WO2021235687A1 - 정수기용 필터 및 이를 포함하는 정수기 - Google Patents

정수기용 필터 및 이를 포함하는 정수기 Download PDF

Info

Publication number
WO2021235687A1
WO2021235687A1 PCT/KR2021/004343 KR2021004343W WO2021235687A1 WO 2021235687 A1 WO2021235687 A1 WO 2021235687A1 KR 2021004343 W KR2021004343 W KR 2021004343W WO 2021235687 A1 WO2021235687 A1 WO 2021235687A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
filter
carbon block
water
water purifier
Prior art date
Application number
PCT/KR2021/004343
Other languages
English (en)
French (fr)
Inventor
우수혜
이상덕
김종필
최유승
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200061723A external-priority patent/KR20210144406A/ko
Priority claimed from KR1020200061725A external-priority patent/KR20210144407A/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/927,091 priority Critical patent/US20230227328A1/en
Publication of WO2021235687A1 publication Critical patent/WO2021235687A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/30Filter housing constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/14Treatment of water in water supply networks, e.g. to prevent bacterial growth

Definitions

  • the present invention relates to a filter for a water purifier containing a carbon block and a water purifier having the same.
  • a water purifier refers to a device that purifies raw water such as tap water or groundwater. That is, it refers to a device for converting raw water into drinking water through various purification methods and providing it.
  • a water purifier may be provided with various filters to purify raw water. These filters may be classified into a sediment filter, an activated carbon filter, a UF hollow fiber membrane filter, an RO membrane filter, and the like according to their functions.
  • the sediment filter can be called a filter for precipitating contaminants or suspended matter having large particles in raw water
  • the activated carbon filter is a filter for adsorbing and removing contaminants with small particles, residual chlorine, volatile organic compounds or odor generating factors.
  • the activated carbon filter may generally be provided with two. That is, it may be provided with a pre-activated carbon filter provided on the raw water side and a post-activated carbon filter provided on the purified water side.
  • the post activated carbon filter may be provided to improve the taste of water by removing odor-causing substances that mainly affect the taste of purified water.
  • the UF hollow fiber membrane filter and the RO membrane filter are generally used selectively.
  • Heavy metal removal filters have been manufactured for the main purpose of removal.
  • the particle size of the binder mixed in the filter is large, flow resistance occurs, and the mixing amount of the binder occupies a large proportion, and there is a problem in that the water permeability is lowered. That is, there was a problem that the effective water purification amount was lowered.
  • the present invention proposes a filter for a water purifier capable of effectively removing heavy metals in water including selenium (Se), chromium (Cr), manganese (Mn), and zinc (Zn) in water, and a water purifier including the same.
  • the present invention proposes a filter for a water purifier capable of removing heavy metals such as lead, mercury, arsenic, iron, aluminum, copper and cadmium in water while securing a treatment capacity, and a water purifier including the same.
  • the present invention proposes a filter for a water purifier capable of removing at least 9 kinds of heavy metals and a water purifier including the same.
  • the present invention proposes a filter for a water purifier that can be directly applied to an existing water purifier without changing the shape or arrangement structure of the filter applied to the water purifier, and a water purifier including the same.
  • the present invention proposes a filter for a water purifier capable of increasing space utilization by reducing the volume of the filter by arranging heterogeneous filters in one filter housing in the transverse direction, and a water purifier including the same.
  • the present invention proposes a filter for a water purifier that can increase space utilization by reducing the volume of the filter by arranging heterogeneous filters in one filter housing in the longitudinal direction, and a water purifier including the same.
  • a filter for a water purifier includes a filter housing having an inlet and an outlet, and a filter module provided in the filter housing to purify water introduced through the inlet and supply the filter to the outlet,
  • the module includes a carbon block prepared by mixing activated carbon, binder, iron hydroxide, and titanium oxide.
  • the binder may be mixed in an amount of 13 to 23% by weight.
  • the carbon block may be prepared including 18 to 28% by weight of activated carbon, 13 to 23% by weight of a binder, 15 to 30% by weight of iron hydroxide, and 30 to 45% by weight of titanium oxide.
  • the carbon block may include a first carbon block disposed inside, and a second carbon block disposed to surround the outside of the first carbon block.
  • the outer diameter of the first carbon block and the inner diameter of the second carbon block may be formed to be the same.
  • the first carbon block and the second carbon block may have different composition ratios.
  • the first carbon block is prepared including 10 to 20% by weight of activated carbon, 13 to 23% by weight of binder, 10 to 57% by weight of iron hydroxide, and 10 to 57% by weight of titanium oxide
  • the second carbon block is activated carbon 23 ⁇ 33% by weight, binder 13 to 23% by weight, iron hydroxide 8 to 46% by weight, may be prepared including titanium oxide 8 to 46% by weight.
  • the carbon block may be prepared including 20 to 28% by weight of activated carbon, 13 to 23% by weight of a binder, 14 to 24% by weight of iron hydroxide, and 33 to 43% by weight of titanium oxide.
  • the inner space of the filter housing is formed at a lower portion, and a first space through which the water introduced into the filter housing flows, and an upper side of the first space through which water flows through the first space.
  • a second space may be formed.
  • the carbon block may include a third carbon block accommodated in the first space and a fourth carbon block accommodated in the second space.
  • the third carbon block and the fourth carbon block may have different composition ratios.
  • the third carbon block is prepared including 20 to 30% by weight of activated carbon, 13 to 23% by weight of binder, 29 to 39% by weight of iron hydroxide, and 18 to 28% by weight of titanium oxide
  • the fourth carbon block is 20 to 20% by weight of activated carbon ⁇ 30% by weight, binder 13 to 23% by weight, iron hydroxide 12 to 22% by weight, it may be prepared including 35 to 45% by weight of titanium oxide.
  • the first space may be filled with an anion exchange resin in the form of particles, and the carbon block may be accommodated in the second space.
  • the carbon block may be prepared including 25 to 30% by weight of activated carbon, 13 to 23% by weight of a binder, 27 to 37% by weight of iron hydroxide, and 25 to 30% by weight of titanium oxide.
  • the titanium oxide, titanium dioxide (TiO 2 ) or titanium (Na 4 TiO 4 ) may be provided.
  • a filter for a water purifier includes a filter housing having an inlet and an outlet, and a filter module provided in the filter housing to purify water introduced through the inlet and supply the filter to the outlet,
  • the module includes a carbon block prepared by mixing activated carbon, binder, iron hydroxide, titanium oxide, and zero ferrous iron.
  • the carbon block may be prepared including 25 to 35% by weight of activated carbon, 13 to 23% by weight of a binder, 5 to 15% by weight of iron hydroxide, 18 to 28% by weight of titanium oxide, and 10 to 20% by weight of zero ferrous iron.
  • the carbon block may include a first carbon block disposed inside, and a second carbon block disposed to surround the outside of the first carbon block.
  • the outer diameter of the first carbon block and the inner diameter of the second carbon block may be formed to be the same.
  • the first carbon block and the second carbon block may have different composition ratios.
  • the second carbon block may be prepared including 25 to 35% by weight of activated carbon, 13 to 23% by weight of binder, 1 to 10% by weight of iron hydroxide, 1 to 10% by weight of titanium oxide, and 37 to 47% by weight of zero ferrous iron. .
  • the first carbon block may be prepared including 25 to 35 wt% of activated carbon, 13 to 23 wt% of a binder, 10 to 20 wt% of iron hydroxide, and 32 to 42 wt% of titanium oxide.
  • the inner space of the filter housing is formed at a lower portion, and a first space through which the water introduced into the filter housing flows, and an upper side of the first space through which water flows through the first space.
  • a second space may be formed.
  • the carbon block may include a third carbon block accommodated in the first space and a fourth carbon block accommodated in the second space.
  • the third carbon block and the fourth carbon block may have different composition ratios.
  • the third carbon block may be prepared including 18 to 28% by weight of activated carbon, 13 to 23% by weight of a binder, 9 to 15% by weight of iron hydroxide, 18 to 28% by weight of titanium oxide, and 15 to 25% by weight of zero ferrous iron. .
  • the fourth carbon block may be prepared by including 20 to 30% by weight of activated carbon, 13 to 23% by weight of a binder, 10 to 20% by weight of iron hydroxide, and 37 to 47% by weight of titanium oxide.
  • the first space may be filled with an anion exchange resin in the form of particles, and the carbon block may be accommodated in the second space.
  • the titanium oxide, titanium dioxide (TiO 2 ) or titanium (Na 4 TiO 4 ) may be provided.
  • the water purifier according to the present invention includes the above-described filter for water purifier.
  • the water purification process is performed several times by a plurality of filters, and there is an effect that the removal of various foreign substances including heavy metals can be performed more reliably.
  • space utilization can be increased by arranging heterogeneous filters in one filter housing in the transverse direction to reduce the volume of the filter, and furthermore, there is an effect that the water purifier can be slimmed down.
  • space utilization can be increased by arranging heterogeneous filters in one filter housing in the longitudinal direction to reduce the volume of the filter, and furthermore, there is an effect that the water purifier can be slimmed down.
  • FIG. 1 is a water pipe diagram of a water purifier according to an embodiment of the present invention.
  • FIG. 2 is a view conceptually showing a filter assembly, which is a part of the present invention.
  • FIG. 2 is a view conceptually showing a filter assembly, which is a part of the present invention.
  • FIG 3 is a cross-sectional view of a carbon filter according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a mechanism for removing contaminants of zero ferrous iron.
  • FIG. 5 is a view showing a heavy metal removal mechanism of zero ferrous.
  • FIG. 6 is a cross-sectional view of a carbon filter according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a carbon filter according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a mechanism in which chromium (Cr) and selenium (Se) are removed from an anion exchange resin nonwoven fabric.
  • FIG. 9 is a cross-sectional view of a composite filter according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a composite filter according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a manufacturing process of a carbon block applied to a filter according to the present invention.
  • FIG. 1 is a water pipe diagram of a water purifier according to an embodiment of the present invention.
  • the water purifier according to the present invention is for purifying water directly supplied from an external water supply source and then cooling or heating the water to take it out.
  • the water purifier may be a direct water type cold/hot water purifier.
  • the direct water purifier refers to a type of water purifier in which purified water is extracted during a user's purified water extraction operation without a storage tank in which purified water is stored.
  • water purifier according to the present invention may be formed integrally with the refrigerator.
  • the water purifier according to the present invention may be provided with an under sink type water purifier in which the main body is installed under the sink and the water outlet is installed outside the sink.
  • a water supply line L is formed from a water supply source to an outlet of the water purifier, and various valves and water purifying parts can be connected to the water supply line L. have.
  • the water supply line (L) is connected to the water supply source, for example, a domestic faucet, and a filter assembly 17 is disposed at any point of the water supply line (L) to be supplied from the water supply source. Foreign substances contained in drinking water are filtered.
  • the water supply valve 61 and the flow rate sensor 70 may be sequentially disposed in the water supply line L connected to the outlet end of the filter assembly 17 . Accordingly, when the supply amount sensed by the flow rate sensor 70 reaches a set flow rate, the water supply valve 61 may be controlled to close.
  • a water supply line (L1) for hot water supply a water supply line (L3) for cold water supply, and a water supply line (L2) for supplying cooling water
  • a water supply line (L1) for hot water supply a water supply line (L3) for cold water supply
