WO2021235502A1 - Resin composition, rubber composition, resin molded body, and production method for resin composition - Google Patents

Resin composition, rubber composition, resin molded body, and production method for resin composition Download PDF

Info

Publication number
WO2021235502A1
WO2021235502A1 PCT/JP2021/019071 JP2021019071W WO2021235502A1 WO 2021235502 A1 WO2021235502 A1 WO 2021235502A1 JP 2021019071 W JP2021019071 W JP 2021019071W WO 2021235502 A1 WO2021235502 A1 WO 2021235502A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
fine fibrous
resin
substituent
group
Prior art date
Application number
PCT/JP2021/019071
Other languages
French (fr)
Japanese (ja)
Inventor
崇浩 落合
実央 山中
みづき 酒井
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021084173A external-priority patent/JP2022008095A/en
Priority claimed from JP2021084171A external-priority patent/JP2021181566A/en
Priority claimed from JP2021084172A external-priority patent/JP2021191841A/en
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2021235502A1 publication Critical patent/WO2021235502A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • D06M11/71Salts of phosphoric acids

Definitions

  • the present invention relates to a resin composition, a rubber composition, a resin molded product, and a method for producing a resin composition.
  • fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less has been widely used mainly as paper products.
  • fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, sheets containing fine fibrous cellulose, resin complexes, and thickeners are being developed.
  • Patent Documents 1 to 4 disclose resin compositions containing fine fibrous cellulose and a resin.
  • Patent Document 1 discloses a resin composition containing partially hydrolyzed fine cellulose (A) and a thermoplastic resin (B).
  • Patent Document 2 discloses a thermoplastic composite resin containing a thermoplastic resin, cellulose nanofibers, and an ethylene-based copolymer. In the examples of Patent Documents 1 and 2, unmodified cellulose fibers are used as the fine fibrous cellulose.
  • Patent Document 3 an aqueous dispersion of cellulose nanofibers and hydrophobic particles are stirred and mixed to obtain a powdery body containing the aqueous dispersion and the hydrophobic particles arranged on the surface thereof.
  • a method for producing a thermoplastic resin composition is disclosed, which comprises a step and a step of melt-kneading the powdery substance and the thermoplastic resin to obtain a thermoplastic resin composition.
  • Patent Document 4 describes a fine cellulose fiber composite in which a hydrocarbon group is bonded to the fine cellulose fiber via an amide bond, and a polyolefin resin, a polyvinyl chloride resin, a polyamide resin and a polycarbonate resin.
  • a resin composition containing one or more kinds of resins selected from the above group is disclosed.
  • TEMPO-oxidized cellulose fibers are used as the fine fibrous cellulose.
  • a rubber composition is also known as a kind of resin composition as described above, and it is also considered to mix fine fibrous cellulose with a rubber component to obtain a rubber composition.
  • Patent Document 5 describes a rubber component and a rubber composition containing microfibrillated plant fibers having an average fiber length of 1 to 20 ⁇ m, an average fiber diameter of 10 ⁇ m or less, and an aspect ratio of 2 to 1000. Is disclosed.
  • Patent Document 6 discloses a method for producing cellulose zantate nanofibers, which comprises defibrating a cellulose zantate or a cationic substituent of cellulose zantate.
  • Patent Document 6 discloses an example in which a rubber sheet is produced by mixing cellulose zantate nanofibers with a natural rubber latex.
  • Japanese Unexamined Patent Publication No. 2019-203108 Japanese Unexamined Patent Publication No. 2019-026702 Japanese Unexamined Patent Publication No. 2019-026666 Japanese Unexamined Patent Publication No. 2014-034616 Japanese Unexamined Patent Publication No. 2011-231208 International Publication No. 2017/111033
  • the present inventors have made a resin composition containing fine fibrous cellulose and a resin, which has excellent designability and whose coloring is suppressed. We proceeded with the study for the purpose of providing a resin composition capable of molding a molded product.
  • the present invention has the following configuration.
  • the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the amount is less than 0.5 mmol / g.
  • the anionic group is selected from the group consisting of a phosphorusoxo acid group, a substituent derived from a phosphorusoxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group.
  • the anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group and a substituent derived from a sulfone group, [4] or [ 5] The resin composition according to.
  • the resin is at least one selected from the group consisting of a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyurethane resin, and an acrylic resin.
  • the resin composition according to. [8] The resin composition according to any one of [1] to [6], wherein the resin is a rubber component.
  • the rubber component is at least one crosslinked rubber selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber.
  • a method for producing a resin composition which comprises a step of kneading the fibrous cellulose and a resin.
  • the step of obtaining the fibrous cellulose is A method for producing a resin composition, which comprises the step (A) of removing at least a part of the substituent from the fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • the step of obtaining the fibrous cellulose is a step of obtaining fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and an average fiber width of 1 to 10 nm.
  • the method for producing a resin composition according to [13], wherein the step of obtaining the fibrous cellulose includes a step (B) of performing a uniform dispersion treatment after the step (A).
  • [15] The method for producing a resin composition according to [13] or [14], wherein the amount of the substituent of the fibrous cellulose used in the step (A) is 0.6 mmol / g or more.
  • [16] The method for producing a resin composition according to any one of [13] to [15], wherein the substituent is an anionic group.
  • the anionic group is selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group.
  • the method for producing a resin composition according to [16] which is at least one kind.
  • the anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphorusoxo acid group, a sulfone group and a substituent derived from a sulfone group, [16] or [ 17]
  • the method for producing a resin composition according to the above [19] The method for producing a resin composition according to any one of [13] to [18], wherein the fibrous cellulose used in the step (A) has a carbamide group.
  • the rubber component is at least one crosslinked rubber selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and the pH of a fibrous cellulose-containing slurry having a phosphoric acid group.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to the fibrous cellulose-containing slurry having a carboxy group.
  • the present invention relates to a resin composition containing a resin and fibrous cellulose.
  • the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 100 nm.
  • the present inventors have repeatedly studied the manufacturing process of fine fibrous cellulose, and the number average fiber width has been increased even though the amount of substituents introduced is as low as less than 0.5 mmol / g.
  • the design was excellent and coloring was suppressed. It has been found that a resin molded product can be obtained.
  • the amount of substituents introduced in the fibrous cellulose is preferably less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin composition is preferably 1 to 10 nm.
  • fine fibrous cellulose having a number average fiber width of 1 to 10 nm can be obtained even though the amount of substituents introduced is as low as less than 0.5 mmol / g.
  • the resin composition of the present embodiment is preferably a resin kneaded product of a resin and fibrous cellulose.
  • the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin kneaded product is 1 to 100 nm.
  • the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, it is easy to disperse uniformly in the resin. Therefore, a homogeneous resin kneaded product can be obtained.
  • the resin molded body molded from such a resin kneaded product also has excellent designability.
  • the number average fiber width of the fibrous cellulose contained in the resin kneaded material is preferably 1 to 10 nm.
  • the design of the resin molded body can be evaluated by visually observing the resin molded body molded from the resin composition and measuring the number of lumps having a diameter equivalent to an area circle of 1 mm or more.
  • the number of lumps having an area circle equivalent diameter of 1 mm or more in a sheet-shaped resin molded body having a size of 50 mm ⁇ 50 mm is preferably 40 or less, more preferably 30 or less, and 20 or less. It is more preferable that the number is 10 or less, and it is particularly preferable that the number is 10.
  • the transparency of the resin molded body can be evaluated by the haze of the resin molded body molded from the resin composition.
  • the haze of the resin molded product molded from the resin composition is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less.
  • the total light transmittance of the resin molded product is a haze measured in accordance with JIS K 7136: 2000.
  • a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) can be used.
  • the haze change rate calculated from the following formula is preferably less than 40%, more preferably less than 30%, further preferably less than 20%, and less than 10%. Especially preferable.
  • Haze change rate (%) (Haze of resin molded body-Haze of molded body of resin alone) / Haze of molded body of resin alone ⁇ 100
  • the haze of the molded body of the resin alone is the haze of the molded body formed from the resin component obtained by removing the fibrous cellulose from the resin composition.
  • a molded body formed from a resin component obtained by removing fibrous cellulose from the resin composition and a resin molded body having the same thickness are prepared and measured. In the present embodiment, if the haze change rate is within the above range, it can be determined that the transparency of the resin molded product molded from the resin composition is good.
  • the YI value of the resin molded product molded from the resin composition is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less.
  • the lower limit of the YI value of the resin molded product is not particularly limited, but is preferably 0.1 or more.
  • the YI value of the resin molded product is a YI value measured in accordance with JIS K 7373: 2006.
  • As the YI value measuring device for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
  • the YI change rate calculated from the following formula is preferably less than 320%, more preferably less than 240%, further preferably less than 160%, and particularly preferably less than 80%. preferable.
  • YI change rate (%) (Yellowness of resin molded body-Yellowness of molded body of resin alone) / Yellowness of molded body of resin alone x 100
  • the yellowness of the molded body of the resin alone is the yellowness of the molded body formed from the resin component obtained by removing the fibrous cellulose from the resin composition.
  • a molded body formed from a resin component obtained by removing fibrous cellulose from the resin composition and a resin molded body having the same thickness are prepared and measured. In the present embodiment, if the YI change rate is within the above range, it can be determined that the coloring of the resin molded product molded from the resin composition is suppressed.
  • the resin composition is preferably a resin kneaded product, but a sheet made of fibrous cellulose or the like may be impregnated with a resin component.
  • the resin composition is a resin kneaded product
  • the resin kneaded product may be a liquid material or a solid material. Examples of the solid substance include pellet-like, sheet-like, flake-like, and filament-like shapes.
  • the fibrous cellulose when the resin composition is a resin kneaded product, the fibrous cellulose is uniformly dispersed in the resin composition.
  • the state in which the fibrous cellulose is uniformly dispersed means that the content of the fibrous cellulose at any 10 points in the resin composition is within the range of an average value of ⁇ 10% by mass.
  • the resin contained in the resin composition may be a rubber component.
  • the resin composition of the present embodiment may be a rubber composition.
  • the rubber composition contains a rubber component and fibrous cellulose.
  • the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the rubber composition is 1 to 100 nm.
  • the rubber composition of the present embodiment preferably contains a rubber component and fibrous cellulose, and the rubber composition may be a kneaded product containing a rubber component and fibrous cellulose. Even when the rubber composition is a kneaded product containing a rubber component and fibrous cellulose, the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number of fibrous celluloses contained in the kneaded product. The average fiber width is 1 to 100 nm. In the present embodiment, since the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, the fibrous cellulose is likely to be uniformly dispersed in the rubber component.
  • the molded product formed from such a kneaded product also has excellent designability.
  • the design of the molded body can be evaluated by visually observing the molded body (rubber sheet) molded from the rubber composition and measuring the number of lumps having a diameter equivalent to an area circle of 1 mm or more.
  • the number of lumps having an area circle equivalent diameter of 1 mm or more in a sheet-shaped molded body (rubber sheet) having a size of 50 mm ⁇ 50 mm is preferably 30 or less, more preferably 20 or less. It is more preferably 10 or less. If the number of lumps having an area equivalent circle diameter of 1 mm or more in the sheet-shaped molded body having a size of 50 mm ⁇ 50 mm is within the above range, it can be determined that the molded body molded from the rubber composition has good design.
  • the YI value of the molded product molded from the rubber composition is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less.
  • the lower limit of the YI value of the molded product is not particularly limited, but is preferably 0.1 or more.
  • the YI value of the molded product is a YI value measured in accordance with JIS K 7373: 2006.
  • As the YI value measuring device for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
  • the YI change rate calculated from the following formula is preferably less than 240%, more preferably less than 160%, and even more preferably less than 80%.
  • YI change rate (%) (yellowness of the molded body-yellowness of the molded body of the rubber component alone) / yellowness of the molded body of the rubber component alone x 100
  • the yellowness of the molded body of the rubber component alone is the yellowness of the molded body formed from the rubber component obtained by removing the fibrous cellulose from the rubber composition.
  • the rubber composition of the present embodiment has the above-mentioned structure, it is possible to mold a molded product having excellent tensile properties.
  • a rubber sheet containing fine fibrous cellulose tends to have inferior breaking stress and the like.
  • the amount of the substituent of the fine fibrous cellulose mixed with the rubber component is set to less than 0.5 mmol / g, and the average fiber width of the fine fibrous cellulose is set to 1 to 100 nm.
  • the dispersibility of the fine fibrous cellulose in the rubber component can be enhanced, whereby the breaking stress of the rubber sheet formed from the rubber composition can be enhanced.
  • the tensile properties of the rubber sheet (molded body) molded from the rubber composition can be evaluated, for example, by the tensile strength index.
  • the tensile strength index is an index calculated by the following formula.
  • Tensile strength index breaking stress of rubber sheet / breaking stress of control rubber sheet x 100
  • the breaking stress of the rubber sheet was measured by performing a tensile test in accordance with JIS K 6251: 2017 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties".
  • the control rubber sheet is a sheet formed from a single rubber component constituting the rubber composition.
  • the tensile strength index of the rubber sheet is preferably 100 or more, more preferably 110 or more, and even more preferably 120 or more. In the present embodiment, if the tensile strength index of the rubber sheet is within the above range, it can be determined that the tensile properties of the molded product formed from the rubber composition are good.
  • the rubber composition is preferably a kneaded product, but a sheet made of fibrous cellulose or the like may be impregnated with a rubber component.
  • the kneaded product may be a liquid material or a solid material. Examples of the solid substance include pellet-like, sheet-like, flake-like, and filament-like shapes.
  • the fibrous cellulose is uniformly dispersed in the rubber composition.
  • the state in which the fibrous cellulose is uniformly dispersed means that the content of the fibrous cellulose at any 10 points in the rubber composition is within the range of an average value of ⁇ 10% by mass.
  • Examples of the resin contained in the resin composition include natural resins and synthetic resins.
  • Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
  • Examples of the synthetic resin include polyolefin resins such as polyethylene resin, polypropylene resin and cycloolefin resin, polyester resins such as polyethylene terephthalate, polystyrene resin, polycarbonate resin, polyurethane resin, polyimide resin, polyamide resin, acrylic resin and vinyl chloride resin. Can be mentioned.
  • the synthetic resin is preferably at least one selected from the group consisting of polyolefin resin, polystyrene resin, polycarbonate resin, polyester resin, polyamide resin, polyurethane resin and acrylic resin.
  • examples of the polyolefin resin include polyethylene resin, polypropylene resin, and cycloolefin resin.
  • a cycloolefin polymer (COP) or a cycloolefin copolymer (COC) can be used as the cycloolefin resin.
  • the cycloolefin copolymer (COC) is preferably an ethylene / cycloolefin copolymer.
  • a resin molded body molded from a resin composition is more preferably used as an optical lens or an optical film.
  • the melting point of the resin contained in the resin composition is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the content of the resin in the resin composition is preferably 50% by mass or more, more preferably 65% by mass or more, and further preferably 80% by mass or more, based on the total mass of the resin composition. preferable.
  • the content of the resin is preferably 99.99% by mass or less, more preferably 99.5% by mass or less, and 99.0% by mass or less with respect to the total mass of the resin composition. It is more preferable to have.
  • the resin contained in the resin composition may be a rubber component.
  • the rubber component include synthetic rubber and natural rubber.
  • the synthetic rubber or natural rubber may be a rubber having a crosslinked structure.
  • the rubber component includes a pre-crosslinking raw material such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber and natural rubber (a raw material in which a cross-linking structure is not substantially formed, and the cross-linking agent is sulfur. In the case of, a raw material in which a crosslinked structure is not substantially formed by vulcanization or the like) is also included.
  • Examples of synthetic rubber include diene-based rubber.
  • Examples of the diene rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), and acrylonitrile-styrene-butadiene copolymer.
  • Examples thereof include rubber, chloroprene rubber, styrene-isoprene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, and chlorosulfonated polyethylene. ..
  • Examples of synthetic rubber include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluororubber, and urethane rubber.
  • Examples of natural rubber include modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber, in addition to natural rubber (NR). These rubber components may be used alone or in combination of two or more. Further, these rubber components may be pre-crosslinking raw materials having no cross-linking structure, or may have a cross-linking structure.
  • the rubber component may be at least one selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. preferable.
  • the rubber component may be a raw material before cross-linking.
  • the rubber component may be natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. It is preferable that it is at least one kind of pre-cross-linking raw material selected from the group consisting of.
  • the rubber component is a pre-crosslinking raw material
  • the rubber component is preferably a latex of these rubbers.
  • the content of the rubber component is preferably 50% by mass or more, preferably 65% by mass or more, based on the total mass of the rubber composition. More preferably, it is more preferably 80% by mass or more.
  • the content of the rubber component is preferably 99.99% by mass or less, more preferably 99.5% by mass or less, and 99.0% by mass or less with respect to the total mass of the rubber composition. Is more preferable.
  • the above content is the solid content of the rubber component contained in the rubber composition.
  • the present embodiment contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g.
  • the number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 100 nm.
  • fibrous cellulose having a fiber width of 1000 nm or less is also referred to as fine fibrous cellulose or CNF.
  • the fibrous cellulose contained in the resin composition of the present embodiment is fine fibrous cellulose.
  • the number average fiber width of the fibrous cellulose contained in the resin composition is preferably 1 to 10 nm.
  • the amount of substituents introduced in the fine fibrous cellulose may be less than 0.5 mmol / g, preferably 0.4 mmol / g or less, and more preferably 0.3 mmol / g or less. It is more preferably 0.2 mmol / g or less, and particularly preferably 0.15 mmol / g or less.
  • the amount of the substituent introduced in the fine fibrous cellulose may be 0.0 mmol / g, but is preferably 0.03 mmol / g or more, more preferably 0.04 mmol / g or more. It is more preferably 0.07 mmol / g or more.
  • the fine fibrous cellulose used in the present embodiment is preferably fine fibrous cellulose obtained by removing the substituents so as to have the above-mentioned amount of the substituents introduced.
  • fine fibrous cellulose is also referred to as substituent-removed fine fibrous cellulose.
  • the number average fiber width of the fine fibrous cellulose contained in the resin composition may be 1 to 100 nm, preferably 1 to 50 nm, more preferably 1 to 40 nm, and 1 to 30 nm. Is more preferable, and 1 to 20 nm is particularly preferable.
  • the number average fiber width of the fine fibrous cellulose may be 1 nm or more, but in one embodiment, the number average fiber width of the fine fibrous cellulose may be larger than 10 nm.
  • the number average fiber width of the fine fibrous cellulose contained in the resin composition is preferably 1 to 10 nm, more preferably 1 to 9 nm, and more preferably 1 to 8 nm. More preferred.
  • the fibrous cellulose includes fine fibrous cellulose, but also includes, for example, coarse cellulose fibers having a fiber width of more than 1000 nm.
  • the fact that the number average fiber width of the fibrous cellulose contained in the resin composition is within the above range means that the resin composition does not substantially contain coarse cellulose fibers, and moreover, 70% or more of the fibers. It means that the fiber width of the plastic cellulose is 10 nm or less.
  • the proportion of fine fibrous cellulose having a fiber width of 10 nm or less is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
  • the fiber width of the fine fibrous cellulose is measured as follows, for example, using electron microscopy.
  • the fine fibrous cellulose is dispersed in water so that the concentration of the cellulose is 0.01% by mass or more and 0.1% by mass or less, and cast on a hydrophilized carbon film-coated grid. After drying this, it is stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the magnification is adjusted so that 20 or more fibers intersect the axis.
  • TEM transmission electron microscope
  • the number average fiber width of the fine fibrous cellulose contained in the resin composition is a number average value calculated from the fiber width obtained by the above method.
  • the fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and 0.1 ⁇ m or more and 600 ⁇ m or less. More preferred. By setting the fiber length within the above range, it is possible to suppress the destruction of the crystal region of the fine fibrous cellulose. Further, it is possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range.
  • the fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the fine fibrous cellulose has an I-type crystal structure.
  • the ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less.
  • the axial ratio is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less.
  • the fine fibrous cellulose in this embodiment has, for example, both a crystalline region and a non-crystalline region.
  • the fine fibrous cellulose having both a crystalline region and a non-crystalline region and having an axial ratio within the above range is realized by, for example, a method for producing fine fibrous cellulose described later.
  • the cellulose component in fine fibrous cellulose can be classified into ⁇ -cellulose component and hemicellulose component.
  • a lower ratio of hemicellulose is preferable because it is easy to obtain an effect of suppressing yellowing over time and yellowing by heating.
  • the ratio of hemicellulose to the fine fibrous cellulose of the present embodiment is preferably less than 30%, more preferably less than 25%, still more preferably less than 20%.
  • nitrogen amount Total amount of nitrogen contained in fine fibrous cellulose and free nitrogen contained in fine fibrous cellulose dispersion
  • the amount of nitrogen in the fiber is preferably 0.09 mmol / g or less, more preferably 0.08 mmol / g or less, still more preferably 0.04 mmol / g or less. It is more preferably 0.02 mmol / g or less.
  • the amount of nitrogen contained in the fine fibrous cellulose is preferably 0.001 mmol / g or more.
  • the amount of nitrogen in the fine fibrous cellulose is a value measured by the following method.
  • the dispersion liquid containing fine fibrous cellulose is adjusted to a solid content concentration of 1% by mass, and decomposed by the Kjeldahl method (JIS K 0102: 2016 44.1). After decomposition, the amount of ammonium ions (mmol) is measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
  • the amount of nitrogen is the amount of nitrogen bonded to fine fibrous cellulose by ionic bond and / or covalent bond, and free nitrogen dissolved in the dispersion liquid which is not bound to fine fibrous cellulose by ionic bond and / or covalent bond. The total amount.
  • the amount of the substituent introduced in the fine fibrous cellulose is less than 0.5 mmol / g, and the substituent referred to here is preferably an anionic group. That is, the fine fibrous cellulose of the present embodiment is obtained by subjecting the fine fibrous cellulose having an anionic group to a substituent removing treatment, and the fine fibrous cellulose of the present embodiment has a substituent. Removed fine fibrous cellulose.
  • anionic group examples include a phosphate group or a substituent derived from a phosphorusoxo acid group (sometimes referred to simply as a phosphorusoxo acid group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), and the like.
  • examples include a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), a zantate group or a substituent derived from a zantate group (sometimes simply referred to as a zantate group).
  • the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group).
  • the anionic group is preferably at least one selected from a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid group, and a sulfone group or a substituent derived from a sulfone group, and is preferably a phosphorus oxo acid group or a substituent. More preferably, it is a substituent derived from a phosphoxoic acid group.
  • the phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1).
  • a plurality of substituents represented by the following formula (1) may be introduced into each fine fibrous cellulose.
  • the substituents represented by the following formula (1) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • n is preferably 1.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but the group is not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.
  • a carboxy group, a carboxylate group (-COO -), hydroxy group selected from the functional groups such as an amino group and an ammonium group
  • the functional group is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • the organic onium ion include an organic ammonium ion and an organic onium ion.
  • the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • the plurality of ⁇ b + are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of ⁇ b + are present. They may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the phosphoric acid group or the substituent derived from the phosphoric acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphoric acid group, and a phosphite group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group).
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group).
  • it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (for example, a methylphosphonic acid group), or the like.
  • the sulfone group (sulfo group or substituent derived from a sulfone group) is preferably a sulfur oxo acid group (sulfur oxo acid group or a substituent derived from a sulfur oxo acid group), for example, the following formula (2). It is preferably a substituent represented by.
  • a plurality of substituents represented by the following formula (2) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • organic onium ion examples include an organic ammonium ion and an organic onium ion.
  • Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • the plurality of ⁇ b + may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited.
  • the amount of anionic groups introduced into the fine fibrous cellulose can be measured, for example, by the neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fine fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH titrated and pH with respect to a slurry containing fine fibrous cellulose having a phosphoric acid group.
  • the amount of the phosphorus oxo acid group introduced into the fine fibrous cellulose is measured, for example, as follows. First, the slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained.
  • the titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • two points are confirmed in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point was equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point.
  • the amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total amount of dissociated acid in the fibrous cellulose.
  • the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group is apparently. It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximum.
  • the denominator of the above-mentioned phosphorus oxo acid group introduction amount indicates the mass of the acid-type fine fibrous cellulose
  • the amount of the phosphorus oxo acid group contained in the acid-type fine fibrous cellulose (hereinafter, phosphorus oxo acid). It is called the base amount (acid type)).
  • the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counter ion can be obtained. That is, it is calculated by the following formula.
  • Amount of phosphorus oxo acid group (C type) Amount of phosphorus oxo acid group (acid type) / ⁇ 1+ (W-1) ⁇ A / 1000 ⁇ A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fine fibrous cellulose (total dissociated acid amount of the phosphoric acid group) W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH of a dispersion liquid containing fine fibrous cellulose having a carboxy group as an anionic group.
  • the amount of the carboxy group introduced into the fine fibrous cellulose is measured, for example, as follows. First, the dispersion liquid containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • the increment (differential value of pH with respect to the amount of alkali dropped) became maximum, and this maximum point was the first. Called one end point.
  • the region from the start of titration to the first end point in FIG. 2 is referred to as a first region.
  • the amount of alkali required in the first region is equal to the amount of carboxy groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fine fibrous cellulose to be titrated, so that the amount of carboxy group introduced (mmol) mmol / g) is calculated.
  • the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid-type fine fibrous cellulose
  • the carboxy group amount of the acid-type fine fibrous cellulose (hereinafter referred to as carboxy group amount). It is called (acid type)).
  • carboxy group amount (hereinafter referred to as carboxy group amount).
  • the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted to the mass of the fine fibrous cellulose when the cation C is a counterion.
  • carboxy group amount (C type) the amount of carboxy group (hereinafter, carboxy group amount (C type) possessed by the fine fibrous cellulose in which the cation C is a counterion. That is, it is calculated by the following formula.
  • Amount of carboxy group (C type) Amount of carboxy group (acid type) / ⁇ 1+ (W-1) x (amount of carboxy group (acid type)) / 1000 ⁇ W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
  • the amount of the sulfone group introduced into the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing fine fibrous cellulose is freeze-dried, and the crushed sample is pressure-heated and decomposed with nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. do. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested is taken as the sulfone group amount (unit: mmol / g) of the fine fibrous cellulose.
  • the amount of the zantate group introduced into the fine fibrous cellulose can be measured by the following method by the Bredee method. First, add 40 mL of saturated ammonium chloride solution to 1.5 parts by mass (absolute dry mass) of fine fibrous cellulose, mix well while crushing the sample with a glass rod, leave it for about 15 minutes, and then GFP filter paper (GS manufactured by ADVANTEC). Filter with -25) and wash thoroughly with saturated ammonium chloride solution. Then, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) is added, the mixture is stirred, and the mixture is left for 15 minutes.
  • GFP filter paper GS manufactured by ADVANTEC
  • the fine fibrous cellulose preferably has a carbamide group.
  • the carbamide group is preferably a group represented by the following structural formula.
  • R is a hydrogen atom, saturated-linear hydrocarbon group, saturated-branched chain hydrocarbon group, saturated-cyclic hydrocarbon group, unsaturated-linear hydrocarbon group, unsaturated-branched.
  • R is a hydrogen atom.
  • the amount of carbamide group introduced in the fine fibrous cellulose is preferably 0.001 mmol / g or more.
  • the amount of the carbamide group introduced in the fine fibrous cellulose is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and further preferably 0.02 mmol / g or less. preferable.
  • the amount of carbamide group introduced in the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and further crushing the sample by performing a trace nitrogen analysis.
  • the amount of carbamide group introduced per unit mass of fine fibrous cellulose is obtained by dividing the nitrogen content (g / g) per unit mass of fine fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. Can be calculated by
  • the nanofiber yield is preferably 95% by mass or more, 96. More preferably, it is by mass or more.
  • the nanofiber yield may be 100% by mass.
  • Nanofiber yield [mass%] C / 0.1 ⁇ 100
  • C is the concentration of the fine fibrous cellulose contained in the supernatant obtained by centrifuging the aqueous dispersion having a fine fibrous cellulose concentration of 0.1% by mass under the conditions of 12000 G for 10 minutes. be.
  • the haze of the aqueous dispersion is preferably 45% or less, more preferably 35% or less. It is more preferably 25% or less. Further, in one embodiment, the haze of the aqueous dispersion is preferably 5.0% or less, more preferably 4.0% or less, and further preferably 3.0% or less. The haze of the aqueous dispersion may be 0%.
  • the haze of the aqueous dispersion is a value measured in accordance with JIS K 7136: 2000 using a haze meter and a glass cell for liquid having an optical path length of 1 cm.
  • the zero point measurement is performed with ion-exchanged water contained in the same glass cell. Further, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
  • the pH of the dispersion liquid is preferably 3 or more, more preferably 4 or more. It is more preferably 5 or more.
  • the pH of the dispersion is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less.
  • the viscosity of the dispersion liquid at 23 ° C. is preferably 100 mPa ⁇ s or more, preferably 1000 mPa ⁇ s. It is more preferably s or more, and further preferably 2000 mPa ⁇ s or more.
  • the viscosity of the dispersion at 23 ° C. is preferably 200,000 mPa ⁇ s or less, and more preferably 100,000 mPa ⁇ s or less.
  • the viscosity of the dispersion having a fine fibrous cellulose concentration of 0.4% by mass can be measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD).
  • the measurement conditions are 23 ° C., the rotation speed is 3 rpm, and the viscosity is measured 3 minutes after the start of measurement.
  • the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
  • the amount of free nitrogen in the dispersion containing fine fibrous cellulose is small.
  • the amount of free nitrogen in the dispersion can be measured by measuring the nitrogen concentration in the filtrate when the fine fibrous cellulose dispersion is filtered.
  • the free nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 70 ppm or less, and even more preferably 60 ppm. It is more preferably less than or equal to, more preferably 50 ppm or less, further preferably 40 ppm or less, and particularly preferably 30 ppm or less.
  • the nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass may be 0 ppm. Since free nitrogen present in the dispersion liquid causes coloring, setting the nitrogen concentration in the filtrate within the above range is more effective for yellowing of the resin composition containing fine fibrous cellulose and the resin molded body. Can be suppressed.
  • the method for measuring the nitrogen concentration in the filtrate is as follows. First, distilled water is added so that the concentration of fine fibrous cellulose is 0.2% by mass, and after stirring for 24 hours, filtration is performed using a filter medium having a pore size of 0.45 ⁇ m to obtain a filtrate. Then, the nitrogen concentration (ppm) in the filtrate is measured by trace nitrogen analysis.
  • the content of the fine fibrous cellulose in the resin composition is preferably 0.01% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the resin composition. It is more preferably 0% by mass or more.
  • the content of the fine fibrous cellulose is preferably 50% by mass or less, more preferably 35% by mass or less, and more preferably 20% by mass or less, based on the total mass of the resin composition. More preferred.
  • the content of the fine fibrous cellulose within the above range, it is possible to increase the mechanical strength of the resin molded product obtained by molding the resin composition, and when the resin composition is a rubber composition. Can also enhance the tensile properties of a molded product obtained by molding a rubber composition.
  • the resin composition of the present embodiment may contain an optional component in addition to the above-mentioned resin and fibrous cellulose.
  • the optional component include fillers, pigments, dyes, ultraviolet absorbers and the like.
  • the resin composition may contain a water-soluble organic compound as an optional component.
  • the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like.
  • water-soluble organic compounds alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide.
  • Xanthan gum guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
  • the resin composition may contain a known pigment as an optional component.
  • Pigments include, for example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, and oxidation.
  • examples thereof include magnesium, diatomaceous earth, styrene-based plastic pigments, hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
  • the resin composition is a rubber composition
  • the above-mentioned rubber component is a pre-crosslinking raw material (a raw material in which a cross-linked structure is not substantially formed by vulcanization or the like) such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber and natural rubber.
  • the sulfur in the optional ingredients, or other cross-linking agents is an essential ingredient.
  • the above-mentioned rubber component is a pre-crosslinking raw material such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber or natural rubber
  • the above-mentioned optional material is formed by molding a rubber composition. Sulfur in the components, or other cross-linking agents, exists as a cross-linked structure derived from these compounds.
  • the rubber composition may contain the above-mentioned water-soluble organic compound or pigment as an optional component.
  • the content of the optional component is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less, based on the total mass of the resin composition (rubber composition). It is more preferable to have.
  • the above-mentioned fine fibrous cellulose is preferably obtained through the step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • the substituent contained in the fine fibrous cellulose used in the step (A) is preferably an anionic group, and more preferably a phosphoxoic acid group or a substituent derived from the phosphoxoic acid group.
  • the fine fibrous cellulose used in the step (A) preferably has a carbamide group.
  • the above-mentioned method for producing fine fibrous cellulose has a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less (A). ) And the step (B) of performing the uniform dispersion treatment after the step (A) are preferably included.
  • Step (A) The step (A) is a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • fine fibrous cellulose used in step (A) will be described.
  • the fine fibrous cellulose used in the step (A) is produced from a fiber raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper. As the pulp of this embodiment, one of the above may be used alone, or two or more of them may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during defibration treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • the viscosity tends to be high when the fine fibrous cellulose of long fibers having a large axial ratio is used.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can also be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • the fine fibrous cellulose used in the step (A) has a substituent. Therefore, the process for producing the fine fibrous cellulose used in the step (A) preferably includes a substituent introduction step, and more preferably an anionic group introduction step.
  • the anionic group introduction step include a phosphorus oxo acid group introduction step.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is used as cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
  • the reaction between the fiber raw material containing cellulose and compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). Is preferable.
  • the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state.
  • a fiber raw material in a dry state or a wet state since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of powder, in the form of a solution dissolved in a solvent, or in the state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, a required amount of compound A and compound B may be added to the fiber raw material, or an excess amount of compound A and compound B may be added to the fiber raw material, respectively, and then the surplus compound A and compound B may be added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphoric pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Examples of the phosphate, sulphate, and dehydration-condensed phosphoric acid include phosphoric acid, sulphite, or lithium salt of dehydration-condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like. It can be a sum.
  • phosphoric acid and sodium phosphate Salt potassium salt of phosphoric acid, ammonium salt or phosphoric acid of phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, ammonium salt of phosphoric acid are preferable, and phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • triethylamine in particular is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band.
  • a mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, a high frequency drying device, and a hot air drying device can be used.
  • a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. can be adopted. This makes it possible to suppress unevenness in the concentration of compound A in the fiber raw material and to more uniformly introduce the phosphoric acid group onto the surface of the cellulose fiber contained in the fiber raw material.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the acid hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
  • the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and more preferably 0.80 mmol / g per 1 g (mass) of the fiber raw material. It is more preferably g or more, further preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the phosphorus oxo acid group introduced is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable to have.
  • the fact that the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. do.
  • the introduction amount of the phosphoxoic acid group By setting the introduction amount of the phosphoxoic acid group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the final fiber width can be obtained. It becomes easy to produce fine fibrous cellulose having a diameter of 100 nm or less or 10 nm or less. Further, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
  • the step of producing the fine fibrous cellulose used in the step (A) may include a carboxy group introduction step as an anionic group introduction step.
  • the carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. It is carried out by treatment with an acid anhydride of a compound or a derivative thereof.
  • the compound having a group derived from a carboxylic acid is not particularly limited, and for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, citric acid, aconitic acid and the like.
  • Examples include tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized acid anhydride of a compound having a carboxy group and an acid anhydride derivative of a compound having a carboxy group.
  • the imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinic acidimide, and phthalateimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. Acid anhydride is mentioned.
  • the derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
  • the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group.
  • the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment.
  • the alkaline TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
  • the amount of carboxy group introduced in the carboxy group introduction step is preferably 0.60 mmol / g or more, more preferably 0.65 mmol / g or more per 1 g (mass) of the fiber raw material.
  • the amount of the carboxy group introduced is, for example, preferably 3.65 mmol / g or less, more preferably 3.00 mmol / g or less, and 2.50 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable, and it is particularly preferable that it is 2.00 mmol / g or less.
  • the amount of the carboxy group introduced in the carboxy group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range.
  • the introduction amount of the carboxy group can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less.
  • the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
  • the step of producing the fine fibrous cellulose provided in the step (A) may include a sulfone group introduction step as an anionic group introduction step.
  • a sulfone group introduction step cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfonic acid.
  • the sulfone group introduction step at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned ⁇ phosphoroxo acid group introduction step>.
  • a compound (hereinafter, also referred to as “Compound C”) is used.
  • the compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfurous acid or a salt thereof, and sulfate amide, but the compound C is not particularly limited.
  • the sulfuric acid those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used.
  • sulfurous acid examples include 5% sulfurous acid water.
  • examples of the sulfate or sulfite include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees.
  • sulfuric acid amide sulfamic acid or the like can be used.
  • sulfone group introduction step it is preferable to use the compound B in the above-mentioned ⁇ phosphoroacid group introduction step> in the same manner.
  • the sulfone group introduction step it is preferable to mix the cellulose raw material with an aqueous solution containing sulfonic acid and urea and / or a urea derivative, and then heat-treat the cellulose raw material.
  • the heat treatment temperature it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher.
  • the heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfonic acid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10,000 seconds or less. Is preferable.
  • Equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band type drying.
  • An apparatus a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, a high frequency drying device, and a hot air drying device can be used.
  • the amount of the sulfone group introduced in the sulfone group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the sulfone group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material.
  • the amount of the sulfone group introduced in the sulfone group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range.
  • the introduction amount of the sulfone group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less.
  • the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
  • the step of producing the fine fibrous cellulose used in the step (A) may include a zantate group introduction step as an anionic group introduction step.
  • a cellulose fiber having a zantate group (zantate group-introduced fiber) can be obtained by substituting the hydroxyl group of the fiber raw material containing cellulose with a zantate group represented by the following formula (2).
  • ⁇ OCSS - M + > (2)
  • M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, aliphatic or aromatic ammonium ions.
  • the fiber raw material containing cellulose is treated with an alkaline solution to obtain alkaline cellulose.
  • the alkaline solution include an aqueous solution of an alkali metal hydroxide and an aqueous solution of an alkaline earth metal hydroxide.
  • the alkaline solution is preferably an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous solution of sodium hydroxide.
  • the alkali metal hydroxide concentration in the alkali metal hydroxide aqueous solution is preferably 4% by mass or more, and more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less.
  • the defibration treatment described later can be performed more effectively.
  • the alkali metal hydroxide concentration to the above upper limit value or less, it is possible to suppress the permeation of the alkali metal hydroxide aqueous solution into the crystal region of cellulose while promoting mercerization, so that the cellulose I
  • the crystal structure of the mold can be easily maintained, and the yield of fine fibrous cellulose can be further increased.
  • the time of the alkali treatment is preferably 30 minutes or more, and more preferably 1 hour or more.
  • the alkali treatment time is preferably 6 hours or less, and more preferably 5 hours or less.
  • the alkaline cellulose obtained by the above alkaline treatment is then solid-liquid separated to remove the aqueous solution as much as possible.
  • the water content in the subsequent zantate treatment can be reduced and the reaction can be promoted.
  • a solid-liquid separation method a general dehydration method such as centrifugation or filtration can be used.
  • the concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
  • the zantate treatment step is performed after the alkali treatment.
  • the xanthate treatment process by reacting carbon disulfide (CS 2) in the alkali cellulose, (- O - Na +) group (-OCSS - Na +) to obtain a xanthate group introduction fibers based on.
  • CS 2 carbon disulfide
  • -OCSS - Na + carbon disulfide
  • the metal ion introduced into the alkali cellulose is represented by Na + , but the same reaction proceeds with other alkali metal ions.
  • the contact time between carbon disulfide and alkaline cellulose is preferably 30 minutes or more, and more preferably 1 hour or more.
  • the reaction time is preferably set within the above range.
  • the contact time between carbon disulfide and alkaline cellulose may be as long as 6 hours or less, which allows sufficient penetration into the dehydrated alkaline cellulose lumps and almost all the reactionable zantate. Can be completed.
  • the reaction temperature in the zantate treatment is preferably 46 ° C. or lower.
  • the amount of the zantate group introduced in the zantate group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the zantate group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material.
  • the introduction amount of the zantate group within the above range, the introduction amount of the substituent of the fine fibrous cellulose used in the step (A) can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less.
  • the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
  • a washing step can be performed on the anionic group-introduced fiber, if necessary.
  • the washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleaning steps performed in each cleaning step is not particularly limited.
  • the fiber raw material may be treated with an alkali between the step of introducing an anionic group and the step of the defibration treatment described later.
  • the alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the anionic group-introduced fiber in an alkaline solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In this embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the anionic group-introduced fiber in the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
  • the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
  • the fiber raw material may be acid-treated between the step of introducing an anionic group and the defibration treatment step described later.
  • the anionic group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.
  • the method of acid treatment is not particularly limited, and examples thereof include a method of immersing a fiber raw material in an acidic liquid containing an acid.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • As the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
  • the step of producing the fine fibrous cellulose provided in the step (A) may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the amount of nitrogen, it is possible to obtain fine fibrous cellulose that can further suppress coloring.
  • the nitrogen removal treatment step may be provided after the uniform dispersion treatment step in the step (B) described later, but is preferably provided before the uniform dispersion treatment step in the step (B) described later. Further, it is preferably provided before the defibration treatment step in the step (A) described later.
  • the nitrogen removal treatment step it is preferable to adjust the pH of the slurry containing the anionic group-introduced fiber to 10 or more and perform the heat treatment.
  • the liquid temperature of the slurry is preferably 50 ° C. or higher and 100 ° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or lower.
  • an alkaline compound that can be used in the above-mentioned alkali treatment step to the slurry.
  • a cleaning step can be performed on the anionic group-introduced fiber as needed.
  • the washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the number of cleanings performed in each cleaning step is not particularly limited.
  • the step of producing the fine fibrous cellulose used in the step (A) includes a defibration treatment step.
  • fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less can be obtained.
  • a defibration treatment apparatus can be used.
  • the defibration processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disk type refiner, a conical refiner, a twin-screw kneader, etc.
  • a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • the treatment conditions in the defibration treatment step are not particularly limited, but for example, when a high-pressure homogenizer is used, the pressure during treatment is preferably 1 MPa or more and 350 MPa or less, more preferably 10 MPa or more and 300 MPa or less, and further preferably 50 MPa or more and 250 MPa or less.
  • the defibration treatment step for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol and glycerin.
  • Examples of the ketone include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • Examples of the esters include ethyl acetate, butyl acetate and the like.
  • Examples of the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate.
  • the slurry obtained by dispersing the anionic group-introduced fiber in a dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having a hydrogen bond property.
  • the fiber width of the fine fibrous cellulose after the defibration treatment applied to the step (A) is preferably 1 to 100 nm, more preferably 1 to 50 nm, and even more preferably 1 to 25 nm. It is more preferably 1 to 15 nm, and particularly preferably 1 to 10 nm.
  • the nanofiber yield is preferably 70% by mass or more. , 90% by mass or more, more preferably 93% by mass or more, and particularly preferably 96% by mass or more.
  • the nanofiber yield may be 100% by mass.
  • the nanofiber yield is such that the fine fibrous cellulose dispersion having a concentration of 0.1% by mass is centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B). , It is a value measured from the cellulose concentration of the obtained supernatant liquid based on the following formula.
  • Nanofiber yield (mass%) supernatant cellulose concentration (mass%) /0.1 ⁇ 100
  • the haze of the aqueous dispersion is preferably 20% or less, preferably 10% or less. It is more preferably 5.0% or less, and particularly preferably 3.0% or less.
  • the haze of the aqueous dispersion may be 0%.
  • the haze of the aqueous dispersion of fine fibrous cellulose is a value measured according to JIS K 7136: 2000 using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute).
  • a glass cell for liquid manufactured by Fujiwara Seisakusho, MG-40, backlight path
  • the zero point measurement is performed with ion-exchanged water placed in the same glass cell, and the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before measurement, and the liquid temperature of the dispersion liquid is measured. Is 23 ° C.
  • the fine fibrous cellulose obtained through the step (B) It is possible to more effectively enhance the design and transparency when the fiber is used as a slurry or a resin molded body.
  • the method for producing fine fibrous cellulose preferably includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • the step of removing at least a part of the substituent from the fine fibrous cellulose obtained by the above-mentioned step is also referred to as a substituent removal treatment step.
  • the substituent removing treatment step examples include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, an alkali treatment step and the like. These may be performed alone or in combination. Above all, the substituent removing treatment step is preferably a heat treatment step or an enzyme treatment step. Through the above treatment step, at least a part of the substituent is removed from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and the amount of the substituent introduced is less than 0.5 mmol / g. Fibrous cellulose can be obtained.
  • the substituent removing treatment step is preferably performed in the form of a slurry. That is, the substituent removing treatment step is a step of heat-treating a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. Etc. are preferable.
  • the substituent removing treatment step By carrying out the substituent removing treatment step in the form of a slurry, it is possible to prevent the coloring substances generated by heating and the like during the substituent removing treatment and the residual of the acid, alkali, salt and the like added or generated. This makes it possible to suppress the coloring of the fine fibrous cellulose obtained through the step (B). Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
  • the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.2% by mass or more.
  • the concentration of the fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the coloring substances generated by heating during the substituent removal treatment and the residual of the acid, alkali, salt and the like added or generated. can. This makes it possible to suppress the coloring of the fine fibrous cellulose obtained through the step (B). Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
  • the heating temperature in the heat-treating step is preferably 40 ° C. or higher. , 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the heating temperature in the heat treatment step is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heating temperature in the heat treatment step is preferably 80 ° C. or higher, preferably 100 ° C. or higher. It is more preferable that the temperature is 120 ° C. or higher.
  • the heating device that can be used in the heat treatment step is not particularly limited, but is not particularly limited, but is a hot air heating device, a steam heating device, an electric heat heating device, a water heat heating device, and a thermal heating device.
  • Infrared heating device, Far infrared heating device, Microwave heating device, High frequency heating device, Stirring drying device, Rotating drying device, Disk drying device, Roll type heating device, Plate type heating device, Flow layer drying device, Band type drying device , A filtration drying device, a vibration flow drying device, an air flow drying device, and a vacuum drying device can be used.
  • heating is preferably performed in a closed system, and from the viewpoint of further increasing the heating temperature, it is preferably performed in a pressure-resistant device or a container.
  • the heat treatment may be a batch treatment, a batch continuous treatment, or a continuous treatment.
  • the substituent removing treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less
  • a phosphate ester hydrolyzing enzyme or a sulfate ester hydrolysis is performed in the enzymatic treatment step. It is preferable to use an enzyme or the like.
  • the enzyme treatment step it is preferable to add the enzyme so that the enzyme activity is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more to 1 g of fine fibrous cellulose. It is more preferable to add the enzyme so that it becomes. Further, it is preferable to add the enzyme so that the enzyme activity is 100,000 nkat or less with respect to 1 g of the fine fibrous cellulose, and it is more preferable to add the enzyme so that the enzyme activity is 50,000 nkat or less. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment under the conditions of 0 ° C. or higher and lower than 50 ° C. for 1 minute or longer and 100 hours or shorter.
  • a step of inactivating the enzyme may be provided.
  • a method of inactivating the enzyme a method of adding an acid component or an alkaline component to the slurry treated with the enzyme to inactivate the enzyme, or raising the temperature of the slurry treated with the enzyme to 90 ° C. or higher to inactivate the enzyme.
  • a method of deactivating There is a method of deactivating.
  • the acid treatment step is an acid that can be used in the above-mentioned acid treatment step. It is preferred to add the compound to the slurry.
  • the alkali-treating step is an alkali that can be used in the above-mentioned alkali-treating step. It is preferable to add the compound to the slurry.
  • the substituent removal reaction proceeds uniformly.
  • the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry may be increased.
  • a mechanical share from the outside may be given, or self-stirring may be promoted by increasing the liquid feeding rate of the slurry during the reaction.
  • Spacer molecules may be added in the substituent removal treatment step.
  • the spacer molecule penetrates between the adjacent fine fibrous celluloses, thereby acting as a spacer for providing a fine space between the fine fibrous celluloses.
  • aggregation of fine fibrous cellulose after the substituent removing treatment can be suppressed.
  • the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product are more effectively enhanced. be able to.
  • the spacer molecule is preferably a water-soluble organic compound.
  • the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like.
  • PEG polyethylene glycol
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • Xanthan gum guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
  • a known pigment can be used as the spacer molecule.
  • kaolin including clay
  • calcium carbonate titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth
  • styrene-based plastic pigments hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
  • a step of adjusting the pH of the slurry containing the fine fibrous cellulose may be provided before the substituent removing treatment step.
  • the slurry containing the fine fibrous cellulose after defibration shows weak alkalinity.
  • monosaccharides which are one of the coloring factors, may be generated due to the decomposition of cellulose. Therefore, it is preferable to adjust the pH of the slurry to 8 or less, and it is more preferable to adjust it to 6 or less. preferable. Further, since monosaccharides may be generated under acidic conditions as well, it is preferable to adjust the pH of the slurry to 3 or more, and more preferably to 4 or more.
  • the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphoric acid group
  • the phosphorus of the phosphate group is vulnerable to a nucleophilic attack from the viewpoint of improving the removal efficiency of the substituent.
  • the pH of the slurry is preferably adjusted to 3 or more and 8 or less, and more preferably 4 or more and 6 or less.
  • the means for adjusting the pH is not particularly limited, but for example, an acid component or an alkaline component may be added to a slurry containing fine fibrous cellulose.
  • the acid component may be either an inorganic acid or an organic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitrate, and phosphoric acid.
  • examples of the organic acid include malic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartrate acid, fumaric acid, gluconic acid and the like.
  • the alkaline component may be an inorganic alkaline compound or an organic alkaline compound.
  • Examples of the inorganic alkaline compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate and the like.
  • Examples of organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, and tetramethyl.
  • ammonium hydroxide examples thereof include ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
  • an ion exchange treatment may be performed to adjust the pH.
  • a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used.
  • a slurry containing fine fibrous cellulose having a desired pH can be obtained.
  • the addition of an acid component or an alkaline component may be combined with an ion exchange treatment.
  • ⁇ Salt removal treatment> After the substituent removal treatment step, it is preferable to perform a substituent removal treatment for the removed substituent-derived salt.
  • the means for removing the salt derived from the substituent is not particularly limited, and examples thereof include a washing treatment.
  • the washing treatment is performed by washing the fine fibrous cellulose aggregated in the substituent removing treatment with, for example, water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugal separation.
  • Step (B) The method for producing fine fibrous cellulose includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and after the step (A).
  • the step (B) for uniform dispersion processing may be included.
  • the step (B) for uniform dispersion treatment is a step for uniform dispersion treatment of the fine fibrous cellulose obtained through the substituent removal treatment in step (A).
  • at least a part of the fine fibrous cellulose may be aggregated by subjecting the fine fibrous cellulose to a substituent removing treatment.
  • the step (B) is preferably a step of uniformly dispersing the fine fibrous cellulose obtained in the step (A) thus aggregated.
  • the uniformly dispersed state in the step (B) means a state in which the fiber width of the obtained fine fibrous cellulose is 100 nm or less or 10 nm or less.
  • the fine fibrous cellulose obtained by the production method of the present embodiment has a number average fiber width of 100 nm even though the amount of substituents introduced is as low as less than 0.5 mmol / g.
  • it is preferably 50 nm or less, more preferably 10 nm or less.
  • step (B) of uniform dispersion processing for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, a twin-screw kneader, and a vibration mill.
  • Homomixers, ultrasonic dispersers or beaters under high speed rotation can be used.
  • the treatment conditions in the step (B) for the uniform dispersion treatment are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment.
  • the peripheral speed is preferably 20 m / sec or more, more preferably 25 m / sec or more, and further preferably 30 m / sec or more.
  • the high-pressure homogenizer can be used more preferably than the high-speed defibrator because the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment are higher.
  • the pressure at the time of treatment is preferably 1 MPa or more, more preferably 10 MPa or more, further preferably 50 MPa or more, and particularly preferably 100 MPa or more. Further, in the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 350 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less.
  • the above-mentioned spacer molecule may be newly added.
  • uniform dispersion of the fine fibrous cellulose can be performed more smoothly. This makes it possible to more effectively enhance the design and transparency of the resin molded product.
  • the method for producing the resin composition of the present embodiment includes a step of mixing the resin with the fine fibrous cellulose obtained in the above-mentioned step.
  • the step of mixing the resin and the fine fibrous cellulose may be a step of mixing the resin solution and the fine fibrous cellulose dispersion, but is preferably a step of melt-kneading the molten resin and the fine fibrous cellulose. ..
  • the above-mentioned resin can be preferably exemplified.
  • the method for producing the rubber composition includes a step of mixing the rubber component and the fine fibrous cellulose obtained in the above-mentioned step.
  • the step of mixing the rubber component and the fine fibrous cellulose is preferably a step of mixing the rubber component and the fine fibrous cellulose dispersion, and is a step of kneading the rubber component and the fine fibrous cellulose dispersion. More preferred.
  • the above-mentioned rubber component can be exemplified as the rubber component to be used, and the rubber component is preferably in the state of rubber latex.
  • the step is preferably a step of kneading the rubber latex and the fine fibrous cellulose dispersion liquid.
  • the rubber component used in the step may be in a solid state, and in this case, the powdery granular rubber component may be mixed with the powdery granular fine fibrous cellulose.
  • the fine fibrous cellulose may be in a solid state or may be in the state of a dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium is not particularly limited, but preferably contains water, and more preferably a solvent containing water as a main component.
  • the organic solvent include dimethylformamide (DMF), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), aniline, pyridine, quinoline, lutidine, acetonitrile, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and the like. Examples thereof include dioxane, ethanol, isopropanol and the like.
  • a mixed solvent in which these organic solvents and water are mixed can also be used.
  • the concentration of the fine fibrous cellulose dispersion liquid is preferably 0.1% by mass or more, preferably 1.0. It is more preferably mass% or more, and even more preferably 2.0 mass% or more. Further, the concentration of the fine fibrous cellulose dispersion liquid may be 3.0% by mass or more.
  • the step of mixing the resin and the fine fibrous cellulose is the step of mixing the resin and the solid fine fibrous cellulose
  • the solid fine fibrous cellulose is, for example, concentrating the fine fibrous cellulose dispersion. Obtained at.
  • a method of evaporating the dispersion medium a method of concentrating with a flocculant, a spray drying method, a freeze-drying method, a vacuum drying method, a replacement method with an inactivating gas such as nitrogen or argon, etc. are mentioned. Can be done.
  • the water content in the solid fine fibrous cellulose is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 15% by mass or less, based on the total mass of the solid body. It is more preferable to have.
  • the fine fibrous cellulose can be easily uniformly dispersed in the resin.
  • the step of mixing the resin and the fine fibrous cellulose is preferably a melt-kneading step.
  • a melt-kneading step for example, a single-screw extruder, a twin-screw extruder, a kneader, a roll mill, a Banbury mixer, a screw press, or the like can be used.
  • the cylinder temperature of the kneader is preferably set to the melting point of the resin or higher and the melting point of + 120 ° C. or lower, and more preferably set to the melting point or higher and the melting point of + 60 ° C. or lower.
  • the cylinder temperature is preferably 80 ° C. or higher and 400 ° C. or lower, and more preferably 125 ° C. or higher and 280 ° C. or lower.
  • the nozzle temperature in the kneader is preferably 75 ° C. or higher and 395 ° C. or lower, and more preferably 120 ° C. or higher and 275 ° C. or lower.
  • the twin-screw rotation speed is preferably 100 rpm or more and 500 rpm or less, and more preferably 250 rpm or more and 350 rpm or less.
  • the resin composition is a rubber composition and the step of mixing the rubber component and the fine fibrous cellulose is the step of mixing the rubber latex and the fine fibrous cellulose dispersion liquid
  • the rubber latex and A known mixer such as a homogenizer, a disperser, or Clairemix can be used for mixing the fine fibrous cellulose dispersion.
  • the stirring frequency of the mixer is preferably 1000 to 10000 rpm.
  • the step of mixing the rubber component and the fine fibrous cellulose is the step of mixing the powdery granular rubber component and the powdery granular fine fibrous cellulose, the powdery granular rubber component and the powdery granular fine fibrous cellulose are mixed.
  • a mixer such as an open roll, a kneader, a rubbery mixer, a plast mill, or a screw press can be used for mixing.
  • the present invention also relates to a resin molded body obtained by molding the above-mentioned resin composition.
  • the resin molded body may be, for example, one obtained by heat-molding the resin composition by vacuum forming or the like, or one obtained by heat-pressing molding the resin composition. Further, the resin molded body may be formed by compression molding, injection molding, inflation molding, or extrusion molding of the resin composition. The molding conditions are appropriately adjusted depending on the resin type and the like contained in the resin molded body.
  • the resin molded body may be in the form of pellets.
  • the resin molded body may be molded by extruding the molten resin composition into a strand shape, cooling and cutting the resin composition.
  • the resin molded body may be a sheet-shaped molded body.
  • the YI value of the resin molded product is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less.
  • the lower limit of the YI value of the resin molded product is not particularly limited, but is preferably 0.1 or more.
  • the YI value of the resin molded product is a YI value measured in accordance with JIS K 7373: 2006.
  • As the YI value measuring device for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
  • the resin molded product of the present embodiment may be formed by molding a resin composition, or may be formed by molding a pellet or sheet-shaped resin molded product.
  • the resin molded body is a rubber molded body (hereinafter, also simply referred to as a molded body).
  • the rubber component contained in the rubber composition is a pre-crosslinking raw material (a raw material in which a crosslinked structure is not substantially formed by vulture or the like), and is used for forming solid rubber such as synthetic rubber and natural rubber.
  • a crosslinked structure is formed by the rubber composition under the crosslinking reaction conditions such as heating.
  • the crosslinking reaction method is not particularly limited, and a known crosslinking method can be applied.
  • the uncrosslinked rubber composition may be crosslinked after molding, and after a semi-crosslinked rubber is once obtained from the uncrosslinked rubber composition through a pre-crosslinking step or the like. Further, this cross-linking may be performed.
  • the rubber component contained in the rubber composition is synthetic rubber or natural rubber having a crosslinked structure
  • the molded product is molded by heat molding or heat pressure molding of the rubber composition.
  • the rubber composition refers to the one before heat molding or heat pressure molding.
  • the molded body may be formed by irradiating the rubber composition with ionizing radiation, or is formed by compression molding, injection molding, inflation molding, press-fit molding or extrusion molding of the rubber composition. There may be.
  • the molding conditions are appropriately adjusted depending on the rubber component species and the like contained in the rubber composition.
  • the heating temperature at the time of heat molding or heat pressure molding of the rubber composition is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher.
  • the heating temperature is preferably 250 ° C. or lower.
  • the molded body may be in the form of pellets, in the form of strands, or in the form of filaments.
  • the molten rubber composition may be extruded into a strand shape, cooled and cut to form the molded product.
  • the rubber composition contains a foaming agent
  • the molded product may be a foamed product, and foaming also occurs at the same time during molding, so that a molded product having bubbles inside can be obtained.
  • the molded body is preferably a sheet-shaped molded body.
  • the YI value of the molded product is preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less.
  • the lower limit of the YI value of the molded product is not particularly limited, but is preferably 0.1 or more.
  • the YI value of the molded product is a YI value measured in accordance with JIS K 7373: 2006.
  • As the YI value measuring device for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
  • the use of the resin composition of the present embodiment is not particularly limited, but for example, it is used for substrates of electronic devices, members of home appliances, window materials of various vehicles and buildings, interior materials, exterior materials, packaging materials and the like. It can be used for various purposes. It can also be used for light-transmitting substrates such as various display devices and various solar cells.
  • the resin composition of the present embodiment is also preferably used for applications such as lenses (particularly optical lenses), prisms, and mirrors.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
  • the infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR.
  • the infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed around 1210 cm -1 , and the phosphite group (phosphonic acid group) was added to the pulp.
  • the first dissociative acid amount (subphosphate group amount) measured by the measurement method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociative acid amount is 1. It was 54 mmol / g.
  • the infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR.
  • absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal.
  • the amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
  • TEMPO oxidation treatment 100 parts by mass (absolute dry mass) of the raw material pulp, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water. Dispersed in. A 13 parts by mass sodium hypochlorite aqueous solution was added to the obtained dispersion liquid so as to be 1.9 mmol with respect to 1.0 g of pulp, and the reaction was started. During the reaction, a 0.5 N aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of TEMPO oxide pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the TEMPO oxide pulp after washing was subjected to a counter ion exchange treatment as follows. First, the TEMPO oxidized pulp was diluted with 10 L of ion-exchanged water, 1N hydrochloric acid was added so that the obtained pulp dispersion had a pH of 2, and the mixture was stirred for 30 minutes. As a result, the carboxy group in the TEMPO oxide pulp was converted from the Na type to the acid type. Next, the TEMPO oxide pulp slurry was dehydrated to obtain an acid-type TEMPO oxide pulp subjected to counterion exchange treatment. Next, the above-mentioned washing treatment was performed on the TEMPO oxide pulp after the counterion exchange treatment.
  • ⁇ Manufacturing example 5> The same operation as in Production Example 1 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a zantate pulp and a fine fibrous cellulose dispersion.
  • the amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
  • the amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g. The total amount of dissociated acid was 2.30 mmol / g.
  • Example 1 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 40 minutes until the amount of phosphoric acid groups reached 0.05 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. ..
  • ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours.
  • the operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 ⁇ S / cm or less was set as the washing end point.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
  • Example 2 Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphate groups reached 0.08 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%.
  • Example 3 Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes until the amount of phosphate groups reached 0.21 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 25 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 43%.
  • Example 4 Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes until the amount of phosphate groups reached 0.40 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 22 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 48%.
  • Example 5 In the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 7 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%.
  • Example 6> In the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 7 Substituent-removed fine fibrous cellulose powder and substituent-removed fine fibrous cellulose-containing resin molded product were obtained in the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 8 Examples except that the substituent removal treatment was performed using the fine fibrous cellulose dispersion obtained in Production Example 4 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g.
  • a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 41%.
  • Example 9 Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, instead of the substituent removing treatment (high temperature heat treatment), a substituent removing treatment (low temperature heat treatment) described later was performed. In the same manner as in Example 1, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 8.3 when the solid content concentration was 1.0% by mass.
  • Example 10 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene resin molded product was obtained by the same procedure using pellets of polyethylene alone.
  • Example 11 In the same manner as in Example 10 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 12 In the same manner as in Example 10 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 13 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained.
  • a hemispherical polystyrene resin molded product was obtained by the same procedure using pellets of polystyrene alone.
  • Example 14 In the same manner as in Example 13 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 15 In the same manner as in Example 13 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 16 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained.
  • a hemispherical polycarbonate resin molded product was obtained by the same procedure using pellets of polycarbonate alone.
  • Example 17 In the same manner as in Example 16 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 18 In the same manner as in Example 16 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 19 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene terephthalate resin molded product was obtained by the same procedure using pellets of polyethylene terephthalate alone.
  • Example 20> In the same manner as in Example 19 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 21 In the same manner as in Example 19 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 22 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyamide resin molded product was obtained by the same procedure using pellets of polyamide alone.
  • Example 23 In the same manner as in Example 22 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 24 In the same manner as in Example 22 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
  • Example 25 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. ..
  • ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours.
  • the operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 ⁇ S / cm or less was set as the washing end point.
  • Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry (1) was obtained.
  • the solid content concentration of this slurry was 1.7% by mass.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%.
  • the pH of the washed slurry was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 26 In the same manner as in Example 25 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 27 In the same manner as in Example 25 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 28 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a slurry (1) was obtained after removing the substituent by the same operation as in Example 25.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 29> In the same manner as in Example 28 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 30 In the same manner as in Example 28 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Cellulose powder is added using a side feeder to 95 parts by mass of molten polypropylene (PM600A, manufactured by SunAllomer Ltd.) so that the amount of fibrous cellulose is 5 parts by mass, and a twin-screw extrusion kneader (Parker Corporation). It was melt-kneaded using HK25D (L / D 41) manufactured by the same company. Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet.
  • the kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
  • a hemispherical coarse fibrous cellulose-containing resin molded product was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
  • the fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis.
  • TEM transmission electron microscope
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
  • the amount of sulfone groups was measured as follows.
  • the fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days.
  • the obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder.
  • the sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES.
  • the value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfate ester groups (unit: mmol / g).
  • the amount of carboxy group of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass.
  • the contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure the content.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour.
  • the amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred.
  • ADVANTEC GFP filter paper
  • YI change rate (%) (Yellowness of resin molded body-Yellowness of molded body of resin alone) / Yellowness of molded body of resin alone x 100
  • F YI rate of change 400% or more
  • the resin molded body having the curved surface portion was visually evaluated according to the following criteria.
  • the comparison target was a resin molded body having a curved surface portion of each resin alone. No wrinkles or streaks were found on the curved surface of the three-dimensional resin molded product of each resin alone.
  • B Wrinkles and streaks are slightly seen on the curved surface compared to the resin single molded body (wrinkles and streaks within 1 cm in length are 3 or more and 5 or less).
  • C More wrinkles and streaks are seen on the curved surface compared to the resin single molded body (6 or more wrinkles and streaks with a length of 1 cm or less, or wrinkles and streaks with a length of more than 1 cm).
  • PP Polypropylene PE: Polyethylene PS: Polystyrene PC: Polycarbonate PET: Polyethylene terephthalate PA: Polyamide
  • the resin molded body molded from the resin composition obtained in the examples was excellent in design and coloration was suppressed. On the other hand, when the substituent removal treatment was not performed or when unmodified coarse fibrous cellulose was used, the design of the obtained resin molded product was inferior, and coloring was also confirmed (Comparative Examples 1 to 1 to). 3).
  • the resin molded product molded from the resin compositions obtained in Examples 1 to 24 was also excellent in three-dimensional moldability.
  • Example 101 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 40 minutes until the amount of phosphoric acid groups reached 0.05 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 93%.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
  • Example 102 Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphate groups reached 0.08 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%.
  • Example 103 Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes until the amount of phosphate groups reached 0.21 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 97%.
  • Example 104 Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes until the amount of phosphate groups reached 0.40 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
  • Example 105 In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 7 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%.
  • Example 106> In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 107 In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 108 Examples except that the substituent removal treatment was performed using the fine fibrous cellulose dispersion obtained in Production Example 4 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g.
  • a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 93%.
  • Example 109 Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, instead of the substituent removing treatment (high temperature heat treatment), a substituent removing treatment (low temperature heat treatment) described later was performed. In the same manner as in Example 101, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 8.3 when the solid content concentration was 1.0% by mass.
  • Example 110 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene resin molded product was obtained by the same procedure using pellets of polyethylene alone.
  • Example 111> In the same manner as in Example 110 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 112> In the same manner as in Example 110 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 113 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained.
  • a hemispherical polystyrene resin molded product was obtained by the same procedure using pellets of polystyrene alone.
  • Example 114 In the same manner as in Example 113 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 115 In the same manner as in Example 113 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 116 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained.
  • a hemispherical polycarbonate resin molded product was obtained by the same procedure using pellets of polycarbonate alone.
  • Example 117> In the same manner as in Example 116 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 118 In the same manner as in Example 116 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 119 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene terephthalate resin molded product was obtained by the same procedure using pellets of polyethylene terephthalate alone.
  • Example 120> In the same manner as in Example 119 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 121 In the same manner as in Example 119 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 122 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyamide resin molded product was obtained by the same procedure using pellets of polyamide alone.
  • Example 123 In the same manner as in Example 122 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 124 In the same manner as in Example 122 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 125 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. ..
  • ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours.
  • the operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 ⁇ S / cm or less was set as the washing end point.
  • Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry (1) was obtained.
  • the solid content concentration of this slurry was 1.7% by mass.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 126 In the same manner as in Example 125 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 127 In the same manner as in Example 125 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 128 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a slurry (1) was obtained after removing the substituent by the same operation as in Example 125.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 129 In the same manner as in Example 128 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 130 In the same manner as in Example 128 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 131 Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
  • a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical cycloolefin polymer resin molded product was obtained by the same procedure using pellets of cycloolefin polymer alone.
  • Example 132 In the same manner as in Example 131 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • Example 133 In the same manner as in Example 131 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. ..
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
  • ⁇ Comparative Example 102> The fine fibrous cellulose dispersion obtained in Production Example 2 was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder. A fine fibrous cellulose-containing resin molded product was obtained in the same manner as in Example 101 except that this fine fibrous cellulose powder was used.
  • LM-PLUS manufactured by Osaka Chemical Co., Ltd.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
  • Cellulose powder is added to 95 parts by mass of molten polypropylene (Novatec PP MG05ES manufactured by Japan Polypropylene Corporation) using a side feeder so that the amount of fibrous cellulose is 5 parts by mass, and biaxial extrusion is performed. It was melt-kneaded using a kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
  • a hemispherical coarse fibrous cellulose-containing resin molded product was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
  • the fiber width of the fibrous cellulose was measured by the same method as described above. However, only in Comparative Example 103, the obtained dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, cast onto glass, and scanned electron microscope (SEM). ) was observed.
  • Haze change rate (%) (Haze of resin molded body-Haze of molded body of resin alone) / Haze of molded body of resin alone ⁇ 100 A: Haze change rate less than 10% B: Haze change rate 10% or more and less than 20% C: Haze change rate 20% or more and less than 30% D: Haze change rate 30% or more and less than 40% E: Haze change rate 40% or more 50 Less than% F: Haze change rate 50% or more
  • PP Polypropylene PE: Polyethylene PS: Polyester PC: Polycarbonate PET: Polyethylene terephthalate PA: Polyamide COP: Cycloolefin polymer
  • the resin molded body molded from the resin composition obtained in the examples was excellent in transparency, coloration was suppressed, and was excellent in design. On the other hand, when the substituent removal treatment was not performed or when unmodified coarse fibrous cellulose was used, the transparency of the obtained resin molded product was inferior, and coloring was sometimes confirmed (coloring was confirmed). Comparative Examples 101 to 103).
  • the resin molded bodies molded from the resin compositions obtained in Examples 101 to 124 and 131 to 133 were also excellent in three-dimensional moldability.
  • Hardwood pulp (dry sheet) made by Oji Paper was used as the raw material pulp.
  • the raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air drying device at 165 ° C. for 250 seconds to introduce a phosphate group into the cellulose in the pulp to obtain a phosphorylated pulp.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
  • the infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR.
  • the infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR.
  • the amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g.
  • the total amount of dissociated acid was 2.30 mmol / g.
  • the infrared absorption spectrum of the subphosphorylated pulp thus obtained was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed around 1210 cm -1 , and the phosphite group (phosphonic acid group) was added to the pulp.
  • the first dissociative acid amount (subphosphate group amount) measured by the measurement method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociative acid amount is 1. It was 54 mmol / g.
  • the infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR.
  • absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal.
  • the amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
  • TEMPO oxidation treatment 100 parts by mass (absolute dry mass) of the raw material pulp, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water. Dispersed in. A 13 parts by mass sodium hypochlorite aqueous solution was added to the obtained dispersion liquid so as to be 1.9 mmol with respect to 1.0 g of pulp, and the reaction was started. During the reaction, a 0.5 N aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of TEMPO oxide pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the TEMPO oxide pulp after washing was subjected to a counter ion exchange treatment as follows. First, the TEMPO oxidized pulp was diluted with 10 L of ion-exchanged water, 1N hydrochloric acid was added so that the obtained pulp dispersion had a pH of 2, and the mixture was stirred for 30 minutes. As a result, the carboxy group in the TEMPO oxide pulp was converted from the Na type to the acid type. Next, the TEMPO oxide pulp slurry was dehydrated to obtain an acid-type TEMPO oxide pulp subjected to counterion exchange treatment. Next, the above-mentioned washing treatment was performed on the TEMPO oxide pulp after the counterion exchange treatment.
  • ⁇ Manufacturing example 16> The same operation as in Production Example 11 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a fine fibrous cellulose dispersion containing the zantate pulp and fine fibrous cellulose.
  • the amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
  • a wet atomizer Sudno Machine Limited, Starburst
  • Example 501 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 11 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. ..
  • ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours.
  • the operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 ⁇ S / cm or less was set as the washing end point.
  • Natural rubber latex (manufactured by Reditex Co., Ltd., NRLATEX, concentration 60) was prepared by using a slurry after removing substituents so that the absolute dry mass of the substituent-removed fine fibrous cellulose was 5 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex. %), And the mixture was stirred and dispersed at 4000 rpm for 5 minutes using a homogenizer (T18 digital ULTRA-TURRAX manufactured by IKA). A natural rubber masterbatch was obtained by adding 5% by mass formic acid to the obtained mixed solution to coagulate it, washing it with water, and drying the slurry at 40 ° C.
  • Example 502 Substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 40 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.05 mmol / g. A rubber composition containing fibrous cellulose and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 41%.
  • Example 503 Substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.21 mmol / g. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 25 nm, and the ratio of the fiber width of 10 nm or less was 43%.
  • Example 504 Substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.40 mmol / g. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 22 nm, and the ratio of the fiber width of 10 nm or less was 48%.
  • Example 505 Substitution after removing the substituent is substituted in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 12 is used instead of the fine fibrous cellulose dispersion obtained in Production Example 12.
  • a rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fiber width of 10 nm or less was 42%.
  • the pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 506 Substitution after removing the substituent is substituted in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 13 is used instead of the fine fibrous cellulose dispersion obtained in Production Example 13.
  • a rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fiber width of 10 nm or less was 40%.
  • the pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 507 Substituent removal and substitution in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 14 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 14.
  • a rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fiber width of 10 nm or less was 40%.
  • the pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 508 Examples except that the substituent removal treatment was carried out using the fine fibrous cellulose dispersion obtained in Production Example 15 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g.
  • a slurry after removing the substituent, a rubber composition containing fine fibrous cellulose from which the substituent was removed, and a rubber sheet were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 41%.
  • Example 509> Instead of the fine fibrous cellulose dispersion obtained in Production Example 11, the fine fibrous cellulose dispersion obtained in Production Example 16 was used. Further, instead of the [substituent removal treatment (high temperature heat treatment)], the [substituent removal treatment (low temperature heat treatment)] described later was performed. In the same manner as in Example 501, a slurry after removing the substituent, a rubber composition containing fine fibrous cellulose from which the substituent was removed, and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 40%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 8.3 when the solid content concentration was 1.0% by mass.
  • Example 510 Following the [cleaning treatment of the slurry after removing the substituent], the slurry and the slurry after removing the substituent are removed in the same manner as in Example 501 except that the following [uniform dispersion treatment of the slurry after removing the substituent] is performed.
  • a rubber composition containing fine fibrous cellulose and a rubber sheet were obtained.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 98%.
  • Example 511 Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 506, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 512 Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 507, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 513 Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 508, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fiber width of 10 nm or less was 93%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 8.3 when the solid content concentration was 1.0% by mass.
  • Example 514 Subsequent to the [cleaning treatment of the slurry after removing the substituent], the slurry after removing the substituent and the fine fiber from which the substituent is removed are the same as in Example 509 except that the [uniform dispersion treatment of the slurry after removing the substituent] is performed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
  • Example 515 [Powdering of slurry after removal of substituents] After removing the substituents, the obtained slurry was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder from which substituents were removed.
  • LM-PLUS manufactured by Osaka Chemical Co., Ltd.
  • silica manufactured by Tokuyama Co., Ltd., Tokusir U
  • zinc oxide manufactured by Wako Pure Chemical Industries, Ltd.
  • stearic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • sulfur manufactured by Wako Pure Chemical Industries, Ltd.
  • a vulcanization accelerator (Sunseller CM (manufactured by Sanshin Chemical Industries, Ltd.)) was added so as to have the composition shown in Table 8, and kneaded for 15 minutes to obtain a master batch.
  • Example 516 The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 502 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 517 The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 506 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 518 The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 507 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 519 The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 508 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 520> [Adjustment of masterbatch]
  • the slurry after removing the substituents obtained in Example 501 so as to have an absolute dry mass of 5 parts by mass of the fine fibrous cellulose from which the substituents have been removed with respect to 100 parts by mass of the solid content of the raw material before cross-linking of the silicone rubber was added to the silicone rubber (silicon rubber). It was added to KE-931-U manufactured by Shin-Etsu Chemical Co., Ltd., and pre-kneaded using a laboplast mill (3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd.).
  • Example 521 The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 502 was used to obtain a rubber composition containing fine fibrous cellulose containing the substituents and a rubber sheet.
  • Example 522 The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 506 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 523 The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 507 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 524 The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 508 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
  • Example 525 [Preparation of masterbatch] Styrene-butadiene copolymer rubber latex (Nipol LX112, manufactured by Nippon Zeon Co., Ltd., hereinafter SBR) was carried out so that the absolute dry mass of the substituent-removed fine fibrous cellulose was 5 parts by mass with respect to 100 parts by mass of the solid content. After removing the substituents obtained in Example 501, the slurry was mixed and stirred and dispersed at 4000 rpm for 15 minutes using a homogenizer (manufactured by IKA, T18 digital ULTRA-TURRAX). The aqueous suspension was dried overnight in a heating oven at 70 ° C. to give a dried product. The dried product was heated in an oven at 120 ° C. for 30 minutes to prepare a masterbatch.
  • SBR Styrene-butadiene copolymer rubber latex
  • Example 526 The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 527 The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 528 The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 529 The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 530 [Preparation of masterbatch] Obtained in Example 501 so that the absolute dry mass of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 100 parts by mass of the solid content of acrylonitrile-butadiene rubber polymer latex (Nipol511A, manufactured by Nippon Zeon Co., Ltd., hereinafter NBR). After removing the substituents, the slurry was mixed and stirred and dispersed at 4000 rpm for 15 minutes using a homogenizer (T18 digital ULTRA-TURRAX manufactured by IKA). The aqueous suspension was dried overnight in a heating oven at 70 ° C. to give a dried product. The dried product was heated in an oven at 120 ° C. for 30 minutes to prepare a masterbatch.
  • acrylonitrile-butadiene rubber polymer latex Nipol511A, manufactured by Nippon Zeon Co., Ltd., hereinafter NBR.
  • Example 531 The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 532> The same operation as in Example 530 in which the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506 was carried out, and the rubber composition containing fine fibrous cellulose containing the substituents was carried out. I got a rubber sheet.
  • Example 533 The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 534 The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 535 Similar to Example 515, after performing [uniform dispersion powder treatment of slurry after removing substituents], a crosslinked rubber sheet was prepared by the following method.
  • Example 536 The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 537 The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 538 The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • Example 539 The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
  • ⁇ Comparative Example 502> A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 13 was used.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • ⁇ Comparative Example 504> A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 15 was used.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • ⁇ Comparative Example 505> A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 16 was used.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • Example 506 [Fine] of Example 515, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • Example 509 [Fine] of Example 525, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • Example 510 [Fine] of Example 530, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • Example 511 [Fine] of Example 535, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
  • the amount of sulfone groups was measured as follows.
  • the fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days.
  • the obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder.
  • the sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES.
  • the value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfone groups (unit: mmol / g).
  • the amount of carboxy group of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass.
  • the contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure the content.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour.
  • the amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred.
  • ADVANTEC GFP filter paper
  • the fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis.
  • TEM transmission electron microscope
  • the total amount of free nitrogen contained in the fibrous cellulose and the fibrous cellulose dispersion was measured by the method described below. Each dispersion was adjusted to a solid content concentration of 1% by mass and decomposed by the Kjeldahl method (JIS K 0102: 2016 44.1). After decomposition, the amount of ammonium ions (mmol) was measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
  • the rubber sheets obtained in Examples and Comparative Examples were subjected to a tensile test according to JIS K 6251: 2017 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties", and the breaking stress was measured. From the measured values, the tensile strength index was calculated using the following formula.
  • the control rubber sheet is a rubber sheet produced without blending fibrous cellulose.
  • Example 501 the rubber sheet produced by performing the operations after [Preparation of masterbatch] using only natural rubber latex without using the slurry after removing the substituent becomes the control rubber sheet.
  • Tensile strength index breaking stress of rubber sheet / breaking stress of control rubber sheet x 100 Then, the obtained tensile strength index was evaluated in the following five stages A to E.
  • YI change rate (%) (Yellowness of rubber sheet-Yellowness of control rubber sheet) / Yellowness of rubber sheet with standard composition x 100
  • the rubber sheet (molded body) molded from the rubber composition obtained in the examples had a high tensile strength index. Further, the rubber sheet (molded body) molded from the rubber composition obtained in the examples was excellent in designability and coloration was suppressed. On the other hand, when the substituent removal treatment is not performed or when unmodified coarse fibrous cellulose is used, the tensile strength index and design of the obtained rubber sheet (molded product) are inferior, and coloring is also confirmed. (Comparative Examples 501 to 511).

