant receives the heat of the hot water. That is, during the heating and hot water supply operation, the outdoor heat exchanger 40 functions as an evaporator.
  • the refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
  • the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 .
  • the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
  • the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
  • the refrigerant may lower the temperature of the heating part of the inverter.
  • the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
  • the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
  • the heat source of the air produced by the BIPVT collector 110 is absorbed through the outdoor heat exchanger 40 during heating operation or hot water supply operation, and used as a heat source of the heat pump cycle. Accordingly, there is an advantage that the coefficient of performance can be maximized.
  • the heat source of the air produced by the BIPVT collector 110 can be used for preheating the water supply during the cooling operation, there is an advantage in that the temperature of the hot water supply tank can be constantly secured.
  • the condensed heat of the refrigerant is recovered from the outdoor heat exchanger 40 and transferred to the buffer tank 130, so that it can be used for preheating the water supply, thereby ensuring a constant temperature of the hot water supply tank there is this
  • FIG. 6 is a view illustrating a winter hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
  • the control unit (not shown) operates both the first BIPVT heat source pump 141 and the second BIPVT heat source pump 142, and the hot water supply pump 26 operates,
  • the air conditioning pump 136 stops the operation.
  • the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
  • the hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
  • the hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
  • the outdoor heat exchanger 40 functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
  • the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in order, it circulates back to the compressor 10 .
  • the refrigerant discharged from the compressor (10) flows into the hot water heat exchanger (20).
  • heat exchange is performed between the refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
  • the hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
  • the hot water supply tank 22 heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water.
  • the hot water supply is used for hot water supply.
  • the refrigerant which has been deprived of heat from the hot water supply heat exchanger (20), flows into the air-conditioning heat exchanger (30) through the four-way valve (80).
  • the refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
  • the operation of the outdoor heat exchange fan 40c is stopped, and heat exchange between the refrigerant and the hot water is performed in the outdoor heat exchanger 40 .
  • the refrigerant receives the heat of the hot water. That is, the outdoor heat exchanger 40 serves as an evaporator during hot water supply operation in winter when the outdoor temperature is low.
  • the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
  • the refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
  • the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 .
  • the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
  • the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
  • the refrigerant may lower the temperature of the heating part of the inverter.
  • the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
  • the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.

Abstract

A heat pump system using the air heat of BIPVT includes a cooling plate heat exchanger that is installed so as to be in contact with a heat emission unit of an inverter, wherein refrigerant that has yet to be suctioned into a compressor exchanges heat with the heat emission unit, and the refrigerant evaporates by additionally exchanging heat while passing through the cooling plate heat exchanger, thus increasing the capacity of the evaporator and increasing performance and efficiency. Moreover, since the temperature of the heat emission unit of the inverter can be reduced, less noise is generated as compared to the case of using a cooling fan to cool the inverter.