  • a water supply line (L2) for supplying cooling water This can be branched.
  • a purified water outlet valve 66 is mounted at the end of the water supply line L extending from the outlet end of the flow sensor 70, and a hot water outlet valve 64 is installed at the end of the water supply line L1 for hot water supply. can be installed.
  • a cold water outlet valve 65 may be mounted at an end of the water supply line L3 for supplying cold water
  • a cooling water valve 63 may be mounted at any point of the water supply line L2 for supplying cooling water. The cooling water valve 63 controls the amount of cooling water supplied to the cooling water generating unit 20 .
  • the hot water outlet valve 64 , the cold water outlet valve 65 , and the water supply line extending from the outlet ends of the purified water outlet valve 66 are all connected to the water outlet.
  • the purified water, cold water, and hot water may be configured to be connected to a single outlet, or may be configured to be respectively connected to independent outlets in some cases.
  • the cooling water supply line L2 may include a refrigerant cycle for cooling the cooling water.
  • the refrigerant cycle may include a compressor, a condenser, an expansion valve, an evaporator, and the like.
  • cold water outlet valve 65 is opened by pressing the cold water selection button of the operation display unit, cold water may be discharged through the water outlet.
  • hot water is generated while the water flowing along the water supply line L1 for hot water supply is heated by the hot water heater 30, and the hot water outlet valve 64 is opened by pressing the hot water selection button of the operation display unit. When opened, hot water may be discharged through the water outlet.
  • the water purifier according to an embodiment of the present invention having the above configuration includes at least one water purifier filter to generate purified water from raw water.
  • the water purifier filter For the water purifier filter, reference will be made to the following description.
  • FIG. 2 is a view conceptually showing a filter assembly, which is a part of the present invention.
  • Figure 3 is a cross-sectional view of a carbon filter according to an embodiment of the present invention.
  • the filter assembly 17 may include at least one carbon filter 100 .
  • the filter assembly 17 according to the present invention may include at least one composite filter 200 .
  • the filter assembly 17 may include at least one carbon filter 100 and a composite filter 200 .
  • the filter assembly 17 according to the present invention may be composed of only a plurality of carbon filters 100 or may be composed of only a plurality of composite filters 200 .
  • a filter for a water purifier (hereinafter, a filter assembly) according to an embodiment of the present invention may include a carbon filter 100 including a carbon block 121 in the form of a hollow tube.
  • the carbon filter 100 includes a filter housing 110 and a filter module 120 .
  • the filter housing 110 includes an inlet 111 and an outlet 112 . That is, water requiring purified water is introduced through the inlet 111 , and purified water is discharged through the outlet 112 . Accordingly, water is purified by the filter module 120 disposed therebetween while flowing between the inlet 111 and the outlet 112 .
  • the filter housing 110 forms a space in which the filter module 120 is accommodated, and may include an upper cap 113 having an inlet 111 and an outlet 112 formed therein.
  • the space portion of the filter housing 110 may communicate with the outside through the inlet 111 and the outlet 112 of the upper cap 113 .
  • the filter module 120 can be easily mounted in the space of the filter housing 110 by opening the upper cap 113, and the filter module ( 120) can be easily replaced.
  • Water introduced into the filter housing 110 through the inlet 111 may be purified while passing through the filter module 120 . That is, foreign substances (eg, heavy metals) included in raw water such as tap water may be removed while passing through the filter module 120 .
  • foreign substances eg, heavy metals
  • the filter module 120 may include a carbon block 121 manufactured by mixing activated carbon, a binder, iron hydroxide, and titanium oxide, and molding the mixture into a hollow block shape.
  • the titanium oxide may be formed of titanium dioxide (TiO 2 ) or titanium (Na 4 TiO 4 ).
  • the activated carbon, binder, iron hydroxide, and titanium oxide may be mixed in various composition ratios.
  • the binder may be mixed in an amount of 13 to 23% by weight.
  • the carbon block 121 may include 18 to 28 wt% of activated carbon, 13 to 23 wt% of a binder, 15 to 30 wt% of iron hydroxide, and 30 to 45 wt% of titanium oxide.
  • the titanium oxide may be made of titanium dioxide or titanium tetraoxide.
  • the titanium oxide has a functional group in which a plurality of oxygen (O) is covalently bonded to one titanium (Ti).
  • sodium orthotitanate Na 4 TiO 4
  • titanium oxide may remove heavy metals in water (ion adsorption) through a chemical reaction such as Equation (1) below.
  • 'Me' means a heavy metal, and the heavy metal is dissolved in water in the form of a water-soluble compound.
  • the purified water from which the heavy metal (Me) is removed is discharged to the outside of the filter housing 110 through the outlet 112 .
  • 'Me' may correspond to cadmium (Cd).
  • sodium orthotitanate Na 4 TiO 4
  • Ca 4 TiO 4 may remove (ion adsorption) cadmium (Cd) in water through a chemical reaction such as Formula (2) below.
  • the titanium oxide may have a granular or powder form, and may be mixed with the material of the carbon block 121 to constitute the carbon block 121 .
  • the heavy metal in the water can be removed.
  • titanium dioxide can remove (ion adsorption) manganese in water through a chemical reaction such as Equation (3) below.
  • titanium dioxide can remove (ion adsorption) zinc in water through a chemical reaction such as Equation (4) below.
  • titanium dioxide can remove (ion adsorption) chromium and serenium in water through a chemical reaction such as Equation (5).
  • the carbon block 121 may include iron hydroxide (Ferric Hydroxide).
  • the iron hydroxide may mean a synthetic iron hydroxide ( ⁇ -FeOOH) compound.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound may include a functional group represented by the following formula (6).
  • each iron (Fe) bonds to a hydroxyl group (-OH), respectively, and each iron (Fe) is ionic or covalently bonded to one oxygen (O). It may contain functional groups.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound can remove heavy metals in water through a chemical reaction such as the following formula (7).
  • 'A' means a heavy metal, and the heavy metal may be dissolved in water in the form of a water-soluble compound.
  • the heavy metal (A) has a strong ionic or covalent bond with the synthetic iron hydroxide ( ⁇ -FeOOH) compound. Accordingly, it is possible to prevent the removed heavy metal (A) from being dissolved in water again. And, the purified water from which the heavy metal (A) has been removed through the filter module 120 is discharged to the outside of the filter housing 110 through the outlet 112 .
  • the heavy metal (A) may be 'arsenic'.
  • the iron hydroxide can remove cadmium (Cd) in water through a chemical reaction such as Equation (8) below.
  • the iron hydroxide can remove chromium and serenium in water through a chemical reaction such as Equation (9) below.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound has a granular or powder form, and may be mixed with a binder as a material of the carbon block 121 to constitute the carbon block 121 .
  • the carbon block 121 may further include activated carbon.
  • the activated carbon may be included in the form of granular or powder. As described above, when the carbon block 121 includes activated carbon, the carbon block 121 can effectively remove heavy metals in water and also residual chlorine components in water. Accordingly, the taste of water may also be improved.
  • chloroform (CHCL 3 ) in water by the activated carbon can also be effectively removed.
  • the binder connects activated carbon, titanium oxide, and iron hydroxide to each other, and is mixed to impart rigidity.
  • activated carbon, titanium oxide, and iron hydroxide may be processed into blocks having rigidity.
  • the filter module 120 may be formed by mixing the above-mentioned materials uniformly and then putting it in a mold and heating it.
  • a binder eg, polyethylene, PE
  • activated carbon, titanium oxide, and iron hydroxide are combined.
  • the carbon block 121 in the form of a block having overall rigidity can be formed.
  • the carbon block 121 may be formed by mixing activated carbon, titanium oxide, and iron hydroxide.
  • the carbon block 121 may have an outer diameter of 45 mm to 57 mm. In addition, it may have an inner diameter of 12 mm to 15 mm. In addition, it may have a length of 145 mm to 210 mm.
  • the carbon block 121 may have a weight of 190 g to 330 g.
  • the activated carbon may be prepared by including 34 g to 92 g, the binder 25 g to 76 g, iron hydroxide 29 g to 99 g, and the titanium oxide to 57 g to 149 g.
  • the filter for a water purifier according to the present invention may include a plurality of carbon filters 100 shown in FIG. 3 and may be disposed in series.
  • the filter module 120 may include a carbon block 121 manufactured by mixing activated carbon, a binder, iron hydroxide, titanium oxide, and zero ferrous iron and molding it into a hollow block shape.
  • the titanium oxide may be formed of titanium dioxide (TiO 2 ) or titanium (Na 4 TiO 4 ).
  • the activated carbon, binder, iron hydroxide, titanium oxide, and zero valent iron may be mixed in various composition ratios.
  • the carbon block 121 includes 25 to 35% by weight of activated carbon, 13 to 23% by weight of a binder, 5 to 15% by weight of iron hydroxide, 18 to 28% by weight of titanium oxide, and 10 to 20% by weight of zero ferrous iron. can be manufactured.
  • the titanium oxide may be made of titanium dioxide or titanium tetraoxide.
  • the titanium oxide has a functional group in which a plurality of oxygen (O) is covalently bonded to one titanium (Ti).
  • sodium orthotitanate Na 4 TiO 4
  • titanium oxide may remove heavy metals in water (ion adsorption) through a chemical reaction such as Equation (1) below.
  • 'Me' means a heavy metal, and the heavy metal is dissolved in water in the form of a water-soluble compound.
  • the purified water from which the heavy metal (Me) is removed is discharged to the outside of the filter housing 110 through the outlet 112 .
  • 'Me' may correspond to cadmium (Cd).
  • sodium orthotitanate Na 4 TiO 4
  • Ca 4 TiO 4 may remove (ion adsorption) cadmium (Cd) in water through a chemical reaction such as Formula (2) below.
  • the titanium oxide may have a granular or powder form, and may be mixed with the material of the carbon block 121 to constitute the carbon block 121 .
  • the heavy metal in the water can be removed.
  • titanium dioxide can remove (ion adsorption) manganese in water through a chemical reaction such as Equation (3) below.
  • titanium dioxide can remove (ion adsorption) zinc in water through a chemical reaction such as Equation (4) below.
  • titanium dioxide can remove (ion adsorption) chromium and serenium in water through a chemical reaction such as Equation (5).
  • the carbon block 121 may include iron hydroxide (Ferric Hydroxide).
  • the iron hydroxide may mean a synthetic iron hydroxide ( ⁇ -FeOOH) compound.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound may include a functional group represented by the following formula (6).
  • each iron (Fe) bonds to a hydroxyl group (-OH), respectively, and each iron (Fe) is ionic or covalently bonded to one oxygen (O). It may contain functional groups.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound can remove heavy metals in water through a chemical reaction such as the following formula (7).
  • 'A' means a heavy metal, and the heavy metal may be dissolved in water in the form of a water-soluble compound.
  • the heavy metal (A) has a strong ionic or covalent bond with the synthetic iron hydroxide ( ⁇ -FeOOH) compound. Accordingly, it is possible to prevent the removed heavy metal (A) from being dissolved in water again. And, the purified water from which the heavy metal (A) has been removed through the filter module 120 is discharged to the outside of the filter housing 110 through the outlet 112 .
  • the heavy metal (A) may be 'arsenic'.
  • the iron hydroxide can remove cadmium (Cd) in water through a chemical reaction such as Equation (8) below.
  • the iron hydroxide can remove chromium and serenium in water through a chemical reaction such as Equation (9) below.
  • the synthetic iron hydroxide ( ⁇ -FeOOH) compound has a granular or powder form, and may be mixed with a binder as a material of the carbon block 121 to constitute the carbon block 121 .
  • the carbon block 121 may further include zero ferrous iron.
  • FIG. 4 is a diagram illustrating a mechanism for removing contaminants of zero ferrous iron.
  • Figure 5 is a view showing a heavy metal removal mechanism of zero ferrous.
  • the zero-ferrous iron can remove contaminants and heavy metals by the same mechanism as in FIGS. 4 and 5 .
  • the carbon block 121 may further include activated carbon.
  • the activated carbon may be included in the form of granular or powder. As described above, when the carbon block 121 includes activated carbon, the carbon block 121 can effectively remove heavy metals in water and also residual chlorine components in water. Accordingly, the taste of water may also be improved.