Abstract

The present invention addresses the problem of providing a resin composition that includes a resin and microfibrous cellulose and makes it possible to form resin molded bodies that have exellent design and resist staining. The present invention relates to a resin composition that includes a resin and fibrous cellulose, the amount of substituent introduced into the fibrous cellulose being less than 0.5 mmol/g, and the number average fiber width of the fibrous cellulose included in the resin composition being 1–100 nm.

Description

樹脂組成物、ゴム組成物、樹脂成形体及び樹脂組成物の製造方法Method for manufacturing resin composition, rubber composition, resin molded product and resin composition
 本発明は、樹脂組成物、ゴム組成物、樹脂成形体及び樹脂組成物の製造方法に関する。 The present invention relates to a resin composition, a rubber composition, a resin molded product, and a method for producing a resin composition.
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。 In recent years, due to the substitution of petroleum resources and heightened environmental awareness, materials using reproducible natural fibers have been attracting attention. Among natural fibers, fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, particularly fibrous cellulose (pulp) derived from wood, has been widely used mainly as paper products.
 繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。 As the fibrous cellulose, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, sheets containing fine fibrous cellulose, resin complexes, and thickeners are being developed.
 例えば、特許文献1~4には、微細繊維状セルロースと樹脂を含む樹脂組成物が開示されている。特許文献1には、部分加水分解された微細セルロース(A)及び熱可塑性樹脂(B)を含む樹脂組成物が開示されている。特許文献2には、熱可塑性樹脂とセルロースナノファイバーとエチレン系共重合体とを含有する熱可塑性複合樹脂が開示されている。特許文献1及び2の実施例では、微細繊維状セルロースとして、未変性のセルロース繊維が用いられている。 For example, Patent Documents 1 to 4 disclose resin compositions containing fine fibrous cellulose and a resin. Patent Document 1 discloses a resin composition containing partially hydrolyzed fine cellulose (A) and a thermoplastic resin (B). Patent Document 2 discloses a thermoplastic composite resin containing a thermoplastic resin, cellulose nanofibers, and an ethylene-based copolymer. In the examples of Patent Documents 1 and 2, unmodified cellulose fibers are used as the fine fibrous cellulose.
 また、特許文献3には、セルロースナノファイバーの水分散体と、疎水性粒子とを撹拌混合して、水分散体と、その表面に配置された前記疎水性粒子とを含む粉状体を得る工程と、粉状体と、熱可塑性樹脂とを溶融混練して、熱可塑性樹脂組成物を得る工程とを含む、熱可塑性樹脂組成物の製造方法が開示されている。特許文献3では、このような製造工程を経ることで、セルロースナノファイバーを熱可塑性樹脂中に高度に分散させることが検討されている。さらに、特許文献4には、微細セルロース繊維に炭化水素基がアミド結合を介して結合してなる微細セルロース繊維複合体と、ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリアミド系樹脂及びポリカーボネート系樹脂からなる群から選択される1種以上の樹脂とを含有する樹脂組成物が開示されている。特許文献3及び4の実施例では、微細繊維状セルロースとして、TEMPO酸化されたセルロース繊維が用いられている。 Further, in Patent Document 3, an aqueous dispersion of cellulose nanofibers and hydrophobic particles are stirred and mixed to obtain a powdery body containing the aqueous dispersion and the hydrophobic particles arranged on the surface thereof. A method for producing a thermoplastic resin composition is disclosed, which comprises a step and a step of melt-kneading the powdery substance and the thermoplastic resin to obtain a thermoplastic resin composition. In Patent Document 3, it is studied that cellulose nanofibers are highly dispersed in a thermoplastic resin through such a manufacturing process. Further, Patent Document 4 describes a fine cellulose fiber composite in which a hydrocarbon group is bonded to the fine cellulose fiber via an amide bond, and a polyolefin resin, a polyvinyl chloride resin, a polyamide resin and a polycarbonate resin. A resin composition containing one or more kinds of resins selected from the above group is disclosed. In the examples of Patent Documents 3 and 4, TEMPO-oxidized cellulose fibers are used as the fine fibrous cellulose.
 上述したような樹脂組成物の一種としてゴム組成物も知られており、微細繊維状セルロースをゴム成分に混合してゴム組成物とすることも検討されている。例えば、特許文献5には、ゴム成分、並びに繊維長の平均値が1~20μm、繊維径の平均値が10μm以下、及びアスペクト比が2~1000であるミクロフィブリル化植物繊維を含むゴム組成物が開示されている。また、特許文献6には、セルロースザンテート又はセルロースザンテートのカチオン置換体を解繊処理する、セルロースザンテートナノファイバーの製造方法が開示されている。特許文献6には、セルロースザンテートナノファイバーを天然ゴムラテックスと混合し、ゴムシートを作製した例が開示されている。 A rubber composition is also known as a kind of resin composition as described above, and it is also considered to mix fine fibrous cellulose with a rubber component to obtain a rubber composition. For example, Patent Document 5 describes a rubber component and a rubber composition containing microfibrillated plant fibers having an average fiber length of 1 to 20 μm, an average fiber diameter of 10 μm or less, and an aspect ratio of 2 to 1000. Is disclosed. Further, Patent Document 6 discloses a method for producing cellulose zantate nanofibers, which comprises defibrating a cellulose zantate or a cationic substituent of cellulose zantate. Patent Document 6 discloses an example in which a rubber sheet is produced by mixing cellulose zantate nanofibers with a natural rubber latex.
特開2019-203108号公報Japanese Unexamined Patent Publication No. 2019-203108 特開2019-026702号公報Japanese Unexamined Patent Publication No. 2019-026702 特開2019-026696号公報Japanese Unexamined Patent Publication No. 2019-026666 特開2014-034616号公報Japanese Unexamined Patent Publication No. 2014-034616 特開2011-231208号公報Japanese Unexamined Patent Publication No. 2011-231208 国際公開第2017/111103号International Publication No. 2017/111033
 本発明者らは、微細繊維状セルロースと樹脂を含む樹脂組成物について研究を進める中で、このような樹脂組成物から成形される樹脂成形体において意匠性が低下したり、着色が生じたりする場合があることを突き止めた。 While conducting research on a resin composition containing fine fibrous cellulose and a resin, the present inventors may deteriorate the design or cause coloring in a resin molded product molded from such a resin composition. I found out that there are cases.
 そこで本発明者らは、このような従来技術の課題を解決するために、微細繊維状セルロースと樹脂を含む樹脂組成物であって、優れた意匠性を有し、かつ着色が抑制された樹脂成形体を成形し得る樹脂組成物を提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have made a resin composition containing fine fibrous cellulose and a resin, which has excellent designability and whose coloring is suppressed. We proceeded with the study for the purpose of providing a resin composition capable of molding a molded product.
 具体的に、本発明は、以下の構成を有する。 Specifically, the present invention has the following configuration.
[1] 樹脂と、繊維状セルロースとを含む樹脂組成物であって、
 前記繊維状セルロースにおける置換基導入量が0.5mmol/g未満であり、
 前記樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅が1~100nmである、樹脂組成物。
[2] 前記樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅が1~10nmである、[1]に記載の樹脂組成物。
[3] 前記樹脂組成物は、前記樹脂と、前記繊維状セルロースの混練物である、[1]又は[2]に記載の樹脂組成物。
[4] 前記置換基がアニオン性基である、[1]~[3]のいずれかに記載の樹脂組成物。
[5] 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基、スルホン基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である[4]に記載の樹脂組成物。
[6] 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基及びスルホン基に由来する置換基からなる群から選択される少なくとも1種である、[4]又は[5]に記載の樹脂組成物。
[7] 前記樹脂が、ポリオレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される少なくとも1種である、[1]~[6]のいずれかに記載の樹脂組成物。
[8] 前記樹脂が、ゴム成分である、[1]~[6]のいずれかに記載の樹脂組成物。
[9] 前記ゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種の架橋前原料である、[8]に記載の樹脂組成物。
[10] 前記樹脂組成物は、前記ゴム成分と前記繊維状セルロースを含む混練物である、[8]又は[9]に記載の樹脂組成物。
[11] 前記繊維状セルロースはカルバミド基を有する、[1]~[10]のいずれかに記載の樹脂組成物。
[12] [1]~[11]のいずれかに記載の樹脂組成物を成形してなる樹脂成形体。
[13] 置換基導入量が0.5mmol/g未満であり、かつ平均繊維幅が1~100nmの繊維状セルロースを得る工程と、
 前記繊維状セルロースと、樹脂とを混練する工程と、を含む樹脂組成物の製造方法であって、
 前記繊維状セルロースを得る工程は、
 置換基を有し、かつ繊維幅が1000nm以下の繊維状セルロースから、前記置換基の少なくとも一部を除去する工程(A)を含む、樹脂組成物の製造方法。
[14] 前記繊維状セルロースを得る工程は、置換基導入量が0.5mmol/g未満であり、かつ平均繊維幅が1~10nmの繊維状セルロースを得る工程であり、
 前記繊維状セルロースを得る工程は、前記工程(A)の後に、均一分散処理する工程(B)を含む、[13]に記載の樹脂組成物の製造方法。
[15] 前記工程(A)に供される繊維状セルロースの置換基導入量は0.6mmol/g以上である、[13]又は[14]に記載の樹脂組成物の製造方法。
[16] 前記置換基がアニオン性基である、[13]~[15]のいずれかに記載の樹脂組成物の製造方法。
[17] 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基、スルホン基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、[16]に記載の樹脂組成物の製造方法。
[18] 前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基及びスルホン基に由来する置換基からなる群から選択される少なくとも1種である、[16]又は[17]に記載の樹脂組成物の製造方法。
[19] 前記工程(A)に供される繊維状セルロースはカルバミド基を有する、[13]~[18]のいずれかに記載の樹脂組成物の製造方法。
[20] 窒素量を低減させる工程をさらに含む、[13]~[19]のいずれかに記載の樹脂組成物の製造方法。
[21] 前記工程(A)は、スラリー状で行われる、[13]~[20]のいずれかに記載の樹脂組成物の製造方法。
[22] 前記工程(A)の前に、繊維状セルロースを含むスラリーのpHを3~8に調整する工程をさらに含む、[21]に記載の樹脂組成物の製造方法。
[23] 前記樹脂が、ポリオレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される少なくとも1種である、[13]~[22]のいずれかに記載の樹脂組成物の製造方法。
[24] 前記樹脂が、ゴム成分である、[13]~[22]のいずれかに記載の樹脂組成物の製造方法。
[25] 前記ゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種の架橋前原料である、[24]に記載の樹脂組成物の製造方法。
[1] A resin composition containing a resin and fibrous cellulose.
The amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the amount is less than 0.5 mmol / g.
A resin composition having a number average fiber width of 1 to 100 nm of fibrous cellulose contained in the resin composition.
[2] The resin composition according to [1], wherein the number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 10 nm.
[3] The resin composition according to [1] or [2], wherein the resin composition is a kneaded product of the resin and the fibrous cellulose.
[4] The resin composition according to any one of [1] to [3], wherein the substituent is an anionic group.
[5] The anionic group is selected from the group consisting of a phosphorusoxo acid group, a substituent derived from a phosphorusoxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group. The resin composition according to [4], which is at least one kind.
[6] The anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group and a substituent derived from a sulfone group, [4] or [ 5] The resin composition according to.
[7] Any one of [1] to [6], wherein the resin is at least one selected from the group consisting of a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyurethane resin, and an acrylic resin. The resin composition according to.
[8] The resin composition according to any one of [1] to [6], wherein the resin is a rubber component.
[9] The rubber component is at least one crosslinked rubber selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. The resin composition according to [8], which is a pre-raw material.
[10] The resin composition according to [8] or [9], wherein the resin composition is a kneaded product containing the rubber component and the fibrous cellulose.
[11] The resin composition according to any one of [1] to [10], wherein the fibrous cellulose has a carbamide group.
[12] A resin molded product obtained by molding the resin composition according to any one of [1] to [11].
[13] A step of obtaining fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and an average fiber width of 1 to 100 nm.
A method for producing a resin composition, which comprises a step of kneading the fibrous cellulose and a resin.
The step of obtaining the fibrous cellulose is
A method for producing a resin composition, which comprises the step (A) of removing at least a part of the substituent from the fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
[14] The step of obtaining the fibrous cellulose is a step of obtaining fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and an average fiber width of 1 to 10 nm.
The method for producing a resin composition according to [13], wherein the step of obtaining the fibrous cellulose includes a step (B) of performing a uniform dispersion treatment after the step (A).
[15] The method for producing a resin composition according to [13] or [14], wherein the amount of the substituent of the fibrous cellulose used in the step (A) is 0.6 mmol / g or more.
[16] The method for producing a resin composition according to any one of [13] to [15], wherein the substituent is an anionic group.
[17] The anionic group is selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group. The method for producing a resin composition according to [16], which is at least one kind.
[18] The anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphorusoxo acid group, a sulfone group and a substituent derived from a sulfone group, [16] or [ 17] The method for producing a resin composition according to the above.
[19] The method for producing a resin composition according to any one of [13] to [18], wherein the fibrous cellulose used in the step (A) has a carbamide group.
[20] The method for producing a resin composition according to any one of [13] to [19], further comprising a step of reducing the amount of nitrogen.
[21] The method for producing a resin composition according to any one of [13] to [20], wherein the step (A) is performed in the form of a slurry.
[22] The method for producing a resin composition according to [21], further comprising a step of adjusting the pH of the slurry containing fibrous cellulose to 3 to 8 before the step (A).
[23] Any one of [13] to [22], wherein the resin is at least one selected from the group consisting of a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyurethane resin, and an acrylic resin. The method for producing a resin composition according to.
[24] The method for producing a resin composition according to any one of [13] to [22], wherein the resin is a rubber component.
[25] The rubber component is at least one crosslinked rubber selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. The method for producing a resin composition according to [24], which is a pre-raw material.
 本発明によれば、優れた意匠性を有し、かつ着色が抑制された樹脂成形体を成形し得る樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain a resin composition having excellent designability and capable of molding a resin molded product in which coloring is suppressed.
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and the pH of a fibrous cellulose-containing slurry having a phosphoric acid group. 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to the fibrous cellulose-containing slurry having a carboxy group.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments and specific examples, but the present invention is not limited to such embodiments. In addition, the numerical range represented by using "-" in this specification means the range including the numerical values before and after "-" as the lower limit value and the upper limit value.
(樹脂組成物)
 本発明は、樹脂と、繊維状セルロースとを含む樹脂組成物に関する。ここで、繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であり、樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmである。
(Resin composition)
The present invention relates to a resin composition containing a resin and fibrous cellulose. Here, the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 100 nm.
 従来、意匠性に優れる樹脂成形体を得るために、微細繊維状セルロースに置換基を導入したり、置換基導入量を高めたりすることで、繊維幅が小さい微細繊維状セルロースを得ることが検討されていた。しかしながら、高置換基量の微細繊維状セルロースを樹脂組成物に配合した場合、樹脂との親和性が不十分となり、かえって意匠性が低下したり、樹脂組成物の製造工程や使用環境において加熱されることで樹脂成形体が着色する場合があった。一方で、置換基導入工程をコントロールして置換基導入量を低く抑えた場合、微細繊維状セルロースの解繊が不十分となり、意匠性に優れた樹脂成形体が得られにくかった。そこで、本発明者らは微細繊維状セルロースの製造工程等について検討を重ねることで、置換基導入量が0.5mmol/g未満といった低置換基量であるにも関わらず、数平均繊維幅が1~100nmの微細繊維状セルロースを得ることに成功した。そして、低置換基量であり、かつ数平均繊維幅が1~100nmの微細繊維状セルロースを配合する樹脂組成物から樹脂成形体を成形することで、意匠性に優れ、かつ着色が抑制された樹脂成形体が得られることを見出した。 Conventionally, in order to obtain a resin molded body having excellent designability, it has been studied to obtain fine fibrous cellulose having a small fiber width by introducing a substituent into the fine fibrous cellulose or increasing the amount of the substituent introduced. It had been. However, when fine fibrous cellulose having a high substituent amount is blended in the resin composition, the affinity with the resin becomes insufficient, the design is rather deteriorated, and the resin composition is heated in the manufacturing process and the usage environment. As a result, the resin molded body may be colored. On the other hand, when the substituent introduction step was controlled to keep the amount of the substituent introduced low, the defibration of the fine fibrous cellulose was insufficient, and it was difficult to obtain a resin molded product having excellent design. Therefore, the present inventors have repeatedly studied the manufacturing process of fine fibrous cellulose, and the number average fiber width has been increased even though the amount of substituents introduced is as low as less than 0.5 mmol / g. We succeeded in obtaining fine fibrous cellulose having a diameter of 1 to 100 nm. By molding a resin molded product from a resin composition containing fine fibrous cellulose having a low amount of substituents and a number average fiber width of 1 to 100 nm, the design was excellent and coloring was suppressed. It has been found that a resin molded product can be obtained.
 本実施形態においては、繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であり、樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅は1~10nmであることが好ましい。本実施形態においては、置換基導入量が0.5mmol/g未満といった低置換基量であるにも関わらず、数平均繊維幅が1~10nmの微細繊維状セルロースを得ることができる。低置換基量であり、かつ数平均繊維幅が1~10nmの微細繊維状セルロースを配合する樹脂組成物から樹脂成形体を成形することで、意匠性に加えて透明性にも優れ、かつ着色が抑制された樹脂成形体を得ることができる。 In the present embodiment, the amount of substituents introduced in the fibrous cellulose is preferably less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin composition is preferably 1 to 10 nm. In the present embodiment, fine fibrous cellulose having a number average fiber width of 1 to 10 nm can be obtained even though the amount of substituents introduced is as low as less than 0.5 mmol / g. By molding a resin molded product from a resin composition containing fine fibrous cellulose having a low amount of substituents and a number average fiber width of 1 to 10 nm, it is excellent in transparency as well as designability and is colored. It is possible to obtain a resin molded product in which is suppressed.
 本実施形態の樹脂組成物は、樹脂と、繊維状セルロースの樹脂混練物であることが好ましい。この場合も、繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であり、樹脂混練物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmである。本実施形態においては、繊維状セルロースにおける置換基導入量が、0.5mmol/g未満であるため、樹脂中に均一に分散しやすい。このため、均質な樹脂混練物が得られる。また、樹脂混練物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmであるため、樹脂混練物は意匠性に優れている。このため、このような樹脂混練物から成形される樹脂成形体も同様に優れた意匠性を有することになる。 The resin composition of the present embodiment is preferably a resin kneaded product of a resin and fibrous cellulose. Also in this case, the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the resin kneaded product is 1 to 100 nm. In the present embodiment, since the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, it is easy to disperse uniformly in the resin. Therefore, a homogeneous resin kneaded product can be obtained. Further, since the number average fiber width of the fibrous cellulose contained in the resin kneaded product is 1 to 100 nm, the resin kneaded product is excellent in designability. Therefore, the resin molded body molded from such a resin kneaded product also has excellent designability.
 また、本実施形態において、樹脂混練物中に含まれる繊維状セルロースの数平均繊維幅は1~10nmであることが好ましい。樹脂混練物中に含まれる繊維状セルロースの数平均繊維幅を上記範囲内とすることにより、より、透明性に優れた樹脂混練物を得ることができる。そして、このような樹脂混練物から成形される樹脂成形体も同様に優れた透明性を有する。 Further, in the present embodiment, the number average fiber width of the fibrous cellulose contained in the resin kneaded material is preferably 1 to 10 nm. By setting the number average fiber width of the fibrous cellulose contained in the resin kneaded product within the above range, a resin kneaded product having more excellent transparency can be obtained. A resin molded body molded from such a resin kneaded product also has excellent transparency.
 ここで、樹脂成形体の意匠性は、樹脂組成物から成形した樹脂成形体を目視観察し、面積円相当径1mm以上の塊状物の発生個数を計測することで評価できる。例えば、50mm×50mmのシート状の樹脂成形体中における面積円相当径1mm以上の塊状物の発生個数は、40個以下であることが好ましく、30個以下であることがより好ましく、20個以下であることがさらに好ましく、10個以下であることが特に好ましい。50mm×50mmのシート状の樹脂成形体中における面積円相当径1mm以上の塊状物の発生個数が上記範囲内であれば、樹脂組成物から成形した樹脂成形体の意匠性が良好であると判定できる。 Here, the design of the resin molded body can be evaluated by visually observing the resin molded body molded from the resin composition and measuring the number of lumps having a diameter equivalent to an area circle of 1 mm or more. For example, the number of lumps having an area circle equivalent diameter of 1 mm or more in a sheet-shaped resin molded body having a size of 50 mm × 50 mm is preferably 40 or less, more preferably 30 or less, and 20 or less. It is more preferable that the number is 10 or less, and it is particularly preferable that the number is 10. If the number of lumps having an area circle equivalent diameter of 1 mm or more in the 50 mm × 50 mm sheet-shaped resin molded body is within the above range, it is determined that the design of the resin molded body molded from the resin composition is good. can.
 樹脂成形体の透明性は樹脂組成物から成形した樹脂成形体のヘーズにより評価できる。本実施形態において、樹脂組成物から成形した樹脂成形体のヘーズは、25%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。ここで、樹脂成形体の全光線透過率は、JIS K 7136:2000に準拠して測定されるヘーズである。ヘーズの測定装置としては、例えば、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いることができる。 The transparency of the resin molded body can be evaluated by the haze of the resin molded body molded from the resin composition. In the present embodiment, the haze of the resin molded product molded from the resin composition is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less. Here, the total light transmittance of the resin molded product is a haze measured in accordance with JIS K 7136: 2000. As the haze measuring device, for example, a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) can be used.
 なお、下記の式から算出されるヘーズ変化率は、40%未満であることが好ましく、30%未満であることがより好ましく、20%未満であることがさらに好ましく、10%未満であることが特に好ましい。
 ヘーズ変化率(%)=(樹脂成形体のヘーズ-樹脂単体の成形体のヘーズ)/樹脂単体の成形体のヘーズ×100
 ここで、樹脂単体の成形体のヘーズとは、樹脂組成物中から繊維状セルロースを除いてなる樹脂成分から形成される成形体のヘーズである。ヘーズ変化率を算出する際には、樹脂組成物中から繊維状セルロースを除いてなる樹脂成分から形成される成形体と、厚みが同一の樹脂成形体を準備し、測定を行う。本実施形態においては、ヘーズ変化率が上記範囲内であれば、樹脂組成物から成形した樹脂成形体の透明性が良好であると判定できる。
The haze change rate calculated from the following formula is preferably less than 40%, more preferably less than 30%, further preferably less than 20%, and less than 10%. Especially preferable.
Haze change rate (%) = (Haze of resin molded body-Haze of molded body of resin alone) / Haze of molded body of resin alone × 100
Here, the haze of the molded body of the resin alone is the haze of the molded body formed from the resin component obtained by removing the fibrous cellulose from the resin composition. When calculating the haze change rate, a molded body formed from a resin component obtained by removing fibrous cellulose from the resin composition and a resin molded body having the same thickness are prepared and measured. In the present embodiment, if the haze change rate is within the above range, it can be determined that the transparency of the resin molded product molded from the resin composition is good.
 本実施態様において、樹脂組成物から成形した樹脂成形体のYI値は、20以下であることが好ましく、10以下であることがより好ましく、5以下であることがさらに好ましい。なお、樹脂成形体のYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。ここで、樹脂成形体のYI値は、JIS K 7373:2006に準拠して測定されるYI値である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。 In the present embodiment, the YI value of the resin molded product molded from the resin composition is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less. The lower limit of the YI value of the resin molded product is not particularly limited, but is preferably 0.1 or more. Here, the YI value of the resin molded product is a YI value measured in accordance with JIS K 7373: 2006. As the YI value measuring device, for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
 なお、下記の式から算出したYI変化率は、320%未満であることが好ましく、240%未満であることがより好ましく、160%未満であることがさらに好ましく、80%未満であることが特に好ましい。
 YI変化率(%)=(樹脂成形体の黄色度-樹脂単体の成形体の黄色度)/樹脂単体の成形体の黄色度×100
 ここで、樹脂単体の成形体の黄色度とは、樹脂組成物中から繊維状セルロースを除いてなる樹脂成分から形成される成形体の黄色度である。YI変化率を算出する際には、樹脂組成物中から繊維状セルロースを除いてなる樹脂成分から形成される成形体と、厚みが同一の樹脂成形体を準備し、測定を行う。本実施形態においては、YI変化率が上記範囲内であれば、樹脂組成物から成形した樹脂成形体の着色が抑制されていると判定できる。
The YI change rate calculated from the following formula is preferably less than 320%, more preferably less than 240%, further preferably less than 160%, and particularly preferably less than 80%. preferable.
YI change rate (%) = (Yellowness of resin molded body-Yellowness of molded body of resin alone) / Yellowness of molded body of resin alone x 100
Here, the yellowness of the molded body of the resin alone is the yellowness of the molded body formed from the resin component obtained by removing the fibrous cellulose from the resin composition. When calculating the YI change rate, a molded body formed from a resin component obtained by removing fibrous cellulose from the resin composition and a resin molded body having the same thickness are prepared and measured. In the present embodiment, if the YI change rate is within the above range, it can be determined that the coloring of the resin molded product molded from the resin composition is suppressed.
 本実施態様において、樹脂組成物は、樹脂混練物であることが好ましいが、繊維状セルロースからなるシート等に樹脂成分を含浸させたものであってもよい。なお、樹脂組成物が樹脂混練物である場合、樹脂混練物は、液状物であってもよく、固形状物であってもよい。固形状物としては、例えば、ペレット状、シート状、フレーク状、フィラメント状等の形状が挙げられる。 In the present embodiment, the resin composition is preferably a resin kneaded product, but a sheet made of fibrous cellulose or the like may be impregnated with a resin component. When the resin composition is a resin kneaded product, the resin kneaded product may be a liquid material or a solid material. Examples of the solid substance include pellet-like, sheet-like, flake-like, and filament-like shapes.
 本実施態様において、樹脂組成物が樹脂混練物である場合、樹脂組成物中において、繊維状セルロースは均一に分散している。繊維状セルロースが均一に分散している状態とは、樹脂組成物における任意の10箇所における繊維状セルロースの含有率が平均値±10質量%の範囲内にあることを言う。 In the present embodiment, when the resin composition is a resin kneaded product, the fibrous cellulose is uniformly dispersed in the resin composition. The state in which the fibrous cellulose is uniformly dispersed means that the content of the fibrous cellulose at any 10 points in the resin composition is within the range of an average value of ± 10% by mass.
<ゴム組成物>
 一実施形態において、樹脂組成物に含まれる樹脂はゴム成分であってもよい。このような場合、本実施形態の樹脂組成物はゴム組成物であってもよい。ゴム組成物は、ゴム成分と、繊維状セルロースとを含む。ここで、繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であり、ゴム組成物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmである。
<Rubber composition>
In one embodiment, the resin contained in the resin composition may be a rubber component. In such a case, the resin composition of the present embodiment may be a rubber composition. The rubber composition contains a rubber component and fibrous cellulose. Here, the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number average fiber width of the fibrous cellulose contained in the rubber composition is 1 to 100 nm.
 本実施形態のゴム組成物は、ゴム成分と、繊維状セルロースを含有することが好ましく、ゴム組成物は、ゴム成分と、繊維状セルロースを含む混練物であってもよい。ゴム組成物がゴム成分と、繊維状セルロースを含む混練物である場合も、繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であり、混練物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmである。本実施形態においては、繊維状セルロースにおける置換基導入量が、0.5mmol/g未満であるため、繊維状セルロースがゴム成分中に均一に分散しやすい。このため、均質な混練物が得られる。また、混練物中に含まれる繊維状セルロースの数平均繊維幅は1~100nmであるため、混練物は意匠性に優れている。このため、このような混練物から成形される成形体も同様に優れた意匠性を有することになる。 The rubber composition of the present embodiment preferably contains a rubber component and fibrous cellulose, and the rubber composition may be a kneaded product containing a rubber component and fibrous cellulose. Even when the rubber composition is a kneaded product containing a rubber component and fibrous cellulose, the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the number of fibrous celluloses contained in the kneaded product. The average fiber width is 1 to 100 nm. In the present embodiment, since the amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, the fibrous cellulose is likely to be uniformly dispersed in the rubber component. Therefore, a homogeneous kneaded product can be obtained. Further, since the number average fiber width of the fibrous cellulose contained in the kneaded product is 1 to 100 nm, the kneaded product is excellent in designability. Therefore, the molded product formed from such a kneaded product also has excellent designability.
 ここで、成形体の意匠性は、ゴム組成物から成形した成形体(ゴムシート)を目視観察し、面積円相当径1mm以上の塊状物の発生個数を計測することで評価できる。例えば、50mm×50mmのシート状の成形体(ゴムシート)中における面積円相当径1mm以上の塊状物の発生個数は、30個以下であることが好ましく、20個以下であることがより好ましく、10個以下であることがさらに好ましい。50mm×50mmのシート状の成形体中における面積円相当径1mm以上の塊状物の発生個数が上記範囲内であれば、ゴム組成物から成形した成形体の意匠性が良好であると判定できる。 Here, the design of the molded body can be evaluated by visually observing the molded body (rubber sheet) molded from the rubber composition and measuring the number of lumps having a diameter equivalent to an area circle of 1 mm or more. For example, the number of lumps having an area circle equivalent diameter of 1 mm or more in a sheet-shaped molded body (rubber sheet) having a size of 50 mm × 50 mm is preferably 30 or less, more preferably 20 or less. It is more preferably 10 or less. If the number of lumps having an area equivalent circle diameter of 1 mm or more in the sheet-shaped molded body having a size of 50 mm × 50 mm is within the above range, it can be determined that the molded body molded from the rubber composition has good design.
 本実施態様において、ゴム組成物から成形した成形体のYI値は、20以下であることが好ましく、10以下であることがより好ましく、5以下であることがさらに好ましい。なお、成形体のYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。ここで、成形体のYI値は、JIS K 7373:2006に準拠して測定されるYI値である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。 In the present embodiment, the YI value of the molded product molded from the rubber composition is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less. The lower limit of the YI value of the molded product is not particularly limited, but is preferably 0.1 or more. Here, the YI value of the molded product is a YI value measured in accordance with JIS K 7373: 2006. As the YI value measuring device, for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
 なお、下記の式から算出したYI変化率は、240%未満であることが好ましく、160%未満であることがより好ましく、80%未満であることがさらに好ましい。
 YI変化率(%)=(成形体の黄色度-ゴム成分単体の成形体の黄色度)/ゴム成分単体の成形体の黄色度×100
 ここで、ゴム成分単体の成形体の黄色度とは、ゴム組成物中から繊維状セルロースを除いてなるゴム成分から形成される成形体の黄色度である。YI変化率を算出する際には、ゴム組成物を構成するゴム成分を単体で加熱プレス成形してなる成形体と、厚みが同一の成形体を準備し、測定を行う。本実施形態においては、YI変化率が上記範囲内であれば、ゴム組成物から成形した成形体の着色が抑制されていると判定できる。
The YI change rate calculated from the following formula is preferably less than 240%, more preferably less than 160%, and even more preferably less than 80%.
YI change rate (%) = (yellowness of the molded body-yellowness of the molded body of the rubber component alone) / yellowness of the molded body of the rubber component alone x 100
Here, the yellowness of the molded body of the rubber component alone is the yellowness of the molded body formed from the rubber component obtained by removing the fibrous cellulose from the rubber composition. When calculating the YI change rate, a molded body obtained by heat-press molding the rubber component constituting the rubber composition by itself and a molded body having the same thickness are prepared and measured. In the present embodiment, if the rate of change in YI is within the above range, it can be determined that the coloring of the molded product molded from the rubber composition is suppressed.
 また、本実施形態のゴム組成物は上記構成を有するため、引張特性に優れた成形体を成形することができる。従来、微細繊維状セルロースをゴム成分に混合した場合、微細繊維状セルロースをゴム成分に均一に分散させることが困難であったため、微細繊維状セルロースを含むゴムシートは破断応力等が劣る傾向が見られていた。しかし、本実施形態においては、ゴム成分と混合する微細繊維状セルロースの置換基導入量を0.5mmol/g未満とし、さらに、微細繊維状セルロースの平均繊維幅を1~100nmとすることにより、ゴム成分中における微細繊維状セルロースの分散性を高めることができ、これにより、ゴム組成物から成形されるゴムシートの破断応力を高めることができる。 Further, since the rubber composition of the present embodiment has the above-mentioned structure, it is possible to mold a molded product having excellent tensile properties. Conventionally, when fine fibrous cellulose is mixed with a rubber component, it has been difficult to uniformly disperse the fine fibrous cellulose in the rubber component, so that a rubber sheet containing fine fibrous cellulose tends to have inferior breaking stress and the like. Was being done. However, in the present embodiment, the amount of the substituent of the fine fibrous cellulose mixed with the rubber component is set to less than 0.5 mmol / g, and the average fiber width of the fine fibrous cellulose is set to 1 to 100 nm. The dispersibility of the fine fibrous cellulose in the rubber component can be enhanced, whereby the breaking stress of the rubber sheet formed from the rubber composition can be enhanced.
 ここで、ゴム組成物から成形されるゴムシート(成形体)の引張特性は、例えば、引張強度指数によって評価することができる。引張強度指数は、以下の式で算出される指数である。
 引張強度指数=ゴムシートの破断応力/コントロールゴムシートの破断応力×100
 なお、ゴムシートの破断応力は、JIS K 6251:2017「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従い引張試験を行うことで測定した。また、本明細書において、コントロールゴムシートとは、ゴム組成物を構成するゴム成分単体から形成したシートである。
 ゴムシートの引張強度指数は100以上であることが好ましく、110以上であることがより好ましく、120以上であることがさらに好ましい。本実施形態においては、ゴムシートの引張強度指数が上記範囲内であれば、ゴム組成物から成形した成形体の引張特性が良好であると判定できる。
Here, the tensile properties of the rubber sheet (molded body) molded from the rubber composition can be evaluated, for example, by the tensile strength index. The tensile strength index is an index calculated by the following formula.
Tensile strength index = breaking stress of rubber sheet / breaking stress of control rubber sheet x 100
The breaking stress of the rubber sheet was measured by performing a tensile test in accordance with JIS K 6251: 2017 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties". Further, in the present specification, the control rubber sheet is a sheet formed from a single rubber component constituting the rubber composition.
The tensile strength index of the rubber sheet is preferably 100 or more, more preferably 110 or more, and even more preferably 120 or more. In the present embodiment, if the tensile strength index of the rubber sheet is within the above range, it can be determined that the tensile properties of the molded product formed from the rubber composition are good.
 本実施態様において、ゴム組成物は、混練物であることが好ましいが、繊維状セルロースからなるシート等にゴム成分を含浸させたものであってもよい。なお、ゴム組成物が混練物である場合、混練物は、液状物であってもよく、固形状物であってもよい。固形状物としては、例えば、ペレット状、シート状、フレーク状、フィラメント状等の形状が挙げられる。 In the present embodiment, the rubber composition is preferably a kneaded product, but a sheet made of fibrous cellulose or the like may be impregnated with a rubber component. When the rubber composition is a kneaded product, the kneaded product may be a liquid material or a solid material. Examples of the solid substance include pellet-like, sheet-like, flake-like, and filament-like shapes.
 本実施態様において、ゴム組成物が混練物である場合、ゴム組成物中において、繊維状セルロースは均一に分散していることが好ましい。繊維状セルロースが均一に分散している状態とは、ゴム組成物における任意の10箇所における繊維状セルロースの含有率が平均値±10質量%の範囲内にあることを言う。 In the present embodiment, when the rubber composition is a kneaded product, it is preferable that the fibrous cellulose is uniformly dispersed in the rubber composition. The state in which the fibrous cellulose is uniformly dispersed means that the content of the fibrous cellulose at any 10 points in the rubber composition is within the range of an average value of ± 10% by mass.
(樹脂)
 樹脂組成物中に含まれる樹脂としては、天然樹脂や合成樹脂を挙げることができる。天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。合成樹脂としては、例えば、ポリエチレン樹脂やポリプロピレン樹脂、シクロオレフィン樹脂といったポリオレフィン樹脂、ポリエチレンテレフタラート等のポリエステル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニル樹脂等を挙げることができる。中でも、合成樹脂は、ポリオレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される少なくとも1種であることが好ましい。合成樹脂として上記樹脂種を用いることにより、より意匠性や透明性に優れ、かつ着色が抑制された樹脂成形体が得られやすくなる。
(resin)
Examples of the resin contained in the resin composition include natural resins and synthetic resins. Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester. Examples of the synthetic resin include polyolefin resins such as polyethylene resin, polypropylene resin and cycloolefin resin, polyester resins such as polyethylene terephthalate, polystyrene resin, polycarbonate resin, polyurethane resin, polyimide resin, polyamide resin, acrylic resin and vinyl chloride resin. Can be mentioned. Above all, the synthetic resin is preferably at least one selected from the group consisting of polyolefin resin, polystyrene resin, polycarbonate resin, polyester resin, polyamide resin, polyurethane resin and acrylic resin. By using the above resin type as the synthetic resin, it becomes easy to obtain a resin molded product having more excellent design and transparency and suppressed coloring.
 なお、合成樹脂としてポリオレフィン樹脂を用いる場合、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂等を挙げることができる。シクロオレフィン樹脂としては、シクロオレフィンポリマー(COP)やシクロオレフィンコポリマー(COC)を用いることができる。シクロオレフィンコポリマー(COC)はエチレン・シクロオレフィンコポリマーであることが好ましい。合成樹脂としてシクロオレフィンポリマー(COP)やシクロオレフィンコポリマー(COC)を用いることにより、樹脂組成物から成形される樹脂成形体は光学レンズや光学フィルムとしてより好ましく用いられる。 When a polyolefin resin is used as the synthetic resin, examples of the polyolefin resin include polyethylene resin, polypropylene resin, and cycloolefin resin. As the cycloolefin resin, a cycloolefin polymer (COP) or a cycloolefin copolymer (COC) can be used. The cycloolefin copolymer (COC) is preferably an ethylene / cycloolefin copolymer. By using a cycloolefin polymer (COP) or a cycloolefin copolymer (COC) as a synthetic resin, a resin molded body molded from a resin composition is more preferably used as an optical lens or an optical film.
 樹脂組成物中に含まれる樹脂の融点は300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。樹脂の融点を上記範囲内とすることにより、着色が抑制された樹脂成形体を成形しやすくなる。 The melting point of the resin contained in the resin composition is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower. By setting the melting point of the resin within the above range, it becomes easy to mold a resin molded product in which coloring is suppressed.
 樹脂組成物における樹脂の含有量は、樹脂組成物の全質量に対して、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。また、樹脂の含有量は、樹脂組成物の全質量に対して、99.99質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99.0質量%以下であることがさらに好ましい。樹脂の含有量を上記範囲内とすることにより、意匠性や透明性に優れ、かつ着色が抑制された樹脂成形体が得られやすくなる。 The content of the resin in the resin composition is preferably 50% by mass or more, more preferably 65% by mass or more, and further preferably 80% by mass or more, based on the total mass of the resin composition. preferable. The content of the resin is preferably 99.99% by mass or less, more preferably 99.5% by mass or less, and 99.0% by mass or less with respect to the total mass of the resin composition. It is more preferable to have. By setting the resin content within the above range, it becomes easy to obtain a resin molded product having excellent designability and transparency and suppressed coloring.
<ゴム成分>
 樹脂組成物(ゴム組成物)中に含まれる樹脂はゴム成分であってもよい。ゴム成分としては、合成ゴムや天然ゴム等を挙げることができる。合成ゴムや天然ゴムは、架橋構造を有するゴムであってもよい。また、ゴム成分には、合成ゴムや天然ゴム等の固形ゴムの形成に用いられる生ゴム、ラテックスもしくはゴム溶液といった架橋前原料(架橋構造が実質的に形成されていない原料であり、架橋剤が硫黄である場合は加硫等による架橋構造が実質的に形成されていない原料)も含まれる。
<Rubber component>
The resin contained in the resin composition (rubber composition) may be a rubber component. Examples of the rubber component include synthetic rubber and natural rubber. The synthetic rubber or natural rubber may be a rubber having a crosslinked structure. Further, the rubber component includes a pre-crosslinking raw material such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber and natural rubber (a raw material in which a cross-linking structure is not substantially formed, and the cross-linking agent is sulfur. In the case of, a raw material in which a crosslinked structure is not substantially formed by vulcanization or the like) is also included.
 合成ゴムとしては、ジエン系ゴムを挙げることができる。ジエン系ゴムとしては、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、エチレン-プロピレン-ジエン共重合ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン等を挙げることができる。また、合成ゴムとしては、エチレン-プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等も挙げられる。天然ゴムとしては、天然ゴム(NR)に加えて、エポキシ化天然ゴム(ENR)等の改質天然ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上を混合して用いてもよい。また、これらのゴム成分は架橋構造を有さない架橋前原料であってもよく、架橋構造を有するものであってもよい。 Examples of synthetic rubber include diene-based rubber. Examples of the diene rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), and acrylonitrile-styrene-butadiene copolymer. Examples thereof include rubber, chloroprene rubber, styrene-isoprene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, and chlorosulfonated polyethylene. .. Examples of synthetic rubber include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluororubber, and urethane rubber. Examples of natural rubber include modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber, in addition to natural rubber (NR). These rubber components may be used alone or in combination of two or more. Further, these rubber components may be pre-crosslinking raw materials having no cross-linking structure, or may have a cross-linking structure.
 中でも、ゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種であることが好ましい。また、ゴム成分は、架橋前原料であってもよく、例えばゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種の架橋前原料であることが好ましい。また、ゴム成分が架橋前原料である場合、ゴム成分は、これらゴムのラテックスであることが好ましい。ゴム成分として上記ゴム成分を用いることにより、より意匠性に優れ、かつ着色が抑制された成形体が得られやすくなる。また、ゴム成分として上記ゴム成分を用いることにより、引張特性に優れた成形体が得られやすくなる。 Among them, the rubber component may be at least one selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. preferable. Further, the rubber component may be a raw material before cross-linking. For example, the rubber component may be natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. It is preferable that it is at least one kind of pre-cross-linking raw material selected from the group consisting of. When the rubber component is a pre-crosslinking raw material, the rubber component is preferably a latex of these rubbers. By using the above-mentioned rubber component as the rubber component, it becomes easy to obtain a molded product having more excellent design and suppressed coloring. Further, by using the rubber component as the rubber component, it becomes easy to obtain a molded product having excellent tensile properties.
 樹脂組成物(ゴム組成物)中にゴム成分が含まれる場合、ゴム成分の含有量は、ゴム組成物の全質量に対して、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。また、ゴム成分の含有量は、ゴム組成物の全質量に対して、99.99質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99.0質量%以下であることがさらに好ましい。なお、上記含有量は、ゴム組成物に含まれるゴム成分の固形分量である。ゴム成分の含有量を上記範囲内とすることにより、意匠性に優れ、かつ着色が抑制された成形体が得られやすくなる。また、ゴム成分の含有量を上記範囲内とすることにより、引張特性に優れた成形体が得られやすくなる。 When the rubber component is contained in the resin composition (rubber composition), the content of the rubber component is preferably 50% by mass or more, preferably 65% by mass or more, based on the total mass of the rubber composition. More preferably, it is more preferably 80% by mass or more. The content of the rubber component is preferably 99.99% by mass or less, more preferably 99.5% by mass or less, and 99.0% by mass or less with respect to the total mass of the rubber composition. Is more preferable. The above content is the solid content of the rubber component contained in the rubber composition. By setting the content of the rubber component within the above range, it becomes easy to obtain a molded product having excellent designability and suppressed coloring. Further, by setting the content of the rubber component within the above range, it becomes easy to obtain a molded product having excellent tensile properties.
(繊維状セルロース)
 本実施形態は、置換基導入量が0.5mmol/g未満の繊維状セルロースを含む。樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅は、1~100nmである。通常、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロース又はCNFともいう。本実施形態の樹脂組成物に含まれる繊維状セルロースは微細繊維状セルロースである。一実施形態においては、樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅は、1~10nmであることが好ましい。
(Fibrous cellulose)
The present embodiment contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g. The number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 100 nm. Usually, fibrous cellulose having a fiber width of 1000 nm or less is also referred to as fine fibrous cellulose or CNF. The fibrous cellulose contained in the resin composition of the present embodiment is fine fibrous cellulose. In one embodiment, the number average fiber width of the fibrous cellulose contained in the resin composition is preferably 1 to 10 nm.
 本実施形態において、微細繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であればよく、0.4mmol/g以下であることが好ましく、0.3mmol/g以下であることがより好ましく、0.2mmol/g以下であることがさらに好ましく、0.15mmol/g以下であることが特に好ましい。なお、微細繊維状セルロースにおける置換基導入量は、0.0mmol/gであってもよいが、0.03mmol/g以上であることが好ましく、0.04mmol/g以上であることがより好ましく、0.07mmol/g以上であることがさらに好ましい。本実施形態で用いる微細繊維状セルロースは、上記置換基導入量となるように、置換基を除去することで得られた微細繊維状セルロースであることが好ましい。なお、本明細書においては、このような微細繊維状セルロースを置換基除去微細繊維状セルロースともいう。 In the present embodiment, the amount of substituents introduced in the fine fibrous cellulose may be less than 0.5 mmol / g, preferably 0.4 mmol / g or less, and more preferably 0.3 mmol / g or less. It is more preferably 0.2 mmol / g or less, and particularly preferably 0.15 mmol / g or less. The amount of the substituent introduced in the fine fibrous cellulose may be 0.0 mmol / g, but is preferably 0.03 mmol / g or more, more preferably 0.04 mmol / g or more. It is more preferably 0.07 mmol / g or more. The fine fibrous cellulose used in the present embodiment is preferably fine fibrous cellulose obtained by removing the substituents so as to have the above-mentioned amount of the substituents introduced. In the present specification, such fine fibrous cellulose is also referred to as substituent-removed fine fibrous cellulose.
 樹脂組成物中に含まれる微細繊維状セルロースの数平均繊維幅は1~100nmであればよく、1~50nmであることが好ましく、1~40nmであることがより好ましく、1~30nmであることがさらに好ましく、1~20nmであることが特に好ましい。微細繊維状セルロースの数平均繊維幅は、1nm以上であればよいが、一実施形態においては、微細繊維状セルロースの数平均繊維幅は、10nmよりも大きいものであってもよい。 The number average fiber width of the fine fibrous cellulose contained in the resin composition may be 1 to 100 nm, preferably 1 to 50 nm, more preferably 1 to 40 nm, and 1 to 30 nm. Is more preferable, and 1 to 20 nm is particularly preferable. The number average fiber width of the fine fibrous cellulose may be 1 nm or more, but in one embodiment, the number average fiber width of the fine fibrous cellulose may be larger than 10 nm.
 また、一実施形態において、樹脂組成物中に含まれる微細繊維状セルロースの数平均繊維幅は1~10nmであることが好ましく、1~9nmであることがより好ましく、1~8nmであることがさらに好ましい。なお、本明細書において、繊維状セルロースには、微細繊維状セルロースが含まれるが、例えば、繊維幅が1000nmよりも大きい粗大セルロース繊維も含まれる。樹脂組成物に含まれる繊維状セルロースの数平均繊維幅が上記範囲内であるということは、樹脂組成物には、粗大セルロース繊維が実質的に含まれておらず、さらに、70%以上の繊維状セルロースの繊維幅が10nm以下であることを意味している。樹脂組成物に含まれる全繊維状セルロースのうち、繊維幅が10nm以下の微細繊維状セルロースの割合は、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。
 なお、この繊維幅が10nm以下の微細繊維状セルロースの割合とは、下記式で表される値である。
 繊維幅が10nm以下の微細繊維状セルロースの割合(%)=(繊維幅が10nm以下の微細繊維状セルロースの本数/全繊維状セルロースの本数)×100
Further, in one embodiment, the number average fiber width of the fine fibrous cellulose contained in the resin composition is preferably 1 to 10 nm, more preferably 1 to 9 nm, and more preferably 1 to 8 nm. More preferred. In the present specification, the fibrous cellulose includes fine fibrous cellulose, but also includes, for example, coarse cellulose fibers having a fiber width of more than 1000 nm. The fact that the number average fiber width of the fibrous cellulose contained in the resin composition is within the above range means that the resin composition does not substantially contain coarse cellulose fibers, and moreover, 70% or more of the fibers. It means that the fiber width of the plastic cellulose is 10 nm or less. Of the total fibrous cellulose contained in the resin composition, the proportion of fine fibrous cellulose having a fiber width of 10 nm or less is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
The ratio of the fine fibrous cellulose having a fiber width of 10 nm or less is a value represented by the following formula.
Percentage of fine fibrous cellulose having a fiber width of 10 nm or less (%) = (number of fine fibrous cellulose having a fiber width of 10 nm or less / number of total fibrous cellulose) × 100
 微細繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察を用いて以下のようにして測定される。まず、微細繊維状セルロースを、セルロースの濃度が0.01質量%以上0.1質量%以下となるように水に分散し、親水化処理したカーボン膜被覆グリッド上にキャストする。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(TEM、日本電子社製、JEOL-2000EX)により観察する。その際、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、倍率を調節する。この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維幅を目視で読み取る。このようにして3枚の重複しない観察画像を撮影し、各々2つの軸に交差する繊維の繊維幅の値を読み取る(20本以上×2×3=120本以上)。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 なお、樹脂組成物中に含まれる微細繊維状セルロースの数平均繊維幅は、上記方法で得られた繊維幅から算出される数平均値である。
The fiber width of the fine fibrous cellulose is measured as follows, for example, using electron microscopy. First, the fine fibrous cellulose is dispersed in water so that the concentration of the cellulose is 0.01% by mass or more and 0.1% by mass or less, and cast on a hydrophilized carbon film-coated grid. After drying this, it is stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the magnification is adjusted so that 20 or more fibers intersect the axis. After obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions are drawn for this image, and the fiber width of the fiber intersecting the axis is visually read. In this way, three non-overlapping observation images are taken, and the value of the fiber width of the fiber intersecting each of the two axes is read (20 or more × 2 × 3 = 120 or more).
(1) A straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The number average fiber width of the fine fibrous cellulose contained in the resin composition is a number average value calculated from the fiber width obtained by the above method.
 微細繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制できる。また、微細繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、微細繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and 0.1 μm or more and 600 μm or less. More preferred. By setting the fiber length within the above range, it is possible to suppress the destruction of the crystal region of the fine fibrous cellulose. Further, it is possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range. The fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
 微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 It is preferable that the fine fibrous cellulose has an I-type crystal structure. Here, the fact that the fine fibrous cellulose has an I-type crystal structure can be identified in the diffraction profile obtained from the wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatic with graphite. Specifically, it can be identified by having typical peaks at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. The ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. The crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
 微細繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less. By setting the axial ratio to the above lower limit value or more, it is easy to form a sheet containing fine fibrous cellulose. By setting the axial ratio to the above upper limit value or less, it is preferable in that handling such as dilution becomes easy when, for example, fibrous cellulose is treated as a dispersion liquid.
 本実施形態における微細繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、例えば、後述する微細繊維状セルロースの製造方法により実現されるものである。 The fine fibrous cellulose in this embodiment has, for example, both a crystalline region and a non-crystalline region. The fine fibrous cellulose having both a crystalline region and a non-crystalline region and having an axial ratio within the above range is realized by, for example, a method for producing fine fibrous cellulose described later.
 微細繊維状セルロースにおけるセルロース成分はα-セルロース成分とヘミセルロース成分に分類できる。ヘミセルロースの比率が低い方が、経時黄変や加熱黄変の抑制効果が得られやすいため好ましい。本実施形態の微細繊維状セルロースのヘミセルロースの比率は30%未満であることが好ましく、25%未満であることがより好ましく、20%未満であることがさらに好ましい。 The cellulose component in fine fibrous cellulose can be classified into α-cellulose component and hemicellulose component. A lower ratio of hemicellulose is preferable because it is easy to obtain an effect of suppressing yellowing over time and yellowing by heating. The ratio of hemicellulose to the fine fibrous cellulose of the present embodiment is preferably less than 30%, more preferably less than 25%, still more preferably less than 20%.
 微細繊維状セルロースに含まれる窒素と微細繊維状セルロース分散液中に含まれる遊離窒素の合計量(以下、「窒素量」、「微細繊維状セルロースに含まれる窒素量」もしくは、「微細繊維状セルロース中の窒素量」と呼ぶこともある)は0.09mmol/g以下であることが好ましく、0.08mmol/g以下であることがより好ましく、0.04mmol/g以下であることがさらに好ましく、0.02mmol/g以下であることが一層好ましい。また、微細繊維状セルロースに含まれる窒素量は0.001mmol/g以上であることが好ましい。なお、微細繊維状セルロース中の窒素量は、以下の方法で測定される値である。まず、微細繊維状セルロースを含む分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102:2016 44.1)で分解する。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出する。上記窒素量は、微細繊維状セルロースにイオン結合および/または共有結合で結合した窒素と、微細繊維状セルロースにイオン結合および/または共有結合で結合していない、分散液中に溶存した遊離窒素の合計量である。 Total amount of nitrogen contained in fine fibrous cellulose and free nitrogen contained in fine fibrous cellulose dispersion (hereinafter, "nitrogen amount", "nitrogen amount contained in fine fibrous cellulose" or "fine fibrous cellulose" The amount of nitrogen in the fiber) is preferably 0.09 mmol / g or less, more preferably 0.08 mmol / g or less, still more preferably 0.04 mmol / g or less. It is more preferably 0.02 mmol / g or less. The amount of nitrogen contained in the fine fibrous cellulose is preferably 0.001 mmol / g or more. The amount of nitrogen in the fine fibrous cellulose is a value measured by the following method. First, the dispersion liquid containing fine fibrous cellulose is adjusted to a solid content concentration of 1% by mass, and decomposed by the Kjeldahl method (JIS K 0102: 2016 44.1). After decomposition, the amount of ammonium ions (mmol) is measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g). The amount of nitrogen is the amount of nitrogen bonded to fine fibrous cellulose by ionic bond and / or covalent bond, and free nitrogen dissolved in the dispersion liquid which is not bound to fine fibrous cellulose by ionic bond and / or covalent bond. The total amount.
 本実施形態において、微細繊維状セルロースにおける置換基導入量は0.5mmol/g未満であり、ここで言う置換基は、アニオン性基であることが好ましい。すなわち、本実施形態の微細繊維状セルロースは、アニオン性基を有する微細繊維状セルロースに対して置換基除去処理を施して得られたものであり、本実施形態の微細繊維状セルロースは、置換基除去微細繊維状セルロースである。 In the present embodiment, the amount of the substituent introduced in the fine fibrous cellulose is less than 0.5 mmol / g, and the substituent referred to here is preferably an anionic group. That is, the fine fibrous cellulose of the present embodiment is obtained by subjecting the fine fibrous cellulose having an anionic group to a substituent removing treatment, and the fine fibrous cellulose of the present embodiment has a substituent. Removed fine fibrous cellulose.
 アニオン性基としては、たとえばリンオキソ酸基又はリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基又はカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、スルホン基又はスルホン基に由来する置換基(単にスルホン基ということもある)、ザンテート基又はザンテート基に由来する置換基(単にザンテート基ということもある)を挙げることができる。スルホン基またはスルホン基に由来する置換基が、エステル結合を介して導入されている場合、同置換基を、硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)ということもある。この中でも、アニオン性基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基、及び、スルホン基又はスルホン基に由来する置換基から選択される少なくとも1種であることが好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることがより好ましい。 Examples of the anionic group include a phosphate group or a substituent derived from a phosphorusoxo acid group (sometimes referred to simply as a phosphorusoxo acid group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), and the like. Examples include a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), a zantate group or a substituent derived from a zantate group (sometimes simply referred to as a zantate group). When a sulfone group or a substituent derived from a sulfone group is introduced via an ester bond, the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group). There is also). Among these, the anionic group is preferably at least one selected from a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid group, and a sulfone group or a substituent derived from a sulfone group, and is preferably a phosphorus oxo acid group or a substituent. More preferably, it is a substituent derived from a phosphoxoic acid group.
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各微細繊維状セルロースには、下記式(1)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。 The phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1). A plurality of substituents represented by the following formula (1) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (1) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。 In the formula (1), a, b and n are natural numbers, and m is an arbitrary number (where a = b × m). At least one of the n α and α'is O and the rest are R or OR. It is also possible that all of each α and α'are O −. The n αs may all be the same or different from each other. β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
 Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。 R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively. A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. Further, in the formula (1), n is preferably 1.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited. Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but the group is not particularly limited. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like. Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like. Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like. Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や微細繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。 As the derivative groups in R, to the main chain or side chain of the various hydrocarbon group, a carboxy group, a carboxylate group (-COO -), hydroxy group, selected from the functional groups such as an amino group and an ammonium group Examples thereof include functional groups in which at least one of them is added or substituted, but the functional group is not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphorus oxo acid group can be set to an appropriate range, the penetration into the fiber raw material is facilitated, and the yield of the fine cellulose fiber is increased. You can also do it. When a plurality of Rs are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of Rs present are the same. It may be different.
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や微細繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic onium ion. Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of β b + are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of β b + are present. They may be the same or different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited. ..
 リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。 Specific examples of the phosphoric acid group or the substituent derived from the phosphoric acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphoric acid group, and a phosphite group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group). Further, the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group). For example, it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (for example, a methylphosphonic acid group), or the like.
 また、スルホン基(スルホン基又はスルホン基に由来する置換基)は、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)であることが好ましく、例えば下記式(2)で表される置換基であることが好ましい。各微細繊維状セルロースには、下記式(2)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。 Further, the sulfone group (sulfo group or substituent derived from a sulfone group) is preferably a sulfur oxo acid group (sulfur oxo acid group or a substituent derived from a sulfur oxo acid group), for example, the following formula (2). It is preferably a substituent represented by. A plurality of substituents represented by the following formula (2) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、微細繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム又はカリウムのイオンが好ましいが、特に限定されない。 In the above structural formula, b and n are natural numbers, p is 0 or 1, and m is an arbitrary number (where 1 = b × m). When n is 2 or more, a plurality of ps may be the same number or different numbers. In the above structural formula, β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic onium ion. Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of types of substituents represented by the above formula (2) are introduced into the fine fibrous cellulose, the plurality of β b + may be the same or different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited.
 微細繊維状セルロースに対するアニオン性基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた微細繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of anionic groups introduced into the fine fibrous cellulose can be measured, for example, by the neutralization titration method. In the measurement by the neutralization titration method, the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fine fibrous cellulose.
 図1は、リンオキソ酸基を有する微細繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。微細繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、微細繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる微細繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(又はリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 1 is a graph showing the relationship between the amount of NaOH titrated and pH with respect to a slurry containing fine fibrous cellulose having a phosphoric acid group. The amount of the phosphorus oxo acid group introduced into the fine fibrous cellulose is measured, for example, as follows.
First, the slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained. The titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, two points are confirmed in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point was equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point. The amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total amount of dissociated acid in the fibrous cellulose. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g). The amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
In FIG. 1, the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region. For example, when the phosphoric acid group is a phosphoric acid group and the phosphoric acid group causes condensation, the amount of weakly acidic groups in the phosphoric acid group (also referred to as the second dissociated acid amount in the present specification) is apparently. It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. When the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximum.
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の微細繊維状セルロースの質量を示すことから、酸型の微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの微細繊維状セルロースの質量に変換することで、陽イオンCが対イオンである微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:微細繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned phosphorus oxo acid group introduction amount (mmol / g) indicates the mass of the acid-type fine fibrous cellulose, the amount of the phosphorus oxo acid group contained in the acid-type fine fibrous cellulose (hereinafter, phosphorus oxo acid). It is called the base amount (acid type)). On the other hand, when the counterion of the phosphorus oxo acid group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of the fine fibrous cellulose when the cation C is a counterion. By doing so, the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counter ion can be obtained.
That is, it is calculated by the following formula.
Amount of phosphorus oxo acid group (C type) = Amount of phosphorus oxo acid group (acid type) / {1+ (W-1) × A / 1000}
A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fine fibrous cellulose (total dissociated acid amount of the phosphoric acid group)
W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
 図2は、アニオン性基としてカルボキシ基を有する微細繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。微細繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、微細繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH of a dispersion liquid containing fine fibrous cellulose having a carboxy group as an anionic group. The amount of the carboxy group introduced into the fine fibrous cellulose is measured, for example, as follows.
First, the dispersion liquid containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained. The titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, in the curve plotting the pH measured with respect to the amount of alkali added, one point was confirmed where the increment (differential value of pH with respect to the amount of alkali dropped) became maximum, and this maximum point was the first. Called one end point. Here, the region from the start of titration to the first end point in FIG. 2 is referred to as a first region. The amount of alkali required in the first region is equal to the amount of carboxy groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fine fibrous cellulose to be titrated, so that the amount of carboxy group introduced (mmol) mmol / g) is calculated.
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の微細繊維状セルロースの質量であることから、酸型の微細繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの微細繊維状セルロースの質量に変換することで、陽イオンCが対イオンである微細繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid-type fine fibrous cellulose, the carboxy group amount of the acid-type fine fibrous cellulose (hereinafter referred to as the carboxy group amount (hereinafter referred to as carboxy group amount). It is called (acid type)). On the other hand, when the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of the fine fibrous cellulose when the cation C is a counterion. This makes it possible to determine the amount of carboxy group (hereinafter, carboxy group amount (C type)) possessed by the fine fibrous cellulose in which the cation C is a counterion. That is, it is calculated by the following formula.
Amount of carboxy group (C type) = Amount of carboxy group (acid type) / {1+ (W-1) x (amount of carboxy group (acid type)) / 1000}
W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
 滴定法によるアニオン性基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いアニオン性基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、微細繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 In the measurement of the amount of anionic groups by the titration method, accurate values can be obtained, such as when the amount of one drop of sodium hydroxide aqueous solution is too large, or when the titration interval is too short, the amount of anionic groups is lower than originally intended. Sometimes not. As an appropriate dropping amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds. Further, in order to eliminate the influence of carbon dioxide dissolved in the fine fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration. ..
 また、微細繊維状セルロースに対するスルホン基の導入量は、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料の硫黄量を測定することで算出することができる。具体的には、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、密閉容器中で硝酸を用いて加圧加熱分解した後、適宜希釈してICP-OESで硫黄量を測定する。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースのスルホン基量(単位:mmol/g)とする。 Further, the amount of the sulfone group introduced into the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing fine fibrous cellulose is freeze-dried, and the crushed sample is pressure-heated and decomposed with nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. do. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested is taken as the sulfone group amount (unit: mmol / g) of the fine fibrous cellulose.
 微細繊維状セルロースに対するザンテート基量の導入量は、Bredee法により以下の方法で測定することができる。まず、微細繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄する。次いで、サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌し、15分間放置する。溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とする。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加する。そして、この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定し、チオ硫酸ナトリウムの滴定量、微細繊維状セルロースの絶乾質量より次式からザンテート基量を算出する。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/微細繊維状セルロースの絶乾質量(g)
The amount of the zantate group introduced into the fine fibrous cellulose can be measured by the following method by the Bredee method. First, add 40 mL of saturated ammonium chloride solution to 1.5 parts by mass (absolute dry mass) of fine fibrous cellulose, mix well while crushing the sample with a glass rod, leave it for about 15 minutes, and then GFP filter paper (GS manufactured by ADVANTEC). Filter with -25) and wash thoroughly with saturated ammonium chloride solution. Then, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) is added, the mixture is stirred, and the mixture is left for 15 minutes. After adding the phenolphthalein solution until the solution turns pink, 1.5 M acetic acid is added, and the point at which the solution turns from pink to colorless is defined as the neutralization point. After neutralization, add 250 mL of distilled water, stir well, and add 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol / L iodine solution using a whole pipette. Then, this solution is titrated with a 0.05 mol / L sodium thiosulfate solution, and the amount of zantate group is calculated from the following formula from the titration amount of sodium thiosulfate and the absolute dry mass of the fine fibrous cellulose.
Zantate group amount (mmol / g) = (0.05 x 10 x 2-0.05 x sodium thiosulfate titration (mL)) / 1000 / absolute dry mass of fine fibrous cellulose (g)
 本実施形態において、微細繊維状セルロースは、カルバミド基を有していることが好ましい。本明細書において、カルバミド基は、下記構造式で表される基であることが好ましい。 In the present embodiment, the fine fibrous cellulose preferably has a carbamide group. In the present specification, the carbamide group is preferably a group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記構造式中、Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、又はこれらの誘導基である。中でも、Rは水素原子であることが特に好ましい。 In the above structural formula, R is a hydrogen atom, saturated-linear hydrocarbon group, saturated-branched chain hydrocarbon group, saturated-cyclic hydrocarbon group, unsaturated-linear hydrocarbon group, unsaturated-branched. A chain hydrocarbon group, an aromatic group, or an inducing group thereof. Above all, it is particularly preferable that R is a hydrogen atom.
 微細繊維状セルロースにおけるカルバミド基の導入量は、0.001mmol/g以上であることが好ましい。また、微細繊維状セルロースにおけるカルバミド基の導入量は、0.08mmol/g以下であることが好ましく、0.04mmol/g以下であることがより好ましく、0.02mmol/g以下であることがさらに好ましい。ここで、微細繊維状セルロースにおけるカルバミド基の導入量は、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、微量窒素分析することで算出することができる。微細繊維状セルロース単位質量あたりのカルバミド基の導入量(mmol/g)は、微量窒素分析で得られた微細繊維状セルロース単位質量あたりの窒素含有量(g/g)を窒素の原子量で除することで算出できる。 The amount of carbamide group introduced in the fine fibrous cellulose is preferably 0.001 mmol / g or more. The amount of the carbamide group introduced in the fine fibrous cellulose is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and further preferably 0.02 mmol / g or less. preferable. Here, the amount of carbamide group introduced in the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and further crushing the sample by performing a trace nitrogen analysis. The amount of carbamide group introduced per unit mass of fine fibrous cellulose (mmol / g) is obtained by dividing the nitrogen content (g / g) per unit mass of fine fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. Can be calculated by
 一実施形態において、微細繊維状セルロースを0.1質量%濃度の水分散液とし、下記式でナノファイバー収率を算出した場合、ナノファイバー収率は95質量%以上であることが好ましく、96質量%以上であることがより好ましい。なお、ナノファイバー収率は100質量%であってもよい。
 ナノファイバー収率[質量%]=C/0.1×100
 ここで、Cは、微細繊維状セルロースの濃度が0.1質量%の水分散液を、12000G、10分の条件で遠心分離した際に得られる上澄み液に含まれる微細繊維状セルロースの濃度である。
In one embodiment, when fine fibrous cellulose is used as an aqueous dispersion having a concentration of 0.1% by mass and the nanofiber yield is calculated by the following formula, the nanofiber yield is preferably 95% by mass or more, 96. More preferably, it is by mass or more. The nanofiber yield may be 100% by mass.
Nanofiber yield [mass%] = C / 0.1 × 100
Here, C is the concentration of the fine fibrous cellulose contained in the supernatant obtained by centrifuging the aqueous dispersion having a fine fibrous cellulose concentration of 0.1% by mass under the conditions of 12000 G for 10 minutes. be.
 一実施形態において、微細繊維状セルロースを0.2質量%濃度の水分散液とした場合、該水分散液のヘーズは45%以下であることが好ましく、35%以下であることがより好ましく、25%以下であることがさらに好ましい。また、一実施形態において、該水分散液のヘーズは5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。なお、水分散液のヘーズは0%であってもよい。ここで、水分散液のヘーズは、ヘーズメーターと光路長1cmの液体用ガラスセルを用い、JIS K 7136:2000に準拠して測定される値である。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置し、分散液の液温を23℃とする。 In one embodiment, when the fine fibrous cellulose is used as an aqueous dispersion having a concentration of 0.2% by mass, the haze of the aqueous dispersion is preferably 45% or less, more preferably 35% or less. It is more preferably 25% or less. Further, in one embodiment, the haze of the aqueous dispersion is preferably 5.0% or less, more preferably 4.0% or less, and further preferably 3.0% or less. The haze of the aqueous dispersion may be 0%. Here, the haze of the aqueous dispersion is a value measured in accordance with JIS K 7136: 2000 using a haze meter and a glass cell for liquid having an optical path length of 1 cm. The zero point measurement is performed with ion-exchanged water contained in the same glass cell. Further, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
 本実施形態において、微細繊維状セルロースを1質量%濃度の分散液(水分散液)とした場合、該分散液のpHは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましい。また、該分散液のpHは10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。分散液のpHを上記範囲とすることで、樹脂組成物や樹脂成形体の黄変をより効果的に抑制することができる。なお、分散液のpHを上記範囲とするために、後述する<pH調整工程>と同様の手法を取ることもできる。 In the present embodiment, when the fine fibrous cellulose is used as a dispersion liquid (water dispersion liquid) having a concentration of 1% by mass, the pH of the dispersion liquid is preferably 3 or more, more preferably 4 or more. It is more preferably 5 or more. The pH of the dispersion is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less. By setting the pH of the dispersion liquid in the above range, yellowing of the resin composition or the resin molded product can be suppressed more effectively. In order to keep the pH of the dispersion in the above range, the same method as in the <pH adjustment step> described later can be taken.
 一実施形態において、微細繊維状セルロースを0.4質量%濃度の分散液(水分散液)とした場合、該分散液の23℃における粘度は、100mPa・s以上であることが好ましく、1000mPa・s以上であることがより好ましく、2000mPa・s以上であることがさらに好ましい。また、該分散液の23℃における粘度は、200000mPa・s以下であることが好ましく、100000mPa・s以下であることがより好ましい。微細繊維状セルロース濃度が0.4質量%の分散液の粘度は、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定することができる。測定条件は23℃とし、回転速度3rpmとし、測定開始から3分後の粘度を測定する。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置し、分散液の液温を23℃とする。 In one embodiment, when the fine fibrous cellulose is used as a dispersion liquid (water dispersion liquid) having a concentration of 0.4% by mass, the viscosity of the dispersion liquid at 23 ° C. is preferably 100 mPa · s or more, preferably 1000 mPa · s. It is more preferably s or more, and further preferably 2000 mPa · s or more. The viscosity of the dispersion at 23 ° C. is preferably 200,000 mPa · s or less, and more preferably 100,000 mPa · s or less. The viscosity of the dispersion having a fine fibrous cellulose concentration of 0.4% by mass can be measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD). The measurement conditions are 23 ° C., the rotation speed is 3 rpm, and the viscosity is measured 3 minutes after the start of measurement. Further, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
 微細繊維状セルロースを含む分散液中の遊離窒素量は少ないことが好ましい。分散液中の遊離窒素量は微細繊維状セルロース分散液を濾過した際の濾液中の窒素濃度を測定することで測定が可能である。例えば、微細繊維状セルロース濃度が0.2質量%の分散液中の遊離窒素濃度は、100ppm以下であることが好ましく、80ppm以下であることがより好ましく、70ppm以下であることがさらに好ましく、60ppm以下であることが一層好ましく、50ppm以下であることがより一層好ましく、40ppm以下であることがさらに一層好ましく、30ppm以下であることが特に好ましい。なお、微細繊維状セルロース濃度が0.2質量%の分散液中の窒素濃度は0ppmであってもよい。分散液中に存在する遊離窒素は、着色の原因となるため、濾液中の窒素濃度を上記範囲内とすることにより、微細繊維状セルロースを含む樹脂組成物や樹脂成形体の黄変をより効果的に抑制することができる。ここで、濾液中の窒素濃度の測定方法は以下のとおりである。まず、微細繊維状セルロース濃度が0.2質量%となるように蒸留水を添加し、24時間撹拌後、孔径0.45μmの濾材を使用して濾過を行い濾液を得る。そして、微量窒素分析により濾液中の窒素濃度(ppm)を測定する。 It is preferable that the amount of free nitrogen in the dispersion containing fine fibrous cellulose is small. The amount of free nitrogen in the dispersion can be measured by measuring the nitrogen concentration in the filtrate when the fine fibrous cellulose dispersion is filtered. For example, the free nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 70 ppm or less, and even more preferably 60 ppm. It is more preferably less than or equal to, more preferably 50 ppm or less, further preferably 40 ppm or less, and particularly preferably 30 ppm or less. The nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass may be 0 ppm. Since free nitrogen present in the dispersion liquid causes coloring, setting the nitrogen concentration in the filtrate within the above range is more effective for yellowing of the resin composition containing fine fibrous cellulose and the resin molded body. Can be suppressed. Here, the method for measuring the nitrogen concentration in the filtrate is as follows. First, distilled water is added so that the concentration of fine fibrous cellulose is 0.2% by mass, and after stirring for 24 hours, filtration is performed using a filter medium having a pore size of 0.45 μm to obtain a filtrate. Then, the nitrogen concentration (ppm) in the filtrate is measured by trace nitrogen analysis.
 樹脂組成物における微細繊維状セルロースの含有量は、樹脂組成物の全質量に対して、0.01質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。また、微細繊維状セルロースの含有量は、樹脂組成物の全質量に対して、50質量%以下であることが好ましく、35質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。微細繊維状セルロースの含有量を上記範囲内とすることにより、意匠性や透明性に優れ、かつ着色が抑制された樹脂成形体が得られやすくなる。また、微細繊維状セルロースの含有量を上記範囲内とすることにより、樹脂組成物を成形してなる樹脂成形体の機械的強度を高めることも可能となり、樹脂組成物がゴム組成物の場合には、ゴム組成物を成形してなる成形体の引張特性を高めることもできる。 The content of the fine fibrous cellulose in the resin composition is preferably 0.01% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the resin composition. It is more preferably 0% by mass or more. The content of the fine fibrous cellulose is preferably 50% by mass or less, more preferably 35% by mass or less, and more preferably 20% by mass or less, based on the total mass of the resin composition. More preferred. By setting the content of the fine fibrous cellulose within the above range, it becomes easy to obtain a resin molded product having excellent designability and transparency and suppressed coloring. Further, by setting the content of the fine fibrous cellulose within the above range, it is possible to increase the mechanical strength of the resin molded product obtained by molding the resin composition, and when the resin composition is a rubber composition. Can also enhance the tensile properties of a molded product obtained by molding a rubber composition.
(任意成分)
 本実施形態の樹脂組成物は、上述した樹脂と繊維状セルロースに加えて、任意成分が含まれていてもよい。任意成分としては、例えば、フィラー、顔料、染料、紫外線吸収剤等が挙げられる。
(Optional ingredient)
The resin composition of the present embodiment may contain an optional component in addition to the above-mentioned resin and fibrous cellulose. Examples of the optional component include fillers, pigments, dyes, ultraviolet absorbers and the like.
 また、樹脂組成物には、任意成分として、水溶性有機化合物が含まれていてもよい。水溶性有機化合物としては、例えば、糖や水溶性高分子、尿素等を挙げることができる。具体的には、トレハロース、尿素、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、カルボキシメチルセルロース、ポリビニルアルコール(PVA)等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。 Further, the resin composition may contain a water-soluble organic compound as an optional component. Examples of the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like. In addition, as water-soluble organic compounds, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide. , Xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
 さらに、樹脂組成物には、任意成分として公知の顔料が含まれていてもよい。顔料としては、例えば、カオリン(含クレー)、炭酸カルシウム、酸化チタン、酸化亜鉛、非晶質シリカ(含コロイダルシリカ)、酸化アルミニウム、ゼオライト、セピオライト、スメクタイト、合成スメクタイト、珪酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、珪藻土、スチレン系プラスチックピグメント、ハイドロタルサイト、尿素樹脂系プラスチックピグメント、ベンゾグアナミン系プラスチックピグメント等が挙げられる。 Further, the resin composition may contain a known pigment as an optional component. Pigments include, for example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, and oxidation. Examples thereof include magnesium, diatomaceous earth, styrene-based plastic pigments, hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
 また、樹脂組成物がゴム組成物の場合には、任意成分として、例えば、フィラー、顔料、染料、紫外線吸収剤、分散剤、架橋剤(硫黄、硫黄化合物など)、架橋促進剤(加硫促進剤など)、架橋促進助剤(加硫促進助剤など)、シランカップリング剤、硬化剤、オイル、硬化レジン、ワックス、老化防止剤等が挙げられる。なお、上述したゴム成分が、合成ゴムや天然ゴム等の固形ゴムの形成に用いられる生ゴム、ラテックスもしくはゴム溶液といった架橋前原料(加硫等による架橋構造が実質的に形成されていない原料)である場合、上記任意成分中の硫黄、又はその他の架橋剤は必須成分である。なお、上述したゴム成分が、合成ゴムや天然ゴム等の固形ゴムの形成に用いられる生ゴム、ラテックスもしくはゴム溶液といった架橋前原料である場合、ゴム組成物を成形してなる成形体において、上記任意成分中の硫黄、又はその他の架橋剤は、これら化合物に由来した架橋構造として存在する。 When the resin composition is a rubber composition, as optional components, for example, fillers, pigments, dyes, ultraviolet absorbers, dispersants, cross-linking agents (sulfur, sulfur compounds, etc.), cross-linking accelerators (vulcanization promotion). Agents, etc.), cross-linking accelerators (vulcanization accelerators, etc.), silane coupling agents, curing agents, oils, curing resins, waxes, antiaging agents, etc. The above-mentioned rubber component is a pre-crosslinking raw material (a raw material in which a cross-linked structure is not substantially formed by vulcanization or the like) such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber and natural rubber. In some cases, the sulfur in the optional ingredients, or other cross-linking agents, is an essential ingredient. When the above-mentioned rubber component is a pre-crosslinking raw material such as raw rubber, latex or rubber solution used for forming solid rubber such as synthetic rubber or natural rubber, the above-mentioned optional material is formed by molding a rubber composition. Sulfur in the components, or other cross-linking agents, exists as a cross-linked structure derived from these compounds.
 ゴム組成物には、任意成分として、上述した水溶性有機化合物や顔料が含まれていてもよい。 The rubber composition may contain the above-mentioned water-soluble organic compound or pigment as an optional component.
 なお、任意成分の含有量は、樹脂組成物(ゴム組成物)の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 The content of the optional component is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less, based on the total mass of the resin composition (rubber composition). It is more preferable to have.
(微細繊維状セルロースの製造方法)
 上述した微細繊維状セルロースは、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程(A)を経て得られるものであることが好ましい。ここで、工程(A)に供される微細繊維状セルロースが有する置換基はアニオン性基であることが好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることがより好ましい。さらに、工程(A)に供される微細繊維状セルロースはカルバミド基を有することが好ましい。
(Manufacturing method of fine fibrous cellulose)
The above-mentioned fine fibrous cellulose is preferably obtained through the step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. .. Here, the substituent contained in the fine fibrous cellulose used in the step (A) is preferably an anionic group, and more preferably a phosphoxoic acid group or a substituent derived from the phosphoxoic acid group. Further, the fine fibrous cellulose used in the step (A) preferably has a carbamide group.
 また、一実施形態においては、上述した微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程(A)と、工程(A)の後に、均一分散処理する工程(B)とを含むものであることが好ましい。 Further, in one embodiment, the above-mentioned method for producing fine fibrous cellulose has a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less (A). ) And the step (B) of performing the uniform dispersion treatment after the step (A) are preferably included.
(工程(A))
 工程(A)は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程である。以下では、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロース(工程(A)に供される微細繊維状セルロース)の製造方法について説明する。
(Step (A))
The step (A) is a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. Hereinafter, a method for producing fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less (fine fibrous cellulose used in step (A)) will be described.
<繊維原料>
 工程(A)に供される微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、及び脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)及び酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)及びケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)及びサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンター及びコットンリント等の綿系パルプ、麻、麦わら及びバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプ及び脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
<Fiber raw material>
The fine fibrous cellulose used in the step (A) is produced from a fiber raw material containing cellulose. The fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp. The wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP). ) And chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), etc. Examples include mechanical pulp. The non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse. The deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper. As the pulp of this embodiment, one of the above may be used alone, or two or more of them may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability. Further, among wood pulps, it is possible to obtain long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during defibration treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio. From the viewpoint, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable. It should be noted that the viscosity tends to be high when the fine fibrous cellulose of long fibers having a large axial ratio is used.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As the fiber raw material containing cellulose, for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can also be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
<リンオキソ酸基導入工程>
 工程(A)に供される微細繊維状セルロースは置換基を有する。このため、工程(A)に供される微細繊維状セルロースの製造工程は、置換基導入工程を有することが好ましく、アニオン性基導入工程を有することがより好ましい。アニオン性基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
<Linoxo acid group introduction process>
The fine fibrous cellulose used in the step (A) has a substituent. Therefore, the process for producing the fine fibrous cellulose used in the step (A) preferably includes a substituent introduction step, and more preferably an anionic group introduction step. Examples of the anionic group introduction step include a phosphorus oxo acid group introduction step. In the phosphorus oxo acid group introduction step, at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is used as cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行うことが好ましい。 In the phosphorus oxo acid group introduction step according to the present embodiment, the reaction between the fiber raw material containing cellulose and compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). Is preferable.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態又はスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態又は湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物A及び化合物Bは、それぞれ粉末状又は溶媒に溶解させた溶液状又は融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 As an example of the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B, there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state. Of these, since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state. The form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example. Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of powder, in the form of a solution dissolved in a solvent, or in the state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture. The method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, a required amount of compound A and compound B may be added to the fiber raw material, or an excess amount of compound A and compound B may be added to the fiber raw material, respectively, and then the surplus compound A and compound B may be added by pressing or filtering. It may be removed.
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸又は脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩又は亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、又は亜リン酸、亜リン酸ナトリウムがより好ましい。 The compound A used in this embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration condensed phosphoric acid or a salt thereof. Examples thereof include salts and anhydrous phosphoric acid (diphosphoric pentoxide), but the present invention is not particularly limited. As the phosphoric acid, those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used. Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid). The dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Examples of the phosphate, sulphate, and dehydration-condensed phosphoric acid include phosphoric acid, sulphite, or lithium salt of dehydration-condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like. It can be a sum. Of these, from the viewpoints of high efficiency of introducing phosphoric acid group, easy improvement of defibration efficiency in the defibration process described later, low cost, and easy industrial application, phosphoric acid and sodium phosphate Salt, potassium salt of phosphoric acid, ammonium salt or phosphoric acid of phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, ammonium salt of phosphoric acid are preferable, and phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. By setting the amount of phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by setting the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、及び1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
The compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
From the viewpoint of improving the uniformity of the reaction, compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類又はアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and compound A, for example, amides or amines may be contained in the reaction system in addition to compound B. Examples of the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine in particular is known to act as a good reaction catalyst.
 リンオキソ酸基導入工程においては、繊維原料に化合物A及び化合物Bを添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置、熱風乾燥装置を用いることができる。 In the phosphorus oxo acid group introduction step, it is preferable to add or mix the compound A and the compound B to the fiber raw material and then heat-treat the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band. A mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, a high frequency drying device, and a hot air drying device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. Can be adopted. This makes it possible to suppress unevenness in the concentration of compound A in the fiber raw material and to more uniformly introduce the phosphoric acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 Further, the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the acid hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable. In the present embodiment, the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
 リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。 The phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
 リンオキソ酸基導入工程におけるリンオキソ酸基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、リンオキソ酸基の導入量は、たとえば繊維原料1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。なお、リンオキソ酸基導入工程におけるリンオキソ酸基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。リンオキソ酸基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量を上記範囲内とすることができ、その結果、最終的な繊維幅が100nm以下もしくは10nm以下の微細繊維状セルロースを製造しやすくなる。また、微細繊維状セルロースを含む樹脂成形体の意匠性や透明性をより効果的に高めることができ、樹脂組成物がゴム組成物の場合には成形体の引張特性をより効果的に高めることができる。 The amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and more preferably 0.80 mmol / g per 1 g (mass) of the fiber raw material. It is more preferably g or more, further preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the phosphorus oxo acid group introduced is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable to have. The fact that the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. do. By setting the introduction amount of the phosphoxoic acid group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the final fiber width can be obtained. It becomes easy to produce fine fibrous cellulose having a diameter of 100 nm or less or 10 nm or less. Further, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
<カルボキシ基導入工程>
 工程(A)に供される微細繊維状セルロースの製造工程は、アニオン性基導入工程として、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、又はカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
<Carboxy group introduction process>
The step of producing the fine fibrous cellulose used in the step (A) may include a carboxy group introduction step as an anionic group introduction step. The carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. It is carried out by treatment with an acid anhydride of a compound or a derivative thereof.
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。 The compound having a group derived from a carboxylic acid is not particularly limited, and for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, citric acid, aconitic acid and the like. Examples include tricarboxylic acid compounds. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized acid anhydride of a compound having a carboxy group and an acid anhydride derivative of a compound having a carboxy group. The imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinic acidimide, and phthalateimide.
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。 The acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. Acid anhydride is mentioned. The derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。 When the TEMPO oxidation treatment is performed in the carboxy group introduction step, it is preferable to perform the treatment under conditions of pH 6 or more and 8 or less, for example. Such a treatment is also referred to as a neutral TEMPO oxidation treatment. The neutral TEMPO oxidation treatment includes, for example, sodium phosphate buffer (pH = 6.8), pulp as a fiber raw material, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst, and the like. This can be done by adding a nitroxy radical and sodium hypochlorite as a sacrificial reagent. Further, by coexisting with sodium chlorite, the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group. Further, the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment. The alkaline TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
 カルボキシ基導入工程におけるカルボキシ基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.65mmol/g以上であることがより好ましい。また、カルボキシ基の導入量は、たとえば繊維原料1g(質量)あたり3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが特に好ましい。なお、カルボキシ基導入工程におけるカルボキシ基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。カルボキシ基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内とすることができ、その結果、繊維幅が100nm以下もしくは10nm以下の微細繊維状セルロースを製造しやすくなる。また、微細繊維状セルロースを含む樹脂成形体の意匠性や透明性をより効果的に高めることができ、樹脂組成物がゴム組成物の場合には成形体の引張特性をより効果的に高めることができる。 The amount of carboxy group introduced in the carboxy group introduction step is preferably 0.60 mmol / g or more, more preferably 0.65 mmol / g or more per 1 g (mass) of the fiber raw material. The amount of the carboxy group introduced is, for example, preferably 3.65 mmol / g or less, more preferably 3.00 mmol / g or less, and 2.50 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable, and it is particularly preferable that it is 2.00 mmol / g or less. The fact that the amount of the carboxy group introduced in the carboxy group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. By setting the introduction amount of the carboxy group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less. Further, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
<スルホン基(硫黄オキソ酸基)導入工程>
 工程(A)に供される微細繊維状セルロースの製造工程は、アニオン性基導入工程として、スルホン基導入工程を含んでもよい。スルホン基導入工程は、セルロースを含む繊維原料が有する水酸基とスルホン酸が反応することで、スルホン基を有するセルロース繊維(スルホン基導入繊維)を得ることができる。
<Sulfone group (sulfur oxoacid group) introduction process>
The step of producing the fine fibrous cellulose provided in the step (A) may include a sulfone group introduction step as an anionic group introduction step. In the sulfone group introduction step, cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfonic acid.
 スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、スルホン基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、たとえば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。 In the sulfone group introduction step, at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned <phosphoroxo acid group introduction step>. A compound (hereinafter, also referred to as “Compound C”) is used. The compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfurous acid or a salt thereof, and sulfate amide, but the compound C is not particularly limited. As the sulfuric acid, those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used. Examples of sulfurous acid include 5% sulfurous acid water. Examples of the sulfate or sulfite include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees. As the sulfuric acid amide, sulfamic acid or the like can be used. In the sulfone group introduction step, it is preferable to use the compound B in the above-mentioned <phosphoroacid group introduction step> in the same manner.
 スルホン基導入工程においては、セルロース原料にスルホン酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、スルホン基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。 In the sulfone group introduction step, it is preferable to mix the cellulose raw material with an aqueous solution containing sulfonic acid and urea and / or a urea derivative, and then heat-treat the cellulose raw material. As the heat treatment temperature, it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher. The heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
 加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、スルホン酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置、熱風乾燥装置を用いることができる。 In the heat treatment step, it is preferable to heat until the water content is substantially eliminated. Therefore, the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfonic acid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10,000 seconds or less. Is preferable. Equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band type drying. An apparatus, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, a high frequency drying device, and a hot air drying device can be used.
 スルホン基導入工程におけるスルホン基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、スルホン基の導入量は、たとえば繊維原料1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。なお、スルホン基導入工程におけるスルホン基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。スルホン基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内とすることができ、その結果、繊維幅が100nm以下もしくは10nm以下の微細繊維状セルロースを製造しやすくなる。また、微細繊維状セルロースを含む樹脂成形体の意匠性や透明性をより効果的に高めることができ、樹脂組成物がゴム組成物の場合には成形体の引張特性をより効果的に高めることができる。 The amount of the sulfone group introduced in the sulfone group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the sulfone group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. The fact that the amount of the sulfone group introduced in the sulfone group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. By setting the introduction amount of the sulfone group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less. Further, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
<ザンテート基導入工程>
 工程(A)に供される微細繊維状セルロースの製造工程は、アニオン性基導入工程として、ザンテート基導入工程を含んでもよい。ザンテート基導入工程は、セルロースを含む繊維原料が有する水酸基を下記式(2)で表されるザンテート基で置換することで、ザンテート基を有するセルロース繊維(ザンテート基導入繊維)を得ることができる。
 ―OCSS……(2)
 ここで、Mは水素イオン、一価金属イオン、アンモニウムイオン、脂肪族又は芳香族アンモニウムイオンから選ばれる少なくとも一種である。
<Zantate group introduction process>
The step of producing the fine fibrous cellulose used in the step (A) may include a zantate group introduction step as an anionic group introduction step. In the zantate group introduction step, a cellulose fiber having a zantate group (zantate group-introduced fiber) can be obtained by substituting the hydroxyl group of the fiber raw material containing cellulose with a zantate group represented by the following formula (2).
―OCSS M …… (2)
Here, M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, aliphatic or aromatic ammonium ions.
 ザンテート基導入工程では、まず、上記セルロースを含む繊維原料をアルカリ溶液で処理するアルカリ処理を行って、アルカリセルロースを得る。アルカリ溶液としては、水酸化アルカリ金属水溶液、水酸化アルカリ土類金属水溶液などが挙げられる。中でも、アルカリ溶液は、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリ金属水溶液であることが好ましく、水酸化ナトリウム水溶液であることが特に好ましい。アルカリ溶液が水酸化アルカリ金属水溶液の場合、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は4質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は9質量%以下であることが好ましい。水酸化アルカリ金属濃度を上記下限値以上とすることにより、セルロースのマーセル化を十分に進行させることができ、その後のザンテート化の際に生じる副生成物の量を減らすことができ、結果として、ザンテート基導入繊維の収率を高めることができる。これにより、後述する解繊処理をより効果的に行うことができる。また、水酸化アルカリ金属濃度を上記上限値以下とすることにより、マーセル化を進行させつつも、セルロースの結晶領域にまで水酸化アルカリ金属水溶液が浸透することを抑制することができるため、セルロースI型の結晶構造が維持されやすくなり、微細繊維状セルロースの収率をより高めることができる。 In the zantate group introduction step, first, the fiber raw material containing cellulose is treated with an alkaline solution to obtain alkaline cellulose. Examples of the alkaline solution include an aqueous solution of an alkali metal hydroxide and an aqueous solution of an alkaline earth metal hydroxide. Above all, the alkaline solution is preferably an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous solution of sodium hydroxide. When the alkaline solution is an alkaline alkali metal hydroxide aqueous solution, the alkali metal hydroxide concentration in the alkali metal hydroxide aqueous solution is preferably 4% by mass or more, and more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less. By setting the alkali metal hydroxide concentration to the above lower limit or higher, the mercerization of cellulose can be sufficiently promoted, and the amount of by-products generated during the subsequent zantate formation can be reduced, and as a result, it is possible to reduce the amount of by-products. The yield of the zantate group-introduced fiber can be increased. As a result, the defibration treatment described later can be performed more effectively. Further, by setting the alkali metal hydroxide concentration to the above upper limit value or less, it is possible to suppress the permeation of the alkali metal hydroxide aqueous solution into the crystal region of cellulose while promoting mercerization, so that the cellulose I The crystal structure of the mold can be easily maintained, and the yield of fine fibrous cellulose can be further increased.
 上記アルカリ処理の時間は、30分間以上であることが好ましく、1時間以上であることがより好ましい。また、アルカリ処理の時間は、6時間以下であることが好ましく、5時間以下であることがより好ましい。アルカリ処理の時間を上記範囲内とすることにより、最終的な収率を高めることができ、生産性を高めることができる。 The time of the alkali treatment is preferably 30 minutes or more, and more preferably 1 hour or more. The alkali treatment time is preferably 6 hours or less, and more preferably 5 hours or less. By setting the alkali treatment time within the above range, the final yield can be increased and the productivity can be increased.
 上記アルカリ処理で得られたアルカリセルロースは、その後に固液分離して水溶液分をできるだけ除去しておくことが好ましい。これにより、次いで行われるザンテート化処理時の水分含有量を減らすことができ、反応を促進できる。固液分離の方法としては、例えば遠心分離や濾別などの一般的な脱水方法を用いることができる。なお、固液分離後のアルカリセルロースに含まれる水酸化アルカリ金属の濃度は固液分離後のアルカリセルロースの全質量に対して3質量%以上8質量%以下であることが好ましい。 It is preferable that the alkaline cellulose obtained by the above alkaline treatment is then solid-liquid separated to remove the aqueous solution as much as possible. As a result, the water content in the subsequent zantate treatment can be reduced and the reaction can be promoted. As a solid-liquid separation method, a general dehydration method such as centrifugation or filtration can be used. The concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
 ザンテート基導入工程では、アルカリ処理の後にザンテート化処理工程を行う。ザンテート化処理工程ではアルカリセルロースに二硫化炭素(CS)を反応させて、(-ONa)基を(-OCSSNa)基にしてザンテート基導入繊維を得る。なお、上記において、アルカリセルロースに導入された金属イオンは、代表してNaで記述しているが、他のアルカリ金属イオンでも同様の反応が進行する。 In the zantate group introduction step, the zantate treatment step is performed after the alkali treatment. The xanthate treatment process by reacting carbon disulfide (CS 2) in the alkali cellulose, (- O - Na +) group (-OCSS - Na +) to obtain a xanthate group introduction fibers based on. In the above, the metal ion introduced into the alkali cellulose is represented by Na + , but the same reaction proceeds with other alkali metal ions.
 ザンテート化処理では、アルカリセルロース中のセルロースの絶乾質量に対して、10質量%以上の二硫化炭素を供給することが好ましい。また、ザンテート化処理において、二硫化炭素とアルカリセルロースとが接触する時間は、30分以上であることが好ましく、1時間以上であることがより好ましい。アルカリセルロースに二硫化炭素が接触することでザンテート化は速やかに進行するが、アルカリセルロースの内部にまで二硫化炭素が浸透するには時間がかかるため、反応時間を上記範囲とすることが好ましい。一方で、二硫化炭素とアルカリセルロースとが接触する時間は6時間以下であればよく、これにより脱水後のアルカリセルロースの塊に対しても十分に浸透が進んで、反応可能なザンテート化をほぼ完了させることができる。 In the zantate treatment, it is preferable to supply 10% by mass or more of carbon disulfide with respect to the absolute dry mass of cellulose in alkaline cellulose. Further, in the zantate treatment, the contact time between carbon disulfide and alkaline cellulose is preferably 30 minutes or more, and more preferably 1 hour or more. When carbon disulfide comes into contact with the alkaline cellulose, zantate formation proceeds rapidly, but it takes time for the carbon disulfide to penetrate into the inside of the alkaline cellulose, so the reaction time is preferably set within the above range. On the other hand, the contact time between carbon disulfide and alkaline cellulose may be as long as 6 hours or less, which allows sufficient penetration into the dehydrated alkaline cellulose lumps and almost all the reactionable zantate. Can be completed.
 ザンテート化処理における反応温度は、46℃以下であることが好ましい。反応温度を上記範囲内とすることにより、アルカリセルロースの分解を抑制し易くなる。また、反応温度を上記範囲内とすることにより、均一に反応し易くなるため、副生成物の生成を抑制でき、さらには、生成したザンテート基が除去されることを抑制することもできる。 The reaction temperature in the zantate treatment is preferably 46 ° C. or lower. By setting the reaction temperature within the above range, it becomes easy to suppress the decomposition of alkaline cellulose. Further, by setting the reaction temperature within the above range, it becomes easy to react uniformly, so that it is possible to suppress the formation of by-products and further suppress the removal of the formed zantate groups.
 ザンテート基導入工程におけるザンテート基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、ザンテート基の導入量は、たとえば繊維原料1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。なお、ザンテート基導入工程におけるザンテート基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。ザンテート基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内とすることができ、その結果、繊維幅が100nm以下もしくは10nm以下の微細繊維状セルロースを製造しやすくなる。また、微細繊維状セルロースを含む樹脂成形体の意匠性や透明性をより効果的に高めることができ、樹脂組成物がゴム組成物の場合には成形体の引張特性をより効果的に高めることができる。 The amount of the zantate group introduced in the zantate group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the zantate group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. The fact that the amount of the zantate group introduced in the zantate group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. By setting the introduction amount of the zantate group within the above range, the introduction amount of the substituent of the fine fibrous cellulose used in the step (A) can be within the above range, and as a result, the fiber width is 100 nm or less or It becomes easy to produce fine fibrous cellulose of 10 nm or less. Further, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product can be more effectively enhanced. Can be done.
<洗浄工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<Washing process>
In the step of producing the fine fibrous cellulose used in the step (A), a washing step can be performed on the anionic group-introduced fiber, if necessary. The washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleaning steps performed in each cleaning step is not particularly limited.
<アルカリ処理工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
<Alkaline treatment process>
In the step of producing the fine fibrous cellulose used in the step (A), the fiber raw material may be treated with an alkali between the step of introducing an anionic group and the step of the defibration treatment described later. The alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the anionic group-introduced fiber in an alkaline solution.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウム又は水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水又は有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、又はアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、又は水酸化カリウム水溶液が好ましい。 The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In this embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility. Further, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower. The immersion time of the anionic group-introduced fiber in the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったアニオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkaline treatment step, the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
<酸処理工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment process>
In the step of producing the fine fibrous cellulose used in the step (A), the fiber raw material may be acid-treated between the step of introducing an anionic group and the defibration treatment step described later. For example, the anionic group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸又は硫酸を用いることが特に好ましい。 The method of acid treatment is not particularly limited, and examples thereof include a method of immersing a fiber raw material in an acidic liquid containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less. The pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic liquid, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
<窒素除去処理>
 工程(A)に供される微細繊維状セルロースの製造工程は、繊維状セルロースに導入された窒素量や系内に存在する窒素量を低減させる工程(窒素除去処理工程)をさらに含んでもよい。窒素量を低減させることで、さらに着色を抑制し得る微細繊維状セルロースを得ることができる。窒素除去処理工程は、後述する工程(B)における均一分散処理工程の後に設けられてもよいが、後述する工程(B)における均一分散処理工程の前に設けられることが好ましい。また、後述する工程(A)における解繊処理工程の前に設けられることが好ましい。
<Nitrogen removal treatment>
The step of producing the fine fibrous cellulose provided in the step (A) may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the amount of nitrogen, it is possible to obtain fine fibrous cellulose that can further suppress coloring. The nitrogen removal treatment step may be provided after the uniform dispersion treatment step in the step (B) described later, but is preferably provided before the uniform dispersion treatment step in the step (B) described later. Further, it is preferably provided before the defibration treatment step in the step (A) described later.
 窒素除去処理工程においては、アニオン性基導入繊維を含むスラリーのpHを10以上に調整し、加熱処理を行うことが好ましい。加熱処理においては、スラリーの液温を50℃以上100℃以下とすることが好ましく、加熱時間は15分以上180分以下とすることが好ましい。アニオン性基導入繊維を含むスラリーのpHを調整する際には、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 In the nitrogen removal treatment step, it is preferable to adjust the pH of the slurry containing the anionic group-introduced fiber to 10 or more and perform the heat treatment. In the heat treatment, the liquid temperature of the slurry is preferably 50 ° C. or higher and 100 ° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or lower. When adjusting the pH of the slurry containing the anionic group-introduced fiber, it is preferable to add an alkaline compound that can be used in the above-mentioned alkali treatment step to the slurry.
 窒素除去処理工程の後、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、各洗浄工程において実施される洗浄回数は、特に限定されない。 After the nitrogen removal treatment step, a cleaning step can be performed on the anionic group-introduced fiber as needed. The washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the number of cleanings performed in each cleaning step is not particularly limited.
<解繊処理>
 工程(A)に供される微細繊維状セルロースの製造工程は、解繊処理工程を含む。これにより、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザーを用いるのがより好ましい。
<Defibration treatment>
The step of producing the fine fibrous cellulose used in the step (A) includes a defibration treatment step. As a result, fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less can be obtained. In the defibration treatment step, for example, a defibration treatment apparatus can be used. The defibration processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disk type refiner, a conical refiner, a twin-screw kneader, etc. A vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, a beater, or the like can be used. Among the above-mentioned defibration processing devices, it is more preferable to use a high-speed defibrator and a high-pressure homogenizer, which are less affected by the crushing media and have less risk of contamination.
 解繊処理工程における処理条件は特に限定されないが、例えば高圧ホモジナイザーを用いる場合は、処理時の圧力は1MPa以上350MPa以下が好ましく、10MPa以上300MPa以下がより好ましく、50MPa以上250MPa以下がさらに好ましい。 The treatment conditions in the defibration treatment step are not particularly limited, but for example, when a high-pressure homogenizer is used, the pressure during treatment is preferably 1 MPa or more and 350 MPa or less, more preferably 10 MPa or more and 300 MPa or less, and further preferably 50 MPa or more and 250 MPa or less.
 解繊処理工程においては、たとえばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、及び極性有機溶媒などの有機溶媒から選択される1種又は2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the defibration treatment step, for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from water and an organic solvent such as a polar organic solvent can be used. The polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol and glycerin. Examples of the ketone include acetone, methyl ethyl ketone (MEK) and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。 The solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in a dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having a hydrogen bond property.
 工程(A)に供される解繊処理後の微細繊維状セルロースの繊維幅は、1~100nmであることが好ましく、1~50nmであることがより好ましく、1~25nmであることがさらに好ましく、1~15nmであることが一層好ましく、1~10nmであることが特に好ましい。 The fiber width of the fine fibrous cellulose after the defibration treatment applied to the step (A) is preferably 1 to 100 nm, more preferably 1 to 50 nm, and even more preferably 1 to 25 nm. It is more preferably 1 to 15 nm, and particularly preferably 1 to 10 nm.
 また、工程(A)に供される微細繊維状セルロースを0.1質量%濃度の水分散液とし、ナノファイバー収率を算出した場合、ナノファイバー収率は70質量%以上であることが好ましく、90質量%以上であることがより好ましく、93質量%以上であることがさらに好ましく、96質量%以上であることが特に好ましい。なお、ナノファイバー収率は100質量%であってもよい。ここで、ナノファイバー収率は、0.1質量%濃度の微細繊維状セルロース分散液を、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000G、10分の条件で遠心分離し、得られた上澄み液のセルロース濃度から下記式に基づいて測定される値である。
