WO2021235563A1 - Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method - Google Patents
Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method Download PDFInfo
- Publication number
- WO2021235563A1 WO2021235563A1 PCT/KR2020/006479 KR2020006479W WO2021235563A1 WO 2021235563 A1 WO2021235563 A1 WO 2021235563A1 KR 2020006479 W KR2020006479 W KR 2020006479W WO 2021235563 A1 WO2021235563 A1 WO 2021235563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- length
- pulse
- communication
- pulse train
- pulse trains
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 213
- 238000009826 distribution Methods 0.000 title description 8
- 238000003860 storage Methods 0.000 claims abstract description 55
- 238000004891 communication Methods 0.000 claims description 221
- 230000003287 optical effect Effects 0.000 claims description 79
- 230000015654 memory Effects 0.000 claims description 68
- 230000005540 biological transmission Effects 0.000 claims description 28
- 230000008859 change Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 72
- 238000005516 engineering process Methods 0.000 description 61
- 238000013528 artificial neural network Methods 0.000 description 53
- 238000013473 artificial intelligence Methods 0.000 description 45
- 230000006870 function Effects 0.000 description 39
- 230000008569 process Effects 0.000 description 33
- 238000012545 processing Methods 0.000 description 27
- 238000012549 training Methods 0.000 description 17
- 238000013135 deep learning Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 239000000835 fiber Substances 0.000 description 15
- 238000013527 convolutional neural network Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 239000013598 vector Substances 0.000 description 13
- 238000010801 machine learning Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000306 recurrent effect Effects 0.000 description 10
- 230000010287 polarization Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 230000003190 augmentative effect Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 238000010295 mobile communication Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000012517 data analytics Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 239000004984 smart glass Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
Definitions
- This specification relates to quantum communication.
- n first pulse trains each having a different wavelength are generated, and based on the length of the quantum channel and the length of a storage line, among the n first pulse trains, Selecting k second pulse trains having different wavelengths, and transmitting the k second pulse trains to the other device through the quantum channel based on the k multipaths, wherein the k multipaths
- a method and an apparatus using the same are provided, each of which is constituted by a delay line of a different length.
- NG-RAN New Generation Radio Access Network
- 2 illustrates functional partitioning between NG-RAN and 5GC.
- FIG 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied.
- 5 schematically shows an example of a plug and play QKD protocol.
- 6 is an example of a time delay between pulse trains in a plug-and-play QKD technique.
- FIG. 7 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path, according to an embodiment of the present specification.
- FIG. 8 schematically illustrates a plug-and-play QKD protocol to be provided, according to an embodiment of the present specification.
- FIG. 9 schematically illustrates changes in wavelength division, a time division structure, and a pulse train applied to a bob side according to an embodiment of the present specification.
- FIG. 11 schematically illustrates an application example of an optical filter for removing back scattering pulses.
- FIG. 12 schematically shows an example of the configuration of a detection unit to which two MUXs and 2k SPDs are applied.
- FIG. 13 schematically illustrates changes in a wavelength division, a time division structure, and a pulse train applied to a bob side according to another embodiment of the present specification.
- 15 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path by a device in Bob Side, according to an embodiment of the present specification.
- 16 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to an embodiment of the present specification.
- FIG. 17 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to another embodiment of the present specification.
- 21 illustrates a signal processing circuit for a transmission signal.
- FIG. 22 shows another example of a wireless device applied to the present specification.
- the vehicle 25 illustrates a vehicle to which this specification is applied.
- the vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, and the like.
- 26 illustrates an XR device as applied herein.
- 29 is a diagram illustrating an example of a communication structure that can be provided in a 6G system.
- FIG. 30 schematically illustrates an example of a perceptron structure.
- FIG. 31 schematically shows an example of a multilayer perceptron structure.
- 32 schematically illustrates an example of a deep neural network.
- 35 schematically shows an example of a neural network structure in which a cyclic loop exists.
- 36 schematically shows an example of an operation structure of a recurrent neural network.
- 39 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
- FIG. 40 is a diagram illustrating an example of a method of generating an optical device-based THz signal
- FIG. 41 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
- FIG. 42 illustrates a structure of a photoinc source-based transmitter
- FIG. 43 illustrates a structure of an optical modulator.
- a or B (A or B) may mean “only A”, “only B” or “both A and B”.
- a or B (A or B)” may be interpreted as “A and/or B (A and/or B)”.
- A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
- a slash (/) or a comma (comma) used herein may mean “and/or”.
- A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
- A, B, C may mean “A, B, or C”.
- At least one of A and B may mean “only A”, “only B” or “both A and B”.
- the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
- At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” Any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
- parentheses used herein may mean “for example”. Specifically, when displayed as “control information (PDCCH)”, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. Also, even when displayed as “control information (ie, PDCCH)”, “PDCCH” may be proposed as an example of “control information”.
- new radio access technology new RAT, NR
- Massive Machine Type Communications which provides various services anytime, anywhere by connecting multiple devices and objects, is also one of the major issues to be considered in next-generation communication.
- MTC Massive Machine Type Communications
- a communication system design in consideration of a service/terminal sensitive to reliability and latency is being discussed.
- URLLC Ultra-Reliable and Low Latency Communication
- NG-RAN New Generation Radio Access Network
- the NG-RAN may include a gNB and/or an eNB that provides a UE with user plane and control plane protocol termination.
- 1 illustrates a case in which only gNBs are included.
- the gNB and the eNB are connected to each other through an Xn interface.
- the gNB and the eNB are connected to the 5G Core Network (5GC) through the NG interface. More specifically, it is connected to an access and mobility management function (AMF) through an NG-C interface, and is connected to a user plane function (UPF) through an NG-U interface.
- AMF access and mobility management function
- UPF user plane function
- 2 illustrates functional partitioning between NG-RAN and 5GC.
- the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement setup and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided.
- AMF may provide functions such as NAS security, idle state mobility processing, and the like.
- the UPF may provide functions such as mobility anchoring and PDU processing.
- a Session Management Function (SMF) may provide functions such as terminal IP address assignment and PDU session control.
- FIG. 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied.
- the 5G usage scenario shown in FIG. 3 is merely exemplary, and the technical features of the present specification may be applied to other 5G usage scenarios not shown in FIG. 8 .
- the three main requirements areas of 5G are (1) enhanced mobile broadband (eMBB) area, (2) massive machine type communication (mMTC) area and ( 3) includes ultra-reliable and low latency communications (URLLC) domains.
- eMBB enhanced mobile broadband
- mMTC massive machine type communication
- URLLC ultra-reliable and low latency communications
- Some use cases may require multiple domains for optimization, while other use cases may focus on only one key performance indicator (KPI).
- KPI key performance indicator
- 5G is to support these various use cases in a flexible and reliable way.
- eMBB focuses on overall improvements in data rates, latency, user density, capacity and coverage of mobile broadband connections. eMBB aims for a throughput of around 10 Gbps. eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main causes of the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices are connected to the Internet.
- Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
- Cloud storage is a special use case that drives the growth of uplink data rates.
- 5G is also used for remote work on the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
- cloud gaming and video streaming are another key factor increasing the demand for mobile broadband capabilities.
- Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
- Another use example is augmented reality for entertainment and information retrieval.
- augmented reality requires very low latency and instantaneous amount of data.
- mMTC is designed to enable communication between a large number of low-cost devices powered by batteries and is intended to support applications such as smart metering, logistics, field and body sensors.
- mMTC is targeting a battery life of 10 years or so and/or a million devices per square kilometer.
- mMTC enables seamless connectivity of embedded sensors in all fields and is one of the most anticipated 5G use cases. Potentially, by 2020, there will be 20.4 billion IoT devices.
- Industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
- URLLC is ideal for vehicular communications, industrial control, factory automation, telesurgery, smart grid, and public safety applications by allowing devices and machines to communicate very reliably, with very low latency and with high availability.
- URLLC aims for a delay on the order of 1 ms.
- URLLC includes new services that will transform the industry through ultra-reliable/low-latency links such as remote control of critical infrastructure and autonomous vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
- 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second.
- FTTH fiber-to-the-home
- DOCSIS cable-based broadband
- Such high speed may be required to deliver TVs with resolutions of 4K or higher (6K, 8K and higher) as well as virtual reality (VR) and augmented reality (AR).
- VR and AR applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
- Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires both high capacity and high mobile broadband. The reason is that future users will continue to expect high-quality connections regardless of their location and speed.
- Another example of use in the automotive sector is augmented reality dashboards.
- the augmented reality contrast board allows drivers to identify objects in the dark above what they are seeing through the front window.
- the augmented reality dashboard superimposes information to inform the driver about the distance and movement of objects.
- wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between vehicles and other connected devices (eg, devices carried by pedestrians).
- Safety systems can help reduce the risk of accidents by guiding drivers through alternative courses of action to help them drive safer.
- the next step will be remote-controlled vehicles or autonomous vehicles.
- This requires very reliable and very fast communication between different autonomous vehicles and/or between vehicles and infrastructure.
- autonomous vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern.
- the technological requirements of autonomous vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
- Smart cities and smart homes will be embedded with high-density wireless sensor networks.
- a distributed network of intelligent sensors will identify conditions for keeping a city or house cost- and energy-efficient.
- a similar setup can be performed for each household.
- Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors typically require low data rates, low power and low cost.
- real-time HD video may be required in certain types of devices for surveillance.
- Smart grids use digital information and communication technologies to interconnect these sensors to collect information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economy, sustainability of production and distribution of fuels such as electricity in an automated manner.
- the smart grid can also be viewed as another low-latency sensor network.
- the health sector has many applications that can benefit from mobile communications.
- the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care in remote rural areas. It is also used to save lives in critical care and emergency situations.
- a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable radio links is an attractive opportunity for many industries. Achieving this, however, requires that wireless connections operate with similar latency, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
- Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
- Logistics and freight tracking use cases typically require low data rates but may require wide range and reliable location information.
- the NR communication system and the LTE communication system described above can also be applied to quantum cryptography communication, which will be described later.
- quantum cryptography communication has been proposed, and an example of a quantum cryptography communication structure will be described with reference to the drawings as follows.
- the QKD (quantum key distribution) transmitter 410 may be connected to the QKD receiver 420 through a public channel and a quantum channel to perform communication.
- the QKD transmitter 410 may supply the secret key to the encryptor 430
- the QKD receiver 420 may also supply the secret key to the decryptor 440 .
- plain text may be input/output to the encryptor 430, and the encryptor 430 may transmit data encrypted with a secret symmetric key to the decryptor 440 (via an existing communication network).
- plain text may be input/output to the decoder 440 .
- quantum cryptography communication since the secret key for data encryption is distributed using the principle of quantum mechanics, it may be impossible for an eavesdropper to find out the information of the encryption key. Summarizing this, quantum cryptography communication can have the following properties.
- Plug and Play QKD is a protocol that generates key information through phase encoding. It is an efficient quantum cryptography protocol that does not require the application of additional correction techniques due to its strong resistance to fluctuations in phase and polarization. .
- this technique is not a symmetrical structure in which Alice side and Bob side have a light source and a detector, respectively, as can be seen in the configuration diagram of FIG. They can all have an asymmetric structure.
- the quantum communication system can construct a one-to-many quantum cryptographic communication network with one Bob side and multiple Alice sides with low complexity. and low cost.
- a plug-and-play QKD protocol among various protocols of the QKD technology will be described with reference to drawings.
- 5 schematically shows an example of a plug and play QKD protocol.
- the basic plug-and-play QKD technique may be performed in the following order.
- a strong laser pulse (1550nm) emitted from the side of the rice is split 50/50 by a beam splitter (BS). This can be expressed as an expression as follows.
- the two pulses passing through the BS are divided into a short path and a long path having a phase modulator (eg, PM_B) and a delay line (DL), respectively.
- the phase modulator PM_B does not operate.
- DL is used to create a time difference so that the pulses passing through the two paths do not overlap at the same time, and generally has a length of several tens of meters. This can be expressed as an expression as follows.
- Pulses passing through the short and long paths have polarization components perpendicular to each other when passing through a Polarized Beam Splitter (PBS). Therefore, the pulse passing through the short path has the same polarization component as the input pulse even after passing through the PBS, but the pulse passing through the long path has a pulse having a polarization perpendicular to the input pulse after passing through the PBS. This can be expressed as an expression as follows.
- a pulse that enters the channel passes through an attenuator and a phase modulator (eg, PM_A), but both do not operate at this time.
- PM_A phase modulator
- a pulse passing through PM_A passes through a storage line (SL).
- SL storage line
- the role of the storage line (SL) is as follows. SL prevents mixing of pulses detected by the detector with key information measured by the detector due to Rayleigh back-scattering.
- Backscattering is caused by the fact that the pulse generated from the laser is partially reflected as it passes through each element, and what is not key information is measured by the detector. Since many errors can occur due to backscattering, it is a factor that greatly degrades the performance of quantum cryptography communication.
- a pulse is generated at 1 MHz (eg 10 ⁇ (-6)(s)
- the transmission speed of light in a wired optical fiber is 2 ⁇ 10 ⁇ 8(m/s)
- the number of keys generated at one time is 125
- the storage line SL can store photons while reciprocating, the actual length may be 12.5 km or more, which is half of 25 km.
- a storage line having a very large length is applied to the Alice side. may be needed
- FM Frequency Mirror
- the polarization of the pulse emitted while passing through the PBS from the side of the rice is reflected and then changed again by 90 degrees.
- Role of the Faraday Mirror It changes the incident polarization to polarization perpendicular to it, so that when the pulse enters Bob again, the short-path pulse enters the long path by the PBS, and the long-path pulse becomes the short path. Therefore, since the polarizations are perpendicular to each other when they travel and when they are reflected back, the birefringence experienced by the optical pulses on the optical fiber cancel each other out, making it possible to build a stable system).
- a pulse that has passed through SL after being reflected from FM generates key information through phase coding in a phase modulator (eg, PM_A).
- the key information according to the phase is shown in Table 1 below.
- phase coding can be performed by applying four different phases ⁇ _A to the second pulse passing through PM_A on the Alice side. This can be expressed as an expression as follows.
- the first pulse that enters Bob through the quantum channel passes through a long path and determines the measurement basis by applying two phases ( ⁇ _B) as shown in Table 2 in PM_B.
- the first pulse (traversing the long path) and the second pulse (short path) passing through the two paths of the bobside arrive at the BS at the same time, and at this time, they overlap each other and cause constructive or destructive interference. This can be expressed as an expression as follows.
- the detection result according to the overlapping result is determined between detector 1 and detector 2, and the result can be as shown in Table 3 below.
- the storage line described above can be applied for the following reasons (ie, to solve the problem of backscattering photons). - Light passing through an optical fiber is scattered.
- Pulses from bob can be brighter than pulses from alice and contain less than 0.1 photons on average.
- Backscattering photons can be accompanied by pulses propagating back to Bob, which can cause false counts.
- a storage line may generally have a long length as shown below, and thus, it is not easy to miniaturize the Alice side (eg, a device corresponding to the Alice side, etc.).
- SL Minimum length requirement of SL: In order to prevent back scattering, it must be a length that can store all laser pulse trains.
- the storage line may have a length of, for example, 256 m or more.
- miniaturizing/lightening storage lines is generally a difficult task.
- the plug-and-play QKD the laser and the detector are together in the receiving unit (eg, bob side). It is not intended to limit the composition that exists in each Alice side from the scope of rights). For this reason, the plug-and-play QKD has a structure advantageous for reducing the weight of the transmitter (eg, Alice side), and thus, the plug-and-play QKD may be advantageously applied to a structure such as a 1:N QKD network and/or IOT.
- the key rate is low due to the structural characteristic of having to reciprocate the transceiver compared to the one-way QKD (constraints to minimize long detection due to back scattering:
- the next train pulse(s) can only be sent after the previously sent key train pulse(s) have been detected.
- a multi-wavelength laser and an optical switch are used to divide the frequency of a laser pulse, and a delay control of a pulse using DL is used to transmit the wavelength division pulse differentially.
- a delay control of a pulse using DL is used to transmit the wavelength division pulse differentially.
- the back scattering pulse generated at this time is to efficiently adjust and block the pass wavelength of a tunable optical filter by time to improve the key rate.
- the present specification relates to a technique for quantum key distribution (QKD) in a quantum secure communication system. More specifically, in the plug-and-play quantum key distribution system of the QKD technique, the pulse train generated by the light source on the rice side is efficiently distributed using multiple paths and multiple wavelengths according to the length of the channel and storage line. It relates to a method, apparatus and system for increasing a transmission rate. In addition, in the present specification, by applying a method of efficiently converting the tunable optical filter according to the time of change in the wavelength of the pulse, the increase in quantum bit error rate due to Rayleigh back scattering due to Rayleigh back scattering is suppressed with only a minimum number of detectors and the length of the storage line. including methods.
- 6 is an example of a time delay between pulse trains in a plug-and-play QKD technique.
- a quantum cryptography key distribution method that can have a high key rate by minimizing the delay time through a method of dividing the light source into multiple paths and wavelengths without the use of an additional laser diode (diode) , make up devices and systems.
- FIG. 7 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path, according to an embodiment of the present specification.
- the device may generate N first pulse trains each having different wavelengths ( S710 ).
- N may be a natural number.
- the device may mean a device at Bobside, in this case, the device at Bobside may correspond to the above-described base station (of course, in this specification, it is assumed that the device at Bobside corresponds to a terminal) It is not intended to be excluded from the scope of the present specification).
- the length of the first pulse train may be determined based on a length of at least one of the first pulse trains, the number of source pulses included in one pulse train, a speed of light in an optical cable, and a repetition rate of a laser source.
- c is the speed of light in the optical cable
- f_source may be a repetition rate of the laser source.
- the device may select k second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line ( S720 ).
- k is a natural number, and k may be less than or equal to n.
- the k which is the number of the second pulse train, may be the number of maximum wavelengths selected by the device.
- the maximum number of wavelengths selected by the device may be determined based on the length of at least one quantum channel, the length of the storage line, and the length of the first pulse train.
- the value of k which is the number of maximum wavelengths selected by the device, is determined based on the following equation, , wherein l_ch is the length of the quantum channel, l_sl is the length of the storage line, and l is the length of the first pulse train.
- wavelength division based on a reduction in the length of the pulse train may be provided.
- the value of k_2, which is the number of maximum wavelengths selected by the device is determined based on the following equation, , wherein l_ch is the length of the quantum channel, l_sl is the length of the storage line, l is the length of the first pulse train, and a may be a value corresponding to a ratio of a reduced wavelength compared to the previous example.
- the device may transmit the k second pulse trains to the other device through the quantum channel based on the k multipaths (s730).
- each of the k multi-paths may be configured with delay lines having different lengths.
- the value of the length of the delay line is the length of at least one shortest delay line, the maximum number of wavelengths selected by the device, the length of the first pulse train, and the length corresponding to the switching time required for changing the wavelength component. can be determined based on
- the method further comprises filtering a backscattering (backscattering) pulse generated based on the transmission of the second pulse train based on a tunable optical filter, wherein the tunable optical filter has a passable wavelength It may be a variably adjustable element.
- the device may be a bob side device, and the other device may be an alice side device, eg, the device may be a base station, and the other device may be a user equipment. ) can be
- FIG. 8 schematically illustrates a plug-and-play QKD protocol to be provided, according to an embodiment of the present specification.
- the first method is a technique of increasing the key rate by sequentially applying multipath and wavelength division to have different wavelengths between pulse trains, and then minimizing the delay times of the current pulse train and the next pulse train.
- a different wavelength is applied to each pulse train to reduce the length of the storage line by the split ratio while having the same key rate as the first method.
- Method 1 Plug and Play through Multipath and Wavelength Segmentation QKD protocol key rate improvement technique
- FIG. 9 schematically illustrates changes in wavelength division, a time division structure, and a pulse train applied to a bob side according to an embodiment of the present specification.
- a generator eg, a multi-wavelength (MW) generator
- MW multi-wavelength
- one pulse train may include m pulses, and each of the N pulse trains may have a different wavelength.
- Such examples are shown in 1 of FIG. 9 .
- An optical switch (OSW) 920 may select as many as K pulse trains among N pulse trains. Such examples are shown in 2 of FIG. 9 .
- the selected K pulse trains may be transmitted through the multi-path 930 .
- Such examples are shown in 3 of FIG. 9 .
- a multi-wavelength generator In the wavelength division step of the transmission pulse train generated by the light source, first, a multi-wavelength generator generates pulses having n different wavelengths.
- the multi-wavelength generator that can be applied at this time is mainly used in a method that uses the nonlinear optical effect of a gain material such as an erbium-doped fiber or a Raman fiber. It is possible to simultaneously generate n pulses with differences. Then, among the n pulse signals having different wavelengths, based on the length of the channel and the length of the storage line, a pulse signal having k (n ⁇ k) different wavelengths that can be used maximally is switched by using the optical switch (osw). choose through,
- the maximum number k of the selected wavelength is determined by the length of the channel and the storage line occupying most of the entire transmission/reception path, and the value can be obtained as follows.
- l is the length of one pulse train generated through the light source
- m is the number of source pulses included in one pulse train
- c 2 ⁇ 10 ⁇ 8 (m/s) is the speed of light in the optical cable
- f_source may be the repetition rate of the laser source.
- k may be the number of maximum wavelengths that can be selected by the optical switch
- l_ch may be the length of the quantum channel
- l_sl may be the length of the storage line.
- the pulse generated by the laser diode of the plug-and-play qkd technique passes through the channel and storage line, which occupy most of the transmission/reception path, twice in the process of going back and forth from Bob->Alice->Bob. Therefore, the total round trip length of the path can be set to 2*(l_ch+l_sl). (Except because the length of the path used for the rest of Alice and Bob's optics and internal construction is very short)
- pulse trains having up to k different wavelengths may be selected using an optical switch.
- the k pulse trains having different wavelengths selected through the optical switch are formed at the same position as in 2 of FIG. 9 .
- a difference in the length of a path through which each pulse train passes is generated to distinguish a time point at which each pulse train is transmitted. This enables continuous transmission without time delay between the previously generated pulse trains with different wavelengths and without overlap between the pulse trains.
- the length of the first path may be defined as, for example, t(m), and the length of the second path may be defined as, for example, t+(l+l_st)(m).
- the length of the k-th path may be defined as, for example, t+(k-1)*(l+l_st) (m).
- l may be a difference in length of the delay line.
- the switching time for changing the wavelength to be blocked in the tunable optical filter used to suppress back scattering pulses that may appear when the next pulse train is transmitted immediately after passes This is because the next pulse train with a different wavelength can be received by the detector only after it has passed.
- the length of the k-th path from the first path is l+l_st when the length of the shortest path among all paths in FIG. 10 is t. -> It is configured to increase by the path difference as many as multiples of ⁇ l.
- FIG. 11 schematically illustrates an application example of an optical filter for removing back scattering pulses.
- pulse trains having different wavelengths may be continuously connected and transmitted through the aforementioned wavelength division part and time division part.
- an optical filtering process as shown in FIG. 11 that prevents the backscattering pulse from being detected by the detector must be additionally applied immediately before the single photon detector (SPD). Two methods can be considered for this.
- FIG. 12 schematically shows an example of the configuration of a detection unit to which two MUXs and 2k SPDs are applied.
- the wavelength is detected. It can be detected by connecting to a capable detector. In this case, since only the signal of the corresponding wavelength is detected by each detector, it is possible to prevent an increase in the error rate due to the detection of the back-scattering pulse.
- this method has a disadvantage that many detectors may be required because different detectors for each wavelength must be used.
- the first pulse train generated by the laser diode returns to the Bob side through the quantum channel and Alice side, and the time it takes to start detection by the single photon detector is measured, and from that time, the single In the tunable optical filter installed just before the photon detector, it is intended to provide a configuration in which the wavelength of the filter is adjusted so that only the wavelength of the first pulse can pass, and all pulses of the remaining wavelengths are set to be blocked.
- the laser diode transmits the pulse train of the first wavelength again, so the previous process is repeated from the beginning.
- the laser diode transmits the pulse train of the first wavelength again, so the previous process is repeated from the beginning.
- Method 2 Plug and play by minimizing the length of the storage line QKD of the protocol Alice Side miniaturization and key rate improvement technique
- the same length (l_sl) of the storage line SL as that of the existing plug-and-play technique is used on the Alice side.
- the length corresponds to the length that can store the pulse train of one block generated by the light source on the side of Bob, and can be expressed as the following equation.
- the speed of the optical pulse in the fiber may be 2 ⁇ 10 8 (m/s).
- f_laser may mean a repetition rate of the source.
- FIG. 13 schematically illustrates changes in a wavelength division, a time division structure, and a pulse train applied to a bob side according to another embodiment of the present specification.
- a pulse train having more various wavelength lengths by the reduced ratio is selected through an optical switch.
- an additional optical switch (increasing the number of channels used in the optical switch) is used to select the pulse train with more wavelengths.
- k_2 may mean the maximum number of wavelengths that can be selected by the optical switch
- l_ch is the length of the quantum channel
- l_sl is the length of the storage line
- l is the length of one pulse train generated through the light source.
- the wavelength of the optical filter needs to be adjusted more frequently than in Method 1 due to a decrease in the length of the pulse train generated by Bob and an increase in the number of pulse trains having different wavelengths. Therefore, although the technique of the present specification consumes more pass wavelength conversion time of the optical filter than the first technique, the wavelength conversion time of currently used filters is about several nanoseconds (ns), so there is little reduction in the key rate.
- the time t( ⁇ _j') required for the passage of the j-th pulse train (having a wavelength length of ⁇ _j', assuming that the length is set as short as a times compared to the first technique) is the time taken in the first specification technique t( ⁇ _j) Since it is a times shorter than , the conversion cycle of the optical filter should be set to 1/a compared to the previous one.
- the time (t_sw) required for the pass-wavelength conversion of the filter may be the same for both techniques.
- the time required for the detector to receive the pulse train including the wavelength of ⁇ _1 and m pulses in the first technique is t( ⁇ _1)+t_sw.
- the second technique the following time may be required to detect the same m pulses as in the first technique.
- the length obtained by dividing the pulse train of the first technique by a is used as the length of the basic pulse train.
- the total time it takes for the second method to detect a pulse train having the same length as the first method is it can be seen that Therefore, in the second method, it takes more time (a-1) ⁇ t_sw to detect a pulse train of the same length as that used in the first method.
- the key information detection unit stores h pieces of information detected with a specific wavelength ( ⁇ _1) in the memory in the first technique as shown in FIG. 14, and then uses the value as key information of one block.
- ⁇ _1 a specific wavelength
- the key information detection unit stores h pieces of information detected with a specific wavelength ( ⁇ _1) in the memory in the first technique as shown in FIG. 14, and then uses the value as key information of one block.
- h pieces of information obtained by collecting key sequence information generated from a pulse train which is the ratio of the length of the pulse train reduced by the signal generator, are used as key values.
- wavelength division, multi-path technique, and optical filter switching technique are applied to the pulse train generated from the light source in common to apply the low shift key, which was a problem of the existing plug-and-play quantum cryptography communication technique. There may be an effect that the rate is improved.
- the shifted key rate of the existing technique is l_sl/((l_channel+l_sl) n_sw) further has a key rate loss.
- the key rate can be improved, and the improvement rate may be equal to ((l_channel+l_sl) ⁇ n_sw)/l_sl.
- n_sw which is an optical filter coefficient
- ⁇ _f may mean a loss of the filter.
- the length of the storage line which was the biggest obstacle for Alice's weight reduction in the plug-and-play quantum cryptography communication technique, was reduced. can be minimized
- the effect of reducing the length of the storage line may be reduced by a ratio of reducing the number of pulse(s) included in one pulse train in the following equation. For example, in the existing technique, if the length of the storage line is determined in units of one block for 500 pulses, the proposed technique divides it into 10 equal parts and sends each 50 pulse trains through a pulse train having a different wavelength. Reduce the length of the storage line by 1/10.
- 15 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path by a device in Bob Side, according to an embodiment of the present specification.
- the device may generate N first pulse trains each having different wavelengths ( S1510 ).
- N first pulse trains each having different wavelengths ( S1510 ).
- the device may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line ( S1520 ).
- K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line ( S1520 ).
- the device may transmit the K second pulse trains to another device through the quantum channel based on the K multipaths ( S1530 ).
- the device may transmit the K second pulse trains to another device through the quantum channel based on the K multipaths ( S1530 ).
- 16 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to an embodiment of the present specification.
- a device 1600 may include a generator 1610 , an optical switch 1620 , and a multipath 1630 .
- the device 1600 may be connected to the device of the Alice side described above through the quantum channel 1640 .
- a control device (eg, may include a processor) 1670 for controlling the device may exist separately from the device.
- the control device 1670 may include a generator control unit 1650 and an optical switch control unit 1660 .
- the generator 1610 may generate N first pulse trains each having a different wavelength.
- N first pulse trains each having a different wavelength.
- the optical switch 1620 may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line.
- each of the K second pulse trains may pass through the multipath 1630 .
- the multipath 1630 since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
- control device or processor may be configured as follows.
- the generator control unit 1650 may be configured to generate N first pulse trains each having different wavelengths.
- N first pulse trains each having different wavelengths.
- the optical switch controller 1660 may be configured to select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line.
- the K second pulse trains may be configured to be transmitted to the other device through the quantum channel based on the K multi-paths.
- repeated description of overlapping content will be omitted for convenience of description.
- the apparatus provided in the present specification may include a processor for controlling the apparatus provided in the present specification, which may be described with reference to the drawings as follows.
- FIG. 17 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to another embodiment of the present specification.
- a device 1700 may include a generator 1710 , an optical switch 1720 , and a multipath 1730 .
- the device 1700 may be connected to the device of the Alice side described above through the quantum channel 1740 .
- a control device (eg, may include a processor) 1770 for controlling the device may be included in the device.
- the control device 1770 may include a generator control unit 1750 and an optical switch control unit 1760 .
- the generator 1710 may generate N first pulse trains each having different wavelengths.
- N first pulse trains each having different wavelengths.
- the optical switch 1720 may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line.
- each of the K second pulse trains may pass through the multipath 1730 .
- the multipath 1730 since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
- control device or processor may be configured as follows.
- the generator control unit 1750 may be configured to generate N first pulse trains each having different wavelengths.
- N first pulse trains each having different wavelengths.
- the optical switch controller 1760 may be configured to select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line.
- the K second pulse trains may be configured to be transmitted to the other device through the quantum channel based on the K multi-paths.
- repeated description of overlapping content will be omitted for convenience of description.
- the communication system 1 applied to the present specification includes a wireless device, a base station, and a network.
- the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
- a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
- the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Things (IoT) device 100f, and an AI device/server 400 .
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
- Home appliances may include a TV, a refrigerator, a washing machine, and the like.
- the IoT device may include a sensor, a smart meter, and the like.
- the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
- the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
- the IoT device eg, sensor
- the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
- Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
- the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
- This can be done through technology (eg 5G NR)
- Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
- the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
- various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
- resource allocation processes etc.
- NR supports a number of numerology (or subcarrier spacing (SCS)) to support various 5G services.
- numerology or subcarrier spacing (SCS)
- SCS subcarrier spacing
- the NR frequency band may be defined as a frequency range of two types (FR1, FR2).