Description

BIPVT의 공기열을 이용한 히트펌프 시스템Heat pump system using air heat of BIPVT
본 발명은 BIPVT의 공기열을 이용한 히트펌프 시스템에 관한 것으로서, 보다 상세하게는 BIPVT(Building Integrated Photovoltaic Thermal) 컬렉터에서 생산된 공기열을 히트펌프의 열원으로 사용하여 효율을 극대화시킬 수 있는 BIPVT의 공기열을 이용한 히트펌프 시스템에 관한 것이다. The present invention relates to a heat pump system using air heat of BIPVT, and more particularly, using air heat produced by a BIPVT (Building Integrated Photovoltaic Thermal) collector as a heat source of a heat pump to maximize efficiency. It relates to a heat pump system.
일반적으로 히트 펌프는 냉매를 압축, 응축, 팽창 및 증발시키는 과정을 차례로 수행하여 실내 공간을 냉방 또는 난방시키는 장치이다. In general, a heat pump is a device for cooling or heating an indoor space by sequentially performing processes of compressing, condensing, expanding, and evaporating a refrigerant.
종래의 히트펌프는 냉방과 난방만을 수행하고, 급탕은 보조 열원이나 급탕 탱크를 별도로 사용하여 난방수와 간접 열교환하는 방식의 형태이다. 냉방시 급탕이 필요한 경우, 냉방 운전을 멈추고 난방 운전으로 전환하여 급탕을 생산하기 때문에, 냉방 운전이 제한되는 문제점이 있었다.Conventional heat pumps perform only cooling and heating, and hot water supply is a type of indirect heat exchange with heating water by using an auxiliary heat source or a hot water supply tank separately. When hot water supply is required during cooling, the cooling operation is limited because hot water supply is produced by stopping the cooling operation and switching to the heating operation.
또한, 종래의 히트펌프는, 주변 및 외기 온도의 영향을 받기 때문에, 겨울철 외기 온도가 매우 낮기 때문에 히트펌프의 성능이 급격히 저하되는 한계가 있다. In addition, since the conventional heat pump is affected by ambient and outdoor temperature, there is a limitation in that the performance of the heat pump is rapidly deteriorated because the outdoor temperature in winter is very low.
본 발명의 목적은, BIPVT 컬렉터에서 생산된 공기열을 효과적으로 사용할 수 있는 BIPVT의 공기열을 이용한 히트펌프 시스템을 제공하는 데 있다.An object of the present invention is to provide a heat pump system using the air heat of the BIPVT that can effectively use the air heat produced by the BIPVT collector.
본 발명에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템은, 압축기, 다수의 열교환기들, 팽창밸브 및 사방밸브를 포함하고, BIPVT(Building Integrated Photovoltaic Thermal) 컬렉터로부터 열을 흡수한 공기의 열원을 이용하는 히트펌프 시스템에 있어서, 상기 압축기에서 나온 냉매와 급탕 열원을 열교환시키는 급탕 열교환기와; 상기 급탕 열교환기에서 열을 흡수한 급탕 열원이 통과는 유로가 형성되고, 상기 급탕 열원으로부터 열을 공급받는 급탕 용수가 저장된 급탕 탱크와; 상기 급탕 열교환기와 상기 급탕 탱크를 연결하는 유로에 설치된 급탕 펌프와; 상기 급탕 열교환기에서 나온 냉매와 냉난방 열원을 열교환시키는 냉난방 열교환기와; 상기 냉난방 열교환기에서 열을 흡수한 냉난방 열원이 통과하는 내부 유로가 형성되고, 상기 냉난방 열원과 열교환하는 냉난방 용수가 저장된 냉난방수 탱크와; 상기 냉난방 열교환기와 상기 냉난방수 탱크를 연결하는 유로에 설치된 냉난방 펌프와; 상기 BIPVT 컬렉터를 통과하면서 열을 흡수한 공기와 물을 열교환시켜, 온수를 생산하는 공기 열교환기와; 상기 공기 열교환기에서 생산된 온수를 일시 저장하고, 외부로부터 공급되는 급수를 예열하도록 형성된 버퍼 탱크와; 상기 공기 열교환기와 상기 버퍼 탱크를 연결하여, 상기 공기 열교환기에서 나온 온수를 상기 버퍼 탱크로 안내하는 제1BIPVT 열원 공급유로와; 상기 제1BIPVT 열원 공급유로에 설치되어 제1BIPVT 열원 펌프와; 상기 버퍼 탱크 내부에 설치되어, 상기 급수가 상기 버퍼 탱크 내의 온수와 혼합되지 않고 통과하면서 예열되도록 형성된 급수 예열유로와; 상기 급수 예열유로와 상기 냉난방수 탱크를 연결하여, 상기 급수 예열유로에서 예열된 급수를 상기 냉난방수 탱크로 안내하는 급수 저장유로와; 상기 급탕 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 나온 냉매가 통과하는 냉매 유로와, 상기 버퍼 탱크에서 나온 온수가 통과하는 온수 유로가 내부에 각각 형성되어, 상기 냉매와 상기 온수를 서로 열교환시키는 실외 열교환기와; 상기 버퍼 탱크와 상기 실외 열교환기를 연결하여, 상기 버퍼 탱크에서 나온 온수가 상기 실외 열교환기를 통과하도록 안내하는 제2BIPVT 열원 공급유로와; 상기 제2BIPVT 열원 공급유로에 설치된 제2BIPVT 열원 펌프와; 냉방 운전, 냉방과 급탕이 모두 필요한 냉방 급탕운전, 난방 운전, 난방과 급탕이 모두 필요한 난방 급탕운전, 급탕만 필요한 여름철 급탕 운전, 겨울철 급탕 운전을 포함하는 운전 모드, 상기 급탕 탱크의 내부 온도, 상기 냉난방수 탱크의 내부 온도에 따라 상기 급탕 펌프, 상기 냉난방 펌프, 상기 제1,2BIPVT 열원 펌프의 작동을 제어하는 제어부를 포함하고, 상기 압축기는 인버터에 의해 제어되고, 상기 압축기의 흡입측 유로에 연결되고 상기 인버터의 발열부에 구비되어, 상기 압축기로 흡입되기 이전의 냉매와 열교환하여 상기 인버터의 발열부는 냉각시키고 상기 냉매는 증발시키는 냉각판 열교환기를 더 포함하고, 상기 냉각판 열교환기는, 상기 인버터의 발열부에 접하도록 판 형상으로 형성되고, 내부에 복수의 관통홀들이 형성된 냉각판과, 상기 냉각판을 관통하도록 상기 관통홀들에 끼워지고, 상기 압축기로 흡입되기 이전의 냉매가 통과하는 복수의 냉매관들을 포함한다. A heat pump system using air heat of BIPVT according to the present invention includes a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve, and uses a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector. A pump system comprising: a hot water heat exchanger for exchanging heat with a refrigerant discharged from the compressor and a hot water heat source; a hot water supply tank having a flow path through which the hot water supply heat source absorbing heat from the hot water supply heat exchanger passes, and storing hot water supply water supplied with heat from the hot water supply heat source; a hot water supply pump installed in a flow path connecting the hot water supply heat exchanger and the hot water supply tank; a heating and cooling heat exchanger for exchanging heat with the refrigerant from the hot water supply heat exchanger; a heating and cooling water tank having an internal flow passage through which the heating and cooling heat source absorbed heat from the heating and cooling heat exchanger passes, and storing heating and cooling water exchanging heat with the heating and cooling heat source; a heating and cooling pump installed in a flow path connecting the heating and cooling heat exchanger and the heating and cooling water tank; an air heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector; a buffer tank configured to temporarily store the hot water produced by the air heat exchanger and preheat the water supplied from the outside; a first BIPVT heat source supply passage connecting the air heat exchanger and the buffer tank to guide hot water from the air heat exchanger to the buffer tank; a first BIPVT heat source pump installed in the first BIPVT heat source supply passage; a water supply preheating passage installed inside the buffer tank and configured to preheat the water supply while passing without being mixed with the hot water in the buffer tank; a water supply storage passage connecting the water supply preheating passage and the heating and cooling water tank to guide the water preheated in the water supply preheating passage to the heating and cooling water tank; A refrigerant passage through which the refrigerant from any one of the hot water supply heat exchanger and the air-conditioning heat exchanger passes and a hot water passage through which the hot water from the buffer tank passes are respectively formed therein, and outdoor heat exchange for exchanging the refrigerant and the hot water with each other tile; a second BIPVT heat source supply passage connecting the buffer tank and the outdoor heat exchanger to guide the hot water from the buffer tank to pass through the outdoor heat exchanger; a second BIPVT heat source pump installed in the second BIPVT heat source supply passage; Operation modes including cooling operation, cooling hot water supply operation requiring both cooling and hot water supply, heating operation, heating hot water supply operation requiring both heating and hot water supply, summer hot water supply operation requiring only hot water supply, and winter hot water supply operation, internal temperature of the hot water supply tank, the above and a controller for controlling operations of the hot water supply pump, the air conditioning pump, and the first and second BIPVT heat source pumps according to the internal temperature of the heating and cooling water tank, wherein the compressor is controlled by an inverter and connected to a suction side flow path of the compressor and a cooling plate heat exchanger provided in the heating unit of the inverter to heat exchange with the refrigerant before being sucked into the compressor to cool the heating unit of the inverter and evaporate the refrigerant, wherein the cooling plate heat exchanger includes: A cooling plate formed in a plate shape so as to be in contact with the heating unit and having a plurality of through-holes formed therein, and a plurality of cooling plates fitted to the through-holes so as to penetrate the cooling plate and through which the refrigerant before being sucked into the compressor passes. Includes refrigerant tubes.
상기 냉각판은, 일측면은 상기 발열부에 접하고, 타측면에는 상기 냉매관이 끼워지도록 반원 형상의 제1홈부가 형성된 제1냉각판과, 상기 제1냉각판의 타측면에 결합되고, 상기 제1홈부에 대향되는 반원 형상의 제2홈부가 형성된 제2냉각판을 포함한다.The cooling plate includes a first cooling plate having a first semicircular groove formed on one side of the cooling plate in contact with the heat generating unit and having a first semicircular groove on the other side to be fitted with the refrigerant pipe, and is coupled to the other side of the first cooling plate, and and a second cooling plate having a second semicircular groove portion opposite to the first groove portion.
상기 압축기의 흡입측 유로에서 분기되어, 상기 압축기로 흡입되기 이전의 냉매를 상기 냉각판 열교환기로 안내하는 냉각판 열교환기 흡입유로와, 상기 냉각판 열교환기에서 나온 냉매를 상기 압축기의 흡입측 유로로 안내하는 냉각판 열교환기 토출유로와, 상기 압축기의 흡입측 유로에서 상기 냉각판 열교환기 흡입유로가 분기되는 지점과 상기 냉각판 열교환기 토출유로가 합지되는 지점 사이에 설치된 제1개폐밸브와, 상기 냉각판 열교환기 토출유로를 개폐하는 제2개폐밸브를 더 포함하고, 상기 제어부는, 상기 인버터의 발열부의 온도가 미리 설정된 제1설정 발열부 온도 이상이면, 상기 제1개폐밸브가 개방된 상태에서 상기 제2개폐밸브를 개방하고, 상기 인버터의 발열부의 온도가 미리 설정된 제2설정 발열부 온도 미만이면, 상기 제2개폐밸브는 차폐한다.a cooling plate heat exchanger suction passage branching from the suction-side flow passage of the compressor to guide the refrigerant before being sucked into the compressor to the cooling plate heat exchanger; a first on/off valve installed between a cooling plate heat exchanger discharge flow path for guiding and a point at which the cooling plate heat exchanger suction flow path is branched from the suction side flow path of the compressor and a point where the cooling plate heat exchanger discharge flow path is merged; and a second opening/closing valve for opening and closing the cooling plate heat exchanger discharge flow path, wherein the control unit is configured to, when the temperature of the heating unit of the inverter is equal to or higher than a preset first heating unit temperature, in an open state of the first opening/closing valve The second on-off valve is opened, and when the temperature of the heating part of the inverter is less than a preset second set heating part temperature, the second on-off valve is closed.
상기 제어부는, 상기 제2개폐밸브를 개방한 이후, 상기 발열부의 온도가 상기 제1설정 발열부 온도가 상기 제1설정 발열부 온도보다 높게 설정한 최고 설정 온도에 도달하면, 상기 제1개페밸브를 차폐한다.The control unit, after opening the second opening/closing valve, when the temperature of the heat generating unit reaches the highest set temperature in which the first set heat generating unit temperature is higher than the first set heat generating unit temperature, the first open/close valve to shield
상기 압축기의 토출측 유로에 설치되어, 상기 압축기에서 토출되는 냉매 중 일부를 상기 냉난방 열교환기의 흡입측 유로로 공급하는 핫가스 바이패스 유로와, 상기 핫가스 바이패스 유로를 개폐하는 핫가스 유량제어밸브를 더 포함하고, 상기 제어부는, 제상 운전 모드나 상기 압축기의 흡입측 압력에 따라 상기 핫가스 유량제어밸브의 개도를 제어한다.A hot gas bypass flow path installed in the discharge side flow path of the compressor to supply some of the refrigerant discharged from the compressor to the suction side flow path of the air-conditioning heat exchanger, and a hot gas flow rate control valve for opening and closing the hot gas bypass flow path It further includes, wherein the control unit controls the opening degree of the hot gas flow control valve according to the defrost operation mode or the suction side pressure of the compressor.
상기 실외 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 응축된 냉매가 유입되는 이코노마이저와, 상기 이코노마이저의 내부에 형성되어, 냉방 운전시 상기 실외 열교환기에서 토출된 냉매가 유입되고 난방 운전시 상기 냉난방 열교환기에서 토출된 냉매가 유입되는 제1이코노마이저 유로와, 상기 제1이코노마이저 유로에서 나온 냉매 중 일부가 분기되는 분기유로와, 상기 이코노마이저의 내부에 형성되어, 상기 분기유로를 통과한 냉매가 유입되어 상기 제1이코노마이저 유로를 통과하는 냉매와 열교환되는 제2이코노마이저 유로와, 상기 제2이코노마이저 유로에서 토출된 냉매를 상기 압축기로 안내하는 인젝션 유로와, 상기 제1이코노마이저 유로에서 나온 냉매 중 나머지를 상기 팽창밸브로 안내하는 팽창밸브 흡입유로와, 상기 팽창밸브의 토출측에 연결된 팽창밸브 토출유로와, 상기 팽창밸브 토출유로에서 분기되어, 냉방 운전시 상기 팽창밸브 토출유로에서 토출된 냉매를 상기 냉난방 열교환기로 안내하는 냉방용 팽창밸브 토출유로와, 상기 냉방용 팽창밸브 토출유로에 설치된 제1체크밸브와, 상기 팽창밸브 토출유로에서 분기되어, 난방 운전시 상기 팽창밸브 토출유로에서 토출된 냉매를 상기 실외 열교환기로 안내하는 난방용 팽창밸브 토출유로와, 상기 난방용 팽창밸브 토출유로에 설치된 제2체크밸브를 더 포함하고, 상기 제어부는, 상기 운전 모드에 따라 상기 제1,2체크밸브의 개폐를 제어한다.An economizer into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger is introduced, is formed inside the economizer, and the refrigerant discharged from the outdoor heat exchanger during a cooling operation flows in, and the air-conditioning heat exchanger during a heating operation a first economizer flow path through which the refrigerant discharged from A second economizer flow path that exchanges heat with the refrigerant passing through the first economizer flow path, an injection flow path for guiding the refrigerant discharged from the second economizer flow path to the compressor, and the remainder of the refrigerant discharged from the first economizer flow path to the expansion valve An expansion valve suction flow path for guiding, an expansion valve discharge flow path connected to the discharge side of the expansion valve, and a cooling system that branches from the expansion valve discharge flow path and guides the refrigerant discharged from the expansion valve discharge flow path to the air-conditioning heat exchanger during cooling operation an expansion valve discharge flow path for cooling, a first check valve installed in the cooling expansion valve discharge flow path, and branched from the expansion valve discharge flow path to guide the refrigerant discharged from the expansion valve discharge flow path during heating operation to the outdoor heat exchanger It further includes a heating expansion valve discharge flow path and a second check valve installed in the heating expansion valve discharge flow path, wherein the control unit controls opening and closing of the first and second check valves according to the operation mode.
상기 실외 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 응축된 냉매가 유입되어 일시 저장되는 수액기와, 냉방 운전시 상기 실외 열교환기에서 나온 냉매를 상기 수액기로 안내하도록 형성된 냉방용 수액기 유입유로와, 상기 냉방용 수액기 유입유로에 설치된 제3체크밸브와, 난방 운전시 상기 냉난방 열교환기에서 나온 냉매를 상기 수액기로 안내하도록 형성된 난방용 수액기 유입유로와, 상기 난방용 수액기 유입유로에 설치된 제4체크밸브와, 상기 수액기에서 나온 냉매를 상기 이코노마이저로 안내하는 수액기 토출유로를 더 포함하고, 상기 제어부는, 상기 운전 모드에 따라 상기 제3,4체크밸브의 개폐를 제어한다.a receiver into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger is introduced and temporarily stored; A third check valve installed in the cooling receiver inlet flow path, a heating receiver inlet channel configured to guide the refrigerant from the cooling and heating heat exchanger to the receiver during heating operation, and a fourth check valve installed in the heating receiver inlet channel and a receiver discharge passage for guiding the refrigerant from the receiver to the economizer, wherein the controller controls opening and closing of the third and fourth check valves according to the operation mode.
상기 BIPVT 컬렉터와 상기 공기 열교환기의 입구측을 연결하는 제1공기 유로와, 상기 제1공기 유로에 설치된 공기 팬과, 상기 공기 열교환기의 출구측과 상기 BIPVT 컬렉터를 연결하는 제2공기 유로와, 상기 제2공기 유로에 연결되어, 외부 공기를 추가로 유입하는 공기 보충유로와, 상기 공기 보충유로를 개폐하는 공기 보충유로 밸브와, 상기 제2공기 유로에 연결되어, 상기 제2공기 유로내의 공기를 외부로 토출하는 공기 토출유로와, 상기 공기 토출유로를 개폐하는 공기 토출유로 밸브를 더 포함한다.A first air flow path connecting the BIPVT collector and the inlet side of the air heat exchanger, an air fan installed in the first air flow path, and a second air flow path connecting the outlet side of the air heat exchanger and the BIPVT collector; , an air replenishment flow passage connected to the second air flow path to additionally introduce external air, an air replenishment flow passage valve for opening and closing the air replenishment flow passage, and the second air flow passage connected to the second air flow path. It further includes an air discharge passage for discharging air to the outside, and an air discharge passage valve for opening and closing the air discharge passage.
상기 제어부는, 상기 냉방 운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프는 작동 중지시키고, 상기 냉난방 펌프는 작동시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 실외 열교환기, 상기 팽창밸브 및 상기 냉난방 열교환기를 차례로 통과한 후 상기 압축기로 순환하고, 상기 급탕 열교환기에서는 열교환이 이루어지지 않고, 상기 실외 열교환기에서는 상기 냉매와 외기가 열교환하여 상기 냉매가 응축되고, 상기 냉난방 열교환기에서는 상기 냉매가 증발되고 상기 냉난방 열원은 냉각되고, 상기 냉난방 열원은 상기 냉난방수 탱크에 저장된 냉난방 용수를 냉각시켜 상기 냉난방 용수는 실내를 냉방하는 데 사용된다.When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, stops the hot water supply pump, and operates the air conditioning pump during the cooling operation, heat is absorbed from the BIPVT collector A heat source of one air is transferred to the air heat exchanger, the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage, and the refrigerant compressed in the compressor is transferred to the hot water heat exchanger in the four directions. After passing through the valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in sequence, it circulates to the compressor, heat exchange is not performed in the hot water supply heat exchanger, and in the outdoor heat exchanger, the refrigerant and the outside air exchange heat with the refrigerant. is condensed, the refrigerant is evaporated in the air-conditioning heat exchanger, the cooling/cooling heat source is cooled, the cooling/cooling heat source cools the cooling/cooling water stored in the cooling/cooling water tank, and the cooling/cooling water is used to cool the room.
상기 제어부가, 상기 여름철 급탕운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프는 작동시키고, 상기 냉난방 펌프는 작동 중지시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되어 상기 급탕 탱크로 공급되는 급수를 예열하고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브, 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고, 상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고, 상기 냉난방 열교환기에서는 열교환이 이루어지지 않고, 상기 실외 열교환기는 증발기 역할을 한다.When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, operates the hot water supply pump, and stops the heating/cooling pump during the summer hot water supply operation, heat is removed from the BIPVT collector The absorbed air heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank, and in the compressor The compressed refrigerant passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and then circulates to the compressor. It is transmitted to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, heat exchange is not performed in the air-conditioning heat exchanger, and the outdoor heat exchanger serves as an evaporator.
상기 제어부가, 상기 냉방 급탕운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프와 상기 냉난방 펌프도 모두 작동시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되어 상기 급탕 탱크로 공급되는 급수를 예열하고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 실외 열교환기, 상기 팽창밸브, 상기 냉난방 열교환기를 차례로 통과한 후 상기 압축기로 순환하고, 상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고, 상기 실외 열교환기는 응축기 역할을 하고, 상기 냉난방 열교환기에서는 상기 냉매가 증발되고 상기 냉난방 열원은 냉각되고, 상기 냉난방 열원은 상기 냉난방수 탱크에 저장된 냉난방 용수를 냉각시켜 상기 냉난방 용수는 실내를 냉방하는 데 사용된다.When the control unit operates the first BIPVT heat source pump, stops the second BIPVT heat source pump, and operates both the hot water supply pump and the air conditioning pump during the cooling and hot water supply operation, the air absorbed heat from the BIPVT collector of the heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank, and the refrigerant compressed in the compressor circulates to the compressor after passing through the hot water supply heat exchanger, the four-way valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in turn, and in the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is the hot water supply heat source is transferred to, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, the outdoor heat exchanger serves as a condenser, and the refrigerant is evaporated in the air conditioning heat exchanger and the cooling and heating heat source is cooled, and the heating and cooling heat source is cooled. The heat source cools the heating and cooling water stored in the heating and cooling water tank, and the heating and cooling water is used to cool the room.
상기 제어부가 상기 난방 운전시, 상기 제1,2BIPVT 열원 펌프를 작동시키고, 상기 급탕 펌프는 작동 중지시키고, 상기 냉난방 펌프는 작동시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로 및 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브 및 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고, 상기 급탕 열교환기에서는 열교환이 이루어지지 않고, 상기 냉난방 열교환기에서 발생된 응축열은 상기 냉난방수 탱크로 전달되어 실내를 난방하는 데 사용되고, 상기 실외 열교환기에서는 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발된다.When the control unit operates the first and second BIPVT heat source pumps during the heating operation, stops the hot water supply pump, and operates the heating/cooling pump, the heat source of the air that has absorbed heat from the BIPVT collector is transferred to the air heat exchanger. The hot water produced by the air heat exchanger passes through the first BIPVT heat source supply passage, the buffer tank, the second BIPVT heat source supply passage, and the outdoor heat exchanger in order to transfer heat to the outdoor heat exchanger, and is compressed by the compressor. After passing through the hot water supply heat exchanger, the four-way valve, the air conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in sequence, the refrigerant is circulated to the compressor, and heat exchange is not performed in the hot water supply heat exchanger, and the air conditioning heat exchanger The condensed heat generated in the is transferred to the heating and cooling water tank and used to heat the room, and the outdoor heat exchanger absorbs heat from the second BIPVT heat source supply flow path and evaporates it.
상기 제어부가 상기 난방 급탕운전시, 상기 제1,2BIPVT 열원 펌프를 작동시키고, 상기 급탕 펌프와 상기 냉난방 펌프는 모두 작동시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로를 통해 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브 상기 냉난방 열교환기 및 상기 팽창밸브를 차례로 통과한 후 상기 압축기로 다시 순환되고, 상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고, 상기 냉난방 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 냉난방수 탱크로 전달되어 실내를 난방하는 데 사용되고, 상기 실외 열교환기에서는 상기 냉매가 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발된다.When the control unit operates the first and second BIPVT heat source pumps during the heating and hot water supply operation, and both the hot water supply pump and the heating/cooling pump operate, the heat source of the air absorbed by the BIPVT collector is transferred to the air heat exchanger and , the hot water produced in the air heat exchanger passes through the outdoor heat exchanger sequentially through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to transfer heat to the outdoor heat exchanger, and is compressed by the compressor. The refrigerant passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, and the expansion valve in turn, and then circulates back to the compressor. , the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, and in the air conditioning heat exchanger, the condensed heat generated while the refrigerant is condensed is transferred to the heating and cooling water tank to be used to heat the room, and the outdoor heat exchange In the air, the refrigerant absorbs heat from the second BIPVT heat source supply passage and is evaporated.