  • chloroform (CHCL 3 ) in water by the activated carbon can also be effectively removed.
  • the binder connects activated carbon, titanium oxide, and iron hydroxide to each other, and is mixed to impart rigidity.
  • activated carbon, titanium oxide, and iron hydroxide may be processed into blocks having rigidity.
  • the filter module 120 may be formed by mixing the above-mentioned materials uniformly and then putting it in a mold and heating it.
  • a binder eg, polyethylene, PE
  • activated carbon, titanium oxide, and iron hydroxide are combined.
  • the carbon block 121 in the form of a block having overall rigidity can be formed.
  • the carbon block 121 may be formed by mixing activated carbon, titanium oxide, and iron hydroxide.
  • the carbon block 121 may have an outer diameter of 48 mm to 57 mm. In addition, it may have an inner diameter of 12 mm to 15 mm. In addition, it may have a length of 145 mm to 210 mm.
  • the carbon block 121 may have a weight of 160 g to 310 g.
  • the activated carbon is 40 g to 109 g
  • the binder is 21 g to 71 g
  • iron hydroxide is 8 g to 47 g
  • titanium oxide can be prepared including 29 g to 87 g, zero ferrous iron 16 g to 62 g.
  • the filter for a water purifier according to the present invention may include a plurality of carbon filters 100 shown in FIG. 3 and may be disposed in series.
  • FIG. 6 is a cross-sectional view of a carbon filter according to another embodiment of the present invention.
  • the filter module 120 which is a key component of the present invention, may include a plurality of carbon blocks 122 and 123 .
  • the carbon blocks 122 and 123 include a first carbon block 122 disposed inside, and a second carbon block 123 disposed to surround the outside of the first carbon block 122 .
  • the outer diameter of the first carbon block 122 and the inner diameter of the second carbon block 123 may be formed to be the same.
  • first carbon block 122 and the second carbon block 123 may be formed to have different composition ratios.
  • the first carbon block may be prepared including 10 to 20 wt% of activated carbon, 13 to 23 wt% of a binder, 10 to 57 wt% of iron hydroxide, and 10 to 57 wt% of titanium oxide.
  • the second carbon block may be prepared including 23 to 33 wt% of activated carbon, 13 to 23 wt% of a binder, 8 to 46 wt% of iron hydroxide, and 8 to 46 wt% of titanium oxide.
  • the first carbon block 122 may have a weight of 90 g to 120 g.
  • the activated carbon may be prepared including 9 g to 42 g, the binder 12 g to 48 g, iron hydroxide 9 g to 120 g, and titanium oxide 9 g to 120 g.
  • the second carbon block 123 may have a weight of 85 g to 120 g.
  • 20 g to 69 g of the activated carbon, 11 g to 48 g of the binder, 7 g to 97 g of iron hydroxide, and 7 g to 97 g of titanium oxide may be included.
  • the second carbon block is produced including 25 to 35% by weight of activated carbon, 13 to 23% by weight of a binder, 1 to 10% by weight of iron hydroxide, 1 to 10% by weight of titanium oxide, and 37 to 47% by weight of zero ferrous iron.
  • the first carbon block may be prepared including 25 to 35% by weight of activated carbon, 13 to 23% by weight of a binder, 10 to 20% by weight of iron hydroxide, and 32 to 42% by weight of titanium oxide.
  • the first carbon block 122 may have a weight of 80 g to 200 g.
  • 20 g to 70 g of the activated carbon, 10 g to 46 g of the binder, 8 g to 40 g of iron hydroxide, and 26 g to 84 g of titanium oxide may be included.
  • the second carbon block 123 may have a weight of 60 g to 190 g.
  • 15 g to 67 g of activated carbon, 8 g to 44 g of binder, 1 g to 19 g of iron hydroxide, 1 g to 19 g of titanium oxide, and 37 g to 47 g of zero ferrous iron may be prepared.
  • the filter for a water purifier according to the present invention may include a plurality of carbon filters 100 shown in FIG. 6 and may be disposed in series.
  • FIG. 7 is a cross-sectional view of a carbon filter according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a mechanism in which chromium (Cr) and selenium (Se) are removed from the anion exchange resin nonwoven fabric.
  • the carbon filter 100 may further include a carbon block 124 and an anion exchange resin nonwoven fabric 125 surrounding the outside of the carbon block 124 .
  • the raw water flowing into the carbon filter 100 passes through the anion exchange resin nonwoven fabric 125 and then passes through the carbon block 124 . do.
  • the anion exchange resin nonwoven fabric 125 may be provided in multiple layers to improve the heavy metal removal efficiency.
  • the carbon block 124 is 20 to 28% by weight of activated carbon, 13 to 23% by weight of binder, 14 to 24% by weight of iron hydroxide, 33 to 43% by weight of titanium oxide It can be prepared including.
  • the carbon block 124 may have a weight of 160 g to 300 g.
  • the activated carbon may be prepared by containing 32 g to 84 g, the binder is 21 g to 69 g, the iron hydroxide is 22 g to 72 g, and the titanium oxide is 53 g to 129 g.
  • the raw water introduced into the carbon filter 100 passes through the anion exchange resin nonwoven fabric 125 and the carbon block 124 in order, and then is discharged to the outside of the carbon filter 100 .
  • the filter for a water purifier according to the present invention may include a plurality of carbon filters 100 shown in FIG. 7 and may be disposed in series.
  • Figure 10 is a cross-sectional view of a composite filter according to another embodiment of the present invention.
  • the filter for a water purifier may include a composite filter 200 including a carbon block 221 in the form of a hollow tube.
  • the composite filter 200 includes a filter housing 210 and a filter module 220 .
  • the filter housing 210 includes an inlet 211 and an outlet 212 . That is, water requiring purified water is introduced through the inlet 211 , and purified water is discharged through the outlet 212 . Accordingly, water is purified by the filter module 220 disposed therebetween while flowing between the inlet 211 and the outlet 212 .
  • the filter housing 210 forms a space in which the filter module 220 is accommodated, and may include an upper cap 213 having an inlet 211 and an outlet 212 formed therein.
  • the space portion of the filter housing 210 may communicate with the outside through the inlet 211 and the outlet 212 of the upper cap 213 .
  • the filter module 220 can be easily mounted in the space of the filter housing 210 by opening the upper cap 213 , and the filter module ( 220) can be easily replaced.
  • Water introduced into the filter housing 210 through the inlet 211 may be purified while passing through the filter module 220 . That is, foreign substances (eg, heavy metals) included in raw water such as tap water may be removed while passing through the filter module 220 .
  • foreign substances eg, heavy metals
  • the filter module 220 may include carbon blocks 221 and 222 manufactured by mixing activated carbon, a binder, iron hydroxide, and titanium oxide, and molding the mixture into a hollow block shape.
  • the inner space of the filter housing 210 includes a first space 201 formed at a lower portion and through which the water introduced into the filter housing 210 flows, and the first space.
  • the second space 202 may be disposed on the upper side of the part 201 and into which water passing through the first space 201 flows.
  • the carbon blocks 221 and 222 are a third carbon block 221 accommodated in the first space 201 and a fourth carbon accommodated in the second space 202 . It may include a block 222 .
  • the third carbon block 221 and the fourth carbon block 222 may have different composition ratios.
  • the third carbon block 221 may be manufactured to include 20 to 30% by weight of activated carbon, 13 to 23% by weight of a binder, 29 to 39% by weight of iron hydroxide, and 18 to 28% by weight of titanium oxide.
  • the fourth carbon block 222 may be manufactured to include 20 to 30% by weight of activated carbon, 13 to 23% by weight of a binder, 12 to 22% by weight of iron hydroxide, and 35 to 45% by weight of titanium oxide.
  • the third carbon block 221 contains 18 to 28% by weight of activated carbon, 13 to 23% by weight of a binder, 9 to 15% by weight of iron hydroxide, 18 to 28% by weight of titanium oxide, and 15 to 25% by weight of zero ferrous iron. can be prepared including.
  • the fourth carbon block 222 may be manufactured to include 20 to 30% by weight of activated carbon, 13 to 23% by weight of a binder, 10 to 20% by weight of iron hydroxide, and 37 to 47% by weight of titanium oxide.
  • the third carbon block 221 may have a weight of 75 g to 170 g.
  • the activated carbon may be prepared including 14 g to 48 g, the binder 10 g to 39 g, iron hydroxide 7 g to 26 g, titanium oxide 11 g to 48 g, and 0 ferrous iron 11 g to 43 g.
  • the fourth carbon block 222 may have a weight of 70 g to 130 g.
  • 14 g to 39 g of the activated carbon, 9 g to 30 g of the binder, 7 g to 26 g of iron hydroxide, and 48 g to 61 g of titanium oxide may be included.
  • an inner cover 214 may be provided inside the filter housing 210 .
  • An inner space of the inner cover 214 defines a second space 202 .
  • the water introduced into the filter housing 210 flows from the top to the bottom through a flow path provided between the inner wall of the filter housing 210 and the outer wall of the inner cover 214 , and then the filter It flows into the first space 201 of the housing 210 .
  • water flows from the outside to the inside of the third carbon block 221 disposed in the first space 201 , and flows from the lower side to the upper side through the hollow of the third carbon block 221 .
  • the water flowing upward of the third carbon block 221 flows into the second space 202 through the auxiliary passage 215 communicating with the hollow of the third carbon block 221 .
  • water flows from the outside to the inside of the fourth carbon block 222 disposed in the second space 202 , flows upward through the hollow of the fourth carbon block 222 , and then the filter housing It may be discharged to the outside of the 210 .
  • auxiliary flow path 215 is integrally formed with the lower end of the inner cover 214, the filter bracket 214a for supporting the upper end of the third carbon block 221, and the fourth carbon block ( 222) may be defined by the space between the filter brackets 219 supporting the lower end.
  • an outer diameter of the third carbon block 221 may be larger than an outer diameter of the fourth carbon block 222 .
  • the first space 201 may be filled with an anion exchange resin 223 in the form of particles, and the carbon block 224 may be accommodated in the second space 202 . have.
  • the carbon block 224 includes 25-30 wt% of activated carbon, 13-23 wt% of a binder, 27-37 wt% of iron hydroxide, and 25-30 wt% of titanium oxide can be manufactured.
  • an inner cover 214 may be provided inside the filter housing 210 .
  • the inner cover 214 forms a bottom surface 216 at the bottom, and a plurality of through holes 216a are formed in the bottom surface 216 .
  • the inner cover 214 forms an intermediate wall 217 spaced apart from the bottom surface 216 on the upper side of the bottom surface 216 .
  • a plurality of through holes 217a are formed in the intermediate wall 217 .
  • the space between the bottom surface 216 and the intermediate wall 217 defines a first space portion 201 .
  • the water introduced into the filter housing 210 flows from the top to the bottom through a flow path provided between the inner wall of the filter housing 210 and the outer wall of the inner cover 214 , and then flows to the bottom. It flows into the first space 201 through the through hole 216a of the surface 216 .
  • the water flowing upward of the anion exchange resin 223 is discharged through the through hole 217a of the intermediate wall 217, and supports the intermediate wall 217 and the lower end of the carbon block 224. It is introduced into the second space 202 through the auxiliary flow path 315 provided between the filter brackets 218 .
  • the third carbon block 221 and the fourth carbon block 222 are arranged in a line in one filter housing 400, or the anion exchange resin 223 and the carbon block 224 are in one filter housing.
  • the purified water flow rate can be maintained.
  • space utilization can be increased by reducing the volume of the filter, and furthermore, slimming of the water purifier can be realized.
  • the raw water introduced into the water purifier is purified while passing through at least one of the carbon filter 100 and the composite filter 200 .
  • mercury, lead, iron, aluminum, cadmium, arsenic, and copper are removed by iron hydroxide in the carbon block 121, and in the case of manganese and zinc, it can be removed by titanium oxide in the carbon block 121 .
  • TiO 2 titanium dioxide
  • FIG. 11 is a block diagram illustrating a manufacturing process of a carbon block applied to a filter according to the present invention.
  • each material constituting the carbon block is mixed in a proportion to generate a carbon block mixture.
  • the carbon block mixture may be prepared by mixing activated carbon, a binder, iron hydroxide, and titanium oxide in various ratios.
  • the evenly mixed carbon block mixture is filled in the mold. Then, it goes through a compression process and is put into an electric furnace.
  • a binder for example, polyethylene (PE) is melted, so that activated carbon, iron hydroxide, titanium oxide, and the binder are integrally combined, and a hollow tube-shaped carbon block having overall rigidity can be formed.
  • PE polyethylene
  • the hollow tube-shaped carbon block separated from the mold may be cut to a unit length.
  • cut carbon block is cleaned through compressed air injection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