- the numerical value of the frequency range may be changed, for example, the frequency ranges of the two types (FR1, FR2) may be as shown in Table 4 below.
- FR1 may mean “sub 6GHz range”
- FR2 may mean “above 6GHz range” and may be called millimeter wave (mmW). .
- mmW millimeter wave
- FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 5 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
- FIG. 19 exemplifies a wireless device applicable to the present specification.
- the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
- ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 18 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
- the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
- the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
- the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
- the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a wireless communication technology eg, LTE, NR
- the transceiver 106 may be coupled with the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
- the transceiver 106 may include a transmitter and/or a receiver.
- the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
- RF radio frequency
- a wireless device may refer to a communication modem/circuit/chip.
- the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
- the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
- the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
- the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a wireless communication technology eg, LTE, NR
- the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
- the transceiver 206 may include a transmitter and/or a receiver.
- the transceiver 206 may be used interchangeably with an RF unit.
- a wireless device may refer to a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102 , 202 .
- one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- the one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
- the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , to one or more transceivers 106 and 206 .
- the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
- PDUs, SDUs, messages, control information, data, or information may be acquired according to the above.
- One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- firmware or software which may be implemented to include modules, procedures, functions, and the like.
- the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed herein provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
- the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
- One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
- One or more memories 104 , 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
- one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
- one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
- one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, proposals, methods and/or operation flowcharts, etc.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
- One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
- one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
- a wireless device may include at least one processor 102 , 202 , at least one memory 104 , 204 , at least one transceiver 106 , 206 , and one or more antennas 108 , 208 . have.
- FIG. 19 the processors 102 and 202 and the memories 104 and 204 are separated, but in the example of FIG. 20 , the processor The point is that memories 104 and 204 are included in (102, 202).
- the specific descriptions of the processors 102, 202, the memories 104, 204, the transceivers 106, 206, and the one or more antennas 108, 208 are as described above, so to avoid unnecessary repetition of the description, A description of the repeated description will be omitted.
- 21 illustrates a signal processing circuit for a transmission signal.
- the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 .
- the operations/functions of FIG. 21 may be performed by the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 19 .
- the hardware elements of FIG. 21 may be implemented in the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 19 .
- blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 19 .
- blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 19
- block 1060 may be implemented in the transceivers 106 and 206 of FIG. 19 .
- the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 21 .
- the codeword is a coded bit sequence of an information block.
- the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
- the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
- the codeword may be converted into a scrambled bit sequence by the scrambler 1010 .
- a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
- the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
- the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
- the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 .
- Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding).
- the output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
- N is the number of antenna ports
- M is the number of transmission layers.
- the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
- the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
- the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
- CP Cyclic Prefix
- DAC Digital-to-Analog Converter
- the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 21 .
- the wireless device eg, 100 and 200 in FIG. 19
- the received radio signal may be converted into a baseband signal through a signal restorer.
- the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
- ADC analog-to-digital converter
- FFT Fast Fourier Transform
- the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
- the codeword may be restored to the original information block through decoding.
- the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a postcoder, a demodulator, a descrambler, and a decoder.
- the wireless device 22 shows another example of a wireless device applied to the present specification.
- the wireless device may be implemented in various forms according to use-examples/services (see FIG. 18 ).
- the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 19 , and various elements, components, units/units, and/or modules ) may consist of
- the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
- the communication unit may include communication circuitry 112 and transceiver(s) 114 .
- communication circuitry 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 19 .
- the transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG.
- the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, another communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
- the outside eg, another communication device
- Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130 .
- the additional element 140 may be configured in various ways according to the type of the wireless device.
- the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
- the wireless device may include a robot ( FIGS. 18 and 100a ), a vehicle ( FIGS. 18 , 100b-1 , 100b-2 ), an XR device ( FIGS. 18 and 100c ), a mobile device ( FIGS. 18 and 100d ), and a home appliance. (FIG. 18, 100e), IoT device (FIG.
- digital broadcasting terminal digital broadcasting terminal
- hologram device public safety device
- MTC device medical device
- fintech device or financial device
- security device climate/environment device
- It may be implemented in the form of an AI server/device ( FIGS. 18 and 400 ), a base station ( FIGS. 18 and 200 ), and a network node.
- the wireless device may be mobile or used in a fixed location depending on the use-example/service.
- various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
- each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
- the controller 120 may be configured with one or more processor sets.
- the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
- the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- FIG. 22 will be described in more detail with reference to the drawings.
- the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
- a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS advanced mobile station
- WT wireless terminal
- the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c . ) may be included.
- the antenna unit 108 may be configured as a part of the communication unit 110 .
- Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 22 .
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
- the controller 120 may control components of the portable device 100 to perform various operations.
- the controller 120 may include an application processor (AP).
- the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
- the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
- the interface unit 140b may support the connection between the portable device 100 and other external devices.
- the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
- the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
- the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
- the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
- the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
- various forms eg, text, voice, image, video, haptic
- the vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
- AV unmanned aerial vehicle
- the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
- the antenna unit 108 may be configured as a part of the communication unit 110 .
- Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 22, respectively.
- the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
- the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
- the controller 120 may include an Electronic Control Unit (ECU).
- the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
- the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
- the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
- the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
- the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
- IMU inertial measurement unit
- a collision sensor a wheel sensor
- a speed sensor a speed sensor
- an inclination sensor a weight sensor
- a heading sensor a position module
- a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
- the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
- the communication unit 110 may receive map data, traffic information data, and the like from an external server.
- the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
- the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
- the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
- the sensor unit 140c may acquire vehicle state and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
- the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
- the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
- the vehicle 25 illustrates a vehicle to which this specification is applied.
- the vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, and the like.
- the vehicle 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , and a position measurement unit 140b .
- blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
- the controller 120 may control components of the vehicle 100 to perform various operations.
- the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100 .
- the input/output unit 140a may output an AR/VR object based on information in the memory unit 130 .
- the input/output unit 140a may include a HUD.
- the position measuring unit 140b may acquire position information of the vehicle 100 .
- the location information may include absolute location information of the vehicle 100 , location information within a driving line, acceleration information, location information with a surrounding vehicle, and the like.
- the position measuring unit 140b may include a GPS and various sensors.
- the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store it in the memory unit 130 .
- the position measuring unit 140b may obtain vehicle position information through GPS and various sensors and store it in the memory unit 130 .
- the controller 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a may display the created virtual object on a window inside the vehicle ( 1410 and 1420 ).
- the controller 120 may determine whether the vehicle 100 is normally operating within the driving line based on the vehicle location information. When the vehicle 100 deviates from the driving line abnormally, the controller 120 may display a warning on the windshield of the vehicle through the input/output unit 140a.
- control unit 120 may broadcast a warning message regarding the driving abnormality to surrounding vehicles through the communication unit 110 .
- control unit 120 may transmit the location information of the vehicle and information on driving/vehicle abnormality to the related organization through the communication unit 110 .
- the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- HMD head-up display
- the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- HUD head-up display
- the XR device 100a may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a power supply unit 140c.
- blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers.
- Media data may include images, images, sounds, and the like.
- the controller 120 may perform various operations by controlling the components of the XR device 100a.
- the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
- the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object.
- the input/output unit 140a may obtain control information, data, and the like from the outside, and may output the generated XR object.
- the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
- the sensor unit 140b may obtain an XR device state, surrounding environment information, user information, and the like.
- the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
- the power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
- the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
- the input/output unit 140a may obtain a command to operate the XR device 100a from the user, and the controller 120 may drive the XR device 100a according to the user's driving command. For example, when the user wants to watch a movie or news through the XR device 100a, the controller 120 transmits the content request information through the communication unit 130 to another device (eg, the mobile device 100b) or can be sent to the media server.
- the communication unit 130 may download/stream contents such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130 .
- the controller 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 140a/sensor unit 140b
- An XR object can be created/output based on information about one surrounding space or a real object.
- the XR device 100a is wirelessly connected to the portable device 100b through the communication unit 110 , and the operation of the XR device 100a may be controlled by the portable device 100b.
- the portable device 100b may operate as a controller for the XR device 100a.
- the XR device 100a may obtain 3D location information of the portable device 100b and then generate and output an XR object corresponding to the portable device 100b.
- Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
- the robot 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a driving unit 140c .
- blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit/receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
- the controller 120 may perform various operations by controlling the components of the robot 100 .
- the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100 .
- the input/output unit 140a may obtain information from the outside of the robot 100 and may output information to the outside of the robot 100 .
- the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
- the sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100 .
- the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
- the driving unit 140c may perform various physical operations such as moving a robot joint. In addition, the driving unit 140c may make the robot 100 travel on the ground or fly in the air.
- the driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
- AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, and vehicles. It may be implemented in any possible device or the like.
- the AI device 100 includes a communication unit 110 , a control unit 120 , a memory unit 130 , input/output units 140a/140b , a learning processor unit 140c and a sensor unit 140d). may include.
- Blocks 110-130/140a-140d correspond to blocks 110-130/140 of FIG. X3, respectively.
- the communication unit 110 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. W1, 100x, 200, 400) or the AI server 200 and wired/wireless signals (eg, sensor information, user input, learning). models, control signals, etc.). To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
- external devices such as other AI devices (eg, FIGS. W1, 100x, 200, 400) or the AI server 200 and wired/wireless signals (eg, sensor information, user input, learning). models, control signals, etc.).
- the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
- the controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize the data of the learning processor unit 140c or the memory unit 130, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 100 may be controlled to execute the operation. In addition, the control unit 120 collects history information including user feedback on the operation contents or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( W1, 400) and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
- the memory unit 130 may store data supporting various functions of the AI device 100 .
- the memory unit 130 may store data obtained from the input unit 140a , data obtained from the communication unit 110 , output data of the learning processor unit 140c , and data obtained from the sensing unit 140 .
- the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the control unit 120 .
- the input unit 140a may acquire various types of data from the outside of the AI device 100 .
- the input unit 120 may obtain training data for model learning, input data to which the learning model is applied, and the like.
- the input unit 140a may include a camera, a microphone, and/or a user input unit.
- the output unit 140b may generate an output related to sight, hearing, or touch.
- the output unit 140b may include a display unit, a speaker, and/or a haptic module.
- the sensing unit 140 may obtain at least one of internal information of the AI device 100 , surrounding environment information of the AI device 100 , and user information by using various sensors.
- the sensing unit 140 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
- the learning processor unit 140c may train a model composed of an artificial neural network by using the training data.
- the learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server ( FIGS. W1 and 400 ).
- the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130 . Also, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130 .
- next-generation communication eg. 6G
- 6G next-generation communication
- 6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities.
- the vision of the 6G system can be four aspects such as intelligent connectivity, deep connectivity, holographic connectivity, and ubiquitous connectivity, and the 6G system can satisfy the requirements shown in Table 6 below. That is, Table 6 is a table showing an example of the requirements of the 6G system.
- 6G systems include Enhanced mobile broadband (eMBB), Ultra-reliable low latency communications (URLLC), massive machine-type communication (mMTC), AI integrated communication, Tactile internet, High throughput, High network capacity, High energy efficiency, Low backhaul and It may have key factors such as access network congestion and enhanced data security.
- eMBB Enhanced mobile broadband
- URLLC Ultra-reliable low latency communications
- mMTC massive machine-type communication
- AI integrated communication Tactile internet
- High throughput High network capacity
- High energy efficiency High energy efficiency
- Low backhaul Low backhaul and It may have key factors such as access network congestion and enhanced data security.
- 29 is a diagram illustrating an example of a communication structure that can be provided in a 6G system.
- 6G systems are expected to have 50 times higher simultaneous wireless connectivity than 5G wireless communication systems.
- URLLC a key feature of 5G, will become an even more important technology by providing an end-to-end delay of less than 1ms in 6G communication.
- the 6G system will have much better volumetric spectral efficiencies as opposed to the frequently used areal spectral efficiencies.
- the 6G system can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices will not need to be charged separately in the 6G system.
- New network characteristics in 6G may be as follows.
- 6G is expected to be integrated with satellites to provide a global mobile population.
- the integration of terrestrial, satellite and public networks into one wireless communication system is very important for 6G.
- AI can be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
- the 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
- WIET wireless information and energy transfer
- Small cell networks The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
- Ultra-dense heterogeneous networks will be another important characteristic of 6G communication systems.
- a multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
- a backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic.
- High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
- High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
- Softening and virtualization are two important features that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
- AI The most important and new technology to be introduced in 6G systems is AI.
- AI was not involved in the 4G system.
- 5G systems will support partial or very limited AI.
- the 6G system will be AI-enabled for full automation.
- Advances in machine learning will create more intelligent networks for real-time communication in 6G.
- Incorporating AI into communications can simplify and enhance real-time data transmission.
- AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
- AI can also play an important role in M2M, machine-to-human and human-to-machine communication.
- AI can be a rapid communication in BCI (Brain Computer Interface).
- BCI Brain Computer Interface
- AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
- AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
- deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
- Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
- DL downlink
- machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
- Deep learning-based AI algorithms require large amounts of training data to optimize training parameters.
- a lot of training data is used offline. This means that static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
- signals of the physical layer of wireless communication are complex signals.
- further research on a neural network for detecting a complex domain signal is needed.
- Machine learning refers to a set of actions that trains a machine to create a machine that can perform tasks that humans can or cannot do.
- Machine learning requires data and a learning model.
- data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
- Neural network learning is to minimize errors in output. Neural network learning repeatedly inputs training data to the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weights of each node in the neural network.
- Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, the training data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data.
- the labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data.
- the calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation.
- a change amount of the connection weight of each node to be updated may be determined according to a learning rate.
- the computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch).
- the learning rate may be applied differently according to the number of repetitions of the learning cycle of the neural network. For example, in the early stages of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
- the learning method may vary depending on the characteristics of the data. For example, in a communication system, when the purpose of accurately predicting data transmitted from a transmitting end at a receiving end is to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
- the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
- the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and Recurrent Boltzmann Machine (RNN) methods. have.
- DNN deep neural networks
- CNN convolutional deep neural networks
- RNN Recurrent Boltzmann Machine
- An artificial neural network is an example of connecting several perceptrons.
- FIG. 30 schematically illustrates an example of a perceptron structure.
- the huge artificial neural network structure may extend the simplified perceptron structure shown in FIG. 30 to apply input vectors to different multidimensional perceptrons.
- an input value or an output value is referred to as a node.
- the perceptron structure shown in FIG. 30 can be described as being composed of a total of three layers based on an input value and an output value. Between the 1 st layer and the 2 nd layer (d + 1) pieces perceptron H of dimension, 2 nd layer and the 3 rd layer between, the (H + 1) level perceptron can be expressed as shown in Figure 31 the artificial neural network present the K have.
- FIG. 31 schematically shows an example of a multilayer perceptron structure.
- the layer where the input vector is located is called the input layer
- the layer where the final output value is located is called the output layer
- all layers located between the input layer and the output layer are called the hidden layer.
- three layers are disclosed, but when counting the actual number of artificial neural network layers, the number of layers is counted except for the input layer, so it can be viewed as a total of two layers.
- the artificial neural network is constructed by connecting the perceptrons of the basic blocks in two dimensions.
- the aforementioned input layer, hidden layer, and output layer can be jointly applied in various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
- various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
- the artificial neural network becomes deeper, and a machine learning paradigm that uses a sufficiently deep artificial neural network as a learning model is called deep learning.
- an artificial neural network used for deep learning is called a deep neural network (DNN).
- DNN deep neural network
- 32 schematically illustrates an example of a deep neural network.
- the deep neural network shown in FIG. 32 is a multi-layer perceptron composed of eight hidden layers and eight output layers.
- the multilayer perceptron structure is referred to as a fully-connected neural network.
- a connection relationship does not exist between nodes located in the same layer, and a connection relationship exists only between nodes located in adjacent layers.
- DNN has a fully connected neural network structure and is composed of a combination of multiple hidden layers and activation functions, so it can be usefully applied to identify the correlation characteristics between input and output.
- the correlation characteristic may mean a joint probability of input/output.
- various artificial neural network structures different from the above-described DNN can be formed depending on how a plurality of perceptrons are connected to each other.
- FIG. 33 may assume a case in which w nodes are two-dimensionally arranged horizontally and h nodes are arranged in two dimensions (convolutional neural network structure of FIG. 33 ).
- a weight is added per connection in the connection process from one input node to the hidden layer, a total of h ⁇ w weights must be considered. Since there are h ⁇ w nodes in the input layer, a total of h 2 w 2 weights are needed between two adjacent layers.
- the convolutional neural network of FIG. 33 has a problem in that the number of weights increases exponentially according to the number of connections, so instead of considering the connection of all modes between adjacent layers, it is assumed that a filter with a small size exists in FIG. 34 As in the above, the weighted sum and activation function calculations are performed on the overlapping filters.
- One filter has a weight corresponding to the number corresponding to its size, and weight learning can be performed so that a specific feature on an image can be extracted and output as a factor.
- a 3 ⁇ 3 filter is applied to the upper left 3 ⁇ 3 region of the input layer, and an output value obtained by performing weighted sum and activation function operations on the corresponding node is stored in z 22 .
- the filter performs weight sum and activation function calculations while moving horizontally and vertically by a predetermined interval while scanning the input layer, and places the output value at the current filter position.
- This calculation method is similar to a convolution operation for an image in the field of computer vision, so a deep neural network with such a structure is called a convolutional neural network (CNN), and a hidden layer generated as a result of the convolution operation is called a convolutional layer.
- a neural network having a plurality of convolutional layers is called a deep convolutional neural network (DCNN).
- the number of weights can be reduced by calculating the weighted sum by including only nodes located in the region covered by the filter in the node where the filter is currently located. Due to this, one filter can be used to focus on features for a local area. Accordingly, CNN can be effectively applied to image data processing in which physical distance in a two-dimensional domain is an important criterion. Meanwhile, in CNN, a plurality of filters may be applied immediately before the convolution layer, and a plurality of output results may be generated through the convolution operation of each filter.
- a structure in which this method is applied to an artificial neural network is called a recurrent neural network structure.
- 35 schematically shows an example of a neural network structure in which a cyclic loop exists.
- a recurrent neural network connects elements (x1(t), x2(t), ,..., xd(t)) of a certain gaze t on a data sequence to a fully connected neural network.
- the weighted sum and activation function are calculated by inputting the hidden vectors (z1(t-1), z2(t-1),..., zH(t-1)) at the immediately preceding time point t-1 in the input process. structure to be applied.
- the reason why the hidden vector is transferred to the next time in this way is because it is considered that information in the input vector at the previous time is accumulated in the hidden vector of the current time.
- 36 schematically shows an example of an operation structure of a recurrent neural network.
- the recurrent neural network operates in a predetermined time sequence with respect to an input data sequence.
- the hidden vector (z1(1), z2(1),.. .,zH(1)) is input with the input vector of time 2 (x1(2),x2(2),...,xd(2)), and through the weighted sum and activation functions, the vector of the hidden layer (z1( 2),z2(2) ,...,zH(2)) are determined. This process is repeatedly performed until time point 2, time point 3, ,,, and time T.
- a deep recurrent neural network when a plurality of hidden layers are arranged in a recurrent neural network, this is called a deep recurrent neural network (DRNN).
- the recurrent neural network is designed to be usefully applied to sequence data (eg, natural language processing).
- Deep Q-Network As a neural network core used as a learning method, in addition to DNN, CNN, and RNN, Restricted Boltzmann Machine (RBM), deep belief networks (DBN), Deep Q-Network and It includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
- RBM Restricted Boltzmann Machine
- DNN deep belief networks
- Deep Q-Network includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
- AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
- deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
- the data rate can be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
- THz waves also known as sub-millimeter radiation, typically exhibit a frequency band between 0.1 THz and 10 THz with corresponding wavelengths in the range of 0.03 mm-3 mm.
- the 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication.
- the 6G cellular communication capacity is increased.
- 300GHz-3THz is in the far-infrared (IR) frequency band.
- the 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3 THz band shows similarities to RF.
- THz communication The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable).
- the narrow beamwidth produced by the highly directional antenna reduces interference.
- the small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
- OWC technology is envisioned for 6G communications in addition to RF-based communications for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections.
- OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system.
- OWC technologies such as light fidelity, visible light communication, optical camera communication, and FSO communication based on a light band are well known technologies.
- Communication based on optical radio technology can provide very high data rates, low latency and secure communication.
- LiDAR can also be used for ultra-high-resolution 3D mapping in 6G communication based on wide bands.
- FSO The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network.
- the data transmission of an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks. With FSO, very long-distance communication is possible even at distances of 10,000 km or more.
- FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands.
- FSO also supports cellular BS connectivity.
- MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
- Blockchain will become an important technology for managing large amounts of data in future communication systems.
- Blockchain is a form of distributed ledger technology, a distributed ledger is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger.
- the blockchain is managed as a peer-to-peer network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption.
- Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several functions such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
- the 6G system integrates terrestrial and public networks to support vertical expansion of user communications.
- 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
- UAVs Unmanned Aerial Vehicles
- the BS entity is installed in the UAV to provide cellular connectivity.
- UAVs have certain features not found in fixed BS infrastructure, such as easy deployment, strong line-of-sight links, and mobility-controlled degrees of freedom.
- eMBB enhanced Mobile Broadband
- URLLC Universal Mobile Broadband
- mMTC massive Machine Type Communication
- Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, resulting in handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
- WIET uses the same fields and waves as the wireless communication system.
- the sensor and smartphone will be charged using wireless power transfer during communication.
- WIET is a promising technology for extending the life of battery-charged wireless systems. Therefore, devices without batteries will be supported in 6G communication.
- An autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes.
- sensing will be tightly integrated with communications to support autonomous systems.
- the density of access networks in 6G will be enormous.
- Each access network is connected by backhaul connections such as fiber optic and FSO networks.
- backhaul connections such as fiber optic and FSO networks.
- Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction.
- Beamforming technology has several advantages, such as high No.1 to noise ratio, interference prevention and rejection, and high network efficiency.
- Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
- Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is collected from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
- LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves.
- LIS can be seen as an extension of massive MIMO, but the array structure and operation mechanism are different from those of massive MIMO.
- the LIS has low power consumption in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain.
- each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel.
- the reflected signal can be gathered at the target receiver to boost the received signal power.
- THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared bands, (i) It transmits non-metal/non-polar materials better than visible light/infrared light, and has a short wavelength compared to RF/millimeter wave, so it has high straightness. Beam focusing may be possible.
- the photon energy of the THz wave is only a few meV, it is harmless to the human body.
- the frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with a small propagation loss due to absorption of molecules in the air.
- the standardization discussion on THz wireless communication is being discussed centered on the IEEE 802.15 THz working group in addition to 3GPP, and the standard documents issued by the IEEE 802.15 Task Group (TG3d, TG3e) may specify or supplement the content described in this specification. have.
- THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
- a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network.
- THz wireless communication can be applied to vehicle-to-vehicle connection and backhaul/fronthaul connection.
- THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading.
- Table 7 below is a table showing an example of a technique that can be used in the THz wave.
- THz wireless communication can be classified based on a method for generating and receiving THz.
- the THz generation method can be classified into an optical device or an electronic device-based technology.
- 39 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
- a method of generating THz using an electronic device includes a method using a semiconductor device such as a Resonant Tunneling Diode (RTD), a method using a local oscillator and a multiplier, and an integrated circuit based on a compound semiconductor HEMT (High Electron Mobility Transistor).
- MMIC Monolithic Microwave Integrated Circuits
- a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the subharmonic mixer. Since the THz band forms a high frequency, a multiplier is essential.
- the multiplier is a circuit that has an output frequency N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies.
- IF represents an intermediate frequency
- tripler and multipler represent a multiplier
- PA Power Amplifier PA Power Amplifier
- LNA low noise amplifier
- PLL phase lock circuit (Phase) -Locked Loop).
- FIG. 40 is a diagram illustrating an example of a method of generating an optical device-based THz signal
- FIG. 41 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
- Optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device.
- the optical device-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector.
- it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band.
- a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate a THz signal based on an optical device.
- an optical coupler means a semiconductor device that transmits an electrical signal using light waves to provide coupling with electrical insulation between circuits or systems
- UTC-PD Uni-Traveling Carrier Photo-) Detector
- UTC-PD is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading.
- UTC-PD is capable of photodetection above 150GHz.
- EDFA Erbium-Doped Fiber Amplifier
- PD Photo Detector
- OSA various optical communication functions (photoelectric It represents an optical module (Optical Sub Aassembly) that modularizes conversion, electro-optical conversion, etc.) into one component
- DSO represents a digital storage oscilloscope.
- FIGS. 42 and 43 illustrate the structure of the photoelectric converter (or photoelectric converter) will be described with reference to FIGS. 42 and 43 .
- 42 illustrates a structure of a photoinc source-based transmitter
- FIG. 43 illustrates a structure of an optical modulator.
- a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide. At this time, data is loaded by changing electrical characteristics through a microwave contact or the like. Accordingly, an optical modulator output is formed as a modulated waveform.
- the photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O/E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons.
- a terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds.
- An O/E converter performs down conversion by using non-linearity of a device.
- the available bandwidth may be classified based on oxygen attenuation of 10 ⁇ 2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered. As an example of the framework, if the length of a terahertz pulse (THz pulse) for one carrier is set to 50 ps, the bandwidth (BW) becomes about 20 GHz.
- THz pulse terahertz pulse
- BW bandwidth
- Effective down conversion from the IR band to the THz band depends on how the nonlinearity of the O/E converter is utilized. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity to be transferred to the corresponding terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
- a terahertz transmission/reception system may be implemented using one photoelectric converter. Although it depends on the channel environment, in a far-carrier system, as many photoelectric converters as the number of carriers may be required. In particular, in the case of a multi-carrier system that uses several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered.
- the down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame).
- the frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
- CC component carrier
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
Abstract
The present specification provides a method, performed by a device, for communicating with another device via a quantum channel, the method comprising: generating n first pulse trains having different wavelengths from each other, n being a natural number; selecting, from the first pulse trains, on the basis of the length of the quantum channel and the length of a storage line, k second pulse trains having different wavelengths from each other, k being a natural number, and k being less than or equal to n; and transmitting the k second pulse trains to the other device via the quantum channel on the basis of k multiple paths, each of the k multiple paths being configured with a delay line of a different length from each other.
Description
본 명세서는 양자 통신에 관련된다.This specification relates to quantum communication.
퀀텀 컴퓨터의 등장으로 인해, 기존 수학적 복잡도 기반의 암호 체계(예컨대, RSA, AES 등)에 대해 해킹이 가능하게 되었다. 해킹에 대한 방지를 위해, 양자 암호 통신이 제안되고 있다.With the advent of quantum computers, it has become possible to hack into existing mathematical complexity-based cryptosystems (eg, RSA, AES, etc.). To prevent hacking, quantum cryptography communication has been proposed.
한편, 기존 양자 암호 통신 기법은 부피가 큰(bulky) 일부 소자로 인해 일부 통신망에서만 적용되고 있기에, 양자 암호 통신 기법의 적용 영역을 확장하기에는 한계점이 있었다.On the other hand, since the existing quantum cryptography communication technique is applied only to some communication networks due to some bulky devices, there is a limit to expanding the application area of the quantum cryptography communication technique.
이에, 본 명세서에서는 양자 통신에서의 밥 사이드 및/또는 앨리스 사이드의 부피를 줄일 수 있는 구성들을 제공하고자 한다.Accordingly, in the present specification, it is intended to provide configurations that can reduce the volume of the Bob side and/or the Alice side in quantum communication.
또한 기존 플러그 앤드 플레이 양자 암호 통신 기법에서는 레일리 백 스캐터링으로 인한 오류 증가를 막기 위해 하나의 펄스 열이 송수신부를 왕복하고 검출될 때까지 다음 펄스열을 전송하지 못하여 낮은 키 레이트를 가지는 문제점이 있었다. In addition, in the existing plug-and-play quantum cryptography communication technique, in order to prevent an increase in errors due to Rayleigh back scattering, one pulse train travels back and forth between the transceiver and the transceiver, and the next pulse train cannot be transmitted until it is detected, so there is a problem of having a low key rate.
이에, 본 명세서에서는 양자 암호 통신에서 양자 키의 전송 속도를 개선하는 방법을 제시하고자 한다.Accordingly, in the present specification, it is intended to present a method for improving the transmission speed of a quantum key in quantum cryptography communication.
본 명세서의 일 실시예에 따르면, 각각 서로 다른 파장을 가지는 제1 펄스 열을 n개 생성하고, 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 n 개의 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택하고, 상기 k개의 상기 제2 펄스 열을 상기 k개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송하되, 상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성되는 것을 특징으로 하는 방법 및 이를 이용하는 장치가 제공된다.According to an embodiment of the present specification, n first pulse trains each having a different wavelength are generated, and based on the length of the quantum channel and the length of a storage line, among the n first pulse trains, Selecting k second pulse trains having different wavelengths, and transmitting the k second pulse trains to the other device through the quantum channel based on the k multipaths, wherein the k multipaths A method and an apparatus using the same are provided, each of which is constituted by a delay line of a different length.
본 명세서에 따르면, 파장 분할 및 시 분할을 적용하는 기법을 통해 두 가지 효과를 기대할 수 있다. 첫 번째로 양자 통신에서 밥 사이드 및/또는 앨리스 사이드의 크기가 줄어들 수 있다. 두 번째로 투 웨이 양자 암호 통신 기법의 낮은 양자 키 전송 속도를 개선할 수 있다.According to the present specification, two effects can be expected through the technique of applying wavelength division and time division. First, in quantum communication, the size of Bob side and/or Alice side can be reduced. Second, it is possible to improve the low quantum key transmission speed of the two-way quantum cryptography communication technique.
본 명세서의 구체적인 일례를 통해 얻을 수 있는 효과는 이상에서 나열된 효과로 제한되지 않는다. 예를 들어, 관련된 기술분야의 통상의 지식을 자긴 자(a person having ordinary skill in the related art)가 본 명세서로부터 이해하거나 유도할 수 있는 다양한 기술적 효과가 존재할 수 있다. 이에 따라 본 명세서의 구체적인 효과는 본 명세서에 명시적으로 기재된 것에 제한되지 않고, 본 명세서의 기술적 특징으로부터 이해되거나 유도될 수 있는 다양한 효과를 포함할 수 있다.Effects that can be obtained through specific examples of the present specification are not limited to the effects listed above. For example, various technical effects that a person having ordinary skill in the related art can understand or derive from this specification may exist. Accordingly, the specific effects of the present specification are not limited to those explicitly described herein, and may include various effects that can be understood or derived from the technical characteristics of the present specification.
도 1은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다. 1 illustrates a system structure of a New Generation Radio Access Network (NG-RAN) to which NR is applied.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 예시한다. 2 illustrates functional partitioning between NG-RAN and 5GC.
도 3은 본 명세서의 기술적 특징이 적용될 수 있는 5G 사용 시나리오의 예를 나타낸다. 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied.
도 4는 양자 암호 통신의 일례를 개략적으로 도시한 것이다. 4 schematically illustrates an example of quantum cryptography communication.