상기 제어부가, 상기 겨울철 급탕운전시, 상기 제1BIPVT 열원 펌프와 상기 제2BIPVT 열원 펌프를 모두 작동시키고, 상기 급탕 펌프는 작동시키고, 상기 냉난방 펌프는 작동 중지시키면, 상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, 상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로를 통해 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, 상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브, 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고, 상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고, 상기 냉난방 열교환기에서는 열교환이 이루어지지 않고, 상기 실외 열교환기에서는 상기 냉매가 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발된다.When the control unit operates both the first BIPVT heat source pump and the second BIPVT heat source pump during the winter hot water supply operation, operates the hot water supply pump, and stops the air conditioning pump, the air absorbed heat from the BIPVT collector of the heat source is transferred to the air heat exchanger, and the hot water produced in the air heat exchanger sequentially passes through the outdoor heat exchanger through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to heat the outdoor heat exchanger. and the refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and then circulates to the compressor, and in the hot water heat exchanger, the refrigerant Condensation heat generated while condensing is transferred to the hot water supply heat source, the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank, heat exchange is not performed in the air conditioning heat exchanger, and the refrigerant in the outdoor heat exchanger is evaporated by absorbing heat from the second BIPVT heat source supply passage.
본 발명의 다른 측면에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템은, 압축기, 다수의 열교환기들, 팽창밸브 및 사방밸브를 포함하고, BIPVT(Building Integrated Photovoltaic Thermal) 컬렉터로부터 열을 흡수한 공기의 열원을 이용하는 히트펌프 시스템에 있어서, 상기 압축기에서 나온 냉매와 급탕 열원을 열교환시키는 급탕 열교환기와; 상기 급탕 열교환기에서 열을 흡수한 급탕 열원이 통과는 유로가 형성되고, 상기 급탕 열원으로부터 열을 공급받는 급탕 용수가 저장된 급탕 탱크와; 상기 급탕 열교환기와 상기 급탕 탱크를 연결하는 유로에 설치된 급탕 펌프와; 상기 급탕 열교환기에서 나온 냉매와 냉난방 열원을 열교환시키는 냉난방 열교환기와; 상기 냉난방 열교환기에서 열을 흡수한 냉난방 열원이 통과하는 내부 유로가 형성되고, 상기 냉난방 열원과 열교환하는 냉난방 용수가 저장된 냉난방수 탱크와; 상기 냉난방 열교환기와 상기 냉난방수 탱크를 연결하는 유로에 설치된 냉난방 펌프와; 상기 BIPVT 컬렉터를 통과하면서 열을 흡수한 공기와 물을 열교환시켜, 온수를 생산하는 공기 열교환기와; 상기 공기 열교환기에서 생산된 온수를 일시 저장하고, 외부로부터 공급되는 급수를 예열하도록 형성된 버퍼 탱크와; 상기 공기 열교환기와 상기 버퍼 탱크를 연결하여, 상기 공기 열교환기에서 나온 온수를 상기 버퍼 탱크로 안내하는 제1BIPVT 열원 공급유로와; 상기 제1BIPVT 열원 공급유로에 설치되어 제1BIPVT 열원 펌프와; 상기 버퍼 탱크 내부에 설치되어, 상기 급수가 상기 버퍼 탱크 내의 온수와 혼합되지 않고 통과하면서 예열되도록 형성된 급수 예열유로와; 상기 급수 예열유로와 상기 냉난방수 탱크를 연결하여, 상기 급수 예열유로에서 예열된 급수를 상기 냉난방수 탱크로 안내하는 급수 저장유로와; 상기 급탕 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 나온 냉매가 통과하는 냉매 유로와, 상기 버퍼 탱크에서 나온 온수가 통과하는 온수 유로가 내부에 각각 형성되어, 상기 냉매와 상기 온수를 서로 열교환시키는 실외 열교환기와; 상기 버퍼 탱크와 상기 실외 열교환기를 연결하여, 상기 버퍼 탱크에서 나온 온수가 상기 실외 열교환기를 통과하도록 안내하는 제2BIPVT 열원 공급유로와; 상기 제2BIPVT 열원 공급유로에 설치된 제2BIPVT 열원 펌프와; 냉방 운전, 냉방과 급탕이 모두 필요한 냉방 급탕운전, 난방 운전, 난방과 급탕이 모두 필요한 난방 급탕운전, 급탕만 필요한 여름철 급탕 운전, 겨울철 급탕 운전을 포함하는 운전 모드, 상기 급탕 탱크의 내부 온도, 상기 냉난방수 탱크의 내부 온도에 따라 상기 급탕 펌프, 상기 냉난방 펌프, 상기 제1,2BIPVT 열원 펌프의 작동을 제어하는 제어부를 포함하고, 상기 압축기는 인버터에 의해 제어되고, 상기 압축기의 흡입측 유로에 연결되고 상기 인버터의 발열부에 구비되어, 상기 압축기로 흡입되기 이전의 냉매와 열교환하여 상기 인버터의 발열부는 냉각시키고 상기 냉매는 증발시키는 냉각판 열교환기를 더 포함하고, 상기 냉각판 열교환기는, 상기 인버터의 발열부에 접하도록 판 형상으로 형성되고, 내부에 복수의 관통홀들이 형성된 냉각판과, 상기 냉각판을 관통하도록 상기 관통홀들에 끼워지고, 상기 압축기로 흡입되기 이전의 냉매가 통과하는 복수의 냉매관들을 포함하고, 상기 냉각판은, 일측면은 상기 발열부에 접하고, 타측면에는 상기 냉매관이 끼워지도록 반원 형상의 제1홈부가 형성된 제1냉각판과, 상기 제1냉각판의 타측면에 결합되고, 상기 제1홈부에 대향되는 반원 형상의 제2홈부가 형성된 제2냉각판을 포함하고, 상기 압축기의 흡입측 유로에서 분기되어, 상기 압축기로 흡입되기 이전의 냉매를 상기 냉각판 열교환기로 안내하는 냉각판 열교환기 흡입유로와, 상기 냉각판 열교환기에서 나온 냉매를 상기 압축기의 흡입측 유로로 안내하는 냉각판 열교환기 토출유로와, 상기 압축기의 흡입측 유로에서 상기 냉각판 열교환기 흡입유로가 분기되는 지점과 상기 냉각판 열교환기 토출유로가 합지되는 지점 사이에 설치된 제1개폐밸브와, 상기 냉각판 열교환기 토출유로를 개폐하는 제2개폐밸브를 더 포함하고, 상기 제어부는, 상기 인버터의 발열부의 온도가 미리 설정된 제1설정 발열부 온도 이상이면, 상기 제2개폐밸브를 개방하고, 상기 인버터의 발열부의 온도가 미리 설정된 제2설정 발열부 온도 미만이면, 상기 제1개폐밸브는 개방하고, 상기 제2개폐밸브는 차폐한다. A heat pump system using air heat of BIPVT according to another aspect of the present invention includes a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve, and a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector A heat pump system using a hot water supply tank having a flow path through which the hot water supply heat source absorbing heat from the hot water supply heat exchanger passes, and storing hot water supply water supplied with heat from the hot water supply heat source; a hot water supply pump installed in a flow path connecting the hot water supply heat exchanger and the hot water supply tank; a heating and cooling heat exchanger for exchanging heat with the refrigerant from the hot water supply heat exchanger; a heating and cooling water tank having an internal flow passage through which the heating and cooling heat source absorbed heat from the heating and cooling heat exchanger passes, and storing heating and cooling water exchanging heat with the heating and cooling heat source; a heating and cooling pump installed in a flow path connecting the heating and cooling heat exchanger and the heating and cooling water tank; an air heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector; a buffer tank configured to temporarily store the hot water produced by the air heat exchanger and preheat the water supplied from the outside; a first BIPVT heat source supply passage connecting the air heat exchanger and the buffer tank to guide hot water from the air heat exchanger to the buffer tank; a first BIPVT heat source pump installed in the first BIPVT heat source supply passage; a water supply preheating passage installed inside the buffer tank and configured to preheat the water supply while passing without being mixed with the hot water in the buffer tank; a water supply storage passage connecting the water supply preheating passage and the heating and cooling water tank to guide the water preheated in the water supply preheating passage to the heating and cooling water tank; A refrigerant passage through which the refrigerant from any one of the hot water supply heat exchanger and the air-conditioning heat exchanger passes and a hot water passage through which the hot water from the buffer tank passes are respectively formed therein, and outdoor heat exchange for exchanging the refrigerant and the hot water with each other tile; a second BIPVT heat source supply passage connecting the buffer tank and the outdoor heat exchanger to guide the hot water from the buffer tank to pass through the outdoor heat exchanger; a second BIPVT heat source pump installed in the second BIPVT heat source supply passage; Operation modes including cooling operation, cooling hot water supply operation requiring both cooling and hot water supply, heating operation, heating hot water supply operation requiring both heating and hot water supply, summer hot water supply operation requiring only hot water supply, and winter hot water supply operation, internal temperature of the hot water supply tank, the above and a controller for controlling operations of the hot water supply pump, the air conditioning pump, and the first and second BIPVT heat source pumps according to the internal temperature of the heating and cooling water tank, wherein the compressor is controlled by an inverter and connected to a suction side flow path of the compressor and a cooling plate heat exchanger provided in the heating unit of the inverter to heat exchange with the refrigerant before being sucked into the compressor to cool the heating unit of the inverter and evaporate the refrigerant, wherein the cooling plate heat exchanger includes: A cooling plate formed in a plate shape so as to be in contact with the heating unit and having a plurality of through-holes formed therein, and a plurality of cooling plates fitted to the through-holes so as to penetrate the cooling plate and through which the refrigerant before being sucked into the compressor passes. A first cooling plate including refrigerant tubes, wherein one side of the cooling plate is in contact with the heating unit and the other side is formed with a first semi-circular groove in which the refrigerant tube is fitted; and the other of the first cooling plate. and a second cooling plate coupled to a side surface and formed with a second semicircular groove portion opposite to the first groove portion, and is branched from the suction-side flow path of the compressor to cool the refrigerant before being sucked into the compressor. a cooling plate heat exchanger suction flow path guiding to the heat exchanger; a cooling plate heat exchanger discharge flow path guiding the refrigerant discharged from the cooling plate heat exchanger to a suction side flow path of the compressor; Further comprising: a first on/off valve installed between a point at which the suction flow path branches and a point at which the cooling plate heat exchanger discharge flow path is combined; and a second on/off valve for opening and closing the cooling plate heat exchanger discharge flow path, the control unit comprising: If the temperature of the heating part of the inverter is equal to or higher than the first preset heating part temperature, the second opening/closing valve is opened, and when the temperature of the heating part of the inverter is less than the preset second heating part temperature, the first opening and closing valve B opens, and the second on-off valve closes.
본 발명에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템은, 인버터의 발열부에 접하도록 설치된 냉각판 열교환기를 포함하여, 압축기로 흡입되기 이전의 냉매와 발열부를 열교환시킴으로써, 냉매가 상기 냉각판 열교환기를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있을 뿐만 아니라, 상기 인버터의 발열부 온도를 낮출 수 있으므로 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. The heat pump system using air heat of the BIPVT according to the present invention includes a cooling plate heat exchanger installed to be in contact with the heat generating part of the inverter, and by exchanging heat with the refrigerant before being sucked into the compressor and the heat generating part, the refrigerant passes through the cooling plate heat exchanger By additional heat exchange and evaporation, the capacity and efficiency of the evaporator can be increased, and the temperature of the heating part of the inverter can be lowered, so that noise is reduced compared to the case of using a cooling fan to cool the inverter. there is no advantage.
또한, 난방 운전시나 급탕 운전시 BIPVT 컬렉터에서 생산된 공기의 열원을 실외 열교환기를 통해 흡수하여, 히트펌프 사이클의 열원으로 사용함으로써, 시스템의 성능계수가 극대화될 수 있는 이점이 있다. In addition, there is an advantage that the coefficient of performance of the system can be maximized by absorbing the heat source of air produced by the BIPVT collector during heating operation or hot water supply operation through the outdoor heat exchanger and using it as a heat source for the heat pump cycle.
또한, 냉방 운전시에는 BIPVT 컬렉터에서 생산된 공기의 열원을 급수 예열에 사용할 수 있으므로, 급탕 탱크의 온도를 일정하게 확보할 수 있는 이점이 있다. In addition, during the cooling operation, since the heat source of the air produced by the BIPVT collector can be used for preheating the water supply, there is an advantage in that the temperature of the hot water supply tank can be constantly secured.
또한, 냉방 운전시 실외 열교환기에서 냉매의 응축열을 회수하여 버퍼 탱크로 전달하여, 급수 예열에 사용할 수 있으므로, 급탕 탱크의 온도를 일정하게 확보할 수 있는 이점이 있다.In addition, since the condensed heat of the refrigerant is recovered from the outdoor heat exchanger during the cooling operation and transferred to the buffer tank, it can be used for preheating the water supply, so there is an advantage in that the temperature of the hot water supply tank can be kept constant.
도 1은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 냉방 운전 상태가 도시된 도면이다.1 is a view showing a cooling operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 여름철 급탕 운전 상태가 도시된 도면이다.2 is a diagram illustrating a hot water supply operation state in summer of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 냉방 급탕운전 상태가 도시된 도면이다.3 is a view showing a cooling and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 난방 운전 상태가 도시된 도면이다.4 is a view illustrating a heating operation state of a heat pump system using air heat of BIPVT according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 난방 급탕 운전 상태가 도시된 도면이다.5 is a diagram illustrating a heating and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 겨울철 급탕 운전 상태가 도시된 도면이다.6 is a view illustrating a winter hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 히트펌프 시스템의 인버터에 냉각판 열교환기가 결합된 상태가 도시된 도면이다.7 is a view illustrating a state in which a cooling plate heat exchanger is coupled to an inverter of a heat pump system according to an embodiment of the present invention.
도 8은 도 7에 도시된 냉각판 열교환기의 분해 사시도이다.8 is an exploded perspective view of the cooling plate heat exchanger shown in FIG. 7 .
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 냉방 운전 상태가 도시된 도면이다.1 is a view showing a cooling operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템은, BIPVT(Building Integrated Photovoltaic Thermal) 온수 생산 사이클과 히트펌프 사이클을 연계하여, BIPVT 컬렉터로부터 열을 흡수한 공기의 열원을 이용하는 시스템이다.1 , the heat pump system using air heat of BIPVT according to an embodiment of the present invention connects the BIPVT (Building Integrated Photovoltaic Thermal) hot water production cycle and the heat pump cycle, It is a system that uses a heat source.
상기 BIPVT 온수 생산 사이클(100)은, 상기 BIPVT 컬렉터(110), 공기 열교환기(120), 버퍼 탱크(130), 제1공기 유로(101), 제2공기 유로(102), 공기 팬(103), 공기 보충유로(104), 공기 보충유로 밸브(105), 공기 토출유로(106), 공기 토출유로 밸브(107), 제1BIPVT 열원 공급유로(131), 제2BIPVT 열원 공급유로(132), 제1BIPVT 열원 펌프(141), 제2BIPVT 열원 펌프(142) 및 급수 예열유로(150)를 포함한다.The BIPVT hot water production cycle 100 includes the BIPVT collector 110 , the air heat exchanger 120 , the buffer tank 130 , the first air flow path 101 , the second air flow path 102 , and the air fan 103 . ), air replenishment passage 104, air replenishment passage valve 105, air discharge passage 106, air discharge passage valve 107, first BIPVT heat source supply passage 131, second BIPVT heat source supply passage 132, It includes a first BIPVT heat source pump 141 , a second BIPVT heat source pump 142 , and a water supply preheating passage 150 .
상기 BIPVT 컬렉터(110)는, 건물의 외장재를 대체하여 건물과 일체이면서 태양광을 흡수하여 열과 전기를 동시에 생산하는 장치이다. 상기 BIPVT 컬렉터(110)의 내부에는 열을 흡수하기 위한 공기가 통과하는 공기 유로가 형성된다. The BIPVT collector 110 is a device that replaces the exterior material of the building and is integrated with the building and absorbs sunlight to produce heat and electricity at the same time. An air passage through which air for absorbing heat passes is formed in the BIPVT collector 110 .
상기 공기 열교환기(120)는, 상기 BIPVT 컬렉터(110)를 통과하면서 열을 흡수한 공기와 물을 열교환시켜, 온수를 생산하기 위한 열교환기이다. The air heat exchanger 120 is a heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector 110 .
상기 버퍼 탱크(130)는, 상기 공기 열교환기(120)에서 생산된 온수를 일시 저장하고, 외부로부터 공급되는 급수를 예열하도록 형성된 탱크이다. 상기 버퍼 탱크(130)와 상기 공기 열교환기(120)는, 상기 제1BIPVT 열원 공급유로(131)로 연결된다. The buffer tank 130 is a tank formed to temporarily store the hot water produced by the air heat exchanger 120 and preheat the water supplied from the outside. The buffer tank 130 and the air heat exchanger 120 are connected to the first BIPVT heat source supply passage 131 .
상기 급수 예열유로(150)는, 상기 버퍼 탱크(130)의 내부에 형성되어 외부로부터 공급되는 급수가 통과하도록 형성된 유로이다. 상기 급수 예열유로(150)는, 상기 버퍼 탱크(130)의 내부에 저장된 온수와 상기 급수가 혼합되지 않도록 별도로 형성된다. 상기 급수 예열유로(150)에서 예열된 급수는 급수 저장유로(152)를 통해 후술하는 냉난방수 탱크로 공급된다. The water supply preheating passage 150 is a passage formed inside the buffer tank 130 to allow water supplied from the outside to pass therethrough. The water supply preheating passage 150 is separately formed so that the hot water stored in the buffer tank 130 and the water supply do not mix. The water supply preheated in the water supply preheating passage 150 is supplied to a heating and cooling water tank to be described later through the water supply storage passage 152 .
상기 제1공기 유로(101)는, 상기 BIPVT 컬렉터(110)와 상기 공기 열교환기(120)의 입구를 연결하여, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기를 상기 공기 열교환기(120)로 안내하는 유로이다. The first air flow path 101 connects the BIPVT collector 110 and the inlet of the air heat exchanger 120 to transfer the air that has absorbed heat in the BIPVT collector 110 to the air heat exchanger 120 . Euro leading to
상기 공기 팬(103)은, 상기 제1공기 유로(101)에 설치되어 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기를 상기 공기 열교환기(120)로 송풍한다.The air fan 103 is installed in the first air flow path 101 and blows the air that has absorbed heat from the BIPVT collector 110 to the air heat exchanger 120 .
상기 제2공기 유로(102)는, 상기 공기 열교환기(120)의 출구와 상기 BIPVT 컬렉터(110)를 연결하여, 상기 공기 열교환기(120)에서 열교환되어 냉각된 공기를 다시 상기 BIPVT 컬렉터(110)로 안내하는 유로이다.The second air flow path 102 connects the outlet of the air heat exchanger 120 and the BIPVT collector 110 to return the air cooled by heat exchange in the air heat exchanger 120 to the BIPVT collector 110 again. ) is the Euro leading to
상기 공기 보충유로(104)는, 상기 제2공기 유로(102)에 연결되어, 외부 공기를 추가로 유입하는 유로이다.The air replenishment flow path 104 is connected to the second air flow path 102 and is a flow path for additionally introducing external air.
상기 공기 보충유로 밸브(105)는, 상기 공기 보충유로(104)와 상기 제2공기 유로(102)가 연결된 지점에 설치되어, 외부 공기의 추가 유입을 단속한다.The air replenishment passage valve 105 is installed at a point where the air replenishment passage 104 and the second air passage 102 are connected, and regulates the additional inflow of external air.
상기 공기 토출유로(106)는, 상기 제2공기 유로(102)에 연결되어, 상기 제2공기 유로(102)내의 공기를 외부로 토출하는 유로이다. 상기 공기 토출유로(106)는 상기 제2공기 유로(102)에서 상기 공기 보충유로(104)보다 상기 공기 열교환기(120)의 출구측에 가까운 위치에 연결된다. The air discharge flow path 106 is connected to the second air flow path 102 and is a flow path for discharging the air in the second air flow path 102 to the outside. The air discharge passage 106 is connected to a position closer to the outlet side of the air heat exchanger 120 than the air replenishment passage 104 in the second air passage 102 .
상기 공기 토출유로 밸브(107)는, 상기 공기 토출유로(106)와 상기 제2공기 유로(102)가 연결된 지점에 설치되어, 공기의 토출을 단속한다. The air discharge passage valve 107 is installed at a point where the air discharge passage 106 and the second air passage 102 are connected, and regulates air discharge.
상기 제1BIPVT 열원 공급유로(131)는, 상기 공기 열교환기(120)와 상기 버퍼 탱크(130)를 연결하는 유로이다. 상기 제1BIPVT 열원 공급유로(131)는, 상기 공기 열교환기(120)에서 가열되어 나온 온수를 상기 버퍼 탱크(130)로 안내하여, 상기 BIPVT 컬렉터(110)의 열원을 상기 버퍼 탱크(130)에 공급한다. The first BIPVT heat source supply passage 131 is a passage connecting the air heat exchanger 120 and the buffer tank 130 . The first BIPVT heat source supply flow path 131 guides the hot water heated from the air heat exchanger 120 to the buffer tank 130 , and supplies the heat source of the BIPVT collector 110 to the buffer tank 130 . supply
상기 제1BIPVT 열원 펌프(141)는, 상기 제1BIPVT 열원 공급유로(131)에서 상기 버퍼 탱크(130)의 출구측에 설치되어, 상기 버퍼 탱크(130)에 저장된 온수를 상기 공기 열교환기(120)로 펌핑하는 펌프이다.The first BIPVT heat source pump 141 is installed at the outlet side of the buffer tank 130 in the first BIPVT heat source supply passage 131 to convert the hot water stored in the buffer tank 130 to the air heat exchanger 120 . It is a pump that pumps
상기 제2BIPVT 열원 공급유로(132)는, 상기 버퍼 탱크(130)와 후술하는 실외 열교환기(40)를 연결하는 유로이다. 상기 제2BIPVT 열원 공급유로(132)는, 상기 버퍼 탱크(130)에 저장된 온수를 상기 실외 열교환기(40)로 안내하여, 상기 BIPVT 컬렉터(110)의 열원을 상기 히트펌프 사이클의 상기 실외 열교환기(40)에 공급한다. The second BIPVT heat source supply passage 132 is a passage connecting the buffer tank 130 and an outdoor heat exchanger 40 to be described later. The second BIPVT heat source supply passage 132 guides the hot water stored in the buffer tank 130 to the outdoor heat exchanger 40, and transfers the heat source of the BIPVT collector 110 to the outdoor heat exchanger of the heat pump cycle. (40) is supplied.
상기 제2BIPVT 열원 펌프(142)는, 상기 제2BIPVT 열원 공급유로(132)에서 상기 버퍼 탱크(130)의 출구측에 설치되어, 상기 버퍼 탱크(130)에 저장된 온수를 상기 실외 열교환기(40)로 펌핑하는 펌프이다.The second BIPVT heat source pump 142 is installed at the outlet side of the buffer tank 130 in the second BIPVT heat source supply flow path 132 and converts the hot water stored in the buffer tank 130 to the outdoor heat exchanger 40 . It is a pump that pumps
상기 히트펌프 사이클은, 압축기(10), 급탕 열교환기(20), 급탕 탱크(22), 냉난방 열교환기(30), 냉난방수 탱크(32), 실외 열교환기(40), 냉각판 열교환기(50), 이코노마이저(60), 수액기(70), 사방밸브(80) 및 팽창밸브(90)를 포함한다. The heat pump cycle includes a compressor (10), hot water heat exchanger (20), hot water supply tank (22), air-conditioning heat exchanger (30), air-conditioning water tank (32), outdoor heat exchanger (40), cold plate heat exchanger ( 50 ), an economizer 60 , a receiver 70 , a four-way valve 80 and an expansion valve 90 .
상기 압축기(10)는, 상기 히트펌프 사이클을 순환하는 냉매를 압축시키는 BLDC 압축기이다. 상기 압축기(10)는, 인버터(300)에 의해 제어되는 인버터 압축기이다. The compressor 10 is a BLDC compressor that compresses a refrigerant circulating in the heat pump cycle. The compressor 10 is an inverter compressor controlled by the inverter 300 .
상기 급탕 열교환기(20)는, 상기 압축기(10)에서 나온 냉매와 급탕 용수를 열교환시키는 열교환기이다.The hot water supply heat exchanger 20 is a heat exchanger for exchanging the refrigerant discharged from the compressor 10 and the hot water supply water.
상기 급탕 탱크(22)는, 외부로부터 시수가 공급되어 급탕 용수로 저장되며, 상기 급탕 열교환기(20)에서 열을 흡수한 온수인 급탕 열원이 통과하는 내부 유로가 형성된다. 상기 급탕 탱크(22)의 내부에서는 상기 급탕 용수와 상기 급탕 열원이 혼합되지 않으며, 상기 급탕 용수와 상기 급탕 열원의 열교환만 이루어진다. 여기서, 상기 급탕 열원은 물인 것으로 예를 들어 설명한다.In the hot water supply tank 22 , time water is supplied from the outside and stored as hot water water, and an internal flow path is formed through which a hot water source, which is hot water that has absorbed heat from the hot water heat exchanger 20 , passes. The hot water supply and the hot water supply heat source are not mixed in the hot water supply tank 22 , and only heat exchange between the hot water supply water and the hot water supply heat source is performed. Here, the hot water supply heat source will be described as an example of water.
상기 급탕 열교환기(20)와 상기 급탕 탱크(22)는, 급탕 유로(24)로 연결된다. 상기 급탕 유로(24)에는 급탕 펌프(26)가 설치된다. The hot water supply heat exchanger 20 and the hot water supply tank 22 are connected by a hot water supply passage 24 . A hot water supply pump 26 is installed in the hot water supply passage 24 .