본 발명에 따른 정수기용 필터 및 이를 포함하는 정수기는 유입구와 유출구가 구비된 필터 하우징, 상기 필터 하우징 내에 구비되어, 상기 유입구를 통해 유입된 물을 정수하여 상기 유출구로 공급하는 필터모듈을 포함하되, 상기 필터모듈은, 활성탄, 바인더,수산화철, 티타늄산화물을 혼합하여 제조된 카본블럭을 포함한다.

Description

정수기용 필터 및 이를 포함하는 정수기
본 발명은 카본블럭이 포함된 정수기용 필터 및 이를 구비한 정수기에 관한 것이다.
정수기는 수돗물이나 지하수와 같은 원수를 정수하는 장치를 말한다. 즉, 다양한 정수방법을 통하여 원수를 음용수로 전화하여 제공하기 위한 장치를 말한다.
정수를 생성하기 위해서는, 침전, 여과 그리고 살균 등의 과정을 거칠 수 있으며, 이러한 과정 등을 통해 유해 물질이 제거됨이 일반적이다.
일반적으로, 정수기에는 원수를 정수하기 위하여 다양한 필터들이 구비될 수 있다. 이러한 필터들은 그 기능에 따라 세디먼트 필터, 활성탄 필터, UF 중공사막 필터, RO 멤브레인 필터 등으로 구분될 수 있다.
상기 세디먼트 필터는 원수 내의 입자가 큰 오염물이나 부유물을 침전시키기 위한 필터라 할 수 있으며, 활성탄 필터는 입자가 작은 오염물, 잔류 염소, 휘발성 유기 화합물이나 냄새 발생 인자들을 흡착하여 제거하기 위한 필터라 할 수 있다.
또한, 상기 활성탄 필터는 일반적으로 두 개 구비될 수 있다. 즉, 원수 측에 구비되는 프리 활성탄 필터(pre carbon filter)와 정수 측에 구비되는 포스트 활성탄 필터(post carbon filter)로 구비될 수 있다. 상기 포스트 활성탄 필터는 주로 정수의 맛에 영향을 미치는 냄새 유발 물질을 제거하여 물맛을 향상시키기 위하여 구비될 수 있다.
또한, UF 중공사막 필터와 RO 멤브레인 필터는 양자가 선택적으로 사용됨이 일반적이다.
최근 정수기의 수요가 현저히 증가되고 있다. 따라서, 다양한 요구 조건이 발생되고 이를 동시에 만족시키기 어려운 문제가 있다.
일례로, RO 멤브레인 필터를 적용하는 중금속의 제거가 가능하나, 정수 유량을 확보하기 어려운 문제가 있다. 즉, 원하는 만큼의 정수량을 얻기 위해서 많은 시간이 소요되는 문제가 있다.
반면, UF 중공사막 필터의 경우, 고유량 확보는 가능하나, 수중의 중금속 제거가 어렵기 때문에 지하수 또는 오염 지역의 수돗물을 원수로 사용하기 어려운 문제가 있다.
따라서, 중금속 제거와 고유량 확보는 서로 모순되는 문제로 인식될 수밖에 없었다. 왜냐하면, 중금속 제거를 위해 RO 멤브레인 필터 사용 시 고유량의 확보가 어렵고, 고유량 확보를 위해 UF 중공사막 필터 사용 시 중금속 제거가 어려워지기 때문이다.
또한, 종래의 경우, 수중의 중금속 중 비소(As), 카드뮴(Cd), 납(Pb), 알루미늄(Al), 수은(Hg), 철(Fe), 동(Cu)을 포함한 총 7종의 제거를 주목적으로 중금속 제거 필터가 제작되어 왔다.
그러나, 최근에는 상기 7종은 물론, 수중의 세레늄(Se), 크롬(Cr), 망간(Mn), 아연(Zn)을 포함한 11종의 제거까지 필요한 상황에 놓였다.
하지만, 종래 정수기 필터의 경우, 고유량을 확보하면서, 상기 7종의 중금속을 완벽하게 제거하기에 역부족인 것은 물론, 수중의 세레늄(Se), 크롬(Cr), 망간(Mn), 아연(Zn) 등의 제거가 전혀 이루어지지 않고 있는 문제가 있다.
또한, 종래의 경우, 필터에 혼합된 바인더의 입도가 커서, 유동 저항이 발생하고, 바인더의 혼합량이 많은 비율을 차지하여, 투수성이 낮아지는 문제가 있었다. 즉, 유효정수량이 낮아지는 문제가 있었다.
또한, 종래의 경우, 필터에 혼합된 활성탄 및 중금속 제거 소재의 혼합 비율이 충분치 않아서, 중금속 제거율이 제한되는 문제도 있었다.
본 발명은, 수중의 세레늄(Se), 크롬(Cr), 망간(Mn), 아연(Zn)을 포함한 수중의 중금속을 효과적으로 제거할 수 있는 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
본 발명은 처리용량을 확보하면서, 수중의 납, 수은, 비소, 철, 알루미늄, 구리 및 카드뮴 등의 중금속 제거가 가능한 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
본 발명은 최소 9종의 중금속을 제거할 수 있는 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
본 발명은 정수기에 적용된 필터의 형상이나 배치 구조를 변경하지 않고, 기존의 정수기에 곧바로 적용 가능한 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
본 발명은 이종의 필터를 하나의 필터하우징에 횡방향으로 배치하여 필터의 부피를 줄임으로써 공간 활용도를 높일 수 있는 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
본 발명은 이종의 필터를 하나의 필터하우징에 종방향으로 배치하여 필터의 부피를 줄임으로써 공간 활용도를 높일 수 있는 정수기용 필터 및 이를 포함하는 정수기를 제안한다.
일 실시 예에 따른 정수기용 필터는, 유입구와 유출구가 구비된 필터 하우징과, 상기 필터 하우징 내에 구비되어, 상기 유입구를 통해 유입된 물을 정수하여 상기 유출구로 공급하는 필터모듈을 포함하되, 상기 필터모듈은, 활성탄, 바인더,수산화철, 티타늄산화물을 혼합하여 제조된 카본블럭을 포함한다.
상기 바인더는 13~23중량% 혼합될 수 있다.
상기 카본블럭은, 활성탄 18~28중량%, 바인더 13~23중량%, 수산화철 15~30중량%, 티타늄산화물 30~45중량%를 포함하여 제조될 수 있다.
상기 카본블럭은 내측에 배치된 제1카본블럭과, 상기 제1카본블럭의 외측을 감싸도록 배치되는 제2카본블럭을 포함할 수 있다.
상기 제1카본블럭의 외경과 상기 제2카본블럭의 내경은 동일하게 형성될 수 있다.
상기 제1카본블럭과 제2카본블럭은 조성비가 상이하게 형성될 수 있다.
상기 제1카본블럭은, 활성탄 10~20중량%, 바인더 13~23중량%, 수산화철 10~57중량%, 티타늄산화물 10~57중량%를 포함하여 제조되고, 상기 제2카본블럭은, 활성탄 23~33중량%, 바인더 13~23중량%, 수산화철 8~46중량%, 티타늄산화물 8~46중량%를 포함하여 제조될 수 있다.
상기 카본블럭은, 활성탄 20~28중량%, 바인더 13~23중량%, 수산화철 14~24중량%, 티타늄산화물 33~43중량%를 포함하여 제조될 수 있다.
상기 카본블럭의 외측을 감싸는 음이온 교환수지 부직포를 더 포함할 수 있다.
상기 필터 하우징의 내부공간은, 하부에 형성되어, 상기 필터 하우징 유입된 물이 유입되는 제1공간부와, 상기 제1공간부의 상측에 배치되고, 상기 제1공간부를 경유한 물이 유입되는 는 제2공간부를 형성할 수 있다.
상기 카본블럭은, 상기 제1공간부에 수용되는 제3카본블럭과, 상기 제2공간부에 수용되는 제4카본블럭을 포함할 수 있다.
상기 제3카본블럭과 제4카본블럭은 조성비가 상이하게 형성될 수 있다.
상기 제3카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 29~39중량%, 티타늄산화물 18~28중량%을 포함하여 제조되고, 상기 제4카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 12~22중량%, 티타늄산화물 35~45중량%를 포함하여 제조될 수 있다.
상기 제1공간부에는, 입자 형태의 음이온교환수지가 충진되고, 상기 제2공간부에는, 상기 카본블럭이 수용될 수 있다.
상기 카본블럭은, 활성탄 25~30중량%, 바인더 13~23중량%, 수산화철 27~37중량%, 티타늄산화물 25~30중량%를 포함하여 제조될 수 있다.
상기 티타늄 산화물은, Titanium dioxide(TiO 2) 또는 Titanate(Na 4TiO 4) 구비될 수 있다.
다른 실시예에 따른 정수기용 필터는, 유입구와 유출구가 구비된 필터 하우징과, 상기 필터 하우징 내에 구비되어, 상기 유입구를 통해 유입된 물을 정수하여 상기 유출구로 공급하는 필터모듈을 포함하되, 상기 필터모듈은, 활성탄, 바인더,수산화철, 티타늄산화물, 0가철을 혼합하여 제조된 카본블럭을 포함한다.
상기 카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 5~15중량%, 티타늄산화물 18~28중량%, 0가철 10~20중량%를 포함하여 제조될 수 있다.
상기 카본블럭은 내측에 배치된 제1카본블럭과, 상기 제1카본블럭의 외측을 감싸도록 배치되는 제2카본블럭을 포함할 수 있다.
상기 제1카본블럭의 외경과 상기 제2카본블럭의 내경은 동일하게 형성될 수 있다.
상기 제1카본블럭과 제2카본블럭은 조성비가 상이하게 형성될 수 있다.
상기 제2카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 1~10중량%, 티타늄산화물 1~10중량%, 0가철 37~47중량%를 포함하여 제조될 수 있다.
상기 제1카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 32~42중량%를 포함하여 제조될 수 있다.
상기 카본블럭의 외측을 감싸는 음이온 교환수지 부직포를 더 포함할 수 있다.
상기 필터 하우징의 내부공간은, 하부에 형성되어, 상기 필터 하우징 유입된 물이 유입되는 제1공간부와, 상기 제1공간부의 상측에 배치되고, 상기 제1공간부를 경유한 물이 유입되는 는 제2공간부를 형성할 수 있다.
상기 카본블럭은, 상기 제1공간부에 수용되는 제3카본블럭과, 상기 제2공간부에 수용되는 제4카본블럭을 포함할 수 있다.
상기 제3카본블럭과 제4카본블럭은 조성비가 상이하게 형성될 수 있다.
상기 제3카본블럭은, 활성탄 18~28중량%, 바인더 13~23중량%, 수산화철 9~15중량%, 티타늄산화물 18~28중량%, 0가철 15~25중량%를 포함하여 제조될 수 있다.
상기 제4카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 37~47중량%를 포함하여 제조될 수 있다.
상기 제1공간부에는, 입자 형태의 음이온교환수지가 충진되고, 상기 제2공간부에는, 상기 카본블럭이 수용될 수 있다.
상기 티타늄 산화물은, Titanium dioxide(TiO 2) 또는 Titanate(Na 4TiO 4) 구비될 수 있다.
본 발명에 따른 정수기는, 상기된 정수기용 필터를 포함한다.
본 발명에 따르면, 처리용량을 확보하면서, 수중의 납, 수은, 비소, 철, 알루미늄, 구리, 카드뮴 등의 중금속을 제거할 수 있는 효과가 있다.
본 발명에 따르면, 최소 9종의 중금속을 제거할 수 있는 효과가 있다.
또한, 수중의 크롬(Cr), 세레늄(Se), 망간(Mn), 아연(Zn)을 포함한 수중의 중금속을 확실히 제거할 수 있는 효과가 있다.
본 발명에 따르면, 정수 과정이 복수의 필터에 의해 여러 번 진행되어, 중금속을 비롯한 각종 이물질의 제거가 보다 확실하게 진행될 수 있는 효과가 있다.
본 발명에 따르면, 필터의 소재만을 변경하고, 정수기에 적용된 필터의 형상이나 배치 구조를 변경하지 않기 때문에, 기존의 정수기에 곧바로 적용할 수 있는 효과가 있다.
본 발명에 따르면, 이종의 필터를 하나의 필터하우징에 횡방향으로 배치하여 필터의 부피를 줄임으로써 공간 활용도를 높일 수 있고, 나아가 정수기의 슬림화를 구현할 수 있는 효과도 있다.
본 발명에 따르면, 이종의 필터를 하나의 필터하우징에 종방향으로 배치하여 필터의 부피를 줄임으로써 공간 활용도를 높일 수 있고, 나아가 정수기의 슬림화를 구현할 수 있는 효과도 있다.
도 1은 본 발명의 일 실시예에 따른 정수기의 수배관도이다.
도 2는 본 발명의 일부 구성요소인 필터 어셈블리를 개념적으로 보인 도면이다.
도 2는 본 발명의 일부 구성요소인 필터 어셈블리를 개념적으로 보인 도면이다.
도 3은 본 발명의 일 실시 예에 따른 카본필터의 단면도이다.
도 4는 0가철의 오염물질 제거 메커니즘을 도시한 도면이다.
도 5는 0가철의 중금속 제거 메커니즘을 도시한 도면이다.
도 6은 본 발명의 다른 실시 예에 따른 카본필터의 단면도이다.
도 7은 본 발명의 또 다른 실시 예에 따른 카본필터의 단면도이다.
도 8은 음이온 교환수지 부직포에서 크롬(Cr) 및 세레늄(Se)이 제거되는 매커니즘을 도시한 그림이다.
도 9는 본 발명의 일 실시 예에 따른 복합필터의 단면도이다.
도 10은 본 발명의 다른 실시 예에 따른 복합필터의 단면도이다.
도 11은 본 발명에 따른 필터에 적용되는 카본블럭의 제조과정을 설명한 블럭도이다.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하에 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다.
이하의 실시예에 첨부되는 도면은, 같은 발명 사상의 실시예이지만, 발명 사상이 훼손되지 않는 범위 내에서, 용이하게 이해될 수 있도록 하기 위하여, 미세한 부분의 표현에 있어서는 도면별로 서로 다르게 표현될 수 있고, 도면에 따라서 특정 부분이 표시되지 않거나, 도면에 따라서 과장되게 표현되어 있을 수 있다.
도 1은 본 발명의 일 실시예에 따른 정수기의 수배관도이다.