도 5는 플러그 앤드 플레이 QKD 프로토콜의 일례를 개략적으로 도시한 것이다.5 schematically shows an example of a plug and play QKD protocol.
도 6은 플러그 앤드 플레이 QKD 기법의 펄스 열 사이의 시간 지연에 대한 일례다.6 is an example of a time delay between pulse trains in a plug-and-play QKD technique.
도 7은 본 명세서의 일 실시예에 따른, 파장 분할 및 다중 경로에 기반한 양자 암호 통신 방법의 순서도다.7 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path, according to an embodiment of the present specification.
도 8은 본 명세서의 일 실시예에 따른, 제공하고자 하는 플러그 앤드 플레이 QKD 프로토콜을 개략적으로 도시한 것이다.8 schematically illustrates a plug-and-play QKD protocol to be provided, according to an embodiment of the present specification.
도 9는 본 명세서의 일 실시예에 따른, 밥 사이드에 적용한 파장 분할, 시분할 구조, 그리고 펄스 열의 변화에 대해 개략적으로 도시한 것이다.9 schematically illustrates changes in wavelength division, a time division structure, and a pulse train applied to a bob side according to an embodiment of the present specification.
도 10은 k 개의 다중 경로의 딜레이 라인 길이 설정에 대한 일례를 개략적으로 도시한 것이다.10 schematically illustrates an example of setting k multipath delay line lengths.
도 11은 백 스캐터링 펄스의 제거를 위한 옵티컬 필터의 적용 예를 개략적으로 도시한 것이다.11 schematically illustrates an application example of an optical filter for removing back scattering pulses.
도 12는 두 개의 MUX와 2k개의 SPD를 적용한 검출부에 대한 구성의 일례를 개략적으로 도시한 것이다.12 schematically shows an example of the configuration of a detection unit to which two MUXs and 2k SPDs are applied.
도 13은 본 명세서의 다른 실시예에 따른, 밥 사이드에 적용한 파장 분할, 시분할 구조, 그리고 펄스 열의 변화에 대해 개략적으로 도시한 것이다.13 schematically illustrates changes in a wavelength division, a time division structure, and a pulse train applied to a bob side according to another embodiment of the present specification.
도 14는 첫 번째 기법과 두 번째 기법에서, 동일 길이의 키 정보를 검출하는 방법의 차이를 개략적으로 도시한 것이다.14 schematically illustrates a difference in a method of detecting key information of the same length in the first technique and the second technique.
도 15는 본 명세서의 일 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 방법의 순서도다.15 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path by a device in Bob Side, according to an embodiment of the present specification.
도 16은 본 명세서의 일 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 장치의 블록도를 개략적으로 도시한 것이다.16 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to an embodiment of the present specification.
도 17은 본 명세서의 다른 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 장치의 블록도를 개략적으로 도시한 것이다.17 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to another embodiment of the present specification.
도 18은 본 명세서에 적용되는 통신 시스템(1)을 예시한다.18 illustrates a communication system 1 applied to this specification.
도 19는 본 명세서에 적용될 수 있는 무선 기기를 예시한다.19 illustrates a wireless device applicable to this specification.
도 20은 본 명세서에 적용될 수 있는 무선 기기의 다른 예를 도시한다.20 shows another example of a wireless device applicable to the present specification.
도 21은 전송 신호를 위한 신호 처리 회로를 예시한다.21 illustrates a signal processing circuit for a transmission signal.
도 22는 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다. 22 shows another example of a wireless device applied to the present specification.
도 23은 본 명세서에 적용되는 휴대 기기를 예시한다. 23 illustrates a portable device applied to the present specification.
도 24는 본 명세서에 적용되는 차량 또는 자율 주행 차량을 예시한다.24 illustrates a vehicle or an autonomous driving vehicle applied to this specification.
도 25는 본 명세서에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.25 illustrates a vehicle to which this specification is applied. The vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, and the like.
도 26은 본 명세서에 적용되는 XR 기기를 예시한다. 26 illustrates an XR device as applied herein.
도 27은 본 명세서에 적용되는 로봇을 예시한다. 27 illustrates a robot applied in this specification.
도 28는 본 명세서에 적용되는 AI 기기를 예시한다. 28 illustrates an AI device applied to this specification.
도 29는 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도이다.29 is a diagram illustrating an example of a communication structure that can be provided in a 6G system.
도 30은 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.30 schematically illustrates an example of a perceptron structure.
도 31은 다층 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.31 schematically shows an example of a multilayer perceptron structure.
도 32는 심층 신경망 예시를 개략적으로 도시한 것이다.32 schematically illustrates an example of a deep neural network.
도 33은 컨볼루션 신경망의 일례를 개략적으로 도시한 것이다.33 schematically shows an example of a convolutional neural network.
도 34는 컨볼루션 신경망에서의 필터 연산의 일례를 개략적으로 도시한 것이다.34 schematically shows an example of a filter operation in a convolutional neural network.
도 35는 순환 루프가 존재하는 신경망 구조의 일례를 개략적으로 도시한 것이다.35 schematically shows an example of a neural network structure in which a cyclic loop exists.
도 36은 순환 신경망의 동작 구조의 일례를 개략적으로 도시한 것이다.36 schematically shows an example of an operation structure of a recurrent neural network.
도 37은 전자기 스펙트럼의 일례를 나타낸다.37 shows an example of an electromagnetic spectrum.
도 38은 THz 통신 응용의 일례를 나타낸 도이다.38 is a diagram showing an example of THz communication application.
도 39는 전자소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.39 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
도 40은 광 소자 기반 THz 신호를 생성하는 방법의 일례를 나타낸 도이며, 도 41은 광 소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.40 is a diagram illustrating an example of a method of generating an optical device-based THz signal, and FIG. 41 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
도 42는 광자 소스(Photoinc source) 기반 송신기의 구조를 예시하며, 도 43은 광 변조기(Optical modulator)의 구조를 예시한다.42 illustrates a structure of a photoinc source-based transmitter, and FIG. 43 illustrates a structure of an optical modulator.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.In this specification, “A or B (A or B)” may mean “only A”, “only B” or “both A and B”. In other words, in the present specification, “A or B (A or B)” may be interpreted as “A and/or B (A and/or B)”. For example, “A, B or C(A, B or C)” herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.A slash (/) or a comma (comma) used herein may mean “and/or”. For example, “A/B” may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”. For example, “A, B, C” may mean “A, B, or C”.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다. As used herein, “at least one of A and B” may mean “only A”, “only B” or “both A and B”. In addition, in this specification, the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다. Also, as used herein, “at least one of A, B and C” means “only A”, “only B”, “only C”, or “A, B and C” Any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(PDCCH)”로 표시된 경우, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “PDCCH”로 제한(limit)되지 않고, “PDDCH”가 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, PDCCH)”로 표시된 경우에도, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다.In addition, parentheses used herein may mean “for example”. Specifically, when displayed as “control information (PDCCH)”, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. Also, even when displayed as “control information (ie, PDCCH)”, “PDCCH” may be proposed as an example of “control information”.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.In this specification, technical features that are individually described within one drawing may be implemented individually or simultaneously.
이하, 새로운 무선 접속 기술(new radio access technology: new RAT, NR)에 대해 설명한다.Hereinafter, a new radio access technology (new RAT, NR) will be described.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.As more and more communication devices require greater communication capacity, there is a need for improved mobile broadband communication compared to a conventional radio access technology (RAT). Massive Machine Type Communications (MTC), which provides various services anytime, anywhere by connecting multiple devices and objects, is also one of the major issues to be considered in next-generation communication. In addition, a communication system design in consideration of a service/terminal sensitive to reliability and latency is being discussed. The introduction of next-generation wireless access technology in consideration of such extended mobile broadband communication, massive MTC, and URLLC (Ultra-Reliable and Low Latency Communication) is being discussed, and in this specification, for convenience, the technology is called new RAT or NR.
도 1은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다. 1 illustrates a system structure of a New Generation Radio Access Network (NG-RAN) to which NR is applied.
도 1을 참조하면, NG-RAN은, 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 1에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다. Referring to FIG. 1 , the NG-RAN may include a gNB and/or an eNB that provides a UE with user plane and control plane protocol termination. 1 illustrates a case in which only gNBs are included. The gNB and the eNB are connected to each other through an Xn interface. The gNB and the eNB are connected to the 5G Core Network (5GC) through the NG interface. More specifically, it is connected to an access and mobility management function (AMF) through an NG-C interface, and is connected to a user plane function (UPF) through an NG-U interface.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 예시한다. 2 illustrates functional partitioning between NG-RAN and 5GC.
도 2를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.Referring to Figure 2, the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement setup and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided. AMF may provide functions such as NAS security, idle state mobility processing, and the like. The UPF may provide functions such as mobility anchoring and PDU processing. A Session Management Function (SMF) may provide functions such as terminal IP address assignment and PDU session control.
도 3은 본 명세서의 기술적 특징이 적용될 수 있는 5G 사용 시나리오의 예를 나타낸다. 도 3에 도시된 5G 사용 시나리오는 단지 예시적인 것이며, 본 명세서의 기술적 특징은 도 8에 도시되지 않은 다른 5G 사용 시나리오에도 적용될 수 있다. 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied. The 5G usage scenario shown in FIG. 3 is merely exemplary, and the technical features of the present specification may be applied to other 5G usage scenarios not shown in FIG. 8 .
도 3을 참조하면, 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역(eMBB; enhanced mobile broadband) 영역, (2) 다량의 머신 타입 통신(mMTC; massive machine type communication) 영역 및 (3) 초-신뢰 및 저 지연 통신(URLLC; ultra-reliable and low latency communications) 영역을 포함한다. 일부 사용 예는 최적화를 위해 다수의 영역을 요구할 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표(KPI; key performance indicator)에만 포커싱 할 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.Referring to FIG. 3, the three main requirements areas of 5G are (1) enhanced mobile broadband (eMBB) area, (2) massive machine type communication (mMTC) area and ( 3) includes ultra-reliable and low latency communications (URLLC) domains. Some use cases may require multiple domains for optimization, while other use cases may focus on only one key performance indicator (KPI). 5G is to support these various use cases in a flexible and reliable way.
eMBB는 데이터 속도, 지연, 사용자 밀도, 모바일 광대역 접속의 용량 및 커버리지의 전반적인 향상에 중점을 둔다. eMBB는 10Gbps 정도의 처리량을 목표로 한다. eMBB는 기본적인 모바일 인터넷 접속을 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것으로 기대된다. 증가된 트래픽 양의 주요 원인은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스(오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 애플리케이션은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성을 필요로 한다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드 상의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트에서 예를 들면, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하여 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB focuses on overall improvements in data rates, latency, user density, capacity and coverage of mobile broadband connections. eMBB aims for a throughput of around 10 Gbps. eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main causes of the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment. Cloud storage is a special use case that drives the growth of uplink data rates. 5G is also used for remote work on the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used. In entertainment, for example, cloud gaming and video streaming are another key factor increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes. Another use example is augmented reality for entertainment and information retrieval. Here, augmented reality requires very low latency and instantaneous amount of data.
mMTC는 배터리에 의해 구동되는 다량의 저비용 장치 간의 통신을 가능하게 하기 위하여 설계되며, 스마트 계량, 물류, 현장 및 신체 센서와 같은 애플리케이션을 지원하기 위한 것이다. mMTC는 10년 정도의 배터리 및/또는 1km2 당 백만 개 정도의 장치를 목표로 한다. mMTC는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있게 하며, 가장 많이 예상되는 5G 사용 예 중 하나이다. 잠재적으로 2020년까지 IoT 장치들은 204억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.mMTC is designed to enable communication between a large number of low-cost devices powered by batteries and is intended to support applications such as smart metering, logistics, field and body sensors. mMTC is targeting a battery life of 10 years or so and/or a million devices per square kilometer. mMTC enables seamless connectivity of embedded sensors in all fields and is one of the most anticipated 5G use cases. Potentially, by 2020, there will be 20.4 billion IoT devices. Industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 장치 및 기계가 매우 신뢰성 있고 매우 낮은 지연 및 높은 가용성으로 통신할 수 있도록 함으로써 차량 통신, 산업 제어, 공장 자동화, 원격 수술, 스마트 그리드 및 공공 안전 애플리케이션에 이상적이다. URLLC는 1ms의 정도의 지연을 목표로 한다. URLLC는 주요 인프라의 원격 제어 및 자율 주행 차량과 같은 초 신뢰/지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC is ideal for vehicular communications, industrial control, factory automation, telesurgery, smart grid, and public safety applications by allowing devices and machines to communicate very reliably, with very low latency and with high availability. URLLC aims for a delay on the order of 1 ms. URLLC includes new services that will transform the industry through ultra-reliable/low-latency links such as remote control of critical infrastructure and autonomous vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
다음으로, 도 3의 삼각형 안에 포함된 다수의 사용 예에 대해 보다 구체적으로 살펴본다.Next, a plurality of usage examples included in the triangle of FIG. 3 will be described in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH(fiber-to-the-home) 및 케이블 기반 광대역(또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실(VR; virtual reality)과 증강 현실(AR; augmented reality) 뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는 데에 요구될 수 있다. VR 및 AR 애플리케이션은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 애플리케이션은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사가 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. Such high speed may be required to deliver TVs with resolutions of 4K or higher (6K, 8K and higher) as well as virtual reality (VR) and augmented reality (AR). VR and AR applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예와 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 높은 용량과 높은 모바일 광대역을 동시에 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 사용 예는 증강 현실 대시보드이다. 운전자는 증강 현실 대비보드를 통해 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별할 수 있다. 증강 현실 대시보드는 물체의 거리와 움직임에 대해 운전자에게 알려줄 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 장치(예를 들어, 보행자에 의해 수반되는 장치) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스를 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종 차량 또는 자율 주행 차량이 될 것이다. 이는 서로 다른 자율 주행 차량 사이 및/또는 자동차와 인프라 사이에서 매우 신뢰성이 있고 매우 빠른 통신을 요구한다. 미래에, 자율 주행 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자율 주행 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires both high capacity and high mobile broadband. The reason is that future users will continue to expect high-quality connections regardless of their location and speed. Another example of use in the automotive sector is augmented reality dashboards. The augmented reality contrast board allows drivers to identify objects in the dark above what they are seeing through the front window. The augmented reality dashboard superimposes information to inform the driver about the distance and movement of objects. In the future, wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between vehicles and other connected devices (eg, devices carried by pedestrians). Safety systems can help reduce the risk of accidents by guiding drivers through alternative courses of action to help them drive safer. The next step will be remote-controlled vehicles or autonomous vehicles. This requires very reliable and very fast communication between different autonomous vehicles and/or between vehicles and infrastructure. In the future, autonomous vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern. The technological requirements of autonomous vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
스마트 사회로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드 될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지 효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품은 모두 무선으로 연결된다. 이러한 센서 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용을 요구한다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded with high-density wireless sensor networks. A distributed network of intelligent sensors will identify conditions for keeping a city or house cost- and energy-efficient. A similar setup can be performed for each household. Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors typically require low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서를 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. Smart grids use digital information and communication technologies to interconnect these sensors to collect information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economy, sustainability of production and distribution of fuels such as electricity in an automated manner. The smart grid can also be viewed as another low-latency sensor network.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 애플리케이션을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는 데에 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터에 대한 원격 모니터링 및 센서를 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. The communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care in remote rural areas. It is also used to save lives in critical care and emergency situations. A wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것을 요구한다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable radio links is an attractive opportunity for many industries. Achieving this, however, requires that wireless connections operate with similar latency, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
물류 및 화물 추적은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요할 수 있다.Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere. Logistics and freight tracking use cases typically require low data rates but may require wide range and reliable location information.
한편, 앞서 설명한 NR 통신 시스템 및 LTE 통신 시스템은, 후술할 양자 암호 통신에서도 적용될 수 있다.On the other hand, the NR communication system and the LTE communication system described above can also be applied to quantum cryptography communication, which will be described later.
<양자 암호 통신><Quantum Encryption Communication>
한편, 퀀텀 컴퓨터의 등장으로 인해, 기존 수학적 복잡도 기반의 암호 체계(예컨대, RSA, AES 등)에 대해 해킹이 가능하게 되었다. 해킹에 대한 방지를 위해, 양자 암호 통신이 제안되었으며, 양자 암호 통신 구조의 일례에 대해 도면을 통해 설명하면 아래와 같을 수 있다.On the other hand, with the advent of quantum computers, it has become possible to hack into existing mathematical complexity-based encryption systems (eg, RSA, AES, etc.). In order to prevent hacking, quantum cryptography communication has been proposed, and an example of a quantum cryptography communication structure will be described with reference to the drawings as follows.
도 4는 양자 암호 통신의 일례를 개략적으로 도시한 것이다.4 schematically illustrates an example of quantum cryptography communication.
도 4에 따르면, QKD(quantum key distribution) 송신부(410)는 QKD 수신부(420)와 퍼블릭 채널(public channel) 및 양자 채널(quantum channel)로써 연결되어 통신을 수행할 수 있다.Referring to FIG. 4 , the QKD (quantum key distribution) transmitter 410 may be connected to the QKD receiver 420 through a public channel and a quantum channel to perform communication.
이때, QKD 송신부(410)는 암호화기(430)에게 비밀 키를 공급할 수 있으며, QKD 수신부(420)도 복호화기(440)에게 비밀 키를 공급할 수 있다. 여기서, 암호화기(430)에는 플레인 텍스트(plain text)가 입/출력될 수 있으며, 암호화기(430)는 복호화기(440)와 (기존 통신망을 통해) 비밀 대칭 키로 암호화된 데이터를 전송할 수 있다. 아울러, 복호화기(440)에도 플레인 텍스트가 입/출력될 수 있다.In this case, the QKD transmitter 410 may supply the secret key to the encryptor 430 , and the QKD receiver 420 may also supply the secret key to the decryptor 440 . Here, plain text may be input/output to the encryptor 430, and the encryptor 430 may transmit data encrypted with a secret symmetric key to the decryptor 440 (via an existing communication network). . In addition, plain text may be input/output to the decoder 440 .
양자 암호 통신에 따르면, 데이터 암호용 비밀 키를 양자 역학 원리를 이용하여 분배하므로 도청자가 암호 키의 정보를 알아내는 것은 불가능할 수 있다. 이를 정리하면, 양자 암호 통신은 아래와 같은 성질을 지닐 수 있다.According to quantum cryptography communication, since the secret key for data encryption is distributed using the principle of quantum mechanics, it may be impossible for an eavesdropper to find out the information of the encryption key. Summarizing this, quantum cryptography communication can have the following properties.
- 양자 정보의 복사 불가능성: 양자통신 채널로 지나가는 양자 정보를 복사하는 것은 불가능- Impossibility of copying quantum information: It is impossible to copy quantum information passing through a quantum communication channel.
- 양자 측정의 비가역성(단일 광자를 한번 측정한 상태는 원래의 상태가 아닐 수 있음): 인터셉트(Intercept) 및 재송신(resend) 어택(attack) 불가- Irreversibility of quantum measurement (a single photon may not be in its original state once measured): Intercept and resend cannot be attacked
아울러, 양자 암호 통신에서는 양자(Quantum) 비트(Bit) 에러(Error) 레이트(Rate)를 키 전송 시 마다 확인하여 도청 여부를 확인할 수 있다.In addition, in quantum cryptography communication, it is possible to check whether eavesdropping by checking the Quantum Bit Error Rate each time a key is transmitted.
한편, 플러그 앤드 플레이(Plug and Play) QKD는 위상(Phase) 인코딩을 통하여 키 정보를 생성하는 프로토콜이며, 위상과 편광의 변동에 내성이 강하여 추가적인 보정 기법의 적용이 필요하지 않은 효율적인 양자 암호 프로토콜이다.On the other hand, Plug and Play QKD is a protocol that generates key information through phase encoding. It is an efficient quantum cryptography protocol that does not require the application of additional correction techniques due to its strong resistance to fluctuations in phase and polarization. .
또한 이 기법은 아래 도 5의 구성도에서 볼 수 있는 것처럼 앨리스(Alice) 사이드(side)와 밥(Bob) 사이드가 각각 광원과 검출기를 가지고 있는 대칭적 구조가 아니라, 밥 사이드에서 광원과 검출기를 모두 가지고 있는 비 대칭적 구조를 가질 수 있다.In addition, this technique is not a symmetrical structure in which Alice side and Bob side have a light source and a detector, respectively, as can be seen in the configuration diagram of FIG. They can all have an asymmetric structure.
이러한 구조적인 특징으로 인해, 앨리스 사이드에는 인코딩(encoding)에 필요한 몇 가지 광학 소자만이 존재하면 되므로, 양자 통신 시스템은 밥 사이드 하나와 다수의 앨리스 사이드를 가지는 일대다 양자 암호통신 네트워크 구성을 낮은 복잡도와 저비용으로 구성될 수 있다. 이하, QKD 기술의 다양한 프로토콜 중 플러그 앤드 플레이 QKD 프로토콜에 대하여 도면을 통해 기술한다.Due to these structural features, since only a few optical elements necessary for encoding exist on the Alice side, the quantum communication system can construct a one-to-many quantum cryptographic communication network with one Bob side and multiple Alice sides with low complexity. and low cost. Hereinafter, a plug-and-play QKD protocol among various protocols of the QKD technology will be described with reference to drawings.
도 5는 플러그 앤드 플레이 QKD 프로토콜의 일례를 개략적으로 도시한 것이다.5 schematically shows an example of a plug and play QKD protocol.
도 5에 따르면, 기본적인 플러그 앤드 플레이 QKD 기법은 다음과 같은 순서로 진행될 수 있다.Referring to FIG. 5 , the basic plug-and-play QKD technique may be performed in the following order.
1) 밥 쪽에서 방출되는 강한 레이저 펄스(1550nm)는 BS(Beam splitter)에 의해 50/50으로 분할된다. 이를 식으로 표현하면 아래와 같을 수 있다.1) A strong laser pulse (1550nm) emitted from the side of the rice is split 50/50 by a beam splitter (BS). This can be expressed as an expression as follows.
[식 1][Equation 1]
2) BS를 통과한 두 펄스는 각각 짧은 경로와 페이즈 모듈레이터(Phase modulator)(예컨대, PM_B)와 DL(delay line)을 갖는 긴 경로를 통과하는 것으로 나뉘어진다. 이 때, 위상 변조기 PM_B는 동작하지 않는다. 그리고 DL은 두 경로를 통과한 펄스가 동시에 겹치지 않도록 시간 차이를 만들어주기 위해 사용되며 일반적으로 수십 미터 정도의 길이를 가진다. 이를 식으로 표현하면 아래와 같을 수 있다.2) The two pulses passing through the BS are divided into a short path and a long path having a phase modulator (eg, PM_B) and a delay line (DL), respectively. At this time, the phase modulator PM_B does not operate. And DL is used to create a time difference so that the pulses passing through the two paths do not overlap at the same time, and generally has a length of several tens of meters. This can be expressed as an expression as follows.
[식 2][Equation 2]
3) 짧은 경로와 긴 경로를 통과한 펄스는 PBS(Polarized Beam Splitter)를 통과할 때 서로 수직한 편광 성분을 가지게 된다. 따라서 짧은 경로를 통과한 펄스는 PBS를 통과한 후에도 입력 펄스와 동일한 편광 성분을 가지지만, 긴 경로를 통과한 펄스는 PBS를 지난 후 입력 펄스와 수직인 편광을 가지는 펄스를 가진다. 이를 식으로 표현하면 아래와 같을 수 있다.3) Pulses passing through the short and long paths have polarization components perpendicular to each other when passing through a Polarized Beam Splitter (PBS). Therefore, the pulse passing through the short path has the same polarization component as the input pulse even after passing through the PBS, but the pulse passing through the long path has a pulse having a polarization perpendicular to the input pulse after passing through the PBS. This can be expressed as an expression as follows.
[식 3][Equation 3]
4) PBS를 지나온 두 펄스는 시간의 차이를 두고 양자 채널을 통과하여 앨리스 쪽으로 이동한다.4) The two pulses passing through the PBS pass through the quantum channel with a time difference and move toward Alice.
5) 채널을 통해 들어온 펄스는 감쇠기(Attenuator)와 페이즈 모듈레이터(예컨대, PM_A)를 통과하는데 이때는 둘 다 아무런 동작을 하지 않는다.5) A pulse that enters the channel passes through an attenuator and a phase modulator (eg, PM_A), but both do not operate at this time.
6) PM_A를 통과한 펄스(pulse)는 스토리지 라인(Storage line; SL)을 지난다. 이 때, SL(Storage line)의 역할은 다음과 같다. SL은 레일리(Rayleigh) 백(back)-스캐터링(scattering)으로 인해 검출기에서 검출되는 펄스와 검출기에서 측정되는 key 정보를 포함한 펄스가 섞이는 것을 막아준다.6) A pulse passing through PM_A passes through a storage line (SL). At this time, the role of the storage line (SL) is as follows. SL prevents mixing of pulses detected by the detector with key information measured by the detector due to Rayleigh back-scattering.
또한 PM_A에서 밥에서 앨리스로 들어오는 펄스로부터 발생하는 백 스캐터링 펄스와 앨리스에서 FM를 지나서 돌아 나오는 펄스가 섞이지 않도록 구분하기 위한 역할을 한다. It also serves to distinguish the back scattering pulse generated from the pulse coming from Bob to Alice in PM_A and the pulse coming back from Alice through the FM so as not to mix.
백 스캐터링은 레이저에서 발생된 펄스가 각 소자를 지나면서 일부 반사되는 것에 의해 키 정보가 아닌 것이 디텍터(detector)에서 측정됨으로써 발생하며, 특히 양방향 왕복 구조의 통신 구조에서는 광 펄스가 진행할 때 생기는 레일리 백스캐터링으로 인해 에러가 많이 발생할 수 있으므로 양자 암호 통신의 성능을 크게 저하시키는 요인이 된다. Backscattering is caused by the fact that the pulse generated from the laser is partially reflected as it passes through each element, and what is not key information is measured by the detector. Since many errors can occur due to backscattering, it is a factor that greatly degrades the performance of quantum cryptography communication.
플러그 앤드 플레이 QKD 프로토콜에서 단일 광자 검출기의 효율이 n_d, 펄스의 폭이 δ일 때, 레일리 백 스캐터링의 영향은 밥 사이드에서 초당 생성되는 광자의 수 P_in 과 이 중 레일리 백 스캐터링이 발생하는 수 P_rayleigh의 관계에 의해 다음과 같은 식처럼 나타낼 수 있다.In the plug-and-play QKD protocol, when the efficiency of a single photon detector is n_d and the pulse width is δ, the effect of Rayleigh back scattering is the number of photons generated per second at Bobside P_in and the number of double Rayleigh back scattering occurring. According to the relation of P_rayleigh, it can be expressed as the following equation.
[식 4][Equation 4]
여기서 P_in은 P_in=f_laser·n_b (f_laser: 펄스 반복(repetition) 레이트, n_b: 밥 사이드에서의 전체 로스 팩터)로 정의되며, α는 1550nm의 섬유(fiber) 로스(loss)인 0.21dB/km, L은 앨리스와 밥 사이의 섬유 의 길이, β는 레일리 백 스캐터링 계수(coefficient)를 의미한다. 따라서 P_in이 클수록 레일리 백 스캐터링의 영향은 크다는 것을 알 수 있다. 따라서 이 문제를 해결하기 위해서는 밥 사이드에서 생성한 펄스 열을 저장해 놓을 수 있을 정도의 긴 길이를 가진 스토리지 라인이 필요할 수 있다.where P_in is defined as P_in = f_laser n_b (f_laser: pulse repetition rate, n_b: total loss factor at the bob side), α is 0.21 dB/km, which is a fiber loss of 1550 nm, L is the length of the fiber between Alice and Bob, and β is the Rayleigh back scattering coefficient. Therefore, it can be seen that the larger P_in is, the greater the effect of Rayleigh back scattering. Therefore, in order to solve this problem, a storage line with a length long enough to store the pulse train generated by Bobside may be required.
예를 들어 펄스를 1MHz로 생성(e.g. 10^(-6)(s))하고 유선 광섬유에서 빛의 전송속도 2×10^8(m/s), 한번에 발생하는 키의 개수가 125개라고 가정하면 총 2×(10^8(m/s))×10^(-6)(s)×125=25km의 스토리지 라인이 필요할 수 있다. 이때, 스토리지 라인(SL)은 왕복하면서 광자를 저장할 수 있으므로 실제 길이는 25km의 절반인 12.5km이상이면 가능할 수 있다. 이처럼 현재의 플러그 앤드 플레이 QKD 기법에서는 앨리스 쪽에 굉장히 큰 길이를 가지는 스토리지 라인을 적용하고 있으므로 향후 일대 다 양자 암호 기술 등 에 다양한 영역에 이 기술을 적용하기 위해서는 SL의 길이 최소화를 통한 앨리스 사이드의 경량화가 필요할 수 있다.For example, it is assumed that a pulse is generated at 1 MHz (eg 10^(-6)(s)), the transmission speed of light in a wired optical fiber is 2×10^8(m/s), and the number of keys generated at one time is 125 A total of 2×(10^8(m/s))×10^(-6)(s)×125=25km storage lines may be required. In this case, since the storage line SL can store photons while reciprocating, the actual length may be 12.5 km or more, which is half of 25 km. As such, in the current plug-and-play QKD technique, a storage line having a very large length is applied to the Alice side. may be needed
7) FM(Faraday Mirror)에서는 밥 쪽에서 PBS를 통과하면서 나온 펄스의 편광을 반사 후 다시 90도 변경시킨다. (패러데이 미러(Faraday Mirror)의 역할: 입사 편광을 이와 수직한 편광으로 바꾸어서 밥 쪽으로 펄스가 다시 들어갈 때 짧은 경로로 나온 펄스는 PBS에 의해 긴 경로로 들어가도록 하고 긴 경로로 나온 펄스는 짧은 경로로 들어가도록 만들어 준다. 따라서 진행할 때와 반사되어 돌아올 때 편광이 서로 수직이므로 광섬유상에서 광 펄스가 겪는 복 굴절이 서로 상쇄되어 안정적인 시스템 구축이 가능할 수 있다.) 이를 식으로 표현하면 아래와 같을 수 있다.7) In FM (Faraday Mirror), the polarization of the pulse emitted while passing through the PBS from the side of the rice is reflected and then changed again by 90 degrees. (Role of the Faraday Mirror: It changes the incident polarization to polarization perpendicular to it, so that when the pulse enters Bob again, the short-path pulse enters the long path by the PBS, and the long-path pulse becomes the short path. Therefore, since the polarizations are perpendicular to each other when they travel and when they are reflected back, the birefringence experienced by the optical pulses on the optical fiber cancel each other out, making it possible to build a stable system).
[식 5][Equation 5]
8) FM에서 반사된 후 SL을 통과한 펄스는 페이즈 모듈레이터(예컨대, PM_A)에서 위상 코딩을 통해 키 정보를 생성한다. 위상에 따른 키 정보는 다음 표 1과 같다. 8) A pulse that has passed through SL after being reflected from FM generates key information through phase coding in a phase modulator (eg, PM_A). The key information according to the phase is shown in Table 1 below.