 ナノファイバー収率(質量%)=上澄みのセルロース濃度(質量%)/0.1×100
Further, when the fine fibrous cellulose used in the step (A) is used as an aqueous dispersion having a concentration of 0.1% by mass and the nanofiber yield is calculated, the nanofiber yield is preferably 70% by mass or more. , 90% by mass or more, more preferably 93% by mass or more, and particularly preferably 96% by mass or more. The nanofiber yield may be 100% by mass. Here, the nanofiber yield is such that the fine fibrous cellulose dispersion having a concentration of 0.1% by mass is centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B). , It is a value measured from the cellulose concentration of the obtained supernatant liquid based on the following formula.
Nanofiber yield (mass%) = supernatant cellulose concentration (mass%) /0.1 × 100
 さらに、工程(A)に供される微細繊維状セルロースを0.2質量%濃度の水分散液とした場合、該水分散液のヘーズは20%以下であることが好ましく、10%以下であることがより好ましく、5.0%以下であることがさらに好ましく、3.0%以下であることが特に好ましい。なお、水分散液のヘーズは0%であってもよい。ここで、微細繊維状セルロースの水分散液のヘーズは、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用い、JIS K 7136:2000に準拠して測定される値である。測定の際には、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)を用いる。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行い、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置し、分散液の液温を23℃とする。 Further, when the fine fibrous cellulose used in the step (A) is used as an aqueous dispersion having a concentration of 0.2% by mass, the haze of the aqueous dispersion is preferably 20% or less, preferably 10% or less. It is more preferably 5.0% or less, and particularly preferably 3.0% or less. The haze of the aqueous dispersion may be 0%. Here, the haze of the aqueous dispersion of fine fibrous cellulose is a value measured according to JIS K 7136: 2000 using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute). At the time of measurement, a glass cell for liquid (manufactured by Fujiwara Seisakusho, MG-40, backlight path) having an optical path length of 1 cm is used. The zero point measurement is performed with ion-exchanged water placed in the same glass cell, and the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before measurement, and the liquid temperature of the dispersion liquid is measured. Is 23 ° C.
 工程(A)に供される微細繊維状セルロースの繊維幅、微細繊維状セルロース分散液のナノファイバー収率やヘーズを上記範囲内とすることにより、工程(B)を経て得られる微細繊維状セルロースをスラリーや樹脂成形体とした場合の意匠性や透明性をより効果的に高めることができる。 By setting the fiber width of the fine fibrous cellulose used in the step (A), the nanofiber yield of the fine fibrous cellulose dispersion and the haze within the above ranges, the fine fibrous cellulose obtained through the step (B) It is possible to more effectively enhance the design and transparency when the fiber is used as a slurry or a resin molded body.
<置換基除去処理>
 微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程(A)を含むことが好ましい。本明細書において、上述した工程で得られる微細繊維状セルロースから、置換基の少なくとも一部を除去する工程は、置換基除去処理工程とも言う。
<Substituent removal treatment>
The method for producing fine fibrous cellulose preferably includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. In the present specification, the step of removing at least a part of the substituent from the fine fibrous cellulose obtained by the above-mentioned step is also referred to as a substituent removal treatment step.
 置換基除去処理工程としては、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等が挙げられる。これらは単独で行ってもよく、組み合わせて行ってもよい。中でも、置換基除去処理工程は、加熱処理する工程又は酵素処理する工程であることが好ましい。上記処理工程を経ることで、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去し、置換基導入量が0.5mmol/g未満の微細繊維状セルロースを得ることができる。 Examples of the substituent removing treatment step include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, an alkali treatment step and the like. These may be performed alone or in combination. Above all, the substituent removing treatment step is preferably a heat treatment step or an enzyme treatment step. Through the above treatment step, at least a part of the substituent is removed from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and the amount of the substituent introduced is less than 0.5 mmol / g. Fibrous cellulose can be obtained.
 置換基除去処理工程は、スラリー状で行われることが好ましい。すなわち、置換基除去処理工程は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーを、加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等であることが好ましい。置換基除去処理工程をスラリー状で実施することによって、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、工程(B)を経て得られる微細繊維状セルロースの着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 The substituent removing treatment step is preferably performed in the form of a slurry. That is, the substituent removing treatment step is a step of heat-treating a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. Etc. are preferable. By carrying out the substituent removing treatment step in the form of a slurry, it is possible to prevent the coloring substances generated by heating and the like during the substituent removing treatment and the residual of the acid, alkali, salt and the like added or generated. This makes it possible to suppress the coloring of the fine fibrous cellulose obtained through the step (B). Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
 置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーに対して置換基除去処理を行う場合、該スラリー中の微細繊維状セルロースの濃度は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。また、該スラリー中の微細繊維状セルロースの濃度は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理をより効率よく行うことができる。さらに、スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、工程(B)を経て得られる微細繊維状セルロースの着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 When the substituent removing treatment is performed on a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.2% by mass or more. The concentration of the fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. By setting the concentration of the fine fibrous cellulose in the slurry within the above range, the substituent removing treatment can be performed more efficiently. Further, by setting the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the coloring substances generated by heating during the substituent removal treatment and the residual of the acid, alkali, salt and the like added or generated. can. This makes it possible to suppress the coloring of the fine fibrous cellulose obtained through the step (B). Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程である場合、加熱処理する工程における加熱温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、加熱処理する工程における加熱温度は、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。中でも、置換基除去処理工程に供する微細繊維状セルロースが有する置換基がリンオキソ酸基又はスルホン基である場合、加熱処理する工程における加熱温度は、80℃以上であることが好ましく、100℃以上であることがより好ましく、120℃以上であることがさらに好ましい。 When the substituent removing treatment step is a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the heating temperature in the heat-treating step is preferably 40 ° C. or higher. , 50 ° C. or higher, more preferably 60 ° C. or higher. The heating temperature in the heat treatment step is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and even more preferably 200 ° C. or lower. Above all, when the substituent contained in the fine fibrous cellulose used in the substituent removing treatment step is a phosphoroxo acid group or a sulfone group, the heating temperature in the heat treatment step is preferably 80 ° C. or higher, preferably 100 ° C. or higher. It is more preferable that the temperature is 120 ° C. or higher.
 置換基除去処理工程が加熱処理する工程である場合、加熱処理工程において使用できる加熱装置としては、特に限定されないが、熱風加熱装置、蒸気加熱装置、電熱加熱装置、水熱加熱装置、火力加熱装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波加熱装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置を用いることができる。蒸発を防ぐ観点から、加熱は密閉系で行われることが好ましく、さらに加熱温度を高める観点から、耐圧性の装置内や容器内で行われることが好ましい。加熱処理はバッチ処理であってもよく、バッチ連続処理であってもよく、連続処理であってもよい。 When the substituent removal treatment step is a heat treatment step, the heating device that can be used in the heat treatment step is not particularly limited, but is not particularly limited, but is a hot air heating device, a steam heating device, an electric heat heating device, a water heat heating device, and a thermal heating device. , Infrared heating device, Far infrared heating device, Microwave heating device, High frequency heating device, Stirring drying device, Rotating drying device, Disk drying device, Roll type heating device, Plate type heating device, Flow layer drying device, Band type drying device , A filtration drying device, a vibration flow drying device, an air flow drying device, and a vacuum drying device can be used. From the viewpoint of preventing evaporation, heating is preferably performed in a closed system, and from the viewpoint of further increasing the heating temperature, it is preferably performed in a pressure-resistant device or a container. The heat treatment may be a batch treatment, a batch continuous treatment, or a continuous treatment.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酵素処理する工程である場合、酵素処理する工程では、リン酸エステル加水分解酵素、硫酸エステル加水分解酵素等を用いることが好ましい。 When the substituent removing treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less, in the enzymatic treatment step, a phosphate ester hydrolyzing enzyme or a sulfate ester hydrolysis is performed. It is preferable to use an enzyme or the like.
 酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1.0nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上50℃未満の条件下で1分以上100時間以下処理を行うことが好ましい。 In the enzyme treatment step, it is preferable to add the enzyme so that the enzyme activity is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more to 1 g of fine fibrous cellulose. It is more preferable to add the enzyme so that it becomes. Further, it is preferable to add the enzyme so that the enzyme activity is 100,000 nkat or less with respect to 1 g of the fine fibrous cellulose, and it is more preferable to add the enzyme so that the enzyme activity is 50,000 nkat or less. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment under the conditions of 0 ° C. or higher and lower than 50 ° C. for 1 minute or longer and 100 hours or shorter.
 酵素反応の後、酵素を失活させる工程を設けてもよい。酵素を失活させる方法としては、酵素処理を施したスラリーに酸成分もしくはアルカリ成分を添加して酵素を失活させる方法、酵素処理を施したスラリーの温度を90℃以上に上昇させて酵素を失活させる方法が挙げられる。 After the enzyme reaction, a step of inactivating the enzyme may be provided. As a method of inactivating the enzyme, a method of adding an acid component or an alkaline component to the slurry treated with the enzyme to inactivate the enzyme, or raising the temperature of the slurry treated with the enzyme to 90 ° C. or higher to inactivate the enzyme. There is a method of deactivating.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酸処理する工程である場合、酸処理する工程では、上述した酸処理工程で用いることができる酸化合物をスラリーに添加することが好ましい。 When the substituent removing treatment step is a step of acid-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the acid treatment step is an acid that can be used in the above-mentioned acid treatment step. It is preferred to add the compound to the slurry.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースをアルカリ処理する工程である場合、アルカリ処理する工程では、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 When the substituent removing treatment step is a step of alkali-treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less, the alkali-treating step is an alkali that can be used in the above-mentioned alkali-treating step. It is preferable to add the compound to the slurry.
 置換基除去処理工程では、置換基除去反応が均一に進むことが好ましい。反応を均一に進めるためには、例えば微細繊維状セルロースを含むスラリーを撹拌してもよく、スラリーの比表面積を高めてもよい。スラリーを撹拌する方法としては、外部からの機械的シェアを与えてもよく、反応中のスラリーの送液速度を上げることで自己撹拌を促してもよい。 In the substituent removal treatment step, it is preferable that the substituent removal reaction proceeds uniformly. In order to proceed the reaction uniformly, for example, the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry may be increased. As a method of stirring the slurry, a mechanical share from the outside may be given, or self-stirring may be promoted by increasing the liquid feeding rate of the slurry during the reaction.
 置換基除去処理工程では、スペーサー分子を添加してもよい。スペーサー分子は、隣接する微細繊維状セルロースの間に入り込み、それにより微細繊維状セルロース間に微細なスペースを設けるためのスペーサーとして働く。置換基除去処理工程において、このようなスペーサー分子を添加することで、置換基除去処理後の微細繊維状セルロースの凝集を抑制することができる。これにより、微細繊維状セルロースを含む樹脂成形体の意匠性や透明性をより効果的に高めることができ、樹脂組成物がゴム組成物の場合には成形体の引張特性をより効果的に高めることができる。 Spacer molecules may be added in the substituent removal treatment step. The spacer molecule penetrates between the adjacent fine fibrous celluloses, thereby acting as a spacer for providing a fine space between the fine fibrous celluloses. By adding such a spacer molecule in the substituent removing treatment step, aggregation of fine fibrous cellulose after the substituent removing treatment can be suppressed. As a result, the design and transparency of the resin molded product containing fine fibrous cellulose can be more effectively enhanced, and when the resin composition is a rubber composition, the tensile properties of the molded product are more effectively enhanced. be able to.
 スペーサー分子は水溶性有機化合物であることが好ましい。水溶性有機化合物としては、例えば、糖や水溶性高分子、尿素等を挙げることができる。具体的には、トレハロース、尿素、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、カルボキシメチルセルロース、ポリビニルアルコール(PVA)等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。 The spacer molecule is preferably a water-soluble organic compound. Examples of the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like. In addition, as water-soluble organic compounds, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide. , Xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
 また、スペーサー分子として公知の顔料を使用することができる。例えば、カオリン(含クレー)、炭酸カルシウム、酸化チタン、酸化亜鉛、非晶質シリカ(含コロイダルシリカ)、酸化アルミニウム、ゼオライト、セピオライト、スメクタイト、合成スメクタイト、珪酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、珪藻土、スチレン系プラスチックピグメント、ハイドロタルサイト、尿素樹脂系プラスチックピグメント、ベンゾグアナミン系プラスチックピグメント等が挙げられる。 Further, a known pigment can be used as the spacer molecule. For example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth, Examples thereof include styrene-based plastic pigments, hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
<pH調整工程>
 置換基除去処理工程がスラリー状で行われる場合、置換基除去処理工程の前に、微細繊維状セルロースを含むスラリーのpHを調整する工程を設けてもよい。例えば、セルロース繊維にアニオン性基を導入し、このアニオン性基の対イオンがNaである場合、解繊後の微細繊維状セルロースを含むスラリーは弱アルカリ性を示す。この状態で加熱を行うと、セルロースの分解により着色要因の一つである単糖が発生する場合があるため、スラリーのpHを8以下に調整することが好ましく、6以下に調整することがより好ましい。また、酸性条件においても同様に単糖が発生する場合があるため、スラリーのpHを3以上に調整することが好ましく、4以上に調整することがより好ましい。
<pH adjustment process>
When the substituent removing treatment step is performed in the form of a slurry, a step of adjusting the pH of the slurry containing the fine fibrous cellulose may be provided before the substituent removing treatment step. For example, when an anionic group is introduced into a cellulose fiber and the counterion of the anionic group is Na + , the slurry containing the fine fibrous cellulose after defibration shows weak alkalinity. When heating is performed in this state, monosaccharides, which are one of the coloring factors, may be generated due to the decomposition of cellulose. Therefore, it is preferable to adjust the pH of the slurry to 8 or less, and it is more preferable to adjust it to 6 or less. preferable. Further, since monosaccharides may be generated under acidic conditions as well, it is preferable to adjust the pH of the slurry to 3 or more, and more preferably to 4 or more.
 また、置換基を有する微細繊維状セルロースがリン酸基を有する微細繊維状セルロースである場合、置換基の除去効率向上の観点から、リン酸基のリンが求核攻撃を受けやすい状態であることが好ましい。求核攻撃を受けやすいのは、セルロース-O-P(=O)(-O-H)(-O-Na)と表される中和度1の状態であり、この状態とするには、スラリーのpHを3以上8以下に調整することが好ましく、pHを4以上6以下に調整することがさらに好ましい。 Further, when the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphoric acid group, the phosphorus of the phosphate group is vulnerable to a nucleophilic attack from the viewpoint of improving the removal efficiency of the substituent. Is preferable. The vulnerable to nucleophilic attack is a state of neutralization degree 1 represented by cellulose-OP (= O) (-OH + ) ( -O-Na +). The pH of the slurry is preferably adjusted to 3 or more and 8 or less, and more preferably 4 or more and 6 or less.
 pHを調整する手段は特に限定されないが、例えば微細繊維状セルロースを含むスラリーに酸成分やアルカリ成分を添加してもよい。酸成分は無機酸および有機酸のいずれであってもよく、無機酸としては、硫酸、塩酸、硝酸、リン酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等が挙げられる。アルカリ成分は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。有機アルカリ化合物としては、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。 The means for adjusting the pH is not particularly limited, but for example, an acid component or an alkaline component may be added to a slurry containing fine fibrous cellulose. The acid component may be either an inorganic acid or an organic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitrate, and phosphoric acid. Examples of the organic acid include malic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartrate acid, fumaric acid, gluconic acid and the like. The alkaline component may be an inorganic alkaline compound or an organic alkaline compound. Examples of the inorganic alkaline compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate and the like. Examples of organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, and tetramethyl. Examples thereof include ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
 また、pH調整工程では、pHを調整するためにイオン交換処理を行ってもよい。イオン交換処理に際しては、強酸性陽イオン交換樹脂もしくは弱酸性イオン交換樹脂を用いることができる。適切な量の陽イオン交換樹脂で十分な時間処理することにより、目的とするpHの微細繊維状セルロースを含むスラリーを得ることができる。さらに、pH調整工程では酸成分やアルカリ成分の添加とイオン交換処理を組み合わせてもよい。 Further, in the pH adjusting step, an ion exchange treatment may be performed to adjust the pH. In the ion exchange treatment, a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used. By treating with an appropriate amount of cation exchange resin for a sufficient time, a slurry containing fine fibrous cellulose having a desired pH can be obtained. Further, in the pH adjusting step, the addition of an acid component or an alkaline component may be combined with an ion exchange treatment.
<塩の除去処理>
 置換基除去処理工程の後には、除去した置換基由来の塩の除去処理を行うことが好ましい。置換基由来の塩を除去することで、着色を抑制し得る微細繊維状セルロースが得られ易くなる。置換基由来の塩を除去する手段は特に限定されないが、例えば洗浄処理が挙げられる。洗浄処理は、たとえば水や有機溶媒により、置換基除去処理で凝集した微細繊維状セルロースを洗浄することにより行われる。黄変をより効果的に抑制する観点から、洗浄処理は濾過脱水や、遠心脱水、遠心分離により行うことが好ましい。
<Salt removal treatment>
After the substituent removal treatment step, it is preferable to perform a substituent removal treatment for the removed substituent-derived salt. By removing the salt derived from the substituent, it becomes easy to obtain fine fibrous cellulose capable of suppressing coloring. The means for removing the salt derived from the substituent is not particularly limited, and examples thereof include a washing treatment. The washing treatment is performed by washing the fine fibrous cellulose aggregated in the substituent removing treatment with, for example, water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugal separation.
(工程(B))
 微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程(A)と、工程(A)の後に、均一分散処理する工程(B)と、を含んでもよい。均一分散処理する工程(B)は、工程(A)の置換基除去処理を経て得られた微細繊維状セルロースを均一分散処理する工程である。工程(A)において、微細繊維状セルロースに対して置換基除去処理を施すことにより、少なくとも一部の微細繊維状セルロースが凝集する場合がある。工程(B)は、このように凝集した工程(A)で得られた微細繊維状セルロースを均一分散する工程であることが好ましい。なお、工程(B)における均一分散された状態とは、得られた微細繊維状セルロースの繊維幅が100nm以下もしくは10nm以下である状態を指す。このように、本実施形態の製造方法で得られる微細繊維状セルロースは、置換基導入量が0.5mmol/g未満という低置換基導入量であるにも関わらず、その数平均繊維幅が100nm以下、好ましくは50nm以下、より好ましくは10nm以下となる。
(Step (B))
The method for producing fine fibrous cellulose includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and after the step (A). The step (B) for uniform dispersion processing may be included. The step (B) for uniform dispersion treatment is a step for uniform dispersion treatment of the fine fibrous cellulose obtained through the substituent removal treatment in step (A). In the step (A), at least a part of the fine fibrous cellulose may be aggregated by subjecting the fine fibrous cellulose to a substituent removing treatment. The step (B) is preferably a step of uniformly dispersing the fine fibrous cellulose obtained in the step (A) thus aggregated. The uniformly dispersed state in the step (B) means a state in which the fiber width of the obtained fine fibrous cellulose is 100 nm or less or 10 nm or less. As described above, the fine fibrous cellulose obtained by the production method of the present embodiment has a number average fiber width of 100 nm even though the amount of substituents introduced is as low as less than 0.5 mmol / g. Hereinafter, it is preferably 50 nm or less, more preferably 10 nm or less.
 均一分散処理する工程(B)では、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機又はビーターなどを使用することができる。上記均一分散処理装置の中でも、高速解繊機、高圧ホモジナイザーを用いることがより好ましい。 In the step (B) of uniform dispersion processing, for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, a twin-screw kneader, and a vibration mill. , Homomixers, ultrasonic dispersers or beaters under high speed rotation can be used. Among the uniform dispersion processing devices, it is more preferable to use a high-speed defibrator and a high-pressure homogenizer.
 均一分散処理する工程(B)における処理条件は特に限定されないが、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力を大きくすることが好ましい。高速解繊機においては、その周速が20m/sec以上であることが好ましく、25m/sec以上であることがより好ましく、30m/sec以上であることがさらに好ましい。高圧ホモジナイザーは、高速解繊機よりも、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力が大きくなるため、より好ましく使用できる。高圧ホモジナイザー処理においては、処理時の圧力は1MPa以上であることが好ましく、10MPa以上であることがより好ましく、50MPa以上であることがさらに好ましく、100MPa以上であることが特に好ましい。また、高圧ホモジナイザー処理においては、処理時の圧力は350MPa以下であることが好ましく、300MPa以下であることがより好ましく、250MPa以下がさらに好ましい。 The treatment conditions in the step (B) for the uniform dispersion treatment are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment. In the high-speed defibrator, the peripheral speed is preferably 20 m / sec or more, more preferably 25 m / sec or more, and further preferably 30 m / sec or more. The high-pressure homogenizer can be used more preferably than the high-speed defibrator because the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment are higher. In the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 1 MPa or more, more preferably 10 MPa or more, further preferably 50 MPa or more, and particularly preferably 100 MPa or more. Further, in the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 350 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less.
 なお、工程(B)においては、上述したスペーサー分子を新たに添加してもよい。工程(B)の均一分散処理工程において、このようなスペーサー分子を添加することで、微細繊維状セルロースの均一分散をよりスムーズに行うことができる。これにより、樹脂成形体の意匠性や透明性をより効果的に高めることができる。 In the step (B), the above-mentioned spacer molecule may be newly added. By adding such a spacer molecule in the uniform dispersion treatment step of the step (B), uniform dispersion of the fine fibrous cellulose can be performed more smoothly. This makes it possible to more effectively enhance the design and transparency of the resin molded product.
(樹脂組成物の製造方法)
 本実施形態の樹脂組成物の製造方法は、樹脂と、上述した工程で得られた微細繊維状セルロースを混合する工程を含む。樹脂と、微細繊維状セルロースを混合する工程は、樹脂溶液と微細繊維状セルロース分散液を混合する工程であってもよいが、溶融樹脂と微細繊維状セルロースを溶融混練する工程であることが好ましい。樹脂は上述した樹脂を好ましく例示することができる。
(Manufacturing method of resin composition)
The method for producing the resin composition of the present embodiment includes a step of mixing the resin with the fine fibrous cellulose obtained in the above-mentioned step. The step of mixing the resin and the fine fibrous cellulose may be a step of mixing the resin solution and the fine fibrous cellulose dispersion, but is preferably a step of melt-kneading the molten resin and the fine fibrous cellulose. .. As the resin, the above-mentioned resin can be preferably exemplified.
 樹脂組成物がゴム組成物である場合、ゴム組成物の製造方法は、ゴム成分と、上述した工程で得られた微細繊維状セルロースを混合する工程を含む。ゴム成分と、微細繊維状セルロースを混合する工程は、ゴム成分と微細繊維状セルロース分散液を混合する工程であることが好ましく、ゴム成分と微細繊維状セルロース分散液を混練する工程であることがより好ましい。ゴム成分と、微細繊維状セルロースを混合する工程では、用いるゴム成分としては、上述したゴム成分を例示することができ、ゴム成分はゴムラテックスの状態であることが好ましい。すなわち、該工程は、ゴムラテックスと微細繊維状セルロース分散液を混練する工程であることが好ましい。なお、該工程で用いるゴム成分は、固形状であってもよく、この場合は、粉粒状のゴム成分を粉粒状の微細繊維状セルロースと混合してもよい。 When the resin composition is a rubber composition, the method for producing the rubber composition includes a step of mixing the rubber component and the fine fibrous cellulose obtained in the above-mentioned step. The step of mixing the rubber component and the fine fibrous cellulose is preferably a step of mixing the rubber component and the fine fibrous cellulose dispersion, and is a step of kneading the rubber component and the fine fibrous cellulose dispersion. More preferred. In the step of mixing the rubber component and the fine fibrous cellulose, the above-mentioned rubber component can be exemplified as the rubber component to be used, and the rubber component is preferably in the state of rubber latex. That is, the step is preferably a step of kneading the rubber latex and the fine fibrous cellulose dispersion liquid. The rubber component used in the step may be in a solid state, and in this case, the powdery granular rubber component may be mixed with the powdery granular fine fibrous cellulose.
 樹脂(ゴム成分)と微細繊維状セルロースを混合する工程では、微細繊維状セルロースは固形状であってもよく、分散媒に分散された分散液の状態であってもよい。この場合、分散媒は、特に限定されるものではないが、水を含むことが好ましく、水を主成分として含む溶媒であることがより好ましい。なお、有機溶媒としては、例えば、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、アニリン、ピリジン、キノリン、ルチジン、アセトニトリル、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、ジオキサン、エタノール、イソプロパノール等を挙げることができる。また、分散媒としては、これらの有機溶媒と水を混合した混合溶媒を用いることもできる。 In the step of mixing the resin (rubber component) and the fine fibrous cellulose, the fine fibrous cellulose may be in a solid state or may be in the state of a dispersion liquid dispersed in a dispersion medium. In this case, the dispersion medium is not particularly limited, but preferably contains water, and more preferably a solvent containing water as a main component. Examples of the organic solvent include dimethylformamide (DMF), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), aniline, pyridine, quinoline, lutidine, acetonitrile, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and the like. Examples thereof include dioxane, ethanol, isopropanol and the like. Further, as the dispersion medium, a mixed solvent in which these organic solvents and water are mixed can also be used.
 樹脂と微細繊維状セルロースを混合する工程において、微細繊維状セルロース分散液と樹脂を混合する場合、微細繊維状セルロース分散液の濃度は、0.1質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、2.0質量%以上であることがさらに好ましい。また、微細繊維状セルロース分散液の濃度は、3.0質量%以上であってもよい。 In the step of mixing the resin and the fine fibrous cellulose, when the fine fibrous cellulose dispersion liquid and the resin are mixed, the concentration of the fine fibrous cellulose dispersion liquid is preferably 0.1% by mass or more, preferably 1.0. It is more preferably mass% or more, and even more preferably 2.0 mass% or more. Further, the concentration of the fine fibrous cellulose dispersion liquid may be 3.0% by mass or more.
 樹脂と微細繊維状セルロースを混合する工程が、樹脂と固形状の微細繊維状セルロースを混合する工程である場合、固形状の微細繊維状セルロースは、例えば、微細繊維状セルロース分散液を濃縮することで得られる。この場合、濃縮工程では、分散媒を蒸散させる方法や、凝集剤による濃縮方法、スプレー乾燥方法、凍結乾燥方法、減圧乾固方法、窒素やアルゴン等の不活性化ガスによる置換方法等を挙げることができる。 When the step of mixing the resin and the fine fibrous cellulose is the step of mixing the resin and the solid fine fibrous cellulose, the solid fine fibrous cellulose is, for example, concentrating the fine fibrous cellulose dispersion. Obtained at. In this case, in the concentration step, a method of evaporating the dispersion medium, a method of concentrating with a flocculant, a spray drying method, a freeze-drying method, a vacuum drying method, a replacement method with an inactivating gas such as nitrogen or argon, etc. are mentioned. Can be done.
 固形状の微細繊維状セルロース中における水分含有量は、固形状体の全質量に対して、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。固形状の微細繊維状セルロース中における水分含有量を上記範囲とすることにより、微細繊維状セルロースは樹脂中に均一分散しやすくなる。 The water content in the solid fine fibrous cellulose is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 15% by mass or less, based on the total mass of the solid body. It is more preferable to have. By setting the water content in the solid fine fibrous cellulose within the above range, the fine fibrous cellulose can be easily uniformly dispersed in the resin.
 樹脂と、微細繊維状セルロースを混合する工程は、溶融混練工程であることが好ましい。溶融混練工程では、例えば、一(単)軸押出混練機、二軸以上の多軸押出混練機、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス等を用いることができる。 The step of mixing the resin and the fine fibrous cellulose is preferably a melt-kneading step. In the melt-kneading step, for example, a single-screw extruder, a twin-screw extruder, a kneader, a roll mill, a Banbury mixer, a screw press, or the like can be used.
 溶融混練工程では、混練機のシリンダー温度を樹脂の融点以上、融点+120℃以下とすることが好ましく、融点以上、融点+60℃以下とすることがより好ましい。例えば、シリンダー温度を80℃以上400℃以下とすることが好ましく、125℃以上280℃以下とすることがより好ましい。また、混練機におけるノズル温度を75℃以上395℃以下とすることが好ましく、120℃以上275℃以下とすることがより好ましい。 In the melt-kneading step, the cylinder temperature of the kneader is preferably set to the melting point of the resin or higher and the melting point of + 120 ° C. or lower, and more preferably set to the melting point or higher and the melting point of + 60 ° C. or lower. For example, the cylinder temperature is preferably 80 ° C. or higher and 400 ° C. or lower, and more preferably 125 ° C. or higher and 280 ° C. or lower. Further, the nozzle temperature in the kneader is preferably 75 ° C. or higher and 395 ° C. or lower, and more preferably 120 ° C. or higher and 275 ° C. or lower.
 溶融混練工程において、二軸押出混練機を用いる場合、二軸回転数は、100rpm以上500rpm以下であることが好ましく、250rpm以上350rpm以下であることがより好ましい。 When a twin-screw extrusion kneader is used in the melt-kneading step, the twin-screw rotation speed is preferably 100 rpm or more and 500 rpm or less, and more preferably 250 rpm or more and 350 rpm or less.
 また、樹脂組成物がゴム組成物である場合であって、ゴム成分と、微細繊維状セルロースを混合する工程が、ゴムラテックスと微細繊維状セルロース分散液を混合する工程である場合、ゴムラテックスと微細繊維状セルロース分散液の混合には、ホモジナイザーやディスパーザー、クレアミックス等の公知の混合機を用いることができる。この場合、混合機の撹拌回数は、1000~10000rpmであることが好ましい。また、ゴム成分と、微細繊維状セルロースを混合する工程が、粉粒状のゴム成分と粉粒状の微細繊維状セルロースを混合する工程である場合、粉粒状のゴム成分と粉粒状の微細繊維状セルロースの混合には、オープンロール、ニーダー、バンバリーミキサー、プラストミル、スクリュープレスなどの混合機を用いることができる。 Further, when the resin composition is a rubber composition and the step of mixing the rubber component and the fine fibrous cellulose is the step of mixing the rubber latex and the fine fibrous cellulose dispersion liquid, the rubber latex and A known mixer such as a homogenizer, a disperser, or Clairemix can be used for mixing the fine fibrous cellulose dispersion. In this case, the stirring frequency of the mixer is preferably 1000 to 10000 rpm. When the step of mixing the rubber component and the fine fibrous cellulose is the step of mixing the powdery granular rubber component and the powdery granular fine fibrous cellulose, the powdery granular rubber component and the powdery granular fine fibrous cellulose are mixed. A mixer such as an open roll, a kneader, a rubbery mixer, a plast mill, or a screw press can be used for mixing.
(樹脂成形体)
 本発明は、上述した樹脂組成物を成形してなる樹脂成形体に関するものでもある。樹脂成形体は、例えば、真空成形等によって樹脂組成物を加熱成形してなるものであってもよく、樹脂組成物を加熱加圧成形してなるものであってもよい。また、樹脂成形体は、樹脂組成物を圧縮成形、射出成形、インフレーション成形、又は押出成形によって形成されるものであってもよい。なお、成形条件は、樹脂成形体に含まれる樹脂種等によって適宜調整される。
(Resin molded product)
The present invention also relates to a resin molded body obtained by molding the above-mentioned resin composition. The resin molded body may be, for example, one obtained by heat-molding the resin composition by vacuum forming or the like, or one obtained by heat-pressing molding the resin composition. Further, the resin molded body may be formed by compression molding, injection molding, inflation molding, or extrusion molding of the resin composition. The molding conditions are appropriately adjusted depending on the resin type and the like contained in the resin molded body.
 樹脂成形体はペレット状であってもよい。樹脂成形体がペレット状である場合、溶融状態の樹脂組成物をストランド状に押出し、冷却及びカットすることで樹脂成形体を成形してもよい。 The resin molded body may be in the form of pellets. When the resin molded body is in the form of pellets, the resin molded body may be molded by extruding the molten resin composition into a strand shape, cooling and cutting the resin composition.
 樹脂成形体は、シート状の成形体であってもよい。この場合、樹脂成形体のYI値は、20以下であることが好ましく、10以下であることがより好ましく、5以下であることがさらに好ましい。なお、樹脂成形体のYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。ここで、樹脂成形体のYI値は、JIS K 7373:2006に準拠して測定されるYI値である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。 The resin molded body may be a sheet-shaped molded body. In this case, the YI value of the resin molded product is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less. The lower limit of the YI value of the resin molded product is not particularly limited, but is preferably 0.1 or more. Here, the YI value of the resin molded product is a YI value measured in accordance with JIS K 7373: 2006. As the YI value measuring device, for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
 なお、本実施形態の樹脂成形体は、樹脂組成物を成形してなるものであってもよく、ペレットやシート状の樹脂成形体を成形してなるものであってもよい。 The resin molded product of the present embodiment may be formed by molding a resin composition, or may be formed by molding a pellet or sheet-shaped resin molded product.
<ゴム成形体>
 また、樹脂組成物がゴム組成物である場合、樹脂成形体はゴム成形体(以下、単に成形体ともいう)である。本明細書において、ゴム組成物に含まれるゴム成分が架橋前原料(加硫等による架橋構造が実質的に形成されていない原料)であり、合成ゴムや天然ゴム等の固形ゴムの形成に用いられる生ゴム、ラテックスもしくはゴム溶液である場合、成形体を成形する際には、ゴム組成物が加熱等の架橋反応条件で架橋構造が形成される。この場合、架橋反応方法は特に限定されず、公知の架橋方法を適用することができる。なお、成形体を成形する際には、未架橋のゴム組成物を成形後に架橋してもよく、予備架橋工程等を経て、一旦未架橋のゴム組成物から半架橋のゴムを得た後、さらに本架橋させてもよい。また、ゴム組成物に含まれるゴム成分が架橋構造を有する合成ゴムや天然ゴムである場合、成形体はゴム組成物を加熱成形もしくは加熱加圧成形することで成形される。この場合、ゴム組成物は加熱成形もしくは加熱加圧成形される前のものをいう。また、成形体は、ゴム組成物に電離放射線を照射して成形されるものであってもよく、ゴム組成物を圧縮成形、射出成形、インフレーション成形、圧入成形又は押出成形によって形成されるものであってもよい。なお、成形条件は、ゴム組成物に含まれるゴム成分種等によって適宜調整される。
<Rubber molded body>
When the resin composition is a rubber composition, the resin molded body is a rubber molded body (hereinafter, also simply referred to as a molded body). In the present specification, the rubber component contained in the rubber composition is a pre-crosslinking raw material (a raw material in which a crosslinked structure is not substantially formed by vulture or the like), and is used for forming solid rubber such as synthetic rubber and natural rubber. In the case of the raw rubber, latex or rubber solution to be obtained, when the molded product is molded, a crosslinked structure is formed by the rubber composition under the crosslinking reaction conditions such as heating. In this case, the crosslinking reaction method is not particularly limited, and a known crosslinking method can be applied. When molding the molded product, the uncrosslinked rubber composition may be crosslinked after molding, and after a semi-crosslinked rubber is once obtained from the uncrosslinked rubber composition through a pre-crosslinking step or the like. Further, this cross-linking may be performed. When the rubber component contained in the rubber composition is synthetic rubber or natural rubber having a crosslinked structure, the molded product is molded by heat molding or heat pressure molding of the rubber composition. In this case, the rubber composition refers to the one before heat molding or heat pressure molding. Further, the molded body may be formed by irradiating the rubber composition with ionizing radiation, or is formed by compression molding, injection molding, inflation molding, press-fit molding or extrusion molding of the rubber composition. There may be. The molding conditions are appropriately adjusted depending on the rubber component species and the like contained in the rubber composition.
 ゴム組成物を加熱成形もしくは加熱加圧成形する際の加熱温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、140℃以上であることがさらに好ましい。また、加熱温度は、250℃以下であることが好ましい。上記条件で加熱することにより、加硫等による架橋構造を十分に形成することができる。 The heating temperature at the time of heat molding or heat pressure molding of the rubber composition is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher. The heating temperature is preferably 250 ° C. or lower. By heating under the above conditions, a crosslinked structure by vulcanization or the like can be sufficiently formed.
 成形体はペレット状であってもよく、ストランド状であってもよく、フィラメント状であってよい。成形体がペレット状である場合、溶融状態のゴム組成物をストランド状に押出し、冷却及びカットすることで成形体を成形してもよい。なお、ゴム組成物が発泡剤を含有する場合は、成形体は発泡体であってもよく、成形時に発泡も同時に生じるため、内部に気泡を有する成形体が得られる。 The molded body may be in the form of pellets, in the form of strands, or in the form of filaments. When the molded product is in the form of pellets, the molten rubber composition may be extruded into a strand shape, cooled and cut to form the molded product. When the rubber composition contains a foaming agent, the molded product may be a foamed product, and foaming also occurs at the same time during molding, so that a molded product having bubbles inside can be obtained.
 成形体は、シート状の成形体であることが好ましい。この場合、成形体のYI値は、20以下であることが好ましく、10以下であることがより好ましく、5以下であることがさらに好ましい。なお、成形体のYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。ここで、成形体のYI値は、JIS K 7373:2006に準拠して測定されるYI値である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。 The molded body is preferably a sheet-shaped molded body. In this case, the YI value of the molded product is preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less. The lower limit of the YI value of the molded product is not particularly limited, but is preferably 0.1 or more. Here, the YI value of the molded product is a YI value measured in accordance with JIS K 7373: 2006. As the YI value measuring device, for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used.
(用途)
 本実施形態の樹脂組成物の用途は、特に制限されるものではないが、例えば電子機器の基板、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途に用いることができる。また、各種のディスプレイ装置、各種の太陽電池等の光透過性基板の用途に用いることもできる。
(Use)
The use of the resin composition of the present embodiment is not particularly limited, but for example, it is used for substrates of electronic devices, members of home appliances, window materials of various vehicles and buildings, interior materials, exterior materials, packaging materials and the like. It can be used for various purposes. It can also be used for light-transmitting substrates such as various display devices and various solar cells.
 また、本実施形態の樹脂組成物は、レンズ(特に光学レンズ)、プリズム、ミラー等の用途としても好ましく用いられる。 The resin composition of the present embodiment is also preferably used for applications such as lenses (particularly optical lenses), prisms, and mirrors.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.
<製造例1>
[リン酸化処理]
 原料パルプとして、王子製紙製の広葉樹溶解パルプ(ドライシート)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥装置で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
<Manufacturing example 1>
[Phosphorylation]
Hardwood pulp (dry sheet) made by Oji Paper was used as the raw material pulp. The raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air drying device at 165 ° C. for 250 seconds to introduce a phosphate group into the cellulose in the pulp to obtain a phosphorylated pulp.
[洗浄処理]
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[Washing process]
Then, the obtained phosphorylated pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
[中和処理]
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
[Neutralization treatment]
Next, the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
 これにより得られたリンオキソ酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals.
[解繊処理]
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量]の測定に記載の測定方法で測定される第1解離酸量(リン酸基量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
[Defibration processing]
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) 6 times at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. The amount of the first dissociated acid (amount of phosphoric acid group) measured by the measuring method described in the measurement of [amount of phosphoroxo acid group] described later was 1.45 mmol / g. The total amount of dissociated acid was 2.45 mmol / g.
<製造例2>
[亜リン酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例1と同様に操作を行い、亜リン酸化パルプ及び微細繊維状セルロース分散液を得た。
<Manufacturing example 2>
[Subphosphorylation treatment]
The same operation as in Production Example 1 was carried out except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate in the phosphorylation treatment, and the phosphorous acid pulp and the fine fibrous cellulose dispersion were prepared. Obtained.
 これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定される第1解離酸量(亜リン酸基量)は1.51mmol/gであり、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on P = O of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed around 1210 cm -1 , and the phosphite group (phosphonic acid group) was added to the pulp. Was confirmed. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The first dissociative acid amount (subphosphate group amount) measured by the measurement method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociative acid amount is 1. It was 54 mmol / g.
<製造例3>
[硫酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用いて、加熱時間を19分間に延長した以外は、製造例1と同様に操作を行い、硫酸化パルプ及び微細繊維状セルロース分散液を得た。
<Manufacturing example 3>
[Sulfation treatment]
In the phosphorylation treatment, 38 parts by mass of amide sulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate, and the same operation as in Production Example 1 was carried out except that the heating time was extended to 19 minutes. A fine fibrous cellulose dispersion was obtained.
 これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン基)に基づく吸収が観察され、パルプに硫酸基(スルホン基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[スルホン基量の測定]に記載の測定方法で測定されるスルホン基量は1.12mmol/gであった。 The infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR. As a result, absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
<製造例4>
 リン酸化処理に代えて下記のTEMPO酸化処理を行った以外は、製造例1と同様に操作を行い、TEMPO酸化パルプ及び微細繊維状セルロース分散液を得た。
<Manufacturing example 4>
The same operation as in Production Example 1 was carried out except that the following TEMPO oxidation treatment was performed instead of the phosphorylation treatment to obtain TEMPO oxide pulp and a fine fibrous cellulose dispersion.
[TEMPO酸化処理]
 上記原料パルプ100質量部(絶乾質量)と、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。得られた分散液に、13質量部の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して1.9mmolになるように加えて反応を開始した。反応中は0.5Nの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
[TEMPO oxidation treatment]
100 parts by mass (absolute dry mass) of the raw material pulp, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water. Dispersed in. A 13 parts by mass sodium hypochlorite aqueous solution was added to the obtained dispersion liquid so as to be 1.9 mmol with respect to 1.0 g of pulp, and the reaction was started. During the reaction, a 0.5 N aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
[洗浄処理]
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[Washing process]
Then, the obtained TEMPO oxide pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of TEMPO oxide pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 [対イオン交換処理]
 次いで、洗浄後のTEMPO酸化パルプに対して対イオン交換処理を次のようにして行った。まず、TEMPO酸化パルプを10Lのイオン交換水で希釈した後、得られたパルプ分散液がpH2となるよう、1N塩酸を添加し30分撹拌を行った。これにより、TEMPO酸化パルプ中のカルボキシ基をNa型から酸型に変換した。次いで、当該TEMPO酸化パルプスラリーを脱水して、対イオン交換処理が施された酸型のTEMPO酸化パルプを得た。次いで、対イオン交換処理後のTEMPO酸化パルプに対して、上記洗浄処理を行った。
[Counterion exchange processing]
Next, the TEMPO oxide pulp after washing was subjected to a counter ion exchange treatment as follows. First, the TEMPO oxidized pulp was diluted with 10 L of ion-exchanged water, 1N hydrochloric acid was added so that the obtained pulp dispersion had a pH of 2, and the mixture was stirred for 30 minutes. As a result, the carboxy group in the TEMPO oxide pulp was converted from the Na type to the acid type. Next, the TEMPO oxide pulp slurry was dehydrated to obtain an acid-type TEMPO oxide pulp subjected to counterion exchange treatment. Next, the above-mentioned washing treatment was performed on the TEMPO oxide pulp after the counterion exchange treatment.
[解繊処理]
 得られた酸型TEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[カルボキシ基量の測定]に記載の測定方法で測定されるカルボキシ基量は0.65mmol/gであった。
[Defibration processing]
Ion-exchanged water was added to the obtained acid-type TEMPO oxide pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) 6 times at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. The amount of carboxy group measured by the measuring method described in [Measurement of carboxy group amount] described later was 0.65 mmol / g.
<製造例5>
 リン酸化処理に代えて下記のザンテート化処理を行った以外は、製造例1と同様に操作を行い、ザンテート化パルプ及び微細繊維状セルロース分散液を得た。
<Manufacturing example 5>
The same operation as in Production Example 1 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a zantate pulp and a fine fibrous cellulose dispersion.
[ザンテート化処理]
 原料パルプ(王子製紙製の広葉樹溶解パルプ(ドライシート))100質量部(絶乾質量)に、8.5質量%の水酸化ナトリウム水溶液2500質量部を添加し、室温にて3時間撹拌してアルカリ処理を行った。このアルカリ処理後のパルプを遠心分離(ろ布400メッシュ、3000rpmで5分間)により固液分離してアルカリセルロースの脱水物を得た。得られたアルカリセルロース10質量部(絶乾質量)に対して、二硫化炭素を3.5質量部添加し、室温で4.5時間硫化反応を進行させてザンテート化処理を行った。
[Zantate processing]
To 100 parts by mass (absolute dry mass) of raw material pulp (dissolving pulp of broadleaf tree (dry sheet) made by Oji Paper), 2500 parts by mass of 8.5 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3 hours. Alkaline treatment was performed. The pulp after the alkali treatment was separated into solid and liquid by centrifugation (filter cloth 400 mesh, 3000 rpm for 5 minutes) to obtain a dehydrated product of alkaline cellulose. To 10 parts by mass (absolute dry mass) of the obtained alkaline cellulose, 3.5 parts by mass of carbon disulfide was added, and the sulfurization reaction was allowed to proceed at room temperature for 4.5 hours to carry out a zantate treatment.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[ザンテート基量の測定]に記載の測定方法で測定されるザンテート基量は1.73mmol/gであった。 By X-ray diffraction, it was confirmed that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
<製造例6>
 原料パルプ(王子製紙製の広葉樹溶解パルプ(ドライシート))にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて30回処理し、繊維幅が1000nmよりも大きい粗大繊維状セルロースを含むセルロース分散液を得た。
<Manufacturing example 6>
Ion-exchanged water was added to the raw material pulp (hardwood pulp (dry sheet) made by Oji Paper Co., Ltd.) to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated 30 times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain a cellulose dispersion containing coarse fibrous cellulose having a fiber width of more than 1000 nm.
<製造例7>
 リン酸化パルプの洗浄処理及び中和処理後に、下記の窒素除去処理を行った以外は製造例1と同様にして、リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 7>
After the washing treatment and the neutralization treatment of the phosphorylated pulp, a fine fibrous cellulose dispersion containing the phosphorylated pulp and the fine fibrous cellulose was obtained in the same manner as in Production Example 1 except that the following nitrogen removal treatment was performed.
[窒素除去処理]
 リン酸化パルプにイオン交換水を添加し、固形分濃度が4質量%のスラリーを調製した。スラリーに48質量%の水酸化ナトリウム水溶液を添加してpH13.4に調整し、液温85℃の条件で1時間加熱した。その後、このパルプスラリーを脱水し、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌し、濾過脱水する操作を繰り返すことにより余剰の水酸化ナトリウムを除去した。ろ液の電気伝導度が100μS/cm以下となった時点で、除去の終点とした。
[Nitrogen removal treatment]
Ion-exchanged water was added to the phosphorylated pulp to prepare a slurry having a solid content concentration of 4% by mass. A 48% by mass sodium hydroxide aqueous solution was added to the slurry to adjust the pH to 13.4, and the slurry was heated at a liquid temperature of 85 ° C. for 1 hour. Then, the pulp slurry is dehydrated, and the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and filtered and dehydrated. The excess sodium hydroxide was removed by repeating. When the electrical conductivity of the filtrate became 100 μS / cm or less, the end point of removal was set.
 これにより得られたリンオキソ酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.35mmol/gだった。なお、総解離酸量は、2.30mmol/gであった。 The infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g. The total amount of dissociated acid was 2.30 mmol / g.
<実施例1>
[置換基除去処理(高温熱処理)]
 製造例1で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で40分間、リン酸基量が0.05mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Example 1>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 40 minutes until the amount of phosphoric acid groups reached 0.05 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は41%であった。また、洗浄後のスラリーについて固形分濃度を1.0質量%とした際のpHは5.5であった。
 なお、繊維幅が10nm以下の微細繊維状セルロースの割合は、下記式で算出した。
 繊維幅が10nm以下の微細繊維状セルロースの割合(%)=(繊維幅が10nm以下の微細繊維状セルロースの本数/全繊維状セルロースの本数)×100
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry was obtained. The solid content concentration of this slurry was 1.7% by mass. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 41%. The pH of the washed slurry was 5.5 when the solid content concentration was 1.0% by mass.
The proportion of fine fibrous cellulose having a fiber width of 10 nm or less was calculated by the following formula.
Percentage of fine fibrous cellulose having a fiber width of 10 nm or less (%) = (number of fine fibrous cellulose having a fiber width of 10 nm or less / number of total fibrous cellulose) × 100
[置換基除去微細繊維状セルロース粉体化処理]
 得られた置換基除去後スラリーを30℃、相対湿度15%の環境下で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、置換基除去微細繊維状セルロース粉体を得た。
[Substituent removal fine fibrous cellulose powder treatment]
After removing the substituents, the obtained slurry was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder from which substituents were removed.
[置換基除去微細繊維状セルロース粉体と樹脂との混練] 
 溶融状態のポリプロピレン(サンアロマー社製、PM600A)95質量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度180℃、ノズル温度175℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Add substituent-removed fine fibrous cellulose powder to 95 parts by mass of molten polypropylene (PM600A, manufactured by SunAllomer Ltd.) using a side feeder so that the amount of substituent-removed fine fibrous cellulose is 5 parts by mass. Then, it was melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリプロピレン単体のペレットをそれぞれ厚さ100μmとなるように180℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polypropylene alone were heat-pressed at 180 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度180℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリプロピレン単体のペレットを用いて同様の手順で半球状のポリプロピレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 180 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
<実施例2>
 置換基除去処理を液温160℃で15分間の条件で、リン酸基量が0.08mmol/gとなるまで行った以外は実施例1と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。
<Example 2>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphate groups reached 0.08 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%.
<実施例3>
 置換基除去処理を液温150℃で15分間の条件で、リン酸基量が0.21mmol/gとなるまで行った以外は実施例1と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は25nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は43%であった。
<Example 3>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes until the amount of phosphate groups reached 0.21 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 25 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 43%.
<実施例4>
 置換基除去処理を液温140℃で20分間の条件で、リン酸基量が0.40mmol/gとなるまで行った以外は実施例1と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は22nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は48%であった。
<Example 4>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 1 except that the substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes until the amount of phosphate groups reached 0.40 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 22 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 48%.
<実施例5>
 製造例7で得られた微細繊維状セルロース分散液を用いた以外は実施例2と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。
<Example 5>
In the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 7 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%.
<実施例6>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例2と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 6>
In the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例7>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例2と同様にして置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 7>
Substituent-removed fine fibrous cellulose powder and substituent-removed fine fibrous cellulose-containing resin molded product were obtained in the same manner as in Example 2 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例8>
 製造例4で得られた微細繊維状セルロース分散液を用いて置換基除去処理を液温150℃で300分間の条件で、カルボキシ基量が0.24mmol/gとなるまで行った以外は実施例1と同様にして置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は41%であった。
<Example 8>
Examples except that the substituent removal treatment was performed using the fine fibrous cellulose dispersion obtained in Production Example 4 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g. In the same manner as in No. 1, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 41%.
<実施例9>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例5で得られた微細繊維状セルロース分散液を用いた。さらに置換基除去処理(高温熱処理)の代わりに後述する置換基除去処理(低温熱処理)を行った。その他は実施例1と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは8.3であった。
<Example 9>
Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, instead of the substituent removing treatment (high temperature heat treatment), a substituent removing treatment (low temperature heat treatment) described later was performed. In the same manner as in Example 1, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 8.3 when the solid content concentration was 1.0% by mass.
[置換基除去(低温熱処理)]
 得られた微細繊維状セルロース分散液を、pH調整工程を設けずに液温40℃で45分間加熱し、ザンテート基量が0.08mmol/gとなるまで加熱を行った。
[Removal of substituents (low temperature heat treatment)]
The obtained fine fibrous cellulose dispersion was heated at a liquid temperature of 40 ° C. for 45 minutes without a pH adjustment step, and heated until the amount of zantate groups reached 0.08 mmol / g.
<実施例10>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例2と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 10>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリエチレン(住友化学社製、スミカセンG701)95質量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度130℃、ノズル温度125℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Using a side feeder, use a side feeder to remove the substituents of the fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of the molten polyethylene (Sumitomo Chemical Co., Ltd., Sumikasen G701). And kneaded by melting using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 130 ° C., a nozzle temperature of 125 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリエチレン単体のペレットをそれぞれ厚さ100μmとなるように130℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polyethylene alone were heat-pressed at 130 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度130℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリエチレン単体のペレットを用いて同様の手順で半球状のポリエチレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 130 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene resin molded product was obtained by the same procedure using pellets of polyethylene alone.
<実施例11>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例10と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 11>
In the same manner as in Example 10 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例12>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例10と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 12>
In the same manner as in Example 10 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例13>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例2と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 13>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリスチレン(PSジャパン社製、GPPS HF77)95質量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度125℃、ノズル温度120℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Using a side feeder, use a side feeder to remove the substituents of the fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of the fused polystyrene (GPPS HF77 manufactured by PS Japan Corporation). And kneaded by melting using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 125 ° C., a nozzle temperature of 120 ° C., and a biaxial rotation speed of 300 rpm.
[評価サンプルの作製]
 樹脂混練ペレット及びポリスチレン単体のペレットをそれぞれ厚さ100μmとなるように125℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of evaluation sample]
The resin kneaded pellets and the polystyrene single pellets were heat-pressed at 125 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度125℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリスチレン単体のペレットを用いて同様の手順で半球状のポリスチレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 125 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. In addition, as a control for evaluation, a hemispherical polystyrene resin molded product was obtained by the same procedure using pellets of polystyrene alone.
<実施例14>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例13と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 14>
In the same manner as in Example 13 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例15>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例13と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 15>