본 발명에 따른 정수기는 외부 급수원으로부터 직접 공급되는 물을 정수한 후 냉각 또는 가열시켜 취출시키기 위한 것으로, 일례로, 직수형 냉온 정수기일 수 있다.
여기서, 직수형 정수기란 정수된 물이 저장되는 저수조가 없이 사용자의 정수 추출 동작시에 정수된 물이 추출되는 형태의 정수기를 말한다.
또한, 본 발명에 따른 정수기는, 냉장고와 일체로 형성될 수 있다.
또한, 본 발명에 따른 정수기는, 본체는 싱크대 하부에 설치되고, 출수구는 싱크대 외측에 설치되는 언더싱크형 정수기로 구비될 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 정수기는, 급수원으로부터 정수기의 출수구에 이르기까지 급수 라인(L)이 형성되며, 상기 급수 라인(L)에는 각종 밸브와 정수 부품이 연결될 수 있다.
보다 상세하게는, 상기 급수 라인(L)은, 상기 급수원, 예컨대 가정의 수도꼭지 등에 연결되고, 상기 급수 라인(L)의 어느 지점에는 필터 어셈블리(17)가 배치되어, 상기 급수원으로부터 공급되는 음용수에 포함된 이물질이 여과된다.
또한, 상기 필터 어셈블리(17)의 출구단에 연결되는 급수 라인(L)에는 급수 밸브(61)와 유량 센서(70)가 순차적으로 배치될 수 있다. 따라서, 상기 유량 센서(70)에 의하여 감지되는 공급량이 설정 유량에 도달하면 상기 급수 밸브(61)가 폐쇄되도록 제어될 수 있다.
또한, 상기 유량 센서(70)의 출구단에서 연장되는 급수 라인(L)의 어느 지점에서 온수 공급용 급수 라인(L1)과, 냉수 공급용 급수 라인(L3) 및 냉각수 공급용 급수 라인(L2)이 분지될 수 있다.
또한, 상기 유량 센서(70)의 출구단에서 연장되는 급수 라인(L)의 단부에는 정수 출수 밸브(66)가 장착되고, 상기 온수 공급용 급수 라인(L1)의 단부에는 온수 출수 밸브(64)가 장착될 수 있다. 그리고, 상기 냉수 공급용 급수 라인(L3)의 단부에는 냉수 출수 밸브(65)가 장착될 수 있고, 상기 냉각수 공급용 급수라인(L2)의 어느 지점에는 냉각수 밸브(63)가 장착될 수 있다. 상기 냉각수 밸브(63)는 냉수 생성 유닛(20)으로 공급되는 냉각수의 양을 조절한다.
또한, 상기 온수 출수 밸브(64)와, 상기 냉수 출수 밸브(65) 및 상기 정수 출수 밸브(66)의 출구단에서 연장되는 급수 라인은 모두 상기 출수구에 연결된다. 그리고, 도시된 바와 같이, 상기 정수, 냉수 및 온수가 단일의 취출구에 연결되도록 구성될 수도 있고, 경우에 따라서는 독립된 취출구들에 각각 연결되도록 구성될 수도 있다.
이하, 냉수 및 온수 공급과정에 대해 설명하기로 한다.
먼저, 냉수의 경우, 냉각수 밸브(63)가 열려 냉수 생성 유닛(20)으로 냉각수가 공급되면, 냉수 생성 유닛(20)을 통과하는 냉수 공급용 급수 라인(L3)의 물이 냉각수에 의해 냉각되면서 냉수가 생성된다.
이때, 상기 냉각수 공급용 급수라인(L2)에는 냉각수를 냉각시키는 냉매 사이클을 구비할 수 있다. 상기 냉매 사이클은 압축기, 응축기, 팽창변, 증발기 등을 포함할 수 있다.
이후, 조작표시부의 냉수선택 버튼을 눌러 상기 냉수 출수 밸브(65)가 개방되면 상기 출수구를 통하여 냉수가 취출될 수 있다.
한편, 온수의 경우, 온수 공급용 급수 라인(L1)을 따라 흐르는 물이 온수 히터(30)에 의해 가열되면서 온수가 생성되고, 상기 조작표시부의 온수선택 버튼을 눌러 상기 온수 출수 밸브(64)가 개방되면 상기 출수구를 통하여 온수가 취출될 수 있다.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따른 정수기는 원수로부터 정수를 생성하기 위하여 적어도 하나 이상의 정수기 필터를 포함한다. 상기 정수기 필터에 대해서는 후술된 설명을 참조하기로 한다.
이하에서는, 본 발명의 일 실시예에 따른 정수기용 필터에 대해서 설명하기로 한다.
도 2는 본 발명의 일부 구성요소인 필터 어셈블리를 개념적으로 보인 도면이다. 그리고, 도 3은 본 발명의 일 실시 예에 따른 카본필터의 단면도이다.
본 발명에 따른 필터 어셈블리(17)는 적어도 하나의 카본필터(100)를 포함할 수 있다.
또한, 본 발명에 따른 필터 어셈블리(17)는 적어도 하나의 복합필터(200)를 포함할 수 있다.
또한, 본 발명에 따른 필터 어셈블리(17)는 적어도 하나의 카본필터(100)와 복합필터(200)를 포함할 수 있다.
뿐만 아니라, 본 발명에 따른 필터 어셈블리(17)는 복수의 카본필터(100)로만 구성될 수 있고, 복수의 복합필터(200)로만 구성될 수도 있다.
도 2 내지 도 3를 참조하면, 본 발명의 일 실시예에 따른 정수기용 필터(이하, 필터 어셈블리)는 중공관 형태의 카본블럭(121)을 포함하는 카본필터(100)를 포함할 수 있다.
먼저, 상기 카본필터(100)는 필터하우징(110)과 필터모듈(120)을 포함한다.
상기 필터하우징(110)은 유입구(111)와 유출구(112)를 포함하여 이루어진다. 즉, 유입구(111)를 통해 정수가 필요한 물이 유입되고, 유출구(112)를 통해 정수가 완료된 물이 토출된다. 따라서, 물은 유입구(111)와 유출구(112) 사이를 유동하면서 그 사이에 배치된 필터모듈(120)에 의해 정수된다.
또한, 상기 필터 하우징(110)은 내부에 필터모듈(120)이 수용되는 공간부를 형성하고, 유입구(111) 및 유출구(112)가 형성된 상부캡(113)을 포함할 수 있다. 이때, 상기 필터 하우징(110)의 공간부는 상기 상부캡(113)의 유입구(111) 및 유출구(112)를 통해 외부와 연통이 가능하다.
상기와 같이 상부캡(113)이 구비되면, 상부캡(113)을 열고 필터 하우징(110)의 공간부에 필터모듈(120)을 손쉽게 장착할 수 있고, 필터 하우징(110)에 수용된 필터모듈(120)을 손쉽게 교체할 수도 있다.
상기 유입구(111)를 통해서 필터하우징(110)의 내부로 유입된 물은 필터모듈(120)을 거치면서 정화될 수 있다. 즉, 수돗물 등의 원수에 포함된 이물질(예를 들어, 중금속) 등이 상기 필터모듈(120)을 통과하면서 제거될 수 있다.
본 실시예에 따르면, 수중 중금속 제거 효과가 탁월한 정수기용 필터 및 이를 구비한 정수기를 제공할 수 있다.
<제1 실시 예>
일 예로, 상기 필터모듈(120)은 활성탄, 바인더, 수산화철, 티타늄산화물을 혼합하고, 중공의 블럭 형태로 성형하여 제조된 카본블럭(121)을 포함할 수 있다.
상기 티타늄 산화물은, Titanium dioxide(TiO 2) 또는 Titanate(Na 4TiO 4)로 구비될 수 있다.
상기 활성탄, 바인더, 수산화철, 티타늄산화물은 다양한 조성비로 혼합될 수 있다.
상기 바인더는 13~23 중량%, 혼합될 수 있다.
일 예로, 상기 카본블럭(121)은, 활성탄 18~28 중량%, 바인더 13~23 중량%, 수산화철 15~30 중량%, 티타늄산화물 30~45 중량%를 포함하여 제조될 수 있다.
상기 티타늄산화물은, 이산화티타늄 또는 사산화티타늄 등으로 구비될 수 있다.
일반적으로, 상기 티타늄산화물은, 복수의 산소(O)가 하나의 티타늄(Ti)과 공유결합하는 작용기를 갖는다.
일 예로, 티타늄산화물의 일종인, 오르토티탄산나트륨(Na 4TiO 4)은 하기 식(1)과 같은 화학 반응식을 통해 수중 중금속을 제거(이온 흡착)할 수 있다.
Na 4TiO 4 + 2Me ++ → Me 2TiO 4 + 4Na + (1)
상기 식(1)에서 'Me'는 중금속을 의미하고, 중금속은 수용성 화합물의 형태로 물에 녹아있는 상태이다.
상기와 같은 수용성 중금속 화합물과 상기 오르토티탄산나트륨(Na 4TiO 4)의 화학 반응을 통해, 중금속(Me)이 제거된 정수는 유출구(112)를 통해 필터 하우징(110)의 외부로 토출된다.
일례로, 상기 'Me'는 카드뮴(Cd)이 해당될 수 있다.
상기의 경우, 오르토티탄산나트륨(Na 4TiO 4)은 하기 식(2)와 같은 화학 반응식을 통해 수중 카드뮴(Cd)을 제거(이온 흡착)할 수 있다.
Na 4TiO 4 + 2Cd ++ → Cd 2TiO 4 + 4Na + (2)
한편, 상기 티타늄산화물은 입상(granule) 또는 분말(powder)형태를 갖고, 상기 카본블럭(121)의 재료에 혼합되어, 카본블럭(121)을 구성할 수 있다.
따라서, 중금속이 포함된 물이 상기 필터모듈(120)을 거치면, 수중의 중금속이 제거될 수 있다.
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(3)과 같은 화학 반응식을 통해 수중의 망간을 제거(이온 흡착)할 수 있다.
Mn 2+ + Ti 2O(OH) 2 → Ti 2O(O 2Mn) + 2H + (3)
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(4)와 같은 화학 반응식을 통해 수중의 아연을 제거(이온 흡착)할 수 있다.
Zn 2+ + Ti 2O(OH) 2 → Ti 2O(O 2Zn) + 2H + (4)
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(5)와 같은 화학 반응식을 통해 수중의 크롬 및 세레늄을 제거(이온 흡착)할 수 있다.
Figure PCTKR2021004343-appb-img-000001
(5)
또한, 상기 카본블럭(121)은 수산화철(Ferric Hydroxide)을 포함할 수도 있다.
여기서, 상기 수산화철(Ferric Hydroxide)은 합성 수산화철(α-FeOOH) 화합물을 의미할 수 있다.
상기 합성 수산화철(α-FeOOH) 화합물은 하기 식(6)과 같은 작용기를 포함할 수 있다.
Figure PCTKR2021004343-appb-img-000002
(6)
즉, 합성 수산화철(α-FeOOH) 화합물은 복수 개의 철(Fe)이 각각 수산화기(-OH)와 이온 결합을 하고, 각각의 철(Fe)이 하나의 산소(O)와 이온 결합 또는 공유 결합하는 작용기를 포함할 수 있다.
이러한 합성 수산화철(α-FeOOH) 화합물의 일례로, 랑세스(LanXess)사에서 제공되는 상표명 '베이옥사이드 E33HCF'가 사용될 수 있다.
상기 합성 수산화철(α-FeOOH) 화합물은 하기 식(7)과 같은 화학반응을 통해 수중 중금속을 제거할 수 있다.
Figure PCTKR2021004343-appb-img-000003
(7)
여기서 'A'는 중금속을 의미하여, 중금속은 수용성 화합물 형태로 물에 녹아 있을 수 있다.
상기와 같이, 수용성 중금속 화합물과 상기 합성 수산화철(α-FeOOH) 화합물이 화학 반응을 하면, 물과 수산화 이온이 발생 된다. 아울러, 중금속(A)은 상기 합성 수산화철(α-FeOOH) 화합물과 강한 이온 결합 또는 공유 결합을 하게 된다. 따라서, 제거된 중금속(A)이 다시 물에 녹는 것을 방지할 수 있다. 그리고, 상기 필터 모듈(120)을 통해 중금속(A)이 제거된 정수는 유출구(112)를 통해 필터하우징(110) 외부로 토출된다. 일 예로, 상기 중금속(A)은 '비소'일 수 있다.
참고로, 상기 수산화철은 하기 식(8)와 같은 화학 반응식을 통해 수중 카드뮴(Cd)을 제거할 수 있다.
2Fe 2+ + Cd 2+ + 4OH - -> CdFe 2O 4 + 2H 2 (8)
또한, 상기 수산화철은 하기 식(9)와 같은 화학 반응식을 통해 수중의 크롬 및 세레늄을 제거할 수 있다.
Figure PCTKR2021004343-appb-img-000004
(9)
한편, 상기 합성 수산화철(α-FeOOH) 화합물은 입상(granule) 또는 분말(powder)형태를 갖고, 바인더와 함께 카본블럭(121)의 재료로 혼합되어, 카본블럭(121)을 구성할 수 있다.
또한, 상기 카본블럭(121)은 활성탄를 더 포함할 수 있다.
상기 활성탄은 입상 또는 분말의 형태로 포함될 수 있다. 상기와 같이 카본블럭(121)이 활성탄을 포함할 경우, 카본블럭(121)은 수중의 중금속을 제거함과 동시에 수중의 잔류 염소 성분까지 효과적으로 제거할 수 있다. 이에 따라 물맛 또한 향상될 수 있다.
뿐만 아니라, 상기 활성탄에 의해 수중의 클로로포름(CHCL 3) 또한 효과적으로 제거될 수 있다.
상기, 바인더는 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)을 서로 연결하고, 강성을 부여하기 위해 혼합된다.
상기 바인더의 구성으로, 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)은 강성을 갖는 블럭 형태로 가공될 수 있다.
일례로, 상기 필터모듈(120)은 전술한 소재들은 균일하게 섞은 후 금형에 넣어 가열함으로써 형성될 수 있다. 금형 내에서 가열에 의해 바인더(예를 들어, 폴리에틸렌,PE)가 용융되어 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)이 결합된다. 따라서, 전체적으로 강성을 갖는 블럭형태의 카본블럭(121)이 형성될 수 있다.
한편, 일반적으로 정수기에는, 수중의 중금속 및 각종 이물질을 제거하기 위해 여러 개의 필터가 이미 설치되어 있으며, 필터가 여러 개 설치되면, 정수 성능은 확보될 수 있지만, 정수 유량이 감소할 수 밖에 없다.
또한, 기존의 정수기에는 필터를 설치할 공간이 한정되어 있어, 새로운 필터를 추가하는 것이 용이하지 않으며, 정수기에 설치된 각각의 필터(예를 들어, 활성탄 필터)는 기본적으로 정수 성능을 향상시키기 위한 개별적인 기능을 구비하므로, 새로운 필터의 추가를 위해 기존의 필터를 생략하는 것도 바람직하지 않다.