페이즈(phase)phase | 키 값(key value)key value |
0 (-)0 (-) | 00 |
π/2 (\)π/2 (\) | 00 |
π (|)π (|) | 1One |
3π/2 (/)3π/2 (/) | 1One |
앨리스측의 PM_A를 통과하는 두 번째 펄스에 앞서 설명한 바와 같이 4가지 서로 다른 위상(θ_A)을 인가하여 위상 코딩을 수행할 수 있다. 이를 식으로 표현하면 아래와 같을 수 있다.As described above, phase coding can be performed by applying four different phases θ_A to the second pulse passing through PM_A on the Alice side. This can be expressed as an expression as follows.
[식 6][Equation 6]
9) 광 신호의 세기를 감쇠기를 사용하여 단일 광자 수준으로 낮춘 후 양자 채널(channel)로 펄스를 내보낸다. (이 때, 0.1 광자 레벨을 일반적으로 사용한다.)9) After reducing the intensity of the optical signal to the level of a single photon using an attenuator, a pulse is emitted into a quantum channel. (At this time, 0.1 photon level is usually used.)
10) PBS에서 양자 채널로 나갈 때의 펄스와 양자 채널에서 PBS로 들어올 때의 펄스는 FM에 의해 편광상태가 반대이다. 따라서 밥에서 채널로 나갈 때 긴 경로와 짧은 경로를 지나는 두 펄스는 채널에서 밥으로 되돌아올 때 나갈 때와 반대 경로를 지나게 된다. 이를 식으로 표현하면 아래와 같을 수 있다.10) The polarization state of the pulses when going out from the PBS to the quantum channel and the pulses coming in from the quantum channel into the PBS are reversed by FM. Thus, two pulses passing the long path and the short path when going out from Bob to the channel take the opposite path as when they exit from the channel to Bob. This can be expressed as an expression as follows.
[식 7][Equation 7]
11) 양자 채널을 거쳐 밥 측으로 들어오는 첫 번째 펄스는 긴 경로를 지나며 PM_B에서 표 2와 같은 두 가지 위상(θ_B)을 인가하여 측정 베이시스(Basis)를 결정한다.11) The first pulse that enters Bob through the quantum channel passes through a long path and determines the measurement basis by applying two phases (θ_B) as shown in Table 2 in PM_B.
페이즈(phase) | 베이시스 값(basis value)basis value | |
00 | ++ | |
π/2π/2 | XX |
이를 식으로 표현하면 아래와 같을 수 있다.This can be expressed as an expression as follows.
[식 8][Equation 8]
12) 밥 사이드의 두 경로를 지난 첫 번째 펄스(긴 경로 통과)와 두 번째 펄스(짧은 경로)는 동시에 BS에 도착하는데 이 때 서로 중첩되어 보강 또는 상쇄 간섭을 한다. 이를 식으로 표현하면 아래와 같을 수 있다.12) The first pulse (traversing the long path) and the second pulse (short path) passing through the two paths of the bobside arrive at the BS at the same time, and at this time, they overlap each other and cause constructive or destructive interference. This can be expressed as an expression as follows.
[식 9][Equation 9]
13) 중첩된 결과에 따른 검출(detection) 결과는 디텍터 1과 2 중 어디서 측정될지 결정되며 그 결과는 아래 표 3과 같을 수 있다.13) The detection result according to the overlapping result is determined between detector 1 and detector 2, and the result can be as shown in Table 3 below.
밥(bob)/앨리스(alice)Bob/Alice | 0(0, -)0(0, -) | π/2(0, \)π/2(0, \) | π(1, |)π(1, |) | 3π/2(1, /)3π/2(1, /) |
0, +0, + | 1One | 22 | ||
π/2, Xπ/2, X | 1One | 22 |
한편, 앞서 설명한 스토리지 라인은 아래와 같은 이유(즉, 백스캐터링 포톤의 문제를 해결하기 위해)로 적용될 수 있다.- 옵티컬 섬유(optical fibre)를 통과하는 빛은 산란된다.Meanwhile, the storage line described above can be applied for the following reasons (ie, to solve the problem of backscattering photons). - Light passing through an optical fiber is scattered.
- 이때, 적은 양의 빛이 섬유에 의해 역방향으로 다시 포착될 수 있다.- At this time, a small amount of light can be captured back by the fiber in the reverse direction.
- 밥(bob)에서 나오는 펄스는 앨리스(alice)에서 나온 펄스보다 밝을 수 있으며 평균적으로 0.1 포톤 미만을 함유할 수 있다.- Pulses from bob can be brighter than pulses from alice and contain less than 0.1 photons on average.
- 백스캐터링 포톤은 밥에게 되돌아 전파되는 펄스를 동반할 수 있으며, 이로 인해 잘못된 카운트를 유발할 수 있다.- Backscattering photons can be accompanied by pulses propagating back to Bob, which can cause false counts.
한편, 스토리지 라인(storage line; SL)은 아래와 같이, 일반적으로 긴 길이를 가질 수 있으며, 이로 인해 앨리스 사이드(예컨대, 앨리스 사이드에 해당하는 장치 등)를 소형화하는 것이 쉽지 않다.On the other hand, a storage line (SL) may generally have a long length as shown below, and thus, it is not easy to miniaturize the Alice side (eg, a device corresponding to the Alice side, etc.).
- SL의 역할: 레일리 백스캐터링 발생으로 인한 QBER 증가 문제를 해결.- Role of SL: Solve the problem of increasing QBER due to Rayleigh backscattering.
- SL의 최소 길이 요구 사항: 백 스캐터링을 막기 위해서는 레이저(laser) 펄스 트레인(train)이 모두 저장될 수 있는 길이여야 하며, 이를 식으로 표현하면 아래와 같을 수 있다.- Minimum length requirement of SL: In order to prevent back scattering, it must be a length that can store all laser pulse trains.
[식 10][Equation 10]
(키의 개수*섬유에서의 옵티컬 펄스의 속도*(1/f_laser))/2(Number of keys*Speed of optical pulse on fiber*(1/f_laser))/2
여기서 예컨대, 256개의 키를 생성하고, f_laser가 100MHz일 경우, 스토리지 라인은 예컨대, 256m 이상의 길이를 가져야 될 수 있다. 본 예에서 알 수 있듯이, 스토리지 라인의 소형화/경량화는 일반적으로 어려운 작업이다.Here, for example, when 256 keys are generated and f_laser is 100 MHz, the storage line may have a length of, for example, 256 m or more. As can be seen from this example, miniaturizing/lightening storage lines is generally a difficult task.
이하, 본 명세서에 대해 보다 구체적으로 설명한다.Hereinafter, the present specification will be described in more detail.
기존 양자 암호 통신 기법은 부피가 큰(bulky) 일부 소자로 인해 유무선 통신망에서만 적용되고 있기에, 양자 암호 통신 기법의 적용 영역을 확장하기에는 한계점이 있었다. 아울러, 양자 투 더 홈을 위한 요구 사항으로써, 송수신부에 각각 존재하는 레이저와 디텍터를 소형화하고자 하는 요구가 있으나, 이는 소자 특성과 구조상 어려운 점이 있다.Since the existing quantum cryptography communication technique is applied only to wired and wireless communication networks due to some bulky devices, there is a limit to expanding the application area of the quantum cryptography communication technique. In addition, as a requirement for quantum-to-the-groove, there is a request to miniaturize a laser and a detector respectively present in the transceiver, but this has difficulties in device characteristics and structure.
한편, 플러그 앤드 플레이 QKD에서는 레이저와 디텍터가 수신부(예컨대, 밥 사이드)에 함께 하는 구조적 특징을 가진다(다만, 본 명세서에서 레이저와 디텍터가 예컨대 앨리스 사이드에 존재하는 구성 혹은 레이저와 디텍터가 밥 사이드와 앨리스 사이드에 각각 존재하는 구성을 권리범위에서 제하고자 함은 아니다). 이로 인해, 플러그 앤드 플레이 QKD는 송신부(예컨대, 앨리스 사이드)의 경량화에 유리한 구조를 가지며, 이로 인해, 플러그 앤드 플레이 QKD는 1:N QKD 네트워크 및/또는 IOT 등의 구조에 적용하기 유리할 수 있다.On the other hand, in the plug-and-play QKD, the laser and the detector are together in the receiving unit (eg, bob side). It is not intended to limit the composition that exists in each Alice side from the scope of rights). For this reason, the plug-and-play QKD has a structure advantageous for reducing the weight of the transmitter (eg, Alice side), and thus, the plug-and-play QKD may be advantageously applied to a structure such as a 1:N QKD network and/or IOT.
위와 같은 상황에서, 본 명세서에서는 종래의 앨리스 사이드에 대한 경량화에 난점이 됐던, 스토리지 라인의 길이를 최소화 하는 방법을 제공하기 위해, 멀티 파장 레이저 소스의 다중 파장 분할 기법을 제안하고자 한다. 이를 통해 앨리스 사이드의 스토리지 라인의 길이를 최소화 할 수 있으며, 이로 인해, 앨리스 사이드의 경량화가 제공될 수 있다.In the above situation, in the present specification, in order to provide a method for minimizing the length of a storage line, which has been a difficulty in reducing the weight of the conventional Alice side, it is intended to propose a multi-wavelength division technique of a multi-wavelength laser source. Through this, the length of the storage line of the Alice side can be minimized, and thus, the weight reduction of the Alice side can be provided.
한편, 플러그 앤드 플레이 QKD의 경우 원 웨이 QKD에 비해 송수신부를 왕복해야 하는 구조적 특성으로 인해 키(key) 레이트가 낮다(백 스캐터링으로 인한 롱(wrong) 디텍션(detection)을 최소화하기 위한 제약 조건: 앞서 보낸 키 트레인(train) 펄스(들)가 검출되고 난 후에야 다음 트레인 펄스(들)를 보낼 수 있음).On the other hand, in the case of plug-and-play QKD, the key rate is low due to the structural characteristic of having to reciprocate the transceiver compared to the one-way QKD (constraints to minimize long detection due to back scattering: The next train pulse(s) can only be sent after the previously sent key train pulse(s) have been detected.
이에, 본 명세서에서는 멀티(Multi)-파장(wavelength) 레이저와 옵티컬(optical) 스위치(switch)를 통한 레이저 펄스의 주파수 분할과 DL을 이용한 펄스의 딜레이(delay) 조절을 통한 파장 분할 펼스 열의 시차 전송 기법을 제공하고자 한다. 이때 발생하는 백 스캐터링 펄스는 튜너블(tunable) 옵티컬 필터(filter)의 통과 파장을 시간 별로 효율적으로 조절 및 차단하여 키 레이트 개선하고자 한다. Therefore, in the present specification, a multi-wavelength laser and an optical switch are used to divide the frequency of a laser pulse, and a delay control of a pulse using DL is used to transmit the wavelength division pulse differentially. We want to provide a method. The back scattering pulse generated at this time is to efficiently adjust and block the pass wavelength of a tunable optical filter by time to improve the key rate.
정리하면, 본 명세서는 양자 암호 통신(quantum secure communication) 시스템 중 양자 키 분배(QKD)를 위한 기법에 관한 것이다. 보다 구체적으로는, QKD 기법 중 플러그 앤드 플레이 양자 키 분배 시스템에서 채널 및 스토리지 라인의 길이에 따라 밥 쪽의 광원에서 생성한 펄스 열을 다중 경로 및 다중 파장을 이용하여 효율적으로 분배하는 방식을 통해 키 전송률을 높이는 방법, 장치 및 시스템에 관한 것이다. 또한 본 명세서에서는 튜너블 옵티컬 필터를 펄스의 파장 변화 시점에 맞추어 효율적으로 전환시키는 방법을 적용하여 최소한의 수의 디텍터와 스토리지 라인의 길이만으로도 레일리 백 스캐터링으로 인한 양자 비트 에러 레이트의 증가를 억제하는 방법을 포함한다.In summary, the present specification relates to a technique for quantum key distribution (QKD) in a quantum secure communication system. More specifically, in the plug-and-play quantum key distribution system of the QKD technique, the pulse train generated by the light source on the rice side is efficiently distributed using multiple paths and multiple wavelengths according to the length of the channel and storage line. It relates to a method, apparatus and system for increasing a transmission rate. In addition, in the present specification, by applying a method of efficiently converting the tunable optical filter according to the time of change in the wavelength of the pulse, the increase in quantum bit error rate due to Rayleigh back scattering due to Rayleigh back scattering is suppressed with only a minimum number of detectors and the length of the storage line. including methods.
본 명세서에서 해결하고자 하는 과제를 도면을 통해 설명하면 아래와 같을 수 있다.The problems to be solved in the present specification may be described below with reference to the drawings.
도 6은 플러그 앤드 플레이 QKD 기법의 펄스 열 사이의 시간 지연에 대한 일례다.6 is an example of a time delay between pulse trains in a plug-and-play QKD technique.
도 6에서는, 플러그 앤드 플레이 양자키 분배 기술에서는 레일리 백-스캐터링의 발생으로 인한 키 전송 오류 율(= 양자 비트 에러 레이트(quantum bit error rate; QBER) 증가를 억제하기 위한 목적으로 긴 길이의 스토리지 라인(SL)가 사용되는 예시와, 펄스 열이 시간 간격을 두고 불연속적으로 생성되는 예시가 도시되 있다. 여기서, 위의 긴 길이의 스토리지 라인 및 시간 간격을 두고 불연속적으로 생성되는 펄스 열로 인해, 도 6에서의 예시와 같이 긴 지연 시간이 발생할 수 있다.In Figure 6, in the plug-and-play quantum key distribution technology, Rayleigh back-storage of a long length for the purpose of suppressing an increase in the key transmission error rate (= quantum bit error rate; QBER) due to the occurrence of scattering An example in which the line SL is used and an example in which a pulse train is generated discontinuously at time intervals are shown, where, due to the above long storage line and a pulse train discontinuously generated over time intervals, , a long delay time may occur as in the example in FIG. 6 .
위와 같은 긴 지연 시간을 해결하기 위하여, 본 명세서에서는 추가적인 레이저 다이오드(diode)의 사용 없이 광원을 다중 경로 및 파장으로 나누는 방식을 통해 지연 시간을 최소화하여 높은 키 레이트를 가질 수 있는 양자 암호 키 분배 방법, 장치 및 시스템을 구성한다.In order to solve the above long delay time, in the present specification, a quantum cryptography key distribution method that can have a high key rate by minimizing the delay time through a method of dividing the light source into multiple paths and wavelengths without the use of an additional laser diode (diode) , make up devices and systems.
이하, 본 명세서의 예시에 대한 보다 원활한 이해를 위해, 도면을 통해 본 명세서의 개시에 대해 설명하도록 한다. 이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다. Hereinafter, for a better understanding of the examples of the present specification, the disclosure of the present specification will be described with reference to the drawings. The following drawings were created to explain a specific example of the present specification. Since the names of specific devices described in the drawings or the names of specific signals/messages/fields are presented by way of example, the technical features of the present specification are not limited to the specific names used in the following drawings.
도 7은 본 명세서의 일 실시예에 따른, 파장 분할 및 다중 경로에 기반한 양자 암호 통신 방법의 순서도다.7 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path, according to an embodiment of the present specification.
도 7에 따르면, 장치는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성할 수 있다(S710). 여기서, 상기 N은 자연수일 수 있다. 아울러, 상기 장치는 밥 사이드에서의 장치를 의미할 수 있으며, 이때, 밥 사이드에서의 장치는 앞서 설명했던 기지국에 해당할 수도 있다(물론, 본 명세서에서는 밥 사이드에서의 장치가 단말에 해당하는 것을 본 명세서의 권리범위에서 제외하고자 하는 것은 아니다).Referring to FIG. 7 , the device may generate N first pulse trains each having different wavelengths ( S710 ). Here, N may be a natural number. In addition, the device may mean a device at Bobside, in this case, the device at Bobside may correspond to the above-described base station (of course, in this specification, it is assumed that the device at Bobside corresponds to a terminal) It is not intended to be excluded from the scope of the present specification).
예컨대, 상기 제1 펄스 열의 길이는 적어도 하나의 상기 제1 펄스 열의 길이, 하나의 펄스 열에 포함된 소스 펄스의 개수, 광 케이블에서의 빛의 속도 및 레이저 소스의 반복 레이트에 기반하여 결정될 수 있다. 여기서, 상기 제1 펄스 열의 길이는 다음 식에 기반하여 결정되고, l = m*c*f_source (m) 상기 l은 상기 제1 펄스 열의 길이이고, 상기 m은 상기 하나의 펄스 열에 포함된 소스 펄스의 개수이고, 상기 c는 상기 광 케이블에서의 빛의 속도이고, 및 상기 f_source는 상기 레이저 소스의 반복 레이트일 수 있다. For example, the length of the first pulse train may be determined based on a length of at least one of the first pulse trains, the number of source pulses included in one pulse train, a speed of light in an optical cable, and a repetition rate of a laser source. Here, the length of the first pulse train is determined based on the following equation, l = m*c*f_source (m), where l is the length of the first pulse train, and m is the source pulse included in the one pulse train. , where c is the speed of light in the optical cable, and f_source may be a repetition rate of the laser source.
설명의 편의를 위해, 이에 대한 보다 구체적인 예는 후술하도록 한다.For convenience of description, a more specific example thereof will be described later.
장치는 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택할 수 있다(S720). 여기서, 상기 k는 자연수이고 및 상기 k는 상기 n보다 같거나 작을 수 있다.The device may select k second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line ( S720 ). Here, k is a natural number, and k may be less than or equal to n.
예컨대, 상기 제2 펄스 열의 개수인 상기 k는 상기 장치가 선택하는 최대 파장의 개수일 수 있다. 여기서 예컨대, 상기 장치가 선택하는 최대 파장의 개수는 적어도 하나의 상기 양자 채널의 길이, 상기 스토리지 라인의 길이 및 상기 제1 펄스 열의 길이에 기반하여 결정될 수 있다.For example, the k, which is the number of the second pulse train, may be the number of maximum wavelengths selected by the device. Here, for example, the maximum number of wavelengths selected by the device may be determined based on the length of at least one quantum channel, the length of the storage line, and the length of the first pulse train.
일례로, 상기 장치가 선택하는 최대 파장의 개수인 k의 값은 다음 식에 기반하여 결정되고, , 상기 l_ch는 상기 양자 채널의 길이이고, 상기 l_sl은 상기 스토리지 라인의 길이이고, 및 상기 l은 상기 제1 펄스 열의 길이일 수 있다.As an example, the value of k, which is the number of maximum wavelengths selected by the device, is determined based on the following equation, , wherein l_ch is the length of the quantum channel, l_sl is the length of the storage line, and l is the length of the first pulse train.
또 다른 일례로, 앞선 일례에 비해, 펄스열의 길이의 축소에 기반한 파장 분할이 제공될 수 있다. 예컨대, 상기 장치가 선택하는 최대 파장의 개수인 k_2의 값은 아래 식에 기반하여 결정되고, , 상기 l_ch는 상기 양자 채널의 길이고, 상기 l_sl은 상기 스토리지 라인의 길이고, 상기 l은 상기 제1 펄스 열의 길이고, 및 상기 a는 앞선 일례에 비해 줄어든 파장의 비율에 해당하는 값일 수 있다.As another example, compared to the previous example, wavelength division based on a reduction in the length of the pulse train may be provided. For example, the value of k_2, which is the number of maximum wavelengths selected by the device, is determined based on the following equation, , wherein l_ch is the length of the quantum channel, l_sl is the length of the storage line, l is the length of the first pulse train, and a may be a value corresponding to a ratio of a reduced wavelength compared to the previous example.
설명의 편의를 위해, 이에 대한 보다 구체적인 예는 후술하도록 한다.For convenience of description, a more specific example thereof will be described later.
장치는 상기 k개의 상기 제2 펄스 열을 상기 k개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송할 수 있다(s730). 여기서, 상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성될 수 있다.The device may transmit the k second pulse trains to the other device through the quantum channel based on the k multipaths (s730). Here, each of the k multi-paths may be configured with delay lines having different lengths.
예컨대, 상기 딜레이 라인의 길이에 대한 값은 적어도 하나의 가장 짧은 딜레이 라인의 길이, 상기 장치가 선택하는 최대 파장의 개수, 상기 제1 펄스 열의 길이 및 파장 성분 변경에 필요한 스위칭 타임에 해당하는 길이에 기반하여 결정될 수 있다.For example, the value of the length of the delay line is the length of at least one shortest delay line, the maximum number of wavelengths selected by the device, the length of the first pulse train, and the length corresponding to the switching time required for changing the wavelength component. can be determined based on
일례로, 상기 딜레이 라인의 길이에 대한 값은 다음 식에 기반하여 결정되고, 딜레이 라인의 길이 = t + (k - 1)*(l + l_st) (m), 상기 t는 상기 가장 짧은 딜레이 라인의 길이이고, 상기 k는 상기 장치가 선택하는 최대 파장의 개수이고, 상기 l은 상기 제1 펄스 열의 길이이고, 및 상기 l_st는 상기 파장 성분 변경에 필요한 스위칭 타임에 해당하는 길이일 수 있다.For example, the value for the length of the delay line is determined based on the following equation, the length of the delay line = t + (k - 1) * (l + l_st) (m), the t is the shortest delay line , where k is the number of maximum wavelengths selected by the device, l is the length of the first pulse train, and l_st may be a length corresponding to a switching time required for changing the wavelength component.
한편, 예컨대, 상기 방법은, 상기 제2 펄스열의 전송에 기반하여 발생한 백스캐터링(백스캐터링) 펄스를 튜너블 옵티컬 필터에 기반하여 필터링 하는 것을 더 포함하되, 상기 튜너블 옵티컬 필터는 통과 가능한 파장을 가변적으로 조절하는 소자일 수 있다.On the other hand, for example, the method further comprises filtering a backscattering (backscattering) pulse generated based on the transmission of the second pulse train based on a tunable optical filter, wherein the tunable optical filter has a passable wavelength It may be a variably adjustable element.
앞서 설명한 바와 같이, 예컨대, 상기 장치는 밥(bob) 사이드의 장치이고, 상기 다른 장치는 앨리스(alice) 사이드의 장치일 수 있으며, 예컨대, 상기 장치는 기지국이고, 상기 다른 장치는 단말(user equipment)일 수 있다.As described above, for example, the device may be a bob side device, and the other device may be an alice side device, eg, the device may be a base station, and the other device may be a user equipment. ) can be
설명의 편의를 위해, 이에 대한 보다 구체적인 예는 후술하도록 한다.For convenience of description, a more specific example thereof will be described later.
이하, 도면들을 통해 도 7의 예시에 대해 보다 구체적으로 설명하도록 한다.Hereinafter, the example of FIG. 7 will be described in more detail with reference to the drawings.
도 8은 본 명세서의 일 실시예에 따른, 제공하고자 하는 플러그 앤드 플레이 QKD 프로토콜을 개략적으로 도시한 것이다.8 schematically illustrates a plug-and-play QKD protocol to be provided, according to an embodiment of the present specification.
도 8에 따르면, 본 명세서에서는 양자 암호통신에서 키 정보를 생성하는 기법에 있어서, 서로 다른 길이의 다중 경로와 다중 파장 분할 방식을 광원의 펄스에 적용하여 스토리지 라인의 길이를 최소화하면서도 최대한 지연 없이 다음 펄스 열이 생성될 수 있도록 하는 두 가지 방식을 제안한다.According to FIG. 8, in the present specification, in the technique of generating key information in quantum cryptographic communication, multiple paths of different lengths and multiple wavelength division methods are applied to the pulses of the light source to minimize the length of the storage line while minimizing the length of the storage line. We propose two methods to enable the pulse train to be generated.
첫 번째 방식은 다중 경로 및 파장 분할을 순서대로 적용시켜 펄스 열 간의 파장을 다르게 한 후, 현재의 펄스 열과 다음 펄스 열의 지연 시간을 최소화하는 것을 통해 키 레이트를 높이는 기법이다.The first method is a technique of increasing the key rate by sequentially applying multipath and wavelength division to have different wavelengths between pulse trains, and then minimizing the delay times of the current pulse train and the next pulse train.
두 번째 방식은 첫 번째 기법의 펄스 열을 더 짧은 길이로 쪼갠 후, 각 펄스 열에 다른 파장을 적용하여 첫 번째 기법과 같은 키 레이트를 가지면서도 스토리지 라인의 길이를 쪼갠 비율만큼 줄일 수 있다. In the second method, after splitting the pulse train of the first method into shorter lengths, a different wavelength is applied to each pulse train to reduce the length of the storage line by the split ratio while having the same key rate as the first method.
또한 이 때 발생할 수 있는 레일리 백 스캐터링 펄스로 인한 오류 증가 문제를 해결하기 위해서 기존에는 주로 각 검출기에서 서로 다른 파장의 펄스를 검출할 수 있도록 하는 구조를 사용하였으며, 이 방법에서는 파장 디비전(division) 디 멀티플랙서(de-multiplexer; DE-MUX)와 서로 다른 파장을 가진 펄스 열의 개수의 두배만큼의 검출기가 필요할 수 있다. 따라서 본 명세서에서는 여러 개의 검출기 적용 대신 튜너블 옵티컬 필터를 2개의 검출기 직전에 배치하고, 일정 시간 간격에 따라 필터의 파장을 조절하는 방식을 통해 QBER의 증가를 억제한다.In addition, in order to solve the problem of increasing errors due to Rayleigh back scattering pulses that may occur at this time, conventionally, a structure that allows each detector to detect pulses of different wavelengths is mainly used. In this method, wavelength division is used. A de-multiplexer (DE-MUX) and twice as many detectors as the number of pulse trains with different wavelengths may be required. Therefore, in the present specification, instead of applying multiple detectors, an increase in QBER is suppressed by disposing a tunable optical filter immediately before the two detectors and adjusting the wavelength of the filter according to a predetermined time interval.
1. 제1 방법: 다중 경로 및 파장 분할을 통한 플러그 앤드 플레이 1. Method 1: Plug and Play through Multipath and Wavelength Segmentation
QKDQKD
프로토콜의 키 protocol key
레이트rate
개선 기법 improvement technique
상기 명세서에서는 레일리 백 스캐터링을 최소화하기 위해 필요한 레이저 다이오드의 펄스 열 사이에 존재하는 긴 시간 간격을 최소화하기 위한 방법을 제시한다. 이를 위해 본 명세서에서는 아래의 파장 및 시간 분할 기법을 연이어 적용하여 각 펄스 열의 파장 및 생성 시간을 다르게 하는 것을 통해 특정 펄스 열이 다 전송되면 뒤이어 다른 파장을 가지고 있는 다음 펄스 열을 곧 바로 전송 되도록 한다. 그리고 이때 발생할 수 있는 레일리 백 스캐터링 펄스는 검출기의 직전 위치에 튜너블 옵티컬 필터를 위치시켜 차단하며, 시간에 따라 변하는 검출 신호의 파장을 제외한 나머지 파장을 차단할 수 있도록 필터의 파장의 영역을 변화시키는 방법을 적용한다.In the above specification, a method for minimizing the long time interval between pulse trains of a laser diode required to minimize Rayleigh back scattering is presented. To this end, in the present specification, by applying the following wavelength and time division technique successively to vary the wavelength and generation time of each pulse train, when a specific pulse train is transmitted, the next pulse train having a different wavelength is immediately transmitted. . And the Rayleigh back scattering pulse that may occur at this time is blocked by placing a tunable optical filter in the position immediately before the detector, and changing the wavelength range of the filter so as to block the remaining wavelengths except for the wavelength of the detection signal that changes with time. apply the method
이하, 본 방법에 대해 도면을 통해 보다 구체적으로 설명하도록 한다.Hereinafter, the method will be described in more detail with reference to the drawings.
도 9는 본 명세서의 일 실시예에 따른, 밥 사이드에 적용한 파장 분할, 시분할 구조, 그리고 펄스 열의 변화에 대해 개략적으로 도시한 것이다.9 schematically illustrates changes in wavelength division, a time division structure, and a pulse train applied to a bob side according to an embodiment of the present specification.
도 9에 따르면, 제너레이터(예컨대, MW(Multi-wavelength) 제너레이터)(910)는 앞서 설명한 바와 같이 N개의 펄스 열을 생성할 수 있다. 여기서, 하나의 펄스 열에는 m개의 펄스가 포함될 수 있으며, N개의 펄스 열 각각은 서로 다른 파장을 가질 수 있다. 이와 같은 예시들은 도 9의 ①에 도시되어 있다.Referring to FIG. 9 , a generator (eg, a multi-wavelength (MW) generator) 910 may generate N pulse trains as described above. Here, one pulse train may include m pulses, and each of the N pulse trains may have a different wavelength. Such examples are shown in ① of FIG. 9 .
옵티컬 스위치(optical switch; OSW)(920)는 N개의 펄스 열 중 K개 만큼의 펄스 열을 선택할 수 있다. 이와 같은 예시들은 도 9의 ②에 도시되어 있다.An optical switch (OSW) 920 may select as many as K pulse trains among N pulse trains. Such examples are shown in ② of FIG. 9 .
한편, 위 선택된 K개의 펄스 열은 다중 경로(930)를 통해 전송될 수 있다. 이와 같은 예시들은 도 9의 ③에 도시되어 있다.Meanwhile, the selected K pulse trains may be transmitted through the multi-path 930 . Such examples are shown in ③ of FIG. 9 .
이하, 각 파트/소자들에 대한 구체적인 동작에 대해 설명하도록 한다.Hereinafter, detailed operations of each part/element will be described.
1.1. 채널 및 1.1. channel and
SLSL
길이를 기준으로 한 파장 분할: 도 9의 ①→② Wavelength division based on length: ①→② in FIG.
상기 광원에서 생성한 송신 펄스열의 파장 분할 단계에서는 우선 멀티-파장 제너레이터(generator)에서 n개의 서로 다른 파장을 가지는 펄스를 생성한다. 이 때 적용할 수 있는 멀티-파장 제너레이터는 에르븀 첨가(Erbium-doped) 섬유나 라만(Raman) 섬유와 같은 이득 물질의 비선형 광학 효과를 이용하는 방식이 주로 사용되고 있으며 이를 이용하면 일정 파장 간격(△λ_0) 차이를 가지는 n개의 펄스를 동시에 생성할 수 있다. 그 후 n개의 서로 다른 파장을 가지는 펄스 신호 중 채널의 길이와 스토리지 라인의 길이를 기준으로 최대로 사용할 수 있는 k개(n≥k)의 서로 다른 파장을 가지는 펄스 신호를 옵티컬 스위치(osw)를 통해 선택한다,In the wavelength division step of the transmission pulse train generated by the light source, first, a multi-wavelength generator generates pulses having n different wavelengths. The multi-wavelength generator that can be applied at this time is mainly used in a method that uses the nonlinear optical effect of a gain material such as an erbium-doped fiber or a Raman fiber. It is possible to simultaneously generate n pulses with differences. Then, among the n pulse signals having different wavelengths, based on the length of the channel and the length of the storage line, a pulse signal having k (n≥k) different wavelengths that can be used maximally is switched by using the optical switch (osw). choose through,
이 때, 선택된 파장의 최대 개수 k는 전체 송수신 경로의 대부분을 차지하는 채널과 스토리지 라인의 길이에 의해 결정되며 그 값은 다음과 같이 구할 수 있다.In this case, the maximum number k of the selected wavelength is determined by the length of the channel and the storage line occupying most of the entire transmission/reception path, and the value can be obtained as follows.