In the same manner as in Example 13 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例16>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例2と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 16>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリカーボネート(三菱エンジニアリングプラスチックス社製、ユーピロン S-3000)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体を、サイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度270℃、ノズル温度265℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Substituent-removed fine fibrous cellulose powder is added so that the amount of substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of molten polycarbonate (Iupilon S-3000 manufactured by Mitsubishi Engineering Plastics). , Was added using a side feeder, and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 270 ° C., a nozzle temperature of 265 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリカーボネート単体のペレットをそれぞれ厚さ100μmとなるように270℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polycarbonate alone were heat-pressed at 270 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度270℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを、金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリカーボネート単体のペレットを用いて同様の手順で半球状のポリカーボネート樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 270 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. In addition, as a control for evaluation, a hemispherical polycarbonate resin molded product was obtained by the same procedure using pellets of polycarbonate alone.
<実施例17>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例16と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 17>
In the same manner as in Example 16 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例18>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例16と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 18>
In the same manner as in Example 16 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例19>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例2と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 19>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
溶融状態のポリエチレンテレフタラート(帝人社製、TRN-MTJ)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体を、サイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度280℃、ノズル温度275℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side of the substituted fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of the molten polyethylene terephthalate (TRN-MTJ, manufactured by Teijin Limited). The mixture was added using a feeder and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 280 ° C., a nozzle temperature of 275 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
樹脂混練ペレット及びポリエチレンテレフタラート単体のペレットをそれぞれ厚さ100μmとなるように280℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polyethylene terephthalate alone were heat-pressed at 280 ° C. to a thickness of 100 μm to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度280℃の条件で溶融された微細繊維状セルロース含有樹脂ペレットを、金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリエチレンテレフタラート単体のペレットを用いて同様の手順で半球状のポリエチレンテレフタラート樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the fine fibrous cellulose-containing resin pellets melted under the conditions of the mold temperature of 110 ° C. and the resin composition temperature of 280 ° C. were injected into the mold. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene terephthalate resin molded product was obtained by the same procedure using pellets of polyethylene terephthalate alone.
<実施例20>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例19と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 20>
In the same manner as in Example 19 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例21>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例19と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 21>
In the same manner as in Example 19 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例22>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例2と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 22>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained by the same operation as in Example 2. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリアミド(東レ社製、アミラン CM1007)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体を、サイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度245℃、ノズル温度240℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Using a side feeder, use a side feeder to remove the substituents of the fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of the molten polyamide (Toray Industries, Inc., Amylan CM1007). Was added, and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 245 ° C., a nozzle temperature of 240 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリアミド単体のペレットをそれぞれ厚さ100μmとなるように245℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of the polyamide alone were heat-pressed at 245 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
 [曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度245℃の条件で溶融された微細繊維状セルロース含有樹脂ペレットを、金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリアミド単体のペレットを用いて同様の手順で半球状のポリアミド樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the fine fibrous cellulose-containing resin pellets melted under the conditions of the mold temperature of 110 ° C. and the resin composition temperature of 245 ° C. were injected into the mold. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyamide resin molded product was obtained by the same procedure using pellets of polyamide alone.
<実施例23>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例22と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 23>
In the same manner as in Example 22 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例24>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例22と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。
<Example 24>
In the same manner as in Example 22 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%.
<実施例25>
[置換基除去処理(高温熱処理)]
 製造例1で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で15分間、リン酸基量が0.08mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。 
<Example 25>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリー(1)を得た。このスラリーの固形分濃度は1.7質量%であった。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、洗浄後のスラリーについて固形分濃度を1.0質量%とした際のpHは5.5であった。
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry (1) was obtained. The solid content concentration of this slurry was 1.7% by mass. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. The pH of the washed slurry was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース分散液と樹脂の混合]
 固形分濃度が1.7質量%の置換基除去後スラリー(1)にイオン交換水を加え、固形分濃度1.0質量%の微細繊維状セルロース分散液(A)とした。アクリル樹脂95質量部に対し、繊維状セルロースが5質量部となるよう、アクリル樹脂溶液(DIC社製、ウォーターゾール S-745)に置換基除去微細繊維状セルロース水分散体(A)を添加し、置換基除去微細繊維状セルロース含有樹脂分散液を得た。
[Mixing of fine fibrous cellulose dispersion for removing substituents and resin]
Ion-exchanged water was added to the slurry (1) after removing the substituent having a solid content concentration of 1.7% by mass to prepare a fine fibrous cellulose dispersion (A) having a solid content concentration of 1.0% by mass. Substituent-removed fine fibrous cellulose aqueous dispersion (A) was added to an acrylic resin solution (Watersol S-745, manufactured by DIC Corporation) so that the amount of fibrous cellulose was 5 parts by mass with respect to 95 parts by mass of the acrylic resin. , A resin dispersion containing fine fibrous cellulose from which substituents were removed was obtained.
[シート状の樹脂成形体の作製]
 置換基除去微細繊維状セルロース含有樹脂分散液を、シートの仕上がり厚みが100μmとなるように計量して、市販のポリプロピレン板上に展開した。なお、所定の厚み となるようポリプロピレン板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後70℃の乾燥機で乾燥し、ポリプロピレン板から剥離することで、シート状の置換基除去微細繊維状セルロース含有樹脂成形体を得た。なお、アクリル樹脂溶液のみを用いて同様の手順でアクリル樹脂単体シートを作製し、評価サンプルの対照とした。
[Preparation of sheet-shaped resin molded product]
The substituent-removed fine fibrous cellulose-containing resin dispersion was weighed so that the finished thickness of the sheet was 100 μm, and developed on a commercially available polypropylene plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the polypropylene plate so as to have a predetermined thickness. Then, it was dried in a dryer at 70 ° C. and peeled from the polypropylene plate to obtain a sheet-shaped resin molded product containing fine fibrous cellulose from which substituents were removed. An acrylic resin single sheet was prepared by the same procedure using only the acrylic resin solution, and used as a control for the evaluation sample.
[曲面部を有する樹脂成形体の作製]
 熱圧プレス機に、曲面部を有する半球状(直径100mm、成形厚み1mm)のオス型及びメス型の金属型を設置した。[シート状の樹脂成形体の作製]で得られた置換基除去微細繊維状セルロース含有樹脂成形体を10枚重ね、除去金型温度180℃で熱プレス成形し、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、[シート状樹脂成形体の作製]で得られたアクリル樹脂単体シートを用いて同様の手順で半球状のアクリル樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
A hemispherical (diameter 100 mm, molding thickness 1 mm) male and female metal molds having curved surfaces were installed in the thermal pressure press. Ten layers of the substituent-removed fine fibrous cellulose-containing resin molded product obtained in [Preparation of sheet-shaped resin molded product] were stacked and hot-press molded at a removal mold temperature of 180 ° C. to contain hemispherical fine fibrous cellulose. A resin molded product was obtained. Further, as a control for evaluation, a hemispherical acrylic resin molded body was obtained by the same procedure using the acrylic resin single sheet obtained in [Preparation of sheet-shaped resin molded body].
<実施例26>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例25と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40% であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 26>
In the same manner as in Example 25 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例27>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例25と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40% であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 27>
In the same manner as in Example 25 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例28>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例25と同様の操作で置換基除去後スラリー(1)を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は42%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 28>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a slurry (1) was obtained after removing the substituent by the same operation as in Example 25. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 42%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース分散液と樹脂の混合]
 固形分濃度が1.7質量%の置換基除去後スラリー(1)にイオン交換水を加え、固形分濃度1.0質量%の微細繊維状セルロース分散液(A)とした。ウレタン樹脂95質量部に対し、繊維状セルロースが5質量部となるよう、ウレタンディスパージョン(第一工業製薬社製、スーパーフレックス150)に置換基除去微細繊維状セルロース水分散体(A)を添加し、置換基除去微細繊維状セルロース含有樹脂分散液を得た。
[Mixing of fine fibrous cellulose dispersion for removing substituents and resin]
Ion-exchanged water was added to the slurry (1) after removing the substituent having a solid content concentration of 1.7% by mass to prepare a fine fibrous cellulose dispersion (A) having a solid content concentration of 1.0% by mass. Substituent-removed fine fibrous cellulose aqueous dispersion (A) is added to urethane dispersion (Superflex 150, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) so that the amount of fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of urethane resin. Then, a resin dispersion containing fine fibrous cellulose from which substituents were removed was obtained.
[シート状の樹脂成形体の作製]
 置換基除去微細繊維状セルロース含有樹脂分散液を、シートの仕上がり厚みが100μmとなるように計量して、市販のポリプロピレン板上に展開した。なお、所定の厚みとなるようポリプロピレン板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後70℃の乾燥機で乾燥し、ポリプロピレン板から剥離することで、シート状の置換基除去微細繊維状セルロース含有樹脂成形体を得た。なお、ウレタンディスパージョンのみを用いて同様の手順でウレタン樹脂単体シートを作成し、評価サンプルの対照とした。
[Preparation of sheet-shaped resin molded product]
The substituent-removed fine fibrous cellulose-containing resin dispersion was weighed so that the finished thickness of the sheet was 100 μm, and developed on a commercially available polypropylene plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the polypropylene plate so as to have a predetermined thickness. Then, it was dried in a dryer at 70 ° C. and peeled from the polypropylene plate to obtain a sheet-shaped resin molded product containing fine fibrous cellulose from which substituents were removed. A urethane resin single sheet was prepared by the same procedure using only urethane dispersion, and used as a control for the evaluation sample.
[立体形状の樹脂成形体の作製]
 熱圧プレス機に、曲面部を有する半球形状(直径100mm、成形厚み1mm)のオス型及びメス型の金属型を設置した。[シート状の樹脂成形体の作製]で得られた置換基除去微細繊維状セルロース含有樹脂成形体を10枚重ね、金型温度230℃で熱プレス成形し、半球形状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、[シート状樹脂成形体の作製]で得られたウレタン樹脂単体シートを用いて同様の手順で半球形状のウレタン樹脂成形体を得た。
[Manufacturing a three-dimensional resin molded body]
A hemispherical (diameter 100 mm, molding thickness 1 mm) male and female metal molds having curved surfaces were installed in the thermal pressure press. Ten layers of the substituent-removed fine fibrous cellulose-containing resin molded product obtained in [Preparation of sheet-shaped resin molded product] were stacked and hot-press molded at a mold temperature of 230 ° C. to form a hemispherical fine fibrous cellulose-containing resin. A molded product was obtained. Further, as a control for evaluation, a hemispherical urethane resin molded body was obtained by the same procedure using the urethane resin single sheet obtained in [Preparation of sheet-shaped resin molded body].
<実施例29>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例28と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 29>
In the same manner as in Example 28 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例30>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例28と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は40%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 30>
In the same manner as in Example 28 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 40%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<比較例1>
 製造例1により得られた微細繊維状セルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、微細繊維状セルロース粉体を得た。この微細繊維状セルロース粉体を用いた以外は、実施例1と同様にして微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した微細繊維状セルロースの数平均繊維幅は3nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は99%であった。
<Comparative Example 1>
The fine fibrous cellulose dispersion obtained in Production Example 1 was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder. A fine fibrous cellulose-containing resin molded product was obtained in the same manner as in Example 1 except that this fine fibrous cellulose powder was used. The number average fiber width of the fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
<比較例2>
 製造例2により得られた微細繊維状セルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、微細繊維状セルロース粉体を得た。この微細繊維状セルロース粉体を用いた以外は、実施例1と同様にして微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した微細繊維状セルロースの数平均繊維幅は3nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は99%であった。
<Comparative Example 2>
The fine fibrous cellulose dispersion obtained in Production Example 2 was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder. A fine fibrous cellulose-containing resin molded product was obtained in the same manner as in Example 1 except that this fine fibrous cellulose powder was used. The number average fiber width of the fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
<比較例3>
[粗大繊維状セルロース粉体化処理]
 製造例6により得られた繊維幅が1000nmよりも大きい粗大繊維状セルロースを含むセルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、粗大繊維状セルロースを含むセルロース粉体を得た。後述する[繊維幅の測定]で測定した粗大繊維状セルロースの数平均繊維幅は150nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は0%であった。
<Comparative Example 3>
[Coarse fibrous cellulose powder treatment]
The cellulose dispersion obtained in Production Example 6 containing coarse fibrous cellulose having a fiber width of more than 1000 nm was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain a cellulose powder containing coarse fibrous cellulose. The number average fiber width of the coarse fibrous cellulose measured in [Measurement of fiber width] described later was 150 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 0%.
 溶融状態のポリプロピレン(サンアロマー社製、PM600A)95質量部に対し、繊維状セルロースの量が5質量部となるよう、セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度180℃、ノズル温度175℃、二軸回転数300rpmとした。 Cellulose powder is added using a side feeder to 95 parts by mass of molten polypropylene (PM600A, manufactured by SunAllomer Ltd.) so that the amount of fibrous cellulose is 5 parts by mass, and a twin-screw extrusion kneader (Parker Corporation). It was melt-kneaded using HK25D (L / D 41) manufactured by the same company. Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリプロピレン単体のペレットをそれぞれ厚さ100μmとなるように180℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polypropylene alone were heat-pressed at 180 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度180℃の条件で、溶融された粗大繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、粗大繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の粗大繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリプロピレン単体のペレットを用いて同様の手順で半球状のポリプロピレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten coarse fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 180 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the coarse fibrous cellulose-containing resin. By the above procedure, a hemispherical coarse fibrous cellulose-containing resin molded product was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
[評価]
 実施例及び比較例で得られた分散液及び樹脂成形体について、下記の方法で評価を行った。
[evaluation]
The dispersions and resin molded products obtained in Examples and Comparative Examples were evaluated by the following methods.
[繊維幅の測定]
 繊維状セルロースの繊維幅を下記の方法で測定した。各繊維状セルロース分散液を、セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボン膜被覆グリッド上にキャストした。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(TEM、日本電子社製、JEOL-2000EX)により観察した。その際、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、倍率を調節した。この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維幅を目視で読み取っていった。各分散液につき3枚の重複しない観察画像を撮影し、各々2つの軸に交差する繊維の繊維幅の値を読み取った(20本以上×2×3=120本以上)。なお、このようにして得られた繊維幅から数平均繊維幅を算出した。但し、比較例3のみ、得られた分散液をセルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、ガラス上へキャストして走査型電子顕微鏡(SEM)で観察した。
[Measurement of fiber width]
The fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis. After obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions were drawn for this image, and the fiber width of the fibers intersecting the axes was visually read. Three non-overlapping observation images were taken for each dispersion, and the value of the fiber width of the fibers intersecting each of the two axes was read (20 or more × 2 × 3 = 120 or more). The number average fiber width was calculated from the fiber width obtained in this way. However, only in Comparative Example 3, the obtained dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, cast onto glass, and scanned electron microscope (SEM). ) Was observed.
[リンオキソ酸基量の測定]
 リンオキソ酸基量(リン酸基もしくは亜リン酸基量)の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られたスラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
[Measurement of phosphorus oxo acid group amount]
In measuring the amount of phosphorous acid group (phosphoric acid group or phosphorous acid group amount), first, ion-exchanged water is added to the target fine fibrous cellulose to prepare a slurry having a solid content concentration of 0.2% by mass. bottom. The obtained slurry was treated with an ion exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the fine fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration using alkali, the pH value indicated by the slurry is changed while adding 10 μL of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose-containing slurry treated with the ion exchange resin every 5 seconds. Was performed by measuring. Titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
[スルホン基量の測定]
 スルホン基量は、次のように測定した。微細繊維状セルロースを冷凍庫で凍結させた後、凍結乾燥機(ラブコンコ社製FreeZone)で3日間乾燥させた。得られた凍結乾燥物をハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20,000rpmで60秒、粉砕処理を行って粉末状にした。凍結乾燥及び粉砕処理後の試料を密閉容器中で硝酸を用いて加圧加熱分解した。その後、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を硫酸エステル基量(単位:mmol/g)とした。
[Measurement of sulfone group amount]
The amount of sulfone groups was measured as follows. The fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days. The obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder. The sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfate ester groups (unit: mmol / g).
[カルボキシ基量の測定]
 微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
[Measurement of carboxy group amount]
The amount of carboxy group of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass. The contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure the content.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration using alkali, 50 μL of 0.1 N sodium hydroxide aqueous solution is added to the fibrous cellulose-containing slurry treated with an ion exchange resin once every 30 seconds to obtain the electrical conductivity of the slurry. This was done by measuring the change in value. For the carboxy group amount (mmol / g), the alkali amount (mmol) required in the region corresponding to the first region shown in FIG. 2 of the measurement results is divided by the solid content (g) in the slurry to be titrated. Calculated.
[ザンテート基量の測定]
 ザンテート基量は、Bredee法により測定した。具体的には、繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄した。サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌した。15分間放置後、溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とした。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加した。この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定した。チオ硫酸ナトリウムの滴定量、繊維状セルロースの絶乾質量より次式からザンテート基量を算出した。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/繊維状セルロースの絶乾質量(g)
[Measurement of Zantate group amount]
The amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred. After leaving for 15 minutes, a phenolphthalein solution was added until the solution turned pink, and then 1.5 M acetic acid was added, and the point at which the solution turned from pink to colorless was defined as a neutralization point. After neutralization, 250 mL of distilled water was added and stirred well, and 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol / L iodine solution were added using a whole pipette. This solution was titrated with a 0.05 mol / L sodium thiosulfate solution. The amount of zantate group was calculated from the following formula from the titration amount of sodium thiosulfate and the absolute dry mass of fibrous cellulose.
Zantate group amount (mmol / g) = (0.05 × 10 × 2-0.05 × sodium thiosulfate titration (mL)) / 1000 / Absolute dry mass of fibrous cellulose (g)
[窒素量の測定]
 置換基除去微細繊維状セルロースと置換基除去微細繊維状セルロース分散液中に含まれる遊離窒素の合計量を以下に記載の方法により測定した。各分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102:2016 44.1)で分解した。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出した。
[Measurement of nitrogen content]
The total amount of free nitrogen contained in the substituent-removed fine fibrous cellulose and the substituent-removed fine fibrous cellulose dispersion was measured by the method described below. Each dispersion was adjusted to a solid content concentration of 1% by mass and decomposed by the Kjeldahl method (JIS K 0102: 2016 44.1). After decomposition, the amount of ammonium ions (mmol) was measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
[意匠性評価]
 50mm×50mmのシート状の樹脂成形体中における塊状物の大きさ及び個数を測定し、以下の基準で評価した。
A:面積円相当径1mm以上の塊状物の個数が10個以下
B:面積円相当径1mm以上の塊状物の個数が11~20個
C:面積円相当径1mm以上の塊状物の個数が21~30個
D:面積円相当径1mm以上の塊状物の個数が31~40個
E:面積円相当径1mm以上の塊状物の個数が41~50個
F:面積円相当径1mm以上の塊状物の個数が51個以上
[Design evaluation]
The size and number of lumps in a 50 mm × 50 mm sheet-shaped resin molded body were measured and evaluated according to the following criteria.
A: The number of lumps with an area circle equivalent diameter of 1 mm or more is 10 or less B: The number of lumps with an area circle equivalent diameter of 1 mm or more is 11 to 20 C: The number of lumps with an area circle equivalent diameter of 1 mm or more is 21 ~ 30 D: The number of lumps with an area circle equivalent diameter of 1 mm or more is 31-40 E: The number of lumps with an area circle equivalent diameter of 1 mm or more is 41 to 50 F: The number of lumps with an area circle equivalent diameter of 1 mm or more The number of is 51 or more
[着色評価]
 JIS K 7373:2006に準拠し、Colour Cute i(スガ試験機株式会社製)を用いてシート状の樹脂成形体の黄色度を測定した。下記の式からYI変化率を算出し、以下の基準で評価した。
 なお、実施例25~30のシート状置換基除去微細繊維状セルロース含有樹脂成形体ならびにアクリル樹脂およびウレタン樹脂単体シートについては、180℃の乾燥機で6時間加熱した後に評価した。
 YI変化率(%)=(樹脂成形体の黄色度-樹脂単体の成形体の黄色度)/樹脂単体の成形体の黄色度×100
A:YI変化率80%未満
B:YI変化率80%以上160%未満
C:YI変化率160%以上240%未満
D:YI変化率240%以上320%未満
E:YI変化率320%以上400%未満
F:YI変化率400%以上
[Coloring evaluation]
According to JIS K 7373: 2006, the yellowness of the sheet-shaped resin molded body was measured using Color Cutei (manufactured by Suga Test Instruments Co., Ltd.). The YI rate of change was calculated from the following formula and evaluated according to the following criteria.
The sheet-shaped substituent-removed fine fibrous cellulose-containing resin molded product and the acrylic resin and urethane resin single sheet of Examples 25 to 30 were evaluated after being heated in a dryer at 180 ° C. for 6 hours.
YI change rate (%) = (Yellowness of resin molded body-Yellowness of molded body of resin alone) / Yellowness of molded body of resin alone x 100
A: YI change rate less than 80% B: YI change rate 80% or more and less than 160% C: YI change rate 160% or more and less than 240% D: YI change rate 240% or more and less than 320% E: YI change rate 320% or more 400 Less than% F: YI rate of change 400% or more
[立体成形性評価]
 曲面部を有する樹脂成形体を以下の基準に従って目視で評価した。比較対象は各樹脂単体の曲面部を有する樹脂成形体とした。なお、各樹脂単体の立体樹脂成形体は、いずれも曲面部にシワやスジが見られなかった。
A:樹脂単体成形体と比べ曲面部分にシワおよびスジがほとんど見られない(長さ1cm以内のシワおよびスジが2箇所以内)
B:樹脂単体成形体と比べ曲面部分にシワおよびスジが僅かに見られる(長さ1cm以内のシワおよびスジが3箇所以上5箇所以内)
C:樹脂単体成形体と比べ曲面部分にシワおよびスジが多く見られる(長さ1cm以内のシワおよびスジが6箇所以上、または長さ1cmを超えるシワやスジがある)
[Evaluation of three-dimensional formability]
The resin molded body having the curved surface portion was visually evaluated according to the following criteria. The comparison target was a resin molded body having a curved surface portion of each resin alone. No wrinkles or streaks were found on the curved surface of the three-dimensional resin molded product of each resin alone.
A: Wrinkles and streaks are hardly seen on the curved surface compared to the resin single molded body (wrinkles and streaks within 1 cm in length are within 2 places).
B: Wrinkles and streaks are slightly seen on the curved surface compared to the resin single molded body (wrinkles and streaks within 1 cm in length are 3 or more and 5 or less).
C: More wrinkles and streaks are seen on the curved surface compared to the resin single molded body (6 or more wrinkles and streaks with a length of 1 cm or less, or wrinkles and streaks with a length of more than 1 cm).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
PP:ポリプロピレン
PE:ポリエチレン
PS:ポリスチレン
PC:ポリカーボネート
PET:ポリエチレンテレフタラート
PA:ポリアミド
PP: Polypropylene PE: Polyethylene PS: Polystyrene PC: Polycarbonate PET: Polyethylene terephthalate PA: Polyamide
 実施例で得られた樹脂組成物から成形される樹脂成形体は、意匠性に優れており、かつ着色が抑制されていた。一方で、置換基除去処理を行わない場合や、未変性の粗大繊維状セルロースを用いた場合は、得られた樹脂成形体の意匠性が劣っており、着色も確認された(比較例1~3)。 The resin molded body molded from the resin composition obtained in the examples was excellent in design and coloration was suppressed. On the other hand, when the substituent removal treatment was not performed or when unmodified coarse fibrous cellulose was used, the design of the obtained resin molded product was inferior, and coloring was also confirmed (Comparative Examples 1 to 1 to). 3).
 また、実施例1~24で得られた樹脂組成物から成形される樹脂成形体は、立体成形性にも優れていた。 Further, the resin molded product molded from the resin compositions obtained in Examples 1 to 24 was also excellent in three-dimensional moldability.
<実施例101>
[置換基除去処理(高温熱処理)]
 製造例1で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で40分間、リン酸基量が0.05mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Example 101>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 40 minutes until the amount of phosphoric acid groups reached 0.05 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry was obtained. The solid content concentration of this slurry was 1.7% by mass.
[置換基除去後スラリーの均一分散処理]
 得られた置換基除去後スラリーにイオン交換水を加え、固形分濃度が1.0質量%のスラリーとした。このスラリーはpH5.5であった。湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて3回処理し、置換基除去微細繊維状セルロースを含む置換基除去微細繊維状セルロース分散液を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は93%であった。
[Uniform dispersion treatment of slurry after removal of substituents]
Ion-exchanged water was added to the obtained slurry after removing the substituents to prepare a slurry having a solid content concentration of 1.0% by mass. This slurry had a pH of 5.5. The treatment was carried out three times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain a substituent-removed fine fibrous cellulose dispersion containing a substituent-removed fine fibrous cellulose. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 93%.
[置換基除去微細繊維状セルロース粉体化処理]
 均一分散処理により得られた置換基除去後スラリーを30℃、相対湿度15%の環境下で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、置換基除去微細繊維状セルロース粉体を得た。
[Substituent removal fine fibrous cellulose powder treatment]
The slurry after removing the substituents obtained by the uniform dispersion treatment was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder from which substituents were removed.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリプロピレン(日本ポリプロ社製、ノバテックPP MG05ES)95質量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度180℃、ノズル温度175℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side feeder with substituent-removed fine fibrous cellulose powder so that the amount of substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of molten polypropylene (Novatec PP MG05ES manufactured by Japan Polypropylene Corporation). It was added using and kneaded by melting and kneading using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
[シート状樹脂成形体の作製]
 樹脂混練ペレット及びポリプロピレン単体のペレットをそれぞれ厚さ100μmとなるように180℃で加熱プレスし、シート状の樹脂成形体とした。
[Manufacturing of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polypropylene alone were heat-pressed at 180 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度180℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリプロピレン単体のペレットを用いて同様の手順で半球状のポリプロピレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 180 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
<実施例102>
 置換基除去処理を液温160℃で15分間の条件で、リン酸基量が0.08mmol/gとなるまで行った以外は実施例101と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。
<Example 102>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphate groups reached 0.08 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%.
<実施例103>
 置換基除去処理を液温150℃で15分間の条件で、リン酸基量が0.21mmol/gとなるまで行った以外は実施例101と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は97%であった。
<Example 103>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes until the amount of phosphate groups reached 0.21 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 97%.
<実施例104>
 置換基除去処理を液温140℃で20分間の条件で、リン酸基量が0.40mmol/gとなるまで行った以外は実施例101と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は99%であった。
<Example 104>
Substituent removal fine fibrous cellulose powder in the same manner as in Example 101 except that the substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes until the amount of phosphate groups reached 0.40 mmol / g. And a resin molded body containing fine fibrous cellulose from which substituents were removed was obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
<実施例105>
 製造例7で得られた微細繊維状セルロース分散液を用いた以外は実施例102と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。
<Example 105>
In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 7 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%.
<実施例106>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例102と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 106>
In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例107>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例102と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 107>
In the same manner as in Example 102 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例108>
 製造例4で得られた微細繊維状セルロース分散液を用いて置換基除去処理を液温150℃で300分間の条件で、カルボキシ基量が0.24mmol/gとなるまで行った以外は実施例101と同様にして置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は5nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は93%であった。
<Example 108>
Examples except that the substituent removal treatment was performed using the fine fibrous cellulose dispersion obtained in Production Example 4 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g. In the same manner as in 101, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 93%.
<実施例109>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例5で得られた微細繊維状セルロース分散液を用いた。さらに置換基除去処理(高温熱処理)の代わりに後述する置換基除去処理(低温熱処理)を行った。その他は実施例101と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは8.3であった。
<Example 109>
Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, instead of the substituent removing treatment (high temperature heat treatment), a substituent removing treatment (low temperature heat treatment) described later was performed. In the same manner as in Example 101, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose powder were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 8.3 when the solid content concentration was 1.0% by mass.
[置換基除去(低温熱処理)]
 得られた微細繊維状セルロース分散液を、pH調整工程を設けずに液温40℃で45分間加熱し、ザンテート基量が0.08mmol/gとなるまで加熱を行った。
[Removal of substituents (low temperature heat treatment)]
The obtained fine fibrous cellulose dispersion was heated at a liquid temperature of 40 ° C. for 45 minutes without a pH adjustment step, and heated until the amount of zantate groups reached 0.08 mmol / g.
<実施例110>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 110>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態の低密度ポリエチレン(プライムポリマー社製、エボリュー SP4030)95量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度150℃、ノズル温度145℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side feeder with substituent-removed fine fibrous cellulose powder so that the amount of substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 95 parts of molten low-density polyethylene (Prime Polymer Co., Ltd., Evolu SP4030). Was added and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 150 ° C., a nozzle temperature of 145 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリエチレン単体のペレットをそれぞれ厚さ100μmとなるように150℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polyethylene alone were heat-pressed at 150 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度150℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリエチレン単体のペレットを用いて同様の手順で半球状のポリエチレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 150 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene resin molded product was obtained by the same procedure using pellets of polyethylene alone.
<実施例111>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例110と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 111>
In the same manner as in Example 110 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例112>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例110と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 112>
In the same manner as in Example 110 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例113>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 113>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリスチレン(PSジャパン社製、GPPS HF77)95質量部に対し、置換基除去微細繊維状セルロースの量が5質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度125℃、ノズル温度120℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Using a side feeder, use a side feeder to remove the substituents of the fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of the fused polystyrene (GPPS HF77 manufactured by PS Japan Corporation). And kneaded by melting using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 125 ° C., a nozzle temperature of 120 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリスチレン単体のペレットをそれぞれ厚さ100μmとなるように125℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the polystyrene single pellets were heat-pressed at 125 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度125℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリスチレン単体のペレットを用いて同様の手順で半球状のポリスチレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 125 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. In addition, as a control for evaluation, a hemispherical polystyrene resin molded product was obtained by the same procedure using pellets of polystyrene alone.
<実施例114>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例113と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 114>
In the same manner as in Example 113 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例115>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例113と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 115>
In the same manner as in Example 113 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例116>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 116>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリカーボネート(三菱エンジニアリングプラスチックス社製、ユーピロン S-3000)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度270℃、ノズル温度265℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Substituent-removed fine fibrous cellulose powder is added so that the amount of substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of molten polycarbonate (Iupilon S-3000 manufactured by Mitsubishi Engineering Plastics). The mixture was added using a side feeder and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 270 ° C., a nozzle temperature of 265 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリカーボネート単体のペレットをそれぞれ厚さ100μmとなるように270℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polycarbonate alone were heat-pressed at 270 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度270℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリカーボネート単体のペレットを用いて同様の手順で半球状のポリカーボネート樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 270 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. In addition, as a control for evaluation, a hemispherical polycarbonate resin molded product was obtained by the same procedure using pellets of polycarbonate alone.
<実施例117>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例116と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 117>
In the same manner as in Example 116 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例118>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例116と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 118>
In the same manner as in Example 116 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例119>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 119>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリエチレンテレフタラート(帝人社製、TRN-MTJ)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度280℃、ノズル温度275℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side feeder with substituent-removed fine fibrous cellulose powder so that the amount of substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of molten polyethylene terephthalate (TRN-MTJ, manufactured by Teijin Limited). Was added and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 280 ° C., a nozzle temperature of 275 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリエチレンテレフタラート単体のペレットをそれぞれ厚さ100μmとなるように280℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polyethylene terephthalate alone were heat-pressed at 280 ° C. to a thickness of 100 μm to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度280℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリエチレンテレフタラート単体のペレットを用いて同様の手順で半球状のポリエチレンテレフタラート樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 280 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyethylene terephthalate resin molded product was obtained by the same procedure using pellets of polyethylene terephthalate alone.
<実施例120>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例119と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 120>
In the same manner as in Example 119 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例121>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例119と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 121>
In the same manner as in Example 119 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例122>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 122>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のポリアミド(ダイセル・エボニック社製、トロガミド CX7323)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度270℃、ノズル温度265℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side feeder the substituent-removed fine fibrous cellulose powder so that the amount of the substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of the molten polyamide (Trogamide CX7323 manufactured by Daicel Evonik). It was added using and kneaded by melting and kneading using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 270 ° C., a nozzle temperature of 265 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びポリエチレンテレフタラート単体のペレットをそれぞれ厚さ100μmとなるように270℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polyethylene terephthalate alone were heat-pressed at 270 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度270℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリアミド単体のペレットを用いて同様の手順で半球状のポリアミド樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 270 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical polyamide resin molded product was obtained by the same procedure using pellets of polyamide alone.
<実施例123>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例122と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 123>
In the same manner as in Example 122 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例124>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例122と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 124>
In the same manner as in Example 122 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例125>
[置換基除去処理(高温熱処理)]
 製造例1で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で15分間、リン酸基量が0.08mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Example 125>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 1 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリー(1)を得た。このスラリーの固形分濃度は1.7質量%であった。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry (1) was obtained. The solid content concentration of this slurry was 1.7% by mass. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース分散液と樹脂の混合]
 固形分濃度が1.7質量%の置換基除去後スラリー(1)にイオン交換水を加え、固形分濃度1.0質量%の微細繊維状セルロース分散液(A)とした。アクリル樹脂95質量部に対し、繊維状セルロースが5質量部となるよう、アクリル樹脂溶液(DIC社製、ウォーターゾール S-745)に置換基除去微細繊維状セルロース水分散体(A)を添加し、置換基除去微細繊維状セルロース含有樹脂分散液を得た。
[Mixing of fine fibrous cellulose dispersion for removing substituents and resin]
Ion-exchanged water was added to the slurry (1) after removing the substituent having a solid content concentration of 1.7% by mass to prepare a fine fibrous cellulose dispersion (A) having a solid content concentration of 1.0% by mass. Substituent-removed fine fibrous cellulose aqueous dispersion (A) was added to an acrylic resin solution (Watersol S-745, manufactured by DIC Corporation) so that the amount of fibrous cellulose was 5 parts by mass with respect to 95 parts by mass of the acrylic resin. , A resin dispersion containing fine fibrous cellulose from which substituents were removed was obtained.
[シート状の樹脂成形体の作製]
 置換基除去微細繊維状セルロース含有樹脂分散液を、シートの仕上がり厚みが100μmとなるように計量して、市販のポリプロピレン板上に展開した。なお、所定の厚みとなるようポリプロピレン板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後70℃の乾燥機で乾燥し、ポリプロピレン板から剥離することで、シート状の置換基除去微細繊維状セルロース含有樹脂成形体を得た。なお、アクリル樹脂溶液のみを用いて同様の手順でアクリル樹脂単体シートを作製し、評価サンプルの対照とした。
[Preparation of sheet-shaped resin molded product]
The substituent-removed fine fibrous cellulose-containing resin dispersion was weighed so that the finished thickness of the sheet was 100 μm, and developed on a commercially available polypropylene plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the polypropylene plate so as to have a predetermined thickness. Then, it was dried in a dryer at 70 ° C. and peeled from the polypropylene plate to obtain a sheet-shaped resin molded product containing fine fibrous cellulose from which substituents were removed. An acrylic resin single sheet was prepared by the same procedure using only the acrylic resin solution, and used as a control for the evaluation sample.
[曲面部を有する樹脂成形体の作製]
 熱圧プレス機に、曲面部を有する半球状(直径100mm、成形厚み1mm)のオス型及びメス型の金属型を設置した。[シート状の樹脂成形体の作製]で得られた置換基除去微細繊維状セルロース含有樹脂成形体を10枚重ね、金型温度180℃で熱プレス成形し、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、[シート状樹脂成形体の作製]で得られたアクリル樹脂単体シートを用いて同様の手順で半球状のアクリル樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
A hemispherical (diameter 100 mm, molding thickness 1 mm) male and female metal molds having curved surfaces were installed in the thermal pressure press. Ten sheets of the substituent-removed fine fibrous cellulose-containing resin molded product obtained in [Preparation of sheet-shaped resin molded product] were stacked and hot-press molded at a mold temperature of 180 ° C. to form a hemispherical fine fibrous cellulose-containing resin. A molded product was obtained. Further, as a control for evaluation, a hemispherical acrylic resin molded body was obtained by the same procedure using the acrylic resin single sheet obtained in [Preparation of sheet-shaped resin molded body].
<実施例126>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例125と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 126>
In the same manner as in Example 125 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例127>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例125と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 127>
In the same manner as in Example 125 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例128>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例125と同様の操作で置換基除去後スラリー(1)を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 128>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a slurry (1) was obtained after removing the substituent by the same operation as in Example 125. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース分散液と樹脂の混合]
 固形分濃度が1.7質量%の置換基除去後スラリー(1)にイオン交換水を加え、固形分濃度1.0質量%の微細繊維状セルロース分散液(A)とした。ウレタン樹脂95質量部に対し、繊維状セルロースが5質量部となるよう、ウレタンディスパージョン(第一工業製薬社製、スーパーフレックス150)に置換基除去微細繊維状セルロース水分散体(A)を添加し、置換基除去微細繊維状セルロース含有樹脂分散液を得た。
[Mixing of fine fibrous cellulose dispersion for removing substituents and resin]
Ion-exchanged water was added to the slurry (1) after removing the substituent having a solid content concentration of 1.7% by mass to prepare a fine fibrous cellulose dispersion (A) having a solid content concentration of 1.0% by mass. Substituent-removed fine fibrous cellulose aqueous dispersion (A) is added to urethane dispersion (Superflex 150, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) so that the amount of fibrous cellulose is 5 parts by mass with respect to 95 parts by mass of urethane resin. Then, a resin dispersion containing fine fibrous cellulose from which substituents were removed was obtained.
[シート状の樹脂成形体の作製]
 置換基除去微細繊維状セルロース含有樹脂分散液を、シートの仕上がり厚みが100μmとなるように計量して、市販のポリプロピレン板上に展開した。なお、所定の厚みとなるようポリプロピレン板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後70℃の乾燥機で乾燥し、ポリプロピレン板から剥離することで、シート状の置換基除去微細繊維状セルロース含有樹脂成形体を得た。なお、ウレタンディスパージョンのみを用いて同様の手順でウレタン樹脂単体シートを作成し、評価サンプルの対照とした。
[Preparation of sheet-shaped resin molded product]
The substituent-removed fine fibrous cellulose-containing resin dispersion was weighed so that the finished thickness of the sheet was 100 μm, and developed on a commercially available polypropylene plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the polypropylene plate so as to have a predetermined thickness. Then, it was dried in a dryer at 70 ° C. and peeled from the polypropylene plate to obtain a sheet-shaped resin molded product containing fine fibrous cellulose from which substituents were removed. A urethane resin single sheet was prepared by the same procedure using only urethane dispersion, and used as a control for the evaluation sample.
[立体形状の樹脂成形体の作製]
 熱圧プレス機に、曲面部を有する半球形状(直径100mm、成形厚み1mm)のオス型及びメス型の金属型を設置した。[シート状の樹脂成形体の作製]で得られた置換基除去微細繊維状セルロース含有樹脂成形体を10枚重ね、金型温度230℃で熱プレス成形し、半球形状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、[シート状樹脂成形体の作製]で得られたウレタン樹脂単体シートを用いて同様の手順で半球形状のウレタン樹脂成形体を得た。
[Manufacturing a three-dimensional resin molded body]
A hemispherical (diameter 100 mm, molding thickness 1 mm) male and female metal molds having curved surfaces were installed in the thermal pressure press. Ten layers of the substituent-removed fine fibrous cellulose-containing resin molded product obtained in [Preparation of sheet-shaped resin molded product] were stacked and hot-press molded at a mold temperature of 230 ° C. to form a hemispherical fine fibrous cellulose-containing resin. A molded product was obtained. Further, as a control for evaluation, a hemispherical urethane resin molded body was obtained by the same procedure using the urethane resin single sheet obtained in [Preparation of sheet-shaped resin molded body].
<実施例129>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例128と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 129>
In the same manner as in Example 128 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例130>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例128と同様にして、置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 130>
In the same manner as in Example 128 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose dispersion and a substituent-removed fine fibrous cellulose-containing resin molded body were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
<実施例131>
 製造例1で得られた微細繊維状セルロース分散液を用いて、実施例102と同様の操作で置換基除去微細繊維状セルロース分散液及び置換基除去微細繊維状セルロース粉体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。また、この置換基除去微細繊維状セルロース分散液について固形分濃度を1.0質量%とした際のpHは5.5であった。
<Example 131>
Using the fine fibrous cellulose dispersion obtained in Production Example 1, a substituent-removing fine fibrous cellulose dispersion and a substituent-removing fine fibrous cellulose powder were obtained in the same operation as in Example 102. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 98%. Further, the pH of this substituent-removed fine fibrous cellulose dispersion was 5.5 when the solid content concentration was 1.0% by mass.
[置換基除去微細繊維状セルロース粉体と樹脂との混練]
 溶融状態のシクロオレフィンポリマー(日本ゼオン社製、ゼオネックス480R)99質量部に対し、置換基除去微細繊維状セルロースの量が1質量部となるよう、置換基除去微細繊維状セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度270℃、ノズル温度265℃、二軸回転数300rpmとした。
[Kneading of fine fibrous cellulose powder for removing substituents and resin]
Side feeder with substituent-removed fine fibrous cellulose powder so that the amount of substituent-removed fine fibrous cellulose is 1 part by mass with respect to 99 parts by mass of the molten cycloolefin polymer (Zeonex 480R, manufactured by ZEON Corporation). Was added and melt-kneaded using a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 270 ° C., a nozzle temperature of 265 ° C., and a biaxial rotation speed of 300 rpm.
[シート状の樹脂成形体の作製]
 樹脂混練ペレット及びシクロオレフィンポリマー単体のペレットをそれぞれ厚さ100μmとなるように270℃で加熱プレスし、シート状の樹脂成形体とした。
[Preparation of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of the cycloolefin polymer alone were heat-pressed at 270 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded product.
[曲面部を有する樹脂成形体の作製]
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度270℃の条件で、溶融された微細繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、微細繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の微細繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、シクロオレフィンポリマー単体のペレットを用いて同様の手順で半球状のシクロオレフィンポリマー樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten fine fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 270 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the fine fibrous cellulose-containing resin. By the above procedure, a hemispherical fine fibrous cellulose-containing resin molded body was obtained. Further, as a control for evaluation, a hemispherical cycloolefin polymer resin molded product was obtained by the same procedure using pellets of cycloolefin polymer alone.
<実施例132>
 製造例2で得られた微細繊維状セルロース分散液を用いた以外は実施例131と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 132>
In the same manner as in Example 131 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<実施例133>
 製造例3で得られた微細繊維状セルロース分散液を用いた以外は実施例131と同様にして、置換基除去微細繊維状セルロース粉体及び置換基除去微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は91%であった。
<Example 133>
In the same manner as in Example 131 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used, a substituent-removed fine fibrous cellulose powder and a substituent-removed fine fibrous cellulose-containing resin molded product were obtained. .. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 91%.
<比較例101>
 製造例1により得られた微細繊維状セルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、微細繊維状セルロース粉体を得た。この微細繊維状セルロース粉体を用いた以外は、実施例101と同様にして微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は99%であった。
<Comparative Example 101>
The fine fibrous cellulose dispersion obtained in Production Example 1 was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder. A fine fibrous cellulose-containing resin molded product was obtained in the same manner as in Example 101 except that this fine fibrous cellulose powder was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
<比較例102>
 製造例2により得られた微細繊維状セルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、微細繊維状セルロース粉体を得た。この微細繊維状セルロース粉体を用いた以外は、実施例101と同様にして微細繊維状セルロース含有樹脂成形体を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は99%であった。
<Comparative Example 102>
The fine fibrous cellulose dispersion obtained in Production Example 2 was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder. A fine fibrous cellulose-containing resin molded product was obtained in the same manner as in Example 101 except that this fine fibrous cellulose powder was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less was 99%.
<比較例103>
[粗大繊維状セルロース粉体化処理]
 製造例6により得られた繊維幅が1000nmよりも大きい粗大繊維状セルロースを含むセルロース分散液を30℃、相対湿度15%の環境で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、粗大繊維状セルロースを含むセルロース粉体を得た。後述する[繊維幅の測定]で測定した粗大繊維状セルロースの数平均繊維幅は150nmであり、繊維幅が10nm以下の微細繊維状セルロースの割合は0%であった。
<Comparative Example 103>
[Coarse fibrous cellulose powder treatment]
The cellulose dispersion obtained in Production Example 6 containing coarse fibrous cellulose having a fiber width of more than 1000 nm was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain a cellulose powder containing coarse fibrous cellulose. The number average fiber width of the coarse fibrous cellulose measured in [Measurement of fiber width] described later was 150 nm, and the proportion of fine fibrous cellulose having a fiber width of 10 nm or less was 0%.
 溶融状態のポリプロピレン(日本ポリプロ株式会社社製、ノバテックPP MG05ES)95質量部に対し、繊維状セルロースの量が5質量部となるよう、セルロース粉体をサイドフィーダーを用いて添加し、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))を用いて溶融混練した。その後、ストランド状に押出してペレタイザーでペレット化し、樹脂混練ペレットを得た。混練条件はシリンダー温度180℃、ノズル温度175℃、二軸回転数300rpmとした。 Cellulose powder is added to 95 parts by mass of molten polypropylene (Novatec PP MG05ES manufactured by Japan Polypropylene Corporation) using a side feeder so that the amount of fibrous cellulose is 5 parts by mass, and biaxial extrusion is performed. It was melt-kneaded using a kneader (HK25D (L / D 41) manufactured by Parker Corporation). Then, it was extruded into a strand and pelletized with a pelletizer to obtain a resin kneaded pellet. The kneading conditions were a cylinder temperature of 180 ° C., a nozzle temperature of 175 ° C., and a biaxial rotation speed of 300 rpm.
[シート状樹脂成形体の作製]
 樹脂混練ペレット及びポリプロピレン単体のペレットをそれぞれ厚さ100μmとなるように180℃で加熱プレスし、シート状の樹脂成形体とした。
[Manufacturing of sheet-shaped resin molded product]
The resin kneaded pellets and the pellets of polypropylene alone were heat-pressed at 180 ° C. so as to have a thickness of 100 μm, respectively, to obtain a sheet-shaped resin molded body.
[曲面部を有する樹脂成形体の作製] 
 射出成形試験機(日精樹脂工業社製、NEX140)に、凹部を有する金型を組み合わせて、曲面部を有する半球状(直径100mm、成形厚み1mm)を構成する金型をセットした。金型を閉じ、金型温度110℃、樹脂組成物温度180℃の条件で、溶融された粗大繊維状セルロース含有樹脂ペレットを金型内に注入した。さらに、金型温度を60℃に低下させ、粗大繊維状セルロース含有樹脂を固化させた。上記の手順により、半球状の粗大繊維状セルロース含有樹脂成形体を得た。また、評価の対照用に、ポリプロピレン単体のペレットを用いて同様の手順で半球状のポリプロピレン樹脂成形体を得た。
[Manufacturing a resin molded body having a curved surface]