상기 냉난방 열교환기(30)는, 상기 급탕 열교환기(20)에서 나온 냉매와 냉난방 열원을 열교환시키는 열교환기이다.The air-conditioning heat exchanger 30 is a heat exchanger that heat-exchanges the refrigerant discharged from the hot water supply heat exchanger 20 and the cooling/heating heat source.
상기 냉난방수 탱크(32)는, 외부로부터 시수가 공급되어 냉난방 용수로 저장되며, 상기 냉난방 열교환기(30)에서 열을 흡수한 온수인 냉난방 열원이 통과하는 내부 유로가 형성된다. 상기 냉난방수 탱크(32)의 내부에서는 상기 냉난방 용수와 상기 냉난방 열원 혼합되지 않으며, 상기 냉난방 용수와 상기 냉난방 열원의 열교환만 이루어진다. 여기서, 상기 냉난방 열원은 물인 것으로 예를 들어 설명한다. In the cooling and heating water tank 32 , city water is supplied from the outside and stored as cooling and cooling water, and an internal flow path is formed through which a heating and cooling heat source, which is hot water that has absorbed heat from the heating and cooling heat exchanger 30 , passes. The heating and cooling water and the heating and cooling heat source are not mixed in the inside of the heating and cooling water tank 32 , and only heat exchange between the heating and cooling water and the heating and cooling heat source is performed. Here, the heating and cooling heat source will be described as an example of water.
상기 냉난방 열교환기(30)와 상기 냉난방수 탱크(32)는 냉난방 열원 유로(34)로 연결된다. 상기 냉난방 열원 유로(34)에는 냉난방 펌프(36)가 설치된다.The heating and cooling heat exchanger 30 and the cooling and heating water tank 32 are connected to each other by a heating and cooling heat source flow path 34 . A cooling/heating pump 36 is installed in the cooling/heating heat source flow path 34 .
상기 실외 열교환기(40)는, 상기 급탕 열교환기(20)와 상기 냉난방 열교환기(30) 중 어느 하나에서 나온 냉매와 상기 버퍼 탱크(130)에서 공급되는 온수와 실외 공기를 열교환시키는 열교환기이다. 상기 실외 열교환기(40)의 내부에는 상기 냉매가 통과하는 냉매 유로(40a)와 상기 온수가 통과하는 온수 유로(40b)가 더블 코일(double coil) 타입으로 형성된다. 상기 온수 유로는 상기 제2BIPVT 열원 공급유로(132)에 연결된 유로이다. 상기 실외 열교환기(40)에는 외기를 송풍하는 실외 열교환팬(40c)이 설치된다.The outdoor heat exchanger 40 is a heat exchanger that exchanges heat between the refrigerant from any one of the hot water supply heat exchanger 20 and the air-conditioning heat exchanger 30 and the hot water supplied from the buffer tank 130 and outdoor air. . A refrigerant passage 40a through which the refrigerant passes and a hot water passage 40b through which the hot water passes are formed in the outdoor heat exchanger 40 in a double coil type. The hot water flow path is a flow path connected to the second BIPVT heat source supply flow path 132 . An outdoor heat exchange fan 40c for blowing outside air is installed in the outdoor heat exchanger 40 .
상기 냉각판(Cold plate) 열교환기(50)는, 상기 압축기(10)의 흡입측 유로(11)에서 분기된 유로에 연결된다. 보다 상세하게는, 상기 냉각판 열교환기(50)는, 상기 압축기(10)의 흡입측 유로(11) 중에서 상기 사방밸브(80)와 상기 어큐뮬레이터(55)를 연결하는 메인유로(53)에서 분기된 유로에 설치된다. The cold plate heat exchanger 50 is connected to a flow path branched from the suction side flow path 11 of the compressor 10 . More specifically, the cooling plate heat exchanger 50 branches from a main flow path 53 connecting the four-way valve 80 and the accumulator 55 among the suction side flow paths 11 of the compressor 10 . installed in the flow path.
상기 냉각판 열교환기(50)는, 상기 인버터(300)의 발열부(301)에 구비되어, 상기 압축기로 흡입되기 이전의 냉매를 이용하여 상기 인버터(300)의 발열부(301)를 냉각시키고, 상기 냉매는 증발시킨다. 상기 발열부(301)는 전류공급장치(PSD, POWER SUPPLY DEVICE)이다. The cooling plate heat exchanger 50 is provided in the heat generating unit 301 of the inverter 300 to cool the heat generating unit 301 of the inverter 300 using the refrigerant before being sucked into the compressor. , the refrigerant evaporates. The heating unit 301 is a current supply device (PSD, POWER SUPPLY DEVICE).
도 7 및 도 8을 참조하면, 상기 냉각판 열교환기(50)는, 상기 인버터(300)의 발열부(301)에 접하도록 판 형상으로 형성되고, 내부에 복수의 관통홀들이 형성된 냉각판(510)과, 상기 냉각판(510)을 관통하도록 상기 관통홀들에 끼워지고, 냉매가 통과하는 복수의 냉매관들(520)을 포함한다.7 and 8 , the cooling plate heat exchanger 50 is formed in a plate shape so as to be in contact with the heat generating part 301 of the inverter 300 and a cooling plate having a plurality of through holes formed therein. 510 , and a plurality of refrigerant tubes 520 inserted into the through holes to pass through the cooling plate 510 , and through which the refrigerant passes.
상기 냉각판(510)은, 상기 발열부(301)에 접하도록 형성된다. 상기 냉각판(510)의 2개의 제1,2냉각판(511)(512)이 결합되어 형성된 것으로 예를 들어 설명한다. The cooling plate 510 is formed to be in contact with the heat generating unit 301 . It will be described as an example in which the two first and second cooling plates 511 and 512 of the cooling plate 510 are coupled to each other.
상기 제1냉각판(511)의 일측면은 상기 발열부(301)에 접하도록 편평한 면으로 형성되고, 타측면에는 상기 냉매관(520)이 끼워지도록 반원 형상의 제1홈부(511a)가 형성된다. One side of the first cooling plate 511 is formed as a flat surface to be in contact with the heat generating unit 301 , and a first groove portion 511a having a semicircular shape is formed on the other side of the first cooling plate 511 so that the refrigerant pipe 520 is fitted. do.
상기 제2냉각판(512)은, 상기 제1냉각판(511)의 타측면에 결합된다. 상기 제2냉각판(512)에는 상기 제1홈부(511a)에 대향되는 반원 형상의 제2홈부(512a)가 형성되어, 상기 제1홈부(511a)와 상기 제2홈부(512a)가 상기 관통홀을 형성한다. The second cooling plate 512 is coupled to the other side of the first cooling plate 511 . The second cooling plate 512 is formed with a second groove portion 512a having a semicircular shape opposite to the first groove portion 511a, so that the first groove portion 511a and the second groove portion 512a pass through the second cooling plate 512 . form a hall
상기 제1,2냉각판(511)(512)은 복수의 체결부재(530)에 의해 상기 발열부(301)에 체결될 수 있다. 상기 체결부재(530)는 체결볼트인 것으로 예를 들어 설명한다. 상기 제1,2냉각판(511)(512)에는 상기 체결부재(530)가 체결되는 체결홀(531)이 형성되고, 상기 발열부(301)에도 상기 체결부재(530)가 체결되는 체결홀(301a)이 형성된다. 다만, 이에 한정되지 않고, 상기 제1,2냉각판(511)(512)은 상기 체결부재(530)에 의해 체결 고정되되, 상기 냉각판(510)과 상기 발열부(301)는 상기 체결부재(530)가 아닌 다른 결합부재나 접착부재 등으로 고정될 수도 있다. The first and second cooling plates 511 and 512 may be fastened to the heating unit 301 by a plurality of fastening members 530 . The fastening member 530 will be described as an example of a fastening bolt. A fastening hole 531 through which the fastening member 530 is fastened is formed in the first and second cooling plates 511 and 512 , and a fastening hole through which the fastening member 530 is fastened also to the heating part 301 . 301a is formed. However, the present invention is not limited thereto, and the first and second cooling plates 511 and 512 are fastened and fixed by the fastening member 530 , and the cooling plate 510 and the heat generating unit 301 are connected to the fastening member. It may be fixed with a coupling member or an adhesive member other than the 530 .
상기 냉매관들(520)은, 각각 일단은 후술하는 냉각판 열교환기 흡입유로(51)에 연결되고, 타단은 후술하는 냉각판 열교환기 토출유로(52)에 연결된다. 즉, 상기 냉매관들(520)은, 상기 냉각판 열교환기 흡입유로(51)에서 복수개로 분기되어 냉매가 통과하는 관이고, 상기 냉각판(510)을 통과한 후 다시 상기 냉각판 열교환기 토출유로(52)로 합지된다. Each of the refrigerant tubes 520 has one end connected to a cooling plate heat exchanger suction passage 51 to be described later, and the other end connected to a cooling plate heat exchanger discharge passage 52 to be described later. That is, the refrigerant pipes 520 are a plurality of pipes branched from the cooling plate heat exchanger suction passage 51 through which the refrigerant passes, and after passing through the cooling plate 510 , the cooling plate heat exchanger is discharged again. It is laminated to the flow path (52).
상기 냉각판(Cold plate) 열교환기(50)에는, 냉각판 열교환기 흡입유로(51)와 냉각판 열교환기 토출유로(52)가 연결된다.A cooling plate heat exchanger suction passage 51 and a cooling plate heat exchanger discharge passage 52 are connected to the cold plate heat exchanger 50 .
상기 냉각판 열교환기 흡입유로(51)는, 상기 메인유로(53)에서 분기되어, 상기 압축기(10)로 흡입되기 이전의 냉매를 상기 냉각판 열교환기(50)로 안내하는 유로이다.The cooling plate heat exchanger suction flow path 51 is a flow path branching from the main flow path 53 and guiding the refrigerant before being sucked into the compressor 10 to the cooling plate heat exchanger 50 .
상기 냉각판 열교환기 토출유로(52)는, 상기 냉각판 열교환기(50)에서 나온 냉매를 상기 압축기(10)의 흡입측 유로(11)로 안내하는 유로이다.The cooling plate heat exchanger discharge flow path 52 is a flow path for guiding the refrigerant discharged from the cooling plate heat exchanger 50 to the suction side flow path 11 of the compressor 10 .
상기 메인유로(53)에서 상기 냉각판 열교환기 흡입유로(51)가 분기되는 지점과 상기 냉각판 열교환기 토출유로(52)가 합지되는 지점 사이에는 제1개폐밸브(54)가 설치된다. A first opening/closing valve 54 is installed between a point where the cooling plate heat exchanger suction passage 51 is branched from the main flow passage 53 and a point where the cooling plate heat exchanger discharge passage 52 is combined.
상기 제1개폐밸브(54)는 상기 압축기(10)로 흡입되는 유량을 제어하는 유량제어밸브이다. 상기 제1개폐밸브(54)의 차폐시 상기 냉매는 상기 냉각판 열교환기(50)로 유입된다. The first on/off valve 54 is a flow control valve that controls the flow rate sucked into the compressor 10 . When the first on/off valve 54 is closed, the refrigerant flows into the cooling plate heat exchanger 50 .
상기 냉각판 열교환기 토출유로(52)에는 상기 냉각판 열교환기(50)에서 토출되는 냉매를 단속하기 위한 제2개폐밸브(56)가 설치된다.A second on-off valve 56 for controlling the refrigerant discharged from the cooling plate heat exchanger 50 is installed in the cooling plate heat exchanger discharge passage 52 .
상기 제1,2개폐밸브(54)(56)는 상기 제어부에 의해 개폐가 제어된다.The opening and closing of the first and second opening/ closing valves 54 and 56 are controlled by the control unit.
상기 제어부는, 상기 압축기(10)의 작동시 상기 제1개폐밸브(54)를 개방한다.The control unit opens the first on-off valve 54 when the compressor 10 is operated.
상기 제어부는, 상기 인버터(300)의 발열부(301) 온도가 미리 설정된 제1설정 발열부 온도 이상이면, 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)는 개방한다. 상기 제2개폐밸브(56)의 개방한 이후에 상기 발열부(301) 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first preset heating part temperature, the second on-off valve 56 in the state in which the first on-off valve 54 is opened open up After the second on-off valve 56 is opened, when the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the maximum set temperature set higher than the first set heating part temperature, the The control unit blocks the first on/off valve 54 .
또한, 상기 제어부는, 상기 인버터(300)의 발열부(301) 온도가 상기 제2설정 발열부 온도 이하이면, 상기 제2개폐밸브(56)는 차폐한다. In addition, when the temperature of the heating part 301 of the inverter 300 is equal to or less than the second set heating part temperature, the control unit blocks the second on-off valve 56 .
여기서, 상기 제1설정 발열부 온도는 약 75℃이고, 상기 제2설정 발열부 온도는 약 70℃인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 제1,2설정 발열부 온도는 실험 등을 통해 최적의 온도로 미리 설정될 수 있다. 또한, 상기 제1,2개폐밸브(54)(56)는 필요에 따라 수동 조작도 가능하다. Here, the first set heating part temperature is about 75 ℃, the second set heating part temperature will be described as an example of about 70 ℃. However, the present invention is not limited thereto, and the first and second set temperature of the heating unit may be preset to an optimal temperature through an experiment or the like. In addition, the first and second opening/ closing valves 54 and 56 may be manually operated if necessary.
상기 냉각판 열교환기(50)와 상기 압축기(10) 사이에는 어큐뮬레이터(55)가 설치된다. An accumulator 55 is installed between the cooling plate heat exchanger 50 and the compressor 10 .
상기 압축기(10)의 토출측 유로(12)에는 오일 세퍼레이터(13)가 설치된다.An oil separator 13 is installed in the discharge-side flow path 12 of the compressor 10 .
상기 압축기(10)의 토출측 유로(12)에는 핫가스 바이패스 유로(14)가 분기되어 형성된다.A hot gas bypass passage 14 is branched from the discharge-side passage 12 of the compressor 10 .
상기 핫가스 바이패스 유로(14)는, 상기 압축기(10)에서 나온 냉매 중 일부를 상기 냉난방 열교환기(30)의 흡입측 유로로 공급하기 위한 유로이다.The hot gas bypass passage 14 is a passage for supplying a portion of the refrigerant from the compressor 10 to the suction-side passage of the air-conditioning heat exchanger 30 .
상기 핫가스 바이패스 유로(14)에는 유량을 제어하는 핫가스 유량제어밸브(15)가 설치된다. 상기 핫가스 유량제어밸브(15)는, 제상 운전 모드나 상기 압축기(10)의 흡입측 압력에 따라 제어된다.A hot gas flow control valve 15 for controlling the flow rate is installed in the hot gas bypass passage 14 . The hot gas flow control valve 15 is controlled according to the defrost operation mode or the suction side pressure of the compressor 10 .
상기 이코노마이저(60)는, 상기 실외 열교환기(40)와 상기 냉난방 열교환기(30) 중 어느 하나에서 응축된 냉매가 유입되도록 설치된다. The economizer 60 is installed so that the refrigerant condensed in any one of the outdoor heat exchanger 40 and the air-conditioning heat exchanger 30 flows in.
상기 이코노마이저(60)의 내부에는 제1이코노마이저 유로(60a)와 제2이코노마이저 유로(60b)가 형성된다.A first economizer flow path 60a and a second economizer flow path 60b are formed inside the economizer 60 .
상기 제1이코노마이저 유로(60a)는, 냉방 운전시 상기 실외 열교환기(40)에서 토출된 냉매가 유입되고 난방 운전시 상기 냉난방 열교환기(30)에서 토출된 냉매가 유입되는 유로이다.The first economizer flow path 60a is a flow path through which the refrigerant discharged from the outdoor heat exchanger 40 flows in during a cooling operation, and into which the refrigerant discharged from the air conditioning heat exchanger 30 flows during a heating operation.
상기 제2이코노마이저 유로(60b)는, 상기 제1이코노마이저 유로(60a)와 별도로 형성되어 상기 제1이코노마이저 유로(60a)를 통과하는 냉매와 열교환하는 유로이다. 상기 제2이코노마이저 유로(60b)는, 후술하는 분기유로(61)에서 나온 냉매가 유입된다. The second economizer flow path 60b is formed separately from the first economizer flow path 60a and exchanges heat with a refrigerant passing through the first economizer flow path 60a. In the second economizer flow path 60b, refrigerant from a branch flow path 61 to be described later flows in.
상기 분기유로(61)는, 상기 이코노마이저(60)의 토출측 유로에서 분기되어 상기 이코노마이저(60)에서 나온 냉매 중 일부를 상기 제2이코노마이저 유로(60b)로 안내하는 유로이다. The branch flow path 61 is a flow path branching from the discharge side flow path of the economizer 60 and guiding some of the refrigerant discharged from the economizer 60 to the second economizer flow path 60b.
상기 분기유로(61)에는 유로의 개폐를 단속하는 분기 개폐밸브(62)와, 상기 분기유로(61)를 통과하는 냉매의 유량을 제어하는 분기유량 제어밸브(63)가 설치된다. 상기 분기 개폐밸브(62)는, 상기 제2이코노마이저 유로(60b)를 통과하여 상기 이코노마이저(60)에서 토출되는 냉매의 온도에 따라 개폐가 제어된다. The branch flow path 61 is provided with a branch opening/closing valve 62 for controlling opening and closing of the flow path, and a branch flow control valve 63 for controlling the flow rate of the refrigerant passing through the branch flow path 61 . The opening/closing of the branch opening/closing valve 62 is controlled according to the temperature of the refrigerant discharged from the economizer 60 through the second economizer flow path 60b.
상기 이코노마이저(60)와 상기 압축기(10)는 인젝션 유로(65)로 연결된다. The economizer 60 and the compressor 10 are connected by an injection flow path 65 .
상기 인젝션 유로(65)는, 상기 제2이코노마이저 유로(60b)에서 나온 냉매를 상기 압축기(10)의 흡입측으로 분사하는 유로이다. The injection flow path 65 is a flow path for injecting the refrigerant discharged from the second economizer flow path 60b toward the suction side of the compressor 10 .
상기 인젝션 유로(65)에는 제1인젝션 유량제어밸브(66)가 설치된다.A first injection flow control valve 66 is installed in the injection flow path 65 .
상기 인젝션 유로(65)에는 상기 제2이코노마이저 유로(60b)에서 나온 냉매 중 일부를 상기 어큐뮬레이터(55)의 흡입측으로 안내하는 인젝션 분기유로(67)가 분기된다. An injection branch passage 67 for guiding a portion of the refrigerant discharged from the second economizer passage 60b toward the suction side of the accumulator 55 is branched from the injection passage 65 .
상기 인젝션 분기유로(67)에는 제2인젝션 유량제어밸브(68)가 설치된다.A second injection flow control valve 68 is installed in the injection branch passage 67 .
상기 수액기(70)는, 상기 이코노마이저(60)보다 상류측에 설치되어, 상기 실외 열교환기(40)와 상기 냉난방 열교환기(30)중 어느 하나에서 응축된 냉매가 유입되어 일시 저장된다. The receiver 70 is installed on the upstream side of the economizer 60 , and the refrigerant condensed in any one of the outdoor heat exchanger 40 and the air-conditioning heat exchanger 30 flows in and is temporarily stored.
상기 수액기(70)의 흡입 유로(71)에는, 냉방용 수액기 유입유로(72)와, 난방용 수액기 유입유로(73)가 연결된다.To the suction flow path 71 of the receiver 70 , the receiver inflow path 72 for cooling and the receiver inflow path 73 for heating are connected.
상기 냉방용 수액기 유입유로(72)는, 냉방 운전시 상기 실외 열교환기(40)에서 나온 냉매를 상기 수액기(70)로 안내하도록 형성된다. 상기 냉방용 수액기 유입유로(72)는, 상기 냉방 운전시 상기 실외 열교환기(40)의 토출유로인 제1냉매유로(41)와 상기 수액기(70)의 흡입유로(71)를 연결하는 유로이다.The cooling receiver inflow passage 72 is formed to guide the refrigerant from the outdoor heat exchanger 40 to the receiver 70 during the cooling operation. The cooling receiver inlet passage 72 connects the first refrigerant passage 41 that is the discharge passage of the outdoor heat exchanger 40 and the intake passage 71 of the receiver 70 during the cooling operation. it is euro
상기 냉방용 수액기 유입유로(72)에는 제3체크밸브(203)가 설치되어, 난방 운전시 역류를 방지한다. A third check valve 203 is installed in the cooling receiver inlet passage 72 to prevent backflow during heating operation.
상기 난방용 수액기 유입유로(73)는, 난방 운전시 상기 냉난방 열교환기(30)에서 나온 냉매를 상기 수액기(70)로 안내하도록 형성된 유로이다. 상기 난방용 수액기 유입유로(73)는, 상기 난방 운전시 상기 냉난방 열교환기(30)의 토출유로인 제3냉매유로(43)와 상기 수액기(70)의 흡입유로(71)를 연결하는 유로이다.The heating receiver inlet flow path 73 is a flow path formed to guide the refrigerant from the air-conditioning heat exchanger 30 to the receiver 70 during heating operation. The heating receiver inlet passage 73 is a passage connecting the third refrigerant passage 43 that is the discharge passage of the air-conditioning heat exchanger 30 and the suction passage 71 of the receiver 70 during the heating operation. am.
상기 난방용 수액기 유입유로(73)에는 제4체크밸브(204)가 설치되어, 냉방 운전시 역류를 방지한다. A fourth check valve 204 is installed in the heating receiver inlet flow path 73 to prevent reverse flow during cooling operation.
상기 수액기(70)의 토출측에는 수액기 토출유로(75)가 연결된다. 상기 수액기 토출유로(75)는 상기 수액기(70)에서 나온 냉매를 상기 이코노마이저(60)로 안내하는 유로이다. 상기 수액기 토출유로(75)는 상기 수액기(70)와 상기 제1이코노마이저 유로(60a)를 연결한다. A receiver discharge passage 75 is connected to the discharge side of the receiver 70 . The receiver discharge passage 75 is a passage for guiding the refrigerant discharged from the receiver 70 to the economizer 60 . The receiver discharge passage 75 connects the receiver 70 and the first economizer passage 60a.
상기 팽창밸브(90)는, 상기 이코노마이저(60)에서 나온 냉매를 팽창시키는 팽창장치이다. 상기 팽창밸브(90)의 흡입측에는 팽창밸브 흡입유로(91)가 연결되고, 토출측에는 팽창밸브 토출유로(92)가 연결된다.The expansion valve 90 is an expansion device that expands the refrigerant discharged from the economizer 60 . The expansion valve suction flow path 91 is connected to the suction side of the expansion valve 90 , and the expansion valve discharge flow path 92 is connected to the discharge side.
상기 팽창밸브 토출유로(92)는, 냉방용 팽창밸브 토출유로(93)와 난방용 팽창밸브 토출유로(94)로 분기된다.The expansion valve discharge flow path 92 is branched into a cooling expansion valve discharge flow path 93 and a heating expansion valve discharge flow path 94 .
상기 냉방용 팽창밸브 토출유로(93)는, 냉방운전시 상기 팽창밸브(90)에서 토출된 냉매를 상기 냉난방 열교환기(30)로 안내하는 유로이다. 상기 냉방용 팽창밸브 토출유로(93)는, 상기 제3냉매유로(43)에 연결된다.The cooling expansion valve discharge flow path 93 is a flow path for guiding the refrigerant discharged from the expansion valve 90 to the air conditioning heat exchanger 30 during cooling operation. The cooling expansion valve discharge passage 93 is connected to the third refrigerant passage 43 .
상기 냉방용 팽창밸브 토출유로(93)에는 제1체크밸브(201)가 설치되어, 난방 운전시 역류를 방지한다. A first check valve 201 is installed in the cooling expansion valve discharge passage 93 to prevent reverse flow during heating operation.
상기 난방용 팽창밸브 토출유로(94)는, 난방운전시 상기 팽창밸브(90)에서 토출된 냉매를 상기 실외 열교환기(40)로 안내하는 유로이다. 상기 난방용 팽창밸브 토출유로(94)는, 상기 제1냉매유로(41)로 연결된다. The heating expansion valve discharge flow path 94 is a flow path for guiding the refrigerant discharged from the expansion valve 90 to the outdoor heat exchanger 40 during a heating operation. The heating expansion valve discharge passage 94 is connected to the first refrigerant passage 41 .
상기 난방용 팽창밸브 토출유로(94)에는 제2체크밸브(202)가 설치되어, 냉방운전시 역류를 방지한다. A second check valve 202 is installed in the heating expansion valve discharge passage 94 to prevent reverse flow during cooling operation.
상기 사방밸브(80)는, 운전 모드에 따라 유로의 방향을 전환하는 밸브이다. The four-way valve 80 is a valve that switches the direction of the flow path according to the operation mode.
한편, 상기 시스템은, 냉방 운전, 냉방과 급탕이 모두 필요한 냉방 급탕운전, 난방 운전, 난방과 급탕이 모두 필요한 난방 급탕운전, 급탕만 필요한 급탕 운전을 포함하는 운전 모드, 상기 급탕 탱크(22)의 내부 온도, 상기 냉난방수 탱크(32)의 내부 온도에 따라 상기 급탕 펌프(26), 상기 냉난방 펌프(36), 상기 제1,2BIPVT 열원 펌프(141)(142)의 작동을 제어하는 제어부(미도시)를 더 포함한다.Meanwhile, in the system, an operation mode including a cooling operation, a cooling hot water supply operation requiring both cooling and hot water supply, a heating operation, a heating hot water supply operation requiring both heating and hot water supply, and a hot water supply operation requiring only hot water supply, of the hot water supply tank 22 A controller (not shown) for controlling the operation of the hot water supply pump 26, the air conditioning pump 36, and the first and second BIPVT heat source pumps 141 and 142 according to the internal temperature and the internal temperature of the heating and cooling water tank 32 city) is further included.
또한, 상기 시스템은 복수의 센서들을 포함한다. 상기 복수의 센서들은, 상기 압축기(10)의 흡입측 유로(11)에 설치된 제1온도센서(201), 상기 급탕 유로(24)에 설치된 제2,3온도센서(202)(203), 상기 냉난방 열원 유로(34)에 설치된 제4,5온도센서(204)(205), 상기 제1냉매유로에 설치된 제6온도센서(206), 상기 실외 열교환기(40)의 냉매유로(40a)에 설치된 제7온도센서(207), 상기 제2BIPVT 열원 공급유로(132)에 설치된 제8온도센서(208), 상기 급탕 탱크(22)에 설치된 제9온도센서(209), 상기 냉난방수 탱크(32)에 설치된 제10온도센서(210), 상기 인젝션 유로(65)에 설치된 제11온도센서(211)를 포함한다. The system also includes a plurality of sensors. The plurality of sensors include a first temperature sensor 201 installed in the suction-side passage 11 of the compressor 10 , second and third temperature sensors 202 and 203 installed in the hot water supply passage 24 , and the The fourth and fifth temperature sensors 204 and 205 installed in the heating and cooling heat source flow path 34, the sixth temperature sensor 206 installed in the first refrigerant flow path, and the refrigerant flow path 40a of the outdoor heat exchanger 40 The seventh temperature sensor 207 installed, the eighth temperature sensor 208 installed in the second BIPVT heat source supply passage 132 , the ninth temperature sensor 209 installed in the hot water supply tank 22 , and the heating and cooling water tank 32 ) and a tenth temperature sensor 210 installed in the eleventh temperature sensor 211 installed in the injection passage 65 .
상기와 같이 구성된 본 발명의 실시예에 따른 히트펌프의 냉방 운전 상태를 설명하면, 다음과 같다. The cooling operation state of the heat pump according to the embodiment of the present invention configured as described above will be described as follows.