하지만, 본 발명의 경우, 활성탄과, 티타늄산화물과, 수산화철을 혼합하여 카본블럭(121)을 구성할 수 있다.
따라서, 기존에 정수기에 설치된 활성탄 필터로서의 고유 기능 및 효과는 유지하면서, 필터의 개수 증가 없이 수중의 중금속까지 제거할 수 있게 된다. 또한, 필터의 개수가 증가되지 않기 때문에 정수 유량 감소를 방지할 수 있다
본 실시예에서, 상기 카본블럭(121)은, 45mm 내지 57mm의 외경을 구비할 수 있다. 또한, 12mm 내지 15mm의 내경을 구비할 수 있다. 또한, 145mm 내지 210mm의 길이를 구비할 수 있다.
또한, 상기 카본블럭(121)은, 190g 내지 330g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 34g 내지 92g, 바인더는 25g 내지 76g, 수산화철은 29g 내지 99g, 티타늄산화물은 57g 내지 149g 포함하여 제조될 수 있다.
본 발명에 따른 정수기용 필터는 상기 도 3에 도시된 카본필터(100)를 복수 구비하여, 직렬로 배치할 수 있다.
상기와 같은 본 발명에 따르면, 필터 하우징(110) 내부로 유입된 원수가 카본블럭(121)을 통과하면서, 중금속이 제거되고 정화될 수 있다.
<제2 실시예>
다른 예로, 상기 필터모듈(120)은 활성탄, 바인더, 수산화철, 티타늄산화물, 0가철을 혼합하고, 중공의 블럭 형태로 성형하여 제조된 카본블럭(121)을 포함할 수 있다.
상기 티타늄 산화물은, Titanium dioxide(TiO 2) 또는 Titanate(Na 4TiO 4)로 구비될 수 있다.
상기 활성탄, 바인더, 수산화철, 티타늄산화물, 0가철(zero valent iron)은 다양한 조성비로 혼합될 수 있다.
일 예로, 상기 카본블럭(121)은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 5~15중량%, 티타늄산화물 18~28중량%, 0가철 10~20중량%를 포함하여 제조될 수 있다.
상기 티타늄산화물은, 이산화티타늄 또는 사산화티타늄 등으로 구비될 수 있다.
일반적으로, 상기 티타늄산화물은, 복수의 산소(O)가 하나의 티타늄(Ti)과 공유결합하는 작용기를 갖는다.
일 예로, 티타늄산화물의 일종인, 오르토티탄산나트륨(Na 4TiO 4)은 하기 식(1)과 같은 화학 반응식을 통해 수중 중금속을 제거(이온 흡착)할 수 있다.
Na 4TiO 4 + 2Me ++ → Me 2TiO 4 + 4Na + (1)
상기 식(1)에서 'Me'는 중금속을 의미하고, 중금속은 수용성 화합물의 형태로 물에 녹아있는 상태이다.
상기와 같은 수용성 중금속 화합물과 상기 오르토티탄산나트륨(Na 4TiO 4)의 화학 반응을 통해, 중금속(Me)이 제거된 정수는 유출구(112)를 통해 필터 하우징(110)의 외부로 토출된다.
일례로, 상기 'Me'는 카드뮴(Cd)이 해당될 수 있다.
상기의 경우, 오르토티탄산나트륨(Na 4TiO 4)은 하기 식(2)와 같은 화학 반응식을 통해 수중 카드뮴(Cd)을 제거(이온 흡착)할 수 있다.
Na 4TiO 4 + 2Cd ++ → Cd 2TiO 4 + 4Na + (2)
한편, 상기 티타늄산화물은 입상(granule) 또는 분말(powder)형태를 갖고, 상기 카본블럭(121)의 재료에 혼합되어, 카본블럭(121)을 구성할 수 있다.
따라서, 중금속이 포함된 물이 상기 필터모듈(120)을 거치면, 수중의 중금속이 제거될 수 있다.
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(3)과 같은 화학 반응식을 통해 수중의 망간을 제거(이온 흡착)할 수 있다.
Mn 2+ + Ti 2O(OH) 2 → Ti 2O(O 2Mn) + 2H + (3)
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(4)와 같은 화학 반응식을 통해 수중의 아연을 제거(이온 흡착)할 수 있다.
Zn 2+ + Ti 2O(OH) 2 → Ti 2O(O 2Zn) + 2H + (4)
또한, 상기 이산화티타늄 (Titanium dioxide)은, 하기 식(5)와 같은 화학 반응식을 통해 수중의 크롬 및 세레늄을 제거(이온 흡착)할 수 있다.
Figure PCTKR2021004343-appb-img-000005
(5)
또한, 상기 카본블럭(121)은 수산화철(Ferric Hydroxide)을 포함할 수도 있다.
여기서, 상기 수산화철(Ferric Hydroxide)은 합성 수산화철(α-FeOOH) 화합물을 의미할 수 있다.
상기 합성 수산화철(α-FeOOH) 화합물은 하기 식(6)과 같은 작용기를 포함할 수 있다.
Figure PCTKR2021004343-appb-img-000006
(6)
즉, 합성 수산화철(α-FeOOH) 화합물은 복수 개의 철(Fe)이 각각 수산화기(-OH)와 이온 결합을 하고, 각각의 철(Fe)이 하나의 산소(O)와 이온 결합 또는 공유 결합하는 작용기를 포함할 수 있다.
이러한 합성 수산화철(α-FeOOH) 화합물의 일례로, 랑세스(LanXess)사에서 제공되는 상표명 '베이옥사이드 E33HCF'가 사용될 수 있다.
상기 합성 수산화철(α-FeOOH) 화합물은 하기 식(7)과 같은 화학반응을 통해 수중 중금속을 제거할 수 있다.
Figure PCTKR2021004343-appb-img-000007
(7)
여기서 'A'는 중금속을 의미하여, 중금속은 수용성 화합물 형태로 물에 녹아 있을 수 있다.
상기와 같이, 수용성 중금속 화합물과 상기 합성 수산화철(α-FeOOH) 화합물이 화학 반응을 하면, 물과 수산화 이온이 발생 된다. 아울러, 중금속(A)은 상기 합성 수산화철(α-FeOOH) 화합물과 강한 이온 결합 또는 공유 결합을 하게 된다. 따라서, 제거된 중금속(A)이 다시 물에 녹는 것을 방지할 수 있다. 그리고, 상기 필터 모듈(120)을 통해 중금속(A)이 제거된 정수는 유출구(112)를 통해 필터하우징(110) 외부로 토출된다. 일 예로, 상기 중금속(A)은 '비소'일 수 있다.
참고로, 상기 수산화철은 하기 식(8)와 같은 화학 반응식을 통해 수중 카드뮴(Cd)을 제거할 수 있다.
2Fe 2+ + Cd 2+ + 4OH - -> CdFe 2O 4 + 2H 2 (8)
또한, 상기 수산화철은 하기 식(9)와 같은 화학 반응식을 통해 수중의 크롬 및 세레늄을 제거할 수 있다.
Figure PCTKR2021004343-appb-img-000008
(9)
한편, 상기 합성 수산화철(α-FeOOH) 화합물은 입상(granule) 또는 분말(powder)형태를 갖고, 바인더와 함께 카본블럭(121)의 재료로 혼합되어, 카본블럭(121)을 구성할 수 있다.
또한, 상기 카본블럭(121)은 0가철을 더 포함할 수 있다.
0가철(zero valent iron, ZVI)은, 표준 산화환원전위를 갖는 반응성 금속(E 0=-0.44V)을 의미한다. 그리고, 0가철은 6가 크롬과 같은 산화된 중금속과 잘 반응하는 효과적인 환원이다.
또한, 0가철의 아래의 식10 내지 식13과 같이 물속에서의 산화반응 한다.
2Fe 0 (s) + O 2 + 2H 2O → 2Fe 2+ + 4OH - (10)
4Fe 2+ + O 2 + 2H 2O → 4Fe 3+ + 4OH - (11)
Fe 2+ + 2OH - → Fe(OH) 2(S) (12)
Fe 3+ + 2OH - → Fe(OH) 3(S) (13)
도 4는 0가철의 오염물질 제거 메커니즘을 도시한 도면이다. 그리고, 도 5는 0가철의 중금속 제거 메커니즘을 도시한 도면이다.
상기 0가철은 도 4 및 도 5와 같은 메커니즘에 의해 오염물질 및 중금속을 제거할 수 있다.
또한, 상기 카본블럭(121)은 활성탄를 더 포함할 수 있다.
상기 활성탄은 입상 또는 분말의 형태로 포함될 수 있다. 상기와 같이 카본블럭(121)이 활성탄을 포함할 경우, 카본블럭(121)은 수중의 중금속을 제거함과 동시에 수중의 잔류 염소 성분까지 효과적으로 제거할 수 있다. 이에 따라 물맛 또한 향상될 수 있다.
뿐만 아니라, 상기 활성탄에 의해 수중의 클로로포름(CHCL 3) 또한 효과적으로 제거될 수 있다.
상기, 바인더는 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)을 서로 연결하고, 강성을 부여하기 위해 혼합된다.
상기 바인더의 구성으로, 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)은 강성을 갖는 블럭 형태로 가공될 수 있다.
일례로, 상기 필터모듈(120)은 전술한 소재들은 균일하게 섞은 후 금형에 넣어 가열함으로써 형성될 수 있다. 금형 내에서 가열에 의해 바인더(예를 들어, 폴리에틸렌,PE)가 용융되어 활성탄과 티타늄산화물 및 수산화철(Ferric Hydroxide)이 결합된다. 따라서, 전체적으로 강성을 갖는 블럭형태의 카본블럭(121)이 형성될 수 있다.
한편, 일반적으로 정수기에는, 수중의 중금속 및 각종 이물질을 제거하기 위해 여러 개의 필터가 이미 설치되어 있으며, 필터가 여러 개 설치되면, 정수 성능은 확보될 수 있지만, 정수 유량이 감소할 수 밖에 없다.
또한, 기존의 정수기에는 필터를 설치할 공간이 한정되어 있어, 새로운 필터를 추가하는 것이 용이하지 않으며, 정수기에 설치된 각각의 필터(예를 들어, 활성탄 필터)는 기본적으로 정수 성능을 향상시키기 위한 개별적인 기능을 구비하므로, 새로운 필터의 추가를 위해 기존의 필터를 생략하는 것도 바람직하지 않다.
하지만, 본 발명의 경우, 활성탄과, 티타늄산화물과, 수산화철을 혼합하여 카본블럭(121)을 구성할 수 있다.
따라서, 기존에 정수기에 설치된 활성탄 필터로서의 고유 기능 및 효과는 유지하면서, 필터의 개수 증가 없이 수중의 중금속까지 제거할 수 있게 된다. 또한, 필터의 개수가 증가되지 않기 때문에 정수 유량 감소를 방지할 수 있다.
본 실시예에서, 상기 카본블럭(121)은, 48mm 내지 57mm의 외경을 구비할 수 있다. 또한, 12mm 내지 15mm의 내경을 구비할 수 있다. 또한, 145mm 내지 210mm의 길이를 구비할 수 있다.
또한, 상기 카본블럭(121)은, 160g 내지 310g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 40g 내지 109g, 바인더는 21g 내지 71g, 수산화철은 8g 내지 47g, 티타늄산화물은 29g 내지 87g, 0가철 16g 내지 62g 포함하여 제조될 수 있다.
본 발명에 따른 정수기용 필터는 상기 도 3에 도시된 카본필터(100)를 복수 구비하여, 직렬로 배치할 수 있다.
상기와 같은 본 발명에 따르면, 필터 하우징(110) 내부로 유입된 원수가 카본블럭(121)을 통과하면서, 중금속이 제거되고 정화될 수 있다.
도 6은 본 발명의 다른 실시 예에 따른 카본필터의 단면도이다.
도 6을 참조하면, 본 발명의 핵심 구성요소인 필터모듈(120)은 복수의 카본블럭(122,123)을 포함할 수 있다.
일 예로, 상기 카본블럭(122,123)은, 내측에 배치된 제1카본블럭(122)과, 상기 제1카본블럭(122)의 외측을 감싸도록 배치되는 제2카본블럭(123)을 포함한다.
이때, 상기 제1카본블럭(122)의 외경과 상기 제2카본블럭(123)의 내경은 동일하게 형성될 수 있다.
또한, 상기 제1카본블럭(122)과 제2카본블럭(123)은 조성비가 상이하게 형성될 수 있다.
<제3 실시예>
일 예로, 상기 제1카본블럭은, 활성탄 10~20중량%, 바인더 13~23중량%, 수산화철 10~57중량%, 티타늄산화물 10~57중량%를 포함하여 제조될 수 있다.
또한, 상기 제2카본블럭은, 활성탄 23~33중량%, 바인더 13~23중량%, 수산화철 8~46중량%, 티타늄산화물 8~46중량%를 포함하여 제조될 수 있다.
또한, 상기 제1카본블럭(122)은, 90g 내지 120g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 9g 내지 42g, 바인더는 12g 내지 48g, 수산화철은 9g 내지 120g, 티타늄산화물은 9g 내지 120g 포함하여 제조될 수 있다.
또한, 상기 제2카본블럭(123)은, 85g 내지 120g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 20g 내지 69g, 바인더는 11g 내지 48g, 수산화철은 7g 내지 97g, 티타늄산화물은 7g 내지 97g 포함하여 제조될 수 있다.
<제4 실시예>
다른 예로, 상기 제2카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 1~10중량%, 티타늄산화물 1~10중량%, 0가철 37~47중량%를 포함하여 제조될 수 있다.
또한, 상기 제1카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 32~42중량%를 포함하여 제조될 수 있다.
다른 예로, 상기 제1카본블럭(122)은, 80g 내지 200g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 20g 내지 70g, 바인더는 10g 내지 46g, 수산화철은 8g 내지 40g, 티타늄산화물은 26g 내지 84g 포함하여 제조될 수 있다.