An injection molding tester (NEX140, manufactured by Nissei Plastic Industry Co., Ltd.) was combined with a mold having a concave portion, and a mold forming a hemispherical shape (diameter 100 mm, molding thickness 1 mm) having a curved surface portion was set. The mold was closed, and the molten coarse fibrous cellulose-containing resin pellets were injected into the mold under the conditions of a mold temperature of 110 ° C. and a resin composition temperature of 180 ° C. Further, the mold temperature was lowered to 60 ° C. to solidify the coarse fibrous cellulose-containing resin. By the above procedure, a hemispherical coarse fibrous cellulose-containing resin molded product was obtained. Further, as a control for evaluation, a hemispherical polypropylene resin molded product was obtained by the same procedure using pellets of polypropylene alone.
[評価]
 実施例及び比較例で得られた分散液及び樹脂成形体について、下記の方法で評価を行った。
[evaluation]
The dispersions and resin molded products obtained in Examples and Comparative Examples were evaluated by the following methods.
[繊維幅の測定]
 繊維状セルロースの繊維幅は上述した方法と同様の方法で測定した。但し、比較例103のみ、得られた分散液をセルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、ガラス上へキャストして走査型電子顕微鏡(SEM)で観察した。
[Measurement of fiber width]
The fiber width of the fibrous cellulose was measured by the same method as described above. However, only in Comparative Example 103, the obtained dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, cast onto glass, and scanned electron microscope (SEM). ) Was observed.
[リンオキソ酸基量/スルホン基量/カルボキシ基量/ザンテート基量の測定]
 リンオキソ酸基量(リン酸基もしくは亜リン酸基量)、スルホン基量、カルボキシ基量及びザンテート基量の測定は、上述した方法とそれぞれ同様の方法で測定した。
[Measurement of phosphorus oxo acid group amount / sulfone group amount / carboxy group amount / zantate group amount]
The amount of phosphoric acid group (phosphoric acid group or phosphite group amount), the amount of sulfone group, the amount of carboxy group and the amount of zantate group were measured by the same methods as described above.
[窒素量の測定]
 置換基除去微細繊維状セルロースと置換基除去微細繊維状セルロース分散液中に含まれる遊離窒素の合計量は、上述した方法と同様の方法で測定した。
[Measurement of nitrogen content]
The total amount of free nitrogen contained in the substituent-removed fine fibrous cellulose and the substituent-removed fine fibrous cellulose dispersion was measured by the same method as described above.
[透明性評価]
 JIS K 7136:2000に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いてシート状の樹脂成形体のヘーズを測定した。下記の式からヘーズの変化率を算出し、以下の基準で評価した。
 なお、実施例125~130のシート状置換基除去微細繊維状セルロース含有樹脂成形体ならびにアクリル樹脂およびウレタン樹脂単体シートについては、180℃の乾燥機で6時間加熱した後に評価した。
 ヘーズ変化率(%)=(樹脂成形体のヘーズ-樹脂単体の成形体のヘーズ)/樹脂単体の成形体のヘーズ×100
A:ヘーズ変化率10%未満
B:ヘーズ変化率10%以上20%未満
C:ヘーズ変化率20%以上30%未満
D:ヘーズ変化率30%以上40%未満
E:ヘーズ変化率40%以上50%未満
F:ヘーズ変化率50%以上
[Transparency evaluation]
According to JIS K 7136: 2000, the haze of the sheet-shaped resin molded product was measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute). The rate of change in haze was calculated from the following formula and evaluated according to the following criteria.
The sheet-shaped substituent-removed fine fibrous cellulose-containing resin molded product and the acrylic resin and urethane resin single sheet of Examples 125 to 130 were evaluated after being heated in a dryer at 180 ° C. for 6 hours.
Haze change rate (%) = (Haze of resin molded body-Haze of molded body of resin alone) / Haze of molded body of resin alone × 100
A: Haze change rate less than 10% B: Haze change rate 10% or more and less than 20% C: Haze change rate 20% or more and less than 30% D: Haze change rate 30% or more and less than 40% E: Haze change rate 40% or more 50 Less than% F: Haze change rate 50% or more
[着色評価]
シート状の樹脂成形体の黄色度は、上述した方法と同様の方法で測定し、同様の評価基準で評価した。
 なお、実施例125~130のシート状置換基除去微細繊維状セルロース含有樹脂成形体ならびにアクリル樹脂およびウレタン樹脂単体シートについては、180℃の乾燥機で6時間加熱した後に評価した。
[Coloring evaluation]
The yellowness of the sheet-shaped resin molded product was measured by the same method as described above, and evaluated by the same evaluation criteria.
The sheet-shaped substituent-removed fine fibrous cellulose-containing resin molded product and the acrylic resin and urethane resin single sheet of Examples 125 to 130 were evaluated after being heated in a dryer at 180 ° C. for 6 hours.
[立体成形性評価]
 曲面部を有する樹脂成形体は、上述した方法と同様の評価基準で評価した。
[Evaluation of three-dimensional formability]
The resin molded body having the curved surface portion was evaluated by the same evaluation criteria as the above-mentioned method.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
PP:ポリプロピレン
PE:ポリエチレン
PS:ポリエステル
PC:ポリカーボネート
PET:ポリエチレンテレフタラート
PA:ポリアミド
COP:シクロオレフィンポリマー
PP: Polypropylene PE: Polyethylene PS: Polyester PC: Polycarbonate PET: Polyethylene terephthalate PA: Polyamide COP: Cycloolefin polymer
 実施例で得られた樹脂組成物から成形される樹脂成形体は、透明性に優れており、かつ着色が抑制されており、意匠性に優れていた。一方で、置換基除去処理を行わない場合や、未変性の粗大繊維状セルロースを用いた場合は、得られた樹脂成形体の透明性が劣っており、着色が確認される場合もあった(比較例101~103)。 The resin molded body molded from the resin composition obtained in the examples was excellent in transparency, coloration was suppressed, and was excellent in design. On the other hand, when the substituent removal treatment was not performed or when unmodified coarse fibrous cellulose was used, the transparency of the obtained resin molded product was inferior, and coloring was sometimes confirmed (coloring was confirmed). Comparative Examples 101 to 103).
 また、実施例101~124及び実施例131~133で得られた樹脂組成物から成形される樹脂成形体は、立体成形性にも優れていた。 Further, the resin molded bodies molded from the resin compositions obtained in Examples 101 to 124 and 131 to 133 were also excellent in three-dimensional moldability.
<製造例11>
[リン酸化処理]
 原料パルプとして、王子製紙製の広葉樹溶解パルプ(ドライシート)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥装置で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
<Manufacturing example 11>
[Phosphorylation]
Hardwood pulp (dry sheet) made by Oji Paper was used as the raw material pulp. The raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air drying device at 165 ° C. for 250 seconds to introduce a phosphate group into the cellulose in the pulp to obtain a phosphorylated pulp.
[洗浄処理]
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[Washing process]
Then, the obtained phosphorylated pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
[中和処理]
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
[Neutralization treatment]
Next, the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
 これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals.
[解繊処理]
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザー(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量]の測定に記載の測定方法で測定される第1解離酸量(リン酸基量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
[Defibration processing]
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated with a high-pressure homogenizer (manufactured by Sugino Machine Limited, Starburst) 6 times at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. The amount of the first dissociated acid (amount of phosphoric acid group) measured by the measuring method described in the measurement of [amount of phosphoroxo acid group] described later was 1.45 mmol / g. The total amount of dissociated acid was 2.45 mmol / g.
<製造例12>
 [中和処理]後に、下記の窒素除去処理を行った以外は製造例11と同様にして、リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 12>
After the [neutralization treatment], a fine fibrous cellulose dispersion containing phosphorylated pulp and fine fibrous cellulose was obtained in the same manner as in Production Example 11 except that the following nitrogen removal treatment was performed.
[窒素除去処理]
 リン酸化パルプにイオン交換水を添加し、固形分濃度が4質量%のスラリーを調製した。スラリーに48質量%の水酸化ナトリウム水溶液を添加してpH13.4に調整し、液温85℃の条件で1時間加熱した。その後、このパルプスラリーを脱水し、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌し、濾過脱水する操作を繰り返すことにより余剰の水酸化ナトリウムを除去した。ろ液の電気伝導度が100μS/cm以下となった時点で、除去の終点とした。
[Nitrogen removal treatment]
Ion-exchanged water was added to the phosphorylated pulp to prepare a slurry having a solid content concentration of 4% by mass. A 48% by mass sodium hydroxide aqueous solution was added to the slurry to adjust the pH to 13.4, and the slurry was heated at a liquid temperature of 85 ° C. for 1 hour. Then, the pulp slurry is dehydrated, and the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and filtered and dehydrated. The excess sodium hydroxide was removed by repeating. When the electrical conductivity of the filtrate became 100 μS / cm or less, the end point of removal was set.
 これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.35mmol/gだった。なお、総解離酸量は、2.30mmol/gであった。 The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g. The total amount of dissociated acid was 2.30 mmol / g.
<製造例13>
[亜リン酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例11と同様に操作を行い、亜リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 13>
[Subphosphorylation treatment]
The same operation as in Production Example 11 was carried out except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate in the phosphorylation treatment, and fine particles containing phosphorous oxide pulp and fine fibrous cellulose were carried out. A fibrous cellulose dispersion was obtained.
 これにより得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定される第1解離酸量(亜リン酸基量)は1.51mmol/gであり、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the subphosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on P = O of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed around 1210 cm -1 , and the phosphite group (phosphonic acid group) was added to the pulp. Was confirmed. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The first dissociative acid amount (subphosphate group amount) measured by the measurement method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociative acid amount is 1. It was 54 mmol / g.
<製造例14>
[硫酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用いて、加熱時間を19分間に延長した以外は、製造例11と同様に操作を行い、硫酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 14>
[Sulfation treatment]
In the phosphorylation treatment, 38 parts by mass of amide sulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate, and the same operation as in Production Example 11 was carried out except that the heating time was extended to 19 minutes. A fine fibrous cellulose dispersion containing fine fibrous cellulose was obtained.
 これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン基)に基づく吸収が観察され、パルプに硫酸基(スルホン基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[スルホン基量の測定]に記載の測定方法で測定されるスルホン基量は1.12mmol/gであった。 The infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR. As a result, absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
<製造例15> 
[TEMPO酸化処理]
 上記原料パルプ100質量部(絶乾質量)と、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。得られた分散液に、13質量部の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して1.9mmolになるように加えて反応を開始した。反応中は0.5Nの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
<Manufacturing example 15>
[TEMPO oxidation treatment]
100 parts by mass (absolute dry mass) of the raw material pulp, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water. Dispersed in. A 13 parts by mass sodium hypochlorite aqueous solution was added to the obtained dispersion liquid so as to be 1.9 mmol with respect to 1.0 g of pulp, and the reaction was started. During the reaction, a 0.5 N aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
[洗浄処理]
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[Washing process]
Then, the obtained TEMPO oxide pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of TEMPO oxide pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
[対イオン交換処理]
次いで、洗浄後のTEMPO酸化パルプに対して対イオン交換処理を次のようにして行った。まず、TEMPO酸化パルプを10Lのイオン交換水で希釈した後、得られたパルプ分散液がpH2となるよう、1N塩酸を添加し30分撹拌を行った。これにより、TEMPO酸化パルプ中のカルボキシ基をNa型から酸型に変換した。次いで、当該TEMPO酸化パルプスラリーを脱水して、対イオン交換処理が施された酸型のTEMPO酸化パルプを得た。次いで、対イオン交換処理後のTEMPO酸化パルプに対して、上記洗浄処理を行った。
[Counterion exchange processing]
Next, the TEMPO oxide pulp after washing was subjected to a counter ion exchange treatment as follows. First, the TEMPO oxidized pulp was diluted with 10 L of ion-exchanged water, 1N hydrochloric acid was added so that the obtained pulp dispersion had a pH of 2, and the mixture was stirred for 30 minutes. As a result, the carboxy group in the TEMPO oxide pulp was converted from the Na type to the acid type. Next, the TEMPO oxide pulp slurry was dehydrated to obtain an acid-type TEMPO oxide pulp subjected to counterion exchange treatment. Next, the above-mentioned washing treatment was performed on the TEMPO oxide pulp after the counterion exchange treatment.
[解繊処理]
 得られた酸型TEMPO酸化 パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[カルボキシ基量の測定 ]に記載の測定方法で測定されるカルボキシ基量は0.65mmol/gであった。
[Defibration processing]
Ion-exchanged water was added to the obtained acid-type TEMPO-oxidized pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) 6 times at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. The amount of carboxy group measured by the measuring method described in [Measurement of carboxy group amount] described later was 0.65 mmol / g.
<製造例16>
 リン酸化処理に代えて下記のザンテート化処理を行った以外は、製造例11と同様に操作を行い、ザンテート化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 16>
The same operation as in Production Example 11 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a fine fibrous cellulose dispersion containing the zantate pulp and fine fibrous cellulose.
[ザンテート化処理]
 原料パルプ(王子製紙製の広葉樹溶解パルプ(ドライシート))100質量部(絶乾質量)に、8.5質量%の水酸化ナトリウム水溶液2500質量部を添加し、室温にて3時間撹拌してアルカリ処理を行った。このアルカリ処理後のパルプを遠心分離(ろ布400メッシュ、3000rpmで5分間)により固液分離してアルカリセルロースの脱水物を得た。得られたアルカリセルロース10質量部(絶乾質量)に対して、二硫化炭素を3.5質量部添加し、室温で4.5時間硫化反応を進行させてザンテート化処理を行った。
[Zantate processing]
To 100 parts by mass (absolute dry mass) of raw material pulp (dissolving pulp of broadleaf tree (dry sheet) made by Oji Paper), 2500 parts by mass of 8.5 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3 hours. Alkaline treatment was performed. The pulp after the alkali treatment was separated into solid and liquid by centrifugation (filter cloth 400 mesh, 3000 rpm for 5 minutes) to obtain a dehydrated product of alkaline cellulose. To 10 parts by mass (absolute dry mass) of the obtained alkaline cellulose, 3.5 parts by mass of carbon disulfide was added, and the sulfurization reaction was allowed to proceed at room temperature for 4.5 hours to carry out a zantate treatment.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[ザンテート基量の測定]に記載の測定方法で測定されるザンテート基量は1.73mmol/gであった。 By X-ray diffraction, it was confirmed that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
<製造例17>
 原料パルプ(王子製紙製の広葉樹溶解パルプ(ドライシート))にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて30回処理し、繊維幅が1000nmよりも大きい粗大繊維状セルロースを含むセルロース分散液を得た。
<Manufacturing example 17>
Ion-exchanged water was added to the raw material pulp (hardwood pulp (dry sheet) made by Oji Paper Co., Ltd.) to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated 30 times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain a cellulose dispersion containing coarse fibrous cellulose having a fiber width of more than 1000 nm.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例501>
[置換基除去処理(高温熱処理)]
 製造例11で得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で15分間、リン酸基量が0.08mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Example 501>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion obtained in Production Example 11 to adjust the pH of the dispersion to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups reached 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。この洗浄後スラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、10nm以下の繊維幅の割合は42%であった。
 なお、繊維幅が10nm以下の微細繊維状セルロースの割合は、下記式で算出した。
 繊維幅が10nm以下の微細繊維状セルロースの割合(%)=(繊維幅が10nm以下の微細繊維状セルロースの本数/全繊維状セルロースの本数)×100
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry was obtained. The solid content concentration of this slurry was 1.7% by mass. The pH of the washed slurry was 5.5 when the solid content concentration was 1.0% by mass. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fiber width of 10 nm or less was 42%.
The proportion of fine fibrous cellulose having a fiber width of 10 nm or less was calculated by the following formula.
Percentage of fine fibrous cellulose having a fiber width of 10 nm or less (%) = (number of fine fibrous cellulose having a fiber width of 10 nm or less / number of total fibrous cellulose) × 100
[微細繊維状セルロース含有ゴム組成物の作製]
 以下に記載の方法で、微細繊維状セルロース含有ゴム組成物を得た。
[Preparation of rubber composition containing fine fibrous cellulose]
A rubber composition containing fine fibrous cellulose was obtained by the method described below.
[マスターバッチの調整]
 天然ゴムラテックス固形分100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量が5質量部になるように、置換基除去後スラリーを、天然ゴムラテックス(レヂテックス社製、NRLATEX、濃度60%)に添加し、ホモジナイザー(IKA製、T18digital ULTRA―TURRAX)を用いて、4000rpmで5分間撹拌分散した。得られた混合液に5質量%ギ酸を加えて凝固させた後、水洗し、スラリーを40℃で乾燥させることで、天然ゴムマスターバッチを得た。
[Adjustment of masterbatch]
Natural rubber latex (manufactured by Reditex Co., Ltd., NRLATEX, concentration 60) was prepared by using a slurry after removing substituents so that the absolute dry mass of the substituent-removed fine fibrous cellulose was 5 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex. %), And the mixture was stirred and dispersed at 4000 rpm for 5 minutes using a homogenizer (T18 digital ULTRA-TURRAX manufactured by IKA). A natural rubber masterbatch was obtained by adding 5% by mass formic acid to the obtained mixed solution to coagulate it, washing it with water, and drying the slurry at 40 ° C.
[コンパウンドの作製]
 マスターバッチに、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(三新化学工業(株)製、サンセラーCM)を表7に示す配合となるように添加し、シリンダー温度70℃で二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))により混合し、コンパウンド(ゴム組成物)を得た。
[Preparation of compound]
Zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), vulcanization accelerator (Sanshin Chemical Industries, Ltd.) in the master batch ), Sunseller CM) is added so as to have the composition shown in Table 7, mixed by a twin-screw extrusion kneader (HK25D (L / D 41) manufactured by Parker Corporation) at a cylinder temperature of 70 ° C, and compound (rubber). Composition) was obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[加硫工程]
 得られたコンパウンドを金型にいれ、150℃でプレス加熱することで厚さ2mmの架橋体ゴムシート(成形体)を作製した。
[Vulcanization process]
The obtained compound was placed in a mold and press-heated at 150 ° C. to prepare a crosslinked rubber sheet (molded product) having a thickness of 2 mm.
<実施例502>
 置換基除去処理を、液温160℃で40分間行い、リン酸基量が0.05mmol/gとなるまで行った以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、10nm以下の繊維幅の割合は41%であった。
<Example 502>
Substituent removal treatment was carried out at a liquid temperature of 160 ° C. for 40 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.05 mmol / g. A rubber composition containing fibrous cellulose and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 41%.
<実施例503>
 置換基除去処理を液温150℃で15分間行い、リン酸基量が0.21mmol/gとなるまで行った以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は25nmであり、10nm以下の繊維幅の割合は43%であった。
<Example 503>
Substituent removal treatment was carried out at a liquid temperature of 150 ° C. for 15 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.21 mmol / g. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 25 nm, and the ratio of the fiber width of 10 nm or less was 43%.
<実施例504>
 置換基除去処理を液温140℃で20分間行い、リン酸基量が0.40mmol/gとなるまで行った以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は22nmであり、10nm以下の繊維幅の割合は48%であった。
<Example 504>
Substituent removal treatment was carried out at a liquid temperature of 140 ° C. for 20 minutes in the same manner as in Example 501 except that the phosphate group amount was 0.40 mmol / g. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 22 nm, and the ratio of the fiber width of 10 nm or less was 48%.
<実施例505>
 製造例11で得られた微細繊維状セルロース分散液に代えて、製造例12で得られた微細繊維状セルロース分散液を用いた以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は26nmであり、10nm以下の繊維幅の割合は42%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 505>
Substitution after removing the substituent is substituted in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 12 is used instead of the fine fibrous cellulose dispersion obtained in Production Example 12. A rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 26 nm, and the ratio of the fiber width of 10 nm or less was 42%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例506>
 製造例11で得られた微細繊維状セルロース分散液に代えて、製造例13で得られた微細繊維状セルロース分散液を用いた以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は28nmであり、10nm以下の繊維幅の割合は40%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 506>
Substitution after removing the substituent is substituted in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 13 is used instead of the fine fibrous cellulose dispersion obtained in Production Example 13. A rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 28 nm, and the ratio of the fiber width of 10 nm or less was 40%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例507>
 製造例11で得られた微細繊維状セルロース分散液に代えて、製造例14で得られた微細繊維状セルロース分散液を用いた以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は29nmであり、10nm以下の繊維幅の割合は40%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 507>
Substituent removal and substitution in the same manner as in Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 14 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 14. A rubber composition containing fine fibrous cellulose from which groups were removed and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 29 nm, and the ratio of the fiber width of 10 nm or less was 40%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例508>
 製造例15で得られた微細繊維状セルロース分散液を用いて置換基除去処理を液温150℃で300分間の条件で、カルボキシ基量が0.24mmol/gとなるまで行った以外は実施例501と同様にして置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、10nm以下の繊維幅の割合は41%であった。
<Example 508>
Examples except that the substituent removal treatment was carried out using the fine fibrous cellulose dispersion obtained in Production Example 15 at a liquid temperature of 150 ° C. for 300 minutes until the amount of carboxy groups became 0.24 mmol / g. In the same manner as in 501, a slurry after removing the substituent, a rubber composition containing fine fibrous cellulose from which the substituent was removed, and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 41%.
<実施例509>
 製造例11で得られた微細繊維状セルロース分散液に代えて、製造例16で得られた微細繊維状セルロース分散液を用いた。さらに[置換基除去処理(高温熱処理)]に代えて後述の[置換基除去処理(低温熱処理)]を行った。その他は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は27nmであり、10nm以下の繊維幅の割合は40%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは8.3だった。
<Example 509>
Instead of the fine fibrous cellulose dispersion obtained in Production Example 11, the fine fibrous cellulose dispersion obtained in Production Example 16 was used. Further, instead of the [substituent removal treatment (high temperature heat treatment)], the [substituent removal treatment (low temperature heat treatment)] described later was performed. In the same manner as in Example 501, a slurry after removing the substituent, a rubber composition containing fine fibrous cellulose from which the substituent was removed, and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 27 nm, and the ratio of the fiber width of 10 nm or less was 40%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 8.3 when the solid content concentration was 1.0% by mass.
[置換基除去処理(低温熱処理)]
 得られた微細繊維状セルロース分散液を、pH調整工程を設けずに液温40℃で45分間加熱し、ザンテート基量が0.08mmol/gとなるまで加熱を行った。
[Substituent removal treatment (low temperature heat treatment)]
The obtained fine fibrous cellulose dispersion was heated at a liquid temperature of 40 ° C. for 45 minutes without a pH adjustment step, and heated until the amount of zantate groups reached 0.08 mmol / g.
<実施例510>
 [置換基除去後スラリーの洗浄処理]の後に続いて、下記の[置換基除去後スラリーの均一分散処理]を行った以外は実施例501と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は98%であった。
<Example 510>
Following the [cleaning treatment of the slurry after removing the substituent], the slurry and the slurry after removing the substituent are removed in the same manner as in Example 501 except that the following [uniform dispersion treatment of the slurry after removing the substituent] is performed. A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 98%.
[置換基除去後スラリーの均一分散処理]
 得られた置換基除去後スラリーにイオン交換水を加え、固形分濃度が1.0質量%のスラリーとした。このスラリーはpH5.5であった。湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて3回処理し、置換基除去微細繊維状セルロースを含む置換基除去後スラリーを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維径は4nmであり、10nm以下の繊維幅の割合は98%であった。
[Uniform dispersion treatment of slurry after removal of substituents]
Ion-exchanged water was added to the obtained slurry after removing the substituents to prepare a slurry having a solid content concentration of 1.0% by mass. This slurry had a pH of 5.5. A wet atomizer (Sugino Machine Limited, Starburst) was used to treat the slurry at a pressure of 200 MPa three times to obtain a slurry after removing the substituents containing the fine fibrous cellulose for removing the substituents. The number average fiber diameter of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 98%.
<実施例511>
 [置換基除去後スラリーの洗浄処理]の後に続いて、[置換基除去後スラリーの均一分散処理]を行った以外は実施例506と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は91%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 511>
Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 506, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例512>
 [置換基除去後スラリーの洗浄処理]の後に続いて、[置換基除去後スラリーの均一分散処理]を行った以外は実施例507と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は91%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 512>
Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 507, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例513>
 [置換基除去後スラリーの洗浄処理]の後に続いて、[置換基除去後スラリーの均一分散処理]を行った以外は実施例508と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は5nmであり、10nm以下の繊維幅の割合は93%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは8.3だった。
<Example 513>
Subsequent to [cleaning treatment of slurry after removing substituents], [uniform dispersion treatment of slurry after removing substituents] was performed in the same manner as in Example 508, and the slurry after removing substituents and fine fibers from which substituents were removed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fiber width of 10 nm or less was 93%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 8.3 when the solid content concentration was 1.0% by mass.
<実施例514>
 [置換基除去後スラリーの洗浄処理]の後に続いて、[置換基除去後スラリーの均一分散処理]を行った以外は実施例509と同様にして、置換基除去後スラリー、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は91%であった。[置換基除去後スラリーの洗浄処理]を行ったスラリーについて固形分濃度を1.0質量%とした際のpHは5.5だった。
<Example 514>
Subsequent to the [cleaning treatment of the slurry after removing the substituent], the slurry after removing the substituent and the fine fiber from which the substituent is removed are the same as in Example 509 except that the [uniform dispersion treatment of the slurry after removing the substituent] is performed. A cellulose-containing rubber composition and a rubber sheet were obtained. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 91%. The pH of the slurry subjected to [cleaning treatment of the slurry after removing the substituent] was 5.5 when the solid content concentration was 1.0% by mass.
<実施例515>
[置換基除去後スラリーの粉体化処理]
 得られた置換基除去後スラリーを30℃、相対湿度15%の環境下で水分率が85質量%となるまで乾燥させた。その後、ラボミルサー(大阪ケミカル社製、LM-PLUS)を用いて20,000rpmにて粉砕処理し、置換基除去微細繊維状セルロース粉体を得た。
<Example 515>
[Powdering of slurry after removal of substituents]
After removing the substituents, the obtained slurry was dried in an environment of 30 ° C. and a relative humidity of 15% until the water content reached 85% by mass. Then, it was pulverized at 20,000 rpm using a lab miller (LM-PLUS, manufactured by Osaka Chemical Co., Ltd.) to obtain fine fibrous cellulose powder from which substituents were removed.
[マスターバッチの調製]
 エチレン-プロピレン-ジエン共重合ゴム(以下、EPDM)の架橋前原料100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量が5質量部になるように、置換基除去微細繊維状セルロース粉体を、エチレン-プロピレン-ジエン共重合ゴム(JSR(株)製、EP104E)に添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて予備混錬した。そこへ、シリカ((株)トクヤマ製、トクシールU)、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(サンセラーCM(三新化学工業(株)製))を表8に示す配合となるように添加し、15分間混錬することでマスターバッチを得た。
[Preparation of masterbatch]
Substituent-removed fine fibrous cellulose so that the absolute dry mass of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 100 parts by mass of the raw material before cross-linking of ethylene-propylene-diene copolymer rubber (hereinafter, EPDM). The powder was added to an ethylene-propylene-diene copolymer rubber (EP104E, manufactured by JSR Co., Ltd.) and pre-kneaded using a laboplast mill (3S150, manufactured by Toyo Seiki Seisakusho Co., Ltd.). There, silica (manufactured by Tokuyama Co., Ltd., Tokusir U), zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), A vulcanization accelerator (Sunseller CM (manufactured by Sanshin Chemical Industries, Ltd.)) was added so as to have the composition shown in Table 8, and kneaded for 15 minutes to obtain a master batch.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[コンパウンドの作製]
 マスターバッチを、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))により、コンパウンドを得た。得られたコンパウンドは室温で12時間以上放置した。
[Preparation of compound]
The masterbatch was compounded by a twin-screw extruder (HK25D (L / D 41) manufactured by Parker Corporation). The obtained compound was left at room temperature for 12 hours or more.
[加硫工程]
 得られたコンパウンドを金型にいれ、180℃、10分間圧縮成形することで厚さ2mmの架橋体ゴムシートを作製した。
[Vulcanization process]
The obtained compound was placed in a mold and compression molded at 180 ° C. for 10 minutes to prepare a crosslinked rubber sheet having a thickness of 2 mm.
<実施例516>
 実施例502で得られた置換基除去後スラリーを用いた以外は実施例515と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 516>
The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 502 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例517>
 実施例506で得られた置換基除去後スラリーを用いた以外は実施例515と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 517>
The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 506 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例518>
 実施例507で得られた置換基除去後スラリーを用いた以外は実施例515と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 518>
The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 507 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例519>
 実施例508で得られた置換基除去後スラリーを用いた以外は実施例515と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 519>
The same operation as in Example 515 was carried out except that the slurry after removing the substituents obtained in Example 508 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例520>
[マスターバッチの調整]
 シリコーンゴムの架橋前原料の固形分100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量5質量部になるように実施例501で得られた置換基除去後スラリーを、シリコーンゴム(信越化学工業(株)製、KE-931-U)に添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて予備混錬した。そこへ、シリカ(((株)トクヤマ製、トクシールU))および硬化剤(信越化学工業(株)製、C-8)を、表9に示す配合となるように添加し、5分間混合することでマスターバッチを得た。
<Example 520>
[Adjustment of masterbatch]
The slurry after removing the substituents obtained in Example 501 so as to have an absolute dry mass of 5 parts by mass of the fine fibrous cellulose from which the substituents have been removed with respect to 100 parts by mass of the solid content of the raw material before cross-linking of the silicone rubber was added to the silicone rubber (silicon rubber). It was added to KE-931-U manufactured by Shin-Etsu Chemical Co., Ltd., and pre-kneaded using a laboplast mill (3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd.). Silica ((Tokuyama Corporation, Tokusir U)) and a curing agent (Shin-Etsu Chemical Co., Ltd., C-8) are added thereto so as to have the composition shown in Table 9, and the mixture is mixed for 5 minutes. I got a masterbatch.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[コンパウンドの作製]
 マスターバッチを、二軸押出混練機(パーカーコーポレーション社製、HK25D(L/D 41))により、コンパウンドを得た。得られたコンパウンドは室温で12時間以上放置した。
[Preparation of compound]
The masterbatch was compounded by a twin-screw extruder (HK25D (L / D 41) manufactured by Parker Corporation). The obtained compound was left at room temperature for 12 hours or more.
[加硫工程]
 得られたコンパウンドを金型にいれ、180℃、10分間圧縮成形することで厚さ2mmの架橋体ゴムシートを作製した。
[Vulcanization process]
The obtained compound was placed in a mold and compression molded at 180 ° C. for 10 minutes to prepare a crosslinked rubber sheet having a thickness of 2 mm.
<実施例521>
 実施例502で得られた置換基除去後スラリーを用いた以外は実施例520と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 521>
The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 502 was used to obtain a rubber composition containing fine fibrous cellulose containing the substituents and a rubber sheet.
<実施例522>
 実施例506で得られた置換基除去後スラリーを用いた以外は実施例520と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 522>
The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 506 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例523>
 実施例507で得られた置換基除去後スラリーを用いた以外は実施例520と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 523>
The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 507 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例524>
 実施例508で得られた置換基除去後スラリーを用いた以外は実施例520と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 524>
The same operation as in Example 520 was carried out except that the slurry after removing the substituents obtained in Example 508 was used to obtain a rubber composition containing fine fibrous cellulose from which the substituents were removed and a rubber sheet.
<実施例525>
[マスターバッチの調製]
 スチレン-ブタジエン共重合体ゴムラテックス(Nipol LX112、日本ゼオン株式会社製、以下SBR)の固形分100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量が5質量部になるように実施例501で得られた置換基除去後スラリーを混合し、ホモジナイザー(IKA製、T18digital ULTRA―TURRAX)を用いて4000rpmで15分間撹拌分散した。この水性懸濁液を70℃の加熱オーブン中で一晩乾燥して乾燥物を得た。この乾燥物を、オーブン中で120℃で30分加熱し、マスターバッチを調製した。
<Example 525>
[Preparation of masterbatch]
Styrene-butadiene copolymer rubber latex (Nipol LX112, manufactured by Nippon Zeon Co., Ltd., hereinafter SBR) was carried out so that the absolute dry mass of the substituent-removed fine fibrous cellulose was 5 parts by mass with respect to 100 parts by mass of the solid content. After removing the substituents obtained in Example 501, the slurry was mixed and stirred and dispersed at 4000 rpm for 15 minutes using a homogenizer (manufactured by IKA, T18 digital ULTRA-TURRAX). The aqueous suspension was dried overnight in a heating oven at 70 ° C. to give a dried product. The dried product was heated in an oven at 120 ° C. for 30 minutes to prepare a masterbatch.
[コンパウンドの作製]
 マスターバッチに、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(サンセラーNS-G(三新化学工業(株)製))を表10に示す配合となるように添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて15分間混練することで未架橋のコンパウンドを得た。
[Preparation of compound]
Zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), vulcanization accelerator (Sunseller NS-G (3)) in the master batch. Shin Kagaku Kogyo Co., Ltd.)) is added so as to have the composition shown in Table 10, and kneaded with a laboplast mill (3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 15 minutes to obtain an unbridged compound. Obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[加硫工程]
 得られたコンパウンドを金型にいれ、180℃、10分間プレス架橋することで厚さ2mmの架橋体ゴムシートを作製した。
[Vulcanization process]
The obtained compound was placed in a mold and crosslinked by pressing at 180 ° C. for 10 minutes to prepare a crosslinked rubber sheet having a thickness of 2 mm.
<実施例526>
 実施例501で得られた置換基除去後スラリーを実施例502で得られた置換基除去後スラリーに変更した以外は実施例525と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 526>
The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例527>
 実施例501で得られた置換基除去後スラリーを実施例506で得られた置換基除去後スラリーに変更した以外は実施例525と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 527>
The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例528>
 実施例501で得られた置換基除去後スラリーを実施例507で得られた置換基除去後スラリーに変更した以外は実施例525と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 528>
The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例529>
 実施例501で得られた置換基除去後スラリーを実施例508で得られた置換基除去後スラリーに変更した以外は実施例525と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 529>
The same operation as in Example 525 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例530>
[マスターバッチの調製]
 アクリロニトリル-ブタジエンゴムポリマーラテックス(Nipol511A 、日本ゼオン株式会社製、以下NBR)固形分100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量が5質量部になるように実施例501で得られた置換基除去後スラリーを混合し、ホモジナイザー(IKA製、T18digital ULTRA―TURRAX)を用いて4000rpmで15分間撹拌分散した。この水性懸濁液を70℃の加熱オーブン中で一晩乾燥して乾燥物を得た。この乾燥物を、オーブン中で120℃で30分加熱し、マスターバッチを調製した。
<Example 530>
[Preparation of masterbatch]
Obtained in Example 501 so that the absolute dry mass of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 100 parts by mass of the solid content of acrylonitrile-butadiene rubber polymer latex (Nipol511A, manufactured by Nippon Zeon Co., Ltd., hereinafter NBR). After removing the substituents, the slurry was mixed and stirred and dispersed at 4000 rpm for 15 minutes using a homogenizer (T18 digital ULTRA-TURRAX manufactured by IKA). The aqueous suspension was dried overnight in a heating oven at 70 ° C. to give a dried product. The dried product was heated in an oven at 120 ° C. for 30 minutes to prepare a masterbatch.
[コンパウンドの作製]
 マスターバッチに、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(サンセラーNOB(三新化学工業(株)製))を表11に示す配合となるように添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて15分間混練することで未架橋のコンパウンドを得た。
[Preparation of compound]
Zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), vulcanization accelerator (Sunseller NOB (Sanshin Kagaku)) in the master batch (Manufactured by Kogyo Co., Ltd.)) was added so as to have the composition shown in Table 11, and kneaded using a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 3S150) for 15 minutes to obtain an uncrosslinked compound. ..
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[架橋工程]
 得られたコンパウンドを金型にいれ、180℃、10分間プレス架橋することで厚さ2mmの架橋体ゴムシートを作製した。
[Crosslinking process]
The obtained compound was placed in a mold and crosslinked by pressing at 180 ° C. for 10 minutes to prepare a crosslinked rubber sheet having a thickness of 2 mm.
<実施例531>
 実施例501で得られた置換基除去後スラリーを実施例502で得られた置換基除去後スラリーに変更した以外は実施例530と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 531>
The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例532>
 実施例501で得られた置換基除去後スラリーを実施例506で得られた置換基除去後スラリーに変更した実施例530と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 532>
The same operation as in Example 530 in which the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506 was carried out, and the rubber composition containing fine fibrous cellulose containing the substituents was carried out. I got a rubber sheet.
<実施例533>
 実施例501で得られた置換基除去後スラリーを実施例507で得られた置換基除去後スラリーに変更した以外は実施例530と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 533>
The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例534>
 実施例501で得られた置換基除去後スラリーを実施例508で得られた置換基除去後スラリーに変更した以外は実施例530と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 534>
The same operation as in Example 530 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例535>
 実施例515と同様に、[置換基除去後スラリーの均一分散粉体化処理]を行った後、以下の方法で架橋体ゴムシートを作製した。
<Example 535>
Similar to Example 515, after performing [uniform dispersion powder treatment of slurry after removing substituents], a crosslinked rubber sheet was prepared by the following method.
[マスターバッチの調製]
 ブタジエンゴム(Nipol BR1220、日本ゼオン株式会社製、以下BR)の架橋前原料の固形分100質量部に対し、置換基除去微細繊維状セルロースの絶乾質量が5質量部になるように、置換基除去微細繊維状セルロース粉体を添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて混練した。そこへ、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(サンセラーNS-G(三新化学工業(株)製))を表12に示す配合となるように添加し、ラボプラストミル((株)東洋精機製作所製、3S150)で15分間混錬することでマスターバッチを得た。
[Preparation of masterbatch]
Substituents so that the absolute dry mass of the substituent-removed fine fibrous cellulose is 5 parts by mass with respect to 100 parts by mass of the solid content of the raw material before cross-linking of butadiene rubber (Nipol BR1220, manufactured by Nippon Zeon Corporation, hereinafter BR). The fine fibrous cellulose powder to be removed was added and kneaded using a laboplast mill (3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd.). There, zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), vulcanization accelerator (Sunseller NS-G (Sanshin)). Chemical Industry Co., Ltd.)) was added so as to have the composition shown in Table 12, and kneaded with a laboplast mill (3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 15 minutes to obtain a master batch.
[コンパウンドの作製]
 マスターバッチに、酸化亜鉛(和光純薬(株)製)、ステアリン酸(和光純薬(株)製)、硫黄(和光純薬(株)製)、加硫促進剤(サンセラーNOB(三新化学工業(株)製))を表12に示す配合となるように添加し、ラボプラストミル((株)東洋精機製作所製、3S150)を用いて15分間混練することで未架橋のコンパウンドを得た。
[Preparation of compound]
Zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), sulfur (manufactured by Wako Pure Chemical Industries, Ltd.), vulcanization accelerator (Sunseller NOB (Sanshin Kagaku)) in the master batch (Manufactured by Kogyo Co., Ltd.)) was added so as to have the composition shown in Table 12, and kneaded using a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 3S150) for 15 minutes to obtain an uncrosslinked compound. ..
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[架橋工程]
 得られたコンパウンドを金型にいれ、180℃、10分間プレス架橋することで厚さ2mmの架橋体ゴムシートを作製した。 
[Crosslinking process]
The obtained compound was placed in a mold and crosslinked by pressing at 180 ° C. for 10 minutes to prepare a crosslinked rubber sheet having a thickness of 2 mm.
<実施例536>
 実施例501で得られた置換基除去後スラリーを実施例502で得られた置換基除去後スラリーに変更した以外は実施例535と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 536>
The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 502, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例537>
 実施例501で得られた置換基除去後スラリーを実施例506で得られた置換基除去後スラリーに変更した以外は実施例535と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 537>
The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 506, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例538>
 実施例501で得られた置換基除去後スラリーを実施例507で得られた置換基除去後スラリーに変更した以外は実施例535と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 538>
The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 507, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<実施例539>
 実施例501で得られた置換基除去後スラリーを実施例508で得られた置換基除去後スラリーに変更した以外は実施例535と同様の操作を行い、置換基除去微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Example 539>
The same operation as in Example 535 was performed except that the slurry after removing the substituents obtained in Example 501 was changed to the slurry after removing the substituents obtained in Example 508, and the rubber composition containing fine fibrous cellulose containing the substituents was removed. A thing and a rubber sheet were obtained.
<比較例501>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例501に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 501>
In [Preparation of Fine Fibrous Cellulose-Containing Rubber Composition], [Fine] described in Example 501, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used instead of the slurry after removing the substituent. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例502>
 製造例13で得られた微細繊維状セルロース分散液を用いた以外は、比較例501と同様にして、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 502>
A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 13 was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例503>
 製造例14で得られた微細繊維状セルロース分散液を用いた以外は、比較例501と同様にして、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 503>
A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 14 was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例504>
 製造例15で得られた微細繊維状セルロース分散液を用いた以外は、比較例501と同様にして、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 504>
A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 15 was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 4 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例505>
 製造例16で得られた微細繊維状セルロース分散液を用いた以外は、比較例501と同様にして、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は5nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 505>
A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 16 was used. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 5 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例506>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例515に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 506>
[Fine] of Example 515, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例507>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例520に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 507>
In [Preparation of Fine Fibrous Cellulose-Containing Rubber Composition], [Fine] described in Example 520, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used instead of the slurry after removing the substituent. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例508>
 製造例17で得られた微細繊維状セルロース分散液を用いた以外は、比較例501と同様にして、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。
<Comparative Example 508>
A rubber composition containing fine fibrous cellulose and a rubber sheet were obtained in the same manner as in Comparative Example 501 except that the fine fibrous cellulose dispersion obtained in Production Example 17 was used.
<比較例509>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例525に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 509>
[Fine] of Example 525, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例510>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例530に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 510>
[Fine] of Example 530, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
<比較例511>
 [微細繊維状セルロース含有ゴム組成物の作製]において、置換基除去後スラリーに代えて、製造例11で得られた微細繊維状セルロース分散液を用いた以外は、実施例535に記載の[微細繊維状セルロース含有ゴム組成物の作製]と同様の操作を行い、微細繊維状セルロース含有ゴム組成物及びゴムシートを得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は3nmであり、10nm以下の繊維幅の割合は99%であった。
<Comparative Example 511>
[Fine] of Example 535, except that the fine fibrous cellulose dispersion obtained in Production Example 11 was used in place of the slurry after removing the substituent in [Preparation of a rubber composition containing fine fibrous cellulose]. Preparation of fibrous cellulose-containing rubber composition] was carried out to obtain a fine fibrous cellulose-containing rubber composition and a rubber sheet. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later was 3 nm, and the ratio of the fiber width of 10 nm or less was 99%.
[評価]
 上記の実施例および比較例で得られたスラリー、ゴム組成物及びゴムシートについて、下記の方法で評価を行った。
[evaluation]
The slurries, rubber compositions and rubber sheets obtained in the above Examples and Comparative Examples were evaluated by the following methods.
[リンオキソ酸基量の測定]
 リンオキソ酸基量(リン酸基もしくは亜リン酸基量)の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られたスラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
[Measurement of phosphorus oxo acid group amount]
In measuring the amount of phosphorous acid group (phosphoric acid group or phosphorous acid group amount), first, ion-exchanged water is added to the target fine fibrous cellulose to prepare a slurry having a solid content concentration of 0.2% by mass. bottom. The obtained slurry was treated with an ion exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the fine fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration using alkali, the pH value indicated by the slurry is changed while adding 10 μL of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose-containing slurry treated with the ion exchange resin every 5 seconds. Was performed by measuring. Titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
[スルホン基量の測定]
 スルホン基量は、次のように測定した。微細繊維状セルロースを冷凍庫で凍結させた後、凍結乾燥機(ラブコンコ社製FreeZone)で3日間乾燥させた。得られた凍結乾燥物をハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20,000rpmで60秒、粉砕処理を行って粉末状にした。凍結乾燥及び粉砕処理後の試料を密閉容器中で硝酸を用いて加圧加熱分解した。その後、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値をスルホン基量(単位:mmol/g)とした。
[Measurement of sulfone group amount]
The amount of sulfone groups was measured as follows. The fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days. The obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder. The sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfone groups (unit: mmol / g).
[カルボキシ基量の測定]
微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
[Measurement of carboxy group amount]
The amount of carboxy group of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass. The contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure the content.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration using alkali, 50 μL of 0.1 N sodium hydroxide aqueous solution is added to the fibrous cellulose-containing slurry treated with an ion exchange resin once every 30 seconds to obtain the electrical conductivity of the slurry. This was done by measuring the change in value. For the carboxy group amount (mmol / g), the alkali amount (mmol) required in the region corresponding to the first region shown in FIG. 2 of the measurement results is divided by the solid content (g) in the slurry to be titrated. Calculated.
[ザンテート基量の測定]
 ザンテート基量は、Bredee法により測定した。具体的には、繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄した。サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌した。15分間放置後、溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とした。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加した。この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定した。チオ硫酸ナトリウムの滴定量、繊維状セルロースの絶乾質量より次式からザンテート基量を算出した。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/繊維状セルロースの絶乾質量(g)
[Measurement of Zantate group amount]
The amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred. After leaving for 15 minutes, a phenolphthalein solution was added until the solution turned pink, and then 1.5 M acetic acid was added, and the point at which the solution turned from pink to colorless was defined as a neutralization point. After neutralization, 250 mL of distilled water was added and stirred well, and 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol / L iodine solution were added using a whole pipette. This solution was titrated with a 0.05 mol / L sodium thiosulfate solution. The amount of zantate group was calculated from the following formula from the titration amount of sodium thiosulfate and the absolute dry mass of fibrous cellulose.
Zantate group amount (mmol / g) = (0.05 × 10 × 2-0.05 × sodium thiosulfate titration (mL)) / 1000 / Absolute dry mass of fibrous cellulose (g)
[繊維幅の測定]
 繊維状セルロースの繊維幅を下記の方法で測定した。各繊維状セルロース分散液を、セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボン膜被覆グリッド上にキャストした。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(TEM、日本電子社製、JEOL-2000EX)により観察した。その際、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、倍率を調節した。この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維幅を目視で読み取っていった。各分散液につき3枚の重複しない観察画像を撮影し、各々2つの軸に交差する繊維の繊維幅の値を読み取った(20本以上×2×3=120本以上)。なお、このようにして得られた繊維幅から数平均繊維幅を算出した。但し、製造例17を用いた比較例508のみ、得られた分散液をセルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、ガラス上へキャストして走査型電子顕微鏡(SEM)で観察した。
[Measurement of fiber width]
The fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis. After obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions were drawn for this image, and the fiber width of the fibers intersecting the axes was visually read. Three non-overlapping observation images were taken for each dispersion, and the value of the fiber width of the fibers intersecting each of the two axes was read (20 or more × 2 × 3 = 120 or more). The number average fiber width was calculated from the fiber width obtained in this way. However, only in Comparative Example 508 using Production Example 17, the obtained dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto glass. It was observed with a scanning electron microscope (SEM).
[窒素量の測定]
 繊維状セルロースと繊維状セルロース分散液中に含まれる遊離窒素の合計量を以下に記載の方法により測定した。各分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102:2016 44.1)で分解した。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出した。
[Measurement of nitrogen content]
The total amount of free nitrogen contained in the fibrous cellulose and the fibrous cellulose dispersion was measured by the method described below. Each dispersion was adjusted to a solid content concentration of 1% by mass and decomposed by the Kjeldahl method (JIS K 0102: 2016 44.1). After decomposition, the amount of ammonium ions (mmol) was measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
[引張強度測定]
 実施例及び比較例で得られたゴムシートについて、JIS K 6251:2017「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従い引張試験を行い、破断応力を測定した。測定値から、下記の計算式を用いて引張強度指数を算出した。なお、コントロールゴムシートとは繊維状セルロースを配合しないで作製したゴムシートである。例えば、実施例501では、置換基除去後スラリーを用いず、天然ゴムラテックスのみを用いて[マスターバッチの調製]以降の操作を行い、作製したゴムシートがコントロールゴムシートとなる。
 引張強度指数=ゴムシートの破断応力/コントロールゴムシートの破断応力×100
 そして、得られた引張強度指数を、下記A~Eの5段階で評価した。
A:引張強度指数が120以上
B:引張強度指数が110以上120未満
C:引張強度指数が100以上110未満
D:引張強度指数が90以上100未満
E:引張強度指数が90未満
[Tensile strength measurement]
The rubber sheets obtained in Examples and Comparative Examples were subjected to a tensile test according to JIS K 6251: 2017 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties", and the breaking stress was measured. From the measured values, the tensile strength index was calculated using the following formula. The control rubber sheet is a rubber sheet produced without blending fibrous cellulose. For example, in Example 501, the rubber sheet produced by performing the operations after [Preparation of masterbatch] using only natural rubber latex without using the slurry after removing the substituent becomes the control rubber sheet.
Tensile strength index = breaking stress of rubber sheet / breaking stress of control rubber sheet x 100
Then, the obtained tensile strength index was evaluated in the following five stages A to E.
A: Tensile strength index is 120 or more and B: Tensile strength index is 110 or more and less than 120 C: Tensile strength index is 100 or more and less than 110 D: Tensile strength index is 90 or more and less than 100 E: Tensile strength index is less than 90
[意匠性評価]
 50mm×50mmの実施例及び比較例のゴムシートの塊状物の大小・多寡を、下記A~Eの5段階で評価した。
A:面積円相当径1mm以上の塊状物の個数が10個以下
B:面積円相当径1mm以上の塊状物の個数が11~20個
C:面積円相当径1mm以上の塊状物の個数が21~30個
D:面積円相当径1mm以上の塊状物の個数が31~40個
E:面積円相当径1mm以上の塊状物の個数が41個以上
[Design evaluation]
The size and quantity of the rubber sheet lumps of the 50 mm × 50 mm example and the comparative example were evaluated on the following five stages A to E.
A: The number of lumps with an area circle equivalent diameter of 1 mm or more is 10 or less B: The number of lumps with an area circle equivalent diameter of 1 mm or more is 11 to 20 C: The number of lumps with an area circle equivalent diameter of 1 mm or more is 21 ~ 30 D: 31 to 40 lumps with an area circle equivalent diameter of 1 mm or more E: 41 or more lumps with an area circle equivalent diameter of 1 mm or more
[着色評価]
 JIS K 7373:2006に準拠し、Colour Cute i(スガ試験機株式会社製)を用いて実施例及び比較例のゴムシートの黄色度を測定し、下記の式からYI変化率を算出した。なお、計算式中の基準配合のゴムシートは、実施例または比較例で用いたゴム成分から形成されるゴムシートであって、微細繊維状セルロースを含まないコントロールゴムシートである(例えば、実施例または比較例で天然ゴムラテックスを用いた場合、コントロールゴムシートは、表7の配合の天然ゴムを含むゴムシートである)。得られたYI変化率を、下記A~Eの4段階で評価した。
 YI変化率(%)=(ゴムシートの黄色度-コントロールゴムシートの黄色度)/基準配合のゴムシートの黄色度×100
A:YI変化率80%未満
B:YI変化率80%以上160%未満
C:YI変化率160%以上240%未満
D:YI変化率240%以上320%未満
E:YI変化率320%以上
[Coloring evaluation]
In accordance with JIS K 7373: 2006, the yellowness of the rubber sheets of Examples and Comparative Examples was measured using Color Cutei (manufactured by Suga Test Instruments Co., Ltd.), and the YI change rate was calculated from the following formula. The rubber sheet having the standard composition in the calculation formula is a rubber sheet formed from the rubber components used in Examples or Comparative Examples, and is a control rubber sheet that does not contain fine fibrous cellulose (for example, Example). Alternatively, when natural rubber latex is used in the comparative example, the control rubber sheet is a rubber sheet containing the natural rubber of the formulation shown in Table 7). The obtained YI change rate was evaluated in the following four stages A to E.
YI change rate (%) = (Yellowness of rubber sheet-Yellowness of control rubber sheet) / Yellowness of rubber sheet with standard composition x 100
A: YI change rate less than 80% B: YI change rate 80% or more and less than 160% C: YI change rate 160% or more and less than 240% D: YI change rate 240% or more and less than 320% E: YI change rate 320% or more
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例で得られたゴム組成物から成形されるゴムシート(成形体)は、引張強度指数が高かった。また、実施例で得られたゴム組成物から成形されるゴムシート(成形体)は、意匠性に優れており、かつ着色が抑制されていた。一方で、置換基除去処理を行わない場合や、未変性の粗大繊維状セルロースを用いた場合は、得られたゴムシート(成形体)の引張強度指数や意匠性が劣っており、着色も確認された(比較例501~511)。 The rubber sheet (molded body) molded from the rubber composition obtained in the examples had a high tensile strength index. Further, the rubber sheet (molded body) molded from the rubber composition obtained in the examples was excellent in designability and coloration was suppressed. On the other hand, when the substituent removal treatment is not performed or when unmodified coarse fibrous cellulose is used, the tensile strength index and design of the obtained rubber sheet (molded product) are inferior, and coloring is also confirmed. (Comparative Examples 501 to 511).