도 1을 참조하면, 냉방 운전시 상기 제어부(미도시)는, 상기 제1BIPVT 열원 펌프(141)를 작동시키고, 상기 제2BIPVT 열원 펌프(142)를 작동 중지시키고, 상기 급탕 펌프(26)는 작동 중지시키고, 상기 냉난방 펌프(136)는 작동시킨다.Referring to FIG. 1 , during cooling operation, the controller (not shown) operates the first BIPVT heat source pump 141 , stops the second BIPVT heat source pump 142 , and the hot water pump 26 operates stopped, and the heating/cooling pump 136 operates.
상기 제1BIPVT 열원 펌프(141)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first BIPVT heat source pump 141 is operated, the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
또한, 상기 버퍼 탱크(130)에는 상기 급수 예열유로(150)가 형성되어, 외부로부터 공급되는 급수를 상기 온수와 열교환시켜 예열할 수 있다. 상기 버퍼 탱크(130)에서 예열된 급수는 상기 급수 저장유로(152)를 통해 상기 급탕 탱크(22)에 저장된다. 즉, 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된 열원은 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용될 수 있다.In addition, the water supply preheating passage 150 is formed in the buffer tank 130 , so that water supplied from the outside can be preheated by exchanging heat with the hot water. The water supply preheated in the buffer tank 130 is stored in the hot water supply tank 22 through the water supply storage passage 152 . That is, the heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
외부로부터 공급되는 급수가 상기 버퍼 탱크(130)에서 예열된 후 상기 급탕 탱크(22)에 저장됨으로써, 상기 급탕 탱크(22)의 온도를 일정 범위로 유지할 수 있다. Since water supplied from the outside is preheated in the buffer tank 130 and then stored in the hot water supply tank 22 , the temperature of the hot water supply tank 22 can be maintained within a predetermined range.
한편, 상기 냉방 운전시 냉매의 흐름을 설명하면 다음과 같다.Meanwhile, the flow of the refrigerant during the cooling operation will be described as follows.
상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 실외 열교환기(40), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90), 상기 냉난방 열교환기(30) 및 상기 냉각판 열교환기(50)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.The refrigerant compressed in the compressor (10) is the hot water heat exchanger (20), the four-way valve (80), the outdoor heat exchanger (40), the receiver (70), the economizer (60), and the expansion valve ( 90), after passing through the air-conditioning heat exchanger 30 and the cooling plate heat exchanger 50 in sequence, it circulates back to the compressor 10 .
상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20)로 유입된다. The refrigerant compressed in the compressor 10 flows into the hot water heat exchanger 20 .
이 때, 상기 급탕 펌프(26)가 작동되지 않는 상태이므로, 상기 급탕 열교환기(20)에서 상기 냉매는 열교환하지 않는다.At this time, since the hot water supply pump 26 is not operated, the refrigerant does not heat exchange in the hot water supply heat exchanger 20 .
상기 급탕 열교환기(20)에서 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 실외 열교환기(40)로 유입된다. 상기 급탕 열교환기(20)에서 열교환되지 않은 냉매는 고온 상태로 상기 실외 열교환기(40)로 유입된다. The refrigerant from the hot water supply heat exchanger (20) flows into the outdoor heat exchanger (40) through the four-way valve (80). The refrigerant not heat-exchanged in the hot water supply heat exchanger 20 flows into the outdoor heat exchanger 40 in a high temperature state.
상기 실외 열교환기(40)에서는 상기 냉매와 외기와의 열교환이 이루어진다. 상기 실외 열교환기(40)는 냉매 응축기 역할을 한다. 상기 실외 열교환기(40)에서는 상기 냉매가 응축되면서 응축열이 발생된다. In the outdoor heat exchanger 40, heat exchange between the refrigerant and outdoor air is performed. The outdoor heat exchanger 40 serves as a refrigerant condenser. In the outdoor heat exchanger 40 , heat of condensation is generated as the refrigerant is condensed.
상기와 같이, 냉방 운전시에는 상기 실외 열교환기(40)가 냉매의 응축기 역할을 한다.As described above, during the cooling operation, the outdoor heat exchanger 40 serves as a condenser of the refrigerant.
상기 실외 열교환팬(40c)은 상기 냉매의 응축압력이 미리 설정된 설정압력 이상시 작동한다.The outdoor heat exchange fan 40c operates when the condensing pressure of the refrigerant exceeds a preset pressure.
상기 실외 열교환기(40)에서 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 냉난방 열교환기(30)로 유입된다.The refrigerant from the outdoor heat exchanger 40 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in order, and then flows into the air-conditioning heat exchanger 30 .
이 때, 상기 제어부(미도시)는, 상기 제11온도센서(211)에서 감지된 온도에 따라 상기 분기 개폐밸브(62)의 개폐를 단속한다.At this time, the control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
상기 분기 개폐밸브(62)가 상기 분기유로(61)를 개방하면, 상기 이코노마이저(60)를 통과한 냉매 중 일부는 상기 분기유로(61)를 통해 다시 상기 제2이코노마이저 유로(60b)로 유입된다. When the branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
상기 이코노마이저(60)에서는 상기 제1이코노마이저 유로(60a)를 통과하는 냉매와 상기 제2이코노마이저 유로(60b)를 통과하는 냉매의 열교환이 이루어진다. In the economizer 60 , heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
상기 제2이코노마이저 유로(60b)에서 가열된 냉매는 상기 인젝션 유로(65)를 통해 상기 압축기(10)의 흡입측으로 인젝션된다. The refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
상기 이코노마이저(60)에서 나온 냉매는 상기 팽창밸브(90)에서 팽창되어 냉각된 후 상기 냉난방 열교환기(30)로 유입된다. The refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 , and then flows into the air-conditioning heat exchanger 30 .
상기 냉난방 열교환기(30)에서는, 상기 냉매와 상기 냉난방 열원의 열교환이 이루어져, 상기 냉매는 증발되고 상기 냉난방 열원은 냉각된다. 즉, 냉방 운전시 상기 냉난방 열교환기(30)는 냉매의 증발기 역할을 한다. In the air-conditioning heat exchanger 30, heat exchange is made between the refrigerant and the air-conditioning heat source, so that the refrigerant is evaporated and the air-conditioning heat source is cooled. That is, during the cooling operation, the air conditioning heat exchanger 30 serves as an evaporator of the refrigerant.
상기 냉난방 열교환기(30)에서 냉각된 상기 냉난방 열원은 상기 냉난방수 탱크(32)로 유입된다.The cooling and heating heat source cooled in the heating and cooling heat exchanger 30 flows into the cooling and heating water tank 32 .
상기 냉난방수 탱크(32)에서는, 상기 냉난방 열원과 상기 냉난방수의 열교환이 이루어지며, 상기 냉난방 열원은 상기 냉난방수를 냉각시킨다.In the cooling and heating water tank 32 , heat exchange is performed between the heating and cooling heat source and the cooling and heating water, and the cooling and heating heat source cools the heating and cooling water.
상기 냉난방수 탱크(32)에 저장되고 상기 냉난방 열원에 의해 냉각된 상기 냉난방수는 실내를 냉방하는 데 사용된다. 예를 들어, 실내에 설치된 냉방 장치의 냉매로서 사용되어, 실내 공기를 냉각시키는 데 사용될 수 있다.The cooling and heating water stored in the heating and cooling water tank 32 and cooled by the heating and cooling heat source is used to cool the room. For example, it is used as a refrigerant of a cooling device installed in a room, and can be used to cool indoor air.
상기 냉난방 열교환기(30)에서 증발되고 나온 냉매는 상기 제1,2개폐밸브(54)(56)의 작동에 따라 상기 냉각판 열교환기(50)를 통과하거나 상기 냉각판 열교환기(50)를 바이패스 한 후, 상기 압축기(10)로 순환된다.The refrigerant evaporated from the air-conditioning heat exchanger 30 passes through the cooling plate heat exchanger 50 or passes through the cooling plate heat exchanger 50 according to the operation of the first and second opening/ closing valves 54 and 56 . After bypassing, it is circulated to the compressor 10 .
상기 인버터(300)의 발열부(301)의 온도가 상기 제1설정 발열부 온도 이상이면, 상기 인버터(300)의 발열부(301)를 냉각시키기 위하여 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)를 개방하여, 상기 냉매를 상기 냉각판 열교환기(50)로 안내한다.When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first set heating part temperature, the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 . In this state, the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
상기 냉매가 상기 냉각판 열교환기(50)를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있다. As the refrigerant is additionally heat-exchanged and evaporated while passing through the cooling plate heat exchanger 50 , the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
또한, 상기 냉매가 상기 인버터의 발열부 온도를 낮출 수 있다. 상기와 같이 냉매를 이용함으로써, 상기 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. In addition, the refrigerant may lower the temperature of the heating part of the inverter. By using the refrigerant as described above, there is an advantage in that there is no noise compared to the case of using a cooling fan to cool the inverter.
한편, 상기 제2개폐밸브(56)의 개방한 이후, 상기 발열부(301)의 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. 즉, 상기 제1개폐밸브(54)가 차폐되고 상기 제2개폐밸브(56)가 개방되면, 냉매가 전부 상기 냉각판 열교환기(50)를 통과하게 되므로, 상기 발열부(301)가 보다 신속하게 냉각될 수 있다. On the other hand, after the second on-off valve 56 is opened, the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the highest set temperature set higher than the first set heating part temperature. Then, the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
상기 인버터(300)의 발열부(301)의 온도가 상기 제2설정 발열부 온도 미만으로 떨어지면, 상기 제1개폐밸브(54)는 개방하고, 상기 제2개폐밸브(56)는 차폐하여, 상기 냉매가 상기 냉각판 열교환기(50)를 바이패스하도록 안내한다. When the temperature of the heating part 301 of the inverter 300 falls below the second set heating part temperature, the first on-off valve 54 opens and the second on-off valve 56 is closed, The refrigerant is guided to bypass the cold plate heat exchanger (50).
상기와 같이 냉방 운전시에는 상기 BIPVT 컬렉터(110)에서 생산된 열원은 상기 버퍼 탱크(130)에 저장하여, 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용된다. During the cooling operation as described above, the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
한편, 여름철 급탕 운전에 대해 설명하면 다음과 같다.Meanwhile, the hot water supply operation in summer will be described as follows.
도 2는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 급탕 운전 상태가 도시된 도면이다.2 is a diagram illustrating a hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 2를 참조하면, 여름철 급탕 운전시 상기 제어부(미도시)는, 상기 제1BIPVT 열원 펌프(141)를 작동시키고, 상기 제2BIPVT 열원 펌프(142)를 작동 중지시키고, 상기 급탕 펌프(26)는 작동시키고, 상기 냉난방 펌프(136)는 작동을 중지시킨다.Referring to FIG. 2, during summer hot water supply operation, the controller (not shown) operates the first BIPVT heat source pump 141, stops the second BIPVT heat source pump 142, and the hot water supply pump 26 operates, and the heating/cooling pump 136 stops the operation.
상기 제1BIPVT 열원 펌프(141)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first BIPVT heat source pump 141 is operated, the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된 열원은 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용될 수 있다.The heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
한편, 상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 냉난방 열교환기(30), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90), 상기 실외 열교환기(40)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.On the other hand, the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in order, it circulates back to the compressor 10 .
상기 압축기(10)에서 나온 냉매는 상기 급탕 열교환기(20)로 유입된다.The refrigerant discharged from the compressor (10) flows into the hot water heat exchanger (20).
상기 급탕 열교환기(20)에서는 상기 냉매와 상기 급탕 열원의 열교환이 이루어지며, 상기 냉매의 열은 상기 급탕 열원으로 전달되어, 상기 급탕 열원은 가열된다. In the hot water supply heat exchanger 20, heat exchange is performed between the refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
상기 급탕 열교환기(20)에서 가열된 상기 급탕 열원은 상기 급탕 탱크(22)로 유입된다.The hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
상기 급탕 탱크(22)에서는 상기 급탕 열원과 상기 급탕 용수의 열교환이 이루어지며, 상기 급탕 열원의 열이 상기 급탕 용수에 전달된다. 상기 급탕 용수는 급탕에 사용된다.In the hot water supply tank 22, heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water. The hot water supply is used for hot water supply.
상기 급탕 열교환기(20)에서 열을 빼앗기고 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 냉난방 열교환기(30)로 유입된다.The refrigerant, which has been deprived of heat from the hot water supply heat exchanger (20), flows into the air-conditioning heat exchanger (30) through the four-way valve (80).
상기 냉난방 펌프(36)의 작동이 중지된 상태이므로, 상기 냉난방 열교환기(30)에서는 열교환이 이루어지지 않는다.Since the operation of the air-conditioning pump 36 is stopped, heat exchange is not performed in the air-conditioning heat exchanger 30 .
상기 냉난방 열교환기(30)를 통과하고 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 실외 열교환기(40)로 유입된다.The refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
상기 급탕 운전시 상기 실외 열교환기는 증발기 역할을 하며, 상기 실외 열교환팬(40c)은 상기 냉매의 증발압력이 미리 설정된 설정압력 이하시 작동한다.During the hot water supply operation, the outdoor heat exchanger functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
상기 실외 열교환팬(40c)의 작동은 중지되고, 상기 실외 열교환기(40)에서는 열교환이 이루어지지 않는다. The operation of the outdoor heat exchange fan 40c is stopped, and heat exchange is not performed in the outdoor heat exchanger 40 .
이 때, 상기 냉각판 열교환기(50)는 상기 인버터의 발열부 온도에 따라 사용이 제어된다. At this time, the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
상기와 같이 여름철 급탕 운전시에는 상기 BIPVT 컬렉터(110)에서 생산된 열원은 상기 버퍼 탱크(130)에 저장하여, 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용된다. As described above, during the hot water supply operation in summer, the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
한편, 냉방 급탕 운전에 대해 설명하면, 다음과 같다. Meanwhile, the cooling and hot water supply operation will be described as follows.
도 3은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 냉방 급탕운전 상태가 도시된 도면이다.3 is a view showing a cooling and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 3을 참조하면, 냉방 급탕 운전시 상기 제어부(미도시)는, 상기 제1BIPVT 열원 펌프(141)를 작동시키고, 상기 제2BIPVT 열원 펌프(142)를 작동 중지시키고, 상기 급탕 펌프(26)와 상기 냉난방 펌프(136)도 모두 작동시킨다.Referring to FIG. 3 , during cooling hot water supply operation, the controller (not shown) operates the first BIPVT heat source pump 141 , stops the second BIPVT heat source pump 142 , and operates the hot water supply pump 26 and All of the heating and cooling pumps 136 are also operated.
상기 제1BIPVT 열원 펌프(141)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first BIPVT heat source pump 141 is operated, the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된 열원은 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용될 수 있다.The heat source stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 may be used to preheat the water supplied to the hot water supply tank 22 .
한편, 상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 실외 열교환기(40), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90) 및 상기 냉난방 열교환기(30)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.On the other hand, the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the outdoor heat exchanger 40 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the air-conditioning heat exchanger 30 in sequence, it circulates back to the compressor 10 .
상기 압축기(10)에서 나온 고온의 냉매는 상기 급탕 열교환기(20)로 유입된다.The high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
상기 급탕 열교환기(20)에서는 상기 고온의 냉매와 상기 급탕 열원의 열교환이 이루어지며, 상기 냉매의 열은 상기 급탕 열원으로 전달되어, 상기 급탕 열원은 가열된다. In the hot water supply heat exchanger 20, heat exchange is performed between the high-temperature refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
상기 급탕 열교환기(20)에서 가열된 상기 급탕 열원은 상기 급탕 탱크(22)로 유입된다.The hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
상기 급탕 탱크(22)에서는 상기 급탕 열원과 상기 급탕 용수의 열교환이 이루어지며, 상기 급탕 열원의 열이 상기 급탕 용수에 전달된다. 상기 급탕 용수는 급탕에 사용된다.In the hot water supply tank 22, heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water. The hot water supply is used for hot water supply.
상기 급탕 열교환기(20)에서 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 실외 열교환기(40)로 유입된다. The refrigerant from the hot water supply heat exchanger (20) flows into the outdoor heat exchanger (40) through the four-way valve (80).
상기 냉방 급탕 운전시 상기 실외 열교환기(40)는 응축기 역할을 하며, 상기 실외 열교환팬(40c)은 상기 냉매의 응축압력이 미리 설정된 설정압력 이상시 작동한다.During the cooling and hot water supply operation, the outdoor heat exchanger 40 functions as a condenser, and the outdoor heat exchange fan 40c operates when the condensing pressure of the refrigerant exceeds a preset pressure.
이 때, 상기 냉각판 열교환기(50)는 상기 인버터의 발열부 온도에 따라 사용이 제어된다. At this time, the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
상기 실외 열교환기(40)에서 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 냉난방 열교환기(30)로 유입된다.The refrigerant from the outdoor heat exchanger 40 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in order, and then flows into the air-conditioning heat exchanger 30 .
이 때, 상기 제어부(미도시)는, 상기 제11온도센서(211)에서 감지된 온도에 따라 상기 분기 개폐밸브(62)의 개폐를 단속한다.At this time, the control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
상기 분기 개폐밸브(62)가 상기 분기유로(61)를 개방하면, 상기 이코노마이저(60)를 통과한 냉매 중 일부는 상기 분기유로(61)를 통해 다시 상기 제2이코노마이저 유로(60b)로 유입된다. When the branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
상기 이코노마이저(60)에서는 상기 제1이코노마이저 유로(60a)를 통과하는 냉매와 상기 제2이코노마이저 유로(60b)를 통과하는 냉매의 열교환이 이루어진다. In the economizer 60 , heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
상기 제2이코노마이저 유로(60b)에서 가열된 냉매는 상기 인젝션 유로(65)를 통해 상기 압축기(10)의 흡입측으로 인젝션된다. The refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
상기 이코노마이저(60)에서 나온 냉매는 상기 팽창밸브(90)에서 팽창되어 냉각된 후 상기 냉난방 열교환기(30)로 유입된다. The refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 , and then flows into the air-conditioning heat exchanger 30 .
상기 냉난방 열교환기(30)에서는, 상기 냉매와 상기 냉난방 열원의 열교환이 이루어져, 상기 냉매는 증발되고 상기 냉난방 열원은 냉각된다.In the air-conditioning heat exchanger 30, heat exchange is made between the refrigerant and the air-conditioning heat source, so that the refrigerant is evaporated and the air-conditioning heat source is cooled.
상기 냉난방 열교환기(30)에서 냉각된 상기 냉난방 열원은 상기 냉난방수 탱크(32)로 유입된다.The cooling and heating heat source cooled in the heating and cooling heat exchanger 30 flows into the cooling and heating water tank 32 .
상기 냉난방수 탱크(32)에서는, 상기 냉난방 열원과 상기 냉난방수의 열교환이 이루어지며, 상기 냉난방 열원은 상기 냉난방수를 냉각시킨다.In the cooling and heating water tank 32 , heat exchange is performed between the heating and cooling heat source and the cooling and heating water, and the cooling and heating heat source cools the heating and cooling water.
상기 냉난방수 탱크(32)에 저장되고 상기 냉난방 열원에 의해 냉각된 상기 냉난방수는 실내를 냉방하는 데 사용된다. 예를 들어, 실내에 설치된 냉방 장치의 냉매로서 사용되어, 실내 공기를 냉각시키는 데 사용될 수 있다.The cooling and heating water stored in the heating and cooling water tank 32 and cooled by the heating and cooling heat source is used to cool the room. For example, it is used as a refrigerant of a cooling device installed in a room, and can be used to cool indoor air.
상기 냉난방 열교환기(30)에서 증발되고 나온 냉매는 상기 제1,2개폐밸브(54)(56)의 작동에 따라 상기 냉각판 열교환기(50)를 통과하거나 상기 냉각판 열교환기(50)를 바이패스 한 후, 상기 압축기(10)로 순환된다.The refrigerant evaporated from the air-conditioning heat exchanger 30 passes through the cooling plate heat exchanger 50 or passes through the cooling plate heat exchanger 50 according to the operation of the first and second opening/ closing valves 54 and 56 . After bypassing, it is circulated to the compressor 10 .
상기 인버터(300)의 발열부(301)의 온도가 상기 제1설정 발열부 온도 이상이면, 상기 인버터(300)의 발열부(301)를 냉각시키기 위하여 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)를 개방하여, 상기 냉매를 상기 냉각판 열교환기(50)로 안내한다.When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first set heating part temperature, the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 . In this state, the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
상기 냉매가 상기 냉각판 열교환기(50)를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있다. As the refrigerant is additionally heat-exchanged and evaporated while passing through the cooling plate heat exchanger 50 , the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
또한, 상기 냉매가 상기 인버터의 발열부 온도를 낮출 수 있다. 상기와 같이 냉매를 이용함으로써, 상기 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. In addition, the refrigerant may lower the temperature of the heating part of the inverter. By using the refrigerant as described above, there is an advantage in that there is no noise compared to the case of using a cooling fan to cool the inverter.
한편, 상기 제2개폐밸브(56)의 개방한 이후, 상기 발열부(301)의 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. 즉, 상기 제1개폐밸브(54)가 차폐되고 상기 제2개폐밸브(56)가 개방되면, 냉매가 전부 상기 냉각판 열교환기(50)를 통과하게 되므로, 상기 발열부(301)가 보다 신속하게 냉각될 수 있다. On the other hand, after the second on-off valve 56 is opened, the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the highest set temperature set higher than the first set heating part temperature. Then, the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
상기 인버터(300)의 발열부(301)의 온도가 상기 제2설정 발열부 온도 미만이면, 상기 제1개폐밸브(54)는 개방하고, 상기 제2개폐밸브(56)는 차폐하여, 상기 냉매가 상기 냉각판 열교환기(50)를 바이패스하도록 안내한다. When the temperature of the heating part 301 of the inverter 300 is less than the second set heating part temperature, the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
상기와 같이 냉방 급탕 운전시에는 상기 BIPVT 컬렉터(110)에서 생산된 열원은 상기 버퍼 탱크(130)에 저장하여, 상기 급탕 탱크(22)로 공급되는 급수를 예열하는 데 사용된다. As described above, during the cooling and hot water supply operation, the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and used to preheat the water supplied to the hot water supply tank 22 .
한편, 난방 운전에 대해 설명하면, 다음과 같다. Meanwhile, the heating operation will be described as follows.
도 4는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 난방 운전 상태가 도시된 도면이다.4 is a view illustrating a heating operation state of a heat pump system using air heat of BIPVT according to an embodiment of the present invention.
도 4를 참조하면, 난방 운전시 상기 제어부(미도시)는, 상기 제1,2BIPVT 열원 펌프(141)(142)를 작동시키고, 상기 급탕 펌프(26)는 작동 중지시키고, 상기 냉난방 펌프(136)는 작동시킨다.Referring to FIG. 4 , during heating operation, the control unit (not shown) operates the first and second BIPVT heat source pumps 141 and 142 , stops the hot water supply pump 26 , and the heating/cooling pump 136 . ) works.
상기 제1,2BIPVT 열원 펌프(141)(142)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first and second BIPVT heat source pumps 141 and 142 are operated, the heat source of air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
상기 버퍼 탱크(130)에 저장된 온수는 상기 제2BIPVT 열원 공급유로(132)를 통해 상기 실외 열교환기(40)로 공급된다.The hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
한편, 상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 냉난방 열교환기(30), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90) 및 상기 실외 열교환기(30)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.On the other hand, the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 30 in sequence, it circulates back to the compressor 10 .
상기 압축기(10)에서 나온 고온의 냉매는 상기 급탕 열교환기(20)로 유입된다.The high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
이 때, 상기 급탕 펌프(26)가 작동되지 않는 상태이므로, 상기 급탕 열교환기(20)에서 상기 냉매는 열교환하지 않는다.At this time, since the hot water supply pump 26 is not operated, the refrigerant does not heat exchange in the hot water supply heat exchanger 20 .
상기 급탕 열교환기(20)에서 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 냉난방 열교환기(30)로 유입된다. The refrigerant from the hot water supply heat exchanger 20 flows into the air conditioning heat exchanger 30 through the four-way valve 80 .
상기 냉난방 열교환기(30)에서는, 상기 고온의 냉매와 상기 냉난방 열원의 열교환이 이루어져, 상기 냉매는 응축되고 상기 냉난방 열원은 가열된다. 즉, 난방 운전시 상기 냉난방 열교환기(30)는 응축기 역할을 한다.In the air-conditioning heat exchanger 30, heat exchange is made between the high-temperature refrigerant and the air-conditioning heat source, so that the refrigerant is condensed and the air-conditioning heat source is heated. That is, during the heating operation, the air-conditioning heat exchanger 30 serves as a condenser.