[식 11][Equation 11]
여기서, l은 광원을 통해 생성된 하나의 펄스 열의 길이이며, m은 하나의 펄스 열에 포함된 소스 펄스의 개수, c = 2×10^8 (m/s)는 광 케이블에서 빛의 속도, f_source는 레이저 소스의 반복 레이트일 수 있다.where l is the length of one pulse train generated through the light source, m is the number of source pulses included in one pulse train, c = 2×10^8 (m/s) is the speed of light in the optical cable, f_source may be the repetition rate of the laser source.
[식 12][Equation 12]
여기서, k는 광학 스위치에서 선택할 수 있는 최대 파장의 개수일 수 있으며, l_ch는 양자 채널의 길이, l_sl는 스토리지 라인의 길이일 수 있다.Here, k may be the number of maximum wavelengths that can be selected by the optical switch, l_ch may be the length of the quantum channel, and l_sl may be the length of the storage line.
플러그 앤드 플레이 qkd 기법의 레이저 다이오드에서 생성된 펄스는 밥->앨리스->밥으로 왕복하는 과정에서 송수신 경로의 대부분을 차지하는 채널과 스토리지 라인을 두 번 지난다. 따라서 경로의 전체 왕복 길이는 2*(l_ch+l_sl)로 설정할 수 있다. (나머지 앨리스와 밥의 광학 소자 및 내부 구성에 사용되는 경로의 길이는 매우 짧으므로 제외) The pulse generated by the laser diode of the plug-and-play qkd technique passes through the channel and storage line, which occupy most of the transmission/reception path, twice in the process of going back and forth from Bob->Alice->Bob. Therefore, the total round trip length of the path can be set to 2*(l_ch+l_sl). (Except because the length of the path used for the rest of Alice and Bob's optics and internal construction is very short)
만약 길이 l을 가지는 m개의 펄스로 구성된 펄스 열을 왕복 송수신 경로를 통하여 보낸다고 가정할 때, 기존 기법에서는 백 스캐터링 펄스의 검출로 인한 오류 증가를 막기 위해 하나의 펄스 열이 왕복 경로를 거쳐 검출기를 통해 검출된 다음에 다음 펄스가 전송될 수 있다. If it is assumed that a pulse train composed of m pulses of length l is sent through a reciprocating transmission/reception path, in the existing technique, one pulse train passes through the reciprocating path to prevent an increase in error due to the detection of back scattering pulses. The next pulse can be transmitted after being detected through
따라서 다음 펄스 열의 전송을 위해서는 긴 지연 시간을 기다려야 한다. 이를 해결하기 위한 본 명세서에서는 현재 펄스 열이 전송된 후에 다음 펄스 열을 바로 전송하는 방법을 적용하는 방식을 택하고 있으므로, 최대 k개를 다른 파장을 가지는 펄스 열을 왕복 경로를 채우는데 사용할 수 있음을 위 식을 통해 알 수 있다. 따라서 본 명세서에서는 최대 k개의 서로 다른 파장을 가지는 펄스 열을 광학 스위치를 이용하여 선택할 수 있다.Therefore, a long delay time has to be waited for the transmission of the next pulse train. In this specification to solve this problem, since the method of transmitting the next pulse train immediately after the current pulse train is transmitted is adopted, up to k pulse trains having different wavelengths can be used to fill the reciprocating path. can be found from the above formula. Therefore, in the present specification, pulse trains having up to k different wavelengths may be selected using an optical switch.
1.2.1.2.
서로 다른 길이의 of different lengths
딜레이delay
라인을 포함한 다중 경로를 통한 시분할: 도 9의 ②→③ Time division through multiple paths including lines: ②→③ in FIG.
광학 스위치를 통해 선택된 서로 다른 파장을 가진 k개의 펄스 열은 도 9의 ② 와 같이 동일 위치에 형성된다. 상기 시분할 단계에서는 각 펄스 열이 지나는 경로의 길이의 차이를 발생시켜 각 펄스 열이 전송되는 시점을 구분시킨다. 이를 통해 앞서 생성된 여러 다른 파장을 가진 펄스 열 간의 시간 지연 및 펄스 열 간의 겹침 없이 연속 전송이 가능해진다.The k pulse trains having different wavelengths selected through the optical switch are formed at the same position as in ② of FIG. 9 . In the time division step, a difference in the length of a path through which each pulse train passes is generated to distinguish a time point at which each pulse train is transmitted. This enables continuous transmission without time delay between the previously generated pulse trains with different wavelengths and without overlap between the pulse trains.
여기서, k 개의 다중 경로의 딜레이 라인(delay line; DL)의 길이에 대해 도면을 통해 설명하면 아래와 같을 수 있다.Here, the lengths of delay lines (DL) of k multi-paths may be described below with reference to the drawings.
도 10은 k 개의 다중 경로의 딜레이 라인 길이 설정에 대한 일례를 개략적으로 도시한 것이다.10 schematically illustrates an example of setting k multipath delay line lengths.
도 10에 따르면, 첫 번째 경로의 길이는 예컨대, t (m)로 정의될 수 있으며, 두 번째 경로의 길이는 예컨대, t+(l+l_st) (m)로 정의될 수 있다. 마찬가지로, k 번째 경로의 길이는 예컨대, t+(k-1)*(l+l_st) (m)로 정의될 수 있다.According to FIG. 10 , the length of the first path may be defined as, for example, t(m), and the length of the second path may be defined as, for example, t+(l+l_st)(m). Similarly, the length of the k-th path may be defined as, for example, t+(k-1)*(l+l_st) (m).
즉, 각 경로를 통과하는 펄스 열의 전송 시간 차이는 딜레이 라인의 길이 차이를 통해 발생시키는데, 각 경로의 딜레이 라인 길이 차이는 하나의 펄스 열의 길이(l)와 튜너블 옵티컬 필터를 통해 통과시킬 파장 성분 변경에 필요한 스위칭 타임(t_sw)에 해당하는 길이(l_st=t_sw·c)의 합과 동일하게 설정한다. That is, the difference in the transmission time of the pulse train passing through each path is generated through the difference in the length of the delay line. It is set equal to the sum of the lengths (l_st=t_sw·c) corresponding to the switching time (t_sw) required for change.
[식 13][Equation 13]
여기서, l 은 딜레이 라인의 길이 차이일 수 있다.Here, l may be a difference in length of the delay line.
이는 본 명세서에서 하나의 펄스 열이 전송되고 난 뒤, 다음 펄스 열이 곧바로 뒤이어 전송되었을 때 나타날 수 있는 백 스캐터링 펄스를 억제하기 위하여 사용되는 튜너블 옵티컬 필터에서 차단할 파장 변경을 위한 스위칭 타임이 지나고 난 후에야 비로소 다른 파장을 가지는 다음 펄스 열을 검출기에서 수신 할 수 있기 때문이다. In this specification, after one pulse train is transmitted, the switching time for changing the wavelength to be blocked in the tunable optical filter used to suppress back scattering pulses that may appear when the next pulse train is transmitted immediately after passes This is because the next pulse train with a different wavelength can be received by the detector only after it has passed.
따라서 k 개의 서로 다른 파장을 가지는 펄스 열을 연속해서 보내는 상황을 가정할 때, 첫 번째 경로부터 k 번째 경로의 길이는 도 10에서 전체 경로 중 가장 짧은 경로의 길이를 t라고 할 때, l+l_st -> △l의 배수만큼의 경로 차이만큼 증가하도록 구성한다.Therefore, assuming a situation in which pulse trains having k different wavelengths are continuously transmitted, the length of the k-th path from the first path is l+l_st when the length of the shortest path among all paths in FIG. 10 is t. -> It is configured to increase by the path difference as many as multiples of Δl.
1.3.1.3.
튜너블tunable
옵티컬optical
필터를 통한 through filter
레일리Rayleigh
백스캐터링backscattering
펄스의 차단 Interruption of pulses
도 11은 백 스캐터링 펄스의 제거를 위한 옵티컬 필터의 적용 예를 개략적으로 도시한 것이다.11 schematically illustrates an application example of an optical filter for removing back scattering pulses.
본 명세서에서는 앞서 제시한 파장 분할 부분과 시 분할 부분을 통해 서로 다른 파장을 가진 펄스 열을 연속적으로 연결해서 전송할 수 있다. 하지만 이 방식을 적용하기 위해서는 백스캐터링 펄스가 검출기에서 검출되지 않도록 하는 도 11 과 같은 옵티컬 필터링 과정이 단일 광자 검출기(SPD) 직전에 추가적으로 적용 되어야 한다. 이를 위해서는 두 가지 방법을 고려해 볼 수 있다.In the present specification, pulse trains having different wavelengths may be continuously connected and transmitted through the aforementioned wavelength division part and time division part. However, in order to apply this method, an optical filtering process as shown in FIG. 11 that prevents the backscattering pulse from being detected by the detector must be additionally applied immediately before the single photon detector (SPD). Two methods can be considered for this.
도 12는 두 개의 MUX와 2k개의 SPD를 적용한 검출부에 대한 구성의 일례를 개략적으로 도시한 것이다.12 schematically shows an example of the configuration of a detection unit to which two MUXs and 2k SPDs are applied.
도 12에서의 구성과 같이, De-Mux와 사용되는 파장의 개수의 두 배에 해당하는 검출기를 사용하여 De-Mux로 들어오는 신호의 파장에 따라 다른 경로로 신호를 보낸 후, 해당 파장을 검출할 수 있는 검출기에 연결하여 검출할 수 있다. 이 경우 각 검출기에는 해당하는 파장의 신호만 검출되므로 이를 통해 백-스캐터링 펄스의 검출로 인한 오류 율 증가를 막을 수 있다. 하지만 이 방법은 파장 별로 다른 검출기를 사용해야 하므로 많은 검출기가 필요할 수 있다는 단점이 있다.As in the configuration in FIG. 12, after sending a signal to a different path according to the wavelength of the signal coming into the De-Mux using a detector that is twice the number of wavelengths used with the De-Mux, the wavelength is detected. It can be detected by connecting to a capable detector. In this case, since only the signal of the corresponding wavelength is detected by each detector, it is possible to prevent an increase in the error rate due to the detection of the back-scattering pulse. However, this method has a disadvantage that many detectors may be required because different detectors for each wavelength must be used.
이에, 본 명세서에서는 레이저 다이오드에서 생성한 첫 번째 펄스 열이 밥쪽에서 양자 채널과 앨리스 쪽을 거쳐 다시 밥쪽으로 되돌아와서 단일 광자 검출기에서 검출이 시작되는 시점까지 걸리는 시간을 측정한 후, 그 시간부터는 단일 광자 검출기 직전에 설치된 튜너블 옵티컬 필터에서 첫 번째 펄스가 가진 파장만을 통과시킬 수 있도록 필터의 파장을 조절하고 나머지 파장의 펄스는 모두 차단하도록 설정하는 구성을 제공하고자 한다. Therefore, in the present specification, the first pulse train generated by the laser diode returns to the Bob side through the quantum channel and Alice side, and the time it takes to start detection by the single photon detector is measured, and from that time, the single In the tunable optical filter installed just before the photon detector, it is intended to provide a configuration in which the wavelength of the filter is adjusted so that only the wavelength of the first pulse can pass, and all pulses of the remaining wavelengths are set to be blocked.
그리고 첫 번째 펄스 열의 첫 번째 펄스와 마지막 펄스까지 m개의 펄스가 모두 통과하고 나는 시점이 되면 다음 파장의 펄스가 들어오기 전의 스위칭 타임(t_sw) 동안 필터에서 통과시킬 수 있는 두 번째로 들어올 펄스 열의 파장에 맞게 파장 영역을 변경한다. 그리고 이 과정을 k개의 파장의 길이가 다른 펄스 열이 모두 통과할 때까지 k번 반복한다. And when all m pulses from the first pulse to the last pulse of the first pulse train pass and come, the wavelength of the second incoming pulse train that can pass through the filter during the switching time (t_sw) before the pulse of the next wavelength comes in Change the wavelength range according to Then, this process is repeated k times until all pulse trains with different lengths of k wavelengths pass through.
그 이후에는 다시 레이저 다이오드에서 첫 번째 파장의 펄스 열을 다시 전송하므로 앞선 과정을 처음부터 되풀이 하게 된다. 이 과정을 통해 단일 광자 검출기를 통해 다른 파장의 펄스들이 발생시키는 백 스캐터링 펄스를 효율적으로 차단할 수 있다.After that, the laser diode transmits the pulse train of the first wavelength again, so the previous process is repeated from the beginning. Through this process, it is possible to efficiently block back scattering pulses generated by pulses of different wavelengths through a single photon detector.
2. 제2 방법: 스토리지 라인의 길이 최소화를 통한 플러그 앤드 플레이 2. Method 2: Plug and play by minimizing the length of the storage line
QKDQKD
프로토콜의 of the protocol
앨리스Alice
사이드 소형화 및 키 Side miniaturization and key
레이트rate
개선 기법 improvement technique
본 명세서의 기본 구조는 첫 번째 명세서 기법과 동일한 기본 구조를 따르므로 차이점을 위주로 기술한다.Since the basic structure of the present specification follows the same basic structure as that of the first specification, differences will be mainly described.
앞서 제시한 첫 번째 명세서 기법에서는 레일리 백-스캐터링의 영향을 제거하기 위하여 앨리스 측에서 기존 플러그 앤드 플레이 기법과 동일한 스토리지 라인(SL)의 길이(l_sl)를 사용하고 있다. 그리고 그 길이는 밥 측의 광원에서 생성한 한 블록의 펄스 열을 저장할 수 있는 길이에 해당하며 다음 식과 같이 나타낼 수 있다.In the first specification technique presented above, in order to eliminate the effect of Rayleigh back-scattering, the same length (l_sl) of the storage line SL as that of the existing plug-and-play technique is used on the Alice side. And the length corresponds to the length that can store the pulse train of one block generated by the light source on the side of Bob, and can be expressed as the following equation.
[식 14][Equation 14]
여기서, 섬유에서의 옵티컬 펄스의 스피드는 2×10^8 (m/s)일 수 있다. 아울러, f_laser는 소스의 반복 레이트(repetition rate)를 의미할 수 있다.Here, the speed of the optical pulse in the fiber may be 2×10 8 (m/s). In addition, f_laser may mean a repetition rate of the source.
위 식에서 볼 수 있듯 sl의 길이를 줄이기 위해서는 광원의 반복 레이트가 제한되어 있다고 가정하면, 하나의 펄스 열에서 포함하는 펄스의 수를 줄이는 것이 요구된다. 따라서 본 명세서에서는 하나의 펄스열에 포함된 펄스 수를 첫 번째 기법에 비해 일정 비율 줄이고, 더 많은 파장 분할을 통해 키 레이트를 개선할 수 있는 기법을 제시한다.As can be seen from the above equation, assuming that the repetition rate of the light source is limited in order to reduce the length of sl, it is required to reduce the number of pulses included in one pulse train. Therefore, in the present specification, a technique capable of reducing the number of pulses included in one pulse train by a certain percentage compared to the first technique and improving the key rate through more wavelength division is proposed.
2.1. 펄스열의 길이 축소를 통한 파장 분할 부분 2.1. Wavelength division by reducing the length of the pulse train
도 13은 본 명세서의 다른 실시예에 따른, 밥 사이드에 적용한 파장 분할, 시분할 구조, 그리고 펄스 열의 변화에 대해 개략적으로 도시한 것이다.13 schematically illustrates changes in a wavelength division, a time division structure, and a pulse train applied to a bob side according to another embodiment of the present specification.
상기 명세서에서는 첫 번째 기법(도 13의 (a))에 비해 MW-제너레이터에서 생성하는 펄스열의 길이(=단일 펄스 열에서 포함하는 펄스의 수)를 도 13의 (b)와 같이 a배만큼 줄이고 그 줄인 비율만큼 더 다양한 파장의 길이를 가지는 펄스 열을 광학 스위치를 통하여 선택한다.In the specification, compared to the first technique (FIG. 13(a)), the length of the pulse train generated by the MW-generator (=the number of pulses included in a single pulse train) is reduced by a times as shown in FIG. 13(b). A pulse train having more various wavelength lengths by the reduced ratio is selected through an optical switch.
이 과정에서 더 많은 파장을 가진 펄스 열을 선택하기 위하여 추가적인 광학 스위치(광학 스위치에서 사용되는 채널의 수가 증가됨)가 사용 된다. 이를 통하여 첫 번째 기법에 비해 앨리스 측의 스토리지 라인 길이를 a배만큼 감소시킬 수 있다.In this process, an additional optical switch (increasing the number of channels used in the optical switch) is used to select the pulse train with more wavelengths. Through this, the length of the storage line on the Alice side can be reduced by a times compared to the first technique.
이 때 스토리지 라인의 길이 감소(l_sl → l_sl/a)와 하나의 펄스 열의 길이 감소(l → l/a)로 인해 왕복 경로를 채울 수 있는 펄스 열의 최대 개수는 다음 식과 같이 변경된다.At this time, due to the decrease in the length of the storage line (l_sl → l_sl/a) and the decrease in the length of one pulse train (l → l/a), the maximum number of pulse trains that can fill the round trip path is changed as follows.
[식 15][Equation 15]
여기서, k_2는 광학 스위치에서 선택할 수 있는 최대 파장의 개수를 의미할 수 있으며, l_ch는 양자 채널의 길이, l_sl는 스토리지 라인의 길이, l은 광원을 통해 생성된 하나의 펄스 열의 길이를 의미할 수 있다.Here, k_2 may mean the maximum number of wavelengths that can be selected by the optical switch, l_ch is the length of the quantum channel, l_sl is the length of the storage line, and l is the length of one pulse train generated through the light source. have.
따라서 k_2개 만큼의 펄스 열을 생성한 후, 첫 번째 기법과 동일하게 딜레이 라인을 가지고 있는 다중 경로를 통해 전송하는 과정을 수행한다. 이 과정을 통해 k_2개의 펄스 열이 모두 전송되고 나면, 동일 과정을 처음부터 반복 수행한다.Therefore, after generating k_2 pulse trains, a process of transmitting them through multiple paths having delay lines is performed in the same way as in the first technique. After all k_2 pulse trains are transmitted through this process, the same process is repeatedly performed from the beginning.
2.2. 2.2.
튜너블tunable
옵티컬optical
필터 컨트롤 및 수신된 키 정보의 검출 부분 Filter control and detection part of received key information
상기 명세서에서는 밥 측에서 생성한 펄스 열의 길이 감소와 파장이 다른 펄스 열의 개수 증가로 인해 방법 1에 비해 더 빈번하게 광학 필터의 파장을 조절해야 한다. 따라서 본 명세서 기법이 첫 번째 기법에 비해 광학 필터의 통과 파장 전환 시간이 더 소모되나 현재 일반적으로 사용되는 필터의 파장 변환 시간이 수 나노세컨드(ns) 정도이므로 키 레이트의 감소는 거의 없다.In the above specification, the wavelength of the optical filter needs to be adjusted more frequently than in Method 1 due to a decrease in the length of the pulse train generated by Bob and an increase in the number of pulse trains having different wavelengths. Therefore, although the technique of the present specification consumes more pass wavelength conversion time of the optical filter than the first technique, the wavelength conversion time of currently used filters is about several nanoseconds (ns), so there is little reduction in the key rate.
도 14는 첫 번째 기법과 두 번째 기법에서, 동일 길이의 키 정보를 검출하는 방법의 차이를 개략적으로 도시한 것이다.14 schematically illustrates a difference in a method of detecting key information of the same length in the first technique and the second technique.
상기 명세서에서 j번째 펄스 열(λ_j' 의 파장 길이 가짐, 첫번째 기법에 비해 a배 만큼 길이 짧게 설정했다고 가정)이 통과되는데 걸리는 시간 t(λ_j')은 첫 번째 명세서 기법에서 걸리는 시간 t(λ_j)에 비해서 a배 짧으므로 광학 필터의 변환 주기를 기존에 비해 1/a의 주기로 설정해야 한다. 그리고 필터의 통과 파장 변환에 걸리는 시간(t_sw)은 두 기법 모두 동일할 수 있다.In the above specification, the time t(λ_j') required for the passage of the j-th pulse train (having a wavelength length of λ_j', assuming that the length is set as short as a times compared to the first technique) is the time taken in the first specification technique t(λ_j) Since it is a times shorter than , the conversion cycle of the optical filter should be set to 1/a compared to the previous one. In addition, the time (t_sw) required for the pass-wavelength conversion of the filter may be the same for both techniques.
이로부터 첫 번째 기법에서 λ_1의 파장과 m개의 펄스를 포함한 펄스 열을 검출기에서 수신하는데 필요한 시간은 t(λ_1)+t_sw임을 알 수 있다.From this, it can be seen that the time required for the detector to receive the pulse train including the wavelength of λ_1 and m pulses in the first technique is t(λ_1)+t_sw.
반면 두 번째 기법에서 첫 번째 기법과 동일한 m개의 펄스를 검출하기 위해서는 다음과 같은 시간이 필요할 수 있다. 두 번째 기법에서 첫 번째 기법의 펄스 열을 a 등분한 길이를 기본 펄스 열의 길이로 사용한다고 가정한다. 이 경우 두 번째 방법에서 첫 번째 방법과 동일한 길이를 가지는 펄스 열의 검출을 위해 걸리는 전체 시간은 임을 알 수 있다. 따라서 두 번째 방법에서는 첫 번째 기법에서 사용한 것과 동일한 길이의 펄스 열을 검출하는데 (a-1)·t_sw의 시간이 더 소모된다.On the other hand, in the second technique, the following time may be required to detect the same m pulses as in the first technique. In the second technique, it is assumed that the length obtained by dividing the pulse train of the first technique by a is used as the length of the basic pulse train. In this case, the total time it takes for the second method to detect a pulse train having the same length as the first method is it can be seen that Therefore, in the second method, it takes more time (a-1)·t_sw to detect a pulse train of the same length as that used in the first method.
그리고 키 정보 검출부에서는 도 14와 같이 첫 번째 기법에서는 특정 파장(λ_1)으로 검출된 h개의 정보를 메모리에 저장한 후 그 값을 한 블록(block)의 키 정보로 사용한다. 이에 비해 두 번째 기법에서는 짧아진 한 블록의 펄스 열의 길이를 되돌리기 위하여 신호 생성부에서 줄인 펄스 열의 길이 비율인 a 개의 펄스 열에서 생성한 키 열의 정보를 모은 h 개의 정보를 키 값으로 사용한다.In addition, the key information detection unit stores h pieces of information detected with a specific wavelength (λ_1) in the memory in the first technique as shown in FIG. 14, and then uses the value as key information of one block. On the other hand, in the second technique, in order to restore the length of the shortened pulse train of one block, h pieces of information obtained by collecting key sequence information generated from a pulse train, which is the ratio of the length of the pulse train reduced by the signal generator, are used as key values.
지금까지 설명한 본 명세서의 기법에서는, 공통적으로 광원에서 생성된 펄스 열에 파장 분할, 다중 경로 기법, 그리고 광학 필터 스위칭(switching) 기법을 적용하여 기존 플러그 앤드 플레이 양자 암호 통신 기법의 문제점이었던 낮은 쉬프트된 키 레이트가 개선되는 효과가 있을 수 있다.In the technique of the present specification described so far, wavelength division, multi-path technique, and optical filter switching technique are applied to the pulse train generated from the light source in common to apply the low shift key, which was a problem of the existing plug-and-play quantum cryptography communication technique. There may be an effect that the rate is improved.
기존 기법에서는 하나의 펄스 열을 생성한 후 채널과 SL을 왕복한 후 검출 될 때까지 다음 펄스를 기다려야 하므로 기존 기법의 쉬프트된 키 레이트는 그 비율에 해당하는 해당하는 l_sl/((l_channel+l_sl)·n_sw)만큼의 키 레이트 손실을 더 가진다. 하지만 본 명세서 기법에서는 지연 시간 없이 다음 펄스 열의 전송이 가능하므로 키 레이트를 개선할 수 있으며 그 개선 비율은 ((l_channel+l_sl)·n_sw)/l_sl 과 같을 수 있다.In the existing technique, after generating one pulse train, the shifted key rate of the existing technique is l_sl/((l_channel+l_sl) n_sw) further has a key rate loss. However, in the present specification, since the next pulse train can be transmitted without a delay time, the key rate can be improved, and the improvement rate may be equal to ((l_channel+l_sl)·n_sw)/l_sl.
이들을 식에 기반하여 설명하면 아래와 같을 수 있다.These can be described based on the equations as follows.
A. 기존 플러그 앤드 플레이 A. Conventional Plug and Play
QKDQKD
기법의 technique
쉬프트된shifted
키 key
레이트rate
(=R_(=R_
convconv
))
[식 16][Equation 16]
- L_Channel: 채널 길이- L_Channel: channel length
- L_SL: 스토리지 라인 길이 - L_SL: storage line length
- f: 펄스 반복 레이트 - f: pulse repetition rate
- μ: 평균 포톤 개수- μ: average number of photons
- n_f: 섬유 전송 계수 - n_f: fiber transmission coefficient
- n_f=10^(-α_1*L_channel/10)), 여기서, (α_1: 섬유 로스)- n_f=10^(-α_1*L_channel/10)), where (α_1: fiber loss)
- n_B: 밥에서의 전체 로스- n_B: total loss in rice
- n_B=10^(-L_Bob/10))- n_B=10^(-L_Bob/10))
- n_D: SPD의 감지 효율- n_D: detection efficiency of SPD
B. 본 명세서 기법의 B. Description of the Techniques herein
쉬프트된shifted
키 key
레이트rate
(=R_prop)(=R_prop)
[식 17][Equation 17]
여기서, 옵티컬 필터 계수인 n_sw는 10^(-α_f/10)일 수 있으며, α_f는 필터의 로스를 의미할 수 있다.Here, n_sw, which is an optical filter coefficient, may be 10^(-α_f/10), and α_f may mean a loss of the filter.
두 번째 기법에서는 밥 사이드에서 생성하는 기본 펄스 열을 더 작은 길이 단위로 나눈 후 파장 분할 기법을 적용하는 것을 통해 플러그 앤드 플레이 양자 암호 통신 기법에서 앨리스 측의 경량화에서 가장 큰 걸림돌이었던 스토리지 라인의 길이를 최소화할 수 있다.In the second technique, by dividing the basic pulse train generated by Bobside into smaller length units, and then applying the wavelength division technique, the length of the storage line, which was the biggest obstacle for Alice's weight reduction in the plug-and-play quantum cryptography communication technique, was reduced. can be minimized
스토리지 라인의 길이 감소 효과는 아래 식에서 하나의 펄스 열에서 포함하는 펄스(들)이 수를 줄인 비율만큼 감소시킬 수 있다. 예를 들어 기존 기법에서 500개의 펄스를 하나의 블록 단위로 스토리지 라인의 길이를 정했다면 제안 기법에서는 이를 10등분하고 각 50개의 펄스 열마다 다른 파장의 길이를 가지는 펄스 열을 통하여 보내는 방식을 적용하여 스토리지 라인의 길이를 1/10으로 줄인다.The effect of reducing the length of the storage line may be reduced by a ratio of reducing the number of pulse(s) included in one pulse train in the following equation. For example, in the existing technique, if the length of the storage line is determined in units of one block for 500 pulses, the proposed technique divides it into 10 equal parts and sends each 50 pulse trains through a pulse train having a different wavelength. Reduce the length of the storage line by 1/10.
[식 18][Equation 18]
지금까지 도 7의 예를 설명하였다. 이하에서는, 도 7의 예를 다른 방식으로 설명하도록 한다.So far, the example of FIG. 7 has been described. Hereinafter, the example of FIG. 7 will be described in another manner.
이하, 본 명세서의 예시에 대한 보다 원활한 이해를 위해, 도면을 통해 본 명세서의 개시에 대해 설명하도록 한다. 이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다. Hereinafter, for a better understanding of the examples of the present specification, the disclosure of the present specification will be described with reference to the drawings. The following drawings were created to explain a specific example of the present specification. Since the names of specific devices described in the drawings or the names of specific signals/messages/fields are presented by way of example, the technical features of the present specification are not limited to the specific names used in the following drawings.
도 15는 본 명세서의 일 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 방법의 순서도다.15 is a flowchart of a quantum cryptography communication method based on wavelength division and multi-path by a device in Bob Side, according to an embodiment of the present specification.
도 15에 따르면, 장치는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성할 수 있다(S1510). 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.Referring to FIG. 15 , the device may generate N first pulse trains each having different wavelengths ( S1510 ). Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
장치는 양자 채널의 길이 및 스토리지 라인의 길이에 기반하여, 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 K개 선택할 수 있다(S1520). 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The device may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line ( S1520 ). Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
이후, 장치는 K개의 제2 펄스 열을 K개의 다중 경로에 기반하여 양자 채널을 통해 다른 장치에게 전송할 수 있다(S1530). 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.Thereafter, the device may transmit the K second pulse trains to another device through the quantum channel based on the K multipaths ( S1530 ). Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
도 16은 본 명세서의 일 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 장치의 블록도를 개략적으로 도시한 것이다.16 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to an embodiment of the present specification.
도 16에 따르면, 장치(1600)는 제너레이터(1610), 옵티컬 스위치(1620), 다중경로(1630)을 포함할 수 있다. 여기서, 위 장치(1600)는 양자 채널(1640)을 통해 앞서 설명한 앨리스 사이드의 장치와 연결될 수 있다.According to FIG. 16 , a device 1600 may include a generator 1610 , an optical switch 1620 , and a multipath 1630 . Here, the device 1600 may be connected to the device of the Alice side described above through the quantum channel 1640 .
한편, 위 장치를 제어하는 제어장치(예컨대, 프로세서를 포함할 수 있음)(1670)는 위 장치와는 별개로써 존재할 수도 있다. 제어장치(1670)는 제너레이터 제어부(1650) 및 옵티컬 스위치 제어부(1660)을 포함할 수 있다.On the other hand, a control device (eg, may include a processor) 1670 for controlling the device may exist separately from the device. The control device 1670 may include a generator control unit 1650 and an optical switch control unit 1660 .
앞서 설명한 바를 위 장치(1600)에 적용하여 설명하면 아래와 같을 수 있다.When the above description is applied to the above device 1600, the description may be as follows.
제너레이터(1610)는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성할 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The generator 1610 may generate N first pulse trains each having a different wavelength. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
옵티컬 스위치(1620)는 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 K개 선택할 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The optical switch 1620 may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
한편, 다중경로(1630)를 통해서는 상기 K개의 상기 제2 펄스 열 각각이 통과될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.Meanwhile, each of the K second pulse trains may pass through the multipath 1630 . Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
한편, 위 제어장치 혹은 프로세서는 아래와 같이 구성될 수 있다.On the other hand, the above control device or processor may be configured as follows.