또한, 상기 제2카본블럭(123)은, 60g 내지 190g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 15g 내지 67g, 바인더는 8g 내지 44g, 수산화철은 1g 내지 19g, 티타늄산화물은 1g 내지 19g, 0가철 37g 내지 47g 포함하여 제조될 수 있다.
본 발명에 따른 정수기용 필터는 상기 도 6에 도시된 카본필터(100)를 복수 구비하여, 직렬로 배치할 수 있다.
도 7은 본 발명의 또 다른 실시 예에 따른 카본필터의 단면도이다. 그리고, 도 8은 음이온 교환수지 부직포에서 크롬(Cr) 및 세레늄(Se)이 제거되는 매커니즘을 도시한 그림이다.
도 7을 참조하면, 상기 카본필터(100)는 카본블럭(124) 및 상기 카본블럭(124)의 외측을 감싸는 음이온 교환수지 부직포(125)를 더 포함할 수 있다.
상기와 같이 카본블럭(124)의 외측에 음이온 교환수지 부직포(125)를 구비하면, 카본필터(100)로 유입된 원수는 음이온 교환수지 부직포(125)를 거친 뒤, 카본블럭(124)을 통과한다.
상기와 같이 원수가 음이온 교환수지 부직포(125)를 통과하면, 도 8과 같은 이온 교환을 통해서, 수중의 크롬(Cr) 및 세레늄(Se) 등의 중금속이 제거될 수 있다.
이때, 상기 음이온 교환수지 부직포(125)는, 중금속 제거 효율 향상을 위해 여러겹 구비될 수 있다.
또한, 본 실시예(도 7의 실시예)에서, 상기 카본블럭(124)은, 활성탄 20~28중량%, 바인더 13~23중량%, 수산화철 14~24중량%, 티타늄산화물 33~43중량%를 포함하여 제조될 수 있다.
일 예로, 상기 카본블럭(124)은, 160g 내지 300g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 32g 내지 84g, 바인더는 21g 내지 69g, 수산화철은 22g 내지 72g, 티타늄산화물은 53g 내지 129g 포함하여 제조될 수 있다.
상기한 바에 따르면, 카본필터(100)로 유입된 원수는 음이온 교환수지 부직포(125)와 카본블럭(124)을 순서대로 통과한 뒤, 카본필터(100) 외부로 배출된다.
본 발명에 따른 정수기용 필터는 상기 도 7에 도시된 카본필터(100)를 복수 구비하여, 직렬로 배치할 수 있다.
도 9는 본 발명의 일 실시 예에 따른 복합필터의 단면도이다. 그리고, 도 10은 본 발명의 다른 실시 예에 따른 복합필터의 단면도이다.
본 발명의 다른 실시예에 따른 정수기용 필터는 중공관 형태의 카본블럭(221)을 포함하는 복합필터(200)를 포함할 수 있다.
상기 복합필터(200)는 필터하우징(210)과 필터모듈(220)을 포함한다.
상기 필터하우징(210)은 유입구(211)와 유출구(212)를 포함하여 이루어진다. 즉, 유입구(211)를 통해 정수가 필요한 물이 유입되고, 유출구(212)를 통해 정수가 완료된 물이 토출된다. 따라서, 물은 유입구(211)와 유출구(212) 사이를 유동하면서 그 사이에 배치된 필터모듈(220)에 의해 정수된다.
또한, 상기 필터 하우징(210)은 내부에 필터모듈(220)이 수용되는 공간부를 형성하고, 유입구(211) 및 유출구(212)가 형성된 상부캡(213)을 포함할 수 있다. 이때, 상기 필터 하우징(210)의 공간부는 상기 상부캡(213)의 유입구(211) 및 유출구(212)를 통해 외부와 연통이 가능하다.
상기와 같이 상부캡(213)이 구비되면, 상부캡(213)을 열고 필터 하우징(210)의 공간부에 필터모듈(220)을 손쉽게 장착할 수 있고, 필터 하우징(210)에 수용된 필터모듈(220)을 손쉽게 교체할 수도 있다.
상기 유입구(211)를 통해서 필터하우징(210)의 내부로 유입된 물은 필터모듈(220)을 거치면서 정화될 수 있다. 즉, 수돗물 등의 원수에 포함된 이물질(예를 들어, 중금속) 등이 상기 필터모듈(220)을 통과하면서 제거될 수 있다.
본 실시예에 따르면, 수중 중금속 제거 효과가 탁월한 정수기용 필터 및 이를 구비한 정수기를 제공할 수 있다.
이를 위하여, 상기 필터모듈(220)은 활성탄, 바인더, 수산화철, 티타늄산화물을 혼합하고, 중공의 블럭 형태로 성형하여 제조된 카본블럭(221,222)을 포함할 수 있다.
도 9 내지 도 10을 참조하면, 상기 필터 하우징(210)의 내부공간은, 하부에 형성되어, 상기 필터 하우징(210) 유입된 물이 유입되는 제1공간부(201)와, 상기 제1공간부(201)의 상측에 배치되고, 상기 제1공간부(201)를 경유한 물이 유입되는 제2공간부(202)를 형성할 수 있다.
그리고, 도 9를 참조하면, 상기 카본블럭(221,222)은, 상기 제1공간부(201)에 수용되는 제3카본블럭(221)과, 상기 제2공간부(202)에 수용되는 제4카본블럭(222)을 포함할 수 있다.
그리고, 상기 제3카본블럭(221)과 제4카본블럭(222)은 조성비가 상이하게 형성될 수 있다.
<제 5실시예>
일 예로, 상기 제3카본블럭(221)은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 29~39중량%, 티타늄산화물 18~28중량%을 포함하여 제조될 수 있다.
상기 제4카본블럭(222)은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 12~22중량%, 티타늄산화물 35~45중량%를 포함하여 제조될 수 있다.
<제 6실시예>
다른 예로, 상기 제3카본블럭(221)은, 활성탄 18~28중량%, 바인더 13~23중량%, 수산화철 9~15중량%, 티타늄산화물 18~28중량%, 0가철 15~25중량%를 포함하여 제조될 수 있다.
또한, 상기 제4카본블럭(222)은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 37~47중량%를 포함하여 제조될 수 있다.
다른 예로, 상기 제3카본블럭(221)은, 75g 내지 170g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 14g 내지 48g, 바인더는 10g 내지 39g, 수산화철은 7g 내지 26g, 티타늄산화물은 11g 내지 48g, 0가철 11g 내지 43g 포함하여 제조될 수 있다.
또한, 상기 제4카본블럭(222)은, 70g 내지 130g의 중량을 구비할 수 있다. 이때, 상기 활성탄은 14g 내지 39g, 바인더는 9g 내지 30g, 수산화철은 7g 내지 26g, 티타늄산화물은 48g 내지 61g 포함하여 제조될 수 있다.
한편, 상기와 같이, 제1공간부(201)와 제2공간부(202)를 구획하기 위해서, 상기 필터 하우징(210)의 내측에는 내측커버(214)를 구비할 수 있다.
상기 내측커버(214)의 내측 공간은 제2공간부(202)를 정의한다.
도 9를 참조하면, 상기 필터 하우징(210)으로 유입된 물은, 상기 필터 하우징(210)의 내벽과 내측커버(214)의 외벽 사이에 마련된 유로를 통해서, 상부에서 하부로 유동한 뒤, 필터 하우징(210)의 제1공간부(201)로 유입된다.
이후, 제1공간부(201)에 배치된 제3카본블럭(221)의 외측에서 내측으로 물이 유동하고, 제3카본블럭(221)의 중공을 통해서, 하측에서 상측으로 유동한다.
그리고, 제3카본블럭(221)의 상측으로 유동된 물은, 제3카본블럭(221)의 중공과 연통하는 보조유로(215)를 통해서, 제2공간부(202)로 유입된다.
이후, 제2공간부(202)에 배치된 제4카본블럭(222)의 외측에서 내측으로 물이 유동하고, 제4카본블럭(222)의 중공을 통해서, 상측으로 유동한 후, 상기 필터 하우징(210)의 외측으로 배출될 수 있다.
참고로, 상기 보조유로(215)는 상기 내측커버(214)의 하단에 일체로 형성되고, 상기 제3카본블럭(221)의 상단을 지지하는 필터브라켓(214a)과, 상기 제4카본블럭(222)의 하단을 지지하는 필터브라켓(219) 사이 공간에 의해 정의될 수 있다.
또한, 도 9를 참조하면, 상기 제3카본블럭(221)의 외경은, 상기 제4카본블럭(222)의 외경보다 크게 형성될 수 있다.
한편, 도 10을 참조하면, 상기 제1공간부(201)에는, 입자 형태의 음이온교환수지(223)가 충진되고, 상기 제2공간부(202)에는, 카본블럭(224)이 수용될 수 있다.
본 실시예(도 10의 실시예)에서, 상기 카본블럭(224)은, 활성탄 25~30중량%, 바인더 13~23중량%, 수산화철 27~37중량%, 티타늄산화물 25~30중량%를 포함하여 제조될 수 있다.
한편, 상기와 같이, 제1공간부(201)와 제2공간부(202)를 구획하기 위해서, 상기 필터 하우징(210)의 내측에는 내측커버(214)를 구비할 수 있다.
상기 내측커버(214)는 하단에 바닥면(216)을 형성하고, 상기 바닥면(216)에는 복수의 통공(216a)을 형성한다.
그리고, 상기 내측커버(214)는 상기 바닥면(216)의 상측에 상기 바닥면(216)과 이격된 중간벽(217)을 형성한다. 상기 중간벽(217)에는 복수의 통공(217a)을 형성한다.
상기 바닥면(216)과 중간벽(217) 사이 공간은 제1공간부(201)를 정의한다.
도 10을 참조하면, 상기 필터 하우징(210)으로 유입된 물은, 상기 필터 하우징(210)의 내벽과 내측커버(214)의 외벽 사이에 마련된 유로를 통해서, 상부에서 하부로 유동한 뒤, 바닥면(216)의 통공(216a)을 통해서, 제1공간부(201)로 유입된다.
이후, 제1공간부(201)에 배치된 입자 형태의 음이온교환수지(223)를 통과하면서, 하측에서 상측으로 유동한다.
그리고, 음이온교환수지(223)의 상측으로 유동된 물은, 중간벽(217)의 통공(217a)을 통해, 배출되고, 상기 중간벽(217)과, 상기 카본블럭(224)의 하단을 지지하는 필터 브라켓(218) 사이에 마련된 보조유로(315)를 통해서, 제2공간부(202)로 유입된다.
이후, 제2공간부(202)에 배치된 카본블럭(224)의 외측에서 내측으로 물이 유동하고, 카본블럭(224)의 중공을 통해서, 상측으로 유동한 후, 상기 필터 하우징(210)의 외측으로 배출될 수 있다.
상기와 같이, 제3카본블럭(221)과 제4카본블럭(222)이 하나의 필터하우징(400)에 일렬로 배치되거나, 음이온교환수지(223)와 카본블럭(224)이 하나의 필터하우징(400)에 일렬로 배치되면, 여과 효율은 높이면서, 정수 유량은 유지할 수 있다.
또한, 정수기에 형성된 필터 설치공간을 확장할 필요없이, 기존의 필터를 단순 교체하는 작업 만으로, 곧바로 적용할 수 있다.
또한, 필터의 부피를 줄임으로써 공간 활용도를 높일 수 있고, 나아가 정수기의 슬림화를 구현할 수 있다.
상기한 바에 따르면, 정수기로 유입된 원수는, 카본필터(100) 또는 복합필터(200) 중 적어도 어느 하나를 통과하면서, 정화된다.
상기와 같이, 활성탄, 바인더,수산화철, 티타늄산화물이 혼합된 카본블럭을 통과하면, 9종의 중금속, 즉 수은, 납, 구리, 알루미늄, 철, 카드뮴, 비소, 망간, 아연이 제거될 수 있다.
상세히, 수은,납, 철, 알루미늄, 카드뮴, 비소 ,구리는 카본블럭(121) 내, 수산화철에 의해 제거되고, 망간, 아연의 경우, 카본블럭(121) 내, 티타늄산화물 에 의해 제거될 수 있다.
참고로, 수중에 포함된 망간, 아연의 경우, 하기 식(14)와 같은 화학반응을 통해, 이산화티타늄(TiO 2)에 이온 흡착되고, 수중에서 제거될 수 있다.
Figure PCTKR2021004343-appb-img-000009
(14)
또한, 크롬, 세레늄의 경우, 하기 식(15)와 같은 화학반응을 통해, 이산화티타늄(TiO 2)에 이온 흡착되고, 수중에서 제거될 수 있다
Figure PCTKR2021004343-appb-img-000010
(15)
도 11은 본 발명에 따른 필터에 적용되는 카본블럭의 제조과정을 설명한 블럭도이다.
도 11을 참조하면, 먼저, 카본블럭을 구성하는 각 재료를 비율대로 섞어, 카본블럭 혼합물을 생성한다.
상기 카본블럭 혼합물은, 활성탄, 바인더, 수산화철, 티타늄산화물을 다양한 비율로 혼합하여 제조될 수 있다.
그리고, 골고루 혼합된 카본블럭 혼합물은, 금형에 충진된다. 그리고 압축과정을 거치고, 전기로에 투입된다.
그리고 가열이 진행된다. 상기 가열과정에서, 바인더, 예를 들어 폴리에틸렌(PE)이 용융되어 활성탄, 수산화철, 티타늄산화물, 바인더는 일체로 결합되고, 전체적으로 강성을 갖는 중공관 형태의 카본블럭이 성형될 수 있다.
또한, 가열 이후에는, 냉각이 진행되고, 냉각이 종료되면, 금형을 분리한다.
또한, 금형에서 분리된 중공관 형태의 카본블럭은 단위 길이로 절단될 수 있다.
또한, 절단이 완료된 카본블럭은, 압축공기분사를 통해 세척이 진행된다.
이후, 카본블럭 주변을 부직포를 감싸고, 상하캡을 핫멜트 방식으로 부탁한다.
이후, 치수 및 중량 등을 체크하고, 이상이 없을 시, 포장을 진행한다.
상기와 같은, 본 발명에 따르면, 수중의 망간(Mn), 아연(Zn)을 포함한 수중의 중금속을 확실히 제거할 수 있는 효과가 있다.
본 발명에 따르면, 처리용량을 확보하면서, 수중의 납, 수은, 비소, 카드뮴, 철, 알루미늄, 구, 망간, 아연, 크롬, 세레늄과 같은 11종의 중금속을 제거할 수 있는 효과가 있다.