상기 냉난방 열교환기(30)에서 가열된 상기 냉난방 열원은 상기 냉난방수 탱크(32)로 유입된다.The heating and cooling heat source heated in the heating and cooling heat exchanger 30 flows into the heating and cooling water tank 32 .
상기 냉난방수 탱크(32)에서는, 상기 냉난방 열원과 상기 냉난방수의 열교환이 이루어지며, 상기 냉난방 열원은 상기 냉난방수를 가열시킨다.In the heating/cooling water tank 32, heat exchange is made between the cooling/cooling heat source and the cooling/cooling water, and the cooling/cooling heat source heats the cooling/cooling water.
상기 냉난방수 탱크(32)에 저장되고 상기 냉난방 열원에 의해 가열된 상기 냉난방수는 실내를 난방하는 데 사용된다. 예를 들어, 실내에 설치된 난방 장치의 냉매로서 사용되어, 실내 난방시키는 데 사용될 수 있다.The heating and cooling water stored in the heating and cooling water tank 32 and heated by the heating and cooling heat source is used to heat the room. For example, it is used as a refrigerant of a heating device installed in a room, and can be used to heat the room.
상기 냉난방 열교환기(30)를 통과하고 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 실외 열교환기(40)로 유입된다.The refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
상기 난방 운전시 상기 실외 열교환기는 증발기 역할을 하며, 상기 실외 열교환팬(40c)은 상기 냉매의 증발압력이 미리 설정된 설정압력 이하시 작동한다.During the heating operation, the outdoor heat exchanger functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
이 때, 상기 제어부(미도시)는, 상기 제11온도센서(211)에서 감지된 온도에 따라 상기 분기 개폐밸브(62)의 개폐를 단속한다.At this time, the control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
상기 분기 개폐밸브(62)가 상기 분기유로(61)를 개방하면, 상기 이코노마이저(60)를 통과한 냉매 중 일부는 상기 분기유로(61)를 통해 다시 상기 제2이코노마이저 유로(60b)로 유입된다. When the branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
상기 이코노마이저(60)에서는 상기 제1이코노마이저 유로(60a)를 통과하는 냉매와 상기 제2이코노마이저 유로(60b)를 통과하는 냉매의 열교환이 이루어진다. In the economizer 60 , heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
상기 제2이코노마이저 유로(60b)에서 가열된 냉매는 상기 인젝션 유로(65)를 통해 상기 압축기(10)의 흡입측으로 인젝션된다. The refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
상기 이코노마이저(60)에서 나온 냉매는 상기 팽창밸브(90)에서 팽창되어 냉각된 후 상기 실외 열교환기(40)로 유입된다. The refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 and then flows into the outdoor heat exchanger 40 .
상기 실외 열교환기(40)에서는 상기 냉매와 상기 제2BIPVT 열원 공급유로(132)를 통해 유입된 온수와의 열교환이 이루어진다. 상기 실외 열교환기(40)에서는 상기 냉매는 상기 온수의 열을 공급받는다. 즉, 난방 운전시 상기 실외 열교환기(40)는 증발기 역할을 하게 된다. In the outdoor heat exchanger 40 , heat exchange is performed between the refrigerant and the hot water introduced through the second BIPVT heat source supply passage 132 . In the outdoor heat exchanger 40, the refrigerant receives the heat of the hot water. That is, during the heating operation, the outdoor heat exchanger 40 functions as an evaporator.
상기 실외 열교환기(40)에서 가열된 냉매는 상기 제1,2개폐밸브(54)(56)의 작동에 따라 상기 냉각판 열교환기(50)를 통과하거나 상기 냉각판 열교환기(50)를 바이패스 한 후, 상기 압축기(10)로 순환된다.The refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/ closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
상기 인버터(300)의 발열부(301)의 온도가 상기 제1설정 발열부 온도 이상이면, 상기 인버터(300)의 발열부(301)를 냉각시키기 위하여 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)를 개방하여, 상기 냉매를 상기 냉각판 열교환기(50)로 안내한다.When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first set heating part temperature, the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 . In this state, the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
상기 냉매가 상기 냉각판 열교환기(50)를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있다. As the refrigerant is additionally heat-exchanged and evaporated while passing through the cooling plate heat exchanger 50 , the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
또한, 상기 냉매가 상기 인버터의 발열부 온도를 낮출 수 있다. 상기와 같이 냉매를 이용함으로써, 상기 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. In addition, the refrigerant may lower the temperature of the heating part of the inverter. By using the refrigerant as described above, there is an advantage in that there is no noise compared to the case of using a cooling fan to cool the inverter.
한편, 상기 제2개폐밸브(56)의 개방한 이후, 상기 발열부(301)의 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. 즉, 상기 제1개폐밸브(54)가 차폐되고 상기 제2개폐밸브(56)가 개방되면, 냉매가 전부 상기 냉각판 열교환기(50)를 통과하게 되므로, 상기 발열부(301)가 보다 신속하게 냉각될 수 있다. On the other hand, after the second on-off valve 56 is opened, the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the highest set temperature set higher than the first set heating part temperature. Then, the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
상기 인버터(300)의 발열부(301)의 온도가 상기 제2설정 발열부 온도 미만이면, 상기 제1개폐밸브(54)는 개방하고, 상기 제2개폐밸브(56)는 차폐하여, 상기 냉매가 상기 냉각판 열교환기(50)를 바이패스하도록 안내한다. When the temperature of the heating part 301 of the inverter 300 is less than the second set heating part temperature, the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
상기와 같이 난방 운전시에는 상기 BIPVT 컬렉터(110)에서 생산된 열원은 상기 버퍼 탱크(130)에 저장하여, 상기 제2BIPVT 열원 공급유로(132)를 통해 상기 실외 열교환기(40)로 전달한다. During the heating operation as described above, the heat source produced by the BIPVT collector 110 is stored in the buffer tank 130 and transferred to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
한편, 난방 급탕 운전에 대해 설명하면, 다음과 같다. On the other hand, the heating and hot water supply operation will be described as follows.
도 5는 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 난방 급탕 운전 상태가 도시된 도면이다.5 is a diagram illustrating a heating and hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 5를 참조하면, 난방 급탕 운전시 상기 제어부(미도시)는, 상기 제1,2BIPVT 열원 펌프(141)(142)를 작동시키고, 상기 급탕 펌프(26)와 상기 냉난방 펌프(136)도 모두 작동시킨다.Referring to FIG. 5 , during the heating and hot water supply operation, the controller (not shown) operates the first and second BIPVT heat source pumps 141 and 142 , and both the hot water supply pump 26 and the air conditioning pump 136 are also operated. make it work
상기 제1,2BIPVT 열원 펌프(141)(142)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first and second BIPVT heat source pumps 141 and 142 are operated, the heat source of air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
상기 버퍼 탱크(130)에 저장된 온수는 상기 제2BIPVT 열원 공급유로(132)를 통해 상기 실외 열교환기(40)로 공급된다.The hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
한편, 상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 냉난방 열교환기(30), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90) 및 상기 실외 열교환기(40)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.On the other hand, the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in sequence, it circulates back to the compressor 10 .
상기 압축기(10)에서 나온 고온의 냉매는 상기 급탕 열교환기(20)로 유입된다.The high-temperature refrigerant from the compressor 10 flows into the hot water heat exchanger 20 .
상기 급탕 열교환기(20)에서는 상기 고온의 냉매와 상기 급탕 열원의 열교환이 이루어지며, 상기 냉매의 열은 상기 급탕 열원으로 전달되어, 상기 급탕 열원은 가열된다. In the hot water supply heat exchanger 20, heat exchange is performed between the high-temperature refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
상기 급탕 열교환기(20)에서 가열된 상기 급탕 열원은 상기 급탕 탱크(22)로 유입된다.The hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
상기 급탕 탱크(22)에서는 상기 급탕 열원과 상기 급탕 용수의 열교환이 이루어지며, 상기 급탕 열원의 열이 상기 급탕 용수에 전달된다. 상기 급탕 용수는 급탕에 사용된다.In the hot water supply tank 22, heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water. The hot water supply is used for hot water supply.
상기 급탕 열교환기(20)에서 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 냉난방 열교환기(30)로 유입된다. The refrigerant from the hot water supply heat exchanger 20 flows into the air conditioning heat exchanger 30 through the four-way valve 80 .
상기 냉난방 열교환기(30)에서는, 상기 고온의 냉매와 상기 냉난방 열원의 열교환이 이루어져, 상기 냉매는 응축되고 상기 냉난방 열원은 가열된다. 즉, 난방 급탕운전시 상기 냉난방 열교환기(30)는 응축기 역할을 한다.In the air-conditioning heat exchanger 30, heat exchange is made between the high-temperature refrigerant and the air-conditioning heat source, so that the refrigerant is condensed and the air-conditioning heat source is heated. That is, during the heating and hot water supply operation, the air-conditioning heat exchanger 30 serves as a condenser.
상기 냉난방 열교환기(30)에서 가열된 상기 냉난방 열원은 상기 냉난방수 탱크(32)로 유입된다.The heating and cooling heat source heated in the heating and cooling heat exchanger 30 flows into the heating and cooling water tank 32 .
상기 냉난방수 탱크(32)에서는, 상기 냉난방 열원과 상기 냉난방수의 열교환이 이루어지며, 상기 냉난방 열원은 상기 냉난방수를 가열시킨다.In the heating/cooling water tank 32, heat exchange is made between the cooling/cooling heat source and the cooling/cooling water, and the cooling/cooling heat source heats the cooling/cooling water.
상기 냉난방수 탱크(32)에 저장되고 상기 냉난방 열원에 의해 가열된 상기 냉난방수는 실내를 난방하는 데 사용된다. 예를 들어, 실내에 설치된 난방 장치의 냉매로서 사용되어, 실내 난방시키는 데 사용될 수 있다.The heating and cooling water stored in the heating and cooling water tank 32 and heated by the heating and cooling heat source is used to heat the room. For example, it is used as a refrigerant of a heating device installed in a room, and can be used to heat the room.
상기 냉난방 열교환기(30)를 통과하고 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 실외 열교환기(40)로 유입된다.The refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
상기 난방 급탕 운전시 상기 실외 열교환기(40)는 증발기 역할을 하며, 상기 실외 열교환팬(40c)은 상기 냉매의 증발압력이 미리 설정된 설정압력 이하시 작동한다.During the heating and hot water supply operation, the outdoor heat exchanger 40 functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
이 때, 상기 제어부(미도시)는, 상기 제11온도센서(211)에서 감지된 온도에 따라 상기 분기 개폐밸브(62)의 개폐를 단속한다.At this time, the control unit (not shown) intermittently controls the opening and closing of the branch opening/closing valve 62 according to the temperature sensed by the eleventh temperature sensor 211 .
상기 분기 개폐밸브(62)가 상기 분기유로(61)를 개방하면, 상기 이코노마이저(60)를 통과한 냉매 중 일부는 상기 분기유로(61)를 통해 다시 상기 제2이코노마이저 유로(60b)로 유입된다. When the branch opening/closing valve 62 opens the branch flow path 61 , some of the refrigerant that has passed through the economizer 60 flows back into the second economizer flow path 60b through the branch flow path 61 . .
상기 이코노마이저(60)에서는 상기 제1이코노마이저 유로(60a)를 통과하는 냉매와 상기 제2이코노마이저 유로(60b)를 통과하는 냉매의 열교환이 이루어진다. In the economizer 60 , heat exchange between the refrigerant passing through the first economizer channel 60a and the refrigerant passing through the second economizer channel 60b is performed.
상기 제2이코노마이저 유로(60b)에서 가열된 냉매는 상기 인젝션 유로(65)를 통해 상기 압축기(10)의 흡입측으로 인젝션된다. The refrigerant heated in the second economizer passage 60b is injected into the suction side of the compressor 10 through the injection passage 65 .
상기 이코노마이저(60)에서 나온 냉매는 상기 팽창밸브(90)에서 팽창되어 냉각된 후 상기 실외 열교환기(40)로 유입된다. The refrigerant discharged from the economizer 60 is expanded and cooled by the expansion valve 90 and then flows into the outdoor heat exchanger 40 .
상기 실외 열교환기(40)에서는 상기 냉매와 상기 온수의 열교환이 이루어진다. 상기 실외 열교환기(40)에서는 상기 냉매는 상기 온수의 열을 공급받는다. 즉, 난방 급탕운전시 상기 실외 열교환기(40)는 증발기 역할을 하게 된다. In the outdoor heat exchanger 40, heat exchange between the refrigerant and the hot water is performed. In the outdoor heat exchanger 40, the refrigerant receives the heat of the hot water. That is, during the heating and hot water supply operation, the outdoor heat exchanger 40 functions as an evaporator.
상기 실외 열교환기(40)에서 가열된 냉매는 상기 제1,2개폐밸브(54)(56)의 작동에 따라 상기 냉각판 열교환기(50)를 통과하거나 상기 냉각판 열교환기(50)를 바이패스 한 후, 상기 압축기(10)로 순환된다.The refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/ closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
상기 인버터(300)의 발열부(301)의 온도가 상기 제1설정 발열부 온도 이상이면, 상기 인버터(300)의 발열부(301)를 냉각시키기 위하여 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)를 개방하여, 상기 냉매를 상기 냉각판 열교환기(50)로 안내한다.When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first set heating part temperature, the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 . In this state, the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
상기 냉매가 상기 냉각판 열교환기(50)를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있다. As the refrigerant is additionally heat-exchanged and evaporated while passing through the cooling plate heat exchanger 50 , the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
또한, 상기 냉매가 상기 인버터의 발열부 온도를 낮출 수 있다. 상기와 같이 냉매를 이용함으로써, 상기 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. In addition, the refrigerant may lower the temperature of the heating part of the inverter. By using the refrigerant as described above, there is an advantage in that there is no noise compared to the case of using a cooling fan to cool the inverter.
한편, 상기 제2개폐밸브(56)의 개방한 이후, 상기 발열부(301)의 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. 즉, 상기 제1개폐밸브(54)가 차폐되고 상기 제2개폐밸브(56)가 개방되면, 냉매가 전부 상기 냉각판 열교환기(50)를 통과하게 되므로, 상기 발열부(301)가 보다 신속하게 냉각될 수 있다. On the other hand, after the second on-off valve 56 is opened, the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the highest set temperature set higher than the first set heating part temperature. Then, the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
상기 인버터(300)의 발열부(301)의 온도가 상기 제2설정 발열부 온도 미만이면, 상기 제1개폐밸브(54)는 개방하고, 상기 제2개폐밸브(56)는 차폐하여, 상기 냉매가 상기 냉각판 열교환기(50)를 바이패스하도록 안내한다. When the temperature of the heating part 301 of the inverter 300 is less than the second set heating part temperature, the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
상기와 같이, 본 발명에서는 난방 운전시나 급탕 운전시 상기 BIPVT 컬렉터(110)에서 생산된 공기의 열원을 상기 실외 열교환기(40)를 통해 흡수하여, 히트펌프 사이클의 열원으로 사용한다. 따라서, 성능계수가 극대화될 수 있는 이점이 있다.As described above, in the present invention, the heat source of the air produced by the BIPVT collector 110 is absorbed through the outdoor heat exchanger 40 during heating operation or hot water supply operation, and used as a heat source of the heat pump cycle. Accordingly, there is an advantage that the coefficient of performance can be maximized.
또한, 본 발명에서는 냉방 운전시에는 상기 BIPVT 컬렉터(110)에서 생산된 공기의 열원을 급수 예열에 사용할 수 있으므로, 급탕 탱크의 온도를 일정하게 확보할 수 있는 이점이 있다. 또한, 상기 냉방 운전시에는 상기 실외 열교환기(40)에서 냉매의 응축열을 회수하여 상기 버퍼 탱크(130)로 전달하여, 급수 예열에 사용할 수 있으므로, 급탕 탱크의 온도를 일정하게 확보할 수 있는 이점이 있다.In addition, in the present invention, since the heat source of the air produced by the BIPVT collector 110 can be used for preheating the water supply during the cooling operation, there is an advantage in that the temperature of the hot water supply tank can be constantly secured. In addition, during the cooling operation, the condensed heat of the refrigerant is recovered from the outdoor heat exchanger 40 and transferred to the buffer tank 130, so that it can be used for preheating the water supply, thereby ensuring a constant temperature of the hot water supply tank there is this
한편, 겨울철 급탕 운전에 대해 설명하면 다음과 같다.Meanwhile, the operation of hot water supply in winter will be described as follows.
도 6은 본 발명의 실시예에 따른 BIPVT의 공기열을 이용한 히트펌프 시스템의 겨울철 급탕 운전 상태가 도시된 도면이다.6 is a view illustrating a winter hot water supply operation state of a heat pump system using air heat of a BIPVT according to an embodiment of the present invention.
도 6을 참조하면, 겨울철 급탕 운전시 상기 제어부(미도시)는, 상기 제1BIPVT 열원 펌프(141)와 상기 제2BIPVT 열원 펌프(142)를 모두 작동시키고, 상기 급탕 펌프(26)는 작동시키고, 상기 냉난방 펌프(136)는 작동을 중지시킨다.Referring to FIG. 6 , during winter hot water supply operation, the control unit (not shown) operates both the first BIPVT heat source pump 141 and the second BIPVT heat source pump 142, and the hot water supply pump 26 operates, The air conditioning pump 136 stops the operation.
상기 제1BIPVT 열원 펌프(141)가 작동되면, 상기 BIPVT 컬렉터(110)에서 열을 흡수한 공기의 열원은 상기 공기 열교환기(120)에 전달된다.When the first BIPVT heat source pump 141 is operated, the heat source of the air that has absorbed heat from the BIPVT collector 110 is transferred to the air heat exchanger 120 .
상기 공기 열교환기(120)에서 상기 공기에 의해 가열된 온수는 상기 제1BIPVT 열원 공급유로(131)를 통해 상기 버퍼 탱크(130)에 저장된다. The hot water heated by the air in the air heat exchanger 120 is stored in the buffer tank 130 through the first BIPVT heat source supply passage 131 .
상기 버퍼 탱크(130)에 저장된 온수는 상기 제2BIPVT 열원 공급유로(132)를 통해 상기 실외 열교환기(40)로 공급된다.The hot water stored in the buffer tank 130 is supplied to the outdoor heat exchanger 40 through the second BIPVT heat source supply passage 132 .
상기 급탕 운전시 상기 실외 열교환기(40)는 증발기 역할을 하며, 상기 실외 열교환팬(40c)은 상기 냉매의 증발압력이 미리 설정된 설정압력 이하시 작동한다.During the hot water supply operation, the outdoor heat exchanger 40 functions as an evaporator, and the outdoor heat exchange fan 40c operates when the evaporation pressure of the refrigerant is less than or equal to a preset pressure.
한편, 상기 압축기(10)에서 압축된 냉매는 상기 급탕 열교환기(20), 상기 사방밸브(80), 상기 냉난방 열교환기(30), 상기 수액기(70), 상기 이코노마이저(60), 상기 팽창밸브(90), 상기 실외 열교환기(40)를 차례로 통과한 후, 상기 압축기(10)로 다시 순환한다.On the other hand, the refrigerant compressed in the compressor 10 is the hot water heat exchanger 20 , the four-way valve 80 , the air-conditioning heat exchanger 30 , the receiver 70 , the economizer 60 , and the expansion After passing through the valve 90 and the outdoor heat exchanger 40 in order, it circulates back to the compressor 10 .
상기 압축기(10)에서 나온 냉매는 상기 급탕 열교환기(20)로 유입된다.The refrigerant discharged from the compressor (10) flows into the hot water heat exchanger (20).
상기 급탕 열교환기(20)에서는 상기 냉매와 상기 급탕 열원의 열교환이 이루어지며, 상기 냉매의 열은 상기 급탕 열원으로 전달되어, 상기 급탕 열원은 가열된다. In the hot water supply heat exchanger 20, heat exchange is performed between the refrigerant and the hot water supply heat source, and the heat of the refrigerant is transferred to the hot water supply heat source, and the hot water supply heat source is heated.
상기 급탕 열교환기(20)에서 가열된 상기 급탕 열원은 상기 급탕 탱크(22)로 유입된다.The hot water supply heat source heated in the hot water supply heat exchanger 20 flows into the hot water supply tank 22 .
상기 급탕 탱크(22)에서는 상기 급탕 열원과 상기 급탕 용수의 열교환이 이루어지며, 상기 급탕 열원의 열이 상기 급탕 용수에 전달된다. 상기 급탕 용수는 급탕에 사용된다.In the hot water supply tank 22, heat exchange between the hot water supply heat source and the hot water supply water is performed, and the heat from the hot water supply heat source is transferred to the hot water supply water. The hot water supply is used for hot water supply.
상기 급탕 열교환기(20)에서 열을 빼앗기고 나온 냉매는 상기 사방밸브(80)를 거쳐 상기 냉난방 열교환기(30)로 유입된다.The refrigerant, which has been deprived of heat from the hot water supply heat exchanger (20), flows into the air-conditioning heat exchanger (30) through the four-way valve (80).
상기 냉난방 펌프(36)의 작동이 중지된 상태이므로, 상기 냉난방 열교환기(30)에서는 열교환이 이루어지지 않는다.Since the operation of the air-conditioning pump 36 is stopped, heat exchange is not performed in the air-conditioning heat exchanger 30 .
상기 냉난방 열교환기(30)를 통과하고 나온 냉매는 상기 수액기(70), 상기 이코노마이저(60) 및 상기 팽창밸브(90)를 차례로 통과한 후, 상기 실외 열교환기(40)로 유입된다.The refrigerant that has passed through the air-conditioning heat exchanger 30 passes through the receiver 70 , the economizer 60 , and the expansion valve 90 in sequence, and then flows into the outdoor heat exchanger 40 .
상기 실외 열교환팬(40c)의 작동은 중지되고, 상기 실외 열교환기(40)에서는 상기 냉매와 상기 온수의 열교환이 이루어진다. 상기 실외 열교환기(40)에서는 상기 냉매는 상기 온수의 열을 공급받는다. 즉, 외기 온도가 낮은 겨울철 급탕운전시 상기 실외 열교환기(40)는 증발기 역할을 하게 된다. The operation of the outdoor heat exchange fan 40c is stopped, and heat exchange between the refrigerant and the hot water is performed in the outdoor heat exchanger 40 . In the outdoor heat exchanger 40, the refrigerant receives the heat of the hot water. That is, the outdoor heat exchanger 40 serves as an evaporator during hot water supply operation in winter when the outdoor temperature is low.
이 때, 상기 냉각판 열교환기(50)는 상기 인버터의 발열부 온도에 따라 사용이 제어된다. At this time, the use of the cooling plate heat exchanger 50 is controlled according to the temperature of the heating part of the inverter.
상기 실외 열교환기(40)에서 가열된 냉매는 상기 제1,2개폐밸브(54)(56)의 작동에 따라 상기 냉각판 열교환기(50)를 통과하거나 상기 냉각판 열교환기(50)를 바이패스 한 후, 상기 압축기(10)로 순환된다.The refrigerant heated in the outdoor heat exchanger 40 passes through the cooling plate heat exchanger 50 or bypasses the cooling plate heat exchanger 50 according to the operation of the first and second opening/ closing valves 54 and 56 . After passing, it is circulated to the compressor (10).
상기 인버터(300)의 발열부(301)의 온도가 상기 제1설정 발열부 온도 이상이면, 상기 인버터(300)의 발열부(301)를 냉각시키기 위하여 상기 제1개폐밸브(54)가 개방된 상태에서 상기 제2개폐밸브(56)를 개방하여, 상기 냉매를 상기 냉각판 열교환기(50)로 안내한다.When the temperature of the heating part 301 of the inverter 300 is equal to or higher than the first set heating part temperature, the first on-off valve 54 is opened to cool the heating part 301 of the inverter 300 . In this state, the second on/off valve 56 is opened to guide the refrigerant to the cooling plate heat exchanger 50 .
상기 냉매가 상기 냉각판 열교환기(50)를 통과하면서 추가로 열교환되어 증발됨으로써, 증발기 용량이 커지게 되므로 능력 및 효율이 증대될 수 있다. As the refrigerant is additionally heat-exchanged and evaporated while passing through the cooling plate heat exchanger 50 , the capacity of the evaporator is increased, and thus capability and efficiency can be increased.
또한, 상기 냉매가 상기 인버터의 발열부 온도를 낮출 수 있다. 상기와 같이 냉매를 이용함으로써, 상기 인버터를 냉각시키기 위해 냉각팬을 사용하는 경우에 비해 소음이 없는 이점이 있다. In addition, the refrigerant may lower the temperature of the heating part of the inverter. By using the refrigerant as described above, there is an advantage in that there is no noise compared to the case of using a cooling fan to cool the inverter.
한편, 상기 제2개폐밸브(56)의 개방한 이후, 상기 발열부(301)의 온도가 상기 제1설정 발열부 온도 미만으로 떨어지지 않고 상기 제1설정 발열부 온도보다 높게 설정된 최고 설정 온도에 도달하면, 상기 제어부는 상기 제1개폐밸브(54)를 차폐한다. 즉, 상기 제1개폐밸브(54)가 차폐되고 상기 제2개폐밸브(56)가 개방되면, 냉매가 전부 상기 냉각판 열교환기(50)를 통과하게 되므로, 상기 발열부(301)가 보다 신속하게 냉각될 수 있다. On the other hand, after the second on-off valve 56 is opened, the temperature of the heating part 301 does not fall below the first set heating part temperature and reaches the highest set temperature set higher than the first set heating part temperature. Then, the control unit blocks the first on-off valve 54 . That is, when the first on-off valve 54 is closed and the second on-off valve 56 is opened, all of the refrigerant passes through the cooling plate heat exchanger 50 , so that the heat generating unit 301 operates more quickly. can be cooled down.
상기 인버터(300)의 발열부(301)의 온도가 상기 제2설정 발열부 온도 미만이면, 상기 제1개폐밸브(54)는 개방하고, 상기 제2개폐밸브(56)는 차폐하여, 상기 냉매가 상기 냉각판 열교환기(50)를 바이패스하도록 안내한다. When the temperature of the heating part 301 of the inverter 300 is less than the second set heating part temperature, the first on-off valve 54 is opened and the second on-off valve 56 is closed, and the refrigerant guides the cooling plate heat exchanger 50 to bypass.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, which are merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Accordingly, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
본 발명에 따르면 효율이 극대화될 수 있는 BIPVT의 공기열을 이용한 히트펌프 시스템을 제조할 수 있다. According to the present invention, it is possible to manufacture a heat pump system using the air heat of BIPVT that can maximize efficiency.