제너레이터 제어부(1650)는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성하도록 구성될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The generator control unit 1650 may be configured to generate N first pulse trains each having different wavelengths. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
옵티컬 스위치 제어부(1660)는 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 K개 선택하도록 구성될 수 있다. 여기서, 상기 K개의 상기 제2 펄스 열은 상기 K개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송되도록 구성될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The optical switch controller 1660 may be configured to select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line. Here, the K second pulse trains may be configured to be transmitted to the other device through the quantum channel based on the K multi-paths. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
한편, 본 명세서에서 제공하는 장치에는 본 명세서에 제공하는 장치를 제어하는 프로세서가 포함될 수도 있으며, 이를 도면을 통해 설명하면 아래와 같을 수 있다.On the other hand, the apparatus provided in the present specification may include a processor for controlling the apparatus provided in the present specification, which may be described with reference to the drawings as follows.
도 17은 본 명세서의 다른 실시예에 따른, 밥 사이드에서의 장치에 의한 파장 분할 및 다중 경로에 기반한 양자 암호 통신 장치의 블록도를 개략적으로 도시한 것이다.17 schematically shows a block diagram of a quantum cryptography communication device based on wavelength division and multi-path by the device at Bob Side, according to another embodiment of the present specification.
도 17에 따르면, 장치(1700)는 제너레이터(1710), 옵티컬 스위치(1720), 다중경로(1730)을 포함할 수 있다. 여기서, 위 장치(1700)는 양자 채널(1740)을 통해 앞서 설명한 앨리스 사이드의 장치와 연결될 수 있다.Referring to FIG. 17 , a device 1700 may include a generator 1710 , an optical switch 1720 , and a multipath 1730 . Here, the device 1700 may be connected to the device of the Alice side described above through the quantum channel 1740 .
한편, 위 장치를 제어하는 제어장치(예컨대, 프로세서를 포함할 수 있음)(1770)는 위 장치에 포함될 수도 있다. 제어장치(1770)는 제너레이터 제어부(1750) 및 옵티컬 스위치 제어부(1760)을 포함할 수 있다.Meanwhile, a control device (eg, may include a processor) 1770 for controlling the device may be included in the device. The control device 1770 may include a generator control unit 1750 and an optical switch control unit 1760 .
앞서 설명한 바를 위 장치(1700)에 적용하여 설명하면 아래와 같을 수 있다.When the above description is applied to the device 1700 above, it may be as follows.
제너레이터(1710)는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성할 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The generator 1710 may generate N first pulse trains each having different wavelengths. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
옵티컬 스위치(1720)는 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 K개 선택할 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The optical switch 1720 may select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
한편, 다중경로(1730)를 통해서는 상기 K개의 상기 제2 펄스 열 각각이 통과될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.Meanwhile, each of the K second pulse trains may pass through the multipath 1730 . Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
한편, 위 제어장치 혹은 프로세서는 아래와 같이 구성될 수 있다.On the other hand, the above control device or processor may be configured as follows.
제너레이터 제어부(1750)는 각각 서로 다른 파장을 가지는 제1 펄스 열을 N개 생성하도록 구성될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The generator control unit 1750 may be configured to generate N first pulse trains each having different wavelengths. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
옵티컬 스위치 제어부(1760)는 상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 K개 선택하도록 구성될 수 있다. 여기서, 상기 K개의 상기 제2 펄스 열은 상기 K개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송되도록 구성될 수 있다. 여기서, 이에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복 기재는 생략하도록 한다.The optical switch controller 1760 may be configured to select K second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line. Here, the K second pulse trains may be configured to be transmitted to the other device through the quantum channel based on the K multi-paths. Here, since a more specific example is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
도 18은 본 명세서에 적용되는 통신 시스템(1)을 예시한다.18 illustrates a communication system 1 applied to this specification.
도 18을 참조하면, 본 명세서에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 18 , the communication system 1 applied to the present specification includes a wireless device, a base station, and a network. Here, the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Things (IoT) device 100f, and an AI device/server 400 . For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone). XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. The portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like. Home appliances may include a TV, a refrigerator, a washing machine, and the like. The IoT device may include a sensor, a smart meter, and the like. For example, the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 300 through the base station 200 . AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300 . The network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication). In addition, the IoT device (eg, sensor) may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 명세서의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/ connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 . Here, the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)). This can be done through technology (eg 5G NR) Wireless communication/ connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other. For example, the wireless communication/ connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.To this end, based on various proposals of the present specification, At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation processes, etc. may be performed.
한편, NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤로지(numerology)(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. On the other hand, NR supports a number of numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise.
NR 주파수 밴드(frequency band)는 두 가지 타입(type)(FR1, FR2)의 주파수 범위(frequency range)로 정의될 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 두 가지 type(FR1, FR2)의 주파수 범위는 하기 표 4와 같을 수 있다. 설명의 편의를 위해 NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.The NR frequency band may be defined as a frequency range of two types (FR1, FR2). The numerical value of the frequency range may be changed, for example, the frequency ranges of the two types (FR1, FR2) may be as shown in Table 4 below. For convenience of explanation, among the frequency ranges used in the NR system, FR1 may mean “sub 6GHz range” and FR2 may mean “above 6GHz range” and may be called millimeter wave (mmW). .
Frequency Range designationFrequency Range designation | Corresponding frequency range Corresponding frequency range | Subcarrier SpacingSubcarrier Spacing |
FR1FR1 |
450MHz - 6000MHz450MHz - |
15, 30, 60kHz15, 30, 60 kHz |
FR2FR2 |
24250MHz - 52600MHz24250MHz - |
60, 120, 240kHz60, 120, 240 kHz |
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 5와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.As mentioned above, the numerical value of the frequency range of the NR system can be changed. For example, FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 5 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
Frequency Range designationFrequency Range designation | Corresponding frequency range Corresponding frequency range | Subcarrier SpacingSubcarrier Spacing |
FR1FR1 |
410MHz - 7125MHz410MHz - |
15, 30, 60kHz15, 30, 60 kHz |
FR2FR2 |
24250MHz - 52600MHz24250MHz - |
60, 120, 240kHz60, 120, 240 kHz |
이하에서는, 본 명세서가 적용되는 무선 기기의 예에 대해 설명한다.도 19는 본 명세서에 적용될 수 있는 무선 기기를 예시한다.Hereinafter, an example of a wireless device to which the present specification is applied will be described. FIG. 19 exemplifies a wireless device applicable to the present specification.
도 19를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 18의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 19 , the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR). Here, {first wireless device 100, second wireless device 200} is {wireless device 100x, base station 200} of FIG. 18 and/or {wireless device 100x, wireless device 100x) } can be matched.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시되 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 . The processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 . In addition, the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 . The memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 . For example, the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 106 may be coupled with the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 . The transceiver 106 may include a transmitter and/or a receiver. The transceiver 106 may be used interchangeably with a radio frequency (RF) unit. In this specification, a wireless device may refer to a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 . The processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 . In addition, the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 . The memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 . For example, the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 . The transceiver 206 may include a transmitter and/or a receiver. The transceiver 206 may be used interchangeably with an RF unit. In this specification, a wireless device may refer to a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 102 , 202 . For example, one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). The one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein. can create One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein. The one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , to one or more transceivers 106 and 206 . The one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. PDUs, SDUs, messages, control information, data, or information may be acquired according to the above.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) may be included in one or more processors 102 , 202 . The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this document may be implemented using firmware or software, which may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed herein provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 . The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions. One or more memories 104 , 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof. One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . In addition, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices. One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have. For example, one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals. For example, one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices. In addition, one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices. Further, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, proposals, methods and/or operation flowcharts, etc. may be set to transmit and receive user data, control information, radio signals/channels, and the like. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). The one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal. One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals. To this end, one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
도 20은 본 명세서에 적용될 수 있는 무선 기기의 다른 예를 도시한다.20 shows another example of a wireless device applicable to the present specification.
도 20에 따르면, 무선 장치는 적어도 하나의 프로세서(102, 202), 적어도 하나의 메모리(104, 204), 적어도 하나의 트랜시버(106, 206), 하나 이상의 안테나(108, 208)를 포함할 수 있다.According to FIG. 20 , a wireless device may include at least one processor 102 , 202 , at least one memory 104 , 204 , at least one transceiver 106 , 206 , and one or more antennas 108 , 208 . have.
앞서 도 19에서 설명한 무선 장치의 예시와, 도 20에서의 무선 장치의 예시의 차이로써, 도 19는 프로세서(102, 202)와 메모리(104, 204)가 분리되어 있으나, 도 20의 예시에서는 프로세서(102, 202)에 메모리(104, 204)가 포함되어 있다는 점이다.As a difference between the example of the wireless device described above in FIG. 19 and the example of the wireless device in FIG. 20 , in FIG. 19 , the processors 102 and 202 and the memories 104 and 204 are separated, but in the example of FIG. 20 , the processor The point is that memories 104 and 204 are included in (102, 202).
여기서, 프로세서(102, 202), 메모리(104, 204), 트랜시버(106, 206), 하나 이상의 안테나(108, 208)에 대한 구체적인 설명은 앞서 설명한 바와 같기에, 불필요한 기재의 반복을 피하기 위해, 반복되는 설명의 기재는 생략하도록 한다.Here, the specific descriptions of the processors 102, 202, the memories 104, 204, the transceivers 106, 206, and the one or more antennas 108, 208 are as described above, so to avoid unnecessary repetition of the description, A description of the repeated description will be omitted.
이하에서는, 본 명세서가 적용되는 신호 처리 회로의 예를 설명한다.Hereinafter, an example of a signal processing circuit to which this specification is applied will be described.
도 21은 전송 신호를 위한 신호 처리 회로를 예시한다.21 illustrates a signal processing circuit for a transmission signal.
도 21을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 21의 동작/기능은 도 19의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 21의 하드웨어 요소는 도 19의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 19의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 19의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 19의 송수신기(106, 206)에서 구현될 수 있다.Referring to FIG. 21 , the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 . have. Although not limited thereto, the operations/functions of FIG. 21 may be performed by the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 19 . The hardware elements of FIG. 21 may be implemented in the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 19 . For example, blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 19 . Further, blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 19 , and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 19 .
코드워드는 도 21의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.The codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 21 . Here, the codeword is a coded bit sequence of an information block. The information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block). The radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.Specifically, the codeword may be converted into a scrambled bit sequence by the scrambler 1010 . A scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like. The scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence. The modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like. The complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 . Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding). The output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M. Here, N is the number of antenna ports, and M is the number of transmission layers. Here, the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource. The time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain. The signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna. To this end, the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, and the like. .
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 21의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 19의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.The signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 21 . For example, the wireless device (eg, 100 and 200 in FIG. 19 ) may receive a wireless signal from the outside through an antenna port/transceiver. The received radio signal may be converted into a baseband signal through a signal restorer. To this end, the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module. Thereafter, the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process. The codeword may be restored to the original information block through decoding. Accordingly, the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a postcoder, a demodulator, a descrambler, and a decoder.
이하에서는, 본 명세서가 적용되는 무선 기기 활용 예에 대해 설명한다.Hereinafter, an example of using a wireless device to which the present specification is applied will be described.
도 22는 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 18 참조).22 shows another example of a wireless device applied to the present specification. The wireless device may be implemented in various forms according to use-examples/services (see FIG. 18 ).
도 22를 참조하면, 무선 기기(100, 200)는 도 19의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 19의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 19의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.Referring to FIG. 22 , the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 19 , and various elements, components, units/units, and/or modules ) may consist of For example, the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 . The communication unit may include communication circuitry 112 and transceiver(s) 114 . For example, communication circuitry 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 19 . For example, the transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 19 . The control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, another communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 18, 100a), 차량(도 18, 100b-1, 100b-2), XR 기기(도 18, 100c), 휴대 기기(도 18, 100d), 가전(도 18, 100e), IoT 기기(도 18, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 18, 400), 기지국(도 18, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 140 may be configured in various ways according to the type of the wireless device. For example, the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit. Although not limited thereto, the wireless device may include a robot ( FIGS. 18 and 100a ), a vehicle ( FIGS. 18 , 100b-1 , 100b-2 ), an XR device ( FIGS. 18 and 100c ), a mobile device ( FIGS. 18 and 100d ), and a home appliance. (FIG. 18, 100e), IoT device (FIG. 18, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It may be implemented in the form of an AI server/device ( FIGS. 18 and 400 ), a base station ( FIGS. 18 and 200 ), and a network node. The wireless device may be mobile or used in a fixed location depending on the use-example/service.
도 22에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 22 , various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 . For example, in the wireless devices 100 and 200 , the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly. In addition, each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements. For example, the controller 120 may be configured with one or more processor sets. For example, the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like. As another example, the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
이하, 도 22의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.Hereinafter, the embodiment of FIG. 22 will be described in more detail with reference to the drawings.
도 23은 본 명세서에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.23 illustrates a portable device applied to the present specification. The mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer). A mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 23을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 22의 블록 110~130/140에 대응한다.Referring to FIG. 23 , the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c . ) may be included. The antenna unit 108 may be configured as a part of the communication unit 110 . Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 22 .
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 120 may control components of the portable device 100 to perform various operations. The controller 120 may include an application processor (AP). The memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information. The power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like. The interface unit 140b may support the connection between the portable device 100 and other external devices. The interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device. The input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user. The input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.For example, in the case of data communication, the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved. The communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
도 24는 본 명세서에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.24 illustrates a vehicle or an autonomous driving vehicle applied to this specification. The vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
도 24를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 22의 블록 110/130/140에 대응한다.Referring to FIG. 24 , the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d. The antenna unit 108 may be configured as a part of the communication unit 110 . Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 22, respectively.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like. The controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations. The controller 120 may include an Electronic Control Unit (ECU). The driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground. The driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like. The power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like. The sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like. The sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement. / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like. The autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 110 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data. The controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan. During autonomous driving, the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles. Also, during autonomous driving, the sensor unit 140c may acquire vehicle state and surrounding environment information. The autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information. The communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server. The external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.The claims described herein may be combined in various ways. For example, the technical features of the method claims of the present specification may be combined and implemented as an apparatus, and the technical features of the apparatus claims of the present specification may be combined and implemented as a method. In addition, the technical features of the method claim of the present specification and the technical features of the apparatus claim may be combined to be implemented as an apparatus, and the technical features of the method claim of the present specification and the technical features of the apparatus claim may be combined and implemented as a method.
도 25는 본 명세서에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.25 illustrates a vehicle to which this specification is applied. The vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, and the like.
도 25를 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 X3의 블록 110~130/140에 대응한다.Referring to FIG. 25 , the vehicle 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , and a position measurement unit 140b . Here, blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 of FIG. X3, respectively.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station. The controller 120 may control components of the vehicle 100 to perform various operations. The memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100 . The input/output unit 140a may output an AR/VR object based on information in the memory unit 130 . The input/output unit 140a may include a HUD. The position measuring unit 140b may acquire position information of the vehicle 100 . The location information may include absolute location information of the vehicle 100 , location information within a driving line, acceleration information, location information with a surrounding vehicle, and the like. The position measuring unit 140b may include a GPS and various sensors.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다. For example, the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store it in the memory unit 130 . The position measuring unit 140b may obtain vehicle position information through GPS and various sensors and store it in the memory unit 130 . The controller 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a may display the created virtual object on a window inside the vehicle ( 1410 and 1420 ). In addition, the controller 120 may determine whether the vehicle 100 is normally operating within the driving line based on the vehicle location information. When the vehicle 100 deviates from the driving line abnormally, the controller 120 may display a warning on the windshield of the vehicle through the input/output unit 140a. In addition, the control unit 120 may broadcast a warning message regarding the driving abnormality to surrounding vehicles through the communication unit 110 . Depending on the situation, the control unit 120 may transmit the location information of the vehicle and information on driving/vehicle abnormality to the related organization through the communication unit 110 .
도 26은 본 명세서에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.26 illustrates an XR device as applied herein. The XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
도 26을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 X3의 블록 110~130/140에 대응한다.Referring to FIG. 26 , the XR device 100a may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a power supply unit 140c. . Here, blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.The communication unit 110 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers. Media data may include images, images, sounds, and the like. The controller 120 may perform various operations by controlling the components of the XR device 100a. For example, the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing. The memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object. The input/output unit 140a may obtain control information, data, and the like from the outside, and may output the generated XR object. The input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 140b may obtain an XR device state, surrounding environment information, user information, and the like. The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have. The power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.For example, the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object). The input/output unit 140a may obtain a command to operate the XR device 100a from the user, and the controller 120 may drive the XR device 100a according to the user's driving command. For example, when the user wants to watch a movie or news through the XR device 100a, the controller 120 transmits the content request information through the communication unit 130 to another device (eg, the mobile device 100b) or can be sent to the media server. The communication unit 130 may download/stream contents such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130 . The controller 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 140a/sensor unit 140b An XR object can be created/output based on information about one surrounding space or a real object.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다. In addition, the XR device 100a is wirelessly connected to the portable device 100b through the communication unit 110 , and the operation of the XR device 100a may be controlled by the portable device 100b. For example, the portable device 100b may operate as a controller for the XR device 100a. To this end, the XR device 100a may obtain 3D location information of the portable device 100b and then generate and output an XR object corresponding to the portable device 100b.
도 27은 본 명세서에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.27 illustrates a robot applied in this specification. Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
도 27을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 X3의 블록 110~130/140에 대응한다.Referring to FIG. 27 , the robot 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a driving unit 140c . Here, blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.The communication unit 110 may transmit/receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers. The controller 120 may perform various operations by controlling the components of the robot 100 . The memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100 . The input/output unit 140a may obtain information from the outside of the robot 100 and may output information to the outside of the robot 100 . The input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100 . The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like. The driving unit 140c may perform various physical operations such as moving a robot joint. In addition, the driving unit 140c may make the robot 100 travel on the ground or fly in the air. The driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
도 28은 본 명세서에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.28 illustrates an AI device applied to the present specification. AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, and vehicles. It may be implemented in any possible device or the like.
도 28을 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다. 블록 110~130/140a~140d는 각각 도 X3의 블록 110~130/140에 대응한다.Referring to FIG. 28 , the AI device 100 includes a communication unit 110 , a control unit 120 , a memory unit 130 , input/output units 140a/140b , a learning processor unit 140c and a sensor unit 140d). may include. Blocks 110-130/140a-140d correspond to blocks 110-130/140 of FIG. X3, respectively.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 W1, 100x, 200, 400)나 AI 서버(200) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.The communication unit 110 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. W1, 100x, 200, 400) or the AI server 200 and wired/wireless signals (eg, sensor information, user input, learning). models, control signals, etc.). To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 W1, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize the data of the learning processor unit 140c or the memory unit 130, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 100 may be controlled to execute the operation. In addition, the control unit 120 collects history information including user feedback on the operation contents or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( W1, 400) and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit 130 may store data supporting various functions of the AI device 100 . For example, the memory unit 130 may store data obtained from the input unit 140a , data obtained from the communication unit 110 , output data of the learning processor unit 140c , and data obtained from the sensing unit 140 . Also, the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the control unit 120 .
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(120)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit 140a may acquire various types of data from the outside of the AI device 100 . For example, the input unit 120 may obtain training data for model learning, input data to which the learning model is applied, and the like. The input unit 140a may include a camera, a microphone, and/or a user input unit. The output unit 140b may generate an output related to sight, hearing, or touch. The output unit 140b may include a display unit, a speaker, and/or a haptic module. The sensing unit 140 may obtain at least one of internal information of the AI device 100 , surrounding environment information of the AI device 100 , and user information by using various sensors. The sensing unit 140 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 W1, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.The learning processor unit 140c may train a model composed of an artificial neural network by using the training data. The learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server ( FIGS. W1 and 400 ). The learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130 . Also, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130 .
이하, 본 명세서의 실시예에 적용될 수 있는 차세대 통신(예컨대, 6G)의 예시들에 대해 설명하도록 한다.Hereinafter, examples of next-generation communication (eg, 6G) that can be applied to the embodiments of the present specification will be described.
<6G 시스템 일반><6G system general>
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 intelligent connectivity, deep connectivity, holographic connectivity, ubiquitous connectivity와 같은 4가지 측면일 수 있으며, 6G 시스템은 아래 표 6과 같은 요구 사항을 만족시킬 수 있다. 즉, 표 6은 6G 시스템의 요구 사항의 일례를 나타낸 표이다.6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities. The vision of the 6G system can be four aspects such as intelligent connectivity, deep connectivity, holographic connectivity, and ubiquitous connectivity, and the 6G system can satisfy the requirements shown in Table 6 below. That is, Table 6 is a table showing an example of the requirements of the 6G system.
Per device peak data ratePer device |
1 Tbps1 |
E2E latencyE2E latency | 1 ms1 ms |
Maximum spectral efficiencyMaximum |
100bps/Hz100 bps/Hz |
Mobility supportMobility support | Up to 1000km/hrUp to 1000km/hr |
Satellite integrationSatellite integration | FullyFully |
AIAI | FullyFully |
Autonomous vehicleAutonomous vehicle | FullyFully |
XRXR | FullyFully |
Haptic CommunicationHaptic Communication | FullyFully |
6G 시스템은 Enhanced mobile broadband (eMBB), Ultra-reliable low latency communications (URLLC), massive machine-type communication (mMTC), AI integrated communication, Tactile internet, High throughput, High network capacity, High energy efficiency, Low backhaul and access network congestion, Enhanced data security와 같은 핵심 요소(key factor)들을 가질 수 있다.6G systems include Enhanced mobile broadband (eMBB), Ultra-reliable low latency communications (URLLC), massive machine-type communication (mMTC), AI integrated communication, Tactile internet, High throughput, High network capacity, High energy efficiency, Low backhaul and It may have key factors such as access network congestion and enhanced data security.
도 29는 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도이다.29 is a diagram illustrating an example of a communication structure that can be provided in a 6G system.
6G 시스템은 5G 무선통신 시스템보다 50배 더 높은 동시 무선통신 연결성을 가질 것으로 예상된다. 5G의 key feature인 URLLC는 6G 통신에서 1ms보다 적은 단-대-단(end-to-end) 지연을 제공함으로써 보다 더 주요한 기술이 될 것이다. 6G 시스템은 자주 사용되는 영역 스펙트럼 효율과 달리 체적 스펙트럼 효율이 훨씬 우수할 것이다. 6G 시스템은 매우 긴 배터리 수명과 에너지 수확을 위한 고급 배터리 기술을 제공할 수 있어, 6G 시스템에서 모바일 디바이스들은 별도로 충전될 필요가 없을 것이다. 6G에서 새로운 네트워크 특성들은 다음과 같을 수 있다.6G systems are expected to have 50 times higher simultaneous wireless connectivity than 5G wireless communication systems. URLLC, a key feature of 5G, will become an even more important technology by providing an end-to-end delay of less than 1ms in 6G communication. The 6G system will have much better volumetric spectral efficiencies as opposed to the frequently used areal spectral efficiencies. The 6G system can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices will not need to be charged separately in the 6G system. New network characteristics in 6G may be as follows.
- 위성 통합 네트워크(Satellites integrated network): 글로벌 모바일 집단을 제공하기 위해 6G는 위성과 통합될 것으로 예상된다. 지상파, 위성 및 공중 네트워크를 하나의 무선통신 시스템으로 통합은 6G에 매우 중요하다.- Satellites integrated network: 6G is expected to be integrated with satellites to provide a global mobile population. The integration of terrestrial, satellite and public networks into one wireless communication system is very important for 6G.
- 연결된 인텔리전스(Connected intelligence): 이전 세대의 무선 통신 시스템과 달리 6G는 혁신적이며, “연결된 사물”에서 "연결된 지능"으로 무선 진화가 업데이트될 것이다. AI는 통신 절차의 각 단계(또는 후술할 신호 처리의 각 절차)에서 적용될 수 있다.- Connected intelligence: Unlike previous generations of wireless communication systems, 6G is revolutionary and will update the evolution of wireless from “connected things” to “connected intelligence”. AI can be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
- 무선 정보 및 에너지 전달의 완벽한 통합(Seamless integration wireless information and energy transfer): 6G 무선 네트워크는 스마트폰들과 센서들과 같이 디바이스들의 배터리를 충전하기 위해 전력을 전달할 것이다. 그러므로, 무선 정보 및 에너지 전송 (WIET)은 통합될 것이다.- Seamless integration wireless information and energy transfer: The 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
- 유비쿼터스 슈퍼 3D 연결(Ubiquitous super 3D connectivity): 드론 및 매우 낮은 지구 궤도 위성의 네트워크 및 핵심 네트워크 기능에 접속은 6G 유비쿼터스에서 슈퍼 3D 연결을 만들 것이다.- Ubiquitous super 3D connectivity: access to networks and core network functions of drones and very low Earth orbit satellites will create super 3D connectivity in 6G ubiquitous.
위와 같은 6G의 새로운 네트워크 특성들에서 몇 가지 일반적인 요구 사항은 다음과 같을 수 있다.Some general requirements in the above new network characteristics of 6G may be as follows.
- 스몰 셀 네트워크(small cell networks): 스몰 셀 네트워크의 아이디어는 셀룰러 시스템에서 처리량, 에너지 효율 및 스펙트럼 효율 향상의 결과로 수신 신호 품질을 향상시키기 위해 도입되었다. 결과적으로, 스몰 셀 네트워크는 5G 및 비욘드 5G (5GB) 이상의 통신 시스템에 필수적인 특성이다. 따라서, 6G 통신 시스템 역시 스몰 셀 네트워크의 특성을 채택한다.- Small cell networks: The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
- 초 고밀도 이기종 네트워크(Ultra-dense heterogeneous network): 초 고밀도 이기종 네트워크들은 6G 통신 시스템의 또 다른 중요한 특성이 될 것이다. 이기종 네트워크로 구성된 멀티-티어 네트워크는 전체 QoS를 개선하고 비용을 줄인다.- Ultra-dense heterogeneous network: Ultra-dense heterogeneous networks will be another important characteristic of 6G communication systems. A multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
- 대용량 백홀(High-capacity backhaul): 백홀 연결은 대용량 트래픽을 지원하기 위해 대용량 백홀 네트워크로 특징 지어진다. 고속 광섬유 및 자유 공간 광학 (FSO) 시스템이 이 문제에 대한 가능한 솔루션일 수 있다.- High-capacity backhaul: A backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic. High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
- 모바일 기술과 통합된 레이더 기술: 통신을 통한 고정밀 지역화(또는 위치 기반 서비스)는 6G 무선통신 시스템의 기능 중 하나이다. 따라서, 레이더 시스템은 6G 네트워크와 통합될 것이다.- Radar technology integrated with mobile technology: High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
- 소프트화 및 가상화(Softwarization and virtualization): 소프트화 및 가상화는 유연성, 재구성성 및 프로그래밍 가능성을 보장하기 위해 5GB 네트워크에서 설계 프로세스의 기초가 되는 두 가지 중요한 기능이다. 또한, 공유 물리적 인프라에서 수십억 개의 장치가 공유될 수 있다.- Softwarization and virtualization: Softening and virtualization are two important features that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
<6G 시스템의 핵심 구현 기술><Key implementation technology of 6G system>
인공 지능(Artificial Intelligence)Artificial Intelligence
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.The most important and new technology to be introduced in 6G systems is AI. AI was not involved in the 4G system. 5G systems will support partial or very limited AI. However, the 6G system will be AI-enabled for full automation. Advances in machine learning will create more intelligent networks for real-time communication in 6G. Incorporating AI into communications can simplify and enhance real-time data transmission. AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
핸드 오버, 네트워크 선택, 자원 스케쥴링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(Brain Computer Interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.Time-consuming tasks such as handovers, network selection, and resource scheduling can be performed instantly by using AI. AI can also play an important role in M2M, machine-to-human and human-to-machine communication. In addition, AI can be a rapid communication in BCI (Brain Computer Interface). AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
최근에는 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 application layer, network layer 특히, 딥러닝을 wireless resource management and allocation 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC layer 와 Physical layer로 발전하고 있으며, 특히 물리계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO mechanism, AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, attempts have been made to integrate AI with wireless communication systems, but these have been focused on the application layer and network layer, especially deep learning, in the field of wireless resource management and allocation. However, these studies are gradually developing into the MAC layer and the physical layer, and in particular, attempts to combine deep learning with wireless transmission in the physical layer are appearing. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거 (interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.However, the application of DNN for transmission in the physical layer may have the following problems.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.Deep learning-based AI algorithms require large amounts of training data to optimize training parameters. However, due to a limitation in acquiring data in a specific channel environment as training data, a lot of training data is used offline. This means that static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
또한, 현재 딥러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)이다. 무선 통신 신호의 특성을 매칭시키기 위해 복소 도메인 신호의 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.In addition, current deep learning mainly targets real signals. However, signals of the physical layer of wireless communication are complex signals. In order to match the characteristics of a wireless communication signal, further research on a neural network for detecting a complex domain signal is needed.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.Hereinafter, machine learning will be described in more detail.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.Machine learning refers to a set of actions that trains a machine to create a machine that can perform tasks that humans can or cannot do. Machine learning requires data and a learning model. In machine learning, data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.Neural network learning is to minimize errors in output. Neural network learning repeatedly inputs training data to the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weights of each node in the neural network.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learing rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, the training data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data. The labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data. The calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation. A change amount of the connection weight of each node to be updated may be determined according to a learning rate. The computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch). The learning rate may be applied differently according to the number of repetitions of the learning cycle of the neural network. For example, in the early stages of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.The learning method may vary depending on the characteristics of the data. For example, in a communication system, when the purpose of accurately predicting data transmitted from a transmitting end at a receiving end is to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.The learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine) 방식이 있다.The neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and Recurrent Boltzmann Machine (RNN) methods. have.
인공 신경망(artificial neural network)은 여러 개의 퍼셉트론을 연결한 예시이다.An artificial neural network is an example of connecting several perceptrons.
도 30은 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.30 schematically illustrates an example of a perceptron structure.
도 30을 참조하면, 입력 벡터 x=(x1,x2,...,xd) 가 입력되면 각 성분에 가중치(W1,W2,...,Wd)를 곱하고, 그 결과를 모두 합산한 후, 활성함수 σ(·) 를 적용하는 전체 과정을 퍼셉트론(perceptron)이라 한다. 거대한 인공 신경망 구조는 도 30에 도시한 단순화된 퍼셉트론 구조를 확장하여 입력벡터를 서로 다른 다 차원의 퍼셉트론에 적용할 수도 있다. 설명의 편의를 위해 입력값 또는 출력값을 노드(node)라 칭한다.Referring to FIG. 30, when an input vector x=(x1,x2,...,xd) is input, each component is multiplied by a weight (W1,W2,...,Wd), and after summing all the results, The whole process of applying the activation function σ(·) is called a perceptron. The huge artificial neural network structure may extend the simplified perceptron structure shown in FIG. 30 to apply input vectors to different multidimensional perceptrons. For convenience of description, an input value or an output value is referred to as a node.