Claims (25)

  1.  樹脂と、繊維状セルロースとを含む樹脂組成物であって、
     前記繊維状セルロースにおける置換基導入量が0.5mmol/g未満であり、
     前記樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅が1~100nmである、樹脂組成物。
    A resin composition containing a resin and fibrous cellulose.
    The amount of substituents introduced in the fibrous cellulose is less than 0.5 mmol / g, and the amount is less than 0.5 mmol / g.
    A resin composition having a number average fiber width of 1 to 100 nm of fibrous cellulose contained in the resin composition.
  2.  前記樹脂組成物中に含まれる繊維状セルロースの数平均繊維幅が1~10nmである、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the number average fiber width of the fibrous cellulose contained in the resin composition is 1 to 10 nm.
  3.  前記樹脂組成物は、前記樹脂と、前記繊維状セルロースの混練物である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the resin composition is a kneaded product of the resin and the fibrous cellulose.
  4.  前記置換基がアニオン性基である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the substituent is an anionic group.
  5.  前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基、スルホン基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である請求項4に記載の樹脂組成物。 The anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group. The resin composition according to claim 4.
  6.  前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基及びスルホン基に由来する置換基からなる群から選択される少なくとも1種である、請求項4又は5に記載の樹脂組成物。 4. Resin composition.
  7.  前記樹脂が、ポリオレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される少なくとも1種である、請求項1~6のいずれか1項に記載の樹脂組成物。 The one according to any one of claims 1 to 6, wherein the resin is at least one selected from the group consisting of a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyurethane resin, and an acrylic resin. Resin composition.
  8.  前記樹脂が、ゴム成分である、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the resin is a rubber component.
  9.  前記ゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種の架橋前原料である、請求項8に記載の樹脂組成物。 The rubber component is at least one pre-crosslinking raw material selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. The resin composition according to claim 8.
  10.  前記樹脂組成物は、前記ゴム成分と前記繊維状セルロースを含む混練物である、請求項8又は9に記載の樹脂組成物。 The resin composition according to claim 8 or 9, wherein the resin composition is a kneaded product containing the rubber component and the fibrous cellulose.
  11.  前記繊維状セルロースはカルバミド基を有する、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the fibrous cellulose has a carbamide group.
  12.  請求項1~11のいずれか1項に記載の樹脂組成物を成形してなる樹脂成形体。 A resin molded body obtained by molding the resin composition according to any one of claims 1 to 11.
  13.  置換基導入量が0.5mmol/g未満であり、かつ平均繊維幅が1~100nmの繊維状セルロースを得る工程と、
     前記繊維状セルロースと、樹脂とを混練する工程と、を含む樹脂組成物の製造方法であって、
     前記繊維状セルロースを得る工程は、
     置換基を有し、かつ繊維幅が1000nm以下の繊維状セルロースから、前記置換基の少なくとも一部を除去する工程(A)を含む、樹脂組成物の製造方法。
    A step of obtaining fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and an average fiber width of 1 to 100 nm.
    A method for producing a resin composition, which comprises a step of kneading the fibrous cellulose and a resin.
    The step of obtaining the fibrous cellulose is
    A method for producing a resin composition, which comprises the step (A) of removing at least a part of the substituent from the fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  14.  前記繊維状セルロースを得る工程は、置換基導入量が0.5mmol/g未満であり、かつ平均繊維幅が1~10nmの繊維状セルロースを得る工程であり、
     前記繊維状セルロースを得る工程は、前記工程(A)の後に、均一分散処理する工程(B)を含む、請求項13に記載の樹脂組成物の製造方法。
    The step of obtaining the fibrous cellulose is a step of obtaining fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and an average fiber width of 1 to 10 nm.
    The method for producing a resin composition according to claim 13, wherein the step of obtaining the fibrous cellulose includes the step (B) of performing a uniform dispersion treatment after the step (A).
  15.  前記工程(A)に供される繊維状セルロースの置換基導入量は0.6mmol/g以上である、請求項13又は14に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 13 or 14, wherein the amount of the substituent of the fibrous cellulose used in the step (A) is 0.6 mmol / g or more.
  16.  前記置換基がアニオン性基である、請求項13~15のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 13 to 15, wherein the substituent is an anionic group.
  17.  前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基、スルホン基に由来する置換基、カルボキシ基及びカルボキシ基に由来する置換基からなる群から選択される少なくとも1種である、請求項16に記載の樹脂組成物の製造方法。 The anionic group is at least one selected from the group consisting of a phosphate group, a substituent derived from a phosphoroxo acid group, a sulfone group, a substituent derived from a sulfone group, a carboxy group and a substituent derived from a carboxy group. The method for producing a resin composition according to claim 16.
  18.  前記アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、スルホン基及びスルホン基に由来する置換基からなる群から選択される少なくとも1種である、請求項16又は17に記載の樹脂組成物の製造方法。 The 16th or 17th claim, wherein the anionic group is at least one selected from the group consisting of a phosphoric acid group, a substituent derived from a phosphoric acid group, a sulfone group and a substituent derived from a sulfone group. A method for producing a resin composition.
  19.  前記工程(A)に供される繊維状セルロースはカルバミド基を有する、請求項13~18のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 13 to 18, wherein the fibrous cellulose used in the step (A) has a carbamide group.
  20.  窒素量を低減させる工程をさらに含む、請求項13~19のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 13 to 19, further comprising a step of reducing the amount of nitrogen.
  21.  前記工程(A)は、スラリー状で行われる、請求項13~20のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 13 to 20, wherein the step (A) is performed in the form of a slurry.
  22.  前記工程(A)の前に、繊維状セルロースを含むスラリーのpHを3~8に調整する工程をさらに含む、請求項21に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 21, further comprising a step of adjusting the pH of the slurry containing fibrous cellulose to 3 to 8 before the step (A).
  23.  前記樹脂が、ポリオレフィン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される少なくとも1種である、請求項13~22のいずれか1項に記載の樹脂組成物の製造方法。 The invention according to any one of claims 13 to 22, wherein the resin is at least one selected from the group consisting of a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, a polyurethane resin, and an acrylic resin. A method for producing a resin composition.
  24.  前記樹脂が、ゴム成分である、請求項13~22のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 13 to 22, wherein the resin is a rubber component.
  25.  前記ゴム成分は、天然ゴム、エチレン-プロピレン-ジエン共重合ゴム、シリコーンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンゴム及びブタジエンゴムからなる群から選択される少なくとも1種の架橋前原料である、請求項24に記載の樹脂組成物の製造方法。 The rubber component is at least one pre-crosslinking raw material selected from the group consisting of natural rubber, ethylene-propylene-diene copolymer rubber, silicone rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene rubber and butadiene rubber. The method for producing a resin composition according to claim 24.
PCT/JP2021/019071 2020-05-19 2021-05-19 Resin composition, rubber composition, resin molded body, and production method for resin composition WO2021235502A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2020087683 2020-05-19
JP2020-087683 2020-05-19
JP2020087684 2020-05-19
JP2020-087684 2020-05-19
JP2020-098809 2020-06-05
JP2020098809 2020-06-05
JP2020167600 2020-10-02
JP2020-167600 2020-10-02
JP2021-084172 2021-05-18
JP2021-084173 2021-05-18
JP2021-084171 2021-05-18
JP2021084173A JP2022008095A (en) 2020-05-19 2021-05-18 Resin composition, resin molding, and method for producing resin composition
JP2021084171A JP2021181566A (en) 2020-05-19 2021-05-18 Resin composition, resin molding and method for producing resin composition
JP2021084172A JP2021191841A (en) 2020-06-05 2021-05-18 Rubber composition and molded product