Claims (15)

  1. 압축기, 다수의 열교환기들, 팽창밸브 및 사방밸브를 포함하고,a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve;
    BIPVT(Building Integrated Photovoltaic Thermal) 컬렉터로부터 열을 흡수한 공기의 열원을 이용하는 히트펌프 시스템에 있어서,In a heat pump system using a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector,
    상기 압축기에서 나온 냉매와 급탕 열원을 열교환시키는 급탕 열교환기와;a hot water heat exchanger for exchanging heat with the refrigerant discharged from the compressor and a hot water heat source;
    상기 급탕 열교환기에서 열을 흡수한 급탕 열원이 통과는 유로가 형성되고, 상기 급탕 열원으로부터 열을 공급받는 급탕 용수가 저장된 급탕 탱크와;a hot water supply tank having a flow path through which the hot water supply heat source absorbing heat from the hot water supply heat exchanger passes, and storing hot water supply water supplied with heat from the hot water supply heat source;
    상기 급탕 열교환기와 상기 급탕 탱크를 연결하는 유로에 설치된 급탕 펌프와;a hot water supply pump installed in a flow path connecting the hot water supply heat exchanger and the hot water supply tank;
    상기 급탕 열교환기에서 나온 냉매와 냉난방 열원을 열교환시키는 냉난방 열교환기와;a heating and cooling heat exchanger for exchanging heat with the refrigerant from the hot water supply heat exchanger;
    상기 냉난방 열교환기에서 열을 흡수한 냉난방 열원이 통과하는 내부 유로가 형성되고, 상기 냉난방 열원과 열교환하는 냉난방 용수가 저장된 냉난방수 탱크와;a heating and cooling water tank having an internal flow passage through which the heating and cooling heat source absorbed heat from the heating and cooling heat exchanger passes, and storing heating and cooling water exchanging heat with the heating and cooling heat source;
    상기 냉난방 열교환기와 상기 냉난방수 탱크를 연결하는 유로에 설치된 냉난방 펌프와;a heating and cooling pump installed in a flow path connecting the heating and cooling heat exchanger and the heating and cooling water tank;
    상기 BIPVT 컬렉터를 통과하면서 열을 흡수한 공기와 물을 열교환시켜, 온수를 생산하는 공기 열교환기와;an air heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector;
    상기 공기 열교환기에서 생산된 온수를 일시 저장하고, 외부로부터 공급되는 급수를 예열하도록 형성된 버퍼 탱크와;a buffer tank configured to temporarily store the hot water produced by the air heat exchanger and preheat the water supplied from the outside;
    상기 공기 열교환기와 상기 버퍼 탱크를 연결하여, 상기 공기 열교환기에서 나온 온수를 상기 버퍼 탱크로 안내하는 제1BIPVT 열원 공급유로와;a first BIPVT heat source supply passage connecting the air heat exchanger and the buffer tank to guide hot water from the air heat exchanger to the buffer tank;
    상기 제1BIPVT 열원 공급유로에 설치되어 제1BIPVT 열원 펌프와;a first BIPVT heat source pump installed in the first BIPVT heat source supply passage;
    상기 버퍼 탱크 내부에 설치되어, 상기 급수가 상기 버퍼 탱크 내의 온수와 혼합되지 않고 통과하면서 예열되도록 형성된 급수 예열유로와;a water supply preheating passage installed inside the buffer tank and configured to preheat the water supply while passing without being mixed with the hot water in the buffer tank;
    상기 급수 예열유로와 상기 냉난방수 탱크를 연결하여, 상기 급수 예열유로에서 예열된 급수를 상기 냉난방수 탱크로 안내하는 급수 저장유로와;a water supply storage passage connecting the water supply preheating passage and the heating and cooling water tank to guide the water preheated in the water supply preheating passage to the heating and cooling water tank;
    상기 급탕 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 나온 냉매가 통과하는 냉매 유로와, 상기 버퍼 탱크에서 나온 온수가 통과하는 온수 유로가 내부에 각각 형성되어, 상기 냉매와 상기 온수를 서로 열교환시키는 실외 열교환기와;A refrigerant passage through which the refrigerant from any one of the hot water supply heat exchanger and the air-conditioning heat exchanger passes and a hot water passage through which the hot water from the buffer tank passes are respectively formed therein, and outdoor heat exchange for exchanging the refrigerant and the hot water with each other tile;
    상기 버퍼 탱크와 상기 실외 열교환기를 연결하여, 상기 버퍼 탱크에서 나온 온수가 상기 실외 열교환기를 통과하도록 안내하는 제2BIPVT 열원 공급유로와;a second BIPVT heat source supply passage connecting the buffer tank and the outdoor heat exchanger to guide the hot water from the buffer tank to pass through the outdoor heat exchanger;
    상기 제2BIPVT 열원 공급유로에 설치된 제2BIPVT 열원 펌프와;a second BIPVT heat source pump installed in the second BIPVT heat source supply passage;
    냉방 운전, 냉방과 급탕이 모두 필요한 냉방 급탕운전, 난방 운전, 난방과 급탕이 모두 필요한 난방 급탕운전, 급탕만 필요한 여름철 급탕 운전, 겨울철 급탕 운전을 포함하는 운전 모드, 상기 급탕 탱크의 내부 온도, 상기 냉난방수 탱크의 내부 온도에 따라 상기 급탕 펌프, 상기 냉난방 펌프, 상기 제1,2BIPVT 열원 펌프의 작동을 제어하는 제어부를 포함하고,Operation modes including cooling operation, cooling hot water supply operation requiring both cooling and hot water supply, heating operation, heating hot water supply operation requiring both heating and hot water supply, summer hot water supply operation requiring only hot water supply, and winter hot water supply operation, internal temperature of the hot water supply tank, the above A control unit for controlling the operation of the hot water supply pump, the air conditioning pump, and the first and second BIPVT heat source pumps according to the internal temperature of the heating and cooling water tank,
    상기 압축기는 인버터에 의해 제어되고,The compressor is controlled by an inverter,
    상기 압축기의 흡입측 유로에 연결되고 상기 인버터의 발열부에 구비되어, 상기 압축기로 흡입되기 이전의 냉매와 열교환하여 상기 인버터의 발열부는 냉각시키고 상기 냉매는 증발시키는 냉각판 열교환기를 더 포함하고,and a cooling plate heat exchanger connected to the suction side flow path of the compressor and provided in the heating part of the inverter to exchange heat with the refrigerant before being sucked into the compressor to cool the heating part of the inverter and evaporate the refrigerant,
    상기 냉각판 열교환기는, The cold plate heat exchanger,
    상기 인버터의 발열부에 접하도록 판 형상으로 형성되고, 내부에 복수의 관통홀들이 형성된 냉각판과,a cooling plate formed in a plate shape so as to be in contact with the heating part of the inverter and having a plurality of through-holes formed therein;
    상기 냉각판을 관통하도록 상기 관통홀들에 끼워지고, 상기 압축기로 흡입되기 이전의 냉매가 통과하는 복수의 냉매관들을 포함하는 BIPVT의 공기열을 이용한 히트펌프 시스템.A heat pump system using air heat of a BIPVT comprising a plurality of refrigerant tubes fitted into the through holes to pass through the cooling plate and through which refrigerant before being sucked into the compressor passes.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 냉각판은,The cooling plate is
    일측면은 상기 발열부에 접하고, 타측면에는 상기 냉매관이 끼워지도록 반원 형상의 제1홈부가 형성된 제1냉각판과,a first cooling plate having a semicircular first groove formed on one side thereof to be in contact with the heating unit and the other side to be fitted with the refrigerant pipe;
    상기 제1냉각판의 타측면에 결합되고, 상기 제1홈부에 대향되는 반원 형상의 제2홈부가 형성된 제2냉각판을 포함하는 BIPVT의 공기열을 이용한 히트펌프 시스템.A heat pump system using air heat of a BIPVT comprising a second cooling plate coupled to the other side of the first cooling plate and having a second semicircular groove portion opposite to the first groove portion.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 압축기의 흡입측 유로에서 분기되어, 상기 압축기로 흡입되기 이전의 냉매를 상기 냉각판 열교환기로 안내하는 냉각판 열교환기 흡입유로와,a cooling plate heat exchanger suction flow path branched from the suction side flow path of the compressor and guiding the refrigerant before being sucked into the compressor to the cooling plate heat exchanger;
    상기 냉각판 열교환기에서 나온 냉매를 상기 압축기의 흡입측 유로로 안내하는 냉각판 열교환기 토출유로와,a cooling plate heat exchanger discharge flow path for guiding the refrigerant discharged from the cooling plate heat exchanger to a suction side flow path of the compressor;
    상기 압축기의 흡입측 유로에서 상기 냉각판 열교환기 흡입유로가 분기되는 지점과 상기 냉각판 열교환기 토출유로가 합지되는 지점 사이에 설치된 제1개폐밸브와,a first opening/closing valve installed between a point where the cooling plate heat exchanger suction flow path is branched from the suction side flow path of the compressor and a point where the cooling plate heat exchanger discharge flow path is merged;
    상기 냉각판 열교환기 토출유로를 개폐하는 제2개폐밸브를 더 포함하고, Further comprising a second on-off valve for opening and closing the cooling plate heat exchanger discharge flow path,
    상기 제어부는, The control unit is
    상기 인버터의 발열부의 온도가 미리 설정된 제1설정 발열부 온도 이상이면, 상기 제1개폐밸브가 개방된 상태에서 상기 제2개폐밸브를 개방하고,When the temperature of the heating part of the inverter is equal to or higher than the first preset heating part temperature, the second on-off valve is opened in the state in which the first on-off valve is opened,
    상기 인버터의 발열부의 온도가 미리 설정된 제2설정 발열부 온도 미만이면, 상기 제2개폐밸브는 차폐하는 BIPVT의 공기열을 이용한 히트펌프 시스템.When the temperature of the heating part of the inverter is less than the second preset heating part temperature, the second on-off valve is shielded. A heat pump system using air heat of the BIPVT.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    상기 제어부는,The control unit is
    상기 제2개폐밸브를 개방한 이후, 상기 발열부의 온도가 상기 제1설정 발열부 온도가 상기 제1설정 발열부 온도보다 높게 설정한 최고 설정 온도에 도달하면, After opening the second on-off valve, when the temperature of the heating unit reaches the highest set temperature set by the first set heat generating unit temperature is higher than the first set heat generating unit temperature,
    상기 제1개페밸브를 차폐하는 BIPVT의 공기열을 이용한 히트펌프 시스템.A heat pump system using air heat of a BIPVT that shields the first open/close valve.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 압축기의 토출측 유로에 설치되어, 상기 압축기에서 토출되는 냉매 중 일부를 상기 냉난방 열교환기의 흡입측 유로로 공급하는 핫가스 바이패스 유로와,a hot gas bypass flow path installed in the discharge side flow path of the compressor and supplying some of the refrigerant discharged from the compressor to the suction side flow path of the air conditioning heat exchanger;
    상기 핫가스 바이패스 유로를 개폐하는 핫가스 유량제어밸브를 더 포함하고,Further comprising a hot gas flow control valve for opening and closing the hot gas bypass flow path,
    상기 제어부는, 제상 운전 모드나 상기 압축기의 흡입측 압력에 따라 상기 핫가스 유량제어밸브의 개도를 제어하는 BIPVT의 공기열을 이용한 히트펌프 시스템.The control unit is a heat pump system using air heat of a BIPVT for controlling an opening degree of the hot gas flow control valve according to a defrosting operation mode or a suction side pressure of the compressor.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 실외 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 응축된 냉매가 유입되는 이코노마이저와,an economizer into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger flows;
    상기 이코노마이저의 내부에 형성되어, 냉방 운전시 상기 실외 열교환기에서 토출된 냉매가 유입되고 난방 운전시 상기 냉난방 열교환기에서 토출된 냉매가 유입되는 제1이코노마이저 유로와,a first economizer flow path formed inside the economizer, through which the refrigerant discharged from the outdoor heat exchanger flows in during a cooling operation and through which the refrigerant discharged from the air conditioning heat exchanger flows in during a heating operation;
    상기 제1이코노마이저 유로에서 나온 냉매 중 일부가 분기되는 분기유로와, a branch passage through which a portion of the refrigerant discharged from the first economizer passage is branched;
    상기 이코노마이저의 내부에 형성되어, 상기 분기유로를 통과한 냉매가 유입되어 상기 제1이코노마이저 유로를 통과하는 냉매와 열교환되는 제2이코노마이저 유로와, a second economizer flow path formed inside the economizer, through which the refrigerant passing through the branch flow path is introduced and heat-exchanged with the refrigerant passing through the first economizer flow path;
    상기 제2이코노마이저 유로에서 토출된 냉매를 상기 압축기로 안내하는 인젝션 유로와,an injection flow path for guiding the refrigerant discharged from the second economizer flow path to the compressor;
    상기 제1이코노마이저 유로에서 나온 냉매 중 나머지를 상기 팽창밸브로 안내하는 팽창밸브 흡입유로와,an expansion valve suction flow path for guiding the remainder of the refrigerant from the first economizer flow path to the expansion valve;
    상기 팽창밸브의 토출측에 연결된 팽창밸브 토출유로와,an expansion valve discharge passage connected to the discharge side of the expansion valve;
    상기 팽창밸브 토출유로에서 분기되어, 냉방 운전시 상기 팽창밸브 토출유로에서 토출된 냉매를 상기 냉난방 열교환기로 안내하는 냉방용 팽창밸브 토출유로와,a cooling expansion valve discharge passage branched from the expansion valve discharge passage and guiding the refrigerant discharged from the expansion valve discharge passage to the heating and cooling heat exchanger during a cooling operation;
    상기 냉방용 팽창밸브 토출유로에 설치된 제1체크밸브와,a first check valve installed in the cooling expansion valve discharge passage;
    상기 팽창밸브 토출유로에서 분기되어, 난방 운전시 상기 팽창밸브 토출유로에서 토출된 냉매를 상기 실외 열교환기로 안내하는 난방용 팽창밸브 토출유로와,a heating expansion valve discharge flow path branched from the expansion valve discharge flow path to guide the refrigerant discharged from the expansion valve discharge flow path to the outdoor heat exchanger during heating operation;
    상기 난방용 팽창밸브 토출유로에 설치된 제2체크밸브를 더 포함하고,Further comprising a second check valve installed in the discharge passage for the heating expansion valve,
    상기 제어부는, 상기 운전 모드에 따라 상기 제1,2체크밸브의 개폐를 제어하는 BIPVT의 공기열을 이용한 히트펌프 시스템.The control unit, a heat pump system using the air heat of the BIPVT to control the opening and closing of the first and second check valves according to the operation mode.
  7. 청구항 6에 있어서,7. The method of claim 6,
    상기 실외 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 응축된 냉매가 유입되어 일시 저장되는 수액기와,a receiver into which the refrigerant condensed in any one of the outdoor heat exchanger and the air-conditioning heat exchanger is introduced and temporarily stored;
    냉방 운전시 상기 실외 열교환기에서 나온 냉매를 상기 수액기로 안내하도록 형성된 냉방용 수액기 유입유로와,a cooling receiver inflow passage formed to guide the refrigerant from the outdoor heat exchanger to the receiver during a cooling operation;
    상기 냉방용 수액기 유입유로에 설치된 제3체크밸브와,a third check valve installed in the cooling receiver inlet passage;
    난방 운전시 상기 냉난방 열교환기에서 나온 냉매를 상기 수액기로 안내하도록 형성된 난방용 수액기 유입유로와, a heating receiver inflow passage formed to guide the refrigerant from the air conditioning heat exchanger to the receiver during heating operation;
    상기 난방용 수액기 유입유로에 설치된 제4체크밸브와, a fourth check valve installed in the inflow path of the receiver for heating;
    상기 수액기에서 나온 냉매를 상기 이코노마이저로 안내하는 수액기 토출유로를 더 포함하고,Further comprising a receiver discharge flow path for guiding the refrigerant from the receiver to the economizer,
    상기 제어부는, 상기 운전 모드에 따라 상기 제3,4체크밸브의 개폐를 제어하는 BIPVT의 공기열을 이용한 히트펌프 시스템.The control unit, a heat pump system using the air heat of the BIPVT to control the opening and closing of the third and fourth check valves according to the operation mode.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 BIPVT 컬렉터와 상기 공기 열교환기의 입구측을 연결하는 제1공기 유로와, a first air flow path connecting the BIPVT collector and an inlet side of the air heat exchanger;
    상기 제1공기 유로에 설치된 공기 팬과,an air fan installed in the first air flow path;
    상기 공기 열교환기의 출구측과 상기 BIPVT 컬렉터를 연결하는 제2공기 유로와,a second air flow path connecting the outlet side of the air heat exchanger and the BIPVT collector;
    상기 제2공기 유로에 연결되어, 외부 공기를 추가로 유입하는 공기 보충유로와,an air replenishment passage connected to the second air passage and additionally introducing external air;
    상기 공기 보충유로를 개폐하는 공기 보충유로 밸브와,an air replenishment passage valve for opening and closing the air replenishment passage;
    상기 제2공기 유로에 연결되어, 상기 제2공기 유로내의 공기를 외부로 토출하는 공기 토출유로와,an air discharge flow path connected to the second air flow path to discharge air in the second air flow path to the outside;
    상기 공기 토출유로를 개폐하는 공기 토출유로 밸브를 더 포함하는 BIPVT의 공기열을 이용한 히트펌프 시스템.A heat pump system using air heat of the BIPVT further comprising an air discharge passage valve for opening and closing the air discharge passage.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부는,The control unit is
    상기 냉방 운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프는 작동 중지시키고, 상기 냉난방 펌프는 작동시키면,During the cooling operation, when the first BIPVT heat source pump is operated, the second BIPVT heat source pump is stopped, the hot water supply pump is stopped, and the air conditioning pump is operated,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되고,The hot water produced by the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 실외 열교환기, 상기 팽창밸브 및 상기 냉난방 열교환기를 차례로 통과한 후 상기 압축기로 순환하고,The refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in turn and then circulates to the compressor,
    상기 급탕 열교환기에서는 열교환이 이루어지지 않고, Heat exchange is not made in the hot water heat exchanger,
    상기 실외 열교환기에서는 상기 냉매와 외기가 열교환하여 상기 냉매가 응축되고,In the outdoor heat exchanger, the refrigerant and outdoor air exchange heat to condense the refrigerant,
    상기 냉난방 열교환기에서는 상기 냉매가 증발되고 상기 냉난방 열원은 냉각되고, 상기 냉난방 열원은 상기 냉난방수 탱크에 저장된 냉난방 용수를 냉각시켜 상기 냉난방 용수는 실내를 냉방하는 데 사용되는 BIPVT의 공기열을 이용한 히트펌프 시스템.In the heating and cooling heat exchanger, the refrigerant is evaporated, the heating and cooling heat source is cooled, and the heating and cooling heat source cools the heating and cooling water stored in the heating and cooling water tank, and the heating and cooling water is a heat pump using air heat of BIPVT used to cool the room. system.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부가,the control unit,
    상기 여름철 급탕운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프는 작동시키고, 상기 냉난방 펌프는 작동 중지시키면,During the summer hot water supply operation, when the first BIPVT heat source pump is operated, the second BIPVT heat source pump is stopped, the hot water supply pump is operated, and the air conditioning pump is stopped,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되어 상기 급탕 탱크로 공급되는 급수를 예열하고,The hot water produced by the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브, 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고, The refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and is then circulated to the compressor,
    상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고,In the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is transferred to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank,
    상기 냉난방 열교환기에서는 열교환이 이루어지지 않고, 상기 실외 열교환기는 증발기 역할을 하는 BIPVT의 공기열을 이용한 히트펌프 시스템.Heat pump system using air heat of BIPVT, which does not exchange heat in the air-conditioning heat exchanger, and the outdoor heat exchanger serves as an evaporator.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부가,the control unit,
    상기 냉방 급탕운전시, 상기 제1BIPVT 열원 펌프를 작동시키고, 상기 제2BIPVT 열원 펌프를 작동 중지시키고, 상기 급탕 펌프와 상기 냉난방 펌프도 모두 작동시키면,During the cooling and hot water supply operation, when the first BIPVT heat source pump is operated, the second BIPVT heat source pump is stopped, and both the hot water supply pump and the heating and cooling pump are operated,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로를 통해 상기 버퍼 탱크에 저장되어 상기 급탕 탱크로 공급되는 급수를 예열하고,The hot water produced by the air heat exchanger is stored in the buffer tank through the first BIPVT heat source supply passage to preheat the water supplied to the hot water supply tank,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 실외 열교환기, 상기 팽창밸브, 상기 냉난방 열교환기를 차례로 통과한 후 상기 압축기로 순환하고, The refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the outdoor heat exchanger, the expansion valve, and the air-conditioning heat exchanger in order and then circulates to the compressor,
    상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고,In the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is transferred to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank,
    상기 실외 열교환기는 응축기 역할을 하고,The outdoor heat exchanger serves as a condenser,
    상기 냉난방 열교환기에서는 상기 냉매가 증발되고 상기 냉난방 열원은 냉각되고, 상기 냉난방 열원은 상기 냉난방수 탱크에 저장된 냉난방 용수를 냉각시켜 상기 냉난방 용수는 실내를 냉방하는 데 사용되는 BIPVT의 공기열을 이용한 히트펌프 시스템.In the heating and cooling heat exchanger, the refrigerant is evaporated, the heating and cooling heat source is cooled, and the heating and cooling heat source cools the heating and cooling water stored in the heating and cooling water tank, and the heating and cooling water is a heat pump using air heat of BIPVT used to cool the room. system.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부가the control unit
    상기 난방 운전시, 상기 제1,2BIPVT 열원 펌프를 작동시키고, 상기 급탕 펌프는 작동 중지시키고, 상기 냉난방 펌프는 작동시키면,When the heating operation is performed, the first and second BIPVT heat source pumps are operated, the hot water supply pump is stopped, and the air conditioning pump is operated,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로 및 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, The hot water produced in the air heat exchanger sequentially passes through the first BIPVT heat source supply passage, the buffer tank, the second BIPVT heat source supply passage, and the outdoor heat exchanger to transfer heat to the outdoor heat exchanger,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브 및 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고,The refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in turn, and then is circulated to the compressor,
    상기 급탕 열교환기에서는 열교환이 이루어지지 않고,Heat exchange is not made in the hot water heat exchanger,
    상기 냉난방 열교환기에서 발생된 응축열은 상기 냉난방수 탱크로 전달되어 실내를 난방하는 데 사용되고,Condensation heat generated in the heating and cooling heat exchanger is transferred to the heating and cooling water tank and used to heat the room,
    상기 실외 열교환기에서는 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발되는 BIPVT의 공기열을 이용한 히트펌프 시스템.In the outdoor heat exchanger, a heat pump system using air heat of the BIPVT that is evaporated by absorbing heat from the second BIPVT heat source supply passage.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부가the control unit
    상기 난방 급탕운전시, 상기 제1,2BIPVT 열원 펌프를 작동시키고, 상기 급탕 펌프와 상기 냉난방 펌프는 모두 작동시키면,During the heating and hot water supply operation, when the first and second BIPVT heat source pumps are operated, and both the hot water supply pump and the heating and cooling pump are operated,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로를 통해 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, The hot water produced in the air heat exchanger passes through the outdoor heat exchanger sequentially through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to transfer heat to the outdoor heat exchanger,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브 상기 냉난방 열교환기 및 상기 팽창밸브를 차례로 통과한 후 상기 압축기로 다시 순환되고,The refrigerant compressed in the compressor passes through the hot water heat exchanger, the four-way valve, the air-conditioning heat exchanger, and the expansion valve in turn, and then is circulated back to the compressor,
    상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고,In the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is transferred to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank,
    상기 냉난방 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 냉난방수 탱크로 전달되어 실내를 난방하는 데 사용되고,In the air-conditioning heat exchanger, the condensed heat generated while the refrigerant is condensed is transferred to the air-conditioning water tank and used to heat the room,
    상기 실외 열교환기에서는 상기 냉매가 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발되는 BIPVT의 공기열을 이용한 히트펌프 시스템.In the outdoor heat exchanger, the refrigerant absorbs heat from the second BIPVT heat source supply passage and is evaporated. A heat pump system using air heat of the BIPVT.
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부가,the control unit,
    상기 겨울철 급탕운전시, 상기 제1BIPVT 열원 펌프와 상기 제2BIPVT 열원 펌프를 모두 작동시키고, 상기 급탕 펌프는 작동시키고, 상기 냉난방 펌프는 작동 중지시키면,During the winter hot water supply operation, when both the first BIPVT heat source pump and the second BIPVT heat source pump are operated, the hot water supply pump is operated, and the air conditioning pump is stopped,
    상기 BIPVT 컬렉터에서 열을 흡수한 공기의 열원은 상기 공기 열교환기에 전달되고, The heat source of the air that has absorbed heat in the BIPVT collector is transferred to the air heat exchanger,
    상기 공기 열교환기에서 생산된 온수는 상기 제1BIPVT 열원 공급유로, 상기 버퍼 탱크, 상기 제2BIPVT 열원 공급유로를 통해 상기 실외 열교환기를 차례로 통과하면서 상기 실외 열교환기에 열을 전달하고, The hot water produced in the air heat exchanger passes through the outdoor heat exchanger sequentially through the first BIPVT heat source supply passage, the buffer tank, and the second BIPVT heat source supply passage to transfer heat to the outdoor heat exchanger,
    상기 압축기에서 압축된 냉매는 상기 급탕 열교환기, 상기 사방밸브, 상기 냉난방 열교환기, 상기 팽창밸브, 상기 실외 열교환기를 차례로 통과한 후 상기 압축기로 순환되고, The refrigerant compressed in the compressor passes through the hot water supply heat exchanger, the four-way valve, the air-conditioning heat exchanger, the expansion valve, and the outdoor heat exchanger in order, and is then circulated to the compressor,
    상기 급탕 열교환기에서는 상기 냉매가 응축되면서 발생된 응축열이 상기 급탕 열원으로 전달되고, 상기 급탕 열원은 상기 급탕 탱크에 저장된 상기 급탕 용수에 열을 공급하고,In the hot water supply heat exchanger, condensation heat generated while the refrigerant is condensed is transferred to the hot water supply heat source, and the hot water supply heat source supplies heat to the hot water supply water stored in the hot water supply tank,
    상기 냉난방 열교환기에서는 열교환이 이루어지지 않고,Heat exchange is not performed in the air-conditioning heat exchanger,
    상기 실외 열교환기에서는 상기 냉매가 상기 제2BIPVT 열원 공급유로의 열을 흡수하여 증발되는 BIPVT의 공기열을 이용한 히트펌프 시스템.In the outdoor heat exchanger, the refrigerant absorbs heat from the second BIPVT heat source supply passage and is evaporated. A heat pump system using air heat of the BIPVT.
  15. 압축기, 다수의 열교환기들, 팽창밸브 및 사방밸브를 포함하고,a compressor, a plurality of heat exchangers, an expansion valve and a four-way valve;
    BIPVT(Building Integrated Photovoltaic Thermal) 컬렉터로부터 열을 흡수한 공기의 열원을 이용하는 히트펌프 시스템에 있어서,In a heat pump system using a heat source of air that has absorbed heat from a BIPVT (Building Integrated Photovoltaic Thermal) collector,
    상기 압축기에서 나온 냉매와 급탕 열원을 열교환시키는 급탕 열교환기와;a hot water heat exchanger for exchanging heat with the refrigerant discharged from the compressor and a hot water heat source;
    상기 급탕 열교환기에서 열을 흡수한 급탕 열원이 통과는 유로가 형성되고, 상기 급탕 열원으로부터 열을 공급받는 급탕 용수가 저장된 급탕 탱크와;a hot water supply tank having a flow path through which the hot water supply heat source absorbing heat from the hot water supply heat exchanger passes, and storing hot water supply water supplied with heat from the hot water supply heat source;
    상기 급탕 열교환기와 상기 급탕 탱크를 연결하는 유로에 설치된 급탕 펌프와;a hot water supply pump installed in a flow path connecting the hot water supply heat exchanger and the hot water supply tank;
    상기 급탕 열교환기에서 나온 냉매와 냉난방 열원을 열교환시키는 냉난방 열교환기와;a heating and cooling heat exchanger for exchanging heat with the refrigerant from the hot water supply heat exchanger;
    상기 냉난방 열교환기에서 열을 흡수한 냉난방 열원이 통과하는 내부 유로가 형성되고, 상기 냉난방 열원과 열교환하는 냉난방 용수가 저장된 냉난방수 탱크와;a heating and cooling water tank having an internal flow passage through which the heating and cooling heat source absorbed heat from the heating and cooling heat exchanger passes, and storing heating and cooling water exchanging heat with the heating and cooling heat source;
    상기 냉난방 열교환기와 상기 냉난방수 탱크를 연결하는 유로에 설치된 냉난방 펌프와;a heating and cooling pump installed in a flow path connecting the heating and cooling heat exchanger and the heating and cooling water tank;
    상기 BIPVT 컬렉터를 통과하면서 열을 흡수한 공기와 물을 열교환시켜, 온수를 생산하는 공기 열교환기와;an air heat exchanger for producing hot water by exchanging heat with air that has absorbed heat while passing through the BIPVT collector;
    상기 공기 열교환기에서 생산된 온수를 일시 저장하고, 외부로부터 공급되는 급수를 예열하도록 형성된 버퍼 탱크와;a buffer tank configured to temporarily store the hot water produced by the air heat exchanger and preheat the water supplied from the outside;
    상기 공기 열교환기와 상기 버퍼 탱크를 연결하여, 상기 공기 열교환기에서 나온 온수를 상기 버퍼 탱크로 안내하는 제1BIPVT 열원 공급유로와;a first BIPVT heat source supply passage connecting the air heat exchanger and the buffer tank to guide hot water from the air heat exchanger to the buffer tank;
    상기 제1BIPVT 열원 공급유로에 설치되어 제1BIPVT 열원 펌프와;a first BIPVT heat source pump installed in the first BIPVT heat source supply passage;
    상기 버퍼 탱크 내부에 설치되어, 상기 급수가 상기 버퍼 탱크 내의 온수와 혼합되지 않고 통과하면서 예열되도록 형성된 급수 예열유로와;a water supply preheating passage installed inside the buffer tank and configured to preheat the water supply while passing without being mixed with the hot water in the buffer tank;
    상기 급수 예열유로와 상기 냉난방수 탱크를 연결하여, 상기 급수 예열유로에서 예열된 급수를 상기 냉난방수 탱크로 안내하는 급수 저장유로와;a water supply storage passage connecting the water supply preheating passage and the heating and cooling water tank to guide the water preheated in the water supply preheating passage to the heating and cooling water tank;
    상기 급탕 열교환기와 상기 냉난방 열교환기 중 어느 하나에서 나온 냉매가 통과하는 냉매 유로와, 상기 버퍼 탱크에서 나온 온수가 통과하는 온수 유로가 내부에 각각 형성되어, 상기 냉매와 상기 온수를 서로 열교환시키는 실외 열교환기와;A refrigerant passage through which the refrigerant from any one of the hot water supply heat exchanger and the air-conditioning heat exchanger passes and a hot water passage through which the hot water from the buffer tank passes are respectively formed therein, and outdoor heat exchange for exchanging the refrigerant and the hot water with each other tile;
    상기 버퍼 탱크와 상기 실외 열교환기를 연결하여, 상기 버퍼 탱크에서 나온 온수가 상기 실외 열교환기를 통과하도록 안내하는 제2BIPVT 열원 공급유로와;a second BIPVT heat source supply passage connecting the buffer tank and the outdoor heat exchanger to guide the hot water from the buffer tank to pass through the outdoor heat exchanger;
    상기 제2BIPVT 열원 공급유로에 설치된 제2BIPVT 열원 펌프와;a second BIPVT heat source pump installed in the second BIPVT heat source supply passage;
    냉방 운전, 냉방과 급탕이 모두 필요한 냉방 급탕운전, 난방 운전, 난방과 급탕이 모두 필요한 난방 급탕운전, 급탕만 필요한 여름철 급탕 운전, 겨울철 급탕 운전을 포함하는 운전 모드, 상기 급탕 탱크의 내부 온도, 상기 냉난방수 탱크의 내부 온도에 따라 상기 급탕 펌프, 상기 냉난방 펌프, 상기 제1,2BIPVT 열원 펌프의 작동을 제어하는 제어부를 포함하고,Operation modes including cooling operation, cooling hot water supply operation requiring both cooling and hot water supply, heating operation, heating hot water supply operation requiring both heating and hot water supply, summer hot water supply operation requiring only hot water supply, and winter hot water supply operation, internal temperature of the hot water supply tank, the above A control unit for controlling the operation of the hot water supply pump, the air conditioning pump, and the first and second BIPVT heat source pumps according to the internal temperature of the heating and cooling water tank,
    상기 압축기는 인버터에 의해 제어되고,The compressor is controlled by an inverter,
    상기 압축기의 흡입측 유로에 연결되고 상기 인버터의 발열부에 구비되어, 상기 압축기로 흡입되기 이전의 냉매와 열교환하여 상기 인버터의 발열부는 냉각시키고 상기 냉매는 증발시키는 냉각판 열교환기를 더 포함하고,and a cooling plate heat exchanger connected to the suction side flow path of the compressor and provided in the heating part of the inverter to exchange heat with the refrigerant before being sucked into the compressor to cool the heating part of the inverter and evaporate the refrigerant,
    상기 냉각판 열교환기는, 상기 인버터의 발열부에 접하도록 판 형상으로 형성되고, 내부에 복수의 관통홀들이 형성된 냉각판과, 상기 냉각판을 관통하도록 상기 관통홀들에 끼워지고, 상기 압축기로 흡입되기 이전의 냉매가 통과하는 복수의 냉매관들을 포함하고,The cooling plate heat exchanger includes a cooling plate formed in a plate shape so as to be in contact with the heating part of the inverter and having a plurality of through-holes formed therein, fitted into the through-holes to penetrate the cooling plate, and sucked into the compressor. Including a plurality of refrigerant tubes through which the refrigerant before becoming
    상기 냉각판은, 일측면은 상기 발열부에 접하고, 타측면에는 상기 냉매관이 끼워지도록 반원 형상의 제1홈부가 형성된 제1냉각판과, 상기 제1냉각판의 타측면에 결합되고, 상기 제1홈부에 대향되는 반원 형상의 제2홈부가 형성된 제2냉각판을 포함하고,The cooling plate includes a first cooling plate having a first semicircular groove formed on one side of the cooling plate in contact with the heat generating unit and having a first semicircular groove on the other side to fit the refrigerant pipe, and is coupled to the other side of the first cooling plate, A second cooling plate having a semicircular second groove portion opposite to the first groove portion is formed;
    상기 압축기의 흡입측 유로에서 분기되어, 상기 압축기로 흡입되기 이전의 냉매를 상기 냉각판 열교환기로 안내하는 냉각판 열교환기 흡입유로와,a cooling plate heat exchanger suction flow path branched from the suction side flow path of the compressor and guiding the refrigerant before being sucked into the compressor to the cooling plate heat exchanger;
    상기 냉각판 열교환기에서 나온 냉매를 상기 압축기의 흡입측 유로로 안내하는 냉각판 열교환기 토출유로와,a cooling plate heat exchanger discharge flow path for guiding the refrigerant discharged from the cooling plate heat exchanger to a suction side flow path of the compressor;
    상기 압축기의 흡입측 유로에서 상기 냉각판 열교환기 흡입유로가 분기되는 지점과 상기 냉각판 열교환기 토출유로가 합지되는 지점 사이에 설치된 제1개폐밸브와,a first opening/closing valve installed between a point where the cooling plate heat exchanger suction flow path is branched from the suction side flow path of the compressor and a point where the cooling plate heat exchanger discharge flow path is merged;
    상기 냉각판 열교환기 토출유로를 개폐하는 제2개폐밸브를 더 포함하고, Further comprising a second on-off valve for opening and closing the cooling plate heat exchanger discharge flow path,
    상기 제어부는, The control unit is
    상기 인버터의 발열부의 온도가 미리 설정된 제1설정 발열부 온도 이상이면, 상기 제1개폐밸브가 개방된 상태에서 상기 제2개폐밸브를 개방하고,When the temperature of the heating part of the inverter is equal to or higher than the first preset heating part temperature, the second on-off valve is opened in the state in which the first on-off valve is opened,
    상기 인버터의 발열부의 온도가 미리 설정된 제2설정 발열부 온도 미만이면, 상기 제2개폐밸브는 차폐하는 BIPVT의 공기열을 이용한 히트펌프 시스템.When the temperature of the heating part of the inverter is less than the second preset heating part temperature, the second on-off valve is shielded. A heat pump system using air heat of the BIPVT.
PCT/KR2021/005433 2020-05-20 2021-04-29 Heat pump system using air heat of bipvt WO2021235727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0060400 2020-05-20
KR1020200060400A KR20210143973A (en) 2020-05-20 2020-05-20 Heat pump system using BIPVT's air heat