한편, 도 30에 도시된 퍼셉트론 구조는 입력값, 출력값을 기준으로 총 3개의 층(layer)로 구성되는 것으로 설명할 수 있다. 1st layer와 2nd layer 사이에는 (d+1) 차원의 퍼셉트론 H개, 2nd layer와 3rd layer 사이에는 (H+1)차원 퍼셉트론이 K 개 존재하는 인공신경망을 도 31과 같이 표현할 수 있다. Meanwhile, the perceptron structure shown in FIG. 30 can be described as being composed of a total of three layers based on an input value and an output value. Between the 1 st layer and the 2 nd layer (d + 1) pieces perceptron H of dimension, 2 nd layer and the 3 rd layer between, the (H + 1) level perceptron can be expressed as shown in Figure 31 the artificial neural network present the K have.
도 31은 다층 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.31 schematically shows an example of a multilayer perceptron structure.
입력벡터가 위치하는 층을 입력층(input layer), 최종 출력값이 위치하는 층을 출력층(output layer), 입력층과 출력층 사이에 위치하는 모든 층을 은닉층(hidden layer)라 한다. 도 31의 예시는 3개의 층이 개시되나, 실제 인공신경망 층의 개수를 카운트할 때는 입력층을 제외하고 카운트하므로 총 2개의 층으로 볼 수 있다. 인공신경망은 기본 블록의 퍼셉트론을 2차원적으로 연결되어 구성된다.The layer where the input vector is located is called the input layer, the layer where the final output value is located is called the output layer, and all layers located between the input layer and the output layer are called the hidden layer. In the example of FIG. 31, three layers are disclosed, but when counting the actual number of artificial neural network layers, the number of layers is counted except for the input layer, so it can be viewed as a total of two layers. The artificial neural network is constructed by connecting the perceptrons of the basic blocks in two dimensions.
전술한 입력층, 은닉층, 출력층은 다층 퍼셉트론 뿐 아니라 후술할 CNN, RNN 등 다양한 인공신경망 구조에서 공동적으로 적용될 수 있다. 은닉층의 개수가 많아질수록 인공신경망이 깊어진 것이며, 충분히 깊어진 인공신경망을 러닝모델로 사용하는 머신러닝 패러다임을 딥러닝(Deep Learning)이라 한다. 또한 딥러닝을 위해 사용하는 인공신경망을 심층 신경망(DNN: Deep neural network)라 한다.The aforementioned input layer, hidden layer, and output layer can be jointly applied in various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron. As the number of hidden layers increases, the artificial neural network becomes deeper, and a machine learning paradigm that uses a sufficiently deep artificial neural network as a learning model is called deep learning. Also, an artificial neural network used for deep learning is called a deep neural network (DNN).
도 32는 심층 신경망 예시를 개략적으로 도시한 것이다.32 schematically illustrates an example of a deep neural network.
도 32에 도시된 심층 신경망은 은닉층+출력층이 8개로 구성된 다층 퍼셉트론이다. 상기 다층 퍼셉트론 구조를 완전 연결 신경망(fully-connected neural network)이라 표현한다. 완전 연결 신경망은 서로 같은 층에 위치하는 노드 간에는 연결 관계가 존재하지 않으며, 인접한 층에 위치한 노드들 간에만 연결 관계가 존재한다. DNN은 완전 연결 신경망 구조를 가지고 다수의 은닉층과 활성함수들의 조합으로 구성되어 입력과 출력 사이의 상관관계 특성을 파악하는데 유용하게 적용될 수 있다. 여기서 상관관계 특성은 입출력의 결합확률(joint probability)을 의미할 수 있다.The deep neural network shown in FIG. 32 is a multi-layer perceptron composed of eight hidden layers and eight output layers. The multilayer perceptron structure is referred to as a fully-connected neural network. In a fully connected neural network, a connection relationship does not exist between nodes located in the same layer, and a connection relationship exists only between nodes located in adjacent layers. DNN has a fully connected neural network structure and is composed of a combination of multiple hidden layers and activation functions, so it can be usefully applied to identify the correlation characteristics between input and output. Here, the correlation characteristic may mean a joint probability of input/output.
한편, 복수의 퍼셉트론을 서로 어떻게 연결하느냐에 따라 전술한 DNN과 다른 다양한 인공 신경망 구조를 형성할 수 있다.Meanwhile, various artificial neural network structures different from the above-described DNN can be formed depending on how a plurality of perceptrons are connected to each other.
도 33은 컨볼루션 신경망의 일례를 개략적으로 도시한 것이다.33 schematically shows an example of a convolutional neural network.
DNN은 하나의 층 내부에 위치한 노드들이 1차원적의 세로 방향으로 배치되어 있다. 그러나, 도 33은 노드들이 2차원적으로 가로 w개, 세로 h개의 노드가 배치할 경우를 가정할 수 있다(도 33의 컨볼루션 신경망 구조). 이 경우, 하나의 입력노드에서 은닉층으로 이어지는 연결과정에서 연결 하나당 가중치가 부가되므로 총 h×w 개의 가중치를 고려해야한다. 입력층에 h×w 개의 노드가 존재하므로 인접한 두 층 사이에는 총 h2w2 개의 가중치가 필요하다.In DNN, nodes located inside one layer are arranged in a one-dimensional vertical direction. However, FIG. 33 may assume a case in which w nodes are two-dimensionally arranged horizontally and h nodes are arranged in two dimensions (convolutional neural network structure of FIG. 33 ). In this case, since a weight is added per connection in the connection process from one input node to the hidden layer, a total of h×w weights must be considered. Since there are h×w nodes in the input layer, a total of h 2 w 2 weights are needed between two adjacent layers.
도 33의 컨볼루션 신경망은 연결개수에 따라 가중치의 개수가 기하급수적으로 증가하는 문제가 있어 인접한 층 간의 모든 모드의 연결을 고려하는 대신, 크기가 작은 필터(filter)가 존재하는 것으로 가정하여 도 34에서와 같이 필터가 겹치는 부분에 대해서는 가중합 및 활성함수 연산을 수행하도록 한다.The convolutional neural network of FIG. 33 has a problem in that the number of weights increases exponentially according to the number of connections, so instead of considering the connection of all modes between adjacent layers, it is assumed that a filter with a small size exists in FIG. 34 As in the above, the weighted sum and activation function calculations are performed on the overlapping filters.
도 34는 컨볼루션 신경망에서의 필터 연산의 일례를 개략적으로 도시한 것이다.34 schematically shows an example of a filter operation in a convolutional neural network.
하나의 필터는 그 크기만큼의 개수에 해당하는 가중치를 가지며, 이미지 상의 어느 특정한 특징을 요인으로 추출하여 출력할 수 있도록 가중치의 학습이 이루어질 수 있다. 도 34에서는 3×3 크기의 필터가 입력층의 가장 좌측 상단 3×3 영역에 적용되고, 해당 노드에 대한 가중합 및 활성함수 연산을 수행한 결과 출력값을 z22에 저장한다.One filter has a weight corresponding to the number corresponding to its size, and weight learning can be performed so that a specific feature on an image can be extracted and output as a factor. In FIG. 34 , a 3×3 filter is applied to the upper left 3×3 region of the input layer, and an output value obtained by performing weighted sum and activation function operations on the corresponding node is stored in z 22 .
상기 필터는 입력층을 스캔하면서 가로, 세로 일정 간격 만큼 이동하면서 가중합 및 활성함수 연산을 수행하고 그 출력값을 현재 필터의 위치에 위치시킨다. 이러한 연산 방식은 컴퓨터 비전(computer vision) 분야에서 이미지에 대한 컨볼루션(convolution) 연산과 유사하여 이러한 구조의 심층 신경망을 컨볼루션 신경망(CNN: convolutional neural network)라 하고, 컨볼루션 연산 결과 생성되는 은닉층을 컨볼루션 층(convolutional layer)라 한다. 또한, 복수의 컨볼루션 층이 존재하는 신경망을 심층 컨볼루션 신경망(DCNN: Deep convolutional)이라 한다.The filter performs weight sum and activation function calculations while moving horizontally and vertically by a predetermined interval while scanning the input layer, and places the output value at the current filter position. This calculation method is similar to a convolution operation for an image in the field of computer vision, so a deep neural network with such a structure is called a convolutional neural network (CNN), and a hidden layer generated as a result of the convolution operation is called a convolutional layer. Also, a neural network having a plurality of convolutional layers is called a deep convolutional neural network (DCNN).
컨볼루션 층에서는 현재 필터가 위치한 노드에서, 상기 필터가 커버하는 영역에 위치한 노드만을 포괄하여 가중합을 계산함으로써, 가중치의 개수를 줄여줄 수 있다. 이로 인해, 하나의 필터가 로컬(local) 영역에 대한 특징에 집중하도록 이용될 수 있다. 이에 따라 CNN은 2차원 영역 상의 물리적 거리가 중요한 판단 기준이 되는 이미지 데이터 처리에 효과적으로 적용될 수 있다. 한편, CNN은 컨볼루션 층의 직전에 복수의 필터가 적용될 수 있으며, 각 필터의 컨볼루션 연산을 통해 복수의 출력 결과를 생성할 수도 있다.In the convolution layer, the number of weights can be reduced by calculating the weighted sum by including only nodes located in the region covered by the filter in the node where the filter is currently located. Due to this, one filter can be used to focus on features for a local area. Accordingly, CNN can be effectively applied to image data processing in which physical distance in a two-dimensional domain is an important criterion. Meanwhile, in CNN, a plurality of filters may be applied immediately before the convolution layer, and a plurality of output results may be generated through the convolution operation of each filter.
한편, 데이터 속성에 따라 시퀀스(sequence) 특성이 중요한 데이터들이 있을 수 있다. 이러한 시퀀스 데이터들의 길이 가변성, 선후 관계를 고려하여 데이터 시퀀스 상의 원소를 매 시점(timestep) 마다 하나씩 입력하고, 특정 시점에 출력된 은닉층의 출력 벡터(은닉 벡터)를, 시퀀스 상의 바로 다음 원소와 함께 입력하는 방식을 인공 신경망에 적용한 구조를 순환 신경망 구조라 한다.Meanwhile, there may be data whose sequence characteristics are important according to data properties. Considering the length variability and precedence relationship of the sequence data, one element in the data sequence is input at each timestep, and the output vector (hidden vector) of the hidden layer output at a specific time is input together with the next element in the sequence. A structure in which this method is applied to an artificial neural network is called a recurrent neural network structure.
도 35는 순환 루프가 존재하는 신경망 구조의 일례를 개략적으로 도시한 것이다.35 schematically shows an example of a neural network structure in which a cyclic loop exists.
도 35를 참조하면, 순환 신경망(RNN: recurrent neural netwok)은 데이터 시퀀스 상의 어느 시선 t의 원소 (x1(t), x2(t), ,..., xd(t))를 완전 연결 신경망에 입력하는 과정에서, 바로 이전 시점 t-1은 은닉 벡터 (z1(t-1), z2(t-1),..., zH(t-1))을 함께 입력하여 가중합 및 활성함수를 적용하는 구조이다. 이와 같이 은닉 벡터를 다음 시점으로 전달하는 이유는 앞선 시점들에서의 입력 벡터속 정보들이 현재 시점의 은닉 벡터에 누적된 것으로 간주하기 때문이다.Referring to FIG. 35 , a recurrent neural network (RNN) connects elements (x1(t), x2(t), ,..., xd(t)) of a certain gaze t on a data sequence to a fully connected neural network. In the process of inputting, the weighted sum and activation function are calculated by inputting the hidden vectors (z1(t-1), z2(t-1),..., zH(t-1)) at the immediately preceding time point t-1 in the input process. structure to be applied. The reason why the hidden vector is transferred to the next time in this way is because it is considered that information in the input vector at the previous time is accumulated in the hidden vector of the current time.
도 36은 순환 신경망의 동작 구조의 일례를 개략적으로 도시한 것이다.36 schematically shows an example of an operation structure of a recurrent neural network.
도 36을 참조하면, 순환 신경망은 입력되는 데이터 시퀀스에 대하여 소정의 시점 순서대로 동작한다.Referring to FIG. 36 , the recurrent neural network operates in a predetermined time sequence with respect to an input data sequence.
시점 1에서의 입력 벡터 (x1(t), x2(t), ,..., xd(t))가 순환 신경망에 입력되었을 때의 은닉 벡터 (z1(1),z2(1),...,zH(1))가 시점 2의 입력 벡터 (x1(2),x2(2),...,xd(2))와 함께 입력되어 가중합 및 활성 함수를 통해 은닉층의 벡터 (z1(2),z2(2) ,...,zH(2))를 결정한다. 이러한 과정은 시점 2, 시점 3, ,,, 시점 T 까지 반복적으로 수행된다.When the input vector at time 1 (x1(t), x2(t), ,..., xd(t)) is input to the recurrent neural network, the hidden vector (z1(1), z2(1),.. .,zH(1)) is input with the input vector of time 2 (x1(2),x2(2),...,xd(2)), and through the weighted sum and activation functions, the vector of the hidden layer (z1( 2),z2(2) ,...,zH(2)) are determined. This process is repeatedly performed until time point 2, time point 3, ,,, and time T.
한편, 순환 신경망 내에서 복수의 은닉층이 배치될 경우, 이를 심층 순환 신경망(DRNN: Deep recurrent neural network)라 한다. 순환 신경망은 시퀀스 데이터(예를 들어, 자연어 처리(natural language processing)에 유용하게 적용되도록 설계되어 있다.On the other hand, when a plurality of hidden layers are arranged in a recurrent neural network, this is called a deep recurrent neural network (DRNN). The recurrent neural network is designed to be usefully applied to sequence data (eg, natural language processing).
학습(learning) 방식으로 사용하는 신경망 코어로서 DNN, CNN, RNN 외에 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.As a neural network core used as a learning method, in addition to DNN, CNN, and RNN, Restricted Boltzmann Machine (RBM), deep belief networks (DBN), Deep Q-Network and It includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
최근에는 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 application layer, network layer 특히, 딥러닝을 wireless resource management and allocation 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC layer 와 Physical layer로 발전하고 있으며, 특히 물리계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO mechanism, AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, attempts have been made to integrate AI with wireless communication systems, but these have been focused on the application layer and network layer, especially deep learning, in the field of wireless resource management and allocation. However, these studies are gradually developing into the MAC layer and the physical layer, and in particular, attempts to combine deep learning with wireless transmission in the physical layer are appearing. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
THz(Terahertz) 통신THz (Terahertz) communication
데이터 전송률은 대역폭을 늘려 높일 수 있다. 이것은 넓은 대역폭으로 sub-THz 통신을 사용하고, 진보된 대규모 MIMO 기술을 적용하여 수행될 수 있다. 밀리미터 이하의 방사선으로도 알려진 THz파는 일반적으로 0.03mm-3mm 범위의 해당 파장을 가진 0.1THz와 10THz 사이의 주파수 대역을 나타낸다. 100GHz-300GHz 대역 범위(Sub THz 대역)는 셀룰러 통신을 위한 THz 대역의 주요 부분으로 간주된다. Sub-THz 대역 mmWave 대역 에 추가하면 6G 셀룰러 통신 용량은 늘어난다. 정의된 THz 대역 중 300GHz-3THz는 원적외선 (IR) 주파수 대역에 있다. 300GHz-3THz 대역은 광 대역의 일부이지만 광 대역의 경계에 있으며, RF 대역 바로 뒤에 있다. 따라서, 이 300 GHz-3 THz 대역은 RF와 유사성을 나타낸다. The data rate can be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology. THz waves, also known as sub-millimeter radiation, typically exhibit a frequency band between 0.1 THz and 10 THz with corresponding wavelengths in the range of 0.03 mm-3 mm. The 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication. When added to the sub-THz band and mmWave band, the 6G cellular communication capacity is increased. Among the defined THz bands, 300GHz-3THz is in the far-infrared (IR) frequency band. The 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3 THz band shows similarities to RF.
도 37은 전자기 스펙트럼의 일례를 나타낸다.37 shows an example of an electromagnetic spectrum.
THz 통신의 주요 특성은 (i) 매우 높은 데이터 전송률을 지원하기 위해 광범위하게 사용 가능한 대역폭, (ii) 고주파에서 발생하는 높은 경로 손실 (고 지향성 안테나는 필수 불가결)을 포함한다. 높은 지향성 안테나에서 생성된 좁은 빔 폭은 간섭을 줄인다. THz 신호의 작은 파장은 훨씬 더 많은 수의 안테나 소자가 이 대역에서 동작하는 장치 및 BS에 통합될 수 있게 한다. 이를 통해 범위 제한을 극복할 수 있는 고급 적응형 배열 기술을 사용할 수 있다.The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable). The narrow beamwidth produced by the highly directional antenna reduces interference. The small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
광 무선 기술 (Optical wireless technology)Optical wireless technology
OWC 기술은 가능한 모든 장치-대-액세스 네트워크를 위한 RF 기반 통신 외에도 6G 통신을 위해 계획되었다. 이러한 네트워크는 네트워크-대-백홀/프론트홀 네트워크 연결에 접속한다. OWC 기술은 4G 통신 시스템 이후 이미 사용되고 있으나 6G 통신 시스템의 요구를 충족시키기 위해 더 널리 사용될 것이다. 광 충실도(light fidelity), 가시광 통신, 광 카메라 통신 및 광 대역에 기초한 FSO 통신과 같은 OWC 기술은 이미 잘 알려진 기술이다. 광 무선 기술 기반의 통신은 매우 높은 데이터 속도, 낮은 지연 시간 및 안전한 통신을 제공할 수 있다. LiDAR 또한 광 대역을 기반으로 6G 통신에서 초 고해상도 3D 매핑을 위해 이용될 수 있다.OWC technology is envisioned for 6G communications in addition to RF-based communications for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections. OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system. OWC technologies such as light fidelity, visible light communication, optical camera communication, and FSO communication based on a light band are well known technologies. Communication based on optical radio technology can provide very high data rates, low latency and secure communication. LiDAR can also be used for ultra-high-resolution 3D mapping in 6G communication based on wide bands.
FSO 백홀 네트워크FSO backhaul network
FSO 시스템의 송신기 및 수신기 특성은 광섬유 네트워크의 특성과 유사하다. 따라서, FSO 시스템의 데이터 전송은 광섬유 시스템과 비슷하다. 따라서, FSO는 광섬유 네트워크와 함께 6G 시스템에서 백홀 연결을 제공하는 좋은 기술이 될 수 있다. FSO를 사용하면, 10,000km 이상의 거리에서도 매우 장거리 통신이 가능하다. FSO는 바다, 우주, 수중, 고립된 섬과 같은 원격 및 비원격 지역을 위한 대용량 백홀 연결을 지원한다. FSO는 셀룰러 BS 연결도 지원한다.The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network. Thus, the data transmission of an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks. With FSO, very long-distance communication is possible even at distances of 10,000 km or more. FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands. FSO also supports cellular BS connectivity.
대규모 MIMO 기술Massive MIMO technology
스펙트럼 효율을 향상시키는 핵심 기술 중 하나는 MIMO 기술을 적용하는 것이다. MIMO 기술이 향상되면 스펙트럼 효율도 향상된다. 따라서, 6G 시스템에서 대규모 MIMO 기술이 중요할 것이다. MIMO 기술은 다중 경로를 이용하기 때문에 데이터 신호가 하나 이상의 경로로 전송될 수 있도록 다중화 기술 및 THz 대역에 적합한 빔 생성 및 운영 기술도 중요하게 고려되어야 한다.One of the key technologies to improve spectral efficiency is to apply MIMO technology. As MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
블록 체인blockchain
블록 체인은 미래의 통신 시스템에서 대량의 데이터를 관리하는 중요한 기술이 될 것이다. 블록 체인은 분산 원장 기술의 한 형태로서, 분산 원장은 수많은 노드 또는 컴퓨팅 장치에 분산되어 있는 데이터베이스이다. 각 노드는 동일한 원장 사본을 복제하고 저장한다. 블록 체인은 P2P 네트워크로 관리된다. 중앙 집중식 기관이나 서버에서 관리하지 않고 존재할 수 있다. 블록 체인의 데이터는 함께 수집되어 블록으로 구성된다. 블록은 서로 연결되고 암호화를 사용하여 보호된다. 블록 체인은 본질적으로 향상된 상호 운용성(interoperability), 보안, 개인 정보 보호, 안정성 및 확장성을 통해 대규모 IoT를 완벽하게 보완한다. 따라서, 블록 체인 기술은 장치 간 상호 운용성, 대용량 데이터 추적성, 다른 IoT 시스템의 자율적 상호 작용 및 6G 통신 시스템의 대규모 연결 안정성과 같은 여러 기능을 제공한다.Blockchain will become an important technology for managing large amounts of data in future communication systems. Blockchain is a form of distributed ledger technology, a distributed ledger is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger. The blockchain is managed as a peer-to-peer network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption. Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several functions such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
3D 네트워킹3D Networking
6G 시스템은 지상 및 공중 네트워크를 통합하여 수직 확장의 사용자 통신을 지원한다. 3D BS는 저궤도 위성 및 UAV를 통해 제공될 것이다. 고도 및 관련 자유도 측면에서 새로운 차원을 추가하면 3D 연결이 기존 2D 네트워크와 상당히 다르다.The 6G system integrates terrestrial and public networks to support vertical expansion of user communications. 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
양자 커뮤니케이션quantum communication
6G 네트워크의 맥락에서 네트워크의 감독되지 않은 강화 학습이 유망하다. 지도 학습 방식은 6G에서 생성된 방대한 양의 데이터에 레이블을 지정할 수 없다. 비지도 학습에는 라벨링이 필요하지 않다. 따라서, 이 기술은 복잡한 네트워크의 표현을 자율적으로 구축하는 데 사용할 수 있다. 강화 학습과 비지도 학습을 결합하면 진정한 자율적인 방식으로 네트워크를 운영할 수 있다.In the context of 6G networks, unsupervised reinforcement learning of networks is promising. Supervised learning methods cannot label the massive amounts of data generated by 6G. Unsupervised learning does not require labeling. Thus, this technique can be used to autonomously build representations of complex networks. Combining reinforcement learning and unsupervised learning allows networks to operate in a truly autonomous way.
무인 항공기drone
UAV(Unmanned Aerial Vehicle) 또는 드론은 6G 무선 통신에서 중요한 요소가 될 것이다. 대부분의 경우, UAV 기술을 사용하여 고속 데이터 무선 연결이 제공된다. BS 엔티티는 셀룰러 연결을 제공하기 위해 UAV에 설치된다. UAV는 쉬운 배치, 강력한 가시선 링크 및 이동성이 제어되는 자유도와 같은 고정 BS 인프라에서 볼 수 없는 특정 기능을 가지고 있다. 천재 지변 등의 긴급 상황 동안, 지상 통신 인프라의 배치는 경제적으로 실현 가능하지 않으며, 때로는 휘발성 환경에서 서비스를 제공할 수 없다. UAV는 이러한 상황을 쉽게 처리할 수 있다. UAV는 무선 통신 분야의 새로운 패러다임이 될 것이다. 이 기술은 eMBB, URLLC 및 mMTC 인 무선 네트워크의 세 가지 기본 요구 사항을 용이하게 한다. UAV는 또한, 네트워크 연결성 향상, 화재 감지, 재난 응급 서비스, 보안 및 감시, 오염 모니터링, 주차 모니터링, 사고 모니터링 등과 같은 여러 가지 목적을 지원할 수 있다. 따라서, UAV 기술은 6G 통신에 가장 중요한 기술 중 하나로 인식되고 있다.Unmanned Aerial Vehicles (UAVs) or drones will become an important element in 6G wireless communication. In most cases, high-speed data wireless connections are provided using UAV technology. The BS entity is installed in the UAV to provide cellular connectivity. UAVs have certain features not found in fixed BS infrastructure, such as easy deployment, strong line-of-sight links, and mobility-controlled degrees of freedom. During emergencies such as natural disasters, the deployment of terrestrial communications infrastructure is not economically feasible, and sometimes cannot provide services in volatile environments. A UAV can easily handle this situation. UAV will become a new paradigm in the field of wireless communication. This technology facilitates the three basic requirements of wireless networks: eMBB, URLLC and mMTC. UAVs can also support multiple purposes, such as improving network connectivity, fire detection, disaster emergency services, security and surveillance, pollution monitoring, parking monitoring, incident monitoring, and more. Therefore, UAV technology is recognized as one of the most important technologies for 6G communication.
셀-프리 통신(Cell-free Communication)Cell-free Communication
여러 주파수와 이기종 통신 기술의 긴밀한 통합은 6G 시스템에서 매우 중요하다. 결과적으로, 사용자는 디바이스에서 어떤 수동 구성을 만들 필요 없이 네트워크에서 다른 네트워크로 원활하게 이동할 수 있다. 사용 가능한 통신 기술에서 최상의 네트워크가 자동으로 선택된다. 이것은 무선 통신에서 셀 개념의 한계를 깨뜨릴 것이다. 현재, 하나의 셀에서 다른 셀로의 사용자 이동은 고밀도 네트워크에서 너무 많은 핸드 오버를 야기하고, 핸드 오버 실패, 핸드 오버 지연, 데이터 손실 및 핑퐁 효과를 야기한다. 6G 셀-프리 통신은 이 모든 것을 극복하고 더 나은 QoS를 제공할 것이다. 셀-프리 통신은 멀티 커넥티비티 및 멀티-티어 하이브리드 기술과 장치의 서로 다른 이기종 라디오를 통해 달성될 것이다.Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, resulting in handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
무선 정보 및 에너지 전송 통합Integration of wireless information and energy transmission
WIET은 무선 통신 시스템과 같이 동일한 필드와 웨이브(wave)를 사용한다. 특히, 센서와 스마트폰은 통신 중 무선 전력 전송을 사용하여 충전될 것이다. WIET은 배터리 충전 무선 시스템의 수명을 연장하기 위한 유망한 기술이다. 따라서, 배터리가 없는 장치는 6G 통신에서 지원될 것이다.WIET uses the same fields and waves as the wireless communication system. In particular, the sensor and smartphone will be charged using wireless power transfer during communication. WIET is a promising technology for extending the life of battery-charged wireless systems. Therefore, devices without batteries will be supported in 6G communication.
센싱과 커뮤니케이션의 통합Integration of sensing and communication
자율 무선 네트워크는 동적으로 변화하는 환경 상태를 지속적으로 감지하고 서로 다른 노드간에 정보를 교환할 수 있는 기능이다. 6G에서, 감지는 자율 시스템을 지원하기 위해 통신과 긴밀하게 통합될 것이다.An autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes. In 6G, sensing will be tightly integrated with communications to support autonomous systems.
액세스 백홀 네트워크의 통합Consolidation of access backhaul networks
6G에서 액세스 네트워크의 밀도는 엄청날 것이다. 각 액세스 네트워크는 광섬유와 FSO 네트워크와 같은 백홀 연결로 연결된다. 매우 많은 수의 액세스 네트워크들에 대처하기 위해, 액세스 및 백홀 네트워크 사이에 긴밀한 통합이 있을 것이다.The density of access networks in 6G will be enormous. Each access network is connected by backhaul connections such as fiber optic and FSO networks. To cope with a very large number of access networks, there will be tight integration between the access and backhaul networks.
홀로그램 빔 포밍Holographic Beamforming
빔 포밍은 특정 방향으로 무선 신호를 전송하기 위해 안테나 배열을 조정하는 신호 처리 절차이다. 스마트 안테나 또는 진보된 안테나 시스템의 하위 집합이다. 빔 포밍 기술은 높은 1호 대잡음비, 간섭 방지 및 거부, 높은 네트워크 효율과 같은 몇 가지 장점이 있다. 홀로그램 빔 포밍 (HBF)은 소프트웨어-정의된 안테나를 사용하기 때문에 MIMO 시스템과 상당히 다른 새로운 빔 포밍 방법이다. HBF는 6G에서 다중 안테나 통신 장치에서 신호의 효율적이고 유연한 전송 및 수신을 위해 매우 효과적인 접근 방식이 될 것이다.Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction. A smart antenna or a subset of an advanced antenna system. Beamforming technology has several advantages, such as high No.1 to noise ratio, interference prevention and rejection, and high network efficiency. Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
빅 데이터 분석Big Data Analytics
빅 데이터 분석은 다양한 대규모 데이터 세트 또는 빅 데이터를 분석하기 위한 복잡한 프로세스이다. 이 프로세스는 숨겨진 데이터, 알 수 없는 상관 관계 및 고객 성향과 같은 정보를 찾아 완벽한 데이터 관리를 보장한다. 빅 데이터는 비디오, 소셜 네트워크, 이미지 및 센서와 같은 다양한 소스에서 수집된다. 이 기술은 6G 시스템에서 방대한 데이터를 처리하는 데 널리 사용된다.Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is collected from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
Large Intelligent Surface(LIS)Large Intelligent Surface (LIS)
THz 대역 신호의 경우 직진성이 강하여 방해물로 인한 음영 지역이 많이 생길 수 있는데, 이러한 음영 지역 근처에 LIS 설치함으로써 통신 권역을 확대하고 통신 안정성 강화 및 추가적인 부가 서비스가 가능한 LIS 기술이 중요하게 된다. LIS는 전자기 물질(electromagnetic materials)로 만들어진 인공 표면(artificial surface)이고, 들어오는 무선파와 나가는 무선파의 전파(propagation)을 변경시킬 수 있다. LIS는 massive MIMO의 확장으로 보여질 수 있으나, massive MIMO와 서로 다른 array 구조 및 동작 메커니즘이 다르다. 또한, LIS는 수동 엘리먼트(passive elements)를 가진 재구성 가능한 리플렉터(reflector)로서 동작하는 점 즉, 활성(active) RF chain을 사용하지 않고 신호를 수동적으로만 반사(reflect)하는 점에서 낮은 전력 소비를 가지는 장점이 있다. 또한, LIS의 수동적인 리플렉터 각각은 입사되는 신호의 위상 편이를 독립적으로 조절해야 하기 때문에, 무선 통신 채널에 유리할 수 있다. LIS 컨트롤러를 통해 위상 편이를 적절히 조절함으로써, 반사된 신호는 수신된 신호 전력을 부스트(boost)하기 위해 타겟 수신기에서 모여질 수 있다.In the case of the THz band signal, the linearity is strong, so there may be many shaded areas due to obstructions. By installing LIS near these shaded areas, LIS technology that expands the communication area, strengthens communication stability, and enables additional additional services becomes important. LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves. LIS can be seen as an extension of massive MIMO, but the array structure and operation mechanism are different from those of massive MIMO. In addition, the LIS has low power consumption in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain. There are advantages to having Also, since each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel. By properly adjusting the phase shift via the LIS controller, the reflected signal can be gathered at the target receiver to boost the received signal power.