Claims (22)

  1. 유입구와 유출구가 구비된 필터 하우징;
    상기 필터 하우징 내에 구비되어, 상기 유입구를 통해 유입된 물을 정수하여 상기 유출구로 공급하는 필터모듈을 포함하되,
    상기 필터모듈은, 활성탄, 바인더, 수산화철, 티타늄산화물을 혼합하여 제조된 중공관 형태의 카본블럭을 포함하고,
    상기 바인더는 13~23중량% 혼합되는 정수기용 필터.
  2. 제 1항에 있어서,
    상기 카본블럭은, 활성탄 18~28중량%, 바인더 13~23중량%, 수산화철 15~30중량%, 티타늄산화물 30~45중량%를 포함하여 제조되는 정수기용 필터.
  3. 유입구와 유출구가 구비된 필터 하우징;
    상기 필터 하우징 내에 구비되어, 상기 유입구를 통해 유입된 물을 정수하여 상기 유출구로 공급하는 필터모듈을 포함하되,
    상기 필터모듈은, 활성탄, 바인더, 수산화철, 티타늄산화물 및 0가철(zero valent iron)을 혼합하여 제조된 중공관 형태의 카본블럭을 포함하는 정수기용 필터.
  4. 제 1항에 있어서,
    상기 카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 5~15중량%, 티타늄산화물 18~28중량%, 0가철 10~20중량%를 포함하여 제조되는 정수기용 필터.
  5. 제 1항 또는 제 3항에 있어서,
    상기 카본블럭은 내측에 배치된 제1카본블럭과, 상기 제1카본블럭의 외측을 감싸도록 배치되는 제2카본블럭을 포함하는 정수기용 필터.
  6. 제 5항에 있어서,
    상기 제1카본블럭의 외경과 상기 제2카본블럭의 내경은 동일하게 형성되는 정수기용 필터.
  7. 제 5항에 있어서,
    상기 제1카본블럭과 제2카본블럭은 조성비가 상이하게 형성되는 정수기용 필터.
  8. 제 7항에 있어서,
    상기 제1카본블럭은, 활성탄 10~20중량%, 바인더 13~23중량%, 수산화철 10~57중량%, 티타늄산화물 10~57중량%를 포함하여 제조되고,
    상기 제2카본블럭은, 활성탄 23~33중량%, 바인더 13~23중량%, 수산화철 8~46중량%, 티타늄산화물 8~46중량%를 포함하여 제조되는 정수기용 필터.
  9. 제 7항에 있어서,
    상기 제2카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 1~10중량%, 티타늄산화물 1~10중량%, 0가철 37~47중량%를 포함하여 제조되는 정수기용 필터.
  10. 제 9항에 있어서,
    상기 제1카본블럭은, 활성탄 25~35중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 32~42중량%를 포함하여 제조되는 정수기용 필터.
  11. 제 1항에 있어서,
    상기 카본블럭은, 활성탄 20~28중량%, 바인더 13~23중량%, 수산화철 14~24중량%, 티타늄산화물 33~43중량%를 포함하여 제조되는 정수기용 필터.
  12. 제 1항 또는 제 3항에 있어서,
    상기 카본블럭의 외측을 감싸는 음이온 교환수지 부직포를 더 포함하는 것을 특징으로 하는 정수기용 필터.
  13. 제 1항 또는 제 3항에 있어서,
    상기 필터 하우징의 내부공간은,
    하부에 형성되어, 상기 필터 하우징 유입된 물이 유입되는 제1공간부와,
    상기 제1공간부의 상측에 배치되고, 상기 제1공간부를 경유한 물이 유입되는 는 제2공간부를 형성하는 정수기용 필터.
  14. 제 13항에 있어서,
    상기 카본블럭은,
    상기 제1공간부에 수용되는 제3카본블럭과, 상기 제2공간부에 수용되는 제4카본블럭을 포함하는 정수기용 필터.
  15. 제 14항에 있어서,
    상기 제3카본블럭과 제4카본블럭은 조성비가 상이하게 형성되는 정수기용 필터.
  16. 제 15항에 있어서,
    상기 제3카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 29~39중량%, 티타늄산화물 18~28중량%을 포함하여 제조되고,
    상기 제4카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 12~22중량%, 티타늄산화물 35~45중량%를 포함하여 제조되는 정수기용 필터.
  17. 제 15항에 있어서,
    상기 제3카본블럭은, 활성탄 18~28중량%, 바인더 13~23중량%, 수산화철 9~15중량%, 티타늄산화물 18~28중량%, 0가철 15~25중량%를 포함하여 제조되는 정수기용 필터.
  18. 제 17항에 있어서,
    상기 제4카본블럭은, 활성탄 20~30중량%, 바인더 13~23중량%, 수산화철 10~20중량%, 티타늄산화물 37~47중량%를 포함하여 제조되는 정수기용 필터.
  19. 제 13항에 있어서,
    상기 제1공간부에는, 입자 형태의 음이온교환수지가 충진되고,
    상기 제2공간부에는, 상기 카본블럭이 수용되는 정수기용 필터.
  20. 제 19항에 있어서,
    상기 카본블럭은, 활성탄 25~30중량%, 바인더 13~23중량%, 수산화철 27~37중량%, 티타늄산화물 25~30중량%를 포함하여 제조되는 정수기용 필터.
  21. 제 1항 또는 제 3항에 있어서,
    상기 티타늄 산화물은, Titanium dioxide(TiO 2) 또는 Titanate(Na 4TiO 4) 구비되는 정수기용 필터. ,
  22. 원수로부터 정수를 생성하기 위하여 적어도 하나 이상의 정수기 필터를 포함하는 정수기에 있어서,
    상기 정수기 필터는, 제1항 내지 제21항 중 선택된 어느 한 항의 정수기용 필터로 이루어지는 것을 특징으로 하는 정수기.
PCT/KR2021/004343 2020-05-22 2021-04-07 정수기용 필터 및 이를 포함하는 정수기 WO2021235687A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,091 US20230227328A1 (en) 2020-05-22 2021-04-07 Water purifier filter and water purifier comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200061723A KR20210144406A (ko) 2020-05-22 2020-05-22 정수기용 필터 및 이를 포함하는 정수기
KR10-2020-0061725 2020-05-22
KR1020200061725A KR20210144407A (ko) 2020-05-22 2020-05-22 정수기용 필터 및 이를 포함하는 정수기
KR10-2020-0061723 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235687A1 true WO2021235687A1 (ko) 2021-11-25

Family

ID=78707979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004343 WO2021235687A1 (ko) 2020-05-22 2021-04-07 정수기용 필터 및 이를 포함하는 정수기

Country Status (2)

Country Link
US (1) US20230227328A1 (ko)
WO (1) WO2021235687A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200320020Y1 (ko) * 2003-04-02 2003-07-18 주식회사 동양과학 일체형 정수 필터 베이스
US20120292247A1 (en) * 2010-01-19 2012-11-22 Kyunghee Moon Complex filter and water purifier including complex filter
US20160346715A1 (en) * 2015-05-28 2016-12-01 Shaw Development, Llc Filter inline heater
KR101988947B1 (ko) * 2012-11-05 2019-06-12 웅진코웨이 주식회사 정수필터 조립모듈
KR20190090655A (ko) * 2018-01-25 2019-08-02 엘지전자 주식회사 정수기용 필터 및 이를 포함하는 정수기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200320020Y1 (ko) * 2003-04-02 2003-07-18 주식회사 동양과학 일체형 정수 필터 베이스
US20120292247A1 (en) * 2010-01-19 2012-11-22 Kyunghee Moon Complex filter and water purifier including complex filter
KR101988947B1 (ko) * 2012-11-05 2019-06-12 웅진코웨이 주식회사 정수필터 조립모듈
US20160346715A1 (en) * 2015-05-28 2016-12-01 Shaw Development, Llc Filter inline heater
KR20190090655A (ko) * 2018-01-25 2019-08-02 엘지전자 주식회사 정수기용 필터 및 이를 포함하는 정수기

Also Published As

Publication number Publication date
US20230227328A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2017146352A1 (ko) 공기 청정기
WO2020091317A1 (ko) 에너지 절약형 에어드라이어 및 이를 이용한 건조공기 제조방법
WO2016043427A1 (ko) 고순도 메탄가스의 분리를 위한 다단계 막분리 정제공정 및 장치
WO2017111503A1 (ko) 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2016108565A1 (ko) 수처리장치
AU2020336658B2 (en) Water discharge device and method for controlling the same
WO2017074140A1 (ko) 가습청정장치
WO2021235687A1 (ko) 정수기용 필터 및 이를 포함하는 정수기
WO2018105819A1 (ko) 전기집진장치 및 이를 포함하는 가습공기청정기
WO2021235686A1 (ko) 정수기용 필터 및 이를 포함하는 정수기
WO2020235786A1 (en) Air conditioning apparatus and control method thereof
WO2020004839A1 (ko) 양 방향 토출 유로를 포함하는 공기 청정기 및 이를 제어하는 방법
WO2018038372A1 (ko) 청소기
WO2019045212A1 (ko) 유동 발생장치
WO2021235688A1 (ko) 정수기용 필터 및 이를 포함하는 정수기
WO2017111561A1 (ko) 합금 코팅 강판 및 이의 제조방법
WO2014084443A1 (ko) 우수 초기배제, 저장, 인공함양 장치 및 이를 이용한 우수 초기배제, 저장, 인공함양 방법
WO2019194326A1 (ko) 웨이퍼 수납용기
WO2023085548A1 (ko) 복합 필터 및 이를 포함하는 정수기
WO2021149872A1 (ko) 휴대형 공기정화기 및 이에 구비되는 팬모듈
WO2023182636A1 (ko) 유체 회수 시스템 및 이를 이용한 유체 회수 방법
WO2023121009A1 (ko) 필터 부재 및 이를 포함하는 필터 구조체
WO2023128150A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기
WO2023128149A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217073954

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807846

Country of ref document: EP

Kind code of ref document: A1