Publications (1)

Publication Number Publication Date
WO2021235727A1 true WO2021235727A1 (en) 2021-11-25

Family

ID=78708737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005433 WO2021235727A1 (en) 2020-05-20 2021-04-29 Heat pump system using air heat of bipvt

Country Status (2)

Country Link
KR (1) KR20210143973A (en)
WO (1) WO2021235727A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067782A (en) * 1998-01-14 1999-08-25 다까다 요시유끼 Precision fluid temperature-regulating apparatus
JP2004061088A (en) * 2002-07-24 2004-02-26 Uchikoshi Etsuko Water heater constructed of integrated solar battery and fan and heat insulating device having check valve on heat exchanger pipe downstream side
KR100586460B1 (en) * 2004-06-15 2006-06-09 (주)뉴그린테크 Hybrid heat-pump system using solar-heat and air-heat
KR101170981B1 (en) * 2009-12-31 2012-08-07 한국에너지기술연구원 New Renewable Hybrid Heat supply and Control a method for The Same
KR101825636B1 (en) * 2017-07-06 2018-03-22 주식회사 이너지테크놀러지스 Heat pump with cooling, heating, hot water supply

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179032B1 (en) 2006-12-08 2012-08-31 엘지전자 주식회사 Air conditioner using of the subterranean heat and water heater system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067782A (en) * 1998-01-14 1999-08-25 다까다 요시유끼 Precision fluid temperature-regulating apparatus
JP2004061088A (en) * 2002-07-24 2004-02-26 Uchikoshi Etsuko Water heater constructed of integrated solar battery and fan and heat insulating device having check valve on heat exchanger pipe downstream side
KR100586460B1 (en) * 2004-06-15 2006-06-09 (주)뉴그린테크 Hybrid heat-pump system using solar-heat and air-heat
KR101170981B1 (en) * 2009-12-31 2012-08-07 한국에너지기술연구원 New Renewable Hybrid Heat supply and Control a method for The Same
KR101825636B1 (en) * 2017-07-06 2018-03-22 주식회사 이너지테크놀러지스 Heat pump with cooling, heating, hot water supply

Also Published As

Publication number Publication date
KR20210143973A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2016013798A1 (en) Refrigerator and control method thereof
WO2017014559A1 (en) Air conditioner and control method thereof
WO2017014504A1 (en) Air conditioner
WO2016204414A1 (en) Clothes-handling apparatus having drying function
WO2015111847A1 (en) Heat pump system for vehicle
WO2011062348A1 (en) Heat pump
EP3183509A1 (en) Air conditioner and control method thereof
WO2019143195A1 (en) Multi-type air conditioner
WO2021132866A1 (en) Air conditioning apparatus
WO2016043407A1 (en) Refrigeration cycle and refrigerator having same
WO2020242096A1 (en) Refrigeration system and heat pump arrangement for battery-powered vehicles and processes for operating the arrangement
WO2021015483A1 (en) Heat management device for vehicle, and heat management method for vehicle
WO2019117631A1 (en) Gas heat pump system
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2021137408A1 (en) Air conditioning apparatus
WO2019117630A1 (en) Gas heat pump system
WO2020060036A1 (en) Air conditioner and control method thereof
WO2021112522A1 (en) Vehicle heat pump system
WO2010098607A2 (en) Cooling and heating system using a cascade heat exchanger
WO2020197044A1 (en) Air conditioning apparatus
WO2020235786A1 (en) Air conditioning apparatus and control method thereof
WO2019143198A1 (en) Multi-type air conditioner
WO2021172671A1 (en) Air conditioner and water filling method therefor
WO2021235727A1 (en) Heat pump system using air heat of bipvt
WO2021157815A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808016

Country of ref document: EP

Kind code of ref document: A1