Publications (1)

Publication Number Publication Date
WO2021235502A1 true WO2021235502A1 (en) 2021-11-25

Family

ID=78707915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019071 WO2021235502A1 (en) 2020-05-19 2021-05-19 Resin composition, rubber composition, resin molded body, and production method for resin composition

Country Status (1)

Country Link
WO (1) WO2021235502A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176049A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber and fine-fiber-containing sheet
JP2014034673A (en) * 2012-08-10 2014-02-24 Oji Holdings Corp Fine fibrous cellulose
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP6680392B1 (en) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 Fibrous cellulose production method, fibrous cellulose dispersion and sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176049A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber and fine-fiber-containing sheet
JP2014034673A (en) * 2012-08-10 2014-02-24 Oji Holdings Corp Fine fibrous cellulose
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP6680392B1 (en) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 Fibrous cellulose production method, fibrous cellulose dispersion and sheet

Similar Documents

Publication Publication Date Title
US11034806B2 (en) Resin composite and method for producing resin composite
JP6520619B2 (en) Fine fibrous cellulose content
WO2021235501A1 (en) Microfilament-like cellulose, dispersion liquid, sheet, layered sheet, laminate, and method for producing microfilament-like cellulose
JP7140165B2 (en) Fine fibrous cellulose, dispersion, sheet and method for producing fine fibrous cellulose
JP2022026834A (en) Molding and manufacturing method of molding
WO2021235502A1 (en) Resin composition, rubber composition, resin molded body, and production method for resin composition
JP7131296B2 (en) Fine fibrous cellulose-containing composition and method for producing the same
EP3730542A1 (en) Sheet
JP2021191841A (en) Rubber composition and molded product
JP2021181566A (en) Resin composition, resin molding and method for producing resin composition
JP2022008095A (en) Resin composition, resin molding, and method for producing resin composition
JP2018193465A (en) Master batch and manufacturing method of rubber composition
JP7135729B2 (en) Cellulose-containing composition, liquid composition, solid form, and method for producing cellulose-containing composition
WO2022172832A1 (en) Sheet and layered body
JP2022115099A (en) Multi-layered resin glass and vehicle window unit
JP7342873B2 (en) Solid body, sheet and method for producing solid body
WO2021107147A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and sheet
WO2022145389A1 (en) Laminate and method of manufacturing laminate
WO2021107146A1 (en) Fibrous cellulose, fibrous cellulose dispersion, and sheet
WO2021107148A1 (en) Dispersion liquid
WO2021235500A1 (en) Laminated sheet
JP2021175800A (en) Sheet and laminate
JP7015970B2 (en) Rubber composition and its manufacturing method
JP2021181565A (en) Microfilament-like cellulose, dispersion liquid, sheet, and method for producing microfilament-like cellulose
JP2021181673A (en) Laminated sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807632

Country of ref document: EP

Kind code of ref document: A1