<테라헤르츠(THz) 무선통신 일반><General terahertz (THz) wireless communication>
THz 무선통신은 대략 0.1~10THz(1THz=1012Hz)의 진동수를 가지는 THz파를 이용하여 무선통신을 이용하는 것으로, 100GHz 이상의 매우 높은 캐리어 주파수를 사용하는 테라헤르츠(THz) 대역 무선통신을 의미할 수 있다. THz파는 RF(Radio Frequency)/밀리미터(mm)와 적외선 대역 사이에 위치하며, (i) 가시광/적외선에 비해 비금속/비분극성 물질을 잘 투과하며 RF/밀리미터파에 비해 파장이 짧아 높은 직진성을 가지며 빔 집속이 가능할 수 있다. 또한, THz파의 광자 에너지는 수 meV에 불과하기 때문에 인체에 무해한 특성이 있다. THz 무선통신에 이용될 것으로 기대되는 주파수 대역은 공기 중 분자 흡수에 의한 전파 손실이 작은 D-밴드(110GHz~170GHz) 혹은 H-밴드(220GHz~325GHz) 대역일 수 있다. THz 무선통신에 대한 표준화 논의는 3GPP 이외에도 IEEE 802.15 THz working group을 중심으로 논의되고 있으며, IEEE 802.15의 Task Group (TG3d, TG3e)에서 발행되는 표준문서는 본 명세서에서 설명되는 내용을 구체화하거나 보충할 수 있다. THz 무선통신은 무선 인식(wireless cognition), 센싱(sensing), 이미징(imaging), 무선 통신(wireless), THz 네비게이션(navigation) 등에 응용될 수 있다. THz wireless communication uses wireless communication using THz waves having a frequency of approximately 0.1 to 10THz (1THz=10 12 Hz), which means terahertz (THz) band wireless communication using a very high carrier frequency of 100 GHz or higher. can THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared bands, (i) It transmits non-metal/non-polar materials better than visible light/infrared light, and has a short wavelength compared to RF/millimeter wave, so it has high straightness. Beam focusing may be possible. In addition, since the photon energy of the THz wave is only a few meV, it is harmless to the human body. The frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with a small propagation loss due to absorption of molecules in the air. The standardization discussion on THz wireless communication is being discussed centered on the IEEE 802.15 THz working group in addition to 3GPP, and the standard documents issued by the IEEE 802.15 Task Group (TG3d, TG3e) may specify or supplement the content described in this specification. have. THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
도 38은 THz 통신 응용의 일례를 나타낸 도이다.38 is a diagram showing an example of THz communication application.
도 38에 도시된 바와 같이, THz 무선통신 시나리오는 매크로 네트워크(macro network), 마이크로 네트워크(micro network), 나노스케일 네트워크(nanoscale network)로 분류될 수 있다. 매크로 네트워크에서 THz 무선통신은 vehicle-to-vehicle 연결 및 backhaul/fronthaul 연결에 응용될 수 있다. 마이크로 네트워크에서 THz 무선통신은 인도어 스몰 셀(small cell), 데이터 센터에서 무선 연결과 같은 고정된 point-to-point 또는 multi-point 연결, 키오스크 다운로딩과 같은 근거리 통신(near-field communication)에 응용될 수 있다.As shown in FIG. 38 , a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network. In the macro network, THz wireless communication can be applied to vehicle-to-vehicle connection and backhaul/fronthaul connection. THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading. can be
아래 표 7은 THz 파에서 이용될 수 있는 기술의 일례를 나타낸 표이다.Table 7 below is a table showing an example of a technique that can be used in the THz wave.
Transceivers DeviceTransceivers Device | Available immature: UTC-PD, RTD and SBDAvailable immature: UTC-PD, RTD and SBD |
Modulation and codingModulation and coding | Low order modulation techniques (OOK, QPSK), LDPC, Reed Soloman, Hamming, Polar, TurboLow order modulation techniques (OOK, QPSK), LDPC, Reed Soloman, Hamming, Polar, Turbo |
AntennaAntenna | Omni and Directional, phased array with low number of antenna elementsOmni and Directional, phased array with low number of antenna elements |
BandwidthBandwidth | 69GHz (or 23 GHz) at 300GHz69 GHz (or 23 GHz) at 300 GHz |
Channel modelsChannel models | PartiallyPartially |
Data ratedata rate | 100Gbps100Gbps |
Outdoor deploymentoutdoor deployment | NoNo |
Free space lossfree space loss | HighHigh |
CoverageCoverage | LowLow |
Radio MeasurementsRadio Measurements | 300GHz indoor300GHz indoor |
Device sizeDevice size | Few micrometersFew micrometers |
THz 무선통신은 THz 발생 및 수신을 위한 방법을 기준으로 분류할 수 있다. THz 발생 방법은 광 소자 또는 전자소자 기반 기술로 분류할 수 있다. 도 39는 전자소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.THz wireless communication can be classified based on a method for generating and receiving THz. The THz generation method can be classified into an optical device or an electronic device-based technology. 39 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
전자 소자를 이용하여 THz를 발생시키는 방법은 공명 터널링 다이오드(RTD: Resonant Tunneling Diode)와 같은 반도체 소자를 이용하는 방법, 국부 발진기와 체배기를 이용하는 방법, 화합물 반도체 HEMT(High Electron Mobility Transistor) 기반의 집적회로를 이용한 MMIC (Monolithic Microwave Integrated Circuits) 방법, Si-CMOS 기반의 집적회로를 이용하는 방법 등이 있다. 도 39의 경우, 주파수를 높이기 위해 체배기(doubler, tripler, multiplier)가 적용되었고, 서브하모닉 믹서를 지나 안테나에 의해 방사된다. THz 대역은 높은 주파수를 형성하므로, 체배기가 필수적이다. 여기서, 체배기는 입력 대비 N배의 출력 주파수를 갖게 하는 회로이며, 원하는 하모닉 주파수에 정합시키고, 나머지 모든 주파수는 걸러낸다. 그리고, 도 39의 안테나에 배열 안테나 등이 적용되어 빔포밍이 구현될 수도 있다. 도 39에서, IF는 중간 주파수(intermediate frequency)를 나타내며, tripler, multipler는 체배기를 나타내며, PA 전력 증폭기(Power Amplifier)를 나타내며, LNA는 저잡음 증폭기(low noise amplifier), PLL은 위상동기회로(Phase-Locked Loop)를 나타낸다. A method of generating THz using an electronic device includes a method using a semiconductor device such as a Resonant Tunneling Diode (RTD), a method using a local oscillator and a multiplier, and an integrated circuit based on a compound semiconductor HEMT (High Electron Mobility Transistor). MMIC (Monolithic Microwave Integrated Circuits) method using In the case of FIG. 39 , a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the subharmonic mixer. Since the THz band forms a high frequency, a multiplier is essential. Here, the multiplier is a circuit that has an output frequency N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies. Also, an array antenna or the like may be applied to the antenna of FIG. 39 to implement beamforming. In FIG. 39 , IF represents an intermediate frequency, tripler and multipler represent a multiplier, PA Power Amplifier, LNA a low noise amplifier, and PLL a phase lock circuit (Phase) -Locked Loop).
도 40은 광 소자 기반 THz 신호를 생성하는 방법의 일례를 나타낸 도이며, 도 41은 광 소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.40 is a diagram illustrating an example of a method of generating an optical device-based THz signal, and FIG. 41 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
광 소자 기반 THz 무선통신 기술은 광소자를 이용하여 THz 신호를 발생 및 변조하는 방법을 말한다. 광 소자 기반 THz 신호 생성 기술은 레이저와 광변조기 등을 이용하여 초고속 광신호를 생성하고, 이를 초고속 광검출기를 이용하여 THz 신호로 변환하는 기술이다. 이 기술은 전자 소자만을 이용하는 기술에 비해 주파수를 증가시키기가 용이하고, 높은 전력의 신호 생성이 가능하며, 넓은 주파수 대역에서 평탄한 응답 특성을 얻을 수 있다. 광소자 기반 THz 신호 생성을 위해서는 도 40에 도시된 바와 같이, 레이저 다이오드, 광대역 광변조기, 초고속 광검출기가 필요하다. 도 40의 경우, 파장이 다른 두 레이저의 빛 신호를 합파하여 레이저 간의 파장 차이에 해당하는 THz 신호를 생성하는 것이다. 도 40에서, 광 커플러(Optical Coupler)는 회로 또는 시스템 간의 전기적 절연과의 결합을 제공하기 위해 광파를 사용하여 전기신호를 전송하도록 하는 반도체 디바이스를 의미하며, UTC-PD(Uni-Travelling Carrier Photo-Detector)은 광 검출기의 하나로서, 능동 캐리어(active carrier)로 전자를 사용하며 밴드갭 그레이딩(Bandgap Grading)으로 전자의 이동 시간을 감소시킨 소자이다. UTC-PD는 150GHz 이상에서 광검출이 가능하다. 도 41에서, EDFA(Erbium-Doped Fiber Amplifier)는 어븀이 첨가된 광섬유 증폭기를 나타내며, PD(Photo Detector)는 광신호를 전기신호로 변환할 수 있는 반도체 디바이스를 나타내며, OSA는 각종 광통신 기능(광전 변환, 전광 변환 등)을 하나의 부품으로 모듈화시킨 광모듈(Optical Sub Aassembly)를 나타내며, DSO는 디지털 스토리지 오실로스코프(digital storage oscilloscope)를 나타낸다.Optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device. The optical device-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector. In this technology, it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band. As shown in FIG. 40 , a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate a THz signal based on an optical device. In the case of FIG. 40 , light signals of two lasers having different wavelengths are multiplexed to generate a THz signal corresponding to a difference in wavelength between the lasers. In FIG. 40 , an optical coupler means a semiconductor device that transmits an electrical signal using light waves to provide coupling with electrical insulation between circuits or systems, and UTC-PD (Uni-Traveling Carrier Photo-) Detector) is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading. UTC-PD is capable of photodetection above 150GHz. In FIG. 41, EDFA (Erbium-Doped Fiber Amplifier) represents an erbium-doped optical fiber amplifier, PD (Photo Detector) represents a semiconductor device capable of converting an optical signal into an electrical signal, and OSA represents various optical communication functions (photoelectric It represents an optical module (Optical Sub Aassembly) that modularizes conversion, electro-optical conversion, etc.) into one component, and DSO represents a digital storage oscilloscope.
도 42 및 도 43을 참조하여 광전 변환기(또는 광전 컨버터)의 구조를 설명한다. 도 42는 광자 소스(Photoinc source) 기반 송신기의 구조를 예시하며, 도 43은 광 변조기(Optical modulator)의 구조를 예시한다.The structure of the photoelectric converter (or photoelectric converter) will be described with reference to FIGS. 42 and 43 . 42 illustrates a structure of a photoinc source-based transmitter, and FIG. 43 illustrates a structure of an optical modulator.
일반적으로 레이저(Laser)의 광학 소스(Optical source)를 광파 가이드(Optical wave guide)를 통과시켜 신호의 위상(phase)등을 변화시킬 수 있다. 이때, 마이크로파 컨택트(Microwave contact) 등을 통해 전기적 특성을 변화시킴으로써 데이터를 싣게 된다. 따라서, 광학 변조기 출력(Optical modulator output)은 변조된(modulated) 형태의 파형으로 형성된다. 광전 변조기(O/E converter)는 비선형 크리스탈(nonlinear crystal)에 의한 광학 정류(optical rectification) 동작, 광전도 안테나(photoconductive antenna)에 의한 광전 변환(O/E conversion), 광속의 전자 다발(bunch of relativistic electrons)로부터의 방출(emission) 등에 따라 THz 펄스를 생성할 수 있다. 상기와 같은 방식으로 발생한 테라헤르츠 펄스(THz pulse)는 펨토 세컨드(femto second)부터 피코 세컨드(pico second)의 단위의 길이를 가질 수 있다. 광전 변환기(O/E converter)는 소자의 비선형성(non-linearity)을 이용하여, 하향 변환(Down conversion)을 수행한다. In general, a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide. At this time, data is loaded by changing electrical characteristics through a microwave contact or the like. Accordingly, an optical modulator output is formed as a modulated waveform. The photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O/E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons. A terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds. An O/E converter performs down conversion by using non-linearity of a device.
테라헤르츠 스펙트럼의 용도(THz spectrum usage)를 고려할 때, 테라헤르츠 시스템을 위해서 고정된(fixed) 또는 모바일 서비스(mobile service) 용도로써 여러 개의 연속적인 기가헤르츠(contiguous GHz)의 대역들(bands)을 사용할 가능성이 높다. 아웃도어(outdoor) 시나리오 기준에 의하면, 1THz까지의 스펙트럼에서 산소 감쇠(Oxygen attenuation) 10^2 dB/km를 기준으로 가용 대역폭(Bandwidth)이 분류될 수 있다. 이에 따라 상기 가용 대역폭이 여러 개의 밴드 청크(band chunk)들로 구성되는 프레임워크(framework)가 고려될 수 있다. 상기 프레임워크의 일 예시로 하나의 캐리어(carrier)에 대해 테라헤르츠 펄스(THz pulse)의 길이를 50ps로 설정한다면, 대역폭(BW)은 약 20GHz가 된다. Considering the THz spectrum usage, several contiguous bands of contiguous GHz are used for fixed or mobile service use for the terahertz system. likely to use According to the outdoor scenario standard, available bandwidth may be classified based on oxygen attenuation of 10^2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered. As an example of the framework, if the length of a terahertz pulse (THz pulse) for one carrier is set to 50 ps, the bandwidth (BW) becomes about 20 GHz.
적외선 대역(IR band)에서 테라헤르츠 대역(THz band)으로의 효과적인 하향 변환(Down conversion)은 광전 컨버터(O/E converter)의 비선형성(nonlinearity)을 어떻게 활용하는가에 달려 있다. 즉, 원하는 테라헤르츠 대역(THz band)으로 하향 변환(down conversion)하기 위해서는 해당 테라헤르츠 대역(THz band)에 옮기기에 가장 이상적인 비선형성(non-linearity)을 갖는 광전 변환기(O/E converter)의 설계가 요구된다. 만일 타겟으로 하는 주파수 대역에 맞지 않는 광전 변환기(O/E converter)를 사용하는 경우, 해당 펄스(pulse)의 크기(amplitude), 위상(phase)에 대하여 오류(error)가 발생할 가능성이 높다. Effective down conversion from the IR band to the THz band depends on how the nonlinearity of the O/E converter is utilized. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity to be transferred to the corresponding terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
단일 캐리어(single carrier) 시스템에서는 광전 변환기 1개를 이용하여 테라헤르츠 송수신 시스템이 구현될 수 있다. 채널 환경에 따라 달라지지만 멀리 캐리어(Multi carrier) 시스템에서는 캐리어 수만큼 광전 변환기가 요구될 수 있다. 특히 전술한 스펙트럼 용도와 관련된 계획에 따라 여러 개의 광대역들을 이용하는 멀티 캐리어 시스템인 경우, 그 현상이 두드러지게 될 것이다. 이와 관련하여 상기 멀티 캐리어 시스템을 위한 프레임 구조가 고려될 수 있다. 광전 변환기를 기반으로 하향 주파수 변환된 신호는 특정 자원 영역(예: 특정 프레임)에서 전송될 수 있다. 상기 특정 자원 영역의 주파수 영역은 복수의 청크(chunk)들을 포함할 수 있다. 각 청크(chunk)는 적어도 하나의 컴포넌트 캐리어(CC)로 구성될 수 있다.In a single carrier system, a terahertz transmission/reception system may be implemented using one photoelectric converter. Although it depends on the channel environment, in a far-carrier system, as many photoelectric converters as the number of carriers may be required. In particular, in the case of a multi-carrier system that uses several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered. The down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame). The frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
Claims (15)
- 장치에 의해 수행되는, 양자 채널을 통해 다른 장치와 통신을 수행하는 방법에 있어서,A method of performing communication with another device through a quantum channel, performed by a device, the method comprising:각각 서로 다른 파장을 가지는 제1 펄스 열을 n개 생성하되,Generate n first pulse trains each having a different wavelength,상기 n은 자연수이고;wherein n is a natural number;상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택하되,Based on the length of the quantum channel and the length of the storage line, select k second pulse trains having different wavelengths from among the first pulse trains,상기 k는 자연수이고 및 상기 k는 상기 n보다 같거나 작고; 및wherein k is a natural number and k is less than or equal to n; and상기 k개의 상기 제2 펄스 열을 상기 k개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송하되,Transmitting the k second pulse trains to the other device through the quantum channel based on the k multipaths,상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성되는 것을 특징으로 하는 방법.Each of the k multi-paths is characterized in that each of the delay line is configured with a different length.
- 제1항에 있어서, 상기 제1 펄스 열의 길이는 적어도 하나의 상기 제1 펄스 열의 길이, 하나의 펄스 열에 포함된 소스 펄스의 개수, 광 케이블에서의 빛의 속도 및 레이저 소스의 반복 레이트에 기반하여 결정되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the length of the first pulse train is based on a length of at least one first pulse train, the number of source pulses included in one pulse train, a speed of light in an optical cable, and a repetition rate of a laser source. A method characterized in that it is determined.
- 제2항에 있어서, 상기 제1 펄스 열의 길이는 아래 식에 기반하여 결정되고,According to claim 2, wherein the length of the first pulse train is determined based on the following equation,l = m*c*f_source (m)l = m*c*f_source (m)상기 l은 상기 제1 펄스 열의 길이이고,where l is the length of the first pulse train,상기 m은 상기 하나의 펄스 열에 포함된 소스 펄스의 개수이고,Wherein m is the number of source pulses included in the one pulse train,상기 c는 상기 광 케이블에서의 빛의 속도이고, 및c is the speed of light in the optical cable, and상기 f_source는 상기 레이저 소스의 반복 레이트인 것을 특징으로 하는 방법.The method of claim 1, wherein the f_source is a repetition rate of the laser source.
- 제1항에 있어서, 상기 제2 펄스 열의 개수인 상기 k는 상기 장치가 선택하는 최대 파장의 개수인 것을 특징으로 하는 방법.The method of claim 1 , wherein k, which is the number of the second pulse train, is the number of maximum wavelengths selected by the device.
- 제4항에 있어서, 상기 장치가 선택하는 최대 파장의 개수는 적어도 하나의 상기 양자 채널의 길이, 상기 스토리지 라인의 길이 및 상기 제1 펄스 열의 길이에 기반하여 결정되는 것을 특징으로 하는 방법.5. The method of claim 4, wherein the maximum number of wavelengths selected by the device is determined based on a length of the at least one quantum channel, a length of the storage line, and a length of the first pulse train.
- 제5항에 있어서, 상기 장치가 선택하는 최대 파장의 개수인 k의 값은 아래 식에 기반하여 결정되고,The method of claim 5, wherein the value of k, which is the number of maximum wavelengths selected by the device, is determined based on the following equation,상기 l_ch는 상기 양자 채널의 길이이고,The l_ch is the length of the quantum channel,상기 l_sl은 상기 스토리지 라인의 길이이고, 및The l_sl is the length of the storage line, and상기 l은 상기 제1 펄스 열의 길이인 것을 특징으로 하는 방법.wherein l is the length of the first pulse train.
- 제5항에 있어서, 상기 장치가 선택하는 최대 파장의 개수인 k_2의 값은 아래 식에 기반하여 결정되고,The method of claim 5, wherein the value of k_2, which is the number of maximum wavelengths selected by the device, is determined based on the following equation,상기 l_ch는 상기 양자 채널의 길이고,The l_ch is the length of the quantum channel,상기 l_sl은 상기 스토리지 라인의 길이고,The l_sl is the length of the storage line,상기 l은 상기 제1 펄스 열의 길이고, 및wherein l is the length of the first pulse train, and상기 a는 양의 정수인 것을 특징으로 하는 방법.wherein a is a positive integer.
- 제1항에 있어서, 상기 딜레이 라인의 길이에 대한 값은 적어도 하나의 가장 짧은 딜레이 라인의 길이, 상기 장치가 선택하는 최대 파장의 개수, 상기 제1 펄스 열의 길이 및 파장 성분 변경에 필요한 스위칭 타임에 해당하는 길이에 기반하여 결정되는 것을 특징으로 하는 방법.According to claim 1, wherein the value for the length of the delay line is the length of at least one shortest delay line, the maximum number of wavelengths selected by the device, the length of the first pulse train and the switching time required for changing the wavelength component. A method, characterized in that it is determined based on the corresponding length.
- 제8항에 있어서, 상기 딜레이 라인의 길이에 대한 값은 아래 식에 기반하여 결정되고,The method of claim 8, wherein the value for the length of the delay line is determined based on the following equation,딜레이 라인의 길이 = t + (k - 1)*(l + l_st) (m)Length of delay line = t + (k - 1)*(l + l_st) (m)상기 t는 상기 가장 짧은 딜레이 라인의 길이이고,t is the length of the shortest delay line,상기 k는 상기 장치가 선택하는 최대 파장의 개수이고,where k is the maximum number of wavelengths selected by the device,상기 l은 상기 제1 펄스 열의 길이이고, 및wherein l is the length of the first pulse train, and상기 l_st는 상기 파장 성분 변경에 필요한 스위칭 타임에 해당하는 길이인 것을 특징으로 하는 방법.The l_st is a length corresponding to a switching time required to change the wavelength component.
- 제1항에 있어서, 상기 방법은,The method of claim 1, wherein the method comprises:상기 제2 펄스열의 전송에 기반하여 발생한 백스캐터링(backscattering) 펄스를 튜너블 옵티컬 필터에 기반하여 필터링 하는 것을 더 포함하되,Further comprising filtering a backscattering pulse generated based on the transmission of the second pulse train based on a tunable optical filter,상기 튜너블 옵티컬 필터는 통과 가능한 파장을 가변적으로 조절하는 소자인 것을 특징으로 하는 방법.The tunable optical filter is a method, characterized in that the element that variably adjusts a passable wavelength.
- 제1항에 있어서, 상기 장치는 밥(bob) 사이드의 장치이고, 상기 다른 장치는 앨리스(alice) 사이드의 장치인 것을 특징으로 하는 방법.2. The method of claim 1, wherein the device is a bob side device and the other device is an alice side device.
- 제1항에 있어서, 상기 장치는 기지국이고, 상기 다른 장치는 단말(user equipment)인 것을 특징으로 하는 방법.The method of claim 1, wherein the apparatus is a base station, and the other apparatus is a user equipment.
- 장치는,The device is각각 서로 다른 파장을 가지는 제1 펄스 열을 n개 생성하는 제너레이터;a generator for generating n first pulse trains each having a different wavelength;상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택하는 옵티컬 스위치; 및an optical switch for selecting k second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of a storage line; and상기 k개의 상기 제2 펄스 열 각각이 통과되는 상기 k개의 다중경로를 포함하되,Comprising the k multipaths through which each of the k second pulse trains pass,상기 n은 자연수이고,Wherein n is a natural number,상기 k는 자연수이고 및 상기 k는 상기 n보다 같거나 작고,wherein k is a natural number and k is less than or equal to n,상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성되는 것을 특징으로 하는 장치.Each of the k multi-paths is configured with delay lines of different lengths.
- 장치는,The device is적어도 하나의 메모리; 및at least one memory; and상기 적어도 하나의 메모리와 동작 가능하게 결합된 적어도 하나의 프로세서를 포함하되, 상기 프로세서는,at least one processor operatively coupled with the at least one memory, the processor comprising:각각 서로 다른 파장을 가지는 제1 펄스 열을 n개 생성하도록 구성되고; 및configured to generate n first pulse trains each having a different wavelength; and상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택하도록 구성되되,configured to select k second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line,상기 k개의 상기 제2 펄스 열은 상기 k개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송되도록 구성되고,the k second pulse trains are configured to be transmitted to the other device through the quantum channel based on the k multipaths;상기 n은 자연수이고,Wherein n is a natural number,상기 k는 자연수이고 및 상기 k는 상기 n보다 같거나 작고,wherein k is a natural number and k is less than or equal to n,상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성되는 것을 특징으로 하는 장치.Each of the k multi-paths is configured with delay lines of different lengths.
- 적어도 하나의 프로세서(processor)에 의해 실행되는 것에 기반하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서,In at least one computer-readable recording medium comprising an instruction based on being executed by at least one processor,각각 서로 다른 파장을 가지는 제1 펄스 열을 n개 생성하도록 구성되되,Configured to generate n first pulse trains each having a different wavelength,상기 n은 자연수이고;wherein n is a natural number;상기 양자 채널의 길이 및 스토리지(storage) 라인의 길이에 기반하여, 상기 제1 펄스 열 중 서로 다른 파장을 가지는 제2 펄스 열을 k개 선택하도록 구성되되,configured to select k second pulse trains having different wavelengths from among the first pulse trains based on the length of the quantum channel and the length of the storage line,상기 k는 자연수이고 및 상기 k는 상기 n보다 같거나 작고; 및wherein k is a natural number and k is less than or equal to n; and상기 k개의 상기 제2 펄스 열을 상기 k개의 다중 경로에 기반하여 상기 양자 채널을 통해 상기 다른 장치에게 전송하도록 구성되되,and transmit the k second pulse trains to the other device through the quantum channel based on the k multipaths,상기 k개의 상기 다중 경로의 각각은 서로 다른 길이의 딜레이 라인으로 구성되는 것을 특징으로 하는 기록매체.Each of the k multi-paths comprises delay lines of different lengths.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227040567A KR20230031196A (en) | 2020-05-18 | 2020-05-18 | Plug-and-play quantum key distribution method based on multipath and wavelength division and apparatus using the method |
PCT/KR2020/006479 WO2021235563A1 (en) | 2020-05-18 | 2020-05-18 | Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/006479 WO2021235563A1 (en) | 2020-05-18 | 2020-05-18 | Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235563A1 true WO2021235563A1 (en) | 2021-11-25 |
Family
ID=78708658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/006479 WO2021235563A1 (en) | 2020-05-18 | 2020-05-18 | Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230031196A (en) |
WO (1) | WO2021235563A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114465723A (en) * | 2022-02-11 | 2022-05-10 | 西安电子科技大学 | Quantum encryption communication system and communication method based on software defined network and slices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3542699B2 (en) * | 1997-05-16 | 2004-07-14 | 日本電信電話株式会社 | How to configure quantum cryptography |
US20180191496A1 (en) * | 2016-12-29 | 2018-07-05 | International Center for Quantum Optics & Quantum Technologies LLC | High-speed autocompensation scheme of quantum key distribution |
KR20190053837A (en) * | 2017-01-16 | 2019-05-20 | 사우스 차이나 노멀 유니버시티 | Phase Polarization Multi-Degree of Freedom Modulation Quantum Key Distribution Network Systems and Methods |
KR20200034464A (en) * | 2018-09-21 | 2020-03-31 | 한국과학기술연구원 | Method for forming quantum key distribution network |
-
2020
- 2020-05-18 WO PCT/KR2020/006479 patent/WO2021235563A1/en active Application Filing
- 2020-05-18 KR KR1020227040567A patent/KR20230031196A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3542699B2 (en) * | 1997-05-16 | 2004-07-14 | 日本電信電話株式会社 | How to configure quantum cryptography |
US20180191496A1 (en) * | 2016-12-29 | 2018-07-05 | International Center for Quantum Optics & Quantum Technologies LLC | High-speed autocompensation scheme of quantum key distribution |
KR20190053837A (en) * | 2017-01-16 | 2019-05-20 | 사우스 차이나 노멀 유니버시티 | Phase Polarization Multi-Degree of Freedom Modulation Quantum Key Distribution Network Systems and Methods |
KR20200034464A (en) * | 2018-09-21 | 2020-03-31 | 한국과학기술연구원 | Method for forming quantum key distribution network |
Non-Patent Citations (2)
Title |
---|
SUBACIUS DARIUS, ZAVRIYEV ANTON, TRIFONOV ALEXEI: "Backscattering limitation for fiber-optic quantum key distribution systems", APPLIED PHYSICS LETTERS, vol. 86, no. 1, 22 December 2004 (2004-12-22), 2 Huntington Quadrangle, Melville, NY 11747, pages 011103 - 011103, XP012064391, ISSN: 0003-6951, DOI: 10.1063/1.1842862 * |
XIANG PENG; HAO JIANG; HONG GUO: "Multi-wavelength QKD for reducing Rayleigh backscattering and increasing", JOURNAL OF PHYSICS B, ATOMIC MOLECULAR AND OPTICAL PHYSICS,20080428INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 41, no. 8, 28 April 2008 (2008-04-28), pages 85509, XP020135491, ISSN: 0953-4075 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114465723A (en) * | 2022-02-11 | 2022-05-10 | 西安电子科技大学 | Quantum encryption communication system and communication method based on software defined network and slices |
CN114465723B (en) * | 2022-02-11 | 2023-10-20 | 西安电子科技大学 | Quantum encryption communication system and method based on software defined network and slice |
Also Published As
Publication number | Publication date |
---|---|
KR20230031196A (en) | 2023-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022019352A1 (en) | Signal transmission and reception method and apparatus for terminal and base station in wireless communication system | |
WO2022054981A1 (en) | Method and device for executing compression federated learning | |
WO2021246538A1 (en) | Frequency gradient metasurface device and method based on fast beam steering system | |
WO2021251511A1 (en) | Method for transmitting/receiving uplink signal of high frequency band in wireless communication system, and device therefor | |
WO2022145548A1 (en) | Data partition-based modulation method and apparatus for federated learning | |
WO2022045378A1 (en) | Method and device for estimating quantum bit error rate on basis of maximum bit group and two-dimensional parity | |
WO2022025315A1 (en) | Phase control device for continuous beam scanning in effective scan range and method therefor | |
WO2022025321A1 (en) | Signal randomization method and device of communication apparatus | |
WO2022054985A1 (en) | Method and apparatus for transmitting and receiving signal by user equipment and base station in wireless communication system | |
WO2022039303A1 (en) | Method for generating beam of antenna in wireless communication system supporting thz band, and apparatus therefor | |
WO2022014732A1 (en) | Method and apparatus for performing federated learning in wireless communication system | |
WO2022045399A1 (en) | Federated learning method based on selective weight transmission and terminal therefor | |
WO2021241779A1 (en) | Frequency gradient metasurface-based fast beam steering transmission method and apparatus for owc | |
WO2021235563A1 (en) | Plug-and-play quantum key distribution method based on multiple paths and wavelength division, and device for using method | |
WO2022054992A1 (en) | Method and apparatus for correcting polarization distortion of faraday rotating mirror in plug-and-play quantum key distribution system | |
WO2022119021A1 (en) | Method and device for adapting learning class-based system to ai mimo | |
WO2022004921A1 (en) | Method and device for correcting polarization distortion in plug and play quantum key distribution system | |
WO2022059814A1 (en) | Frequency comb power control apparatus for 4d beamforming, and method therefor | |
WO2022045402A1 (en) | Method and device for terminal and base station transmitting/receiving signal in wireless communication system | |
WO2022025306A1 (en) | Method and apparatus for pseudo-random sequence-based federated learning | |
WO2022039287A1 (en) | Method by which user equipment and base station transmit/receive signals in wireless communication system, and apparatus | |
WO2022080534A1 (en) | Digital aircomp signaling | |
WO2022097774A1 (en) | Method and device for performing feedback by terminal and base station in wireless communication system | |
WO2022054980A1 (en) | Encoding method and neural network encoder structure usable in wireless communication system | |
WO2022014728A1 (en) | Method and apparatus for performing channel coding by user equipment and base station in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20936197 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20936197 Country of ref document: EP Kind code of ref document: A1 |